

Charles University in Prague

Faculty of Mathematics and Physics

Habilitation Thesis

Efficient Processing of Semi-Structured and Large

Data in Distributed and Parallel Environment

Filip Zavoral

Prague, September 2015

1

Acknowledgement

I would like to thank the head of the Department of Software Engineering Tomáš Skopal

and his predecessors Jaroslav Pokorný, Peter Vojtáš, and František Plášil. They always

encouraged my work and valuably supported the research of me and my colleagues for many

years.

The work presented here would not be possible without a tight cooperation with my

colleagues. Among many of them, I would like to thank especially Jakub Yaghob and David

Bednárek for their long time every day common work on many projects, some of them resulted

in papers presented in this thesis. I would like to thank Martin Kruliš, Zbyněk Falt, Jiří Dokulil,

and Jana Dvořáková for their activity, enthusiasm, and high technical skills that significantly

enhanced our research and mutual cooperation.

Beside these explicitly named, I would like to thank all the co-authors of my publications

and many researches, colleagues, and Ph.D. students who contributed to common projects; their

work without any doubt has valuably influent presented results.

2

Table of Contents

1. Introduction .. 4

 1.1 Background .. 4

 1.2 Presented Papers .. 7

 1.3 Data Integration Using DataPile Structure .. 9

 1.4 Using Input Buffers for Streaming XSLT Processing .. 10

 1.5 High-Level Web Data Abstraction Using Language Integrated Query 12

 1.6 Parallel SPARQL Query Processing Using Bobox .. 13

 1.7 Highly Scalable Sort-Merge Join Algorithm for RDF Querying 14

 1.8 Resistance of Trust Management Systems against Malicious Collectives 15

 1.9 Metro-NG: Computer-Aided Scheduling and Collision Detection 16

 1.10 Locality Aware Task Scheduling in Parallel Data Stream Processing 17

2. Data Integration Using DataPile Structure ... 19

3. Using Input Buffers for Streaming XSLT Processing ... 31

4. High-Level Web Data Abstraction Using Language Integrated Query 39

5. Parallel SPARQL Query Processing Using Bobox .. 51

6. Highly Scalable Sort-Merge Join Algorithm for RDF Querying ... 67

7. Resistance of Trust Management Systems against Malicious Collectives 77

8. Metro-NG: Computer-Aided Scheduling and Collision Detection 89

9. Locality Aware Task Scheduling in Parallel Data Stream Processing 119

10. Conclusions and Future Work .. 135

3

Chapter 1.

Introduction

The main topics of this thesis consist of methods, technologies, data structures, and

algorithms used for efficient processing of large data sets. Although most of the presented

results are applicable for large variety of data, the essential motivation was efficient processing

of semantic data.

The thesis consists of a commented collection of eight papers which appeared in

international journals and conference proceedings disseminated by world-wide publishers.

1.1 Background

The results presented in this thesis are based mainly on three computer science

branches: semantic technologies, parallelism, and distributed processing. This combination is

implied by the specialization of the author: a long time interest in distributed computing and

results from a large scientific project, which was focused on semantization techniques funded by

the Czech Science Foundation for several years, were combined with recent advances in the field

of parallel processing. This section briefly discusses the scientific background in these branches.

Semantic Technologies

Web technologies belong to the most popular areas of computer science today. The

amount of data stored on the web has been growing rapidly and applications providing access to

this data became a part of everyday life. Examples of these applications are searching engines

such as Google and specific web applications driven by business or by social needs such as eBay,

Amazon, Flickr, YouTube, or Facebook. They attempt to add some semantic value to the web

resources in order to provide a possibility to query them by users. This is achieved by

categorization of accessed resources and by determining mutual relationships among these

resources.

Several approaches can be recognized in the web based research and development to

enhance its functionality. Among the most prominent are Web 2.0, the social web, the semantic

web and the web services [atz10]. The first two are oriented to human for their more

comfortable access to the web resources, whereas the last two aims to support both human and

machine processing.

The web semantization initiative aims to create a universal medium for the data

exchange via machine-understandable data. One of the main approaches to making data

4

machine understandable is to annotate them according to an ontology. The machine processing

of the data is represented by web services that provide standard means of interoperability

between different software applications running on a variety of platforms. Web services in the

semantic web are supposed to process semantically annotated data in order to enhance the

provided functionality. The annotation is supposed to be done by means of binding to the

ontology.

One of the long-term issues of web semantization is an insufficient ratio of semantically

annotated data on the web. Manually and uniformly annotated data usually appear only in

narrow, well organized domains, such as medicine, musea, or libraries. Most of the resources are

created for human reading; their automatic capturing and processing is hard and even many of

the resources are hidden for machine access (e.g., hidden web or restrictions of robot access).

Hence, one of the most severe problems of annotation is the level of automation. The fully

automated processing is hard to achieve and the manual processing is expensive and does not

scale well.

Fig. 1 – Semantic web stack

There are developed and relatively stabilized standards for ontology description (OWL),

standardized specialized query languages (SPARQL, RQL, SeRQL, RDQL), and storage systems for

data and metadata (Sesame, Jena, OWLIM, RDF-3X, Virtuoso, C-Store and many others).

However, most of currently available semantic platforms are limited in performance and

scalability. As the amount of RDF data continues to scale, a single machine not able to store

entire data sets; therefore, distributed architectures are necessary. Some of these stores support

parallel computation of multiple queries (inter-query parallelism), but they do not use the

potential of parallel computation of query itself.

5

Distributed Computing

The field of distributed computing studies methods, algorithms, and technologies

applicable to utilizing a wide set of independent computing nodes mutually connected for

synchronized execution of tasks spanned across the nodes.

From the architectural point of view, there are many real-world applications of

distributed computing today such as distributed data storage and processing, peer-to-peer

networks, ubiquitous and agent systems, content-management networks, cooperative

computing and problem solving, mobile and sensor networks, cluster and grid high-performance

computing, social networking, platforms for cloud computing, and many others.

Such a wide range of diverse architectures and systems usually share similar issues. Due

to absence of shared physical memory, various distributed algorithms are needed for

synchronizing individual nodes. Higher levels of scalability cannot be achieved without

replication, by which resources are copied and placed close to nodes which need them. This

technique enables highly efficient utilization of available resources and computing nodes.

Nevertheless, it implies additional consistency issues, such as mutual consensus, delivery

protocols, replica placement, etc. Moreover, the CAP theorem [gil02] tells us that we simply

cannot combine consistency and availability in the presence of network partitions. Therefore,

building scalable distributed systems continues to be one of the most challenging tasks in the

systems design [ste12].

Parallel Processing

Nowadays, parallel processing is one of the main trends in software development. Wide

spectrum of computing equipment from workstations to supercomputers utilizes parallel

technologies. The main reason is a significant increase in the processing power enabled by

parallelism. The processing capacity of a regular desktop computer with a multicore processor

supersedes the computational power of a supercomputer of two decades ago at a fraction of the

cost.

Moreover, the emergence of new computational platforms that are parallel in nature can

be observed, such as GPGPUs or Intel Xeon Phi accelerator cards. These new technologies

encourage programmers to consider parallel processing not only in a distributive way

(horizontal scaling), but also within each node (vertical scaling). The parallelism is getting

involved on many levels and it is commonly believed that it will play even more significant role

in the future.

The issues implied by the introduction of parallel processing have been studied for

nearly five decades. Although much progress was made in the areas of parallel architectures,

algorithm and software design, major problems remain to be solved. The increasing amounts of

processing units and the use of standardized components for the a streamline production of

parallel systems comprising of large number of processors call for scalable methods and tools to

support the development of software that effectively and efficiently utilizes parallel hardware.

6

Writing parallel software is a very complex task at present time. Contemporary

programming languages are often accommodated to parallel features but their application is not

straightforward. To make programming easier, several libraries and compiler extensions have

been created, such as OpenMP, MPI library, or Intel Threading Building Blocks (TBB). Although

these frameworks are popular for development of parallel processing software, parallel

programming is still a complex and error-prone task. Therefore, algorithms, methods, languages,

and other approaches for simplifying the development of parallel applications on various

architectures are very hot research topics.

1.2 Presented Papers

The collection of papers presented in this thesis can be divided into three main groups

according to a type of the most significant presented result.

 [P1] (column-oriented data store for historic records) and [P2] (processing of large XML

collections with low memory requirement) propose data structures for efficient data

processing;

 [P5] (scalable join algorithm for RDF data in streaming systems), [P6] (achieving of mutual

trust in distributed processing), and [P7] (automatic detection of structure and semantics of

data) present newly proposed algorithms for these problems;

 [P3] (efficient access to strongly typed data available remotely), [P4] (implementation of

parallel SPARQL engine), and [P8] (high-performance scheduling in streaming systems)

present and evaluate implementations of tools developed within a scope of our scientific

projects.

The following list contains papers comprising the main part of the thesis:

[P1] David Bednárek, David Obdržálek, Jakub Yaghob, Filip Zavoral:

Data Integration Using DataPile Structure,

ADBIS 2005, Proceedings of the 9th East-European Conference on Advances in Databases and

Information Systems, Springer Verlag, ISBN: 3-540-42555-1, pp. 178-188, 2005

[P2] Jana Dvořáková, Filip Zavoral:

Using Input Buffers for Streaming XSLT Processing,

DBKDA 2009, International Conference on Advances in Databases, Knowledge, and Data

Applications, IEEE Computer Society Press, ISBN: 978-1-4244-3467-1 , pp. 50-55, 2009

[P3] Jakub Míšek, Filip Zavoral:

High-Level Web Data Abstraction Using Language Integrated Query

Intelligent Distributed Computing IV, Springer Verlag, ISBN: 978-3-642-15210-8, pp. 13-22,

2010

[P4] Zbyněk Falt, Miroslav Čermák, Jiří Dokulil, Filip Zavoral:

Parallel SPARQL Query Processing Using Bobox

7

International Journal On Advances in Intelligent Systems, Vol. 5, Num. 3, ISSN: 1942-2679, pp.

302-314, 2012

[P5] Zbyněk Falt, Miroslav Čermák, Filip Zavoral:

Highly Scalable Sort-Merge Join Algorithm for RDF Querying

Proceedings of the International Conference on Data Technologies and Applications,

SciTePress, ISBN: 978-989-8565-67-9, pp. 293-300, 2013

[P6] Miroslav Novotný, Filip Zavoral:

Resistance of Trust Management Systems against Malicious Collectives

Proceedings of 2nd International Conference on Context-Aware Systems and Applications,

Springer Verlag, ISBN: 978-3-319-05938-9, ISSN: 1867-8211, pp. 67-76, 2014

[P7] David Bednárek, Jakub Yaghob, Filip Zavoral:

Metro-NG: Computer-Aided Scheduling and Collision Detection

Computing and Informatics, ISSN: 1335-9150, Vol. 34, Num. 2, pp. 1-27, 2015

[P8] Zbyněk Falt, Martin Kruliš, David Bednárek, Jakub Yaghob, Filip Zavoral:

Locality Aware Task Scheduling in Parallel Data Stream Processing

Proceedings of the 8th International Symposium on Intelligent Distributed Computing -

IDC'2014, Springer Verlag, ISBN: 978-3-319-10421-8, ISSN: 1860-949X, pp. 331-342, 2014

[P1] received so far 12 citations, [P2] was cited by Michael Kay in his invited talks about

the future of XSLT processing. The citations of the rest of the papers are listed in a separate

document. [P7] is especially important in the context of Charles University; scheduling of the

university lectures is based on the proposed formal model and the developed tools.

The research presented in these papers was included in and partly financed by the

following grants where the author was one of the participating investigators:

 Czech Science Foundation - GACR 13/08195, Highly Scalable Parallel and Distributed

Methods of Data Processing in e-Science, 2013-2015

 Czech Science Foundation - GACR 202/10/0761, Web Semantization, 2010-2012

 Czech Science Foundation - GACR 201/09/H057, Res Informatica, 2009-2012

 Czech Science Foundation - GACR 201/09/0990, XML Data Processing, 2009-2011

 Ministry of Education of the Czech Republic, grant MSM0021620838, Modern Methods,

Structures and Systems of Computer Science, 2005-2011

 National programme of research, Information society project 1ET100300419, Intelligent

Models, Algorithms, Methods and Tools for the Semantic Web, 2004-2008

 GAUK 13/472313 Recovery methods for distributed data stream processing, 2013-2015

 GAUK 2010/28910 - Abstraction and Automatic Data Extraction for Semantic Web,

2010-2012

 SVV-2014-260100 Advanced methods and applications of software, data and web

engineering, 2014

8

 Intel Corp. Grant PO#4507012020

The papers present an extracted output of several scientific and software projects. Since

all the main research areas: semantic web, distributed systems, and parallel processing belong to

the area of experimental computer science, the results could not be achieved by an individual

research. Instead, many of colleagues and students participated in these projects where the

author of this thesis was one of the main researchers.

The following subsections of Chapter 1 contain a brief summary of the basic ideas and

scientific contributions of these papers. Each of these papers is presented in a separate chapter

starting with a copy of the front page of the publication in which the paper was published.

1.3 Data Integration Using DataPile Structure

The objective of the first paper [P1] originated from a mid-range real-world project – the

design and development of an information system based on replication and synchronization of

data coming from a large number of different data sources. We proposed a DataPile structure

with the following objectives: an efficient storage of historical versions of the data,

straightforward adaptation to global schema changes, separation of data conversions and

replication logic, and a support for an evaluation of data relevance.

The main idea of this structure is data verticalization. Instead of keeping all the data in

separate tables (in one or more DBMS) with many attributes, the data are stored in one table

without any “well-formed” internal structure or hierarchy. Each row in the pile represents one

attribute whose value is valid during certain interval of transaction time. Such data entry is

supplemented by several system values for proper implementation of the functionality needed

such as relevance values and time stamps. The overall logical structure of the data is kept in few

separate metatables.

The structure described avoids some of the typical integration problems of

the information systems: the number of relational tables used does not grow with an expansion

of the system, data changes are preserved with minimal overhead, and the extensibility of the

system (e.g. defining new entities or attributes) is achieved by inserting new rows into

metatables.

During the evaluation of the prototype implementation, we have discovered some

disadvantages of this approach. The export and matching processes were not very efficient due

to a relatively complex matching algorithm. Fortunately, the time complexity is not very

important in everyday life because number of data changes is orders of magnitude smaller in

magnitude in comparison with the data volume of the initial migration.

Another challenge was the construction of application-level queries. Since the structure

of the central repository makes construction of such direct queries more complex, the concept of

caches was introduced and queries to operational data are performed on the caches instead of

the DataPile itself.

9

The project showed that the DataPile approach is suitable for certain class of large

applications where data warehousing is coupled with maintaining consistency of local

databases. In this class of applications, the drawbacks mentioned above are outweighed by

integration of data warehousing features with the support for the data replication,

synchronization, and cleaning using back-propagation.

Later, we recognized that, besides the data integration, such structure can be used also in

systems that keep the data with relaxed internal structure and different levels of relevance.

Since this characterization is very close to the semantic data processing, we used the modified

principle of verticalization for the design of a semantic data storage [dok07].

The basic idea of the proposed data store (i.e., data verticalization) employs a similar

principle as column-oriented databases. Nevertheless, one of the first (and probably the most

cited) paper [sto05] about this topic was published about one year after finishing our project,

thus the design of the DataPile was not influenced by these publications.

1.4 Using Input Buffers for Streaming XSLT Processing

During our work with large semantic data we have recognized a strong need for an

efficient processing of large XML data sets such as the RDF and OWL metadata, the output of

external gathering tools, the result sets of semantic querying, or the data streams of semantic

services.

The work described in this paper as well as in several preceding papers is based on the

previous theoretical research on the formal models of the streaming processing made by Jana

Dvorakova [dvo07]. In our mutual cooperation, we extended the results into practically

implemented algorithms and developed a framework for the efficient implementation and

evaluation of different classes of analyzing and transformation algorithms.

We introduced Xord - a framework for efficient XSLT transformations. It enables to

develop streaming algorithms that differ in time/space complexity and their applicability. In

turn, we proposed several algorithms with clearly characterized transformations classes.

The main contribution of this paper [P2] is using reading buffers for streaming

transformations. Although the previously proposed transformation algorithms are highly

memory effective, the class of possible transformations is quite restricted. The most important

restriction is the order-preserving condition - the ordering of the output nodes must follow the

ordering of the input document. In this paper, we present a BUXT analyzer (called according to

the underlying formal model - Buffering XML Transducer) and a transformation algorithm that

overcome these limitations. Some parts of the input document can be stored in buffers for future

processing so that the ordering of the subtrees generated to the output can be independent to

the ordering of the input document.

We designed and implemented the BUXT transformer which is able to process all top-

down XSLT transformations [mar05]. We exactly characterize this class of transformations.

Based on the static analysis of schema and XSLT stylesheet, the BUXT analyzer computes the

10

information about contexts when buffering is needed. The information is provided in the form of

schema fragments and passed to the BUXT transformer. Moreover, by examining schema

fragments, it is possible to compute maximal amount of memory needed for processing the

stylesheet on XML documents defined by a given schema.

We compared the BUXT transformer space complexity against the publicly available

tree-based XSLT processors (Figure 4). All the tree-based processors consumed large amounts of

memory when processing large XML data regardless the simplicity of the transformation.

Fig. 4 – Memory consumption of XSLT processors

The evaluation confirmed that the BUXT algorithm basically requires a memory

proportional to a depth of the input XML document. Since the document depth is generally not

depending on the document size and documents are relatively shallow, the memory

requirements for the most XML documents are low and independent on the document size.

Additionally, there is an extra memory required for each buffer bound to a fragment item

detected during the transformation. The size of such memory does not depend on the whole

input size but on the schema and the XSLT structure. As long as the ordering of the output

document remains close to the input document (e.g., the transformation is mostly local), the

space complexity remains low. The most typical example of such processing is filtering, mapping,

and local reordering of a huge sequence of relatively small subtrees, such as logs, structured data

streams, or XML databases.

11

1.5 High-Level Web Data Abstraction Using Language Integrated

Query

Since the amount of data available on the Internet is growing steadily, the automatic data

extraction is an important issue for every web-semantization project. The web pages are mostly

designed solely for the human readers. Although recommended formats exist for the web

developers, which allow to export information in a machine-readable format (RSS, RDF, or

OWL), vast majority of the web pages does not contain such semantic or structural description.

The main objective of scraping or extraction frameworks and applications is to retrieve desired

information into structuralized form; they periodically download all requested web resources

and export specific or requested values into a local storage like database or XML. Two main

categories of scraping approaches can be identified:

• Specific extraction mechanisms are implemented as a standalone large scale

application that provide methods for extracting data from various sources and several options

how to save the results. The tasks are configurable in a declarative way, usually using a GUI or

scripting. These solutions have high requirements for storage capacity and the whole extraction

process can be quite time consuming.

• Programmers can take benefits from extraction frameworks. Using such libraries

programmers have to take care about all the processes. The implying advantage is a possibility

to develop more customized and optimized extraction. For example, such application can modify

extraction parameters during runtime or it can download only specific parts of the web sites.

Most of these solutions assume extracting information into a local storage. Such a

behavior is sometimes not desirable, because most of the downloaded information is not

subsequently used. Downloading everything locally causes high requirements for storage

capacity and difficult updates of already extracted information. Moreover, many

implementations solve the updates simply by re-downloading all the data from the beginning.

The other issue of such frameworks is the efficiency of development. The data are usually

represented as unstructured strings, binding to language data types is weak, no syntax checking

is possible at compile time etc.

The main contribution of the paper [P3] is the design of the high-level integration of

tools for web information extraction into production software. The framework LinqToWeb

benefits from advantages of previously described approaches. The extraction tasks can be

defined in a declarative way, while the programming interface uses type safe object model

representing the abstraction of the web resources. The tasks are compiled, thus the performance

of the extraction is maximized. The programmer can use web resources in the same way as data

in local memory. In contrast to contemporary solutions, local storage is not used explicitly, but

only as a transparent caching mechanism. Moreover, particular data items are accessed only

when requested, which makes the extraction process much more efficient since the data access

is not delayed by long extraction queues. The high-level object oriented approach takes benefits

of modern language features such as Language Integrated Query (LINQ) or code sense capability

provided by development environments automatically.

12

The architecture is inspired by LinqToSQL [box07] integration. The main principle is

based on generating strongly typed object model. The description of data sources is used for

generating type-safe objects that encapsulate all possible use-cases of the data. The complete

process of generating objects is automatically performed by the development environment -

every time the source data description is changed, the programmer works with up-to-date

objects implementation. Generated code file becomes a part of the program sources, so the

compiler is able to perform type checks and optimizations.

The description of each data source consists of the structure of information and the

extraction tasks that collect it. A special-purpose declarative language was designed to describe

both parts. Its main features include simplicity, declarative task description, procedural

processing logic, intuitive object oriented interface, and support for inherent and transparent

parallelism.

Using this framework, development of web-based applications such as data

semantization tools is more efficient, type-safe, and the resulting product is easily maintainable

and extendable.

1.6 Parallel SPARQL Query Processing Using Bobox

SPARQL as a query language for RDF is widely used in semantic web databases. Several

database engines are capable of evaluating SPARQL queries such as SESAME, JENA, Virtuoso,

OWLIM, or RDF-3X, which is currently considered to be one of the fastest single node RDF-store.

One way of improving their performance is the utilization of modern, multicore CPUs in parallel

processing. These stores support concurrent computation of multiple queries; however, they do

not utilize the potential of parallel computation of individual queries.

The Bobox framework was designed to support development of data-intensive parallel

computations [bed12]. The main idea behind Bobox is to divide a large task into many simple

tasks that can be arranged into a nonlinear pipeline while preserving transparency of the

distribution logic. The tasks are executed in parallel and the execution is driven by the

availability of the data on their inputs. The developers do not need to be concerned about

technical issues such as synchronization, scheduling, or race conditions. The system can be

easily used as a database execution engine; however, each query language requires its own

front-end that translates a request (query) into a definition of the structure of the pipeline that

corresponds to the query.

In the paper [P4], we present a tool for efficient parallel querying of RDF data using

SPARQL build on top of the Bobox framework. We provide a description of query processing

using SPARQL-specific parts of the Bobox and provide results of benchmarks using the

SP2Bench [sch08] query set and data generator.

SPARQL compiler for Bobox generates execution plans from the code of the queries.

During query processing, the compiler uses specialized representation of the query. We

proposed the SPARQL Query Graph Pattern Model (SQGPM) as the model that represents query

13

during optimization steps. It is used to describe relations between group graph patterns. An

example of the SQGPM model graphical representation is shown in Figure 6.

With appropriate definition of the operations, this model can be easily transformed into

a Bobox pipeline definition – the execution plan. It is built during the syntactical analysis and is

modified during the query rewriting step. The query parsing step uses standard methods to

perform syntactic and lexical analysis according to the W3C recommendation. The input stream

is transformed into a SQGPM model in the first step. The transformation also includes expanding

short forms in queries, replacing aliases and a transformation of blank nodes into variables. The

second step is query rewriting. We cannot expect that all queries are written optimally; they

may contain duplicities, constant expressions, etc. Therefore, the goal of this phase is to optimize

queries to achieve a better final performance.

Fig. 6 – SQGPM Model

The main objective of the execution plan generation step is to transform the model into

an execution plan. This includes ordering join operations, selecting join types, and applying the

best strategy to access the data in the physical storage. The query execution plan is built from

the bottom to the top using dynamic programming to search the space of all possible joins. The

final execution plan is serialized and passed to the Bobox framework for evaluation. Before the

execution, the operators contained in the plan must be replaced by particular implementations

of the operators. The standard operators (index scan, filter, sort, various types of joins, etc.) are

implemented as optimized Bobox boxes (units of execution, operators).

The performance measurements show that the engine scales very well in a

multiprocessor environment. Using SP2Bench queries we have identified that our solution is

able to process many queries significantly faster than other engines.

1.7 Highly Scalable Sort-Merge Join Algorithm for RDF Querying

Join is one of the most important database operation since the overall performance of

data evaluation engines depends highly on the performance of particular join operations. In the

14

paper [P5], we propose a highly scalable sort-merge join algorithm for RDF databases. The

algorithm is designed especially for streaming systems. Besides the task and data parallelism, it

also tries to exploit the pipeline parallelism in order to increase its scalability. The algorithm

also handles well skewed data (data with asymmetric or irregular distribution) which may cause

load imbalances during the parallel execution [#skewed].

The main idea of the algorithm is splitting the input streams into many smaller parts

which can be processed concurrently. The sort-merge join consists of two independent phases –

sorting phase that sorts the input stream by join attributes and joining phase.

The algorithm makes use of the fact that the streams are represented as a flow of

envelopes (basic units of the data flow). First, the flow of input envelopes is transformed into the

flow of pairs of envelopes. The tuples in these pairs can be joined independently in parallel.

Dispatch boxes dispatch these pairs among join boxes which perform the operation. When join

box receives a pair of envelopes, it joins them and creates the substream of their results.

Therefore, the outputs of join boxes are sequences of such substreams which subsequently

should be consolidated in a round robin manner by consolidate box. The execution plan is

depicted in Figure 7.

Fig. 7 – Execution plan of parallel merge join

A rich set of benchmarks performed show that the pilot implementation of the algorithm

within the Bobox SPARQL engine significantly outperforms other RDF engines such as Jena,

Virtuoso, and Sesame in all relevant queries. Moreover, the algorithm behaves well also with

skewed data.

1.8 Resistance of Trust Management Systems against Malicious

Collectives

In our previous work [nov11], we addressed a problem of mutual trust in large-scale

distributed peer-to-peer networks. We identified and classified techniques of malicious peers

trying to spread their inauthentic or even harmful resources or to discredit the underlying trust

management (TM) system. Beside individual techniques that are sufficiently covered by the

majority of contemporary trust management systems, we focused to much more dangerous type

of possible attacks - malicious collectives. Several malicious peers know each other and give

each other positive recommendations. These recommendations improve reputations of all

15

members and increase their chance to be chosen as a resource provider. We identified distinct

classes of such behavior: malicious spies, malicious camouflage, evaluator collusion, evaluator

spies, and evaluator camouflage.

Based on this classification, we developed TM system called BubbleTrust. Its unique idea

is separation of a node role as a resource provider and as a transaction evaluator, so that each

peer is evaluated for both roles separately.

In the paper [P6], we analyzed the behavior of selected trust management systems

against different malicious strategies. Our goal was to verify the effectiveness of various TM

systems under sophisticated malicious strategies. We have chosen five contemporary TMS:

EigenTrust, PeerTrust, H-Trust, WTR, and BubbleTrust. These systems represent main

contemporary approaches in Trust Management.

We also proposed several efficiency criteria which can be evaluated using the

P2PTrustSim framework. We expected that malicious peers working in a collective try to use the

most effective strategy against TMS currently used in the particular peer-to-peer network.

Therefore, the quality of a TMS has to be assessed according to the most successful malicious

strategy.

Our results indicate that most of the traditional trust managements are vulnerable to

sophisticated malicious strategies. H-index calculation used in H-Trust proved to be vulnerable

to traitors. It takes too long to detect traitors and malicious peers are rehabilitated too quickly.

The system WTR permits the highest number of bogus transactions from all tested systems, but

it is followed closely by PeerTrust and H-Trust. EigenTrust has better results than H-Trust, WTR,

and PeerTrust but it has advantage in the form of pre-trusted peers. Our tests proved that it is

very difficult to resist against the sophisticated malicious techniques. Especially the calculation

of the evaluator rating is susceptible to rigging. The previously published TMSs do not pay as

much attention to the evaluator rating as they pay to the provider rating. This must be changed if

a TMS should be resistant against the Evaluator Collusion or the Evaluator Spies.

The best results of all evaluated TMSs in our comparison were achieved by BubbleTrust.

It has the shortest treason detection time, the longest rehabilitation time and allows only a small

portion of bogus transaction under the most successful malicious strategy. As far as we know, it

is the only one TMS using global experience as a feedback verification.

1.9 Metro-NG: Computer-Aided Scheduling and Collision Detection

The next paper represents our results from rather different point of view. We explored

possibilities of semi-automatic support for university scheduling.

In the paper [P7], we propose a formal model of the objects involved in classroom

scheduling at universities which allow a high degree of liberty in their curricula. Using the

formal model, we present efficient algorithms for the detection of collisions of the involved

objects and for the inference of tree-like navigational structure in interactive scheduling

software allowing the selection of the most descriptive view of the scheduled objects.

16

The problem of general scheduling is very well studied and lots of methods were

proposed based on heuristic orderings, genetic/evolutionary algorithms, particle swarm

optimization, etc. Nevertheless, such general solvers require exact specification of formal

constraints, quality criteria or the fitness functions. These constraints and objective functions

are fuzzy and unclear by nature and ordinary users of the system are not able to specify them in

a sufficiently formal manner. Thus, the usage of such a solver requires skilled personnel, who are

able to formalize the requirements of the users. Moreover, the cost or fitness functions are

individually dependent, so they should be adjusted individually per each scheduling object in an

ideal scenario.

An alternative approach is to create the schedule manually, using a software application

to efficiently manipulate the schedule. The cost of manual or semi-automatic schedule creation

may be balanced or even outweighed by the cost of formalization of the constraints. In addition,

human-driven scheduling offers diverse advantages such as more effective work with

incompletely defined constraints, intuitive recognition of erroneously entered constraints,

explaining the rationale behind the particular schedule events, etc.

The paper proposes a formal model for the complex collision detection system which is

used to identify situations, like where a group of students should attend two classes scheduled

for the same time. In order to use this formal model practically, we propose three algorithms

that compute the useful knowledge from the underlying data. The most important algorithm is

the detection of collisions among events in the given context. Other two tightly coupled

algorithms (the extraction algorithm and the generator of functional dependencies) are used for

user navigation in the attribute trees.

The algorithms were used in the application for supporting the whole process of creating

a complex university and curricula schedule. Its efficiency and usability suggests that our

approach may be applied in many areas where multi-dimensionally structured data are

presented and manipulated in an interactive application.

1.10 Locality Aware Task Scheduling in Parallel Data Stream

Processing

The last presented paper [P8] targets system-level efficiency in parallel computing. One

of approaches of simplification of the design of concurrent processing is the stream data

processing. A streaming application is usually expressed as an oriented graph, where the

vertices are processing stages and the edges prescribe how the data are passed on. The main

advantage of our solution from the perspective of parallel processing is that each stage contains

a serial code and multiple stages may be executed concurrently.

One of the key components of these systems is the task scheduler which plans and

executes tasks on available CPU cores. Our objective was to design a task scheduler that reflects

three important issues:

17

 the interpretation of the execution plan is data dependent, thus the tasks must be spawned

dynamically;

 the tasks should be planned with respect to the overall throughput of the system, since they

work on a problem which needs to be solved as whole;

 the scheduling strategy should incorporate important hardware factors such as cache

hierarchies and non-uniform memory architectures (NUMA).

During the initialization, the task scheduler detects the configuration and properties of

the CPUs. CPU cores which share at least one level of cache are bundled together in logical core

groups and a thread pool is created for each group. Each core group maintains one queue of

immediate tasks (work that immediately relates to the task being currently processed) per core

and one shared queue of deferred tasks (work that is not closely related to the task).

The main paradigm of the scheduling strategy is to emphasize data locality awareness.

When the scheduler assigns another work to a thread, it attempts to select a task which is as

close as possible to the previous work done by that thread. For this purpose, we exactly defined

the distance between any two cores. Using the distance, a set of rules for fetching the most

appropriate task was proposed.

Fig. 8 – Query results on SMP and NUMA

The proposed task scheduler was integrated into the Bobox framework and it was used

with our parallel in-memory SPARQL engine [P4]. When applied on a SPARQL benchmark that

process RDF data, the system achieved up to 10% speed up on double-processor SMP system

and up to 3x speed up on four processor NUMA system (see Figure 8) for selected queries with

respect to a standard task-stealing scheduler.

18

19

Chapter 2.

Data Integration Using DataPile Structure

David Bednárek, David Obdržálek, Jakub Yaghob, Filip Zavoral

ADBIS 2005, Proceedings of the 9th East-European Conference on Advances in Databases and

Information Systems

20

Data Integration Using DataPile Structure

David Bednárek, David Obdržálek, Jakub Yaghob, Filip Zavoral

Department of Software Engineering

Faculty of Mathematics and Physics, Charles University Prague
{david.bednarek, david.obdrzalek, jakub.yaghob, fil-

ip.zavoral}@mff.cuni.cz

Abstract. One of the areas of data integration covers systems that maintain co-

herence among a heterogeneous set of databases. Such a system repeatedly col-

lects data from the local databases, synchronizes them, and pushes the updates

back.

One of the key problems in this architecture is the conflict resolution. When da-

ta in a less relevant data source changes, it should not cause any data change in

a store with higher relevancy.

To meet such requirements, we propose a DataPile structure with following

main advantages: effective storage of historical versions of data, straightforward

adaptation to global schema changes, separation of data conversion and replica-

tion logic, simple implementation of data relevance.

Key usage of such mechanisms is in projects with following traits or require-

ments: integration of heterogeneous data from sources with different reliability,

data coherence of databases whose schema differs, data changes are performed

on local databases and minimal load on the central database.

1 Introduction

The concept of data integration covers many different areas of application [3,13]. In

this paper, we focus on one kind of applications characterized by the following re-

quirements:

 Data warehousing: The data originated at the local data sources should be replicat-

ed into a central repository (data warehouse) in order to allow efficient analytical

processing and querying the central system independently of local systems.

 Back-propagation: Any update which occurs in a local database (performed by its

local application) should be distributed to other local databases for which this kind

of data is relevant.

 History records: The central repository should maintain full history of all data

stored therein.

Each one of the requirements forms a well-known problem having well-known solu-

tions [2,8,9,10]; nevertheless, combining the requirements together introduces new,

interesting problems, and disqualifies many of the traditional solutions. This paper

presents a technique, called DataPile, which combines flexible storage technology

(built upon a standard relational database system) with system architecture that sepa-

rates the replication mechanisms from the schema-matching and data-conversion log-

ic. Since the approach is inspired by XML techniques rather than relational databases,

its combination with modern XML-based technologies is straightforward. Neverthe-

less, the system is created over relational database system and direct integration with

traditional database systems is also possible.

One of the most difficult problems in the area of data integration is handling of du-

plicate and inconsistent information. The key issue in this problem is entity identifica-

tion, i.e. determining the correspondence between different records in different data

sources [11, 14]. The reality requires that the system administrators understand the

principles of the entity matching algorithm; thus, various difficult formalisms present-

ed in the theory [7] are not applicable. Our approach uses a simplified entity matching

system which allows the users to specify matching parameters that are easy to under-

stand. Some researchers [6] advice that successful entity identification requires addi-

tional semantics information. Since this information cannot be generally given in ad-

vance, the integrated system should be able to defer decision to the user. The system

should detect inconsistencies and either resolve them, or allow users to resolve them

manually. The need for user-assisted conflict resolution induces a new class of prob-

lems: The repository should be able to store data before final resolution while their

relationship to the real world entities is not consistent. Consequently, the system

should be able to merge entities whenever the users discover that the entities describe

the same real-world entity, and, conversely, to split an entity whenever the previous

merge is found invalid. Under the presence of integrity constraints and history records,

this requirement needs special attention.

The relationship between the global system and local database is usually expressed

using the global-as-view and local-as-view approaches [5]. In our system, a mixture of

these methods is used depending on the degree of integration required.

Maintenance of history records falls in the area of temporal databases and queries,

where many successful solutions are known [1, 4, 12]. The theory usually distin-

guishes between the valid time, for which the data element is valid in the real world,

and the transaction time, recording the moments when the data entry was inserted,

updated, or deleted. In our approach, the central system automatically assigns and

stores the transaction time, while the local systems are responsible for maintaining the

valid time where appropriate. Queries based on transaction time are processed by

special algorithms implemented in the central system; queries related to valid time are

processed in the same manner as queries to normal attributes.

The rest of the paper is organized as follows: The second chapter describes the

principles of the DataPile technology used to flexibly store structured data in a rela-

tional database system. The next chapter focuses on entity identification using data

matching and relevance weighing. The fourth chapter shows the overall architecture of

the integrated system. The fifth chapter presents an evaluation based on a commercial

data-integration project where the DataPile approach was used.

2 The DataPile

2.1 Terminology

We have used an own terminology, which is partly derived from the XML terminolo-

gy. The first term is entity, which represents a type of the traditional database row. An

entity consists of attributes, which are analogous to the traditional database columns.

An entity instance is an instance of entity and directly equals to traditional database

row contents. An attribute value is an instance of attribute and forms a value of one

column in one row. A metatable is a conventional database table used by the DataPile

to store schema information and other system data.

2.2 Data Verticalization

Usual information systems consist of some nontrivial number of conventional data-

base tables; huge information systems have huge number of such tables. Moreover, the

requirement for preserving all changes in data usually leads to the scheme, where

changing one value of one column in one row causes inserting a new changed row

(possibly very large) and updating the old row with some state changing column (e.g.

validity termination timestamp). Another problem in conventional information systems

is extensibility; adding some new columns or new tables may cause large application

code rewriting.

DT_PILE

stoh_id

attr_id

ent_id

state

relevance

val_num

val_str

val_dt

val_id

lobh_id

ts_create

ts_state

iapp_id

ts_valid_from

ts_valid_to

NUMBER(18)

NUMBER(18)

NUMBER(18)

INTEGER

FLOAT

NUMBER(18,0)

NVARCHAR2(2000)

TIMESTAMP

NUMBER(18)

NUMBER(18)

TIMESTAMP

TIMESTAMP

NUMBER(18)

TIMESTAMP

TIMESTAMP

<pk>

<fk3>

<fk2>

<fk1>

DT_LOB_HASH

lobh_id

lob_hash

val_lob

NUMBER(18)

RAW(32)

BLOB

<pk>

DT_ENTITY

ent_id

tent_id

ts_created

NUMBER(18)

NUMBER(18)

TIMESTAMP

<pk>

<fk>

MT_ATTR_TYPE

attr_id

tent_id

name

type

mod

classifier

wtent_id

optional

multiple

NUMBER(18)

NUMBER(18)

VARCHAR2(256)

INTEGER

INTEGER

INTEGER

NUMBER(18)

INTEGER

INTEGER

<pk>

<fk2>

<fk1>

MT_ENTITY_TYPE

tent_id

name

NUMBER(18)

VARCHAR2(256)

<pk>

All these problems are addressed by the proposed method of storing data in different

way than in traditional approaches but using standard relational databases – the

DataPile. All real applications data are stored in two relational tables: one less im-

portant table DT_LOB_HASH is dedicated for storing LOBs (for performance pur-

poses), and the second one, the most important, DT_PILE stores data of all other

datatypes. This particular table is called the Pile, because all data is stored in one table

without any “well-formed” internal structure or hierarchy. Each row in the pile repre-

sents one attribute, whose value is/was valid during certain interval of transaction

time.

The picture represents slightly simplified schema of the heart of DataPile-based in-

formation system. Tables with prefix DT_ hold real data; all other tables (with prefix

MT_) are metatables. The table DT_ENTITY holds valid “global” ID for an entity

instance stored in the pile together with information about the entity in form of a ref-

erence to the metatable MT_ENTITY_TYPE which stores entities. Entities consist of

attributes, and this is modeled by the metatable MT_ATTR_TYPE.

Real values are stored in columns val_xxx of the main table DT_PILE , where xxx

represents logical type of the attribute (number, string, datetime, ID – foreign key).

Besides the actual data, other additional data is stored in the DT_PILE table: Transac-

tion time aspect of any attribute value is represented by two columns ts_valid_xxx.

The type of given attribute value can be found by reference attr_id to the

MT_ATTR_TYPE. The ent_id value compounds all attribute values into one entity

instance. Other columns not mentioned here serve the system for proper implementa-

tion of the functionality needed.

Such a structure easily avoids all the problems mentioned at the beginning of this

paper: The number of relational tables used does not grow with an expansion of an

information system; it is constant regardless on how huge the system is. Data changes

are preserved with minimal overhead – one attribute value change is represented by

inserting a new value into the pile – one new row is inserted into DT_PILE table not

touching the rest of attribute values related to the same entity instance. Extensibility of

the system is reached by the possibility to insert some new rows into metatables and

therefore the possibility of defining new entities, attributes, or both.

From the above described layout we can see that this data structure fulfils two re-

quirements put on the information system as a whole: easy extensibility of the data

scheme and full information about data changes on the timeline.

3 Data Matching and Weighing

The requirement on data unification is solved by two algorithms: data matching and

data weighing.

3.1 Data Matching

Let us show an example, which represents usual situation we meet while processing

the same data in different applications. Let application A1 have a record about a per-

son with the name “Jana”, surname “Teskova” with some personal identification num-

ber “806010/7000” and an address “Mother’s home No. 10”. The same information is

stored in the application A2 as well. After Jana Teskova got married, she took her

husband’s surname (as it is quite usual over here). So her surname changes to “Stan-

clova”. She also moved to live with her new husband on the address “New home 20”.

Our person notifies about her marriage and the accompanying changes only the office

using application A1, and does not notify other office with application A2 - at first she

might not even know A2 does not share the data with A1 as they both are used to keep

data about people in one organization, and at second she may expect that A1 and A2

are integrated together, so changes in A1 are automatically redistributed to A2 as well

(but this is a so called distribution problem, which is discussed later). So the result is

A1 and A2 store different data about one entity instance. What happens when we try

to merge data from A1 and A2 into a common data storage?

As our example shows, nearly all attributes have changed. But some of them are

constant, especially personal identification number, which should by truly unique in

our country. The association of words “should be” unfortunately means that cases

exist, when different persons have the same personal identification number. On the

other side, these cases are rare. Having two personal records with the same personal

identification number means they belong in fact to a single person with probability of

roughly 0,999999.

In this example, other attributes have changed, but a combination of some attributes

can have significant meaning: e.g. name and surname together form a whole name.

Even name and surname aren’t commonly unique in a state, equality of such attributes

means some nontrivial probability these two records describe a single person.

This example leads us to attribute classification. Every attribute is assigned one of

these classes: determinant, relevant, uninteresting.

 Determinant – identifies an entity instance with very high probability (e.g. personal

identification number, passport number etc.).

 Relevant – significant attribute, which helps identify unambiguously equality of

entities (e.g. attribute types “name” and “surname” for entity type “person”).

 Uninteresting – has no impact on entity matching.

Following algorithm describes entity matching for two entity instances (one is already

stored in the database, the second one is a newly integrated/created entity):

1. All determinant and relevant attribute values are equal – quite clear match with

very high probability.

2. A nonempty subset of determinant and nonempty subset of relevant attribute

values are equal, remaining determinant and relevant attribute values have no

counterpart in the complimentary entity instance – very good match with quite

high probability yet (example: let us extend our example with another attribute

“passport number”. The first entity instance has attributes “personal identification

number” and “passport number” filled. The second entity instance has only “per-

sonal identification number” filled and “passport number” is missing.).

3. A nonempty subset of determinant attribute values is equal, remaining determi-

nant attribute values has no counterpart in the complimentary entity instance, but

some nonempty subset of relevant attribute values differ – this case seems to be

clear as well, because the probability of match for determinant attribute values

outweighs probability of different relevant attribute values, but some uncertainty

remains as the probability of determinant attribute values is always <1.0. We must

not loose any data and their history, so the system solves such a case by consider-

ing these two entity instances as different with notification to the system adminis-

trator. The administrator can investigate this case more precisely and can merge

these two entities together using an administrator application. This case directly

describes the situation during entity matching from our first example – the per-

sonal identification number as a determinant attribute value is the same, but sur-

name as a subset of relevant attribute values differs.

4. A nonempty subset of determinant attribute values differs, remaining determinant

attribute values with counterpart are equal, some nonempty subset of relevant at-

tribute values is equal, remaining relevant attribute values have no counterpart –

this case usually arises out of misspelling one determinant attribute value. This

case is solved as above – entity instances are considered to be different and the

system administrator is notified.

5. All other cases – input entities are different entity instances with very high proba-

bility.

3.2 Data Weighing

Let us show another example: An employee record is usually kept in different applica-

tions in different departments, e.g. human resources department, payroll/accountants

department, library, etc. Some applications and departments themselves emphasize

some entities and usually some subset of attributes from entities used, e.g. staff de-

partment knows with high probability that given person has a certain name, surname,

home address, etc., whereas payroll department knows with high probability his/her

account number, etc.

It should be beneficial for data integration to have possibility measure somehow the

probability, that an application has entity instances (or more precisely on individual

attribute values) filled with correct values. Therefore, every attribute value in the

DataPile keeps a number which measures probability this given value is correct. This

probability is stored in the DT_PILE column “relevance”.

During processing of incoming data all incoming attribute values are somehow

evaluated (this will be explained later) and the computed relevance is compared to

current relevance of attribute value stored in the DataPile. If the new value has greater

or equal computed relevance than current value has, the new value “wins”, becomes

the current value, and the old value is marked as archive. Otherwise (when the rele-

vance is lower than current relevance) the new value is stored as well, but only as a

remark saying the application has ineffectually tried to change this attribute value.

But there is a problem: when an unimportant application with low relevance keeps

correct data (replicated from the central repository) and wants to change some attrib-

ute values (because a user has made some changes), these changes will be always

ignored. This problem is solved by “approving” the data. Every application must con-

firm to central repository it agrees with current data replicated from central repository

to this application. This confirmation is stored in the DataPile and the system knows

the given application has accepted the current attribute value. When such an applica-

tion (which approved a current attribute value) changes the value, the rule about

weighing relevance is ignored and the attribute value is changed.

For example, a large company has usually some branch offices, where department

branches can be located as well. Such branches usually show different credibility,

which should be reflected by the relevance computation as well.

For computing relevancy of an attribute value following equation is therefore used:

 atecetiapapa RRRRRR  (1)

where Ra means attribute value relevancy, Rap is static application relevancy (e.g.

application used by staff department), Riap is static instance of application relevancy

(e.g. branch of department), Ret is a static entity relevancy, Rec is a computed entity

instance relevancy, and Rat is a static attribute relevancy. All these static values are

stored in metatables as floating-point values. Rec represents computed relevancy for

given entity instance and its value is computed as follows:

 iRR
i

acec  (2)

where Rac(i) is either a value stored in metatables (when attribute i from given entity

has some particular value stored in metatables as well), or it has value of 1. This com-

puted relevancy supports changing of the relevancy based on the presence of selected

attributes in the entity.

4 Implementation

4.1 The DataPile Architecture

The whole DataPile-based system is in general shown on the following picture.

DataPile

Temporal

database

 App1

Local

DB1

App2

Local

DB2

Appn

Local

DBn

Application

server

Central

database

Every application (marked in the picture as App1..n) has its own local database (Local

DB1..n). The DataPile machinery is constituted by the Trinity of Central database,

Temporal database, and Application server: the Central DB contains the DataPile as

data structure for collected data storage, the Temporal DB serves only as communica-

tion medium between the DataPile machinery and applications (data is revealed here

only during replication and immediately deleted when replication ends). The Applica-

tion server, which gives life to the whole system, is discussed in following section.

4.2 Application Server

The whole DataPile architecture utilizes the request/reply paradigm. The application

server behaves to the rest of world passively; it waits for requests inserted into the

temporal DB, fulfills them using central DB data, and writes a reply back into the

temporal DB.

Application server is by intention implemented so that it doesn’t understand any da-

ta semantic. Everything is controlled by the content of metatables and nothing is hard-

coded. The application server is primarily responsible for replication, computing algo-

rithms like all the above mentioned data matching and weighing, and can handle other

requests too (e.g. perform specialized queries upon the data stored in the DataPile).

4.3 Replication channel

The communication channel between an application and the DataPile machinery is

not as simple as it may appear on the first look. In reality there are inserted two filters:

export and import filter. They are traditional adapters, which are responsible for

adapting different database schemas used by the DataPile machinery and local data-

base. A watchful reader may note that the direction from application to the DataPile is

marked as “export”, opposite direction as “import”; the marking is taken from the

application point of view.

App

server

Appi

Local

DBi

Import filter

Export filter

Temporal

database

4.4 Cache

New applications may advantageously use collected data in central repository. Un-

fortunately the DataPile structure is not very well suited for direct access (e.g. search-

ing is not very effective). Almost all applications in fact need to know only current

attribute value, ignoring all history stored in the DataPile. To support such applica-

tions, the application server actively builds and maintains caches, where only current

attribute values are stored and these caches are presented to applications in the form of

traditional relational tables. The applications can easily search and use all other

RDBMS functions on the caches.

5 Evaluation and Conclusions

The architecture described in this paper brings an alternative to traditional techniques.

It brings several advantages but also some disadvantages.

All the concepts described in this paper were used in a real project – design and

development of an information system based on data replication and synchronization

of data coming from bigger number of different data sources (approx. 30 local infor-

mation systems and 20 other applications producing 30 millions entries per year for

60 000 users, in this project). The project lasts from the fall 2003 and now is in the

phase of finishing the pilot phase and starting roll-out.

Basic and commonly usable advantage of the DataPile structure is its maintainabil-

ity, easy extensibility and ability to keep the track of the whole data history. All cur-

rent applications used at all branches remain preserved and functional without any

change according to a strongly desired requirement. The central data repository inte-

grates data from all data sources including all their history and sources of their chang-

es. This enables recovering of any historical snapshot of any data. All data changes are

redistributed to all other applications that contain these data, even if the source and

destination schemas are different. The global schema changes affect neither data in the

central repository nor local applications.

During the development of the project, we have discovered several disadvantages

of our approach:

Efficiency, especially during export and matching, is low. During the initial export

of one certain local system, about 500 000 entries had to be processed. This took more

than 24 hours. This time complexity is caused by a relatively complex matching algo-

rithm. Fortunately, this time complexity is not very important in everyday life because

number of data changes is smaller in magnitude in comparison to the initial migration

data volume.

The second disadvantage is the fact, that the structure of the central repository

makes constructing direct queries difficult. Therefore the concept of caches was intro-

duced and all the queries to non-historical data are performed on the caches instead of

the DataPile itself.

The project showed that the DataPile approach is suitable for certain class of large

applications, where data warehousing is coupled with maintaining consistency of local

databases. In this class of applications, the drawbacks mentioned above are out-

weighed by integration of data warehousing features with the support for data replica-

tion, synchronization, and cleaning using back-propagation.

References

[1] R. Bruckner, B. List, J. Schiefer, A.M. Tjoa. Modeling Temporal Consistency in Data

Warehouses, In 12th International Workshop on Database and Expert Systems Applications

(DEXA'01), IEEE Computer Society Press, pp. 901-905, Munich, Germany, September

2001.

[2] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,

and J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources.

In Proc. of IPSJ Conference, pages 7--18, 1994.

[3] I. K. Ibrahim, W. Schwinger. Data Integration in Digital Libraries: Approaches and Chal-

lenges, Software Competence Center Hagenberg, Austria, 2001.

[4] C. S. Jensen and R. T. Snodgrass. Temporal Data Management. IEEE TKDE, 11(1): 36--45

(1999).

[5] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st ACM

SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pages

233--246, 2002.

[6] E-P. Lim, J. Srivastava, S. Prabhakar & J. Richardson. Entity identification in database

integration, in Proceedings Ninth International Conference on Data Engineering, Vienna,

Austria, April 19--23, 1993, IEEE Computer Society Press, Washington, DC, 1993, 294—

301.

[7] M. Mecella, M. Scannapieco, A. Virgillito, R. Baldoni, T. Catarci, and C. Batini. Managing

Data Quality in Cooperative Information Systems, Proceedings of the 10th International

Conference on Cooperative Information Systems, Irvine, CA, 2002.

[8] A. Mostéfaoui, M. Raynal, M. Roy, D. Agrawal, A. el Abbadi. The Lord Of The Rings:

Efficient Maintenance Of Views At Dataware Houses. Publication interne No. 1441, IRISA,

Rennes, France, 2002.

[9] A. Nica, A. J. Lee, and E. A. Rundensteiner. The CVS Algorithm for View Synchronization

in Evolvable Large-Scale Information Systems. In Proceedings of International Conference

on Extending Database Technology (EDBT'98), pages 359--373, Valencia, Spain, March

1998.

[10] E. A. Rundensteiner, A. Koeller, and X. Zhang. Maintaining Data Warehouses Over

Changing Information Sources, Communications of the ACM, Vol. 43, No.6, June 2000.

[11] E. Schallehn, K. Sattler, and G. Saake. Extensible and similarity-based grouping for data

integration. In 8th Int. Conf. on Data Engineering (ICDE), San Jose, CA, 2002.

[12] K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum Approaches to Temporal DBMS

Implementation. In Proceedings of IDEAS, Cardiff, Wales, pp. 4--13 (1998).

[13] J. Widom. Research Problems in Data Warehousing. In Proceedings of the 4th Int'l Con-

ference on Information and Knowledge Management (CIKM), November 1995.

[14] T. W. Yan and H. Garcia-Molina. Duplicate removal in information dissemination. In

Proceedings of VLDB-95, September 1995. Information Systems, Irvine, CA, 2002.

31

Chapter 3.

Using Input Buffers for Streaming XSLT

Processing

Jana Dvořáková, Filip Zavoral

DBKDA / GlobeNet 2009, International Conference on Advances in Databases, Knowledge,

and Data Applications, GlobeNet 2009, IEEE Computer Society Press, 2009

32

Using Input Buffers for Streaming XSLT Processing

Jana Dvořáková, Filip Zavoral
Charles University in Prague, Czech Republic

{dvorakova, zavoral}@ksi.mff.cuni.cz

ABSTRACT
We present a buffering streaming engine for processing top-down
XSLT transformations. It consists of an analyzer and a transformer.
The analyzer examines given top-down XSLT and XSD, and gen-
erates fragments which identify parts of XSD need to be buffered
when XSLT is applied. The fragments are passed to the transformer
which processes XSLT on an input XML document conforming to
XSD. It uses auxiliary memory buffers to store temporary data and
buffering is controlled according to the fragments. We describe
implementation of the engine within the Xord framework and pro-
vide evaluation tests which show that the new engine is much more
memory-efficient comparing to the common XSLT processors.

1. INTRODUCTION
XSLT is typically processed by tree-based processors which store

the whole input document in the memory and then apply the trans-
formation. XML has started to be used extensively in domains
where such traditional processing is not suitable, e.g.:

• data streams needed to be processed ”on the fly”,

• data processed in portable devices with limited memory,

• huge database exports exceeding available memory.

In this paper we focus on automatic streaming processing of XSLT
transformations since currently there does not exist an appropriate
alternative to the traditional automatic XSLT tree-based processors.

During the previous work on the Xord project [5, 6], the Xord
framework for the streaming processing of XSLT transformations
was designed and implemented. The framework is intended to con-
tain several streaming engines for processing XSLT. Each engine
consists of an analyzer and a transformer. The analyzer analyzes
given XSLT transformation and it determines whether it can be
processed by given engine. It may pass some information collected
during the analysis to the transformer which performs the transfor-
mation itself. The transformers are based on formal models called
streaming XML transducers. This formal base enables us, for each
transformation algorithm, to explicitly determine the class of XSLT
transformations captured and the memory consumed. Within the
framework, the SSXT1 engine was implemented. The SSXT trans-
former [5] processes a subset of top-down XSLT using stack of
the size proportional to the depth of the input XML document. The
SSXT analyzer [6] takes a schema and a top-down XSLT stylesheet,
and it determines whether transformation can be processed by the

1SSXT stands for simple streaming XML transducer.

.

SSXT algorithm on the XML documents defined by schema.
Although the SSXT transformation algorithm is highly mem-

ory efficient, the class of possible transformations is markedly re-
stricted. The most important restriction is the order-preserving con-
dition - the ordering of the output nodes must follow the order of
the input document. In this paper, we present a BUXT2 engine that
overcome these limitations. Some parts of the input document can
be stored in buffers for future processing so that the output can be
potentially in any order according to the input document.

The main contributions are the following:

• We design and implement the BUXT transformer which is
able to process all top-down XSLT transformations. The base
of the algorithm is the SSXT transformer. The BUXT trans-
former is extended with buffers for temporary storage and it
is able to process more complex transformations.

• We design and implement the BUXT analyzer which is an ex-
tension of the SSXT analyzer. The BUXT analyzer statically
computes the information about moments when buffering is
needed based on an analysis of given schema3 and XSLT
stylesheet. The information is provided in the form of schema
fragments (shortly fragments) and passed to the BUXT trans-
former. Moreover, by examining fragments, it is possible to
compute maximal amount of memory needed for processing
the stylesheet on XML documents defined by given schema.
See Fig. 1 for overall schema of the BUXT engine.

• We provide evaluation tests of the space complexity of the
BUXT transformation algorithm and a comparison to com-
monly available XSLT processors.

Related work. Existing automatic XQuery streaming processors
(BEA/XQRL [7], FluXQuery [9], XSM [10]) are typically designed
for specific purpose. Moreover, they appear as black boxes - the
streamability is achieved by ad-hoc optimizations and the amount
of memory used for certain types of transformations is not known.
XSLT automatic streaming processor SPM [8] uses known amount
of memory, but it can process only very simple transformations
and the class of transformations captured is not clearly character-
ized. Low-level streaming languages (STX [1], StAX [2]) based
on event-based programming represent another alternative for han-
dling transformations in the streaming manner. This approach,
however, requires the user to write the transformation explicitly.
Other research direction deals with streaming queries [11], but this
is only one of the subproblems of the whole transformation process.

2BUXT stands for buffering XML transducer.
3We use the terms XSD and schema interchangeably.

2009 First International Conference on Advances in Databases, Knowledge, and Data Applications

978-0-7695-3550-0/09 $25.00 © 2009 IEEE

DOI 10.1109/DBKDA.2009.25

50

2. XSLT AND SCHEMA REPRESENTATION
We briefly describe subsets of XSLT and XSD considered in this

work as well as the way how both structures are modeled in the
BUXT engine.

2.1 XSLT representation
We consider a top-down fragment of XSLT language. It allows

matching XSLT templates with modes and top-down XPath axes.
A transforming template is called by an element name and a mode:

<xsl:template match="a" mode="m1">
... body ...

</xsl:template>

The template body consists of output elements (possibly nested)
and template calls which call application of other templates by an
XPath expression and a mode. The template calls are of the form:

<xsl:apply-templates
select="child::a/descendant::b" mode="m2"/>

A subset of XPath expression is allowed in transforming templates
- they may contain child and descendant axis, and they select nodes
by name:

XPath := Step | Step/XPath
Step := (child | desc)::name

Template model. A template in BUXT engine is a structure tmp
that consists of the following components:

• tmp.match-name - the name of the matching element,

• tmp.mode - the matching mode,

• tmp.calls - a sequence of template calls, a single call call
consists of two components: call.expression and call.mode,

• tmp.output-parts - a sequence of output parts, the i-th out-
put part is a sequence of tags to be generated between calls
i− 1 and i (see the example below),

• tmp.fragments - a set of fragments.

Example. Let us consider the following XSLT template with two
template calls:

<xsl:template match="a" mode="m0">

<output-a1> <!-- output part 1 -->

<xsl:apply-templates select="child::b" mode="m1"/>

<output-a2> <!-- output part 2 -->

<xsl:apply-templates select="desc::c" mode="m2"/>

</output-a2>
</output-a1>

<!-- output part 3 -->

</xsl:template>

We obtain a BUXT template tmp of the form:

tmp.match-name = a
tmp.mode = m0

tmp.calls = (child::b, m1), (desc::c, m2)
tmp.output-parts = <output-a1>, <output-a2>,

</output-a2><output-a1>

tmp.fragments = ∅
The set of fragments is initially empty, it is filled up first during the
analysis (see Section 4).

����
����	
��

����
��
������������

���
�����

�������

���� ������

Figure 1: A schema of the BUXT algorithm

2.2 Schema representation
We consider schemas without choice constructor and recursive

definitions. We represent such schema hierarchically as a schema
tree. It consists of two kinds of nodes:

• element nodes: correspond to element types defined within
schema,

• constructor nodes: correspond to constructors used in the
schema (sequence, choice, *, +, ?).

The relationships among element types and constructors are repre-
sented by the structure of the tree. An example of schema tree is
depicted on the left-hand side in Fig. 2.

Schema model. A schema node in the BUXT engine is a structure
that consists of the following components4:

• node.label - an element name or a constructor symbol,

• node.type - either element node or constructor node,

• node.children - a sequence of references to child nodes.

Some subtrees of the schema tree may be identical - this situation
occurs if we derive the schema tree from XSD containing shared
element types. However, during the analysis, the order of the par-
ticular schema nodes is important. Therefore, such DAG structure
is transformed to a tree during the analysis by duplicating shared
nodes.

3. BUXT ENGINE OVERVIEW
The buffering streaming engine consists of two components: a

BUXT analyzer and a BUXT transformer (see Fig. 1).

Analyzer. The analyzer takes two inputs: an XSLT stylesheet xsl,
and a schema xsd. It accomplishes a static analysis of both inputs.
As a result, it generates a set of fragments. Fragments basically
store information on which parts of an XML document defined
by xsd need to be buffered when the transformation xsl is pro-
cessed on this document in the streaming manner. The fragments
are passed to the transformer.

Transformer. The transformer takes two inputs: an XSLT stylesheet
xsl, and an XML document xml valid with respect to xsd. It is
based on the non-buffering SSXT streaming algorithm [5] which
is extended by a possibility to store parts of the input temporarily
in memory buffers. The decisions on when to start buffering and
when to process buffer content are taken according to the informa-
tion stored in the fragments.

4Although we consider XSD format of schema, note that it is the
BUXT schema model can be applied easily to another common
format DTD as well.

51

�������	

	�

�

��

�

	�

�

��

��

�

��

�

	�

� �

�

�

�

� � �

�

� �

�������	
�	��

�������	
�	��

	��

�	�

������
����

������	�
�����	�	��� �������	���

��������

��������

� �

�
�

�
�

�
�

��

�
 ����
� �!���
� �

��

�
 ����
� �

Figure 2: An example fragment

Fragments. The fragments represent the most key structure of the
BUXT engine. A single fragment consists of the following compo-
nents:

• frag.tmp - a reference to a template of xsl,

• frag.node - a reference to a node of xsd (schema context
node),

• frag.items a set of fragment-items:

- item.call - a reference to a call of template,

- item.sob-node - a reference to a node of xsd (start-of-
buffer node),

- item.eob-node - a reference to a node of xsd (end-of-
buffer node).

A fragment identifies a subtree in the schema tree parts of which
require buffering when processed by the referenced template. A
fragment-item identifies one of these parts, which is a subtree as
well, and a specific call within the template which invokes buffering
of this subtree.

A simple fragment is shown in Fig. 2. On the left-hand side, the
tree of input XSLT stylesheet xsl is depicted and on the right-hand
side, a schema tree of input schema xsd is depicted. The fragment
identifies a subtree in the schema at node n1 and associates it with
tmp1 of xsl. The fragment-item depicted identifies the subtree at
n2 (which is a part of subtree at n1) and associates it with the call
call1 of tmp1. The semantics of such fragment-item is as follows:
If, during the transformation processing,

• the currently processed template is tmp1,

• the current context tag corresponds to the schema node n1,

• a match has been found for call2,

• the current tag corresponds to the schema node n2,

then the subtree at the current tag is stored in a new buffer buf .
During consequent processing, when the first two conditions above
holds and moreover

• the current tag is end-tag,

• the current tag corresponds to the schema node n3,

then the content of buf is processed. See Section 5 for more de-
tailed description of the buffer manipulation.

4. ANALYZER
The analysis is driven by the structure of the schema tree, starting

at the root node and continuing downwards to the leaves. The an-
alyzer searches template of xsl which matches the current schema
node at the current mode and applies AnalyzeNode recursively,
see Algorithm 1.

Algorithm 1 AnalyzeNode(tmp, schemaNode)

1: if tmp.calls is empty then {end of analysis in current subtree}
2: ; { do nothing }
3: else if schemaNode is leaf then {end of analysis in current branch}
4: ; { do nothing }
5: else
6: frag = CreateFrag(tmp, schemaNode);
7: if frag.items is not empty then
8: add fragt to tmp.fragments;
9: end if

10: for each call in tmp.calls do
11: for each node in EvalCall(call, schemaNode,) do
12: let called-tmp be template called by call;
13: AnalyzeNode(called-tmp, node)
14: end for
15: end for
16: end if

In case the current template does not contain any call (1), or the
current schema node is leaf (3), the analysis terminates. Otherwise,
the function CreateFrag for creating fragment is called (6), see
Algorithm 2. It finds a fragment for the current template tmp which
refers to the current schema node schemaNode, and adds it to
the set tmp.fragments in case the item set is not empty. After
that, the analyzing function is called recursively (13) for all pairs
(called-tmp, node) such that

• called-tmp is a template called by a call (call.expression,
call.mode) of tmp,

• node is a schema node selected by call.expression in the
schema tree if the evaluation starts at schemaNode.

The evaluation of call.expression is accomplished by the function
EvalCall(call, schemaNode) (11). It corresponds to the evalu-
ation against the XML tree which is formed from the schema tree
by omitting all schema constructors.

Algorithm 2 CreateFrag(tmp, schemaNode) : fragment

1: create new fragment frag such that
2: frag.node = schemaNode, frag.tmp = tmp, frag.items = ∅;
3: for each calli in tmp.calls do
4: set matchedNodesi = EvalCall(calli, schemaNode);
5: end for
6: for each call callk do
7: for each node node in matchedNodesk do
8: set eobCandidates = {candNode ∈ matchedNodesi |
9: i < k, candNode >preorder node}

10: if eobCandidates is not empty then
11: set eobNode = maxpreorder(eobCandidates);
12: add fragment-item (callk, node, eobNode) to frag;
13: end if
14: end for
15: end for

The function CreateFrag first creates a fragment with empty
set of items referencing to the current schema node and current tem-
plate (1). Then particular fragment items are generated stepwise
for each call of tmp. We index the calls by an integer which cor-
responds to the order of the call in the sequence tmp.calls. First,

52

the nodes matching calli are found for each i and stored in the
sequence matchedNodesi. The order of the matched nodes con-
forms to the preorder with respect to the schema tree. Then the
calls and their matching nodes are processed one by one (6-15).
Let callk be the currently processed call and node be the currently
processed node from within the sequence. In next steps, the algo-
rithm determines whether a fragment item exists such that

• item.sob-node = node,

• item.call = callk.

The item exists if and only if some end-of-buffer node is found.
First, all candidates for end-of-buffer node are collected. Each such
candidate, let denote it cand-node, must conform to the following
two conditions:

• cand-node ∈ matchedNodesi, i < k,

• cand-node >preorder node

It means, cand-node must appear after the currently processed
node node and at the same time it must be a matching node of
some call which appear before the currently processed call callk.
This is exactly the situation when buffering is inevitable. The max-
imum candidate node (with respect to the preorder) is chosen as the
end-of-buffer node (11) since it represents the position within the
schema tree where all calls appearing before the current call have
been definitely processed. In case no candidate has been found, the
buffering is not needed and the fragment item is not generated.

Note that the overall fragment is added to the set tmp.fragments
in the AnalyzeNode function if and only if the set of generated
items is not empty.

Example. Let us consider the fragment shown in Fig. 2. The refer-
enced template tmp contains the following two calls:

call1: child::b/child::c (matched at n3)
call2: child::c (matched at n2)

According to the order of calls in tmp.calls it holds

call1 <call-order call2,

but according to the preorder of the schema tree it holds

n3 >preorder n2.

We thus obtain that call1 must wait with generating output until
call2 is processed. The node n2 is set as the start-of-buffer node
since the subtree at node n2 needs to be stored in the buffer buf
for further processing. The node n3 is the end-of-buffer node since
at this node it is sure that call2 has generated all of its output. This
implies that buf can be processed by call1 and the corresponding
output can be generated.

5. TRANSFORMER
The algorithm of the BUXT transformer extends the original

stack-based SSXT algorithm by memory buffers for temporary stor-
age. It is based on the model called buffering XML transducer.

Buffering XML transducer. The transducer represents a com-
bination of two models - the simple streaming XML transducer
(SSXT) and the general XML transducer (GXT), both introduced
in [4]. Following the SSXT behavior, it reads the input XML and
generates the output XML in the streaming manner. It is equipped
with a stack in order to enable stepwise evaluation of XPath ex-
pressions on the input stream SSXT. In addition, BUXT stores part
of the input stream in buffers. These buffers are later processed in

the traditional tree-based manner - the buffer content is stored in
the memory as a tree and processed from the root to the leaves.
The tree-based processing is accomplished by a GXT which is
a straightforward formalization of the standard XSLT processors.
The significant measures of space complexity are as follows:

• number of buffers,

• maximal size of the buffers utilized during the transformation.

Note that, for a given input document and XSLT transformation, the
values of both measures can be computed statically. Such algorithm
is however outside the range of this paper.

5.1 Structures and actions
We describe the structures and the actions used in the transformer

algorithm.

Stack. Similarly to the original SSXT algorithm, the BUXT trans-
former uses a stack of the size proportional to the depth of the input
document to remember information about particular element lev-
els of the input XML document which is necessary to accomplish
evaluation of XPath expressions. Two kinds of data are stored in
the stack:

• DFA - a sequence of current DFA states,

• CC - cycle configuration.

A set of DFAs is used to evaluate XPath expressions in the current
template concurrently - a single DFA is associated with a single
expression. Such technique has been used for example in the Y-
filter algorithm [3].

The cycle configuration contains information about the currently
processed part of the XSLT stylesheet xsl and the current position
in schema of the input document. The position in the schema is de-
termined according to the current position in the input XML stream,
and it is updated at each advance action (see action description be-
low). A configuration cc consists of the following components:

• cc.tmp - a reference to a template of xsl (current template),

• cc.call - a reference to the lastly matched call of the current
template,

• cc.context-node - a reference to a schema node (context sche-
ma node).

During a single cycle, one template call in a template of xsl is
processed. A special initial cycle handles initialization of the trans-
formation. A CC is pushed on the stack when a match is found
for some expressions (i.e., a final DFA state appears in the cur-
rent sequence of DFA states). Here, new cycle for processing the
called template starts. A CC is popped after the called template has
been processed and the control moves back to the previous tem-
plate. More detailed description of SSXT stack manipulation can
be found in [4].

The context schema node is a new component added first in the
BUXT algorithm. It represents a position in the schema tree which
corresponds to the current context tag of the transformation, i.e.,
the tag at which the current evaluation has started. Moreover, the
transformation itself keeps a reference to the current schema node
which corresponds to the currently processed tag. The pair (context
schema node, current schema node) is called the current context.
The current context is necessary in order to make proper decision
on when to start buffering and when to process buffer contents.

For simplicity of the presentation, when describing the algorithm
itself, we do not explicitly mention keeping references to the cur-

53

rent context. These references are supposed to be updated in a
straightforward way at each advance action.

Buffers. The buffers are in-memory tree XML structures which
are used to store temporary data for later processing. They are pro-
cessed in the tree-based manner, mimicking behavior of the stan-
dard XSLT processors.

Actions. Based on the SSXT algorithm, three actions are available
for stack manipulation, one action for manipulating the input XML
stream and one action for generating the output XML stream:

• push DFA, push CC, pop,

• advance (advances to the next input tag),

• generate (call1, call2) (generates all output XML tags be-
tween call1 and call2

5).

The BUXT algorithm uses, in addition, two more actions for ma-
nipulating buffer content:

• fill buffer - stores the content of the current element in a buffer,

• process buffer - process a buffer in the tree-based manner.

The decision about the buffer actions is based on the information
stored in the fragments. If the current context corresponds to the
fragment context and current node (tag) corresponds to a start-of-
buffer node of one of its fragment-items, then a new buffer is filled
by the current subtree. Similarly, the decision about processing a
buffer is made, but the end-of-buffer node is checked instead of the
start-of-buffer node.

5.2 Algorithm
The transformer algorithm uses the following variables (common

for all functions mentioned below):

• cc - the current cycle configuration,

• current-tag - the currently processed XML tag,

• la-tag - the lookahead tag.

After an initialization, the transformer calls a proper function de-
pending on the symbol on the top of the stack (see Algorithm 3).

Algorithm 3 Transform(xsl, xml)

1: set current-tag to first tag of xml;
2: set cc.tmp = template matching current-tag.name in mode m0;
3: set cc.call = cc.tmp.start;
4: push initial DFA states for cc.tmp;
5: while stack is not empty do
6: if stack.top = sequence S of DFA states then
7: ProcessDFA(S);
8: else if stack.top = cycle configuration stack-cc then
9: ProcessCycleConfiguration(stack-cc);

10: end if
11: generate fragment (cc.call, cc.tmp.end)
12: end while

A sequence of DFA states is processed by the ProcessDFA
function (see Algorithm 4). When a start-tag is encountered, all
DFAs perform a transition according to the tag name and a new
sequence of states denoted by S.transition(name) is determined
(2). In case a final state appears in the new sequence, the trans-
former checks whether buffering is needed by examining all frag-
ment items (6). If some of them contains start-of-buffer node for

5Note that call1 may be the beginning of the template and call2
may be the end of the template.

the current context, a new buffer is filled with the content of the
current tag. Otherwise, the content is processed in the streaming
manner and a new cycle starts (9).

When an end-tag is encountered, the transformer first checks
whether some of the buffers might be ready for processing. It again
examines fragment items and selects those which contains end-of-
buffer node for the current context (17). For each such item, all
associated buffers are processed in the tree-based manner. Then
the streaming processing continues.

Algorithm 4 ProcessDFA(S)

1: if current-tag is start-tag then {Downwards evaluation}
2: let S′ = S.transition(current-tag.name);
3: if S′ contains no final state then {No match}
4: push S′, advance;
5: else if S′ contains final state for call new-call then {Match found}
6: if fragment item item exists which contains start-of-buffer node

for current context then {Buffer filling}
7: create new buffer buf and fill it with contents of current-tag;
8: add buf to item.buffers;
9: else

10: generate(cc.call, new-call);
11: push cc;
12: set cc.tmp = new-call.tmp;
13: set cc.call = cc.tmp.start;
14: end if
15: end if
16: else if current-tag is end-tag then {Upwards evaluation}
17: if fragment item item exists which contains end-of-buffer node for

current context then {Buffer processing}
18: process all buffer in item.buffers;
19: end if
20: if la-tag is end tag then
21: pop; advance;
22: end if
23: end if

A cycle configuration is processed by the ProcessCycleCon-
figuration function (see Algorithm 5). In case a new cycle starts
(1), a sequence of initial DFA states for the current template is
pushed. In case a cycle ends (6), last output part of the current
template is generated and the previous configuration is reset.

Algorithm 5 ProcessCycleConfiguration(stack-cc)

1: if current-tag is start-tag then {Cycle start}
2: if la-tag is start-tag then
3: push initial DFA states for cc.tmp;
4: end if
5: advance;
6: else if current-tag is end-tag then {Cycle end}
7: generate(cc.call, cc.tmp.end);
8: set cc = stack-cc;
9: pop;

10: end if

6. IMPLEMENTATION AND EVALUATION
The BUXT engine was implemented and tested in the Xord frame-

work. The implementation is based on the SSXT engine by ex-
tending both its analyzer and transformer part according to the for-
mal algorithms described above. Besides extending the algorithms
themselves, there are two structural extensions:

• the set of fragments and their fragment items as the output of
the analyzer phase and the input of the transformation phase

• keeping references to the relevant schema nodes while read-
ing symbols from the input document.

54

0

2

4

6

8

10

12

14

16

18

20

10K 30K 100K 300K 1M 10M

Saxon Xerces LibXslt BUXT

92

MB

elements

16.5

18.3

20.2

22.4

24.6

0

5

10

15

20

25

30

8 50 100 150 200

KB

168

depth

Figure 3: Memory complexity evaluation

We have compared the BUXT algorithm space complexity against
the publicly available tree-based XSLT processors (Saxon, Xalan
and XsltProc) using both synthetic and real data. Fig. 3a. shows
a comparison of transformation memory requirements of 10000 to
1 million entities. All the tree-based processors consumed large
amounts of memory when processing large XML data (above 100K
of entities) regardless the simplicity of the transformation.

The evaluation confirmed that the BUXT algorithm basically re-
quires a memory proportional to the depth of the input XML. Fig.
3b. shows a net memory consumption of the algorithm (without
libraries, runtime environment etc.) processing the input data of
different depth. Since the document depth is generally not de-
pending on the document size and documents are relatively shallow
[12], the memory requirements for most of the XML documents is
low, independent to the document size. Even for large documents
like DBLP (700 MB), the BUXT algorithm required below 100 KB
of net memory while the above mentioned DOM-based processors
crashed or hanged after allocating about 1.5 GB of memory.

Additionally, there is an extra memory required for each frag-
ment item detected during the transformation. The size of such
memory does not depend on the whole input size but on the schema
and the XSLT structure. As long as the ordering of the output doc-
ument remains close to the input document (the transformation is
mostly local), the space complexity remains low. The most typical
example of such processing is filtering, mapping and local reorder-
ing of a huge sequence of relatively small subtrees, such as logs,
structured data streams or XML databases.

On the other side, the BUXT transformer is not very suitable
for some classes of transformations. The example of inappropriate
transformations is swapping two large subtrees or moving a little
subtree from the end of the input document to the beginning of
the output. For such transformations all of the input that should
be processed later must be stored into the buffers and the space
complexity may achieve the tree-based processors in the worst case.

7. CONCLUSION
We introduced an enhancement of the Xord framework for ef-

ficient XSLT processing. The functionality of the framework is
currently based on the stack-based streaming algorithm which is
able process a class of top-down XSLT transformations using stack
of the size proportional to the depth of the input document. Addi-
tionally, some parts of the input document can be stored in buffers
for later processing. The analyzer can detect the context when such
buffering starts and when the content of such stored buffers should
be processed instead the regular input. The results of our experi-
ments show that the engine is much less memory-consuming when
processing huge data sets or data streams comparing to the common
tree-based processors for a wide class of transformations.

Several issues are left for the future work. First, we intend to

overcome some restrictions to XSLT and schema constructs that
can be processed by the Xord engine such as conditions and choices.
The algorithms can be also improved by an appropriate schema in-
ference strategies [13]. Next, we plan to design multipass algo-
rithms that could be much more memory efficient for some classes
of transformations at the cost of processing the input in several
passes.

Acknowledgments.
This work was supported by the Grant Agency of the Czech Re-
public, grant number 201/09/0990 - XML Data Processing and by
the Slovak Grant Agency, grant VEGA 1/3106/06. A part of the
results presented comes from a PhD thesis of Comenius University
in Bratislava, Slovakia.

8. REFERENCES
[1] O. Becker. Transforming XML on the Fly. In Proceedings of

XML Europe 2003, 2003.

[2] The Codehaus. StAX, 2006.
http://stax.codehaus.org/.

[3] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer.
Path sharing and predicate evaluation for high-performance
XML filtering. ACM Trans. Database Syst., 28(4):467–516,
2003.

[4] J. Dvořáková. Towards Analyzing Space Complexity of
Streaming XML Transformations. In The Second IEEE
International Conference on Research Challenges in
Information Science. IEEE Computer Society, 2008.

[5] J. Dvořáková and F. Zavoral. An Implementation Framework
for Efficient XSLT Processing. In Proceedings of IDC 2008,
Studies in Computational Intelligence. Springer-Verlag,
2008.

[6] J. Dvořáková and F. Zavoral. Schema-Based Analysis of
XSLT Streamability. In Proceedings of ADVCOMP 2008,
Studies in Computational Intelligence. IEEE Computer
Society, 2008.

[7] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan, and G. Agrawal.
The BEA/XQRL Streaming XQuery Processor. In
Proceedings of VLDB 2003, pages 997–1008, 2003.

[8] Z. Guo, M. Li, X. Wang, and A. Zhou. Scalable XSLT
Evaluation. In Advanced Web Technologies and Applications,
LNCS 3007/2004. Springer Berlin / Heidelberg, 2004.

[9] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
FluXQuery: An optimizing XQuery processor for streaming
XML data. In VLDB’2004: Proceedings of the Thirtieth
International Conference on Very Large Databases, pages
1309–1312, 2004.

[10] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A
Transducer-Based XML Query Processor. In Proceedings of
VLDB 2002, pages 227–238, 2002.

[11] N. S. Martin Grohe, Christoph Koch. Tight lower bounds for
query processing on streaming and external memory data. In
Theor. Comput. Sci. 380(1-2): 199-217. Springer Berlin /
Heidelberg, 2007.

[12] K. Toman and I. Mlynkova. Statistics on the Real XML Data.
In XML Prague’06, pages 87–102, Prague, Czech Republic,
2006. Ginger Alliance.

[13] O. Vosta, I. Mlynkova, and J. Pokorny. Even an Ant Can
Create an XSD. In DASFAA’08, LNCS, pages 35–50.
Springer, 2008.

55

39

Chapter 4.

High-Level Web Data Abstraction Using Language

Integrated Query

Jakub Míšek, Filip Zavoral

Intelligent Distributed Computing IV, Springer Verlag, pp. 13-22, 2010

40

High-Level Web Data Abstraction Using
Language Integrated Query

Jakub Misek and Filip Zavoral

Abstract. Web pages containing huge amount of information are designed for hu-
man readers; it makes their automatic computer processing difficult. Moreover web
pages live their content is changing. Once a page is downloaded and processed, few
seconds after that its content can be different. Many scraping frameworks and ex-
traction mechanisms have been proposed and implemented; their common task is to
download and extract required data. Nevertheless, the complexity of development of
such application is enormous since the nature of data does not conform to common
programming paradigms. Moreover, the changing content of the web pages often
implies repetitive extracting of the whole data set.

This paper describes the LinqToWeb framework for web data extraction. It is de-
signed in an innovative way that allows defining strongly typed object model trans-
parently reflecting data on the living web. This mechanism provides access to raw
web data in a completely object oriented way using modern techniques of Language
Integrated Query (LINQ). Using this framework development of web-based applica-
tions such as data semantization tools is more efficient, type-safe, and the resulting
product is easily maintainable and extendable.

1 Introduction

Since Internet lives in its own limitless world where everybody is allowed to join
and contribute, all information placed on the web is growing every second. It is full
of various data, like daily newspapers, discussion forums, shop catalogs, images
or videos, which are accessible by almost anyone. The automatic data extraction
represents huge nowadays problem. The web pages are intended for human read-
ers. Moreover single information is spread on more pages. Although there exist
recommended formats for web developers how to export their information to be

Jakub Misek · Filip Zavoral
Charles University in Prague, Czech Republic
e-mail: {misek,zavoral}@ksi.mff.cuni.cz

M. Essaaidi et al. (Eds.): Intelligent Distributed Computing IV, SCI 315, pp. 13–22.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

14 J. Misek and F. Zavoral

readable by machines (RSS, web services or more advanced and self-describing
RDF or OWL), vast majority of the web data does not contain such semantic or
structural description. The main goal of extraction tasks is to retrieve desired infor-
mation into some structuralized form. That is the most common purpose of scraping
frameworks and applications. They are able to download e.g. all needed web pages,
and export specific values into a local storage like database or XML. Two main
categories of scraping software approaches can be identified:

• Standalone application. Specific extraction mechanisms are implemented as a
standalone large scale application [12, 13]. Such applications provide methods
for extracting data from various sources and several options how to save the re-
sults. Everything used to be configurable in a declarative way, usually using a
graphic user interface or scripting. Occasionally the application is able to per-
form updates automatically. These solutions have high requirements for storage
capacity and the whole extraction process is time consuming.

• Framework. Programmers can take benefits from extraction frameworks [1, 8].
Using such libraries programmers have to take care about all the processes; the
implying advantage is a possibility to develop more customized and optimized
extraction. For example such application can modify extraction parameters dur-
ing runtime or it can download only specific parts of web sites.

Most of these solutions assume that the user wants to extract information into a local
storage. Such behavior is sometimes not desirable, because most of the downloaded
information is not subsequently used. Downloading everything locally causes high
requirements for storage capacity and difficult updates of already extracted informa-
tion. Moreover many implementations solve the updates simply by redownloading
everything from the beginning. The other issue when using such frameworks is ef-
ficiency of development data are usually represented in an unstructured form of
strings, binding to language data types is weak, no syntax checking is possible in
compile time etc.

The main contribution of this paper is a design of a high-level integration of
web information extraction into a software development process. The framework
LinqToWeb [11] benefits from advantages of previously described approaches. The
extraction tasks can be defined in a declarative way, while the programming inter-
face uses type safe object model representing the abstraction of the web resources.
The tasks are compiled; it maximizes performance of the extraction.

The programmer can use web resources in the same way as data in a local mem-
ory. In contrast to contemporary solutions local storage is not used explicitly, but
only as a transparent caching mechanism. Moreover, particular data items are ac-
cessed only when requested that makes the extraction process much efficient the
data access is not delayed by long extraction queues. The high-level object ori-
ented approach takes benefits of modern language features like Language Integrated
Query (LINQ) [4], code sense capability provided by development environments
etc. automatically.

High-Level Web Data Abstraction Using Language Integrated Query 15

2 Architecture

The main idea of the LinqToWeb design is working with web resources in the same
way as with the statically declared objects instantiated during runtime. The object
oriented approach takes advantage of safe type checking, efficient compiled task
processing and auto-completion support provided by development environments -
object members are automatically offered during code typing; the programmer can
see the data structure immediately. Also the source code is automatically checked
for typing errors; it makes the development easier and more type-safe.

The architecture is inspired by LinqToSQL [7] integration which was introduced
as a part of Microsoft Visual Studio 2008. The main principle is based on generating
strongly typed object model from something that is not so easy to use and causes
programming issues in general. The description of data sources is used for gener-
ating type-safe objects that encapsulate all possible usages of data. The complete
process of generating objects is automatically performed by the development envi-
ronment - every time the source data description is changed, the programmer works
with up-to-date objects implementation.

Fig. 1 LinqToWeb architecture. The programmer accesses only the generated object model,
the rest is hidden under the generated abstraction.

The typical usage of LinqToWeb is depicted on Fig. 1. Assume we need to use
information from specific web pages or another not necessarily web based sources.
The programmer provides description of the information its abstract object model
and how to fill this object with data (see Sect. 3). The LinqToWeb code genera-
tor transparently generates C# code containing objects and extraction tasks using
functionalities hidden in LinqToWeb core libraries.

16 J. Misek and F. Zavoral

Generated code file becomes a part of the program sources; the compiler is able
to perform type checks and optimizations. To achieve an effect of objects with all
values locally initialized, the whole mechanism makes use of the .NET framework
platform and its mechanism of properties. Moreover, generated objects can be in-
tegrated to all languages supporting the .NET platform. During the extraction the
system uses associative cache. Its purpose is to speed up repetitious requests for
web resources or repetitious extraction tasks. This cache manages expiration time
of resources; expired cached resource is simply downloaded again as part of evalua-
tion of next relevant request. The storage of the cache can be implemented in various
ways, e.g. in memory only or in a database. Sharing the cache among more threads
or processes simplifies concurrent access to a particular object.

3 LinqToWeb Description Language

The description of each data source consists of two parts - the structure of infor-
mation and the extraction tasks that collect it. A special-purpose declarative lan-
guage was designed [10] to describe both parts. Its main features include: simplicity,
declarative task description, procedural processing logic, intuitive object oriented
interface, and support for inherent and transparent parallelism.

3.1 Type Declarations

The LinqToWeb language offers built-in frequently used types and the ability to de-
fine user-defined classes. The type system is divided into value types and extraction
object types. Built-in value types are: int, double, datetime, bool and string. The
extraction objects are passed by reference through the extraction tasks. Therefore
they can be filled with data subsequently and used as a result of extraction. They are
represented by built-in container list and all user-defined classes.

Fig. 2 demonstrates the declaration of user-defined classes containing both list
(denoted by []) and built-in properties, they represent the abstraction that the pro-
grammer work with.

Fig. 2 Example of structuralized type declaration, classes and lists

3.2 Extraction Task Definition

The process of obtaining data is represented by extraction methods. Every method
is defined by a method name, its typed arguments and a body. The arguments are

High-Level Web Data Abstraction Using Language Integrated Query 17

used to pass values and references to objects that the method will use or fill in. Ar-
guments of value types are passed by value and arguments of other types are passed
by reference. Fig. 3 demonstrates the extraction methods definition. The entry point
of extraction is represented by the method main. Value-typed arguments of these
methods are automatically exposed as arguments of the extraction, arguments typed
as extraction objects are exposed as public objects containing extraction results.

Fig. 3 Extraction methods definition example. Calls a method googlepage on given web
page.

Body of extraction method. Method body consists of statements and expressions.
The language supports common literals and common operations like numeric oper-
ators, strings concatenation and assignments. The code looks like a single-threaded
extraction process, but the real execution uses the code that is generated from this
declaratively defined task which may process the requests in a parallel and optimized
way. Hence it allows the programmer to define the abstraction without concerning
e.g. any parallelization issues.

Extraction method invocation. The calling syntax is as usual as in other proce-
dural languages. But there is a difference in the semantics. Methods represent the
smallest tasks which execution can be postponed. The code looks like a single pro-
cess but in fact method calls are not processed immediately the call is postponed
until the data is requested. Within the method call, only the method arguments
remember that their content can be affected by the called method. Therefore the
method is really processed only if the content of the required object is unknown yet.

The language also allows definition of more methods with the same identifier
and signature (multimethods). When multimethods are invoked, all their instances
are called in an undefined order; such behavior is especially useful for exploiting
parallelism and other optimizations.

Data contexts. Since the compound result set can be extracted from various
sources, the language introduces data-contexts. Every statement is executed within
a data-context which represents current open resource, e.g. current web page. Syn-
tactically, new data-context can be open using square brackets before the statement,
including command that opens the resource. There is the open command including
location of the web page in Fig. 3, 5. The location is relative to the current data-
context; opening a resource simulates e.g. following a link from the current page.

18 J. Misek and F. Zavoral

The purpose of data-contexts is reuse of the code with different source data. They
also simplify design of the extraction tasks. It allows the programmer to write the
code more declaratively in a similar way as the human browses the web pages.

Other language constructs. Several other constructs are needed to provide fully
usable language. Although most of them are known from procedural languages,
there are some differences. Following list describes the most important features:

• Item addition. The list object is used as container for elements. In extraction
methods lists are write-only. To add an element into the list the following syntax
is used: items[]=element; In the program that uses generated code, the lists
are read-only; they are commonly used as data pipes.

• Object creation. To create and initialize an object within a single expression the
syntax similar to a method call is used. It is useful when new object has to be
created, its properties initialized and the result object added to a list or passed as
a method call argument. The syntax looks as follows: Result(Title=..,Url=..).

• .NET code call. Sometimes it is useful to use standard C# code. The system sup-
ports such methods; they can be used and called in the same way as LinqToWeb
methods, but without a possibility of delayed processing.

Extractor patterns. Easy data extraction is the main purpose of the extraction
methods. The example of collecting results from the Google search is shown on
Fig. 5. All required fragments of a source web page are enumerated; data are ex-
tracted from the current data-context. The argument of the foreach specifies the
searched extractor pattern. When a match is found the system automatically creates
local variables and initializes them with the matched data. The system currently
supports following extractor patterns (particular examples are shown on Fig. 4, 5):

• Regexp. Matching the regular expression [6] is the basic and most commonly
used method of navigating the web page. However this method is very hard to use

Fig. 4 Examples and comparasion of Regexp and Mat Extractor Pattern

Fig. 5 Extraction method example, using XML Extractor Patterns

High-Level Web Data Abstraction Using Language Integrated Query 19

in case of complex expressions. The variables in the expression can be identified
in the following way: (?<var_name>_expression_).

• Match. Instead of regular expressions, Mat Extractor Patterns can be used. They
were introduced in scraping framework AgentMat [3]. Mat Extractor Patterns
are much more easy to use, but they are not as strong as regexp. They consist
of piece of text that will be matched. This text is converted into corresponding
regular expression. The variables are marked by prefix ˜@ and suffix @˜.

• Xmlmatch. LinqToWeb system introduces XML Extractor Patterns. They have a
form of a fragment of valid XML. The content of the data-context is parsed into
XML DOM. XmlMatch searches for all matches against the provided XML frag-
ment. Variables are marked in the same way as it is in the Mat Extractor Patterns,
but they can occur only in the XML attributes value and inner nodes text. XML
Extractor Patterns allows finding matches within the context of HTML nodes
easily. It is also more tolerant for changes in the source web page structure, the
programmer is not forced to describe elements and attributes of the source HTML
text that are not important for the match, only the structure must be specified. In
this case, matched HTML fragment can contain other XML attributes or even
other XML child elements. The XML pattern is well-arranged with a possibility
to specify wider context of searched information on a higher level of declaration.

4 Generating Strongly Typed Objects

The tasks described in the previous section are used to generate objects in C# lan-
guage. The result is in a form of a context class that contains all exported objects
declared and instantiated inside.

The context class has public read-only properties corresponding to exported ob-
jects. They are defined as arguments of the main extraction methods typed as extrac-
tion objects. Declarations of user-defined classes are placed within the context class
too. Finally the constructor of the context class is parameterized. The parameters
correspond to value-typed arguments of the main method.

4.1 Just-In-Time Extraction

Every non-value-typed object is derived from an abstract class which defines the
mechanism of actions. It manages a collection of actions that lead to collecting data
for this object. Every action consists of a method to be called and its parameters.
When a property of an extraction object is to be read, the getter method of the
property processes and removes some action if the value is not known yet. New
actions appear in the collection by calling extraction methods as it was mentioned
before and by a context class constructor.

By processing the action, some unknown information can be obtained and stored
in object properties. Also new actions can be added into the collection. The getter
method of the requested property processes actions until the property gets a value.

20 J. Misek and F. Zavoral

If the particular property is read repeatedly, its value is extracted only once. If the
property is not read, its extraction is not performed at all.

Enumerating lists. Typically, the main result of the extraction task is a set of col-
lections of data. The collections are represented by the list-typed objects. It is also
derived from the abstract base class; therefore it manages the mechanism of actions.
Instead of using properties, the list object is targeted to act like an enumerator [9] (or
a read-only pipe in other words); it can be used only for getting items sequentially.

The runtime uses this enumerator automatically when the program is accessing
the collection. The actions associated with the collection are used when the run-
time picks up next element from the enumerator, next action from the actions list is
processed to obtain more elements if necessary.

Every time the program enumerates the list new enumerator is created and list
elements are obtained from beginning. Since frequently used resources and results
of extraction operations are cached, such behavior does not affect the performance.
Moreover it allows defining endless collections without requirements for endless
storage capacity. Also only the beginning of the collection is extracted.

4.2 Language Integrated Query

The system of properties and enumerators allows taking benefits from LINQ easily.
It automatically extends all the enumerator objects in .NET with other methods.
They implement common operations over collections like Sort, Count, GroupBy,
Sum, TakeWhile etc. As the query is processed all the missing information (e.g.
value of properties or enumerated items) are collected and cached transparently.

Fig. 6 Enumerating lists and LINQ usage in C#. Advanced queries on pipes representing
web collection. Writing the single elements onto the output in object oriented and type safe
way.

Fig. 6 demonstrates the usage of lists and LINQ extensions. The sample collects
results from the Google search; it takes first 100 results and selects only items which
URL uses secured HTTP protocol. The programmer can work with collections ex-
tracted from the web in a completely abstract object oriented and type safe way. He
has also access to more advanced queries without a need of implementing them.

High-Level Web Data Abstraction Using Language Integrated Query 21

5 Evaluation

Using the LinqToWeb framework several applications have been developed, espe-
cially for web semantization subprojects [2, 5]. The code fragments referenced from
previous sections illustrate use of the language. The object model is generated from
Google search pages; this model is subsequently used to fetch and process the data.

Fig. 7 Extraction frameworks and written code complexity

The size of the code needed to use Google results in the application is depicted on
Fig. 7. Most of the frameworks are able to define the task in a declarative way, but the
usage of extracted data is not trivial (AgentMat and ScreenScraper systems). Smaller
code means faster development and less chance for errors. Also other frameworks
used as libraries force the programmer to mix extraction task within the program
itself (e.g., WWW: Mechanize). The graph shows amount of code lines defining the
extraction task and its usage, declaring object structure or tasks and also the syntax
overhead. The overhead is needed to proper usage of the framework, but it does not
affect the extraction itself.

Fig. 8 CPU usage and extraction task speed, compiled vs. interpreted tasks

The LinqToWeb extraction tasks are compiled; it results in faster processing and
lower CPU usage, the process is waiting for web responses most of the time. The
difference of compiled and interpreted task is depicted on Fig. 8. Both frameworks
were used to obtain 400 results from Google search on Core2Duo CPU and a stan-
dard broadband connection.

22 J. Misek and F. Zavoral

6 Conclusion and Future Work

This paper describes methods used for integrating information from web-based
sources into application development. Implemented framework LinqToWeb enables
reading data in a type safe and object oriented way. The methods are suitable for
frequently updated live data. Using generated object model, data are accessed as
strongly typed objects. Hence it allows taking benefits of compiler type checks and
IDE code sense capabilities. Moreover, downloading, updating and data extraction
is performed on request fully transparently.

The main future enhancement is intelligent ordering and automatic parallelization
of processed extraction tasks. Other possible enhancements are related to using a
semantic storage for caching. Also some LINQ methods can be extended to modify
the extraction process by using the information from the query, e.g. data can be
downloaded already sorted if the source web allows it. Other kinds of improvements
include automatic detection of a web page structure and its semantic content. Since
the framework is intensively used in a web semantization research project, we expect
its future development in other not mentioned aspects.

Acknowledgements. This work was supported in part by grants GACR 202/10/0761,
SVV-2010-261312, and GAUK 2010/28910.

References

1. Gisle Aas: HTML Parser informations,
http://search.cpan.org/˜GAAS/HTML-Parser/

2. Bednarek, D., Dokulil, J., Yaghob, J., Zavoral, F.: Using Methods of Paral-lel Semi-
structured Data Processing for SemanticWeb. In: Proceedings of SEMAPRO 2009. IEEE
Computer Society Press, Los Alamitos (2009)

3. Beno, M., Misek, J., Zavoral, F.: AgentMat: Framework for Data Scraping and Semanti-
zation. In: RCIS, Fez, Morocco (2009)

4. Box, D., Hejlsberg, A.: LINQ:NET Language-Integrated Query. In: MSDN (2007)
5. Dokulil, J., Yaghob, J., Zavoral, F.: Trisolda: The Environment for Semantic Data Pro-

cessing. International Journal On Advances in Software 2008, IARIA 1(1) (2009)
6. Friedl, J.: Mastering Regular Expressions. O’Reilly Media, Inc., Sebastopol (2006)
7. Kulkarni, D., Bolognese, L., Warren, M., Hejlsberg, A., George, K.: LINQ to SQL:NET

Language-Integrated Query for Relational Data
8. Lester, A.: WWW:Mechanize,

http://search.cpan.org/˜petdance/WWW-Mechanize-1.52/
9. Mackay, C.A.: Using .NET Enumerators, The Code Project (2003),

http://www.codeproject.com/KB/cs/csenumerators.aspx
10. Misek, J.: LinqToWeb Language Definition, Technical report KSI 2010/01, Charles Uni-

versity in Prague (2010)
11. Misek, J.: LINQ to Web project, http://linqtoweb.codeplex.com/
12. Ekiwi: Screen scraper informations, http://www.screen-scraper.com/
13. Kapow Technologies: Kapowtech Mashup Server informations,

http://www.kapowtech.com

http://search.cpan.org/~GAAS/HTML-Parser/
http://search.cpan.org/~petdance/WWW-Mechanize-1.52/
http://www.codeproject.com/KB/cs/csenumerators.aspx
http://linqtoweb.codeplex.com/
http://www.screen-scraper.com/
http://www.kapowtech.com

51

Chapter 5.

Parallel SPARQL Query Processing Using Bobox

Zbyněk Falt, Miroslav Čermák, Jiří Dokulil, Filip Zavoral

International Journal On Advances in Intelligent Systems Vol. 5, Num. 3, pp. 302-314, 2012

52

Parallel SPARQL Query Processing Using Bobox

Zbyněk Falt, Miroslav Čermák, Jiřı́ Dokulil, and Filip Zavoral
Charles University in Prague, Czech Republic
{falt,cermak,dokulil,zavoral}@ksi.mff.cuni.cz

Abstract—Proliferation of RDF data on the Web creates
a need for systems that are not only capable of querying them,
but also capable of scaling efficiently with the growing size of
the data. Parallelization is one of the ways of achieving this
goal. There is also room for optimization in RDF processing to
reduce the gap between RDF and relational data processing.
SPARQL is a popular RDF query language; however current
engines do not fully benefit from parallelization potential. We
present a solution that makes use of the Bobox platform, which
was designed to support development of data-intensive parallel
computations as a powerful tool for querying RDF data stores.
A key part of the solution is a SPARQL compiler and execution
plan optimizer, which were tailored specifically to work with
the Bobox parallel framework. The experiments described in
this paper show that such a parallel approach to RDF data
processing has a potential to provide better performance than
current serial engines.

Keywords-SPARQL; Bobox; query optimization; parallel.

I. INTRODUCTION

SPARQL [2] is a query language for RDF [3] (Re-
source Definition Framework) widely used in semantic web
databases. It contains capabilities for querying graph patterns
along with their conjunctions and disjunctions. SPARQL
algebra is similar to relational algebra; however, there are
several important differences, such as the absence of NULL
values. As a result of these differences, the application of
relational algebra into semantic processing is not straightfor-
ward and the algorithms have to be adapted so it is possible
to use them.

As the prevalence of semantic data on the web is getting
bigger, the Semantic Web databases are growing in size.
There are two main approaches to storing and accessing
these data efficiently: using traditional relational means or
using semantic tools, such as different RDF triplestores [3]
accessed using SPARQL. Semantic tools are still in develop-
ment and a lot of effort is given to the research of effective
storing of RDF data and their querying [4]. One way of
improving performance is the use of modern, multicore
CPUs in parallel processing.

Nowadays, there are several database engines which
are capable of evaluating SPARQL queries, such as
SESAME [5], JENA [6], Virtuoso [7], OWLIM [8] or RDF-
3X [9], that is currently considered to be one of the fastest
single node RDF-store [10]. These stores support parallel
computation of multiple queries; however, they mostly do

not use the potential of parallel computation of particular
queries.

The Bobox framework [11], [12], [13] was designed to
support the development of data-intensive parallel computa-
tions. The main idea behind Bobox is to divide a large task
into many simple tasks that can be arranged into a non-
linear pipeline. The tasks are executed in parallel and the
execution is driven by the availability of data on their inputs.
The developer does not have to be concerned about problems
such as synchronization, scheduling and race conditions. All
this is done by the framework. The system can be easily
used as a database execution engine; however, each query
language requires its own front-end that translates a request
(query) into a definition of the structure of the pipeline that
corresponds to the query.

In the paper, we present a tool for efficient parallel
querying of RDF data [14] using SPARQL build on top of
the Bobox framework [1], [15]. The data are stored using an
in-memory triple store. We provide a description of query
processing using SPARQL-specific parts of the Bobox and
provide results of benchmarks. Benchmarks were performed
using the SP2Bench [16] query set and data generator.

The rest of the paper is structured as follows: Section II
describes the Bobox framework. Models used to represent
queries and a description of query processing is contained
in Section III. Data representation and the implementation
of operators using Bobox framework is described in Section
IV. Section V presents our experiments and a discussion of
their results. Section VI compares our solution to other con-
temporary parallelization frameworks. Section VII describes
future research directions and concludes the paper.

II. BOBOX FRAMEWORK

A. Bobox Architecture

Bobox is a parallelization framework which simplifies
writing parallel, data intensive programs and serves as a
testbed for the development of generic and especially data-
oriented parallel algorithms.

Bobox provides a run-time environment which is used
to execute a non-linear pipeline (we denote it as the ex-
ecution plan) in parallel. The execution plan consists of
computational units (we denote them as the boxes) which
are connected together by directed edges. The task of each
box is to receive data from its incoming edges (i.e. from its
inputs) and to send the resulting data to its outgoing edges

(i.e. to its outputs). The user provides the execution plan (i.e.
the implementation of boxes and their mutual connections)
and passes it to the framework which is responsible for the
evaluation of the plan.

Box3

Box1

Term boxInit box

Box2

Box4

Figure 1. Example of an execution plan

Figure 1 shows an example of an execution plan. Each
plan must contain two special boxes:

• init box – this is the first box (in a topological order)
of the plan which is executed.

• term box – this is the last box and denotes that the
execution plan was completely evaluated.

The implementation of boxes is quite straightforward and
simple, since Bobox provides a very powerful and easy to
use interface for their development. Additionally, the source
code is expected to be strictly single-threaded. Therefore,
the developer does not have to be familiar with parallel
programming. Although this requirement on the source code
may seam limiting, the framework is especially targeted to
a development of highly scalable applications [17].

The only communication between boxes is done by send-
ing envelopes (communication units containing data) along
their outgoing edges. Each envelope consists of several
columns and each column contains a certain number of
data items. The data type of items in one column must be
the same in all envelopes transferred along one particular
edge; however, different columns in one envelope may have
different data types. The data types of these columns are
defined by the execution plan.

The number of data items in all columns in one envelope
must be always the same. Therefore, we may define the list
of i-th items of all columns in one envelope as its i-th data
line. The Figure 2 shows an example of an envelope.

1

2

3

4

5

N-1

N

„abc“

„defg“

„h“

„ijkl“

„mn“

„xy“

„z“

<int> <bool>
…

<char *>

false

true

false

false

true

true

false

Figure 2. The structure of an envelope

The total number of data lines in an envelope is chosen
according to the size of cache memories in the system.

Therefore, the communication may take place completely in
cache memory. This increases the efficiency of processing
of incoming envelopes by a box.

Currently, only shared-memory architectures are sup-
ported; therefore, the only shared pointers to the envelopes
are transferred. This speeds up operations such as broadcast
box (i.e., the box which resends its input to its outputs)
significantly since they do not have to access data stored in
envelopes.

There is one special envelope (so called poisoned pill)
which is sent after the last regular envelope to close the
output of a source box. For the receiver of the poisoned pill
it is a signal that all data were already received on that input.

In fact, the only work which is done by the init box
is sending the poisoned pill to its output and the only
responsibility of the term box is to terminate the evaluation
of the execution plan when it receives the poisoned pill on
its input.

The interface of Bobox for box development is very
flexible; therefore, the developer of a box may choose
between multiple views on the data communication:

• The communication is a stream of envelopes. This is
useful for efficient implementation of boxes which do
not have to access data in envelopes such as broadcast
box or stream splitter (see Section IV-D) or implemen-
tation of boxes which process their inputs by envelopes.

• The communication is a stream of data lines. This
is useful for easier implementation of boxes which
manipulate with data lines one by one such as filter
box (see Section IV-C2).

• The combination of both views. For example, the sort
box (see IV-C3) processes input by envelopes, but
produces the output as a stream of data lines.

Although the body of boxes must be strictly single-
threaded, Bobox may introduce three types of parallelism:

1) Task parallelism, when independent streams are pro-
cessed in parallel.

2) Pipeline parallelism, when the producer of a stream
runs in parallel with its consumer.

3) Data parallelism, when independent parts of one
streams are processed in parallel.

The first two types of parallelism are exploited implic-
itly during the evaluation of a plan. Therefore, even an
application which does not contain any explicit parallelism
may benefit from multiple processors in the system (see
Section V-A). Data parallelism must be explicitly stated in
the execution plan by the user (see IV-D); however, it is
still much easier to modify the execution plan than writing
parallel code by hand.

B. Flow control

Each box has only limited buffer for incoming envelopes.
When this buffer becomes full, the producer of the envelopes

is suspended until at least one envelope from the buffer is
processed. This strategy increases the performance of the
system since the operators which produce data faster than
their consumers are able to process are suspended to not to
consume the CPU time uselessly. This time may be used
to execute other boxes. Additionally, this method yields to
lower memory consumption, since there is only a limited
number of unprocessed slots which occupy the memory at
a time.

On the other hand, this flow control may sometimes yield
to a deadlock (see Section V-C) or may limit the level of
parallelism (see Section IV-C6 for an example).

C. Box scheduling

Scheduling of boxes is a very important factor which
significantly influences the performance of Bobox. The
scheduling strategies are described in a more detail in [12].

During the initialization of Bobox, a same number of
worker threads as the number of physical processors is
created. Only these worker threads may execute the code
of boxes. The scheduler has two main data structures:

• Each worker thread has its own double ended queue of
immediate tasks.

• Each execution plan which is being evaluated has its
own queue of deferred tasks.

There are three cases when a box is scheduled:
• When a new execution plan is about to evaluate, a new

queue of deferred tasks for that plan is created and its
init box is put to the front of that queue.

• When a box sends an envelope to another box, the
destination box is put to the front of the queue of
immediate tasks of the thread which is executing the
source box.

• When a box stops to be suspended because of flow
control, it is put to the queue of deferred tasks of the
corresponding plan.

When the working thread is ready to execute a box, it
choose the first existing box in this order:

1) The newest box in its queue of immediate tasks.
This box receives an envelope created by this thread
recently. Therefore, it is probable that this envelope
is completely hot in a cache so accessing its data is
probably much faster than accessing other envelopes.

2) The oldest box in the queue of deferred tasks of the
oldest execution plan. This ensures that scheduling of
deferred tasks of one execution plan are scheduled
fairly. However, the execution plans are prioritized
according to their age – the older the execution plan
is, the higher priority it has. Each evaluation of an
execution plan needs some resources (such as memory
for envelopes); therefore, the more plans are being
evaluated at a time, the more resources are needed
for them. This strategy ensures that if there is a

box to execute from plans which are currently being
executed, no new evaluation is started.

3) The oldest box in the queue of immediate tasks of
another worker thread. Worker threads with shared
cache memory are prioritized. This avoids suspending
of a worker thread despite the fact that there are boxes
to execute. Moreover, the oldest box has the lowest
probability to have its input hot in a cache memory of
the thread from which the box was stolen. Therefore,
stealing this box should introduce less performance
penalty than stealing the newest box in the same
queue.

If there is no box to execute, the worker thread is
suspended until some other box is scheduled.

Besides the SPARQL compiler described in this paper, the
Bobox framework is used in several related projects - model
visualization [18], semantic processing [19], [20], query
optimization [21], and scheduling in data stream processing
[12], [22].

III. QUERY REPRESENTATION AND PROCESSING

One of the first Bobox applications was SPARQL query
evaluator [19]. Since running queries in Bobox needs an
appropriate execution plans, SPARQL compiler for Bobox
was implemented to generate them from the SPARQL code.

During query processing, the SPARQL compiler uses
specialized representation of the query. In the following
sections, we mention models used during query rewriting
and generation of execution plan.

A. Query Models

Pirahesh et al. [23] proposed the Query Graph Model
(QGM) to represent SQL queries. Hartig and Reese [24]
modified this model to represent SPARQL queries (SQGM).
With appropriate definition of the operations, this model can
be easily transformed into a Bobox pipeline definition, so it
was an ideal candidate to use.

Figure 3. Example of SQGM model.

SQGM model can be interpreted as a directed graph (a
directed tree in our case). Nodes represent operators and are
depicted as boxes containing headers, body and annotations.
Edges represent data flow and are depicted as arrows that
follow the direction of the data. Figure 3 shows an example
of a simple query represented in the SQGM model. This
model is created during an execution plan generation and is
used as a definition for the Bobox pipeline.

In [25], we proposed the SPARQL Query Graph Pattern
Model (SQGPM) as the model that represents query during
optimization steps. This model is focused on representation
of the SPARQL query graph patterns [2] rather than on
the operations themselves as in the SQGM. It is used
to describe relations between group graph patterns (graph
patterns consisting of other simple or group graph patterns).
The ordering among the graph patterns inside a group graph
pattern (or where it is not necessary in order to preserve
query equivalency) is undefined. An example of the SQGPM
model graphical representation is shown in Figure 4.

Figure 4. Example of SQGPM model.

Each node in the model represents one group graph
pattern that contains an unordered list of references to graph
patterns. If the referenced graph pattern is a group graph
pattern then it is represented as another SQGPM node.
Otherwise the graph pattern is represented by a leaf.

The SQGPM model is built during the syntactical analysis
and is modified during the query rewriting step. It is also
used as a source model during building the SQGM model.

B. Query Processing

Query processing is performed in a few steps by separate
modules of the application as shown in Figure 5. The first
steps are performed by the SPARQL front-end represented
by compiler. The main goal of these steps is to validate
the compiled query, pre-process it and prepare the optimal
execution plan according to several heuristics. Execution
itself is generated by the Bobox back-end where execution
pipeline is initialized according to the plan from the front-
end. Following sections describe steps done by the compiler
in a more detail way.

Figure 5. Query processing scheme.

C. Query Parsing and Rewriting

The query parsing step uses standard methods to perform
syntactic and lexical analysis according to the W3C recom-
mendation. The input stream is transformed into a SQGPM
model. The transformation also includes expanding short
forms in queries, replacing aliases and a transformation of
blank nodes into variables.

The second step is query rewriting. We cannot expect
that all queries are written optimally; they may contain
duplicities, constant expressions, inefficient conditions, re-
dundancies, etc. Therefore, the goal of this phase is to
normalize queries to achieve a better final performance. We
use the following operations:

• Merging of nested Group graph patterns
• Duplicities removal
• Filter, Distinct and Reduced propagation
• Projection of variables
During this step, it is necessary to check applicability of

each operation with regards to the SPARQL semantics before
it is used to preserve query equivalency [25].

D. Execution Plan Generation

In the previous steps, we described some query transfor-
mations that resulted in a SQGPM model. However, this
model does not specify a complete order of all operations.
The main goal of the execution plan generation step is to
transform the SQGPM model into an execution plan. This
includes selecting orderings of join operations, join types
and the best strategy to access the data stored in the physical
store.

The query execution plan (e.g., the execution plan of
query q5a is depicted in Figure 6) is built from the bottom
to the top using dynamic programming to search part of the
search space of all possible joins. This strategy is applied
to each group graph pattern separately because the order of

the patterns is fixed in the SQGPM model. Also, the result
ordering is considered, because a partial plan that seems
to be worse locally, but produces a useful ordering of the
result, may provide a better overall plan. The list of available
atomic operations (e.g., the different types of joins) and their
properties are provided by the Methods Space module.

1: sink2

19

2: triple_feeder

1

3: triple_feeder

2

4: merge_join_MN

3

5: sort_box

4

6: distinct

5

7: triple_feeder

6

8: merge_join_MN

13

9: triple_feeder

7

10: triple_feeder

8

11: merge_join_MN

9

12: sort_box

10

13: distinct

11

14: triple_feeder

12

15: merge_join_MN

15

16: merge_join_MN

18

17: sort_box

14

18: sort_box

16

19: init_box

17

20: term_box

Figure 6. Query execution plan q5a.

In order to compare two execution plans, it is necessary
to estimate the cost of both plans – an abstract value that
represents the projected cost of execution of a plan using
the actual data. This is done with the help of the cost model
that holds information about atomic operation efficiency and
summary statistics gathered about the stored RDF data.

The search space of all execution plans could be extremely
large; we used heuristics to reduce the complexity of the
search. Only left-deep trees of join operations are consid-
ered. This means that right operand of a join operation
may not be another join operation. There is one exception
to this rule – avoiding cartesian products. If there is no
other way to add another join operation without creating

cartesian product, the rest of unused operations is used to
build separate tree recursively (using the same algorithm)
and the result is joined with the already built tree. This
modification greatly improves plans for some of the queries
we have tested and often significantly reduces the depth of
the tree.

The final execution plan is represented using SQGM
model which is serialized into a textual form and passed
to the Bobox framework for evaluation.

IV. EVALUATION OF SPAQRL QUERIES USING BOBOX

When the compiler finishes the compilation, a query
execution plan is generated. This plan must be transformed
into a Bobox execution plan and then passed to Bobox
for its evaluation. This basically means that operators must
be replaced by boxes and they should be connected to
form a pipe. Additionally, an efficient representation of data
exchanged by boxes must be chosen to process the query
efficiently.

A. Data representation

1) Representation of RDF terms: RDF data are typically
very redundant, since they contain many duplicities. Many
triples typically share the same subjects or predicates. To
reduce the number of memory needed for storing the RDF
data, we keep only one instance of every unique string
and only one instance of every unique term in a memory.
Besides the fact that this representation saves the memory,
we may represent each term unambiguously by its address.
Therefore, for example in case of a join operation, we can
test equality of two terms just by a comparison of their
addresses.

Additionally, if we need to access the content of a term
(e.g. for evaluation of a filter condition) the address can be
easily dereferenced. This is faster than the representation of
terms by other unique identifiers which would have to be
translated to the term in a more complicated way.

2) Representation of RDF database: The database con-
sists of a set of triples. We represent this set as three
parallel arrays with the same size which contain addresses
of terms in the database. In fact, we keep six copies of these
arrays sorted in all possible orders – SPO, SOP, OPS, OSP,
PSO and POS. This representation makes implementation of
index scans extremely efficient (see IV-C1).

3) Format of envelopes: The format of envelopes is now
obvious. It contains columns which correspond to a subset of
variables in the query in a form of an address of a particular
RDF term. One data line of an envelope corresponds to one
possible mapping of variables to their values.

B. Transformation of query execution plan

The output of the compiler is produced completely in
a textual form. Therefore, the Bobox must deserialize the
query plan first. Despite the fact that this serialization and

deserialization have some overhead, we chose it because of
these benefits:

• When distributed computation support is added, the
text representation is safer than a binary representation
where problems with different formats, encodings or
reference types may appear.

• The serialization language has a very simple and
effective syntax; serialization and deserialization are
much faster than (e.g.) the use of XML. Therefore, the
overhead is not so significant.

• The text representation is independent on the program-
ming language; new compilers can be implemented in
a different language.

• Compilers can generate plans that contain boxes that
have not yet been implemented, which allows earlier
testing of the compiler during the development process.

• The query plan may be easily visualized to check the
correctness of the compiler. Moreover, the plan might
be written by hand which makes the testing of boxes
easier. Altogether, this enables debugging of a compiler
and Bobox independently on each other.

When the plan is deserialized, the operators in the query
execution plan must be replaced by boxes and connected
together. The straightforward approach is that each operator
in the query execution plan is implemented by exactly one
box. Even this approach yields to a parallel evaluation of the
plan since pipeline parallelism and task parallelism might be
exploited (the query plan has typically a form of a rooted
tree with several independent branches). However, it is still
usually insufficient to utilize all physical threads available
and the most time consuming operations such as nested
loops join becomes a bottleneck of the plan. Therefore,
they have to be parallelized explicitly. We describe this
modification in IV-D.

C. Implementation of query plan operators

1) Index scan: The main objective of a scan operation is
to fetch all triples from the database that match the input
pattern. Since we keep all triples in all possible orders,
it is easy for any input pattern to find the range where
all triples which match the pattern are. To find this range,
we use binary search. To avoid copying triples from the
database to the envelopes, we use the fact that they are stored
in parallel arrays. Therefore, we may use the appropriate
subarrays directly as columns of output envelopes without
data copying.

2) Filter: A filter operation can be implemented in Bobox
very easily. The box reads the input as a stream of data lines,
evaluates the filter condition on each line and sends out the
stream of that data lines which meet the condition.

The evaluation of the filter condition is straightforward
since each data line contains addresses of respective RDF
terms and by dereferencing them it gets full info about the
term such as its type, string/numeric value etc.

3) Sort: Sort is a blocking operation, i.e. it must wait until
all input data are received before it starts to produce output
data. To increase the pipeline parallelism, we implemented
two phase sorting algorithm [17] inspired by external merge
sort.

In the first phase, every incoming envelope is sorted
independently on other envelopes. This phase is able to
run in parallel with the part of an execution plan which
precedes the sort box. The second phase uses a multiway
merge algorithm to merge all received (and sorted) envelopes
into the resulting stream of data lines. In contrary to the first
phase, this phase may run in parallel with the part of the
execution plan which succeeds the sort box.

4) Merge join: Merge join is a very efficient join algo-
rithm when both inputs are sorted by the common variables.
Moreover, the merge join is the algorithm which is suitable
for systems like Bobox since it reads both inputs sequentially
allowing both input branches to run in parallel (in contrary
to hash join, see Section IV-C6).

5) Nested loops join: The SPARQL compiler selects
nested loops join when the inputs have no common variable
and the result is determined only by the join condition.
The implementation is straightforward; however, in order
to increase the pipeline parallelism, the box tries to process
envelopes immediately as they arrive, i.e. it does not read
the whole input before processing the other.

6) Hash join: Hash join is used when the inputs have
some common variables which are not sorted in the same
order. In order to increase pipeline and task parallelism, we
decided not to implement this algorithm. The problem with
hash join is that it must read the whole one input first before
processing the second one. However, the branch of the plan
which produces data for the second input may be blocked
because of flow control (see Section II-B) until the first input
is completely processed.

Therefore, instead of hash join we implemented sort-
merge join. The sort operation is used to transform the inputs
to be usable by merge join.

7) Optional joins: Optional join works basically in the
same way as regular join. The only difference is that data
lines from the left input which do not meet the join condition
(i.e., they are not joined with any data line from the right
input), are also passed to the output and the variables which
come from the right input are set as unbound.

This modification can be easily done when exactly one
data line from the left is joined with exactly one data line
from the right. In other cases we must keep information
about data lines from the left which were already joined
and which were not. To do this, each incoming envelope
from the left input is extended by one column of boolean
values initially set to false. When a data line from the
left is joined with some data line from the right, we set
corresponding boolean value to true. When the algorithm
finishes, we know which left data lines were not joined and

should be copied to the output.
8) Distinct: Operator distinct should output only unique

data lines. We implemented this operator by the modifica-
tion of a sort operator. The first phase is completely the
same; however, during the merging in the second phase, the
duplicated data lines are omitted from the output.

9) Other operators: The rest of operators is implemented
very straightforwardly. Therefore, we do not describe them
here.

D. Explicit parallelization of nested loops join

With the set of boxes described in Section IV-C, we can
evaluate the complete SP2Bench benchmark (see Section V).
Despite the fact that the implicit parallelization speeds up the
evaluation of several queries, this speed up does not scale
with the number of physical cores in the host system.

Therefore, we focused on the most time-consuming oper-
ation – nested loops join – and tried to explicitly parallelize
it using Bobox.

The task of nested loops join is to evaluate the join
condition on all pairs of data lines from the left input and
data lines form the right input.

This operation can be easily parallelized, since we can
create N boxes which perform nested loops join (N denotes
the number of worker threads used by Bobox). We pass one
N -th of one input and the whole second input to each of
these boxes and join their outputs together. It can be easily
seen that this modification is valid since all pairs of data lines
are still correctly processed. The whole schema of boxes is
depicted in Figure 7.

broadcast

nested-loops0

nested-loops3

joiner

splitter

nested-loops2

nested-loops1

Figure 7. Parallelized nested loops join

The box splitter splits its input envelopes to N parts
and sends these parts to its outputs. The implementation of
this box must be careful since rounding errors may cause
that splitted streams do not have the same length. The box
broadcast just resends its every incoming envelope to its
outputs and the box joiner resends any incoming envelope
to its output.

Since all these three boxes are already implemented in
Bobox as standard boxes, the parallelization of nested loops
join is very simple.

V. EXPERIMENTS

We performed a number of experiments to test function-
ality, performance and scalability of the SPARQL query en-
gine. The experiments were performed using the SP2Bench
[16] query set since this benchmark is considered to be a
standard in the area of semantic processing.

Experiments were performed on a server running Redhat
6.0 Linux; server configuration is 2x Intel Xeon E5310,
1.60Ghz (L1: 32kB+32kB L2: 4MB shared) and 8GB RAM.
It was dedicated specially to the testing; therefore, no other
application were running on the server during measurements.
SPARQL front-end and Bobox are implemented in C++.
Data were stored in-memory.

A. Implicit parallelization

In the first experiment, we measured the speed up caused
by the implicit parallelization exploited by Bobox. To mea-
sure it, we chose some queries and evaluted them with
an increasing number of worker threads. We did not use
parallelized version of nested loops join in this experiment
and we measured only runtime of evaluation of execution
plan, i.e. we did not include the time spent by compilation
of the query. The results are shown in Figure 8.

1 2 4 8

0

1

2

3

4

5

6

7

0.63 0.56
0.35 0.39

5.13

3.26

2.87 2.90

1.43
1.25

1.11 1.13

6.47

3.52
3.25 3.25

0.83
0.67 0.60 0.61

Number of worker threads

T
im
e
[s
]

Q2 (5M)

Q4 (1M)

Q5b (5M)

Q8 (5M)

Q9 (5M)

Figure 8. The speed up obtained by implicit parallelization

The results show that for some queries the speed up
is quite significant; however, it does not scale with the
increasing number of worker threads. This is caused by the
fact that the level of parallelism is implicitly built in the
execution plan which does not depend on the number of
worker threads.

The query Q4 and Q8 benefits from the parallel evaluation
most, since the last sort box (or distinct box respectively)
runs in parallel with the rest of the execution plan. That
is not the case of Q9 which contains distinct box as well;
however, the amount of data processed by this box is too
small to fully exploit the pipeline parallelism.

Q1 Q2 Q3a Q3b Q3c Q4 Q5a/b Q6 Q7 Q8 Q9 Q10 Q11
10k 1 147 846 9 0 23.2k 155 229 0 184 4 166 10
50k 1 965 3.6k 25 0 104.7k 1.1k 1.8k 2 264 4 307 10
250k 1 6.2k 15.9k 127 0 542.8k 6.9k 12.1k 62 332 4 452 10
1M 1 32.8k 52.7k 379 0 2.6M 35.2k 62.8k 292 400 4 572 10
5M 1 248.7k 192.4k 1.3k 0 18.4M 210.7k 417.6k 1.2k 493 4 656 10

Table I
QUERY RESULT SIZES ON DOCUMENTS UP TO 5M TRIPLES.

1 2 4 8

1

10

100

1000

80.4

44.2

20.7

10.6

156.1

78.9

39.8

20.6
57.1

28.8

14.6

7.8

Q5a (1M)

Q6 (1M)

Q7 (5M)

Number of worker threads

T
im
e
[s
]

Figure 9. The speed up obtained by explicit parallelization of nested loops
join

B. Explicit parallelization

In the second experiment, we focused on the speed up
caused by the explicit parallelization of nested loops join.
We selected the most time consuming queries with the nested
loops joins. As in the first experiment, we performed mul-
tiple measurements with the increasing number of worker
threads. In this experiment we also did not include the time
needed by the query compilation since we focused on the
runtime.

The results are shown in Figure 9. According to our
expectations, data parallelism increases the scalability and
causes a significant almost linear speed up on multiprocessor
systems.

C. Comparison with other engines

The last set of experiments compares the Bobox SPARQL
engine to other mainstream SPARQL engines, such as
Sesame v2.0 [5], Jena v2.7.4 with TDB v0.9.4 [6] and
Virtuoso v6.1.6.3127 (multithreaded) [7]. They follow client-
server architecture and we provide sum of the times of
client and server processes. The Bobox engine was compiled
as a single application; we applied timers in the way that
document loading times were excluded to be comparable
with a server that has data already prepared.

For all scenarios, we carried out multiple runs over
documents containing 10k, 50k, 250k, 1M, and 5M triples
and we provide the average times. Each test run was also
limited to 30 minutes (the same timeout as in the original
SP2Bench paper). All data were stored in-memory, as our
primary interest is to compare the basic performance of the
approaches rather than caching etc. The expected number of
the results for each scenario can be found in Table I.

The query execution times are shown in Figure 10. The
y-axes are shown in a logarithmic scale and individual plots
scale differently. In the following paragraphs, we discuss
some of the queries and their results. In contrary to previous
experiments, we did include the time spent by the compiler
in order to be comparable with other engines.

Q2 implements a bushy graph pattern and the size of
the result grows with the size of the queried data. We can
see that Bobox Engine scales well, even though it creates
execution plans shaped as a left-deep tree. This is due to the
parallel stream processing of merge joins. The reason why
our solution is slower on 10k and 50k of triples is that the
compiler takes more than 1s to compile and to optimize the
query.

The variants of Q3 (labelled a to c) test FILTER expres-
sion with varying selectivity. We present only the results
of Q3c as the results for Q3a and Q3b are similar. The
performance of Bobox is negatively affected by a simple
implementation of statistics used to estimate the selectivity
of the filter.

Q4 (Figure 11) contains a comparably long graph chain,
i.e., variables ?name1 and ?name2 are linked through
articles that (different) authors have published in the same
journal. Bobox embeds the FILTER expression into this
computation instead of evaluating the outer pattern block
and applying the FILTER afterwards and propagates the
DISTINCT modifier closer to the leaves of the plan in order
to reduce the size of the intermediate results.

Queries Q5 (Figure 11) test implicit (Q5a) join encoded in
a FILTER condition and explicit (Q5b) variant of joins. On
explicit join both engines used fast join algorithm and are
able to produce result in a reasonable time. On implicit join
both engines used nested loops join which scales very badly.
However, Bobox outperforms both Sesame and Jena since
it is able to use multiple processors to get the results and is
able to compute also documents with 250k, 1M and 5MB

0.001

0.010

0.100

1.000

10k 50k 250k 1M 5M

q1 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10k 50k 250k 1M 5M

q2 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

10k 50k 250k 1M 5M

q3c bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10000

10k 50k 250k 1M 5M

q4 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10000

10k 50k 250k 1M 5M

q5a bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

10k 50k 250k 1M 5M

q5b bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10000

10k 50k 250k 1M 5M

q6 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10k 50k 250k 1M 5M

q7 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

10k 50k 250k 1M 5M

q8 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

10k 50k 250k 1M 5M

q9 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

10k 50k 250k 1M 5M

q10 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

10k 50k 250k 1M 5M

q11 bobox sesame

jena virtuoso

Figure 10. Results (time in seconds) for 10k, 50k, 250k, 1M, and 5M triples.

triples before the 30 minute limit is reached. On the other
hand, Virtuoso outpeforms Bobox mainly due to particular
query optimizations [16].

Queries Q6, Q7 and Q8 produce bushy trees; their com-
putation is well handled in parallel, mainly because of
nested loops join parallelization. As a result of this, Bobox
outperforms Sesame and Jena in Q6 and Q7 and outperforms

Virtuoso in Q7, being able to compute larger documents
until the query times out. The authors of the SP2Bench
suggest [16] reusing graph patterns in a description of the
queries Q6, Q7 and Q8. However, this is problematical in
Bobox. Bobox processing is driven by the availability of the
data on inputs but it also incorporates methods to prevent
the input buffers from being overfilled (see Section II-B).

SELECT DISTINCT ?name1 ?name2 Q4
WHERE { ?article1 rdf:type bench:Article.

?article2 rdf:type bench:Article.
?article1 dc:creator ?author1.
?author1 foaf:name ?name1.
?article2 dc:creator ?author2.
?author2 foaf:name ?name2.
?article1 swrc:journal ?journal.
?article2 swrc:journal ?journal
FILTER (?name1<?name2) }

SELECT DISTINCT ?person ?name Q5a
WHERE { ?article rdf:type bench:Article.

?article dc:creator ?person.
?inproc rdf:type bench:Inproceedings.
?inproc dc:creator ?person2.
?person foaf:name ?name.
?person2 foaf:name ?name2
FILTER(?name=?name2) }

Figure 11. Examples of the benchmark queries.

Pattern reusing can result in the same data being sent along
two different paths in the pipeline running at a different
speed. Such paths may then converge in a join operation.
When the faster path overfills the input buffer of the join
box, the computation of all boxes on paths leading to the
box is suspended. As a result, data for the slower path will
never be produced and will not reach the join box, which
results in a deadlock. We intend to examine the possibility
of introducing a buffer box, which will be able to store
and provide data on request. This way, the Bobox SPARQL
implementation will be able to reuse graph patterns.

Q10 can be processed very fast because of our database
representation. Therefore, only resulting triples are fetched
directly from the database.

In contrary to Sesame, time of Q11 depends on the size of
database. This is caused by the fact that we do not have any
optimization for queries with LIMIT or OFFSET modifiers.
In that case, the whole results set is produced which naturally
slows down the evaluation.

Overall, the results of the benchmarks indicate very
good potential of Bobox when used for implementation
of RDF query engine. Our solution outperforms in all
measurements Sesame, in most cases significantly and in
most measurements Jena. The performance of Bobox and
Virtuoso is comparable; Bobox outperforms Virtuoso namely
in computing and data intensive queries.

VI. RELATED WORK

A. Parallel Frameworks and Libraries

The most similar to the Bobox run-time is the TBB library
[26]. It was one of the first libraries that focused on task
level parallelism. Compared to the Bobox, it is a low-level
solution – it provides basic algorithms like parallel for cycle
or linear pipeline and a very efficient task scheduler. The

developers are able to directly create tasks for the scheduler
and create their own parallel algorithms. But the tasks are
designed in a way that makes it very hard to create a non-
linear pipeline similar to the one Bobox provides. Such
pipeline may be necessary for complex data processing [27].
Bobox also provides more services for data passing and flow
control.

The latest version of OpenMP [28] also provides a way to
execute tasks in parallel, but it provides less features and less
control than TBB. The OpenMP library is mainly focused on
mathematical computations – it can execute simple loops in
parallel really fast, it can also run blocks of code in parallel,
but it is not well suited for parallel execution of a complex
structure of blocks. Unlike TBB or Bobox, it is a language
extension and not just a library; the compiler is well aware
of the parallelization and optimize the code better, but it
also enables OpenMP to provide features that cannot be
done with just a library, like defining the way variables are
shared among threads with a simple declaration. In TBB
such variable has to be explicitly passed to an appropriate
algorithm by the programmer. In Bobox, it must either be
explicitly passed to the model or sent using an envelope at
run-time.

Some of the architectural decisions could be implemented
in a different manner. One way would be to create a thread
for each box and via in the model instance. This would also
ensure that each box or via is running at most once at any
given time. However, this is considered a bad practice [29].
There are two main reasons for not using this architecture.
First, it creates a large number of threads, usually much
larger than the number of CPU cores. Although it forces the
operating system to switch the threads running on a core, it
may not impact the overall performance that badly, since it
can be arranged that the idling threads (those assigned to a
box or via that is not processing any data at the moment) are
suspended and do not consume any CPU time. The second
problem is that when data (envelopes) are transfered from
one box to another, there is very little chance that it would
still be hot in the cache, since the thread that corresponds
to the second box is likely to be scheduled to a different
CPU, that does not share its cache with the original one.
The concept of tasks used by TBB and Bobox avoid these
problems and the use of thread pool, fixed number of threads
and explicit scheduling gives developers of the libraries
better control of parallel execution.

Besides these low-level techniques of parallel data pro-
cessing, the MapReduce approach gained significant atten-
tion. While it is often considered a step back [30], there
are application areas where MapReduce may outperform
a parallel database [31]. Although MapReduce was origi-
nally targeted to other environments, it was also studied in
shared-memory settings (similar to Bobox) [32], [33]. Unlike
MapReduce, Bobox is desiged to support more complicated
processing environment, namely nonlinear pipelines.

B. Parallel Databases

In a relational database management system, parallelism
may be employed at various levels of its architecture:

• Inter-transaction parallelism. Running different trans-
actions in parallel has been a standard practice for
decades. Besides dealing with disk latency, it is also the
easiest way to achieve a degree of parallelism in shared-
memory or shared-disk environment. Although it is not
considered a specific feature of parallel databases, it
must be carefully considered in the design of parallel
databases since parallel transactions compete for mem-
ory, cache, and bandwidth resources [34], [35].

• Intra-transaction parallelism. Queries of a transaction
may be executed in parallel, provided they do not in-
terfere among themselves and they do not interact with
external world. Since these conditions are met rather
rarely, this kind of parallelism is seldom exploited
except for experiments [36].

• Inter-operator parallelism. Since individual operators
of a physical query plan have well-defined interfaces
and mostly independent behavior, they may be arranged
to run in parallel relatively easily. On the other hand,
the effect of such parallelism is limited because most
of the cost of a query plan is often concentrated in one
or a few of the operators [37].

• Intra-operator parallelism. Parallelizing the operation
of a single physical operator is the central idea of
parallel databases. From the architectural point of view,
there are two different approaches:

– a) Partitioning [38] – this technique essentially
distributes the workload using the fact that many
physical algebra operators are distributive with
respect to union (or may be rewritten using such
operators).

– b) Parallel algorithms – implementing the operator
using a parallel algorithm usually offers the free-
dom of control over the time and resource sharing
and machine-specific means like atomic operations
or SIMD instructions. However, designing, imple-
menting, and tuning a parallel algorithm is an
extremely complex task, often producing errors or
varying performance results [39]. Moreover, the
evolution of hardware may soon make a parallel
implementation obsolete [40]. For these reasons,
parallelizing frameworks are developed [41].

The central principle of Bobox allows parallelism among
boxes but prohibits (thread-based) parallelism inside a box.
This is similar to inter-transaction and inter-operator par-
allelism; however, a box does not necessarily correspond
to a relational operator. In particular, Bobox allows the
same approach to partitioning as in parallel databases, using
transformation of the query plan.

Bobox does not allow parallel algorithms to be im-
plemented inside a box (except of the use of SIMD in-
structions). Therefore, individual single-threaded parts of
a parallel algorithm must be enclosed in their boxes and
the complete algorithm must be built as a network of
these boxes. This is certainly a limitation in the expressive
power of the system; on the other hand, the communication
and synchronization tasks are handled automatically by the
Bobox framework.

VII. CONCLUSIONS AND FUTURE WORK

In the paper, we presented a parallel SPARQL processing
engine that was built using the Bobox framework with a
focus on efficient query processing: parsing, optimization,
transformation and parallel execution. We also presented
the parallelization of nested loops join algorithm to increase
parallelism during the evaluation of time consuming queries.
Despite the fact that this parallelization is very simple to be
done using Bobox, the measurements show that it scales
very well in a multiprocessor environment.

To test the performance, we performed multiple sets of
experiments. We have chosen established frameworks for
RDF data processing as the reference systems. The results
seem very promising; using SP2Bench queries we have
identified that our solution is able to process many queries
significantly faster than other engines and to obtain results on
larger datasets. Therefore, such a parallel approach to RDF
data processing has a potential to provide better performance
than current engines. On the other hand, we also identified
several issues:

• We are working on improvements of our statistics used
by the compiler to generate more optimal query plans.

• The pilot implementation of the compiler is not well
optimized which is problem especially in Q1 and Q2.

• Our heuristics sometimes result in long chains of boxes.
Streamed processing and fast merge joins minimize this
disadvantage; however, it is better to have bushy query
plans for efficient parallel evaluation.

• Also, some methods proposed in SP2Bench, such as
graph pattern reuse, are not efficiently applicable in the
current Bobox version.

• The query Q4 is very time consuming and does not
benefit much from the fact that the system has multiple
processors. Therefore, we must parallelize besides the
nested loops join also merge join, which is the bottle-
neck of this query.

• Currently, we support only in-memory databases. In
order to have engine usable for processing of really
large RDF databases such as BTC Dataset (Billion
triple challenge) [42], we must keep the database in
external memory.

Because of these issues, we are convinced that there is
still space for optimization in parallel RDF processing and
we want to focus on them and improve our solution.

ACKNOWLEDGMENTS

The authors would like to thank the GAUK project no.
28910, 277911 and SVV-2012-265312, and GACR project
no. 202/10/0761, which supported this paper.

REFERENCES

[1] M. Cermak, J. Dokulil, Z. Falt, and F. Zavoral, “SPARQL
Query Processing Using Bobox Framework,” in SEMAPRO
2011, The Fifth International Conference on Advances in
Semantic Processing. IARIA, 2011, pp. 104–109.

[2] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Lan-
guage for RDF,” W3C Recommendation, 2008.

[3] J. J. Carroll and G. Klyne, Resource Description
Framework: Concepts and Abstract Syntax, W3C, 2004.
[Online]. Available: http://www.w3.org/TR/2004/REC-rdf-
concepts-20040210/

[4] Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan,
“Efficiently querying rdf data in triple stores,” in Proceeding
of the 17th international conference on World Wide Web, ser.
WWW ’08. New York, NY, USA: ACM, 2008, pp. 1053–
1054.

[5] J. Broekstra, A. Kampman, and F. v. Harmelen, “Sesame: A
generic architecture for storing and querying RDF and RDF
schema,” in ISWC ’02: Proceedings of the First International
Semantic Web Conference on The Semantic Web. London,
UK: Springer-Verlag, 2002, pp. 54–68.

[6] “Jena – a semantic web framework for
Java,” http://jena.sourceforge.net. [Online]. Available:
http://jena.sourceforge.net, retrieved 10/2012

[7] “Virtuoso data server,” http://virtuoso.openlinksw.com, re-
trieved 10/2012

[8] A. Kiryakov, D. Ognyanov, and D. Manov, “Owlim a
pragmatic semantic repository for owl,” 2005, pp. 182–192.

[9] T. Neumann and G. Weikum, “The rdf-3x engine for scalable
management of rdf data,” The VLDB Journal, vol. 19, pp.
91–113, February 2010.

[10] J. Huang, D. Abadi, and K. Ren, “Scalable sparql querying
of large rdf graphs,” Proceedings of the VLDB Endowment,
vol. 4, no. 11, 2011.

[11] Z. Falt, D. Bednarek, M. Cermak, and F. Zavoral, “On Parallel
Evaluation of SPARQL Queries,” in DBKDA 2012, The
Fourth International Conference on Advances in Databases,
Knowledge, and Data Applications. IARIA, 2012, pp. 97–
102.

[12] D. Bednarek, J. Dokulil, J. Yaghob, and F. Zavoral, “Data-
Flow Awareness in Parallel Data Processing,” in 6th Inter-
national Symposium on Intelligent Distributed Computing -
IDC 2012. Springer-Verlag, 2012.

[13] “The Bobox Project - Parallelization Framework and Server
for Data Processing,” 2011, Technical Report 2011/1. [On-
line]. Available: http://www.ksi.mff.cuni.cz/bobox, retrieved
12/2012

[14] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, and
C. Pinkel, “An Experimental Comparison of RDF Data Man-
agement Approaches in a SPARQL Benchmark Scenario,” in
ISWC, Karlsruhe, 2008, pp. 82–97.

[15] D. Bednarek, J. Dokulil, J. Yaghob, and F. Zavoral, “Bobox:
Parallelization Framework for Data Processing,” in Advances
in Information Technology and Applied Computing, 2012.

[16] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel,
“Sp2bench: A sparql performance benchmark,” CoRR, vol.
abs/0806.4627, 2008.

[17] Z. Falt, J. Bulanek, and J. Yaghob, “On Parallel Sorting of
Data Streams,” in ADBIS 2012 - 16th East European Con-
ference in Advances in Databases and Information Systems,
2012.

[18] J. Dokulil and J. Katreniakova, “Bobox model visualization,”
in 14th International Conference Information Visualisation.
London, UK: IEEE Computer Society, 2010, pp. 537–542.

[19] D. Bednarek, J. Dokulil, J. Yaghob, and F. Zavoral, “Using
Methods of Parallel Semi-structured Data Processing for
Semantic Web,” in 3rd International Conference on Advances
in Semantic Processing, SEMAPRO. IEEE Computer Society
Press, 2009, pp. 44–49.

[20] J. Galgonek, “Tequila - a query language for the semantic
web,” in DATESO 2009, ser. CEUR Workshop Proceedings,
K. Richta, J. Pokorný, and V. Snášel, Eds., vol. 471. Czech
Technical University in Prague, 2009, pp. 105–118.

[21] M. Krulis and J. Yaghob, “Revision of relational joins for
multi-core and many-core architectures,” in Proceedings of
the Dateso 2011. Pisek, Czech Rep.: FEECS, 2011.

[22] Z. Falt and J. Yaghob, “Task Scheduling in Data Stream
Processing,” in Proceedings of the Dateso 2011 Workshop.
Citeseer, 2011, pp. 85–96.

[23] H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible/rule
based query rewrite optimization in starburst,” SIGMOD Rec.,
vol. 21, pp. 39–48, June 1992.

[24] O. Hartig and R. Heese, “The SPARQL Query Graph Model
for query optimization,” in The Semantic Web: Research
and Applications, ser. Lecture Notes in Computer Science,
E. Franconi, M. Kifer, and W. May, Eds. Springer Berlin /
Heidelberg, 2007, vol. 4519, pp. 564–578.

[25] M. Cermak, J. Dokulil, and F. Zavoral, “SPARQL Compiler
for Bobox,” Fourth International Conference on Advances in
Semantic Processing, pp. 100–105, 2010.

[26] A. Kukanov and M. J. Voss, “The foundations for scalable
multi-core software in Intel Threading Building Blocks,” Intel
Technology Journal, vol. 11, no. 04, pp. 309–322, November
2007.

[27] D. Bednárek, “Bulk evaluation of user-defined functions in
XQuery,” Ph.D. dissertation, Department of Software Engi-
neering, Faculty of Mathematics and Physics, Charles Uni-
versity in Prague, 2009.

[28] OpenMP Application Program Interface, Version 3.0,
OpenMP Architecture Review Board, May 2008,
http://www.openmp.org/mp-documents/spec30.pdf, retrieved
9/2011.

[29] J. Reinders, Intel Threading Building Blocks. O’Reilly, 2007.

[30] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paul-
son, A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss:
friends or foes?” Commun. ACM, vol. 53, pp. 64–71, 2010.

[31] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and
Y. Tian, “A comparison of join algorithms for log processing
in mapreduce,” in SIGMOD ’10: Proceedings of the 2010
international conference on Management of data. USA:
ACM, 2010, pp. 975–986.

[32] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and
multiprocessor systems,” in HPCA ’07: Proceedings of the
2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 13–24.

[33] G. Kovoor, “MR-J: A MapReduce framework for multi-core
architectures,” Ph.D. dissertation, University of Manchester,
2009.

[34] F. Morvan and A. Hameurlain, “Dynamic memory allocation
strategies for parallel query execution,” in SAC ’02: Proceed-
ings of the 2002 ACM symposium on Applied computing.
New York, NY, USA: ACM, 2002, pp. 897–901.

[35] Z. Zhang, P. Trancoso, and J. Torrellas, “Memory
system performance of a database in a shared-
memory multiprocessor,” 2007. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1924,
retrieved 10/2012

[36] C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowry,
“Optimistic intra-transaction parallelism on chip multiproces-
sors,” in VLDB ’05: Proceedings of the 31st international
conference on Very large data bases. VLDB Endowment,
2005, pp. 73–84.

[37] A. N. Wilschut, J. Flokstra, and P. M. G. Apers, “Parallel
evaluation of multi-join queries,” in SIGMOD ’95: Proceed-
ings of the 1995 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM, 1995,
pp. 115–126.

[38] D. DeWitt and J. Gray, “Parallel database systems: the future
of high performance database systems,” Commun. ACM,
vol. 35, no. 6, pp. 85–98, 1992.

[39] J. Aguilar-Saborit, V. Muntes-Mulero, C. Zuzarte, A. Zubiri,
and J.-L. Larriba-Pey, “Dynamic out of core join processing
in symmetric multiprocessors,” in PDP ’06: Proceedings of
the 14th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 28—35.

[40] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs.
hash revisited: fast join implementation on modern multi-core
cpus,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1378–1389,
2009.

[41] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye, “Automatic
contention detection and amelioration for data-intensive op-
erations,” in SIGMOD ’10: Proceedings of the 2010 interna-
tional conference on Management of data. New York, NY,
USA: ACM, 2010, pp. 483–494.

[42] “Billion triple challenge.” [Online]. Available:
http://challenge.semanticweb.org, retrieved 10/2012

67

Chapter 6.

Highly Scalable Sort-Merge Join Algorithm for RDF

Querying

Zbyněk Falt, Miroslav Čermák, Filip Zavoral

Proceedings of the International Conference on Data Technologies and Applications,

SciTePress, pp. 293-300, 2013

68

Highly Scalable Sort-merge Join Algorithm for RDF Querying

Zbyněk Falt, MiroslavČermák and Filip Zavoral
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

{falt, cermak, zavoral}@ksi.mff.cuni.cz

Keywords: Merge Join, Parallel, Bobox, RDF.

Abstract: In this paper, we introduce a highly scalable sort-merge join algorithm for RDF databases. The algorithm is
designed especially for streaming systems; besides task and data parallelism, it also tries to exploit the pipeline
parallelism in order to increase its scalability. Additionally, we focused on handling skewed data correctly and
efficiently; the algorithm scales well regardless of the data distribution.

1 INTRODUCTION

Join is one of the most important database opera-
tion. The overall performance of data evaluation en-
gines depends highly on the performance of particular
join operations. Since the multiprocessor systems are
widely available, there is a need for the parallelization
of database operations, especially joins.

In our previous work, we focused on paralleliza-
tion of SPARQL operations such as filter, nested-
loops join, etc. (Cermak et al., 2011; Falt et al.,
2012a). In this paper, we complete the portfolio of
parallelized SPARQL operations by proposing an ef-
ficient algorithm for merge and sort-merge join.

The main target of our research is the area of
streaming systems, since they seem to be appro-
priate for a certain class of data intensive prob-
lems (Bednarek et al., 2012b). Streaming systems
naturally introduce task, data and pipeline paral-
lelism (Gordon et al., 2006). Therefore, an efficient
and scalable algorithm for these systems should take
these properties into account.

Our contribution is the introduction of a highly
scalable merge and sort-merge join algorithm.
The algorithm also deals well with skewed data
which may cause load imbalances during the par-
allel execution (DeWitt et al., 1992). We used
SP2Bench (Schmidt et al., 2008) data generator and
benchmark to show the behaviour of our algorithm in
multiple test scenarios and to compare our RDF en-
gine which uses this algorithm to other modern RDF
engines such as Jena (Jena, 2013), Virtuoso (Virtuoso,
2013) and Sesame (Broekstra et al., 2002).

The rest of the paper is organized as follows. Sec-
tion 2 examines relevant related work on merge joins,

Section 3 shortly describes Bobox framework that is
used for a pilot implementation and evaluation of the
algorithm. Most important is Section 4 containing a
detailed description of the sort-merge join algorithm.
Performance evaluation is described in Section 5, and
Section 6 concludes the paper.

2 RELATED WORK

Parallel algorithms greatly improve the performance
of the relational join in shared-nothing systems (Liu
and Rundensteiner, 2005; Schneider and DeWitt,
1989) or shared memory systems (Cieslewicz et al.,
2006; Lu et al., 1990).

Liu et al. (Liu and Rundensteiner, 2005) investi-
gated the pipelined parallelism for multi-join queries.
In comparison, we focus on exploiting the paral-
lelism within a single join operation. Schneider et
al. (Schneider and DeWitt, 1989) evaluated one
sort-merge and three hash-based join algorithms in a
shared-nothing system. In the presence of data skews,
techniques such as bucket tuning (Schneider and De-
Witt, 1989) and partition tuning (Hua and Lee, 1991)
are used to balance loads among processor nodes.

Family of non-blocking algoritms, i.e. (Ming
et al., 2004; Dittrich and Seeger, 2002) is introduced
to deal with pipeline processing where blocking be-
haviour of network traffic makes the traditional join
operators unsuitable (Schneider and DeWitt, 1989).
The progressive-merge join (PMJ) algorithm (Dittrich
and Seeger, 2002; Dittrich et al., 2003) is a non-
blocking version of the traditional sort-merge join.
For our parallel stream execution, we adopted the idea
of producing join results as soon as first sorted data

293

are available, even when sorting is not yet finished.
(Albutiu et al., 2012) introduced a suite of new

massive parallel sort-merge (MPSM) join algorithms
based on partial partition-based sorting to avoid a
hard-to-paralellize final merge step to create one com-
plete sort order. MPSM are also NUMA1-affine, as
all sorting is carried on local memory partitions and it
scales almost linearly with a number of used cores.

One of the specific areas of parallel join compu-
tations are semantic frameworks using SPARQL lan-
guage. In (Groppe and Groppe, 2011) authors pro-
posed parallel algorithms for join computations of
SPARQL queries, with main focus on partitioning of
the input data.

Although all the above mentioned papers deal
with merge join parallelization, none of them focuses
on streaming systems and exploiting data, task and
pipeline parallelism and data skewness at once.

3 Bobox

Bobox is a parallelization framework which simplifies
writing parallel, data intensive programs and serves
as a testbed for the development of generic and es-
pecially data-oriented parallel algorithms (Falt et al.,
2012c; Bednarek et al., 2012a).

It provides a run-time environment which is used
to execute a non-linear pipeline (we denote it as
the execution plan) in parallel. The execution plan
consists of computational units (we denote them as
the boxes) which are connected together by directed
edges. The task of each box is to receive data from
its incoming edges (i.e. from itsinputs) and to send
the resulting data to its outgoing edges (i.e. to itsout-
puts). The user provides the execution units and the
execution plan (i.e. the implementation of boxes and
their mutual connections) and passes it to the frame-
work which is responsible for the evaluation of the
plan.

The only communication between boxes is done
by sendingenvelopes (communication units contain-
ing data) along their outgoing edges. Each envelope
consists of several columns and each column contains
a certain number of data items. The data type of
items in one column must be the same in all envelopes
transferred along one particular edge; however, differ-
ent columns in one envelope may have different data
types. The data types of these columns are defined
by the execution plan. Additionally, all columns in
one envelope must have the same length; therefore,
we can consider envelopes to be sequences of tuples.

1Non-Uniform Memory Access

The total number of tuples in an envelope is cho-
sen according to the size of cache memories in the
system. Therefore, the communication may take
place completely in cache memory. This increases the
efficiency of processing of incoming envelopes by a
box.

In addition to data envelopes, Bobox distinguish
so called posioned envelopes. These envelopes do not
contain any data and they just indicate the end the of
a stream.

Currently, only shared-memory architectures are
supported; therefore, only shared pointers to the en-
velopes are transferred. This speeds up operations
such as broadcast box (i.e., the box which resends
its input to its outputs) significantly since they do not
have to access data stored in envelopes.

Although the body of boxes must be strictly
single-threaded, Bobox introduces three types of par-
allelism:
1. Task parallelism - independent streams are pro-

cessed in parallel.
2. Pipeline parallelism - the producer of a stream

runs in parallel with its consumer.
3. Data parallelism - independent parts of one

streams are processed in parallel.
The first two types of parallelism are exploited im-

plicitly during the evaluation of a plan. Therefore,
even an application which does not contain any ex-
plicit parallelism may benefit from multiple proces-
sors in the system. Data parallelism must be explicitly
stated in the execution plan by the user; however, it is
still much easier to modify the execution plan than to
write the parallel code by hand.

Due to the Bobox properties and especially its
suitability for pipelined stream data processing we
used the Bobox platform for a pilot implementation
of the SPARQL processing engine.

4 ALGORITHMS

Contemporary merge join algorithms mentioned in
Section 2 do not fit well into the streaming model
of computation (Gordon et al., 2006). Therefore,
we developed an algorithm which takes into account
task, data and pipeline parallelism. The main idea of
the algorithm is splitting the input streams into many
smaller parts which can be processed in parallel.

The sort-merge join consists of two independent
phases – sorting phase that sorts the input stream by
join attributes and joining phase. We have utilized
the highly scalable implementation of a stream sorting
algorithm (Falt et al., 2012b); it is briefly described in
Section 4.2

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

294

4.1 Merge Join

Merge join in general has two inputs – left and right.
It assumes that both inputs are sorted by the join at-
tribute in an ascending order. It reads its inputs and
finds sequences of the same values of join attributes
in the left and right input and then performs the cross
product of these sequences. The pseudocode of the
standard implementation of merge join is as follows:

while le f t.hasnext∧ right.hasnextdo
le f t tuple← le f t.current
right tuple← right.current
if le f t tuple = right tuple then

appendle f t tuple to le f t seq
le f t.movenext()
while le f t.hasnext∧le f t.current=le f t tuple do

appendle f t.current tole f t seq
le f t.movenext()

end while
appendright tuple to right seq
right.movenext()
while right.hasnext∧right.current=right tuple do

appendright.current toright seq
right.movenext()

end while
output cross product(le f t seq, right seq)

else if le f t tuple < right tuple then
le f t.movenext()

else
right.movenext()

end if
end while

If we take any valueV of the join attribute, then
all tuples less thanV from both inputs can be pro-
cessed independently on the tuples which are greater
or equal toV . A common approach to merge join par-
allelization is splitting the inputs into multiple parts
by P− 1 valuesVi and process them in parallel inP
worker threads (Groppe and Groppe, 2011).

However, there are two problems with the selec-
tion of appropriate valuesVi:
1. The inputs of the join are data streams; therefore,

we do not know how many input tuples are there
until we receive all of them. Because of the same
reason, we do not know the distribution of the in-
put data in advance. Therefore, we cannot easily
selectVi in order that the resulting parts have ap-
proximately the same size.

2. The distribution of data could be very non-
uniform (Li et al., 2002); therefore, it might be
impossible to utilize worker threads uniformly.
For the sake of simplicity, we first describe a sim-

plified algorithm for joining inputs without duplicated
join attribute values in Section 4.1.1. Then we extend
the algorithm to take duplicities into account in Sec-
tion 4.1.2.

4.1.1 Parallel Merge Join without Duplicities

In this section, we describe the algorithm which as-
sumes that the input streams do not contain duplicated
join attributes. The execution plan of this algorithm is
depicted in Figure 1.

The algorithm makes use of the fact that the
streams are represented as a flow of envelopes. The
task of preprocess box is to transform the flow of
input envelopes into the flow of pairs of envelopes.
The tuples in these pairs can be joined independently
(i.e., in parallel).Dispatch boxes dispatch these pairs
amongjoin boxes which perform the operation. When
join box receives a pair of envelopes, it joins them
and creates the substream of their results. Therefore,
the outputs ofjoin boxes are sequences of such sub-
streams which subsequently should be consolidated in
a round robin manner byconsolidate box.

Now, we describe the idea and the algorithm of the
preprocess box. Consider the first envelopele f t env
from the left input and the first enveloperight env
from the right input. Denote the last tuple (the high-
est value) inle f t env aslast le f t and the last tuple in
right env aslast right.

Now, one of these three cases occurs:
1. last le f t is greater thanlast right. In this case,

we can splitle f t env into two parts. The first
part contains tuples which are less or equal to
last right and the second part contains the rest.
Now, the first part ofle f t env can be joined with
theright env.

2. last le f t is less thanlast right. In this case, we
can do analogous operation as in the former case.

3. last le f t is equal tolast right. This means, that
the wholele f t env and the wholeright env might
be joined together.
The pseudocode ofpreprocess box is as follows:

le f t env← next envelope from left input
right env← next envelope from right input
while le f t env 6= NIL∧ right env 6= NIL do

last le f t← le f t env[le f t env.size−1]
last right← right env[right env.size−1]
if le f t last > right last then

split le f t env to le f t f irst andle f t second
sendright env to the right output
sendle f t f irst to the left output
le f t env← le f t second
right env← next envelope from right input

else if le f t last < right last then
split right env to right f irst andright second
sendright f irst to the right output
sendle f t env to the left output
le f t env← next envelope from left input
right env← right second

else
sendright env to the right output
sendle f t env to the left output

Highly�Scalable�Sort-merge�Join�Algorithm�for�RDF�Querying

295

join0

consolidate

dispatch

dispatch

join1

join2

join3

preprocess

Le

Right

Figure 1: Execution plan of parallel merge join.

le f t env← next envelope from left input
right env← next envelope from right input

end if
end while
close the right output
close the left output

The boxespreprocess, dispatch and consolidate
might seem to be bottlenecks of the algorithm.Dis-
patch andconsolidate do not access data in envelopes,
they just forward them from the input to the out-
put. Since the envelope typically contains hundreds
or thousands of tuples, these two boxes work in sev-
eral orders of magnitude faster thanjoin box.

On the other hand,preprocess box accesses data
in the envelope since it has to find the position where
to split the envelope. This can be done by a binary
search which has time complexityO(log(L)) whereL
is the number of tuples in the envelope. However, it
does not access all tuples in the envelope; therefore, it
is still much faster thanjoin box.

4.1.2 Join with Duplicities

Without duplicities,preprocess box is able to gener-
ate pairs of envelopes which can be processed inde-
pendently. However, the possibility of their existence
complicates the algorithm. Consider a situation de-
picted in Figure 2.

2

2

2

1

2

3

3

3

3

3

3

3

4

5

3

3

3

4

5 6

Le Right

1st pair

2nd pair

Figure 2: Duplicities of join attributes.

If join box receives the pair number 2, it needs to
process also the pair number 1. The reason is, that
it has to perform cross products of parts which are
denoted in the figure.

Therefore,join boxes have to receive all pairs of
envelopes for the case when there are sequences of the
same tuples across multiple envelopes. This compli-

cates the algorithm ofjoin box, since each join has to
keep track of such sequences. When we processed an
envelope (from either input), there is a possibility that
its last tuple is a part of such sequence. Therefore, we
have to keep already processed envelopes for the case
they will be needed in the future. When the last tuple
of the envelope changes, the new sequence begins and
we can drop all stored envelopes except the last one.

The execution plan for the algorithm is the same
as in the previous case, the only difference is thatdis-
patch box does not forward its input envelopes in a
round robin manner but it broadcasts them to all its
outputs. Since a box receives and sends only shared
pointers to the envelopes, the overhead of the broad-
cast operation is negligible in comparison to the join
operation and therefore it does not limit the scalabil-
ity.

Because of this modification, all boxes receive the
same envelopes. Therefore, the algorithm should dis-
tinguish among them so that they generate the output
in the same manner as in Section 4.1.1. Eachjoin box
gets its own unique indexPi,0≤ Pi < P. If we denote
each pair of envelopes sequentially by non-negative
integersj; thenjoin box with indexPi processes such
pairs j for which it holdsj modP= Pi. This concept
of parallelization is described in (Falt et al., 2012a)
in more detail.

The complete pseudocode ofjoin box is as fol-
lows:

le f t env← next envelope from left input
right env← next envelope from right input
j← 0
le f t seq← empty
right seq← empty
while le f t env 6= NIL∧ right env 6= NIL do

if j modP = Pi then
do the join ofle f t env andright env

end if
j← j+1
if le f t env.size > 0 then

last le f t← le f t env[le f t env.size−1]
if last le f t 6= le f t seq then

le f t seq← last le f t
drop all left envelopes exceptle f t env

else
storele f t env

end if

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

296

end if
if right env.size > 0 then

last right← right env[right env.size−1]
if last right 6= right seq then

right seq← last right
drop all right envelopes exceptright env

else
storeright env

end if
end if
le f t env← next envelope from left input
right env← next envelope from right input

end while

The performance evaluation in Section 5.1.3
shows that such concept of parallelization allows bet-
ter scalability than other contemporary solutions.

4.2 Sort

If one or both input streams need to be sorted, we use
the approach based on algorithm described in (Falt
et al., 2012b). Basically, the sorting of the stream is
divided into three phases:

1. Splitting the input stream into several equal sized
substreams,

2. Sorting of the substreams in parallel,
3. Merging of the sorted substreams in parallel.

The algorithm scales very well; moreover, it starts
to produce its output very shortly after the reception
of the last tuple. Therefore, the consecutive merge
join can start working as soon as possible which en-
ables pipeline processing and increases scalability.

However, the memory becomes indispensable bot-
tleneck when sorting tuples instead of scalars, since a
tuple typically contains multiple items. Thus, the sort-
ing of tuples needs more memory accesses especially
when sorting in parallel.

Therefore, we replaced the merge algorithm (used
in the second and the third phase) by a merge algo-
rithm used in Funnelsort (Frigo et al., 1999). We used
the implementation available on (Vinther, 2006). This
algorithm utilizes cache memories as much as possi-
ble in order to decrease the number of accesses to the
main memory. According to our experiments, this al-
gorithm speeds up the merging phase by 20–30%.

5 EVALUATION

Since one of the main goals is efficient evaluation
of SPARQL (Prud’hommeaux and Seaborne, 2008)
queries, we used a standardized SP2Bench benchmark
for the performance evaluation of our algorithm in
a parallel environment. Moreover, in order to show

skewness resistance of our algorithm, we used addi-
tional synthetic queries.

All experiments were performed on a server run-
ning Redhat 6.0 Linux; server configuration is 2x In-
tel Xeon E5310, 1.60Ghz (L1: 32kB+32kB L2: 4MB
shared) and 8GB RAM. Each processor has 4 cores;
therefore, we used 8 worker threads for the evalua-
tion of queries. The server was dedicated specially to
the testing; no other applications were running during
measurements.

5.1 Scalability of the Algorithm

In this set of experiments we examined the behaviour
of the join algorithm in multiple scenarios. We used
5M dataset of SP2Bench.

We measured the performance of the queries in
multiple settings. The setting ST uses just one worker
thread and the execution plan uses operations with-
out any intraoperator parallelization (i.e., joining and
sorting was performed by one box). The setting MT1
uses also one worker thread; however, the execution
plan uses operations with intraoperator parallelization
(we use 8 worker boxes both for joining and sorting).
The purpose of this setting is to show the overhead
caused by the parallelization. The MT2, MT4 and
MT8 are analogous to the setting MT1; however, they
use 2, 4 and 8 worker threads respectively. These set-
tings show the scalability of the algorithm.

5.1.1 Scalability of the Merge Join

The first experiment shows the scalability of the
merge join algorithm when its inputs contain long se-
quences of tuples with the same join attribute (i.e., the
join produces high number of tuples) and with the join
condition with very high selectivity (i.e., the number
of resulting tuples is relatively low). Since both inputs
of the join are sorted by join attribute, this algorithm
shows only the scalability of merge join and does not
include eventual sorting.

For this experiment, we used this query E1:
SELECT ?article1 ?article2
WHERE {
?article1 swrc:journal ?journal .
?article2 swrc:journal ?journal
FILTER (STR(?article1) = STR(?article2))

}

The query generates all pairs of articles which
were published in the same journal and then selects
the pairs which have the same URI (in fact, it returns
all articles in the dataset). The execution plan of the
query is depicted in Figure 3. The numbers in the bot-
tom of boxes denote the numbers of tuples produced
by the them.

Highly�Scalable�Sort-merge�Join�Algorithm�for�RDF�Querying

297

Select

MergeJoin by ?journal
(STR(?article1) = STR(?article2))

207818

IndexScan [POS]
?article1 swrc:journal ?journal

207818

IndexScan [POS]
?article2 swrc:journal ?journal

207818

Figure 3: Query E1 execution plan.

Figure 4: Results for query E1.

The settings MT1 is slightly slower than ST, since
the query plan contains in fact more boxes (see Fig-
ure 1) which causes higher overhead with their man-
agement. Moreover, thepreprocess box does use-
less job in this setting. However, when increasing
the number of worker threads, the algorithm scales
almost linearly with the number of threads.

5.1.2 Scalability of the Sort-merge Join

The scalability of the sort-merge join is shown in the
following experiment. In the contrast to the previ-
ous experiment, the inputs of merge joins (the second
phase of sort-merge join) need to be sorted.

For this experiment, we used this query E2:
SELECT ?article1 ?article2
WHERE {
?article1 swrc:journal ?journal .
?article2 swrc:journal ?journal .
?article1 dc:title ?title1 .
?article2 dc:title ?title2
FILTER(?title1 < ?title2)

}

This plan generates a large number of tuples
which have to be sorted before they can be finally
joined with the second input. The execution plan is
depicted in Figure 5.

We measured the runtime in the same settings as
the previous experiment and the results are shown in
Figure 6.

In this experiment, the difference between ST and
MT1 setting is bigger than in the previous experiment.
This is caused by the fact that the parallel sort al-
gorithm has some overhead (see (Falt et al., 2012b)

Select

MergeJoin on ?article2
(?title1 < ?title2)

4913461

Sort by ?article2
10034740

MergeJoin on ?journal
10034740

Sort by ?journal
209387

MergeJoin on ?article1
207818

IndexScan [PSO]
?article1 swrc:journal ?journal

207818

IndexScan [PSO]
?article1 dc:title ?title1

475059

IndexScan [POS]
?article2 swrc:journal ?journal

207818

IndexScan [PSO]
?article2 dc:title ?title2

475059

Figure 5: Query E2 execution plan.

Figure 6: Results for query E2.

for more information). However, the more worker
threads are used, the bigger speed-up we gain. The
scalability is not as linear as in the previous exper-
iment since the number of memory accesses during
sorting is much higher than during merging. There-
fore, the memory becomes the bottleneck with higher
number of threads.

5.1.3 Data-skewness Resistance

To show the resistance of the algorithm to the non-
uniform distribution of data, we used this query E3:
SELECT ?artcl1 ?artcl2 ?artcl3 ?artcl4
WHERE {
?artcl1 rdf:type bench:PhDThesis .
?artcl1 rdf:type ?type .
?artcl2 rdf:type ?type .
?artcl3 rdf:type ?type .
?artcl4 rdf:type ?type

}

The execution plan for this query is shown in
Figure 7. The variable?type has just one value

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

298

Select

MergeJoin on ?type
3208542736

MergeJoin on ?type
13481272

MergeJoin on ?type
56644

Sort by ?type238

MergeJoin on ?artcl1
238

IndexScan
?artcl1 rdf:type bench:PhDThesis

238

IndexScan
?artcl1 rdf:type ?type

911482

IndexScan
?artcl4 rdf:type ?type

911482

IndexScan
?artcl2 rdf:type ?type

911482

IndexScan
?artcl3 rdf:type ?type

911482

Figure 7: Query E3 execution plan.

Figure 8: Results for query E3.

(bench:PhDThesis); therefore, all joins on that vari-
able are impossible to be parallelized by partitioning
their inputs. Despite this fact, our algorithm accord-
ing to the results (Figure 8) scales very well and al-
most linearly.

5.2 Comparison to other Engines

The last set of experiments compares the Bobox
SPARQL engine which uses new sort-merge join
algorithm to other mainstream SPARQL engines,
such as Sesame v2.0 (Broekstra et al., 2002), Jena
v2.7.4 with TDB v0.9.4 (Jena, 2013) and Virtuoso
v6.1.6.3127-multithreaded (Virtuoso, 2013). They
follow client-server architecture and we provide a
sum of the times of client and server processes. The
Bobox engine was compiled as a single application.
We omitted the time spent by loading dataset to be
comparable with a server that has the data already pre-
pared.

We evaluated queries multiple times over datasets
5M triples and we provide the average times. Each
test run was also limited to 30 minutes (the same time-

out as in the original SP2Bench paper). All data were
stored in-memory, as our primary interest is to com-
pare the basic performance of the approaches rather
than caching etc.

Table 1: Results of SP2Bench benchmark.

ST MT8 Jena Virtuoso Sesame
Q1 0.01 0.01 0.01 0.00 0.54
Q2 1.32 0.39 242.80 39.03 16.11
Q3a 0.01 0.01 20.84 7.00 2.09
Q3b 0.00 0.00 1.89 0.04 0.54
Q3c 0.00 0.00 1.31 0.03 0.55
Q4 43.69 6.48 TO 1740.84 TO
Q5a 3.08 0.77 TO 30.89 TO
Q5b 1.23 0.23 38.97 28.03 11.02
Q6 TO 1119.3 TO 61.53 TO
Q7 54.89 6.99 TO 23.06 TO
Q8 6.73 1.21 0.26 0.24 17.37
Q9 3.19 0.50 12.25 16.56 7.58
Q10 0.00 0.00 0.30 0.03 1.28
Q11 0.42 0.12 1.50 3.12 0.53

The results are shown in Table 1 (TO means time-
out, i.e., 30 min). Queries Q1, Q3a, Q3b, Q3c and
Q10 operate on few tuples and they all fit into several
envelopes. Therefore, the parallelization is insignif-
icant. However, the important feature is that despite
the more complex execution plans in settings MT8,
the run time is not higher than for non-parallelized
version.

Queries Q8 and Q6 are slower than other frame-
works, since our SPARQL compiler does not perform
some optimizations useful for these queries.

The most important result is that queries Q2, Q3a,
Q3b, Q3c, Q4, Q5a, Q5b, Q9 and Q11 significantly
outperform other engines. All these queries benefit
from extensive parallelization; therefore, much larger
data can be processed in reasonable time. The signif-
icant slowdown of Virtuoso in Q4 is probably caused
by extensive swapping, since the result set is too big.

6 CONCLUSIONS AND FUTURE
WORK

In the paper, we proposed a new method of paral-
lelization of sort-merge join operation for RDF data.
Such algorithm is especially designed for streaming
systems; moreover, the algorithm behaves well also
with skewed data. The pilot implementation within
the Bobox SPARQL engine significantly outperforms
other RDF engines such as Jena, Virtuoso and Sesame
in all relevant queries.

In our future research we want to focus on fur-
ther optimizations such as the influence of granular-
ity of data stream units (envelopes) on overall perfor-

Highly�Scalable�Sort-merge�Join�Algorithm�for�RDF�Querying

299

mance. Additionally, the other research direction is to
use these ideas for other than RDF processing, e.g.,
SQL.

ACKNOWLEDGEMENTS

The authors would like to thank the GACR 103/13/
08195, GAUK 277911, GAUK 472313, and SVV-
2013-267312 which supported this paper.

REFERENCES

Albutiu, M.-C., Kemper, A., and Neumann, T. (2012).
Massively parallel sort-merge joins in main memory
multi-core database systems.Proc. VLDB Endow.,
5(10):1064–1075.

Bednarek, D., Dokulil, J., Yaghob, J., and Zavoral, F.
(2012a). Bobox: Parallelization Framework for Data
Processing. InAdvances in Information Technology
and Applied Computing.

Bednarek, D., Dokulil, J., Yaghob, J., and Zavoral, F.
(2012b). Data-Flow Awareness in Parallel Data Pro-
cessing. In6th International Symposium on Intelligent
Distributed Computing - IDC 2012. Springer-Verlag.

Broekstra, J., Kampman, A., and Harmelen, F. v. (2002).
Sesame: A generic architecture for storing and query-
ing RDF and RDF schema. InISWC ’02: Proceed-
ings of the First International Semantic Web Confer-
ence on The Semantic Web, pages 54–68, London,
UK. Springer-Verlag.

Cermak, M., Dokulil, J., Falt, Z., and Zavoral, F. (2011).
SPARQL Query Processing Using Bobox Framework.
In SEMAPRO 2011, The Fifth International Confer-
ence on Advances in Semantic Processing, pages 104–
109. IARIA.

Cieslewicz, J., Berry, J., Hendrickson, B., and Ross, K. A.
(2006). Realizing parallelism in database operations:
insights from a massively multithreaded architecture.
In Proceedings of the 2nd international workshop on
Data management on new hardware, DaMoN ’06,
New York, NY, USA. ACM.

DeWitt, D. J., Naughton, J. F., Schneider, D. A., and Se-
shadri, S. (1992). Practical skew handling in parallel
joins. In Proceedings of the 18th International Con-
ference on Very Large Data Bases, VLDB ’92, pages
27–40, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Dittrich, J.-P. and Seeger, B. (2002). Progressive merge
join: A generic and non-blocking sort-based join al-
gorithm. InVLDB, pages 299–310.

Dittrich, J.-P., Seeger, B., Taylor, D. S., and Widmayer, P.
(2003). On producing join results early. InProceed-
ings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database sys-
tems, PODS ’03, pages 134–142, New York, NY,
USA. ACM.

Falt, Z., Bednarek, D., Cermak, M., and Zavoral, F. (2012a).
On Parallel Evaluation of SPARQL Queries. In
DBKDA 2012, The Fourth International Conference

on Advances in Databases, Knowledge, and Data Ap-
plications, pages 97–102. IARIA.

Falt, Z., Bulanek, J., and Yaghob, J. (2012b). On Parallel
Sorting of Data Streams. InADBIS 2012 - 16th East
European Conference in Advances in Databases and
Information Systems.

Falt, Z., Cermak, M., Dokulil, J., and Zavoral, F. (2012c).
Parallel sparql query processing using bobox.Inter-
national Journal On Advances in Intelligent Systems,
5(3 and 4):302–314.

Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran,
S. (1999). Cache-Oblivious Algorithms. InFOCS,
pages 285–298.

Gordon, M. I., Thies, W., and Amarasinghe, S. (2006). Ex-
ploiting coarse-grained task, data, and pipeline paral-
lelism in stream programs.SIGARCH Comput. Archit.
News, 34(5):151–162.

Groppe, J. and Groppe, S. (2011). Parallelizing join com-
putations of sparql queries for large semantic web
databases. InProceedings of the 2011 ACM Sympo-
sium on Applied Computing, SAC ’11, pages 1681–
1686, New York, NY, USA. ACM.

Hua, K. A. and Lee, C. (1991). Handling data skew in mul-
tiprocessor database computers using partition tuning.
In Proceedings of the 17th International Conference
on Very Large Data Bases, VLDB ’91, pages 525–
535, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Jena (2013). Jena – a semantic web framework for Java.
Available at: http://jena.apache.org/, [Online; Ac-
cessed February 4, 2013].

Li, W., Gao, D., and Snodgrass, R. T. (2002). Skew han-
dling techniques in sort-merge join. InProceedings of
the 2002 ACM SIGMOD international conference on
Management of data, pages 169–180. ACM.

Liu, B. and Rundensteiner, E. A. (2005). Revisiting
pipelined parallelism in multi-join query processing.
In Proceedings of the 31st international conference
on Very large data bases, VLDB ’05, pages 829–840.
VLDB Endowment.

Lu, H., Tan, K.-L., and Sahn, M.-C. (1990). Hash-based
join algorithms for multiprocessor computers with
shared memory. InProceedings of the sixteenth in-
ternational conference on Very large databases, pages
198–209, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Ming, M. M., Lu, M., and Aref, W. G. (2004). Hash-merge
join: A non-blocking join algorithm for producing fast
and early join results. InIn ICDE, pages 251–263.

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL
Query Language for RDF. W3C Recommendation.

Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C.
(2008). Sp2bench: A sparql performance benchmark.
CoRR, abs/0806.4627.

Schneider, D. A. and DeWitt, D. J. (1989). A performance
evaluation of four parallel join algorithms in a shared-
nothing multiprocessor environment.SIGMOD Rec.,
18(2):110–121.

Vinther, K. (2006). The Funnelsort Project. Available
at: http://kristoffer.vinther.name/projects/funnelsort/,
[Online; Accessed February 4, 2013].

Virtuoso (2013). Virtuoso data server. Available at:
http://virtuoso.openlinksw.com, [Online; Accessed
February 4, 2013].

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

300

77

Chapter 7.

Resistance of Trust Management Systems against

Malicious Collectives

Miroslav Novotný, Filip Zavoral

Proceedings of 2nd International Conference on Context-Aware Systems and Applications,

Springer Verlag, pp. 67-76, 2014

78

Resistance of Trust Management Systems
Against Malicious Collectives

Miroslav Novotný and Filip Zavoral(&)

Faculty of Mathematics and Physics, Charles University in Prague,
118 00 Prague, Czech Republic

{novotny,zavoral}@ksi.mff.cuni.cz

Abstract. Malicious peers in Peer-to-peer networks can develop sophisticated
strategies to bypass existing security mechanisms. The effectiveness of con-
temporary trust management systems is usually tested only against simple
malicious strategies. In this paper, we propose a simulation framework for
evaluation of resistance of trust management systems against different mali-
cious strategies. We present results of five TMS that represent main contem-
porary approaches; the results indicate that most of the traditional trust
managements are vulnerable to sophisticated malicious strategies.

Keywords: Trust management � Peer to peer networks

1 Introduction

One of the promising architectures of large-scale distributed systems is based on peer
to peer architecture (P2P). However, providing proper protection to such systems is
tricky. The P2P applications have to deal with treacherous peers that try to deliber-
ately subvert their operation. The peers have to trust the remote party to work cor-
rectly. The process of getting this trust is, however, far from trivial.

Many trust management systems (TMS) have been developed to deal with
treacherous peers in P2P networks. The main idea of these systems is sharing expe-
rience between honest peers and building reputations. Nevertheless, the group of
cooperating malicious peers is often able to bypass their security mechanisms and
cause a great deal of harm. The malicious collectives represent the main reasons why
managing trust represents the biggest challenge in the current P2P networks.

In this paper, we investigate several TMSs and use the simple taxonomy to
organize their major approaches. Using the simulation framework called P2PTrustSim
we investigate different strategies used by malicious peers. Beside traditional strate-
gies, we propose new, more sophisticated strategies and test them against five trust
management systems. These systems have been chosen as the representatives of major
approaches. Our goal was to verify the effectiveness of various TMSs under sophis-
ticated malicious strategies. We have chosen five contemporary TMS: EigenTrust [1],
PeerTrust [2], H-Trust [3], WTR [4], and BubbleTrust [5]. These TMS represent main
contemporary approaches in Trust Management.

P.C. Vinh et al. (Eds.): ICCASA 2013, LNICST 128, pp. 67–76, 2014.
DOI: 10.1007/978-3-319-05939-6_7, � Springer International Publishing Switzerland 2014

2 Malicious Strategies and Evaluation Criteria

In order to facilitate comparison of different TMSs and their behaviour under different
malicious strategies we created a simulation framework [6] called P2PTrustSim. We
used FreePastry, a modular, open-source implementation of the Pastry [12], P2P
structured overlay network. Above the FreePastry, we created the peer simulation
layer which implements various peers’ behaviour.

2.1 Malicious Strategies

Most of the TMSs work well against straightforward malicious activities. However,
the malicious peers can develop strategies to maintain their malicious business. Each
peer can operate individually but the biggest threat is the collusion of malicious peers
working together.

2.1.1 Individual Malicious Strategies
These strategies do not involve the cooperation between malicious peers.

False Meta-data - Malicious peers can insert false, attractive information into the
meta-data describing their bogus resources to increase the demands for them.

Camouflage - The malicious peers that are aware of the presence of the TMS can
provide a few honest resources. There can be many variants of this strategy, differing
in the ratio of honest and bogus services or the period between changing behaviour.
In some literature, the variant of this strategy is called Traitors [7, 8–10].

2.1.2 Collective Malicious Strategies
Malicious peers have a significantly higher chance to succeed if they work in a
cooperative manner; this is considered as the biggest treat for P2P applications [11].

Full Collusion - All members of a malicious collective provide bogus resources and
create false positive recommendations to all other members of the collective.

Spies - The malicious collective is divided into two groups: spies and malicious. The
spies provide honest services to earn a high reputation and simultaneously provide
false positive recommendations to the malicious part of the collective.

2.1.3 Newly Proposed Malicious Strategies
We analyzed published TMSs and known malicious tactics carefully and we suggest
three new collective malicious strategies. Each strategy is designed for a particular
type of TMS and tries to exploit its specific weakness.

Evaluator Collusion - If the TMS assesses credibility of the feedback source
according to the truthfulness of its previous feedback, malicious peers can try to trick
the TMS by using the services from peers outside the collective and evaluating them
correctly. This feedback increases the credibility of malicious peers as recommenders
and gives more weight to their feedback towards other members of collective.

68 M. Novotný and F. Zavoral

Evaluator Spies - This strategy is a combination of Evaluator Collusion and Spies.
The spies implement three techniques to maintain a credibility as a feedback source:
they provide honest service, they use resources outside the collective and evaluate
them correctly, and they create positive recommendations towards other spies.

Malicious Spies - This slight modification of the previous strategy is based on the idea
that spies do not require a high reputation as resource providers. They can provide
bogus resources and generate negative recommendations between each other. These
recommendations are still truthful and should increase their credibility.

2.2 Evaluation Criteria

Each transaction within the framework is categorized on both sides (provider and
consumer). The categories distinguish the type of the peer (honest or malicious), on
which side of the transaction the peer was (provider or consumer), and the result of the
transaction. The ulterior transactions represent honest transactions which malicious
peers have to perform to fix their reputation. If no provider is sufficiently trustful, the
transaction is refused and counted as ConsumeRefused. The originated peer typically
tries to pick different service and repeat the transaction.

Let us suppose that all the malicious peers cooperate within a malicious collective
in the network and all transactions from honest peers are honest. Our primary goal is
to evaluate the success of each malicious strategy in different TMSs. Therefore, we
defined four criteria:

MaliciousSuccessRatio (MSR) is a ratio between bogus transactions provided by
malicious peers in the network with TMS and in the network without TMS (Dum-
myTrust). It reflects the contribution of the given TMS and it is defined by the
following formula:

MaliciousSuccessRatio ¼ TotalBoguswithTMS

TotalBoguswithoutTMS

BogusRatio (BR) is a ratio between bogus and all services consumed by the honest
peers. It is defined by the following formula:

BogusRatio ¼ 100 � TotalBogus
P

ConsumeHonest þ TotalBogus

MaliciousCost (MC) monitors the load associated with a malicious strategy. It is a
ratio between extra transactions performed by the malicious peers to trick the TMS
and the bogus transactions in the network. These extra transactions include faked and
ulterior transactions and represent additional overhead for malicious peers which they
try to minimize. We defined it by the following formula:

MaliciousCost ¼ TotalUlterior þ TotalFaked=2
TotalBogus

Resistance of Trust Management Systems 69

This metric gives us an idea of how much computational power and network
utilization is required for a given malicious strategy.

The last criterion is a MaliciousBenefit (MB). It represents how much beneficial
transactions the malicious peers have to perform to pass one malicious service. It is
defined by the following formula:

MaliciousBenefit ¼ TotalUlterior

TotalBogus

The value above 1 means that there is benefit from the malicious collective which
is bigger than the damage caused by the collective.

3 Simulation Results

We focused on two problems: the effectiveness of the strategies and the reaction of the
TMSs to changes in peers’ behaviours. The first problem was studied in a network that
contains 200 peers and 80 peers are malicious; 40 % of nodes in the network are
malicious, which represents a very dangerous environment. The honest peers wake up
every 10 min and use one service from the network. The malicious peers also wake up
every 10 min and perform a given number of faked or ulterior transactions. We ran 56
different simulations (7 TMSs each with 8 strategies). Each of the simulations rep-
resents 24 h. The data is counted in the last hour of the simulations when the TMSs
are stabilized. Each simulation was repeated 20 times and average values are taken.
The variation of results is expressed in the form of a relative standard deviation
(RSD). The size of the network was designed with regards to simulation possibilities
of the FreePastry and the load produced by our simulation. The results of other series
of tests with the different settings were almost identical.

We set similar parameters for all TMSs. The most important parameter is the
history period which determines how long the peers remember the information about
previous transactions. We set this parameter to 30 cycles (5 h, in order to have a
history period appropriate to the total simulation time) in all TMSs. The EigenTrust is
not able to work correctly without pre-trusted peers, so we had to set 10 % honest
peers as pre-trusted. Therefore, the EigenTrust has an advantage over other TMSs.
Also, the numbers of ulterior and faked transactions are the same for all malicious
strategies which use them.

3.1 Representative TMSs

The first simulations were performed in the network without TMS (DummyTrust) and
in the network with the simplest version of TMS (SimpleTrust). We focused on the
number of bogus transactions; these values will be used as a base for calculation of
MaliciousSuccessRatio for other TMSs. The results are shown in Table 1.

As expected, the False Meta-data is the only useful strategy in DummyTrust.
Other malicious mechanisms are useless or even counterproductive. The strategies
Malicious Individual, Full Collusion, Evaluator Collusion and Malicious Spies have

70 M. Novotný and F. Zavoral

almost the same results. All these strategies use False Meta-data, unlike The Simple
Malicious Individual, which reaches fewer bogus transactions. The rest of the mali-
cious strategies sacrifice a part of bogus transactions to circumvent TMSs, however
these transactions have no effect in DummyTrust. The biggest variation in results has
been measured in Simple Malicious Individual. In this strategy, honest peers com-
pletely rely on a random choice of communication partner.

The SimpleTrust has only slightly better results. The biggest improvement was
measured in Evaluator Spies and Spies. These strategies are not suitable for simple
TMSs. In fact, we have expected a bigger improvement. The limited factor is the size
of the history period which was set to 30 cycles in all TMSs. Without cooperation with
other peers, the information about peer’s maliciousness is lost after 30 cycles and the
delay between two transactions towards the same peer can be longer.

3.2 Efficiency Criterion

We measured the criteria described in Sect. 3. The most important of them is the
MaliciousSuccessRatio (MSR); the measured values are in Tables 2 and 3 along with
average numbers of bogus transactions and standard deviations. The MSR values
above the threshold 0.5 are displayed in a bold font. We can see that only the Bub-
bleTrust is resistant against all malicious strategies. There is at least one effective
malicious strategy against all other TMSs. The EigenTrust, despite its advantage, is
completely vulnerable to Spies and Evaluator Spies. These strategies are even able to
perform more bogus transactions than it would be possible in a network without TMS.
PeerTrust is resistant against only the simplest malicious strategies, on the other hand,
malicious strategies like Evaluator Collusion and Evaluator Spies are 100 % effective.
Also H-Trust does not work well, it is completely vulnerable to Evaluator Collusion
and Evaluator Spies and the resistance against other strategies is not convincing either.
WTR copes very well with individual strategies; especially the Camouflage is inef-
fective due to the risk factor. But the collective strategies can easily circumvent it.
There are noticeable deviations in some malicious strategies. However, none of these
deviations influence the MSR value that much that cross the limit 0.5.The next cri-
terion is BogusRatio. Table 4 shows BogusRatio of each malicious strategy in all
TMSs. In the worst case scenario, only 29 % of all transactions in the P2P network

Table 1. Number of bogus transactions in DummyTrust and SimpleTrust.

Strategy DummyTrust SimpleTrust

TotalBogus RSD (%) TotalBogus RSD Diff.

Simple Malicious Individual 262.20 8.95 247.15 6.25 6
Malicious Individual 435.65 3.05 387.70 4.12 11
Camouflage 310.85 4.02 281.20 3.54 10
Full Collusion 430.75 2.84 391.45 2.83 9
Evaluator Collusion 436.90 2.62 388.10 4.40 11
Spies 297.25 4.00 249.20 5.17 16
Evaluator Spies 301.30 4.31 244.80 7.00 19
Malicious Spies 433.65 2.54 386.65 3.17 11

Resistance of Trust Management Systems 71

with the BubbleTrust can be bogus. Other TMS tolerate 63 % (EigenTrust), 70 %
(H-Trust), 73 % (PeerTrust and WTR) bogus transactions.

Table 5 shows MaliciousCost of malicious strategies which use ulterior or faked
transactions. Other strategies (Simple Malicious Individual and Malicious Individual)
have no additional cost. MaliciousCost of the strategies with no measurable MSR is
infinite and the cells contain ‘N/A’.

Table 2. Malicious Success Ratio in BubbleTrust, EigenTrust and PeerTrust.

Strategy BubbleTrust EigenTrust PeerTrust

Total
Bogus

RSD
(%)

MSR Total
Bogus

RSD
(%)

MSR Total
Bogus

RSD
(%)

MSR

Simple M Individual 6.2 66.2 0.0 64.2 21.6 0.2 17.5 20.3 0.1
Malicious Individual 1.5 89.9 0.0 137.9 15.2 0.3 0.0 0.0 0.0
Camouflage 1.55 84.96 0.00 87.85 24.82 0.28 200.60 6.84 0.65
Full Collusion 58.25 13.13 0.14 0.00 0.00 0.00 426.90 3.55 0.99
Evaluator Collusion 109.2 10.17 0.25 0.00 0.00 0.00 440.05 2.70 1.01
Spies 21.5 23.93 0.07 323.45 3.83 1.09 282.25 4.53 0.95
Evaluator Spies 48.3 11.44 0.16 295.50 28.08 0.98 300.00 4.65 1.00
Malicious Spies 53.5 11.21 0.12 0.55 – 0.00 297.95 4.87 0.69

Table 3. Malicious Success Ratio in HTrust and WTR.

Strategy HTrust WTR

Total
Bogus

RSD (%) MSR Total
Bogus

RSD (%) MSR

Simple Malicious Individual 54.00 20.70 0.21 0.00 0.00 0.00
Malicious Individual 142.15 8.69 0.33 0.00 0.00 0.00
Camouflage 56.30 15.94 0.18 0.00 0.00 0.00
Full Collusion 138.05 8.23 0.32 435.45 2.26 1.01
Evaluator Collusion 411.00 4.30 0.94 436.70 3.73 1.00
Spies 108.10 8.74 0.36 293.30 5.57 0.99
Evaluator Spies 296.60 3.84 0.98 302.65 4.39 1.00
Malicious Spies 299.55 4.04 0.69 304.40 3.86 0.70

Table 4. BogusRatio for different malicious strategies and TMSs.

Strategy EigenTrust
(%)

H-Trust
(%)

PeerTrust
(%)

WTR
(%)

BubbleTrust
(%)

Simple M Individual 13 11 4 0 2
Malicious Individual 34 35 0 0 1
Camouflage 21 13 38 0 0
Full Collusion 0 34 72 73 18
Evaluator Collusion 0 70 73 73 29
Spies 55 22 48 49 5
Evaluator Spies 63 50 50 50 11
Malicious Spies 1 56 57 57 16

72 M. Novotný and F. Zavoral

The attacker most likely uses a strategy which has the best price/performance
ratio. For instance, in the PeerTrust the most successful strategy is Evaluator Collu-
sion but it is very expensive (above 9), better choice is Full Collusion with success
ratio 0.99 and cost only 2.78. The Camouflage strategy is relatively efficient; although
it has low a success ratio in the most TMSs, it is compensated by its very low price. In
the BubbleTrust, all strategies have cost above 20 (except Camouflage) and the most
expensive strategy (Evaluator Collusion) has almost 37. This is significantly higher
value than the other TMSs have.

Table 6 shows MaliciousBenefit of malicious strategies which have some bene-
ficial transactions. Again, MaliciousBenefit of the strategies with no measurable MSR
is infinite and the cells contain ‘N/A’.

The strategies like Evaluator Collusion, Evaluator Spies and Malicious Spies have
always more beneficial transactions than bogus ones. Strictly speaking, the designa-
tion of the collective as malicious is no longer suitable. The attackers, whose primary
goal is to destroy the network functionality for other peers, probably would not choose
malicious strategy with a high MaliciousBenefit. But attackers desired to spread their
malicious services at any cost do not bother with MaliciousBenefit.

3.3 Influence of Simulation Settings

We have tried different simulation settings. We have adjusted the number of nodes in
the network while preserving the ratio of malicious nodes. We have made the following
observation: increasing the number of nodes does not affect the MaliciousSuccess-
Ratio. The reason is that each TMS can handle only a limited number of nodes in the
calculation of ratings. A similar limitation can be found in all TMSs. The information
from nodes which are very distant in a trust chain is negligible. On the other hand, the
results change if we decrease the number of nodes. This change can be in both

Table 5. MaliciousCost for different malicious strategies and TMSs.

Strategy EigenTrust H-Trust PeerTrust WTR BubbleTrust

Camouflage 0.17 0.19 0.09 N/A 0.16
Full Collusion N/A 8.58 2.78 2.72 20.31
Evaluator Collusion N/A 9.67 9.06 9.12 36.47
Spies 1.95 5.79 2.23 2.13 29.87
Evaluator Spies 5.87 5.74 5.72 5.69 36.23
Malicious Spies N/A 5.65 5.68 5.56 31.63

Table 6. MaliciousBenefit for different malicious strategies and TMSs.

Strategy EigenTrust H-Trust PeerTrust WTR BubbleTrust

Camouflage 0.17 0.19 0.09 N/A 0.16
Evaluator Collusion N/A 6.79 6.36 6.41 25.64
Spies 0.10 0.24 0.11 0.09 1.96
Evaluator Spies 2.85 2.73 2.75 2.74 17.73
Malicious Spies N/A 2.67 2.68 2.63 14.95

Resistance of Trust Management Systems 73

directions dependent on the TMS and the malicious strategy. In this case the TMS has
to rely on information from a smaller number of nodes than it expects (Fig. 1).

Next, we have altered the ratio of malicious nodes. Figure 2 shows the results for
BubbleTrust. As we can see, the malicious success increases with the ratio of mali-
cious nodes in the network. BubbleTrust resists relatively well even in the network
with more than 50 % of malicious nodes. In our tests we stayed at 40 % because it is
very unlikely that the overlay network beneath the P2P application can handle the
situation in which half of the peers are malicious. The defence techniques described in

Fig. 1. Rehabilitation after treason in BubbleTrust.

Fig. 2. Ratio of malicious peers on Malicious Success Ratio in BubbleTrust.

74 M. Novotný and F. Zavoral

2.1 assume that only a small fraction of nodes is malicious. In fact, 40 % already
causes big problems.

3.4 Result Summary

H-index calculation used in H-Trust proved to be vulnerable to traitors. It takes too
long to detect traitors and malicious peers are rehabilitated too quickly. The system
WTR permits the highest number of bogus transactions from all tested TMSs, but it is
followed closely by PeerTrust and HTrust. EigenTrust has better results than H-Trust,
WTR and PeerTrust but it has advantage in the form of pre-trusted peers.

Our tests proved that it is very difficult to resist against the sophisticated malicious
techniques. Especially the calculation of the evaluator rating is susceptible to rigging.
The previously published TMSs do not pay as much attention to the evaluator rating as
they pay to the provider rating. This must be changed if the TMS should be resistant
against the Evaluator Collusion or the Evaluator Spies.

The best TMS in our comparison is BubbleTrust. It has the shortest treason
detection time, the longest rehabilitation time and allows only 28 % of bogus trans-
action under the most successful malicious strategy. As far as we know, it is the only
one TMS using global experience as feedback verification.

4 Conclusion

In this paper, using simulation framework called P2PTrustSim we compared trust
management systems against different malicious strategies. We also proposed several
efficiency criteria which can be evaluated using this framework. We analysed known
malicious tactics and suggested three new collective malicious strategies against the
most representative systems for each type of TMS. We can expect that malicious peers
working in a collective will try to use the most effective strategy against TMS cur-
rently used in the network. Therefore, the quality of TMSs has to be assessed
according to the most successful malicious strategy. Nevertheless, other properties
have to be taken into account too; e.g. the cost connected with the malicious strategy
can exceed the potential benefit for malicious peers. The results indicate that only the
BubbleTrust is resistant against all considered malicious strategies; it is, therefore, the
best choice for deployment in the secured P2P networks.

Acknowledgment. This work was supported in part by grants 204/13/08195 and SVV-2013-
267312.

References

1. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for reputation
management in P2P networks. In: WWW’03: Proceedings of the 12th International
Conference on World Wide Web, pp. 640–651. ACM Press (2003)

2. Xiong, L., Ling, L.: PeerTrust: supporting reputation-based trust for peer-to-peer electronic
communities. IEEE Trans. Knowl. Data Eng. 16, 843–857 (2004)

Resistance of Trust Management Systems 75

3. Huanyu, Z., Xiaolin, L.: H-Trust: a group trust management system for peer-to-peer
desktop grid. J. Comput. Sci. Technol. 24, 447–462 (2009)

4. Bonnaire, X., Rosas, E.: WTR: a reputation metric for distributed hash tables based on a
risk and credibility factor. J. Comput. Sci. Technol. 24, 844–854 (2009)

5. Novotny, M., Zavoral, F.: BubbleTrust: a reliable trust management for large P2P
networks. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA
2010. CCIS, vol. 89, pp. 359–373. Springer, Heidelberg (2010)

6. Novotny, M., Zavoral, F.: Resistance against malicious collectives in BubbleTrust. In: The
12th International Conference on Parallel and Distributed Computing, Gwangju, Korea
(2011)

7. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques for
reputation systems. ACM Comput. Surv. 42(1), 1–31 (2009)

8. Marti, S., Garcia-Molina, H.: Taxonomy of trust: categorizing P2P reputation systems.
Comput. Netw. 50, 472–484 (2006)

9. Selvaraj, C., Anand, S.: Peer profile based trust model for P2P systems using genetic
algorithm. Peer-to-Peer Netw. Appl. 4, 1–12 (2011)

10. Suryanarayana, G., Taylor, R.N.: A survey of trust management and resource discovery
technologies in peer-to-peer applications. Technical report, UC Irvine (2004)

11. Bonnaire, X., Rosas, E.: A critical analysis of latest advances in building trusted P2P
networks using reputation systems. In: Weske, M., Hacid, M.-S., Godart, C. (eds.) WISE
Workshops 2007. LNCS, vol. 4832, pp. 130–141. Springer, Heidelberg (2007)

12. Druschel, P., Rowstron, A.: PAST: a large-scale, persistent peer-to-peer storage utility. In:
Proceedings of the Eighth Workshop Hot Topics in Operating Systems (2001)

76 M. Novotný and F. Zavoral

89

Chapter 8.

Metro-NG: Computer-Aided Scheduling and

Collision Detection

David Bednárek, Jakub Yaghob, Filip Zavoral

Computing and Informatics, Vol. 33, Num. 6, pp. 1-27, 2014

90

Computing and Informatics, Vol. 34, 2015, 1001–1028, V 2015-Aug-11

METRO-NG: COMPUTER-AIDED
SCHEDULING AND COLLISION DETECTION

David Bednárek, Jakub Yaghob, Filip Zavoral

Charles University in Prague
Faculty of Mathematics and Physics
Malostranské nám. 25
118 00 Prague, Czech Republic
e-mail: {bednarek, yaghob, zavoral}@ksi.mff.cuni.cz

Abstract. In this paper, we propose a formal model of the objects involved in
a class of scheduling problems, namely in the classroom scheduling in universities
which allow a certain degree of liberty in their curricula. Using the formal model,
we present efficient algorithms for the detection of collisions of the involved objects
and for the inference of a tree-like navigational structure in an interactive scheduling
software allowing a selection of the most descriptive view of the scheduling objects.
These algorithms were used in a real-world application called MetroNG; a visual
interactive tool that is based on more than 10 years of experience we have in the
field. It is currently used by the largest universities and colleges in the Czech
Republic. The efficiency and usability of MetroNG suggests that our approach may
be applied in many areas where multi-dimensionally structured data are presented
in an interactive application.

Keywords: Scheduling tools, collision detection, visualization

1 INTRODUCTION

Every university is faced with the problem of creating an acceptable schedule of
their educational events within available resources of time, space, and personnel.

The main problem when creating a schedule of university lectures and seminars
lies in checking and preventing collisions – one teacher should not teach two lectures
at the same time, students should not visit more than one lesson at the same time,
etc. Moreover, there is a great number of soft or hard constraints, e.g. a teacher

1002 D. Bednárek, J. Yaghob, F. Zavoral

cannot teach in a particular time period or students are not happy to have lessons
continually 12 hours in one day. Therefore, creating ‘good’ schedule is a difficult
task which requires some IT support.

The problem could be described as a constraint satisfaction problem (CSP) [14].
The formal constraints and the quality criteria or the objective functions should be
specified in order to use an appropriate solver [10].

Each CSP solver requires the exact formal specification of all constraints. Be-
sides individual constraints, the members of academia have their individual ideas of
‘good’ schedules; therefore, the cost or objective function shall be adjusted individu-
ally per each scheduling object. These constraints and objective functions are fuzzy
and unclear by nature and ordinary users of the system are not able to specify them
in the necessary formal manner. Thus, the use of the CSP solver requires skilled
personnel to formalize all requirements of the users into constraints and objective
functions.

An alternative approach to a complete formalization of the problem for a schedul-
ing algorithm is creating the schedule by humans, using a software application to
display and efficiently customize the (partial) schedule.

Although the manual schedule creation itself requires more human effort than
an algorithmic solution, the difference may be balanced or even outweighed by the
cost of formalization of the constraints. In addition, human-based scheduling offers
the following advantages:

• humans can effectively work with incompletely defined constraints

• humans can intuitively recognize erroneously entered constraints

• humans can communicate individually to the subjects in case of ambiguity or
to negotiate a relaxation of constraints

• in case of inevitably conflicted schedule, humans can find the ‘least bad’ solution
instead of giving-up completely

• in case of complaints, humans can explain the rationale behind the schedule.

The importance of individual advantages and disadvantages of automated and
manual approaches depends on many factors, including the organization structure
of the university, the work flow of the scheduling, the level of the academic liberty,
etc. According to our experience, the manual approach is still viable and favorable
in some universities, despite the recent progress in the CSP and other algorithmic
scheduling techniques.

A mixed approach is also possible: using a CSP solver with a weaker and smaller
set of constraints as the first step and then the manual adjustment for the final tuning
of the schedule.

Human-based scheduling requires strong software support capable at least of
these tasks:

• display several views of the schedule (e.g., a schedule of the lecture rooms, the
schedule of particular student groups, etc.)

MetroNG: Computer-Aided Scheduling and Collision Detection 1003

• automatically or manually choose an appropriate level of detail of particular
views; in other words, the application must present some navigation structures
to allow efficient exploration of the scheduling space

• display all possible collisions (e.g., more lectures intended for the same student
group in overlaping time slots, a lecture of a particular teacher conflicting with
his constraints, etc.).

The article presents a formal model for the complex collision detection system
which is used to identify situations where a group of students should attend two
classes scheduled for the same time. Next, we present an incremental algorithm
used to extract the navigation structures from the formal model. Using this model,
we developed an application called MetroNG1 for supporting the whole process of
creating a complex university and curricula schedule. Besides the sophisticated
student collision detection, the application has other unique features such as the
combination of several views, handling of transfer collisions and various types of
scheduled events besides regular ‘once-a-week’ classes.

The rest of the article is organized as follows: Next section contains related
work, Section 3 describes the issues addressed in the article. The most crucial part
of the article is contained in Sections 4 and 5 that describe a theoretical model of
the entities and their collisions and the respective algorithms. Section 6 describes
the MetroNG application that is based on the previously proposed formal methods.
The final section summarizes and concludes the article.

2 RELATED WORK

There is a lot of research on classroom or curriculum scheduling (also called time-
tabling in some sources). The proposed solutions range from simple applications to
large automatic or semi-automatic CSP solvers.

The scheduling problems are NP-complete in general [42], as far as their com-
putational complexity is concerned. Therefore, various optimization methods have
been proposed for solving the scheduling problem [17, 18, 19, 20]. Other methods
are heuristic orderings [22], case-based reasoning [21], genetic/evolutionary algo-
rithms [25, 26, 27], ant systems [30], local search techniques [23, 24], particle swarm
optimization [28, 29], tabu search [31, 32], metaheuristics [33] and hyperheuris-
tics [34, 35].

Recent definitions of the course scheduling problem can be found in [33, 36].
Universities have increasingly relied upon the automation of this task to produce
efficient timetables that satisfy these constraints [36]. Many recent papers have
been published on specific techniques [37, 38, 39] dealing with the university course
scheduling problem.

1 https://www.erudio.cz/?stranka=sw.metrong

1004 D. Bednárek, J. Yaghob, F. Zavoral

High school timetabling involves weekly scheduling for all lecturers of the high
school, where the schedule is regular, the number of events is quite small, there
are no collisions, the constraints are simple, etc. The problem consists in assigning
lectures to timeslots while other constraints of several different kinds are satisfied.
These constraints may include both hard constraints that must be respected and
soft constraints used to evaluate the solution’s quality [40].

Some recent papers have been published on these specific techniques [41, 42, 43,
11, 12, 13] and corresponding software solutions [6, 7, 8] oriented to high-school time-
tabling were described. These tools are not sufficient for most university environ-
ments, mostly because they are not capable to capture the more complex structure
of the groups of students.

The system [9] uses individual students as the subjects of scheduling. Of course,
this approach is viable only in environments where the set of individual students for
each lecture is known prior to the scheduling phase. In addition, this fine-grained
approach is extremely demanding in terms of computing resources.

Systems combining automatic scheduling with human interaction described as
interactive or semiautomatic scheduling were described in [15, 16].

The solution proposed in this paper is based on a strong theoretical background
defined in Section 4. The problem of modeling events and their visitors is similar
to some problems in the area of concept analysis – for instance, the role of test
context in the Contextual Attribute Logic [3, 4] is similar to our group base (see
Section 4.2). Nevertheless, our intent is visualization and not reasoning; therefore,
our formal model is different.

3 PROBLEM DESCRIPTION

The scheduling problem essentially consists of a set of events. Each event is asso-
ciated to a set of participants – teachers and students. While the teachers are easily
identified by their enumeration, the description of the associated set of students is
difficult: The enumeration of individual students is usually impossible because they
are not known at the moment of scheduling. Instead of the enumeration, the student
participants of an event are described in terms of student groups.

The schedule consists of the mapping of events to space and time, i.e. assigning
a room and time slot to each event. The time slots are usually but not necessarily
recurrent. The schedule shall satisfy a number of hard and soft constraints; most im-
portantly it shall avoid collisions. However, since finding a collision-free schedule is
not necessarily feasible, the system must be able to manipulate schedules containing
collisions.

The main purpose of the scheduling application is to display the schedule and
allow the users to modify it. The visualization part must cope with the huge amount
of information present in the schedule. An average schedule of a college or univer-
sity contains hundreds or thousands of events, spans several buildings with tens or
hundreds of lecture rooms, and handles hundreds of teachers and many thousands

MetroNG: Computer-Aided Scheduling and Collision Detection 1005

of students. Since it is too much information to fit in one view, the visualization
must be highly interactive and provide the user with only that part of information
that he or she is interested in at the moment.

Although the modification of the schedule is basically a simple drag-and-drop
action, it is a part of a larger, very complex problem. While the whole decision
making is left to the user (the user picks the time and room for each event), it is
not sufficient to give the users the ability to schedule the events. To do the task
efficiently, they need a lot of information beyond “what, when and where”. The
most important piece of information is whether they are creating a collision-free
schedule.

3.1 Student Groups

In the physical world, student groups consist of individual students who, for what-
ever reason, visit a particular event. In our setting, we do not know the individual
students in the moment of scheduling; instead, the group must be described by using
the properties of the expected participants.

The set of students visiting a particular lecture may be characterized using at-
tributes like study program, specialization, year, etc. Some of them may be assigned
to the students by an authority, others (like proficiency level) may represent a fiction
created by the scheduling personnel.

For the collision checking, the system must be able to determine whether two
student groups intersect. This test conceptually corresponds to testing intersection
of two sets; however, these sets are not described by enumerating their contents.
Instead, the intersection test shall be based on the attributes of the student groups.

Moreover, the set of real students does not completely fill the space of all at-
tribute combinations. For instance, the group of ’second-year’ students may or may
not intersect with the group of ’beginners’, depending on the current (or estimated)
state of the student population. In our system, the student population is modeled
by a group base – a set of student prototypes.

3.2 Visualization of Groups

Student attributes form a multi-dimensional space which cannot be visualized di-
rectly. Some dimensions may be mutually dependent (e.g., study program and
specialization), other pairs are considered independent (e.g., language skills vs. spe-
cialization).

When creating a schedule, a portion of this multi-dimensional space must be
accessible in an appropriate level of detail. A straightforward approach to selecting
a portion of the space would be using a form to enter the filtering rules for each
attribute. However, to control such a form is tedious; moreover, the user is often
unable to predict whether a particular filter leads to a human-readable presentation.

To allow exploration of the attribute space, we propose using a navigational tree
to perform the navigation and level-of-detail setting by expanding and collapsing

1006 D. Bednárek, J. Yaghob, F. Zavoral

a virtual tree. Besides avoiding annoying forms, this approach also allows to show
several portions of the space at once, using different levels of detail in different parts
of the space. In this sense, the tree replaces a filter in the form of disjunction of
conjunctive clauses.

While this idea is simple, creating the tree is not easy. First, the degree of
individual nodes of the tree shall be kept as low as possible in order to make the
navigation easy for the user. In other words, while the user must be able to reach
any desired view in the tree, the number of paths to the view shall be minimized.
Second, the size of the completely expanded tree is exponential with respect to the
size of group base; therefore, the tree shall be constructed incrementally.

3.3 Collisions

A collision is a state when two events are scheduled in such a way, that someone
who is supposed to attend both events would be unable to do so. The two classes
of participants – teachers and students – form two classes of collisions.

The collision may occur either directly, when two events intersect in time, or
by transfer, when the time distance between the two events is too short to allow
transfer between the two locations. In addition, two events may collide if scheduled
to the same room at the same time.

While room and teacher-related collisions are relatively easy to detect, the detec-
tion of student-related collision involves a complex determination of the intersection
of the groups, as described in Subsection 3.1. Also the visualization of the space
of students must be arranged so that the user can easily determine the danger of
collisions.

4 FORMAL MODEL

Instead of modeling individual students, the system works with prototypes ; each
prototype represents a group of students assumed to have the same preferences
and/or prescriptions with respect to the lectures/events visited. The set of proto-
types, called group base, is defined by human operators of the scheduling system, as
accurate as possible and/or necessary.

The group base concept is similar to the test context in the Contextual Attribute
Logic [3, 4] since the problem of modeling events and their visitors is similar to some
problems in the area of concept analysis [2].

Given a group base, the visitors of an event could be defined by using a set of
prototypes. However, it would be impractical for a human operator because such
sets may be quite large. Instead of enumerating prototypes, student groups may be
defined by using tuples of attributes as described in the following paragraphs.

Prototypes are distinguished by attributes carrying values (tags) from finite
domains. Some attributes correspond to properties defined in the real world and
assigned to real students, like the field of study, the year, or an administratively

MetroNG: Computer-Aided Scheduling and Collision Detection 1007

assigned group number. Others are defined solely for the purpose of scheduling,
representing for instance assumed future specialization.

4.1 Attributes and Tuples

Each instance of the scheduling system defines a finite set A of attributes, divided
into single-valued As and multi-valued Am attributes. Each attribute a ∈ A is
associated to a finite domain Da; members of these domains are called tags. These
domains are specific for a particular school and they develop slowly over time to
reflect the changes in the curricula. For the simplicity of notation, we assume
that the attribute domains are pairwise disjoint; the union of domains is marked
D =

⋃{Da | a ∈ A}.

Example 1. Throughout this paper, we will show several examples based on the
following set of attributes:

As = {D,P,R},
Am = {S}.

The corresponding domains are:

DD = {B,N},
DP = {I,M},
DR = {1, 2, 4, 5},
DS = {IPR, IOI, ISS}.

Although our formalism distinguishes single-valued and multi-valued attributes,
many definitions become simplified when the values of both kinds of attributes are
viewed as sets. In this approach, the value of an attribute is a set of tags, i.e., a subset
of the associated attribute domain. For a single-valued attribute, the cardinality of
the attribute value is restricted to at most 1. The ability to assign the empty-set
value to an attribute loosely corresponds to the concept of null value in relational
databases; however, the treatment of empty values in predicates is different from
the treatment of null values in databases.

All tuples in our system have the same schema, i.e., all tuples contain all at-
tributes defined in the system (nevertheless, the value of an attribute may be empty
in a tuple).

Definition 1 (Tuple). A tuple is a mapping t : A → P(D) such that t(a) ⊆ Da

and a ∈ As ⇒ card(t(a)) ≤ 1. The universe of all such tuples is denoted T .

Each tuple associates a value (a set of tags) to each attribute. In most cases,
a tuple serves as a means to define a set of certain individuals by declaring which
tags shall be present in these individuals. The more tags a tuple contains, the less
individuals fit to the tuple; if an attribute of a tuple has the empty value, it does

1008 D. Bednárek, J. Yaghob, F. Zavoral

not restrict the set of individuals anyhow. This approach, reflected in the definitions
below (and different from traditional null-value handling in relational systems), is
motivated by the required conservative-approximation rule: “Possible collision is
a collision.”

Definition 2 (Tuple meet). The meet (denoted t1u t2) of a pair of tuples t1, t2 ∈ T
is the mapping t3 such that t3(a) = t1(a) ∪ t2(a) for each a ∈ A, provided t3 is
a correct tuple, i.e. t3 ∈ T .

The name “meet” was borrowed from the lattice theory; however, it should be
stressed that the tuple meet is not a semilattice because the meet may not exist.
Also note that the sense of the operation is reverted with respect to the lattice of
tag sets; i.e. tuple meet corresponds to union of tag sets. This reversion corresponds
to the fact that adding attributes diminishes the set of individuals conforming to
these attributes. Similarly to lattice theory, the tuple meet operation is associated
with a partial ordering, named tuple inclusion.

Definition 3 (Tuple inclusion). A tuple t1 ∈ T is considered included in a tuple
t2 ∈ T (denoted t1 v t2), if for each attribute a ∈ A, t2(a) ⊆ t1(a).

The rationale behind this definition is that a tuple defines a set of individuals
by defining a set of required tags of these individuals. The tuple inclusion relation
corresponds to the set inclusion relation on the associated sets of individuals. If t1
requires more tags than t2, then any individual satisfying t1 also satisfies t2. Note
that tuple inclusion is a partial order on T .

Example 2. The following mapping

t1 = {D 7→ {B}, P 7→ ∅, R 7→ {1}, S 7→ {IPR, IOI}}

is a correct tuple with respect to the attribute set defined in the previous exam-
ple. In the following examples, we will use the traditional positional notation; in
addition, we will omit braces containing a single tag. Thus, t1 will be written as
(B, ∅, 1, {IPR, IOI}). For example,

t1 u (B, I, ∅, ISS) = (B, I, 1, {IPR, IOI, ISS})

while t1 u (B, ∅, 2, ISS) is not defined because the attribute R is single-valued.
Furthermore,

(B, I, 1, {IPR, IOI, ISS}) v t1

while (B, I, ∅, ISS) and t1 are incomparable.

Definition 4 (Tuple collision). A pair of tuples t1, t2 ∈ T are said to collide (de-
noted t14t2), if there exists a tuple t3 ∈ T such that t3 v t1 and t3 v t2.

MetroNG: Computer-Aided Scheduling and Collision Detection 1009

Such a tuple t3 must satisfy the condition t1(a) ∪ t2(a) ⊆ t3(a) for each a ∈
A. The existence of such a tuple may be prevented by the condition a ∈ As ⇒
card(t(a)) ≤ 1 from the definition of tuple. If such tuples exists, the tuple meet
t1 u t2 is one of them. Therefore, the following lemma holds:

Lemma 1 (Tuple collision). A pair of tuples t1, t2 ∈ T collides (t14t2) if and only
if

t1(a) 6= ∅ ∧ t2(a) 6= ∅ ⇒ t1(a) = t2(a)

for each single-valued attribute a ∈ As.

Example 3. The tuples (B, I, ∅, ∅) and (∅, I, 4, ∅) collide while (B,M, ∅, ∅) and
(∅, I, 4, ∅) do not.

4.2 Group Base

Group base is the device used to specify which individuals exist by the means of
prototypes. Each prototype is modeled by a tuple; a group base is simply a set of
tuples, as shown in the following definition.

Definition 5 (Group base). A group base is a set G ⊆ T . A group base G is well-
formed if t14t2 ⇒ t1 = t2 for each t1, t2 ∈ G.

Each scheduling problem defines a group base and all (student-based) scheduling
constraints are related to this group base. We assume that there are no other
individuals than those corresponding to the prototypes enumerated in the group
base. Consequently, any group of individuals is completely described by a set of
prototypes from the group base. Instead of enumerating these prototypes directly,
a tuple inclusion offers the ability to define a set of prototypes using a single tuple,
as shown in the following definition of trace. Of course, not every set of prototypes
is a trace of a tuple; however, every set of prototypes may be defined as a union of
traces, i.e., any group of individuals may be described using a set of tuples. In real-
life cases, these tuples offer a significantly shorter description than the enumeration
of prototypes.

Definition 6 (Trace). The set

TG(t) = {g ∈ G | g v t}

is called the trace of a tuple t with respect to a group base G.

The following lemma shows how the tuple meet operation corresponds to oper-
ations on prototype sets.

Lemma 2 (Trace of tuple meet). For each pair of tuples t1, t2 ∈ T such that t1u t2
exists, TG(t1 u t2) = TG(t1) ∩ TG(t2).

1010 D. Bednárek, J. Yaghob, F. Zavoral

The following important notions are defined with respect to a given group base G:
G-relative inclusion and collision. In these definitions, a group base functions as
a restriction on the set of individuals existing in the system; thus, the inclusion
relation is weakened and the collision relation strengthened by the G-relativization,
as shown in Lemma 3.

Definition 7 (Relative inclusion). For a pair of tuples t1, t2 ∈ T , t1 is considered
G-included in t2 with respect to a group base G (denoted t1 vG t2), if TG(t1) ⊆ TG(t2).

Definition 8 (Relative collision). Tuples t1, t2 ∈ T are said to G-collide with re-
spect to a group base G (denoted t14Gt2), if TG(t1) ∩ TG(t2) 6= ∅.

Lemma 3. For each pair of tuples t1, t2 ∈ T

t1 v t2 ⇒ t1 vG t2, t14Gt2 ⇒ t14t2.

D P R S
B I 1 IPR
B I 1 IOI
B I 1 ISS
B I 2 IPR
B I 2 IOI
B M 1
B M 2
N I 4
N I 5

Table 1. Example: A group base

Example 4. Let G be the group base shown in Table 1. Let t3 = (N, ∅, 4, ∅),
t4 = (N, I, ∅, ∅). Their traces with respect to G are

TG(t3) = {(N, I, 4, ∅)};TG(t4) = {(N, I, 4, ∅), (N, I, 5, ∅)}

and they are, by definition, ordered by G-inclusion (t3 vG t4) although they are in-
comparable by inclusion (t3 6v t4). Furthermore, the tuples (B, I, ∅, ∅) and (∅, I, 4, ∅)
do not G-collide although they do collide (see Example 3).

4.3 Normalization

The relativization with respect to a group base may cause that two different tuples
correspond to the same group of individuals, which means that the two tuples are
equivalent with respect to the group base.

Definition 9 (Relative equivalence). Tuples t1, t2 ∈ T are considered G-equivalent
(denoted t1 ≈G t2), if t1 vG t2 ∧ t2 vG t1.

MetroNG: Computer-Aided Scheduling and Collision Detection 1011

The G-inclusion is induced by set-inclusion on traces; therefore, it is a partial
order on T . Consequently, the G-equivalence is an equivalence.

We will show that G-equivalence classes on tuples can be uniquely represented
by normalized tuples.

Definition 10 (Implied attribute). An attribute a ∈ A is called implied with re-
spect to a tuple t ∈ T and a group base G (denoted t `G a), if there exists a tag
v ∈ Da such that t ≈G (tu {a 7→ {v}}). The attribute is called non-trivially implied
if v /∈ t(a).

Definition 11 (Normalized tuple). A tuple t ∈ T is called normalized with respect
to a group base G, if TG(t) 6= ∅ and there exists no attribute being non-trivially
implied with respect to t.

Lemma 4 (Tuple equivalence). If tuples t1, t2 ∈ T are normalized with respect to
a group base G then

t1 ≈G t2 ⇒ t1 = t2.

Each tuple whose trace is non-empty can be normalized by adding implied at-
tributes and their values until a normalized tuple is reached. In addition, the lemma
essentially states that normalized tuples are unique representatives of equivalence
classes induced by the G-equivalence, with the exception of the class of tuples whose
trace is empty.

Normalized tuples are also representatives of their traces. Not every subset of
a group base G is a trace of a tuple; however, every subset of G can be represented by
a union of traces of some set of tuples. Thus, sets of normalized tuples can represent
subsets of G.

4.4 Events and Visitors

In our scheduling problem, a subset of G represents the visitors of an event. How-
ever, this subset may be quite large for human perception; therefore, an alternative
representation using normalized tuples is understood more easily because it can be
usually significantly smaller. On the other hand, for processing in software, the
traces can be stored in bitmaps and handled using Boolean operators.

In addition, representation by tuples usually works in better accordance with
reality when the group base G is changed due to evolution of curricula. Therefore,
tuples are more suitable for persistent representation than subsets of G.

These observations led to the following design principles:

• When presented to users, representation using normalized tuples is always used.

• In the database and in SQL-based applications (web interface), normalized tu-
ples are used.

• In C++ applications, tuples are converted to bitmaps representing traces and
handled using vectorized bit operations.

1012 D. Bednárek, J. Yaghob, F. Zavoral

Definition 12 (Events). Let G be a group base; E be a set of events. A mapping β :
E → P(T) is called event binding. An event binding is called normalized if, for each
event e ∈ E , each tuple in β(e) is normalized with respect to G and t1 vG t2 ⇒ t1 = t2
for each t1, t2 ∈ β(e).

The visualization algorithm uses a precomputed relation MG ⊆ E × G stored as
a binary matrix according to the following definition.

Definition 13 (Concern matrix).

MG = {〈e, t〉 | (∃te ∈ β(e)) t ∈ TG(te)}.

Definition 14 (Event collision). Events e1, e2 ∈ E are said to G-collide if there are
tuples t1 ∈ β(e1) and t2 ∈ β(e2) such that t14Gt2.

4.5 Visualization of the Tuple Hierarchy

As mentioned in Section 3.1, the partially-ordered set of groups is displayed using
a tree. In this section, we will define the tree more formally.

Definition 15 (Attribute tree). Attribute tree is a labeled unranked rooted tree

U = (Vm, Vp, r, π, Lm, Lp, τ)

whose nodes are of three kinds – meta-nodes Vm, plain nodes Vp and the root node r.
The mapping

π : (Vm → (Vp ∪ {r})) ∪ (Vp → Vm)

defines the structure of the tree by defining the parent π(n) of every node n 6= r.
The mapping

Lm : Vm → A

assigns attributes to meta-nodes and the mapping

Lp : Vp → D

assigns tags to plain nodes. Each node n is also assigned a tuple τ(n) defined
recursively as

τ(r) = ∅,
(∀n ∈ Vm) τ(n) = τ(π(n)),

(∀n ∈ Vp) τ(n) = τ(π(n)) u {Lm(π(n)) 7→ {Lp(n)}}.

Definition 16 (Distinctive attribute tree). An attribute tree is called distinctive
with respect to a group base G if

(∀n ∈ Vp) TG(τ(n)) 6= ∅ ∧ τ(n) 6≈G τ(π(n)).

MetroNG: Computer-Aided Scheduling and Collision Detection 1013

Definition 17 (Functional dependency). An attribute b ∈ A is called functionally
dependent on an attribute a ∈ A with respect to a tuple t ∈ T and a group base G
(denoted t `G a; b), if, for each tag v ∈ Da, the attribute b is implied with respect
to the tuple (t u {a 7→ {v}}) and the group base G. The functional dependency is
called non-trivial if b 6= a and t(b) = ∅.

Definition 18 (Non-skipping attribute tree). An attribute tree is called non-skip-
ping with respect to a group base G if

(∀n ∈ Vm) τ(π(n)) `G a; Lm(n)⇒ a = Lm(n).

An attribute tree is used to display (a part of) the partial order defined by the
G-inclusion on the set of normalized tuples. In this sense, the role of the attribute
tree is similar to Hasse diagrams [5]; however, the interactive environment allows to
incrementally unroll the lattice DAG to a tree. Note that the completely unrolled
tree may have an exponential number of nodes with respect to the original DAG;
therefore, the interactive incremental approach is crucial.

Attribute trees are constructed incrementally from the group base G, whenever
the user expands a node n. The construction algorithm scans the trace TG(τ(n))
to determine which attributes are functionally dependent on τ(n). These attributes
are excluded; in addition, the application may exclude some attributes based on
site-specific configuration. The remaining attributes, if any, generate a meta-node
children of n. When expanding a meta-node, all corresponding attribute values in
TG(τ(n)) are used.

An attribute tree contains interleaved layers of meta-nodes and value nodes; each
pair of layers corresponds to adding an attribute/value pair to the corresponding
tuple. The two layers allow the user to select the required attribute first; then,
values from the corresponding domain are selected. In a distinctive attribute tree,
the children of a meta-node nm correspond to a disjoint (in the sense of G-collision)
cover of the parent value node π(nm). Consequently, a sibling of nm contains the
same set of groups; arranged, however, in a different manner.

4.6 Visualization of Event Binding

When displaying the schedule relevant to a tuple t, concern relations are used to
determine the associated set of events. Covering concern collects all events which are
bound to all individuals from t (i.e. all basic tuples included in t) while intersecting
concern contains events bound to some individuals from t. Naturally, the covering
concern is a subset of the intersecting concern.

Definition 19 (Concern relations). The mappings coverG, intersectG : T → P(E)
are called covering concern and intersecting concern and defined as

coverG(t) = {e ∈ E | (∃te ∈ β(e)) t vG te},
intersectG(t) = {e ∈ E | (∃te ∈ β(e)) t4Gte}.

1014 D. Bednárek, J. Yaghob, F. Zavoral

For each node n of the attribute tree, the application displays all events from
the covering concern which are not in the covering concern of the parent, i.e., the
event set coverG(τ(n)) \ coverG(τ(π(n))), horizontally positioned at their scheduled
time. Note that for an internal node a covering event is displayed using a rectangle
whose height corresponds to the visual height of the node. In addition, events
from intersectG(τ(n)) \ coverG(τ(n)) are displayed as grayed areas to indicate their
presence.

When two covering events e1, e2 ∈ coverG(τ(n)) intersect at the time axis, it
is obvious that there is a collision and the intersecting area of their rectangles is
painted in red to indicate the problem. Similarly, if a covering event intersects with
an intersecting event, it also means a collision; however, this kind of collision is
weaker because it affects only a part of individuals from τ(n). On the other hand,
if two intersecting events e1, e2 ∈ intersectG(τ(n)) intersect at the time axis, it may
or may not indicate a problem – in this case, the pair of events must be examined
using the definition of event collision (see Section 4.4).

Covering events may be computed using bit-vector operations on columns MT
G(t)

of the concern matrix, according to the following lemma.

Lemma 5 (Concern relations).

coverG(tn) =
⋂{

MT
G(t) | t ∈ TG(tn)

}
,

intersectG(tn) =
⋃{

MT
G(t) | t ∈ TG(tn)

}
.

Events found using the bit-vector arithmetics are then ordered by their position
on the time axis and their mutual collisions are checked during a single scan along
the time axis, as shown in the following section.

5 ALGORITHMS

In order to use the formal model practically, we have developed three algorithms
that compute the useful knowledge from the underlying data. The most important
algorithm is the detection of collisions among events in a given context. Other two
tightly coupled algorithms, the extraction algorithm and the generator of functional
dependencies, are used for user navigation in the attribute trees. The algorithms
were then used in the application MetroNG [1], see Section 6 for its description.

5.1 Collision Detection

The basic task solved by the collision detector is the enumeration of all collisions
among all events in a given context, i.e., all events in the intersecting concern
intersectG(tC) (see Definition 19) of a given tuple tC ∈ T . The corresponding algo-
rithm is shown in Algorithm 1.

The collision detection algorithm starts by the enumeration of all events in the
intersecting concern (line 2) – based on the Lemma 5, this can be done in O(|E| · |G|)

MetroNG: Computer-Aided Scheduling and Collision Detection 1015

Algorithm 1 Collision Detection Algorithm
Input: tC ∈ T
Output: C ⊂ P(E) – the set of collisions
1: A := ∅
2: for all e ∈ intersectG(tC) do
3: A := A ∪ {〈e.Tbegin, 0, e〉, 〈e.Tend, 1, e〉}
4: end for
5: sort A using lexicographical order on triplets
6: E := ∅
7: for all 〈T, f, e〉 ∈ A do
8: if f = 0 then
9: for all e1 ∈ E do

10: if MG(e) ∩MG(e1) 6= ∅ then
11: C := C ∪ {{e, e1}}
12: end if
13: end for
14: E := E ∪ {e}
15: else
16: E := E \ {e}
17: end if
18: end for

time. For every event, its begin and end times e.Tbegin, e.Tend are added to the time
axis A and later sorted (line 3 and 5).

The core part of the algorithm examines all intervals on the time axis (line 7),
keeping track of active events E at each moment of time. Whenever a new event e
starts, it is compared to every previous event e1 (line 10), using bit operations on
rows of the concern to detect event collision according to Definition 14. The worst-
case time complexity of the core part is O(|E| · |E| · |G|) because |A| ≤ 2|E| and
|E| ≤ |E|.

Although the time complexity of the algorithm is, in principle, cubic, its real
performance cost is negligible even for an interactive application, because the above-
mentioned worst-case limits for the sizes |A| and |E| are highly overestimated with
respect to real data. Furthermore, the bit operations may be computed extremely
quickly in current computer architectures.

5.2 Extraction Algorithm

The non-skipping attribute trees defined in Definition 18) are used for navigation
in structures of event visitors, namely student groups and teachers. When the user
selects the appropriate level-of-detail, he/she incrementally expands the branches
from the root of the tree until the desired nodes are reached.

1016 D. Bednárek, J. Yaghob, F. Zavoral

Unfortunately, the trees may be very large for a common user (hundreds or
thousands of nodes); their presentation in a fully expanded tree is unacceptable.
In order to expand only the proper parts of the tree, the extraction algorithm is
used.

When a leaf of a non-skipping attribute tree is expanded (by the user), the
extraction algorithm computes the set of children of the selected node. If the set is
non-empty, the node is no longer a leaf but an internal node – from the theoretical
point of view, the previously displayed non-skipping attribute tree is replaced by
a new, larger one. In each step, the extraction algorithm computes all feasible
nodes, i.e., all possible expansions of the trace.

The algorithm takes the whole tuple set and the expanded tree branch as an in-
put; it incrementally computes a set of successors (attribute types) for the branch.
Two principal data structures are used within this algorithm:

• G: a group base defined by an instance administrator.

• fD: boolean matrix indexed by attribute types containing functional dependen-
cies between pairs of attributes with respect to the tree branch tB being currently
unrolled. fD(x, y) = true ⇔ tB ` y ; x. This matrix is computed on each run
of the algorithm when the next tree level is incrementally unrolled.

The algorithm is divided into two main parts – computing next level and gene-
rating functional dependencies.

5.2.1 Next Level

The Algorithm 2 contains the main NextLevel function. The idea is that based
on a functional dependency matrix computed from the tree branch all dependent
attribute types are excluded from the set of candidates.

Algorithm 2 NextLevel function
Input: tB ∈ T
Output: AR ⊆ A
1: AC := {a ∈ A | tB(a) = ∅}
2: fD := GenFunDep(tB,AC)
3: AR := AC

4: for all x ∈ AC do
5: if fD(x, x) then
6: AR := AR \ {x}
7: end if
8: for all y ∈ AC | fD(x, y) do
9: AR := AR \ {y}

10: end for
11: end for

MetroNG: Computer-Aided Scheduling and Collision Detection 1017

Detailed description:

• 1: AC is a set containing all possible candidates for the next tree level, initialized
by all unused attributes, i.e., the attributes that are not contained in the tree
branch.

• 2: The functional dependency of all attribute pairs is computed.

• 4–11: All unused functionally dependent attributes are removed.

• 5–7: Empty and constant attributes effectively behave like functionally self-
dependent, they are removed from AC .

• 8–10: Each attribute y that is functionally dependent on any unused attribute x
is removed since x must be unrolled prior to y.

The remaining attributes in AC define the set of possible attributes for the next
level.

5.2.2 Functional Dependencies

The key operation of the NextLevel function is the computation of functional de-
pendencies. The corresponding Algorithm 3 works as follows:

• 1–5: The lv and ch maps indexed by A are used for constantness detection, their
elements contain last attribute values and number of distinct values respectively.
Initially, no attribute values exist, no attribute shall be displayed (it will be
changed later).

• 3–4: First, the dependency matrix is filled. The diagonal true values represent
self dependence, i.e., the absence of values of such attribute.

• 6–21: Each matching tuple in the tuple set is detected for constantness, non-
emptiness and potential functional dependency.

• 6–8: Within each tuple in the tuple set matching the tree branch, all attributes
that were not used in the tree branch are tested.

• 9–10: Number of distinct values of such attribute (or, more exactly, value
changes) within the matching tuple set is detected.

• 12–13: If the unused attribute is contained in the tuple, the functional self-
dependency is cleared.

• 14–18: Now we have one particular attribute in one tuple; each distinct non-
empty unused (not contained in the tree branch) attribute is set to be a function-
ally dependent candidate since there may be a relation between these attributes.
These relations will be checked later. The dependency cannot be detected in
one pass since there may be independent attributes (x1y1, x1y2, x2y1, x2y2); in
this case all possible combinations should be generated.

• 22–26: Each constant attribute (its value was never changed in the set of match-
ing tuples) is excluded from candidates – there is nothing to select from.

1018 D. Bednárek, J. Yaghob, F. Zavoral

Algorithm 3 Function GenFunDep
Input: G ⊆ T ; tB ∈ T
Output: fD : A×A → Boolean
1: lv : A → D ; lv := ∅
2: ch : A → N ; (∀a) ch(a) := 0
3: for all 〈x, y〉 ∈ A ×A do
4: fD(x, y) := (x = y)
5: end for
6: for all i ∈ TG(tB) do
7: for all x ∈ A \ dom(tB) do
8: if i(ax) 6= lv(x) then
9: ch(x) := ch(x) + 1

10: lv(x) := i(x)
11: end if
12: if x ∈ dom(i) then
13: fD(x, x) := false
14: for all y ∈ A \ dom(tB) do
15: if x 6= y ∧ y ∈ dom(i) then
16: fD(x, y) := true
17: end if
18: end for
19: end if
20: end for
21: end for
22: for all x ∈ A do
23: if ch(x) ≤ 1 then
24: fD(x, x) := true
25: end if
26: end for
27: for all i ∈ TG(tB) do
28: for all j ∈ TG(tB) ∧ j < i do
29: for all x ∈ A \ dom(tB) do
30: if x ∈ dom(i) ∧ x ∈ dom(j) ∧ i(x) = j(x) then
31: for all y ∈ A \ dom(tB) do
32: if x 6= y ∧ (y /∈ dom(i) ∨ y /∈ dom(j) ∨ i(y) 6= j(y)) then
33: fD(y, x) := false
34: end if
35: end for
36: end if
37: end for
38: end for
39: end for

MetroNG: Computer-Aided Scheduling and Collision Detection 1019

• 27–39: The main part of the functional dependency detection – dependency
candidates are checked.

• 27–29: Each pair of the matching tuples is compared and functional dependency
disablers are detected.

• 30: Each unused attribute x having equal value in both tuples is considered.

• 31–32: If another unused attribute y is either empty in one of the tuples or their
values are different . . .

• 33–. . . : then x is not functionally dependent on y since there exist distinct values
of y for one value of x.

5.2.3 Examples

This section contains examples of particular data and their processing. The examples
use the group base defined in Table 1. This data set is a very simplified real-world
excerpt. Nevertheless, using this data the important properties of the extraction
algorithm can be demonstrated.

There are 4 attributes used – ‘D’, ‘P’, ‘R’ and ‘S’. Their real-world meaning is
the education level (Bachelor/Master), the field of study (Informatics/Mathemat-
ics), the year of study and specialization (Programming/Computer Science/Software
Systems), although it is irrelevant for the algorithm.

Example 5. Branch tree = {B, –, –, –}

D P R S D P R S
D 1 0 0 0 D 1 0 0 0
P 0 0 1 1 P 0 0 0 1
R 0 1 0 1 R 0 0 0 0
S 0 1 1 0 S 0 0 0 0

Table 2. Dependency matrix for {B, –, –, –}

Table 2 contains the computed dependency matrix in two versions – the left
matrix is produced by the initialization phase of the algorithm, the right matrix is
a final output of the algorithm.

In this example the branch tree consists of one attribute D with value of ‘B’.
The first phase detects the following facts:

• D is excluded since it is already contained in the branch tree

• P, R and S attributes are not used and nonempty; they may have functional
dependencies

The second phase erases those functional dependency candidates that have no
data dependency in matching tuples. E.g., the tuple pair i = {B, I, 1, –}, j =
{B, I, –, –} and attribute pair ax = P, ay = R induce that P is not functionally
dependent on R since there exist distinct values of R for one value of P, so that

1020 D. Bednárek, J. Yaghob, F. Zavoral

dp[P,R] is erased. Similarly the tuple pair i = {B, I, 1, IPR}, j = {B, I, –, –} induces
that P is not functionally dependent on S.

Finally, S ; P, D ; D, the D and S attributes are excluded from the next level;
the resultset (set of allowed attributes) = {P,R}.

Example 6. Branch tree = {N, –, –, –}
Table 3 displays the result of using another value of the attrubute D. There

are no ‘M’ values of the attribute P and no values of the attribute S at all in the
matching tuple set. It excludes the S attribute from the resultset in the first phase
and the dependecy R ; P in the second phase. Since the attribute P is constant
within the matching tuple set, the final resultset = {R}.

D P R S D P R S
D 1 0 0 0 D 1 0 0 0
P 0 0 1 0 P 0 0 1 0
R 0 1 0 0 R 0 0 0 0
S 0 1 1 1 S 0 0 0 1

Table 3. Dependency matrix for {N, –, –, –}

Example 7. Branch tree = {–, –, –, –}
If the branch tree is empty, the whole tuple set is processed for detection of the

first level attributes. During the first phase, all diagonal values are erased since no
attribute is used. All nondiagonal values are set since all pairs of attributes have
a nonempty value in at least one tuple; all attributes are functional dependency
candidates.

The second phase removes all dependency disablers. The resulting matrix shows
three remaining dependencies: R ; D, S ; D, S ; P. The final resultset is {D,P};
these attributes may be used at the first level.

D P R S D P R S
D 0 1 1 1 D 0 0 1 1
P 1 0 1 1 P 0 0 0 1
R 1 1 0 1 R 0 0 0 0
S 1 1 1 0 S 0 0 0 0

Table 4. Dependency matrix for the empty tree

6 VISUALIZATION

The theoretical background and the algorithms described in the previous sections
have been implemented in the MetroNG system, which consists of two complimen-
tary applications. The web interface offers access to the schedule namely for students
and teachers; this web application will not be discussed further in this article. The

MetroNG: Computer-Aided Scheduling and Collision Detection 1021

second application is the MetroNG client application intended for creators of the
schedule.

6.1 Application Modes

MetroNG supports several application modes; each mode de facto displays several
dimensions of the data and it is tailored for a specific class of events. The most
common type of events is a regular event being held every week of the semester at
the same time. The regular modes display these regular events using a days-of-the-
week time dimension as the X axis. These modes are used most of the time and an
example is displayed in Figure 1. Week-oriented modes are used for irregular events.
These modes allow the users to display schedule for each week individually.

Another type of events are block-oriented lectures; all working days in one week
are dedicated to a single lecture for a particular group of students. This type of
events is commonly used for practices and clinical education. The block mode
supports this type of events by using the weeks of the semester as the X axis; while
each week is displayed as a single column.

Moreover, there are three special-purpose application modes used for mainte-
nance work and a lot of other events in the system, e.g., room reservations not
related to lectures, students’ busy time, teachers’ preferences, etc.

6.2 Display Areas and Axes

Figure 1 displays the principal areas of the main application window. The text-
oriented part on the left contains a sorted and filtered list of events together with
their most important data fields. It is possible to directly schedule or reschedule
these events by dragging them to the graphical grid.

The graphical part displays events in a grid-like way. All views share the same
horizontal axis, but each view has a different vertical axis, usually rooms, student
groups, and teachers. Although these areas are used in all regular modes, their
content is dependent on the horizontal axis bound to a particular mode. These
grid areas are complemented by a detail area at the bottom that displays additional
information on any object including overlapping or colliding events.

The areas are bound to vertical and horizontal axes; there are 10 different linear
and tree-shaped axes in MetroNG and their combinations make possible to display
the data in the most useful way for particular tasks.

The tree axes hierarchically organize the main scheduling entities – e.g. rooms,
students, teachers, and courses. The extraction algorithm (Section 5.2) is useful
especially in the students’ axis since the structure is often very complex, irregular and
the data are too extensive to be displayed at once in an unstructured or regular way.
A small slice of the real-world students’ axis is depicted in Figure 2. Nevertheless,
the algorithms are used for other tree axes in the same way; there is no special
adjustment for student groups. The most valuable data (e.g., a classroom for the

1022 D. Bednárek, J. Yaghob, F. Zavoral

Figure 1. Principal MetroNG Areas

students in particular time, possible conflicts of location, etc.) during the whole
scheduling process is then displayed in the intersections of these axes.

6.3 Collisions and Decorators

One of the most valuable feature of MetroNG is the detection of collisions and the
prevention of collisions during the scheduling process. Both types of the collisions
are implemented using the Collision Detection algorithm (Section 5.1). Existing
collisions are displayed as hatched rectangles, so that the user can immediately

MetroNG: Computer-Aided Scheduling and Collision Detection 1023

Figure 2. Students’ axis

see an existing collisions (see Figure 3 and Figure 4). The figure also shows other
decorators used to display important information about the events (e.g., status flags,
event lock, etc).

Figure 3. Event Decorators

Other important decorator is the color used as the background of the rectan-
gle. Its meaning depends on the area where the rectangle is displayed. In the
students area, the color of the rectangles is the same as the color of the build-
ing they are scheduled to. In the room area, there is the same color as the stu-
dent groups that attend the event. Note that in Figure 1 in the top (room) sec-
tion of the view the color of the background (color of the building) very often

1024 D. Bednárek, J. Yaghob, F. Zavoral

Figure 4. Collisions

matches the color of the rectangle. This is an intentional side effect of this princi-
ple.

So far, we described graphical elements that help the user see the current state
of the schedule. However, there is another important group – features that allow the
user to see possible effects of his or her actions (of changing the schedule). For an
example see Figure 4. When an event is selected, some parts of the view are covered
with hatching. It displays the areas where there is a potential collision between the
selected event and other events – that is, if the event is scheduled to that time and
room, it would create a particular collision.

7 CONCLUSIONS

The main contributions of this paper can be summed up as follows:

• formal model of events and visitors

• algorithms that efficiently detect event collisions and compute a structure of
user navigation in such multidimensional data without explicit specification of
the navigation structure

• the MetroNG application that implements the formal model and proposed al-
gorithms; the application supports the whole process of creating a complex uni-
versity and curricula schedule.

The formal model for the complex collision detection system is used to iden-
tify situations where a group of students should attend two classes scheduled for
the same time. Using the model and algorithms, there is no need for the users
to explicitly describe the navigation structure of the underlying data; the struc-
ture is computed automatically from the used data-set (group base) and its current
state (tuple traces). The algorithms are successfully implemented in the MetroNG
scheduling tool which is currently used in real-life by some of the largest universities
in the Czech Republic for modeling complicated large-size schedules – e.g., at the
Charles University in Prague, there are 53 000 students, 6 000 teachers, 650 study
programs and 40 000 scheduling events. The real-life experience of the users shows
that the presented methods are able to solve their task efficiently.

In our future work, we intend to formalize the user requirements and the quality
of the resulting output and compare our solution to automatic schedulers.

MetroNG: Computer-Aided Scheduling and Collision Detection 1025

Acknowledgment

This work was supported by the Grant Agency of the Czech Republic, grant number
SVV-2013-267312, GACR 204/13/08195 and PRVOUK P46.

REFERENCES

[1] Bednarek, D.—Dokulil, J.—Yaghob, J.—Zavoral, F.: MetroNG: Multi-
modal Interactive Scheduling Interface. Proceedings of the International Conference
on Advanced Visual Interfaces, ACM, 2010, pp. 317–320.

[2] Carpineto, C.—Romano, G.: Concept Data Analysis: Theory and Applications.
Wiley, 2004, ISBN 978–0–470–85055–8.

[3] Ganter, B.—Wille, R.: Contextual Attribute Logic. In: Tepfenhart, W., Cyre,
W. (Eds.), Conceptual Structures: Standards and Practices. LNAI, 1999, Vol. 1640,
pp. 377–388.

[4] Ganter, B.: Contextual Attribute Logic of Many-Valued Attributes. In: Car-
bonell, J. G., Siekmann, J. (Eds.), Formal Concept Analysis. LNCS, 2005, Vol. 3626,
pp. 101–103.

[5] Birkhoff, G.: Lattice Theory. American Mathematical Soc., 1984.

[6] Sehwan, Y.—Jongdae, J.—Dae Ryong, K.: Self Conflict Resolving Interac-
tive Web-Based Class Scheduling System. Academy of Information and Management
Sciences Journal, Vol. 8, 2005, No. 2, pp. 69–78.

[7] Visual Classroom Scheduler, Visual Scheduling Systems, 2001, http://www.vss.

com.au/index.asp.

[8] Class Scheduler, Cyber Matrix, 2009, http://www.cybermatrix.com/class_

scheduler.html.

[9] Lantiv Timetabler, Lantiv, 2009, http://www.lantiv.com/.

[10] Pothitos, N.—Stamatopoulos, P.—Zervoudakis, K.: Course Scheduling in
an Adjustable Constraint Propagation Schema. 2012 IEEE 24th International Con-
ference on Tools with Artificial Intelligence (ICTAI), 2012, Vol. 1, pp. 335–343, DOI:
10.1109/ICTAI.2012.53.

[11] Dasgupta, P.—Khazanchi, D.: Adaptive Decision Support for Academic Course
Scheduling Using Intelligent Software Agents. International Journal of Technology in
Teaching and Learning, Vol. 1, 2005, No. 2, pp. 63–78.

[12] Saltzman, R.: An Optimization Model for Scheduling Classes in a Business School
Department. Journal of Operations Management, Vol. 7, 2009, No. 1, pp. 84–92.

[13] Kingston, J. H.: The KTS High School Timetabling System. The 6th Interna-
tional Conference on Practice and Theory of Automated Timetabling (PATAT), 2006,
pp. 181–195.

[14] Tsang, E.: A Glimpse of Constraint Satisfaction. Artificial Intelligence Review,
Vol. 13, 1999, No. 3, pp. 215–227.

1026 D. Bednárek, J. Yaghob, F. Zavoral

[15] Carter, M. W.: A Comprehensive Course Timetabling and Student Scheduling
System at the University of Waterloo. Practice and Theory of Automated Timetabling
III. LNCS, 2001, Vol. 2079, pp. 64–82.

[16] Mathaisel, D. F. X.—Comm, C. L.: Course and Classroom Scheduling: An Inter-
active Computer Graphics Approach. Journal of Systems and Software, Vol. 15, 1991,
Issue 2, pp. 149–157, ISSN 0164–1212.

[17] Abdennadher, S.—Marte, M.: University Course Timetabling Using Constraint
Handling Rules. Applied Artificial Intelligence, Vol. 14, 2000, No. 4, pp. 311–325.

[18] Burke, E.—Bykov, Y.—Petrovic, S.: A Multicriteria Approach to Examination
Timetabling. LNCS, 2001, Vol. 2079, pp. 118–131.

[19] Dimopoulou, M.—Miliotis, P.: Implementation of a University Course and Exa-
mination Timetabling System. European Journal of Operational Research, Vol. 130,
2001, No. 1, pp. 202–213.

[20] Rudová, H.—Murray, K.: University Course Timetabling with Soft Constraints.
LNCS, 2003, Vol. 2740, pp. 310–328.

[21] Burke, E. K.—MacCarthy, B.—Petrovic, S.—Qu, R.: Case-Based Reason-
ing in Course Timetabling: An Attribute Graph Approach. LNCS, 2001, Vol. 2080,
pp. 90–104.

[22] Burke, E. K.—Newall, J. P.: Solving Examination Timetabling Problems
Through Adaption of Heuristic Orderings. Annals of Operations Research, Vol. 129,
2004, No. 1-4, pp. 107–134.

[23] Schaerf, A.—Meisels, A.: Solving Employee Timetabling Problems by General-
ized Local Search. LNCS, 2000, Vol. 1792, pp. 380–389.

[24] Burke, E.—Bykov, Y.—Newall, J.—Petrovic, S.: A Time-predefined Local
Search Approach to Exam Timetabling Problems. IIE Transactions, Vol. 36, 2004,
No. 6, pp. 509–528.

[25] Ross, P.—Hart, E.—Corne, D.: Genetic Algorithms and Timetabling. Natural
Computing Series, Advances in Evolutionary Computing: Theory and Applications,
2003, pp. 755–777.

[26] Beligiannis, G. N.—Moschopoulos, C. N.—Kaperonis, G. P.—Likotha-
nassis, S. D.: Applying Evolutionary Computation to the School Timetabling Prob-
lem: The Greek Case. Computers and Operations Research, Vol. 35, 2008, No. 4,
pp. 1265–1280.

[27] Nedjah, N.—de Macedo Mourelle, L.: Evolutionary Time Scheduling. Inter-
national Conference on Information Technology, Coding and Computing (ITCC ’04),
Vol. 2, 2004, pp. 357–361.

[28] Qarouni-Fard, D.—Najafi-Ardabili, A.—Moeinzadeh, M.-H.: Finding Fea-
sible Timetables with Particle Swarm Optimization. 4th International Conference on
Innovations in Information Technology, 2007, pp. 387–391.

[29] Chu, S.-C.—Chen, Y.-T.—Ho, J.-H.: Timetabling Scheduling Using Particle
Swarm Optimization.1st International Conference on Innovative Computing, Infor-
mation and Control, 2006, pp. 324–327.

[30] Socha, K.—Knowles, J.—Sampels, M.: A MAX-MIN Ant System for the Uni-
versity Course Timetabling Problem. LNCS, 2002, Vol. 2463, pp. 1–13.

MetroNG: Computer-Aided Scheduling and Collision Detection 1027

[31] di Gaspero, L.—Schaerf, A.: Tabu Search Techniques for Examination Time-
tabling. LNCS, 2001, Vol. 2079, pp. 104–117.

[32] Burke, E. K.—Kendall, G.—Soubeiga, E.: A Tabu-Search Hyperheuristic for
Timetabling and Rostering. Journal of Heuristics, Vol. 9, 2003, No. 6, pp. 451–470.

[33] Rossi-Doria, O.—Sampels, M.—Birattari, M.—Chiarandini, M.—
Dorigo, M.—Gambardella, L. M. et al.: A Comparison of the Performance
of Different Metaheuristics on the Timetabling Problem. LNCS, 2003, Vol. 2740,
pp. 329–351.

[34] Bilgin, B.—Özcan, E.—Korkmaz, E. E.: An Experimental Study on Hyper-
Heuristics and Exam Timetabling. 6th International Conference on the Practice and
Theory of Automated Timetabling, 2006, pp. 123–140.

[35] Burke, E. K.—McCollum, B.—Meisels, A.—Petrovic, S.—Qu, R.:
A Graph-Based Hyper Heuristic for Educational Timetabling Problems. European
Journal of Operational Research, Vol. 176, 2007, pp. 177–192.

[36] Burke, E. K.—Petrovic, S.: Recent Research Directions in Automated Time-
tabling. European Journal of Operational Research, Vol. 140, 2002, pp. 266–280.

[37] Adriaen, M.—de Causmaecker, P.—Demeester, P.—Berghe, G. V.: Tack-
ling the University Course Timetabling Problem with an Aggregation Approach.
6th International Conference on the Practice and Theory of Automated Timetabling,
2006, pp. 330–335.

[38] Malim, M. R.—Khader, A. T.—-Mustafa, A.: Artificial Immune Algorithms for
University Timetabling. 6th International Conference on the Practice and Theory of
Automated Timetabling, 2006, pp. 234–245.

[39] Perzina, R.: Solving the University Timetabling Problem with Optimized Enrol-
ment of Students by a Parallel Self-Adaptive Genetic Algorithm. 6th International
Conference on the Practice and Theory of Automated Timetabling, 2006, pp. 264–280.

[40] Ten Eikelder, H. M. M.—Willemen, R. J.: Some Complexity Aspects of Se-
condary School Timetabling Problems. LNCS, 2001, Vol. 2079, pp. 18–27.

[41] de Haan, P.—Landman, R.—Post, G.—Ruizenaar, H.: A Four-Phase Ap-
proach to a Timetabling Problem in Secondary Schools. 6th International Conference
on the Practice and Theory of Automated Timetabling, 2006, pp. 423–425.

[42] Jacobsen, F.—Bortfeldt, A.—Gehring, H.: Timetabling at German Second-
ary Schools: Tabu Search Versus Constraint Programming. 6th International Confer-
ence on the Practice and Theory of Automated Timetabling, 2006, pp. 439–442.

[43] Kingston, J. H.: The KTS School Timetabling System. 6th International Conference
on the Practice and Theory of Automated Timetabling, 2006, pp. 181–195.

[44] Cooper, T. B.—Kingston, J. H.: The Complexity of Timetable Construction
Problems. TR No. 495, Basser Department of Computer Science, The University
of Sidney, 1995.

1028 D. Bednárek, J. Yaghob, F. Zavoral

David Bedn�arek received his Ph. D. in informatics from Char-
les University in Prague in 2009. His research interests in-
clude programming languages, compiler construction, parallel
programming, and database systems. He was involved in many
national and international research projects. He served as mem-
ber of the program committee of several international confer-
ences.

Jakub Yaghob is currently associated with the Charles Univer-
sity in Prague, Faculty of Mathematics and Physics. He gradu-
ated consequently at the Charles University in Prague (1991 –
M.Sc., 2003 – Ph.D.). He is responsible supervisor for numerous
development grants of the Ministry of Education and FRV grants
(e.g. Environment for teaching parallel programming). He was
also working on numerous GAR grants (Highly Scalable Par-
allel and Distributed Methods of Data Processing in e-Science
amongst the others). He is a member of a few international pro-
gram committees of various conferences and workshops taking

the role of the program or organization committee chair several times.

Filip Zavoral is the vice-head of the Department of Software
Engineering, Charles University in Prague, Czech Republic. His
research interests include distributed and parallel technologies,
cloud computing and efficient data processing. He was involved
in many national and international research projects. He has
co-authored more than 60 research publications such as: journal
papers, conference proceedings papers, book chapters, and ed-
itorials of journal special issues. He is member of the editorial
board of several international journals and served as member
of the program or organizing committee of many international
conferences.

119

Chapter 9.

Locality Aware Task Scheduling in Parallel Data

Stream Processing

Zbyněk Falt, Martin Kruliš, David Bednárek, Jakub Yaghob, Filip Zavoral

Proceedings of the 8th International Symposium on Intelligent Distributed Computing -

IDC'2014, Springer Verlag, pp. 331-342, 2014

120

Chapter 1

Locality Aware Task Scheduling in
Parallel Data Stream Processing

Zbyněk Falt, Martin Krulǐs, David Bednárek, Jakub Yaghob, Filip Zavoral

Abstract Parallel data processing and parallel streaming systems become
quite popular. They are employed in various domains such as real-time signal
processing, OLAP database systems, or high performance data extraction.
One of the key components of these systems is the task scheduler which
plans and executes tasks spawned by the system on available CPU cores.
The multiprocessor systems and CPU architecture of the day become quite
complex, which makes the task scheduling a challenging problem. In this
paper, we propose a novel task scheduling strategy for parallel data stream
systems, that reflects many technical issues of the current hardware. We were
able to achieve up to 3× speed up on a NUMA system and up to 10% speed
up on an older SMP system with respect to the unoptimized version of the
scheduler. The basic ideas implemented in our scheduler may be adopted for
task schedulers that focus on other priorities or employ different constraints.

1.1 Introduction

Parallel processing is becoming increasingly important in high performance
systems, since the hardware architectures have embraced concurrent exe-
cution to increase their computational power. Unfortunately, parallel pro-
gramming is much more difficult and error prone, since the programmers
are used to think and express their intentions in serial manner. Many dif-
ferent paradigms and concepts have been devised to simplify the design of
concurrent processing.

One of these approaches is stream data processing. It was originally de-
signed for systems that process data which are generated in real-time and

Parallel Architectures/Applications/Algorithms Research Group
Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic e-mail:
falt,krulis,bednarek,yaghob,zavoral@ksi.mff.cuni.cz

1

2 Lecture Notes in Computer Science: Authors’ Instructions

need to be processed immediately, but they also have been adopted in
database systems and parallel systems, since they simplify the application
design and naturally reveal opportunities for parallelization.

A streaming application is usually expressed as an oriented graph (also
denoted as execution plan), where the vertices are processing stages (opera-
tors or filters) that process the data and the edges prescribe how the data are
passed on between these stages. The main advantage from the perspective of
parallel processing is that the each stage contains serial code (which is easy
to design) and multiple stages may be executed concurrently.

One of the systems that implements this idea is Bobox [5]. The main objec-
tive of Bobox is to process semantic and semi-structured data effectively [6].
It currently supports the SPARQL [18] query language and partially the
XQuery [8] and the TriQuery [4] language. One of the most challenging prob-
lems of this system is to effectively and efficiently execute the work of the
operators on the available CPU cores.

In this paper, we propose a novel locality aware task scheduling strategy
(called LAS) for data streaming systems. This strategy incorporates impor-
tant hardware factors such as cache hierarchies and non-uniform memory
architectures (NUMA). We have implemented this strategy in the Bobox
task scheduler and achieved significant speedup on modern host systems. Al-
though our performance analysis was conducted using Bobox, the scheduler
itself can be easily adopted for other streaming systems as well.

The paper is organized as follows. Section 1.2 revise the most important
facts regarding state-of-the-art CPU architectures and NUMA systems. Our
LAS scheduler is described in Section 1.3. Section 1.4 presents the experimen-
tal results that evaluate the benefits of our innovations. The related work is
revised in Section 1.5 and Section 1.6 concludes the paper.

1.2 CPU Fundamentals and Task Scheduling

In this section, we revise fundamental facts regarding the architectures of
modern multi-core CPUs and NUMA systems. We also put these facts in
the perspective of task scheduling which is often employed to achieve parallel
data processing in complex systems.

1.2.1 CPU Architecture

The CPU architectures became quite complex in the past few decades. We
will focus solely on the properties, which directly affect the parallel execution
of tasks that cooperate via shared memory. A generic schema of modern
multi-core CPU is presented in Figure 1.1.

1 Locality Aware Task Scheduling 3

Fig. 1.1: A schema of multi-core CPU

The CPU comprises several physical cores which are quite independent.
These cores usually share only the memory controller and sometimes certain
levels of cache. The physical cores are often divided into two logical cores by
means of hyper threading (Intel) or dual-core modules (AMD) technology.
The logical cores share also some computational units and also the lowest
level of cache. In the remainder of the paper, we will use the term CPU core
to denote logical cores – i.e., the lowest computational unit of the CPU which
processes one thread at a time.

Multiprocessor configurations combine several CPUs into one system.
Older CPUs, which does not have integrated memory controllers are con-
nected in a similar way as the physical cores in the CPU die. This configura-
tion is called symmetric multiprocessing (SMP). Newer CPUs have memory
controllers integrated, thus each CPU manages part of the system memory.
This configuration is called non-uniform memory architecture (NUMA), since
the memory latency depends on whether it is directly connected to the CPU
who uses it, or whether it needs to be accessed via a controller of another
CPU.

The organization of the cores within the CPU and organization of the
CPU chips within a NUMA system forms a hierarchy. Logical cores of one
physical core or physical cores that share memory cache are considered close,
while cores on two different CPU chips (i.e., in two different NUMA nodes)
are considered distant. This hierarchy plays significant role in task planning.
Related or cooperating tasks should be scheduled on cores that are close by,
since they will likely benefit from cache sharing. Completely unrelated tasks
using different portions of the main memory should be scheduled on different
NUMA nodes, so they can keep their intermediate data in different caches
and in different memory nodes.

4 Lecture Notes in Computer Science: Authors’ Instructions

1.2.2 Task Scheduling

In order to achieve parallelism on modern CPUs, the work needs to be di-
vided into portions that can be processed concurrently. Traditional division
into threads is too coarse and tedious, hence most of the parallel systems
deal with tasks. The task comprises both the data and the procedure that
process the data. Tasks are scheduled and processed by available CPU cores.
It has been established [19] that the tasks can be effectively employed in
the implementation of more complex parallel patterns such as parallel loops,
reduction, pipeline, or data stream processing.

In this work, we focus solely on systems where the tasks are generated dy-
namically by other tasks or by external events (e.g., user requests). Such sys-
tems must employ dynamic scheduling, which can cope with the ever changing
situation. The dynamic scheduler manages the tasks which are ready to run
and when to assign them to the available CPU cores as they become available.

Furthermore, task schedulers often employ some form of restrictions for
implicit synchronization like task dependencies. When a task is spawned, it
may not be ready to execute immediately. In such case, the task scheduler
needs to manage waiting tasks along with the ready tasks. When a waiting
task conditions for execution are met, the scheduler change its state to ready
and eventually assigns it to an available CPU core. However, we are focusing
on improving efficiency of the task scheduling, thus we will not consider the
waiting tasks nor any mechanisms for automatic testing the task readiness.
Henceforth, we use the term task spawning for introducing a ready tasks to
the scheduler.

1.3 Locality Aware Task Scheduler

The task scheduler manages tasks in the system and process them on the
available computational units. Different task schedulers may be used for dif-
ferent systems. In our work, we address the problems of parallel data process-
ing, such as problems of database management systems. Hence, our objective
is to design a task scheduler that reflects three important issues:

• Even though the overall work is orchestrated by some form of an execution
plan, the interpretation of the plan is data dependent, thus the tasks are
spawned dynamically.

• The tasks should be planed with respect to overall throughput of the
system, since they usually work on a complex problem which needs to be
solved as whole.

• The available hardware resources should be utilized efficiently.

The last issue is becoming increasingly important as the CPU architectures
are getting more complex with each new generation. Planning the tasks in

1 Locality Aware Task Scheduling 5

a way that considers which data are hot in caches or that better organizes
the work among NUMA nodes is the key to achieving much better overall
performance.

In order to achieve better results, we have improved the definition of a task,
so the programmer of the system that employs our scheduler can pass on
some explicit information which can be used for scheduling. First of all, we
distinguish two types of tasks [7] and this type is specified when the task is
spawned:

• The immediate task represent work that immediately relates to the task
being currently processed. This type of tasks is expected to be executed
as soon as possible and preferably close to the task that spawned them to
utilize data which are still hot in the cache.

• The deferred task represent work that is not closely related to the task
being currently processed. This type of tasks is also expected to generate
more sub tasks eventually.

Furthermore, every task (both immediate and deferred) is attached to a
request which corresponds to a larger portion of work that is divided into
tasks to achieve parallelism (e.g., it can be related to a database query). Re-
quests are uniquely identified by a request ID, which is a sequentially assigned
number. A task inherits its request ID from the task which spawned it.

1.3.1 Task Scheduling Strategy

The initialization process of the task scheduler scans the host system and
detects the configuration and properties of the CPUs. CPU cores which share
at least one level of cache are bundled together in logical core groups and a
thread pool is created for each group. The thread pool has one thread for each
CPU core in the corresponding group and the threads have their affinity set
to this core group. The thread can easily determine the associated CPU core
using appropriate operating system functions.

Each core group maintains one queue of immediate tasks per core and one
shared queue of deferred tasks. The deferred queue is in fact more complex
data structure than a simple queue, which maintains the task of each request
separately. It also provides quick access and extraction of the youngest and
the oldest tasks from the oldest and second oldest request.

The main paradigm employed in the LAS scheduling strategy is to empha-
size data locality awareness. Therefore, when the scheduler assigns another
work to a thread, it attempts to select a task which is as close as possible
to the previous work done by that thread. For this purpose, we define the
distance between two cores within one group and the distance between two
core groups. Distance of cores within one group is equal to the lowest level
of cache these two cores are sharing. Distance of two core groups is equal to

6 Lecture Notes in Computer Science: Authors’ Instructions

the distance of their corresponding NUMA nodes (and zero for groups that
share a NUMA node).

The distance between cores and core groups determine our scheduling
strategy. When a thread completes a task it executes the scheduling algorithm
to fetch another task to execute. The first applicable rule of the following list
is taken:

1. The youngest task from the queue of immediate tasks of the current core.
2. Other cores of the same group are scanned (in the increasing distance)

and the first non-empty immediate queue is found. If such queue exists,
its oldest task is taken.

3. The youngest deferred task of the oldest request from the deferred task
queue of the current group is taken. This rule ensures that all threads of
one core group work on the same (the oldest) request if possible.

4. Other core groups are scanned (in increasing distance) and the first non-
empty deferred queue is found. If such queue exists, the oldest deferred
task of the second oldest request is taken. If the queue has tasks of only
one request, its oldest task is taken instead. This strategy assumes that
a core group is heavily engaged in the processing of the oldest request
and it would not be wise to disrupt this work when another request is
available. However, this algorithm does not prevent the situation that the
whole system cooperates on one common request.

5. Immediate queues of cores from other groups which are located on the
same NUMA node1 are scanned. If non-empty queue is found, its oldest
task is taken. The immediate queues are scanned in round robin manner
and the thread remembers the last non-empty queue found. When this
rule is applied again, the scan is resumed where it previously ended. This
rule enforces that all immediate tasks are processed on the same NUMA
node where they were spawned.

If all steps fail (i.e., there is no available task to execute), the thread is
suspended, so it will not consume system resources. The whole algorithm and
the thread group hierarchy is depicted in Figure 1.2.

When a thread spawns a tasks, it first determines on which CPU core it
runs. The immediate tasks are inserted to the immediate queue of the core.
The deferred tasks are inserted in the shared queue of deferred tasks of the
corresponding core group.

1 Note that no such group may exist when exactly one group is assigned to each NUMA
node.

1 Locality Aware Task Scheduling 7

Fig. 1.2: The schema of a task scheduler

1.3.2 Resuming Suspended Threads

When a thread does not have another task to process, the thread suspends it-
self on a synchronization primitive2. Each group has one such synchronization
primitive and the suspended threads are added to its waiting queue.

When a new task is spawned, the spawning thread attempts to wake one
of the suspended threads. First, it tries to wake a thread in the same thread
pool (the same group of cores). If the whole group is working, it scans all
other groups and attempts to wake a thread there. The groups are scanned in
an increasing distance from the original group and the search finishes when
a group with suspended thread is found or all groups are scanned.

The immediate tasks and deferred tasks are handled slightly differently
in this case. When an immediate task is spawned, the search for a group
with suspended thread ends at the boundary of the NUMA node. There is
no need to wake threads on other NUMA nodes since the scheduling rules
prevent the immediate tasks to travel between NUMA nodes. When deferred
tasks is spawned, all groups are tested.

1.4 Experiments

We performed several experiments to prove that the LAS scheduling algo-
rithm significantly improved performance of the system. For the testing, we
used our parallel implementation of the in-memory SPARQL engine [14] and
the SP2Bench benchmark [21] and its 5m testing dataset. The implementation
of the engine is able to generate parallel execution plans without significant
serial bottlenecks, i.e., all worker threads are utilized during their evalua-
tion. Additionally, the SP2Bench benchmark contains several queries which
generate various and really complex query execution plans. This is profitable

2 Current implementation uses standard semaphore and atomic operations that handles

related metadata.

8 Lecture Notes in Computer Science: Authors’ Instructions

since this variety shows the behaviour of the task scheduler under various
circumstances.

We selected queries Q2, Q4, Q5a, Q6, Q7 Q8, Q9 and Q11 from the bench-
mark, since they take reasonable time to evaluate and their query execution
plans are complex enough. Other queries are evaluated so fast that the results
are negligible.

We used two hardware configurations for the experiments:

• A server with two Intel Xeon E5310 processors, both running at 1.60Ghz.
This type of processor has 4 cores and two shared 4MB L2 caches. First
two cores share the first L2 cache, second two cores share the other. Addi-
tionally, each core has its own L1 cache (32kB + 32kB). This configuration
represents non-trivial SMP system and our scheduling strategy creates 4
thread pools for this configuration.

• A NUMA server with four Intel Xeon E7-4820 processors, all running at
2.0Ghz. This type of processor has physical 8 cores with Hyper-Threading
Technology, i.e., the processor has 16 logical cores in total. Each physi-
cal core has its own L1 cache (32kB + 32kB), L2 cache (256kB) and all
cores share one L3 cache (18MB). This configuration represents non-trivial
NUMA system and our scheduling strategy creates 4 thread pools as well.

We performed two different experiments for each hardware configuration:

• We run the selected query just once. This experiment demonstrate the
situation when there is a lot of various data dependencies among the tasks,
since all tasks belong to one query.

• We run the selected query multiple times in parallel (16 times in all mea-
surements). This experiment demonstrate the situation when there is a lot
of tasks which do not have any dependency on each other, i.e., each thread
can process its own instance of the query without any cooperation with
the others.

Finally, we performed two different measurements for each experiment:

• We used the scheduler which implements the LAS scheduling strategy
described in the Section 1.3.

• We used the scheduler which implements the strategy which is close to
the strategy used in TBB or in our previous work [7]. Each thread keeps
its local queue of immediate task and all threads share one queue of de-
ferred tasks. Thread executes the first existing task in this order: the lat-
est immediate task from its local queue, the oldest deferred task from the
shared queue and the oldest immediate task from the local queue of an-
other thread. In other words, immediate tasks are handled in the same
manner as the spawned tasks in TBB [2] and deferred tasks are handled in
the same manner as the enqueued tasks in TBB. We denote this scheduler
as NLS.

1 Locality Aware Task Scheduling 9

1.4.1 SMP system

The results are shown in Figure 1.3 for single query and in Figure 1.4 for
multiple parallel queries. Notice that for Q6 only 1m dataset was used so
that the evaluation takes reasonable time. In multiple queries, we used 1m
dataset for Q4 and Q8 in order to avoid swapping of the operating memory.
Additionally, we used only 250k dataset for Q6 from the same reason as in
the single query.

1.4.1.1 Single query

As expected, on SMP system the NLS scheduling algorithm performs quite
well. However, queries Q4 and Q6 benefits from the LAS and especially query
Q2 is almost 2× faster. This query consist of one long pipeline, therefore, it is
especially sensitive to the data locality. Other queries contains such pipelines
as well, however, these pipelines are typically split to multiple independent
parts because of sorting operators which break up the pipeline processing and
cause that the execution plans are evaluated by parts, i.e., that all threads
cooperate close to each other.

Q2 Q5a Q5b Q7 Q9 Q11

0.00

5.00

10.00

15.00

20.00

25.00

0.31

8.02

0.33 0.19

20.70

3.00

1.00
0.44 0.210.15

7.20

0.31 0.19

20.10

3.01

0.95
0.42 0.21

NLS

LAS

ti
m

e
[s

]

Q6 (1m)Q4 Q8

Fig. 1.3: Single query on SMP

Q2 Q5a Q5b Q7 Q9 Q11

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

2.63

12.08

4.86
2.91

14.15

45.40

2.16 1.29
2.461.91

11.29

4.62
2.75

14.15

44.81

1.98 1.21
2.45

NLS

LAS

ti
m

e
[s

]

Q4 (1m) Q6 (250k) Q8 (1m)

Fig. 1.4: Multiple queries on SMP

10 Lecture Notes in Computer Science: Authors’ Instructions

1.4.1.2 Multiple queries

The second experiment shows that the LAS performs better than NLS and
in more cases than in the first experiment. The main reason is that the LAS
better separates individual requests, i.e., the requests do not force out each
other from cache memory.

1.4.2 NUMA system

Both experiments on the NUMA system (see Figure 1.5 and Figure 1.6)
proves that taking the NUMA factor into account is very important in modern
systems. The main problem is that accessing memory of another node slows
down both communicating nodes and the system bus.

The LAS tries to keep one request on one NUMA node as much as it is
possible. If it is not possible, it tries to keep different branches of execution
plans on different NUMA nodes which minimizes data interference between
the NUMA nodes. The NLS does not distinguish among the NUMA nodes,
therefore, the relationship between a thread and the memory being accessed
is almost arbitrarily. This is significant especially in the multiple queries.

Q2 Q4 Q5a Q5b Q6 (1m) Q7 Q8 Q9 Q11

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.67

3.12

0.21 0.13

4.29

0.99

0.51

0.28
0.12

0.30

2.40

0.15 0.11

3.86

0.75

0.40
0.18 0.12

NLS

LAS

ti
m
e
[s
]

Fig. 1.5: Single query on NUMA

Q2 Q4 Q5a Q5b Q6 (1m) Q7 Q8 Q9 Q11

0.00

10.00

20.00

30.00

40.00

50.00

60.00

12.27

49.80

3.31
1.82

56.61

9.47
7.91

3.51

0.71

3.71

20.81

1.14 0.68

56.40

8.75

3.11
1.54 0.70

NLS

LAS

ti
m
e
[s
]

Fig. 1.6: Multiple queries on NUMA

All performed experiments proved that the locality awareness has a sig-
nificant impact on the performance of the parallel streaming system running
on either SMP or NUMA systems.

1 Locality Aware Task Scheduling 11

1.5 Related Work

As we already mentioned in Section 1.2, modern architectures became com-
plex and complicated. Thus, optimizing the performance of applications
through elaborate task scheduling strategies is a challenging task and a very
hot topic in current research. The fact that finding an optimal scheduling
plan is NP-hard problem causes that all scheduling strategies just try to find
a suboptimal solution using heuristics and approximation techniques [22].

In streaming systems, there are several aspects of scheduling optimization,
such as memory usage [3], cache-efficiency [12], response time, throughput,
etc. or their mutual combinations [15, 20].

In this work, we relaxed many aspects and just tried to maximize data
locality in order to increase the performance of the system. This allowed us
to adopt techniques used in non-streaming systems. Our previous work [7]
was the first step. We showed that data flow awareness (i.e., using immediate
and deferred tasks) in streaming systems increase data locality; however,
the scheduling algorithm lacks the support of NUMA and non-trivial SMP
systems.

These issues are successfully solved in several works, e.g., in popular
parallel frameworks such as OpenMP [13, 9] or Intel Threading Building
Blocks [17, 2].

The division of tasks to immediate and deferred tasks ensures that threads
work with data hot in cache if they have its own immediate tasks. However,
it showed up, that the bottleneck of the system is the task stealing since the
tasks were stolen from a randomly chosen thread. However, this is an issue
of the cited papers as well.

The task stealing optimization is researched thoroughly in work by Chen
et. al. [11, 10]. In fact, the algorithm CATS/CAB from this work is similar
to our LAS algorithm described in Section 1.3; however, there are several
differences between these two algorithms. LAS partitions physical processors
more precisely according to the structure of shared caches, whilst CATS/CAB
creates always one group per physical processor (socket). Furthermore, LAS
algorithm for task stealing within a group also considers the cache hierarchy,
which is beneficial when the cores in one group share more than last level of
cache. Additionally, the LAS sets affinity of threads together for the whole
group. This has two advantages – first, we can freely add and remove threads
to the thread pool which enables support of IO operations [16], second, this
strategy copes better with Hyper-Threading Technology, since it does not
restrict the operating system from its own load balancing strategy [1]. Finally,
we optimize the situation when the system processes multiple independent
requests.

12 Lecture Notes in Computer Science: Authors’ Instructions

1.6 Conclusions

In this paper, we presented a novel task scheduling strategy that takes ad-
vantages on current CPU architectures and both SMP and NUMA multipro-
cessor systems. Our scheduler can effectively improve the data locality and
thus the cache reusability when employed on parallel data stream processing
systems. We have implemented a prototype of the scheduler and integrated it
into the Bobox framework, which allows creation and evaluation of the execu-
tion plans. When applied on a SPARQL benchmark that process RDF data,
the system achieved up to 10% speed up on double-processor SMP system
and up to 3× speed up on four processor NUMA system for selected queries
with respect to previous version of the scheduler.

In the future work, we would like to extend our scheduler to other domains
of task processing. We would like to improve generic frameworks that also use
tasks to achieve parallelism, but which process different types of datasets (not
only streaming data). Furthermore, we would like to extend the scheduler to
support work offloading to parallel accelerators such as GPUs and Xeon Phi
cards, where the data transfers between the host system and the parallel
device need to be considered.

Acknowledgements

This work was supported by the Czech Science Foundation (GACR), projects
P103-13-08195S and P103-14-14292P, and by Specific Research project SVV-
2014-260100.

References

1. Impact of Load Imbalance on Processors with Hyper-Threading Technology.

http://software.intel.com/en-us/articles/impact-of-load-imbalance-on-processors-
with-hyper-threading-technology, 2011. [Online; accessed 03-18-2014].

2. Intel Threading Building Blocks Reference Manual. http://software.intel.com/en-

us/node/506130, 2014. [Online; accessed 03-18-2014].
3. B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas. Operator scheduling in

data stream systems. The International Journal on Very Large Data Bases, 13(4):333–
353, 2004.

4. D. Bednárek and J. Dokulil. TriQuery: Modifying XQuery for RDF and Relational

Data. In 2010 Workshops on Database and Expert Systems Applications, pages 342–
346. IEEE, 2010.

5. D. Bednárek, J. Dokulil, J. Yaghob, and F. Zavoral. The Bobox Project - A Parallel

Native Repository for Semi-structured Data and the Semantic Web. ITAT - IX.
Informačné technológie - aplikácie a teória, pages 44–59, 2009.

1 Locality Aware Task Scheduling 13

6. D. Bednárek, J. Dokulil, J. Yaghob, and F. Zavoral. Using methods of parallel semi-

structured data processing for semantic web. Advances in Semantic Processing, In-
ternational Conference on, pages 44–49, 2009.

7. D. Bednárek, J. Dokulil, J. Yaghob, and F. Zavoral. Data-flow awareness in parallel

data processing. In Intelligent Distributed Computing VI, pages 149–154. Springer,
2013.

8. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, J. Siméon, and M. Ste-

fanescu. XQuery 1.0: An XML query language. W3C working draft, 15, 2002.
9. F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.-A. Wacrenier. Dynamic

task and data placement over NUMA architectures: an OpenMP runtime perspective.
In Evolving OpenMP in an Age of Extreme Parallelism, pages 79–92. Springer, 2009.

10. Q. Chen, M. Guo, and Z. Huang. CATS: Cache Aware Task-stealing Based on Online

Profiling in Multi-socket Multi-core Architectures. In Proceedings of the 26th ACM
International Conference on Supercomputing, ICS ’12, pages 163–172, New York, NY,

USA, 2012. ACM.

11. Q. Chen, Z. Huang, M. Guo, and J. Zhou. Cab: Cache aware bi-tier task-stealing in
multi-socket multi-core architecture. In Parallel Processing (ICPP), 2011 Interna-

tional Conference on, pages 722–732. IEEE, 2011.

12. J. Cieslewicz, W. Mee, and K. Ross. Cache-conscious buffering for database operators
with state. In Proceedings of the Fifth International Workshop on Data Management

on New Hardware, pages 43–51. ACM, 2009.

13. A. Duran, J. Corbalán, and E. Ayguadé. Evaluation of OpenMP task scheduling
strategies. In Proceedings of the 4th international conference on OpenMP in a new

era of parallelism, pages 100–110. Springer-Verlag, 2008.
14. Z. Falt, M. Čermak, and F. Zavoral. Highly Scalable Sort-Merge Join Algorithm for

RDF Querying. In Proceedings of the 2nd International Conference on Data Manage-

ment Technologies and Applications, 2013.
15. Q. Jiang and S. Chakravarthy. Scheduling strategies for processing continuous queries

over streams. Key Technologies for Data Management, pages 16–30, 2004.

16. M. Krulǐs, Z. Falt, D. Bednárek, and J. Yaghob. Task scheduling in hybrid CPU-GPU
systems. Informačné Technológie-Aplikácie a Teória, page 17.

17. A. Kukanov and M. Voss. The foundations for scalable multi-core software in Intel

Threading Building Blocks. Intel Technology Journal, 11(4):309–322, 2007.
18. E. Prud’Hommeaux, A. Seaborne, et al. SPARQL query language for RDF. W3C

working draft, 4, 2006.

19. J. Reinders. Intel Threading building blocks. O’Reilly, 2007.
20. A. A. Safaei and M. S. Haghjoo. Parallel processing of continuous queries over data

streams. Distrib. Parallel Databases, 28:93–118, December 2010.
21. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: a SPARQL perfor-

mance benchmark. In Data Engineering, 2009. ICDE’09. IEEE 25th International

Conference on, pages 222–233. IEEE, 2009.
22. O. Sinnen. Task scheduling for parallel systems, volume 60. John Wiley & Sons, 2007.

135

Chapter 10.

Conclusions and Future Work

The collection of papers included in this thesis shows a consecutive advance of the

research areas of interest of the author - distributed computing, parallelism, and processing of

large and semistructured data. We show that integration of these research disciplines may

address common issues worth solving and their research may significantly influent each other.

The papers selected for this thesis cover wide range of types of scientific results – formal

models, algorithms and data structures, low-level system functionalities, and software tools and

prototypes. We believe that such diversity of scopes significantly helps to deeply understand

researched topics and their mutual relationships.

Some of the topics addressed in this thesis are further studied in our current research

projects. Our experience with methods of processing of large data is being utilized in a grant

project focused to efficient processing of big scientific data sets. The infrastructure for parallel

processing developed mainly for studying parallel algorithms in past several years is being

extended to a distributed computing system supporting wide range of emerging modern

architectures, such as Xeon Phi processors or Epiphany nodes. Our intention is to combine

methods of large scale distributed processing with promising hardware technologies and apply

the results to achieve more efficient data processing.

In our future research, we are planning to focus on modern parallel architectures and

study the impact of their increasing ubiquity on various areas of computer science and on

everyday praxis in the area of computing and computer science. New methods, algorithms,

programming paradigms, and other outcomes of these areas seem to be inevitable for efficient

exploitation of contemporary hardware and architectural achievements.

Finally, we are quite confident that other interesting related topics will appear and that

the recent results will become applicable in different or unexpected research areas, as we have

witnessed in the past years.

136

References

[atz10] Luigi Atzori, Antonio Iera, Giacomo Morabito: The Internet of Things: A Survey, Comput.

Netw. Vol. 54/15, pp. 2787-2805, Elsevier, 2010

[bed12] Davis Bednárek, Jiří Dokulil, Jakub Yaghob, Filip Zavoral: Data-Flow Awareness in

Parallel Data Processing, in Intelligent Distributed Computing VI, Calabria, Springer, ISBN:

978-3-642-32523-6, ISSN: 1860-949X, pp. 149-154, 2012

[box07] Don Box, Anders Hejlsberg : LINQ: .NET Language-Integrated Query, MSDN, 2007

[dew92] DeWitt, D. J., Naughton, J. F., Schneider, D. A., and Seshadri, S.: Practical skew handling in

parallel joins. In Proceedings of the 18th International Conference on Very Large Data

Bases, VLDB ’92, pp 27–40, San Francisco, USA. Morgan Kaufmann Publishers Inc., 1992

 [dok07] Jiří Dokulil, Jaroslav Tykal, Jakub Yaghob, Filip Zavoral: Semantic Web Infrastructure, in

IEEE International Conference on Semantic Computing, Irvine, California, IEEE Computer

Society, ISBN: 978-0-7695-2997-4, pp. 209-215, 2007

[dvo07] Jana Dvořákova: Automatic Streaming Processing of XSLT Transformations Based on

Tree Transducers. In Proceedings of IDC 2007, Studies in Computational Intelligence.

Springer, 2007

[gil02] Seth Gilbert, Nancy Lynch: Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News 33(2):51–59, 2002

[mar05] Wim Martens, Frank Neven: On the complexity of typechecking top-down XML

transformations. Theor. Comput. Sci. 336/1, pp. 153-180, 2005

[nov11] Miroslav Novotný, Filip Zavoral: Resistance against Malicious Collectives in

BubbleTrust, in PDCAT 2011 - 12th International Conference on Parallel and Distributed

Computing, Gwangju, Korea, IEEE Comp Soc, pp. 56-61, 2011

[sch08] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel: SP2Bench: A SPARQL performance

benchmark, CoRR, vol. abs/0806.4627, 2008

[ste12] Maarten van Steen, Guillaume Pierre, Spyros Voulgaris: Challenges in very large

distributed systems, J Internet Serv Appl 3:59–66, 2012

[sto05] Mike Stonebraker et al., C-Store: A column-oriented DBMS, Proceedings of the 31st VLDB

Conference, Trondheim, Norway, 2005

	3-linq-idc10.pdf
	Introduction
	Architecture
	LinqToWeb Description Language
	Type Declarations
	Extraction Task Definition

	Generating Strongly Typed Objects
	Just-In-Time Extraction
	Language Integrated Query

	Evaluation
	Conclusion and Future Work
	References

	Blank Page
	5-smjoin-data13.pdf
	DATA 2013
	Front Cover
	Introduction
	Copyright
	Brief Contents
	Invited Speakers
	Organizing and Steering Committees
	Program Committee
	Auxiliary Reviewers
	Foreword

	Contents
	Invited Speakers
	Keynote Speakers
	Main-Memory Centric Data Management - Open Problems and Some Solutions
	Context-Aware Decision Support in Dynamic Environments - Theoretical & Technological Foundations

	Business Analytics
	Full Papers
	Parameterised Fuzzy Petri Nets for Knowledge Representation and Reasoning
	Subspace Clustering with Distance-density Function and Entropy in High-dimensional Data
	Enhancing Collaboration in Big Biomedical Data Settings - Knowledge Visualization, Data Mining and Decision Making Issues
	Rating of Discrimination Networks for Rule-based Systems

	Short Papers
	A MapReduce Architecture for Web Site User Behaviour Monitoring in Real Time
	Enhancing News Articles Clustering using Word N-Grams
	Advanced Analytics with the SAP HANA Database
	Predicting Cases of Ambulatory Care Sensitive Conditions
	Consistency of Incomplete Data
	Database Functionalities for Evolving Monitoring Applications
	Effective Business Plan Evaluation using an Evolutionary Ensemble
	R-Pref: Rapid Prototyping of Database Preference Queries in R
	Estimate the Market Share from the Search Engine Hit Counts
	A New Addressing Scheme for Discrimination Networks easing Development and Testing

	Data Management and Quality
	Full Papers
	A Generic and Flexible Framework for Selecting Correspondences in Matching and Alignment Problems
	Automatic Synthesis of Data Cleansing Activities

	Short Papers
	A Clustering Topology for Wireless Sensor Networks - New Semantics over Network Topology
	Data Management for M2M Communication using Telecom Mediation Systems
	Data Quality Evaluation of Scientific Datasets - A Case Study in a Policy Support Context
	Social Data Sentiment Analysis in Smart Environments - Extending Dual Polarities for Crowd Pulse Capturing
	An Elastic Cache Infrastructure through Multi-level Load-balancing
	Approaching ETL Conceptual Modelling and Validation using BPMN and BPEL
	Towards a Second Generation of Computer Interpretable Guidelines
	Citable by Design - A Model for Making Data in Dynamic Environments Citable
	Data Curation Framework for Facilities Science

	Ontologies and the Semantic Web
	Short Papers
	EDEX: Entity Preserving Data Exchange
	Semantic Copyright Management of Media Fragments
	Designing a Farmer Centred Ontology for Social Life Network
	Extraction of Biographical Data from Wikipedia

	Databases and Data Security
	Full Paper
	Automata Theory based Approach to the Join Ordering Problem in Relational Database Systems

	Short Papers
	Frame Time and Cardinality Indeterminacy in Temporal Relational Databases
	Design and Evaluation of a Graph Codec System for Software Watermarking
	SylvaDB: A Polyglot and Multi-backend Graph Database Management System
	Highly Scalable Sort-merge Join Algorithm for RDF Querying

	Author Index

	Back Cover

	6-tm-iccasa14.pdf
	Resistance of Trust Management Systems Against Malicious Collectives
	Abstract
	1 Introduction
	2 Malicious Strategies and Evaluation Criteria
	2.1 Malicious Strategies
	2.1.1 Individual Malicious Strategies
	2.1.2 Collective Malicious Strategies
	2.1.3 Newly Proposed Malicious Strategies

	2.2 Evaluation Criteria

	3 Simulation Results
	3.1 Representative TMSs
	3.2 Efficiency Criterion
	3.3 Influence of Simulation Settings
	3.4 Result Summary

	4 Conclusion
	Acknowledgment
	References

	Blank Page

