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Preface

The presented habilitation thesis summarizes results of 15 journal papers. The com-
mon denominator of all the presented works is the investigation and analysis of iterative
methods for solving system of linear algebraic equations called Krylov subspace meth-
ods. The papers are written by Petr Tichý in collaboration with various co-authors.
The most frequent co-authors are Vance Faber (5 papers), Jörg Liesen (10 papers),
and Zdeněk Strakoš (4 papers). The collaboration with Zdeněk Strakoš started during
Ph.D. studies of Petr Tichý in Prague, the collaboration with Jörg Liesen and Vance
Faber during his long-term stay (4.5 years) at TU-Berlin. The other co-authors are
Dianne O’Leary and Gérard Meurant. In the thesis we do not present a systematic
overview of Krylov subspace methods. We instead concentrate on the introduction to
and summary of our contribution to the investigation of Krylov subspace methods.
A comprehensive summary about principles and analysis of Krylov subspace methods
can be found in the recent book by Liesen and Strakoš [27].

The first part of the thesis consists of two chapters that describe the mathematical
background of the considered problems and emphasize the author’s contribution to
the presented topic. In more detail, we first introduce the reader to the world of
Krylov subspace methods (Chapter 1), and then study various issues in the analysis of
Krylov subspace methods (Chapter 2). We start with investigating convergence bounds
for linear systems with normal matrices (Section 2.1) and with nonnormal matrices
(Section 2.2). In Section 2.3 we give the answer to the question when the iterates of an
optimal Krylov subspace method can be computed by an algorithm with low memory
requirements. Finally, Sections 2.4 and 2.5 are devoted to the error estimation and the
behavior of considered algorithms and error estimators in finite precision arithmetic.

In the second part of the thesis, we attach reprints of the above mentioned 15
papers. Below we give the list of these papers sorted alphabetically by names of the
authors.

• V. Faber, J. Liesen, and P. Tichý, The Faber-Manteuffel theorem for linear
operators, SIAM J. Numer. Anal., 46 (2008), pp. 1323–1337.

• V. Faber, J. Liesen, and P. Tichý, On orthogonal reduction to Hessenberg
form with small bandwidth, Numer. Algorithms, 51 (2009), pp. 133–142.

• V. Faber, J. Liesen, and P. Tichý, On Chebyshev polynomials of matrices,
SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2205–2221.

• V. Faber, J. Liesen, and P. Tichý, Properties of worst-case GMRES, SIAM
J. Matrix Anal. Appl., 34 (2013), pp. 1500–1519.
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• J. Liesen and P. Tichý, Convergence analysis of Krylov subspace methods,
GAMM Mitt. Ges. Angew. Math. Mech., 27 (2004), pp. 153–173 (2005).
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Chapter 1

Krylov subspace methods

1.1 Introduction

One of the most powerful tools for solving large and sparse systems of linear algebraic
equations is a class of iterative methods called Krylov subspace methods. Their sig-
nificant advantages like low memory requirements and good approximation properties
make them very popular, and they are widely used in applications throughout science
and engineering.

Mathematically, Krylov subspace methods are based on projection techniques. In-
stead of solving a possibly very large problem, the idea is to find approximations in
Krylov subspaces of small dimensions. To generate the Krylov subspaces, the cen-
tral operation is matrix-vector multiplication with the input matrix (or its transpose).
Krylov subspaces can be build up using only a function that computes the multipli-
cation of the matrix and a vector, so that the matrix itself never has to be formed
or stored explicitly. Hence Krylov subspace methods are particularly well suited for
application to large and sparse linear systems. The repeated multiplication with the
input matrix may reveal dominant properties of the problem at an early stage and give
satisfactory approximations at a low iteration number.

1.2 Krylov subspace methods

This work is concerned with Krylov subspace methods for solving linear algebraic sys-
tems

Ax = b ,(1.1)

where A is a real or complex nonsingular N by N matrix, and b is a real or complex
vector of length N . Let x0 be an initial guess for the solution x, and define the initial
residual r0 = b − Ax0. Krylov subspace methods can be derived from the following
projection process: The nth iterate xn, n = 1, 2, . . ., is of the form

xn ∈ x0 + Sn ,(1.2)

where Sn is some n-dimensional space, called the search space. Because of the n degrees
of freedom, n constraints are required to make xn unique. This is done by choosing
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8 CHAPTER 1. KRYLOV SUBSPACE METHODS

an n-dimensional space Cn, called the constraints space, and by requiring that the nth
residual is orthogonal to that space, i.e.,

rn = b−Axn ∈ r0 +ASn , rn ⊥ Cn .(1.3)

Orthogonality here is meant in the Euclidean inner product. A similar type of projection
process appears in many areas of mathematics. The choice of spaces usually depends on
properties of A. In particular, if A is Hermitian and positive definite, the typical choice
is Cn = Sn which corresponds to the Galerkin method. Another important choice for a
general case is Cn = ASn.

The method defined by the conditions (1.2)-(1.3) is called a Krylov subspace method
when the spaces Cn and Sn are defined by using so-called Krylov subspaces Kn(A, r0),

Kn(A, r0) ≡ span{r0, Ar0, . . . , A
n−1r0} , n = 1, 2, . . . .(1.4)

The Krylov subspaces form a nested sequence that ends with a subspace of maximal
dimension d = dimKN (A, r0), i.e.,

K1(A, r0) ⊂ . . . ⊂ Kd(A, r0) = . . . = KN (A, r0) .

Naturally, we are interested in projection methods that ensure existence and uniqueness
of their iterates xn for each step n ≤ d, and that terminate with the exact solution in
the step d (such a method will be called well-defined). Some properties of A ensure
that a method is well-defined.

There are many choices of the spaces Sn and Cn where Krylov subspaces are in-
volved. In this work we always choose the search space as the Krylov subspace,

Sn ≡ Kn(A, r0) .

We mostly limit our discussion to the two important cases of well-defined methods.
First, if A is Hermitian and positive definite (HPD), we consider the constrained space

Cn ≡ Kn(A, r0) .

This choice leads to the construction of orthogonal residual vectors rn = b − Axn.
Since A is HPD, the method is always well-defined and the generated approximations
are optimal in the sense that the errors are minimized in the norm defined by the
matrix A. A particular implementation in this case is the conjugate gradient (CG)
method [22].

Second, if A is nonsingular, one can choose the constrained space as

Cn ≡ AKn(A, r0)

which leads to residual vectors rn that have minimal Euclidean norm over the whole
affine subspace r0 + AKn(A, r0). Therefore, the corresponding method is called the
minimal residual method. The most well-known implementations are the MINRES
method [39] for Hermitian indefinite matrices and the GMRES method [41] for general
nonsingular matrices.

The conditions xn ∈ x0 +Kn(A, r0) and rn ∈ r0 +AKn(A, r0) imply that the error
en = x− xn and the residual rn can be written in the form

en = pn(A)e0, rn = pn(A)r0,(1.5)

where pn is a polynomial of degree at most n and with value one at the origin. This
is the reason why Krylov subspace methods are sometimes called polynomial methods.
The form (1.5) is a starting point for the convergence analysis of these methods.



Chapter 2

Analysis of Krylov subspace
methods

In exact arithmetic, well-defined Krylov subspace methods terminate in a finite number
of steps. Therefore no limit can be formed, and terms like “convergence” or “rate of
convergence” loose their classical meaning. This situation requires approaches that are
substantially different from the analysis of classical fixed point iteration methods such as
Gauß-Seidel or SOR. Krylov subspace methods (in combination with preconditioning)
find or should find a good approximate solution to the problem, usually after several
iterations. It is therefore important to describe their convergence in the transient phase.
As we will see in the following, the question about the convergence behavior leads to
bounds represented by complicated nonlinear problems.

Convergence of Krylov subspace methods applied to linear systems with a sym-
metric matrix (or, in general, with a normal matrix) can be described using classical
approximation problems of the form “find the best polynomial approximation of a
function on a set of points (the eigenvalues), measured in a suitable norm”. For linear
systems with a nonnormal matrix, characterization of convergence in terms of classical
approximation theory is generally very difficult. This fact is underlined by the classical
results [20, 18] which indicate that the distribution of the matrix eigenvalues alone
need not determine convergence behavior. We divide our discussion about convergence
and convergence bounds into two parts. In the first part (Section 2.1) we consider
normal matrices A and show that in this case the spectral information is important for
analyzing the convergence. The second part (Section 2.2) shows the difficulties with
understanding and bounding the convergence for the nonnormal matrices.

For numerical and implementational reasons, it is often advisable to use orthog-
onal bases when implementing Krylov subspace methods. For efficiency reasons (low
memory requirements) it is desirable to compute such bases with a short recurrence
meaning that in each iteration step only a few of the latest basis vectors are required
to generate the new basis vector. In Section 2.3 we study the question if and when
these two goals can be achieved simultaneously, and also the closely related question of
conditions when a given matrix can be orthogonally reduced to upper Hessenberg form
with small bandwidth.

An important advantage of Krylov subspace methods (and iterative methods in
general) is that one can stop the algorithm at any iteration step and consider the

9



10 CHAPTER 2. ANALYSIS OF KRYLOV SUBSPACE METHODS

updated vector xn to be the approximate solution (in contrast to Gauss elimination
where we do not have any intermediate approximations). To make the right decision
when to stop the algorithm we need to have a mechanism how to measure the quality
of the current approximation xn. Typically, we need some information about the size
of the error x − xn. In some applications (such as in image processing) the Euclidean
norm of the error plays an important role. In many other applications where the matrix
A is Hermitian and positive definite, the A-norm of the error is the right measure of
convergence. In the nonsymmetric case, one can even use some kinds of bilinear forms
that do not represent a norm, but that still measure in some sense the quality of the
approximate solution. This topic is discussed in Section 2.4.

Finally, in Section 2.5 we study and analyze some problems related to computations
in finite precision arithmetic. To understand what is going on in finite precision arith-
metic, it is desirable to create (if it is possible) a mathematical model that describes
results of computation of the given method (algorithm) in finite precision arithmetic.
Using such a model one can justify that the computed results are reliable and mean-
ingful. Another problem consists in application of mathematical formulas used, e.g.,
for estimating some convergence characteristics. Such formulas are often derived based
on mathematical assumptions that need not be satisfied during finite precision com-
putations. Consequently, even though a formula can compute very accurately, it can
happen that it produces results that do not correspond to the estimated convergence
characteristic. Hence, to justify that a mathematical formula for estimating a con-
vergence characteristic works well also during finite precision computations, rounding
errors in the whole computation, not only in the computation of the current formula,
must be taken into account. For example, in the conjugate gradient method, the com-
puted residual vectors become typically non-orthogonal (and even linearly dependent)
after a few iterations. Then, without a proper rounding error analysis one can never
be sure that mathematical formulas for estimating the A-norm derived assuming the
exact orthogonality of the residual vectors really produce results that correspond to
the A-norm of the actual error.

2.1 Convergence bounds – normal matrices

Consider a nonsingular and normal matrix A, and let

A = V ΛV ∗, where V ∗V = I, Λ = diag(λ1, . . . , λN ) ,

be its eigendecomposition (the superscript ∗ denotes Hermitian transposed). The or-
thogonality of the eigenvector basis leads to a significant simplification in the conver-
gence analysis of Krylov subspace methods: Considering An in the form V ΛnV ∗ and
using (1.5), the errors and residuals of a Krylov subspace method satisfy

en = V pn(Λ)V ∗e0, rn = V pn(Λ)V ∗r0 .(2.1)

The projection property usually refers to some sort of optimality, and we can expect
that Krylov subspace methods for normal matrices solve some weighted polynomial
minimization problem on the matrix spectrum. In the following we explain that in the
worst case, the convergence of well-known Krylov subspace methods (CG, MINRES,
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GMRES) is determined by the value

min
p∈πn

max
k
|p(λk)| ,(2.2)

where πn denotes the set of polynomials of degree at most n and with value one at the
origin. Note that the value (2.2) represents a min-max approximation problem on the
discrete set of the matrix eigenvalues. The value (2.2) depends in a complicated (non-
linear) way on the eigenvalue distribution. Assume, for simplicity, that all eigenvalues
are real and distinct. The results in [13, 29] show that there exists a subset of n + 1
(distinct) eigenvalues {µ1, . . . , µn+1} ⊆ {λ1, . . . , λN}, such that

min
p∈πn

max
k
|p(λk)| =



n+1∑

j=1

n+1∏

k=1
k 6=j

|µk|
|µk − µj |




−1

.(2.3)

If at least one eigenvalue of A is complex, the equality (2.3) does not hold in general,
cf. [29]. Nevertheless, in [29] we formulate a conjecture, supported by numerical exper-
iments and by some theoretical results, that there exist a set of n+ 1 eigenvalues such
that the value on the right hand side of (2.3) is equal to (2.2) up to a factor between 1
and 4/π.

Consider a Hermitian positive definite matrix A. Each such matrix defines a norm
(the so-called A-norm),

‖u‖A = (u∗Au)
1
2 .(2.4)

It is well known that, for the choice Sn = Cn = Kn(A, r0), the Krylov subspace iterates
xn are uniquely defined in each iterative step n and can be computed using the CG
method. The CG errors en = x− xn satisfy

‖en‖A = min
p∈πn
‖p(A)e0‖A .(2.5)

A simple algebraic manipulation shows that the value (2.2) represents an upper bound
on the relative A-norm of the error,

‖en‖A
‖e0‖A

≤ min
p∈πn

max
k
|p(λk)| .(2.6)

This convergence bound is sharp, i.e., for each iteration step n there exist a right hand
side b or an initial guess x0 (depending on n and A) such that equality holds in (2.6),
see [13] and [32]. In this sense, the bound (2.6) completely describes the worst-case
behavior of the CG method (for a given matrix A). When the whole spectrum of A
is known, one can try to determine the value of the right hand side of (2.6) using
the formula (2.3). However, it is in general an open problem which subset of n + 1
eigenvalues leads to equality in (2.3).

Obviously, the bound (2.6) depends only on the matrix eigenvalues and not on any
other properties of A, b, or x0. If a particular right hand side b is known, it is sometimes
possible to incorporate the information about b into the analysis, and thus to obtain a
better estimate of the actual convergence behavior.

The convergence behavior of the CG method is relatively well understood, but
some open problems still remain. The right approach for investigating the convergence
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behavior is to use all information about the eigenvalue distribution we have at our
disposal. If a particular right hand side b and initial guess x0 are given, they should be
incorporated in the analysis. An example for such an approach for the model problem
of the one-dimensional Poisson equation is given in our paper [28].

Consider now a nonsingular and normal matrices A. It is well known that the
iterates xn of the minimal residual Krylov subspace method are for any such matrix
uniquely defined in each iterative step n, and that the nth residual rn = b−Axn satisfies

‖rn‖ = min
p∈πn

‖p(A)r0‖.(2.7)

In general, no strict monotonicity of the residual norms is guaranteed. In particular,
for any (finite) nonincreasing sequence of numbers one can find a normal A and a right
hand side b such that the minimal residual method exhibits the prescribed convergence
behavior [1, 18]. That normal matrix can even be chosen to be unitary. In the nor-
mal case, the relative residual norm of the minimal residual method can be bounded
similarly as in (2.6),

‖rn‖
‖r0‖

≤ min
p∈πn

max
k
|p(λk)|(2.8)

and again, the bound (2.8) is sharp [17, 25, 32]. If full spectral information is available,
then the approach in [29] (cf. the discussion of formula (2.3)) can be used for estimating
the worst-case convergence behavior.

In our recent paper [32] we answer the question of the sharpness of the bounds (2.6)
and (2.8) in a very general setting, using classical results of approximation theory. In
particular, let A be a real or complex square matrix, i.e., A ∈ FN×N with F = R or
F = C. Suppose that f and ϕ1, . . . , ϕn are given (scalar) functions so that f(A) ∈
FN×N and ϕ1(A), . . . , ϕn(A) ∈ FN×N are well defined matrix functions in the sense
of [23, Definition 1.2]. Let Pn(F) denote the linear span of the functions ϕ1, . . . , ϕn
with coefficients in F, so that in particular p(A) ∈ FN×N for each linear combination
p = α1ϕ1 + . . .+ αkϕn ∈ Pn(F).

With this notation, the optimality property of many useful methods of numerical
linear algebra can be formulated as an approximation problem of the form

min
p∈Pn(F)

‖f(A)v − p(A)v‖,(2.9)

where v ∈ FN is a given vector and ‖ · ‖ denotes the Euclidean norm on FN . An
example of such a method is the GMRES method for solving Ax = b with A ∈ FN×N ,
b ∈ FN , and the initial guess x0 ∈ FN . Its optimality property is of the form (2.9) with
f(z) = 1, ϕi(z) = zi for i = 1, . . . , n, and v = b−Ax0.

If the given vector v has unit norm, which usually can be assumed without loss of
generality, then an upper bound on (2.9) is given by

min
p∈Pn(F)

‖f(A)− p(A)‖,(2.10)

where ‖·‖ denotes the matrix norm associated with the Euclidean vector norm, i.e., the
matrix 2-norm or spectral norm on FN×N . In (2.10) we seek a best approximation (with
respect to the given norm) of the matrix f(A) ∈ FN×N from the subspace of FN×N
spanned by the matrices ϕ1(A), . . . , ϕn(A). An example of this type is the Chebyshev
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matrix approximation problem with A ∈ FN×N , f(z) = zn, and ϕi(z) = zi−1, i =
1, . . . , n. This problem was introduced in [21] and later studied, for example, in [49]
and [7].

In order to analyze how close the upper bound (2.10) can possibly be to the quantity
(2.9), one can maximize (2.9) over all unit norm vectors v ∈ FN and investigate the
sharpness of the inequality

max
v∈FN
‖v‖=1

min
p∈Pn(F)

‖f(A)v − p(A)v‖ ≤ min
p∈Pn(F)

‖f(A)− p(A)‖ .(2.11)

From analyses of the GMRES method it is known that the inequality (2.11) can be
strict. For example, certain nonnormal matrices A ∈ R4×4 were constructed in [4, 48],
for which (2.11) is strict with n = 3, f(z) = 1, and ϕi(z) = zi, i = 1, 2, 3. More recently,
nonnormal matrices A ∈ R2N×2N , N ≥ 2, were derived in [8], for which the inequality
(2.11) is strict for all n = 3, . . . , 2N − 1, f(z) = 1, and ϕi(z) = zi, i = 1, . . . , n. On the
other hand, the following result is well known. Under the assumptions made above, if
A ∈ FN×N is normal, then equality holds in (2.11).

At least three different proofs of this theorem or variants of it can be found in the
literature. Greenbaum and Gurvits proved it for F = R using mostly methods from
matrix theory; see [17, Section 2]. Using (analytic) methods of optimization theory,
Joubert proved the equality for the case of the GMRES method with f(z) = 1, ϕi(z) =
zi, i = 1, . . . , n, and he distinguished the cases F = R and F = C; see [25, Theorem 4].
Finally, Bellalij, Saad, and Sadok also considered the GMRES case with F = C, and
they applied methods from constrained convex optimization; see [2, Theorem 2.1].

In [32] we present yet another proof of this statement which is rather simple because
it fully exploits the link between matrix approximation problems for normal matrices
and scalar approximation problems in the complex plane. We observe that when for-
mulating the matrix approximation problems in (2.11) in terms of scalar approximation
problems, the proof reduces to a straightforward application of a well-known character-
ization theorem of best approximation in the complex plane; see, e.g., [33, Theorem 3,
p. 22] or [40, pp. 672-674]). While the proof of the theorem for F = C can be accom-
plished in just a few lines, the case F = R contains some technical details that require
additional attention.

2.2 Convergence bounds – nonnormal matrices

In this section we consider the case of a general nonsingular and nonnormal matrix A.
In this general case, a minimal residual Krylov subspace method such as GMRES
yields uniquely defined iterates xn so that the nth residual rn = b − Axn satisfies
(2.7). Similarly to the convergence analysis for normal matrices presented above, we
are interested in finding a (sharp) bound on the right hand side of (2.7).

If A is diagonalizable,

A = V ΛV −1 , Λ = diag(λ1, . . . , λN ) ,

then the following convergence bound easily follows from (2.7),

‖rn‖
‖r0‖

= min
p∈πn

‖V p(Λ)V −1r0‖
‖r0‖

≤ κ(V ) min
p∈πn

max
k
|p(λk)| .(2.12)
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Here κ(V ) = ‖V ‖ ‖V −1‖ denotes the condition number of the eigenvector matrix V . A
bound similar to (2.12) can be derived for nondiagonalizable matrices.

The bound (2.12) frequently is the basis for discussions of the GMRES convergence
behavior. As mentioned in the previous section, this bound is sharp when A is normal.
When κ(V ) is small, the right hand side of (2.12) typically represents a good conver-
gence bound, and its value can be estimated. However, when V is far from unitary,
the bound (2.12) may fail to provide any reasonable information about the GMRES
convergence. Apart from the fact, that the factor κ(V ) can be very large in case of
ill-conditioned eigenvectors, the principal weakness of the bound (2.12) is that the min-
max problem on the matrix eigenvalues need not have any connection with the GMRES
convergence, since the eigenvalues may have nothing to do with the convergence behav-
ior at all [1, 18]. As a consequence, the curve produced by the min-max approximations
on matrix eigenvalues can be substantially different from the (worst-case) GMRES con-
vergence curve and the bound can fail to give any reasonable convergence information.
On the other hand, it needs to be stressed that from an analytic point of view the
principal difficulty of nonnormality is not the often met belief that the convergence is
slower for nonnormal than for normal matrices.

It should be clear by now that in the nonnormal case the GMRES convergence
behavior is significantly more difficult to analyze than in the normal case. A general
approach to understand the worst-case GMRES convergence in the nonnormal case is
to replace the complicated minimization problem (2.7) by another one that is easier
to analyze and that, in some sense, approximates the original problem (2.7). Natural
bounds on the GMRES residual norm arise by excluding the influence of the initial
residual r0,

‖rn‖
‖r0‖

= min
p∈πn

‖p(A)r0‖
‖r0‖

(GMRES)

≤ max
‖v‖=1

min
p∈πn

‖p(A)v‖ (worst-case GMRES)(2.13)

≤ min
p∈πn

‖p(A)‖ (ideal GMRES).(2.14)

The bound (2.13) corresponds to the worst-case GMRES behavior and represents a
sharp upper bound, i.e. a bound that is attainable by the GMRES residual norm. In
this sense, (2.13) is the best bound on ‖rn‖/‖r0‖ that is independent of r0. Despite
the independence of r0, it is not clear in general, which properties of A influence the
bound (2.13); see, e.g., [4]. The expression (2.13) can be bounded by the ideal GMRES
approximation problem (2.14), which was introduced by Greenbaum and Trefethen [21].
To justify the relevance of the bound (2.14), several researchers tried to identify cases
in which (2.13) is equal to (2.14). The best known result of this type is that (2.13)
is equal to (2.14) whenever A is normal [17, 25, 32]. Despite the existence of some
counterexamples [4, 48], it is still an open question whether (2.13) is equal or close
to (2.14) for larger classes of nonnormal matrices. In [47] we consider this problem
for a Jordan block, a representative of a nonnormal matrix, and prove equality of the
expressions (2.13) and (2.14) in some steps.

The main goal of our paper [8] is to contribute to the understanding of the worst-
case GMRES approximation problem (2.13). We show that the worst case behavior of
GMRES for the matrices A and A∗ is the same, and we analyze properties of initial
vectors for which the worst-case residual norm is attained. In particular, we prove that
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such vectors satisfy a certain “cross equality”. We show that the worst-case GMRES
polynomial may not be uniquely determined, and we consider the relation between the
worst-case and the ideal GMRES approximations, giving new examples in which the
inequality between the two quantities is strict at all iteration steps n ≥ 3. Finally,
we give a complete characterization of how the values of the approximation problems
change in the context of worst-case and ideal GMRES for a real matrix, when one
considers complex (rather than real) polynomials and initial vectors.

A possible way to approximate the value of the matrix approximation problem
(2.14) is to determine sets Ω ⊂ C and Ω̂ ⊂ C, that are somehow associated with A,
and that provide lower and upper bounds on (2.14),

c1 min
p∈πn

max
z∈Ω
|p(z)| ≤ min

p∈πn
‖p(A)‖ ≤ c2 min

p∈πn
max
z∈Ω̂
|p(z)|.

Here c1 and c2 should be some (moderate size) constants depending on A and possibly
on n. This approach represents a generalization of the idea for normal matrices, where
the appropriate set associated with A is the spectrum of A and c1 = c2 = 1.

One approach is to take Ω̂ to be the field of values of A,

F(A) =
{
v∗Av : ‖v‖ = 1 , v ∈ CN

}
.

A generalization of the field of values of A is the polynomial numerical hull, introduced
by Nevanlinna [36], and defined as

Hn(A) = {z ∈ C : ‖p(A)‖ ≥ |p(z)| for all p ∈ Pn} ,

where Pn denotes the set of polynomials of degree n or less. It can be shown that
F(A) = H1(A). The set Hn(A) provides a lower bound on (2.14),

min
p∈πn

max
z∈Hn(A)

|p(z)| ≤ min
p∈πn

‖p(A)‖.(2.15)

In some way, Hn(A) reflects the complicated relation between the polynomial of degree
n and the matrix A, and provides often a very good estimate of the value of the
ideal GMRES approximation (2.14). Greenbaum and her co-workers [3, 15, 16] have
obtained theoretical results about Hn(A) for Jordan blocks, banded triangular Toeplitz
matrices and block diagonal matrices with triangular Toeplitz blocks. Clearly, for a
larger applicability of the bound (2.15), the class of matrices for which Hn(A) is known
needs to be extended. But in general, the determination of these sets represents a
nontrivial open problem.

In [47] we investigate the bound (2.15) for a single Jordan block Jλ. We study the
relation between ideal and worst-case GMRES approximations (2.13) and (2.14) as well
as the problem of estimating the ideal GMRES approximation using the set Hn(Jλ).
We prove new results about the radii of the polynomial numerical hulls of Jordan
blocks. Using these, we discuss the closeness of the lower bound on the ideal GMRES
approximation that is derived from the radius of the polynomial numerical hull.

The ideal GMRES approximation problem is a special case of more general matrix
approximation problems that are not well understood. In our paper [31] we consider
the following problem: Let f be a function that is analytic in a neighborhood of the
spectrum of a given matrix A ∈ CN×N , so that f(A) is well defined, let ‖ · ‖ be
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the spectral norm (2-norm) and let m be a nonnegative integer. Consider the matrix
approximation problem

min
p∈Pn

‖f(A)−Amp(A)‖,(2.16)

where Pn is the set of polynomials of degree at most n. Special cases of the problem
(2.16) are the ideal Arnoldi and ideal GMRES approximation problems. Greenbaum
and Trefethen [21] seem to be the first who studied existence and uniqueness of poly-
nomials that solve ideal Arnoldi and ideal GMRES problems. In our paper [31] we
generalize their results to problems of the form (2.16). Our main result is the follow-
ing: Provided that the minimum in (2.16) is nonzero and A is nonsingular, the problem
(2.16) has a unique minimizer. In the subsequent paper [7] we study general properties
of so called Chebyshev polynomials of matrices, the polynomials that solve the ideal
Arnoldi approximation problem. In some cases, these properties turn out to be gen-
eralizations of well known properties of Chebyshev polynomials of compact sets in the
complex plane.

2.3 Short recurrences

At the Householder Symposium VIII held in Oxford in July 1981, Golub posed as an
open question to characterize necessary and sufficient conditions on a matrix A for the
existence of a three-term conjugate gradient type method for solving linear systems
with A (cf. SIGNUM Newsletter, vol. 16, no. 4, 1981). This important question
was answered by Faber and Manteuffel in 1984 [9]. They formulated a fundamental
theorem in the area of iterative methods known as the Faber-Manteuffel theorem. It
shows that a short recurrence for orthogonalizing Krylov subspace bases for a matrix A
exists if and only if the adjoint of A is a low degree polynomial in A. This result is
important, since it characterizes all matrices, for which an optimal Krylov subspace
method with short recurrences can be constructed. Here optimal means that the error
is minimized in the norm induced by the given inner product. Of course, such methods
are highly desirable, due to convenient work and storage requirements for generating
the orthogonal basis vectors. Examples are the CG method [22] for solving systems of
linear algebraic equations with a symmetric positive definite matrix A, or the MINRES
method [39] for solving symmetric but indefinite systems.

Now we briefly describe the result of Faber and Manteuffel. Let A be a nonsingular
matrix and v be a vector of grade d (d is the degree of the uniquely determined monic
polynomial of smallest degree that annihilates v). For theoretical as well as practical
purposes it is often convenient to orthogonalize the basis v, . . . , Ad−1v of the subspace
Kd(A, v). The classical approach to orthogonalization is to use the Arnoldi method,
that produces mutually orthogonal vectors v1, . . . , vd satisfying span{v1, . . . , vn} =
span{v, . . . , An−1v}, n = 1, . . . , d. The algorithm can be written in a matrix form

v1 = v ,(2.17)
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A [v1, . . . , vd−1]︸ ︷︷ ︸
≡ Vd−1

= [v1, . . . , vd]︸ ︷︷ ︸
≡ Vd




h1,1 · · · h1,d−1

1
. . .

...
. . . hd−1,d−1

1




︸ ︷︷ ︸
≡ Hd,d−1

,(2.18)

(vi, vj) = 0 for i 6= j , i, j = 1, . . . , d .(2.19)

As described above, for efficiency reasons, it is desirable to generate such an or-
thogonal basis with a short recurrence, meaning that in each iteration step only a few
of the latest basis vectors are required to generate the new basis vector. This corre-
sponds to the situation when the matrix Hd,d−1 in (2.18) is, for each starting vector
v1, low-band Hessenberg matrix. Note that an unreduced upper Hessenberg matrix
is called (s + 2)-band Hessenberg, when its s-th superdiagonal contains at least one
nonzero entry, and all its entries above its s-th superdiagonal are zero. We say that A
admits an optimal (s+ 2)-term recurrence if Hd,d−1 is for each starting vector at most
(s+2)-band Hessenberg and, moreover, there exists an initial vector such that Hd,d−1 is
exactly (s+ 2)-band Hessenberg (the s-th superdiagonal contains at least one nonzero
entry). The fundamental question is, what properties are necessary and sufficient for
A to admit an optimal (s+ 2)-term recurrence. This question was answered by Faber
and Manteuffel [9].

Theorem (Faber-Manteuffel) Let A be a nonsingular matrix with minimal polynomial
degree dmin(A). Let s be a nonnegative integer, s + 2 < dmin(A). Then A admits an
optimal (s + 2)-term recurrence if and only if A∗ = p(A), where p is a polynomial of
smallest degree s having this property (i.e. A is normal(s)).

While the sufficiency of the normal(s) condition is rather easy to prove, the proof
of necessity given by Faber and Manteuffel is based on a clever, highly nontrivial con-
struction by using results from mathematical analysis (“continuous function”), topology
(“closed set of smaller dimension”) or multilinear algebra (“wedge product”).

In [26], Liesen and Strakoš discuss and clarify the existing important results in the
context of the Faber-Manteuffel Theorem. They suggest that, in light of the funda-
mental nature of the result, it is desirable to find an alternative, and possibly simpler
proof of the necessity part.

In our paper [5] we address this issue. We formulate here this theorem in terms
of linear operators on finite dimensional Hilbert spaces. We have chosen this setting
because we believe that the proof of necessity is easier to follow when we use linear
operators rather than matrices. We give two different proofs of the necessity part, both
based on restriction of the linear operator A to certain cyclic invariant subspaces. The
resulting technicalities in the matrix formulation would obstruct rather than help the
understanding. Moreover, our formulation may serve as a starting point for extending
the results to infinite dimensional spaces. We are not aware that any such extensions
have been obtained yet.

In the subsequent paper [6] we study a problem that is closely related to Faber-
Manteuffel theorem. In particular, at the dth iteration step the relation (2.18) becomes

AVd = VdHd .(2.20)
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Here Hd can be interpreted as the matrix representation of the linear operator A re-
stricted to the A-invariant subspace Kd(A, v). Or, Hd can be interpreted as a reduction
of A to upper Hessenberg form. In [6] we study necessary and sufficient conditions on
A so that the orthogonal Hessenberg reduction yields a Hessenberg matrix with small
bandwidth. This includes the orthogonal reduction to tridiagonal form as a special
case. Orthogonality here is meant with respect to some given but unspecified inner
product. We prove the following theorem.

Theorem Let A ∈ CN×N , let B ∈ CN×N be a Hermitian positive definite matrix, and
let s be a nonnegative integer, s + 2 ≤ dmin(A). The matrix A is reducible for the
given B to (s + 2)-band Hessenberg form if and only if A∗ = Bp(A)B−1, where p is a
polynomial of smallest degree s having this property (i.e. A is B-normal(s)).

While this result is already implied by the Faber-Manteuffel theorem on short recur-
rences for orthogonalizing Krylov sequences (see [26]), we consider it useful to present
a new, less technical proof. Our proof utilizes the idea of a “minimal counterexample”,
which is standard in combinatorial optimization, but rarely used in the context of linear
algebra.

2.4 Error estimation and related problems

In this section we concentrate on two problems: Error estimation in the conjugate gra-
dient (CG) method that solves systems of linear algebraic equations Ax = b with Her-
mitian and positive definite matrices, and approximation of the bilinear form c∗A−1b.

Today the (preconditioned) Conjugate Gradient (CG) algorithm by Hestenes and
Stiefel [22] is the iterative method of choice for solving linear systems Ax = b with
a Hermitian positive definite symmetric matrix A. An important question is when to
stop the iterations. Ideally, one would like to stop the iterations when some norm of the
error en = x−xn, where xn are the CG iterates, is small enough. However, the error is
unknown and most CG implementations rely on stopping criteria that use the residual
norm ‖rn‖ = ‖b−Axn‖ as a measure of convergence. These types of stopping criteria
can provide misleading information about the actual error. It can stop the iterations
too early when the norm of the error is still too large, or too late in which case too
many floating point operations have been done for obtaining the required accuracy.
This motivated researchers to look for ways to compute estimates of some norms of the
error during CG iterations. The norm of the error which is particularly interesting for
CG is the A-norm which is minimized at each iteration,

‖en‖A = (e∗nAen)1/2.

Inspired by the connection of CG with the Gauss quadrature rule for a Riemann-
Stieltjes integral, a way of research on this topic was started by Gene Golub in the
1970s and continued throughout the years with several collaborators (e.g., Dahlquist,
Eisenstat, Fischer, Meurant, Strakoš). The main idea of Golub and his collaborators
was to obtain bounds for the integral using different quadrature rules. It turns out
that these bounds can be computed without the knowledge of the stepwise constant
measure and at almost no cost during the CG iterations.

These techniques were used by Golub and Meurant [11] for providing lower and up-
per bounds on quadratic forms u∗f(A)u where f is a smooth function, A is a Hermitian
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matrix and u is a given vector. Their algorithm GQL (Gauss Quadrature and Lanczos)
was based on the Lanczos algorithm and on computing functions of Jacobi matrices.
Later, these techniques were adapted to CG to compute lower and upper bounds on
the A-norm of the error for which the function is f(λ) = λ−1. The idea was to use CG
instead of the Lanczos algorithm, to compute explicitly the entries of the corresponding
Jacobi matrices and their modifications from the CG coefficients, and then to use the
same formulas as in GQL. The formulas were summarized in the CGQL algorithm (QL
standing again for Quadrature and Lanczos), whose most recent version is described in
the book [12]. Below we describe our contribution to the algorithmic development of
the error estimators in CG.

The CG method of Hestenes and Stiefel is given by Algorithm 1).

Algorithm 1 Conjugate gradient algorithm

input A, b, x0

r0 = b− Ax0

p0 = r0

for n = 1, . . . , N until convergence do

γn−1 =
r∗n−1rn−1

p∗n−1Apn−1

xn = xn−1 + γn−1pn−1

rn = rn−1 − γn−1Apn−1

δn = r∗nrn
r∗n−1rn−1

pn = rn + δnpn−1

end for

In the Ph.D. thesis [46] and in [43] we summarize the connection between CG and
Gauss quadrature, and compare and analyze various ways how to compute the Gauss
quadrature lower bound on the A-norm of the error. In the end, we recommend the
estimate

‖en‖A ≈
(
n+k−1∑

i=n

γi‖ri‖2
)1/2

(2.21)

to be incorporated into any software realization of the CG method. It is simple and
numerically stable. Note that to compute the estimate we need to perform k extra
steps of CG. It remains a subject of further work to design an adaptive error estimator,
which would use some heuristics for adjusting k according to the desired accuracy of
the estimate. Though we concentrate in [43] mostly on the lower bound for the A-norm
of the error, we describe also an estimate for the Euclidean norm of the error. Further
extension and popularization of our results [43] to practical users of the preconditioned
conjugate gradient method (PCG) we published in [44]. Note that the estimate (2.21)
appeared later to be very useful not only in the context of CG, but also, e.g., in stopping
criteria for rational matrix functions of Hermitian and symmetric matrices [10] or, in a
posteriori error estimates for the finite volume discretization of a second-order elliptic
model problem, which take into account an inexact solution of the associated linear
algebraic system [24].

The CGQL algorithm may seem complicated, particularly for computing bounds
with the Gauss-Radau or Gauss-Lobatto quadrature rules. In our paper with Meurant
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[35] we show that the CGQL formulas can be considerably simplified. We use the fact
that CG computes the Cholesky decomposition of the Jacobi matrix which is given
implicitly, and derive new algebraic formulas by working with the LDL∗ factorizations
of the Jacobi matrices and their modifications instead of computing the Lanczos co-
efficients explicitly. In other words, we obtain the bounds from the CG coefficients
without computing the Lanczos coefficients. The new algorithm is called CGQ (Con-
jugate Gradients and Quadrature). The algebraic derivation of the new formulas is
more difficult than it was when using Jacobi matrices but, in the end, the formulas
are simpler. Obtaining simple formulas is a prerequisite for analyzing the behavior of
the bounds in finite precision arithmetic and also for a better understanding of their
dependence on the auxiliary parameters that are lower and upper bounds (or estimates)
of the smallest and the largest eigenvalue of A.

Given a nonsingular square matrix A ∈ CN×N and vectors b and c of compatible
dimensions, many applications require approximation of the quantity

c∗A−1b = c∗x(2.22)

where x is the solution of the linear algebraic system Ax = b. They arise in signal
processing under the name scattering amplitude, as well as in nuclear physics, quan-
tum mechanics, computational fluid dynamics. In numerical linear algebra they arise
naturally in computing error bounds for iterative methods, in solving inverse problems,
least and total least squares problems etc.; see [12].

Usually, c∗A−1b need not be approximated to a high accuracy; an approximation
correct to very few digits of accuracy is sufficient. Therefore direct solution of Ax = b is
even for problems of moderate size inefficient. If A is sufficiently large or the elements
of A are too costly to compute, then the direct solution is not possible. A strategy used
by several authors is to generate a sequence {xn} of approximate solutions to Ax = b
using a Krylov subspace method, and to approximate c∗A−1b by c∗xn for sufficiently
large n. However, even when A is HPD, this approximation may require a large number
of iterations as a result of rounding errors affecting xn; see [43, 44]. In our paper [45] we
presents an approach for approximating c∗A−1b that is designed to be computationally
efficient. Algorithmically, this paper extends the results presented in [43, 44] from the
HPD case and the conjugate gradient method (CG) to the general complex case and
the biconjugate gradient method (BiCG). In more detail, the efficient approximation is
based on the identity

c∗A−1b =
n−1∑

j=0

αjs
∗
jrj + s∗nA

−1rn .(2.23)

where rn and sn are residual and dual residual vectors generated by the BiCG method.
The sum in (2.23) is easily computable during BiCG computations and it provides an
approximation to the quantity c∗A−1b. Note that (2.23) generalizes the result from the
Hermitian positive definite case, in which b∗A−1b and r∗nA

−1rn equal, respectively, to
the squared A-norms of the errors at steps 0 and n; see [43]. In our paper [45] we also
show the mathematical equivalence of the preferred approximation based on (2.23) to
the existing estimates which use a complex generalization of Gauss quadrature, and
discuss its numerical properties. The proposed estimate is compared with existing
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approaches using analytic arguments and numerical experiments on a practically im-
portant problem that arises from the computation of diffraction of light on media with
periodic structure.

In our understanding, various approaches for numerical approximation of the quan-
tity c∗A−1b can be viewed as applications of the general mathematical concept of match-
ing moments model reduction, formulated and used in applied mathematics by Vorobyev
in his book [50]. Using the Vorobyev moment problem, matching moments properties
of Krylov subspace methods can be described in a very natural and straightforward
way, see [42].

2.5 Influence of finite precision arithmetic

Almost all practical computations are done on computers that use finite precision arith-
metic. Hence, understanding the behavior of an algorithm in the presence of rounding
errors is very important. In iterative methods, any stopping criterion and also any
theoretical consideration about convergence in solving a practical problem has to take
into account that rounding errors may delay the convergence, limit the attainable accu-
racy, or influence significantly the information provided by error estimators. The goal
of rounding error analysis is then to find algorithms that are numerically stable and to
identify algorithms (or their parts) which are not. In the following we concentrate on
behavior of the CG and Lanczos algorithms in finite precision arithmetic, and on relia-
bility of error estimators in CG. We also briefly comment on the numerical behavior of
the approximation to the quantity c∗A−1b based on the identity (2.23) and the BiCG
method.

For more than 20 years the effects of rounding errors to the Lanczos and CG meth-
ods seemed devastating. Orthogonality among the computed vectors was usually lost
very quickly, with a subsequent loss of linear independence. Consequently, the finite
termination property was lost. Still, despite a total loss of orthogonality among the
vectors, the Lanczos and the CG methods produced reasonable results. A fundamental
work was done by Paige who proved that loss of orthogonality among the computed
Lanczos vectors was possible only in the directions of the converged Ritz vectors; see,
e.g., [38] or the review paper [34]. Another step was made by Greenbaum in [14]. On
the foundations laid by Paige she developed a backward-like analysis of the Lanczos al-
gorithm (and also of the closely related conjugate gradient algorithm). Roughly speak-
ing, she showed that Lanczos (and CG) computations can be simulated (modeled) for
a given number of iterations by the exact Lanczos (and CG) applied to a larger system
with the matrix having eigenvalues clustered in small intervals about the eigenvalues
of the original matrix. Using the relation between CG and Gauss quadrature, the re-
sults by Greenbaum [14] and Greenbaum and Strakoš [19] can also be formulated in
the following way: Finite precision CG computations can be viewed as computations
of exact CG applied to a modified problem, for which the convergence is determined
by a Riemann-Stieltjes integral with a slightly perturbed distribution function of the
original problem.

To further understand the mathematical model that describes results of CG compu-
tation we investigated in [37] the problem of sensitivity of Gauss-Christoffel quadrature
with respect to small perturbations of the distribution function. Note that the question
how much does a function change under perturbations of its arguments is of central
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importance in numerical computations. In more detail, consider a sufficiently smooth
integrated function uncorrelated with the perturbation of the distribution function.
Then it seems natural that given the same number of function evaluations, the dif-
ference between the quadrature approximations is of the same order as the difference
between the (original and perturbed) approximated integrals. That is perhaps one of
the reasons why, to our knowledge, the sensitivity question has not been formulated
and addressed in the literature, though several other sensitivity problems, motivated,
in particular, by computation of the quadrature nodes and weights from moments, have
been thoroughly studied by many authors. In [37] we survey existing particular results
and show that even a small perturbation of a distribution function can cause large
differences in Gauss-Christoffel quadrature estimates. This can happen for analytic in-
tegrands and discontinuous, continuous, and even analytic distribution functions. We
also discuss conditions under which the Gauss-Christoffel quadrature is insensitive un-
der perturbation of the distribution function, present illustrative examples, and relate
our observations to known conjectures on some sensitivity problems.

Consider now the CG finite precision computations. As described in Section 2.4,
it is desirable to control the quality of the actual approximate solution which can be
done using error estimators like (2.21). Rounding errors in the computation of the sum
in (2.21) do not represent a problem. However, does this sum really approximate the
A-norm of the actual error even though the computed approximate solution is far away
(the orthogonality is lost) from its exact precision counterpart? The answer was given
in our papers [43] for CG and in [44] for preconditioned CG.

The error estimator (2.21) is based on the identity

‖x− xn‖2A =

n+k−1∑

i=n

γi‖ri‖2 + ‖x− xn+k‖2A(2.24)

that holds in exact arithmetic. If ‖x−xn‖2A � ‖x−xn+k‖2A, then the square root of the
sum in (2.24) is a tight estimate of ‖x−xn‖A. In [43] we have shown that this identity
holds (up to some small inaccuracy) also for numerically computed quantities, even
though they do not usually correspond to their exact precision counterparts. This result
holds thanks to the fact that the local orthogonality among the consecutive residuals
and direction vectors is preserved also during finite precision CG computations. Since
the A-norm of the error is nonincreasing in finite precision arithmetic (recall results by
Greenbaum [14]), the sum in (2.24) can be used for the estimation of the A-norm of
the actual error. A similar consideration can be done also for preconditioned CG [44]
where the condition number of the preconditioner plays an important role.

The results published in [43, 44] are encouraging for investigating the numerical sta-
bility of further estimates of the A-norm of the error in CG, based on Gauss-Radau (or
Gauss-Lobatto) quadrature. Our experiments performed jointly with Gérard Meurant
predict that estimates based on Gauss-Radau quadrature can be significantly influenced
by the behavior of CG in finite precision arithmetic, and need not always provide a
good estimate. We would like to analyze and understand this phenomenon.

Finally, let us discuss the finite precision behavior of the approximation to the
quantity c∗A−1b based on the identity (2.23); see [45]. For BiCG one can hardly expect
results of the same strength as for CG. Formally, we can derive analogous formulas as
in the rounding error analysis of (2.24). In [45] we have shown that the identity (2.23)
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holds also for numerically computed quantities (up to some small inaccuracy), if the
local biorthogonality among consecutive residual and direction vectors is well preserved.
But in BiCG, a close preservation of the local biorthogonality cannot be proved due
to the possible occurrence of the so-called breakdowns. Note that breakdowns are not
caused by rounding errors; they can occur in exact arithmetic. Nevertheless, there is
no need of preserving the global orthogonality among the computed vectors in order
the approximation based on (2.23) to work during finite precision computations. This
represents a strong numerical argument in favor of the proposed estimate.

2.6 Short summary of our contribution

Convergence results. In the survey [28] we summarize known convergence results for
three well-known Krylov subspace methods (CG, MINRES and GMRES) and formulate
open questions in this area.

In [29, 30, 32] we investigate the convergence of Krylov subspace methods for systems
of linear algebraic equations with normal matrices. In particular, in [29] we explore the
standard bound based on the min-max approximation problem (2.2). We ask the ques-
tions how to evaluate it and whether it is possible to characterize the initial residual
for which this bound is attained. In [30] we apply the previous results [29] to a partic-
ular problem, to one-dimensional reaction-diffusion equations with Dirichlet boundary
conditions, and discuss the question which source term and boundary condition in the
underlying differential equation lead to the slowest possible convergence of a Krylov
subspace method. In [32] we revise the question of the sharpness of the bounds (2.6)
and (2.8). We formulate this problem in a more general setting (2.11) and prove the
sharpness result using classical results of approximation theory.

Our work [47, 31, 7, 8] is concerned with convergence results for nonnormal matrices.
Since in the nonnormal case the situation is much less clear, we concentrate on a case
study in [47]. We study the question about the quality of the bound (2.15) based
on polynomial numerical hull, or the question about the sharpness of the inequality
(2.14) for a single Jordan block Jλ. In [8] we contribute to the understanding of the
worst-case GMRES approximation problem (2.13). For example, we show that the
worst-case GMRES polynomial may not be uniquely determined. In [31] we generalize
the ideal GMRES problem (2.14) to (2.16) and prove the uniqueness of the minimizer.
Finally, in [7] we investigate so called Chebyshev polynomials of a square matrix A
(solutions of the problem (2.16) for f(x) = 1 and m = 1) that are related to the
Arnoldi method for approximating eigenvalues of matrices. We study general properties
of these polynomials, which in some cases turn out to be generalizations of well-known
properties of Chebyshev polynomials of compact sets in the complex plane.

Short recurrences. In the paper [5] we formulate the Faber-Manteuffel theorem
in terms of linear operators on finite dimensional Hilbert spaces, and give two new
different proofs of the necessity part. In the subsequent paper [6] we give a new proof
of necessary and sufficient conditions on A so that the orthogonal reduction yields a
Hessenberg matrix with small bandwidth.

Error estimation. In [43] we summarize the connection between CG and Gauss
quadrature and analyze various ways how to compute the Gauss quadrature lower
bound. We recommend the estimate (2.21) that is simple and numerically stable. In [44]
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we extend our results [43] to practical users of the PCG method. In [35] we formulate
a new algorithm called CGQ for computing quadrature bounds for the A-norm of
the error in CG. This new algorithm represents a considerable simplification of the
CGQL algorithm by Golub and Meurant. Finally, in [45] we presents an approach for
approximating c∗A−1b that is designed to be computationally efficient. Algorithmically,
we extend the results presented in [43, 44] from the Hermitian and positive definite case
and CG to the general complex case and BiCG.

Finite precision arithmetic. To further understand the mathematical model that
describes results of CG computation we investigated in [37] the problem of sensitivity
of Gauss-Christoffel quadrature with respect to small perturbations of the distribution
function. In [43, 44] we present the rounding error analysis of the error estimators in CG
and PCG. We explain, why the proposed error estimator works also in finite precision
arithmetic, despite the fact that the computed approximate solutions are usually far
away from its exact precision counterparts. In [45] we have shown that the proposed
approximation of the bilinear form c∗A−1b works well also in finite precision arithmetic,
if the local biorthogonality among consecutive BiCG residual and direction vectors is
well preserved.
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THE FABER–MANTEUFFEL THEOREM FOR LINEAR OPERATORS∗
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Abstract. A short recurrence for orthogonalizing Krylov subspace bases for a matrix A exists
if and only if the adjoint of A is a low-degree polynomial in A (i.e., A is normal of low degree).
In the area of iterative methods, this result is known as the Faber–Manteuffel theorem [V. Faber
and T. Manteuffel, SIAM J. Numer. Anal., 21 (1984), pp. 352–362]. Motivated by the description
by J. Liesen and Z. Strakoš, we formulate here this theorem in terms of linear operators on finite
dimensional Hilbert spaces and give two new proofs of the necessity part. We have chosen the
linear operator rather than the matrix formulation because we found that a matrix-free proof is less
technical. Of course, the linear operator result contains the Faber–Manteuffel theorem for matrices.
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recurrences, normal matrices
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1. Introduction. At the Householder Symposium VIII held in Oxford in July
1981, Golub posed as an open question to characterize necessary and sufficient condi-
tions on a matrix A for the existence of a three-term conjugate gradient–type method
for solving linear systems with A (cf. SIGNUM Newsletter, vol. 16, no. 4, 1981). This
important question was answered by Faber and Manteuffel in 1984 [4]. They showed
that an (s+2)-term conjugate gradient type method for A, based on some given inner
product, exists if and only if the adjoint of A with respect to the inner product is a
polynomial of degree s in A (i.e., A is normal of degree s). In the area of iterative
methods this result is known as the Faber–Manteuffel theorem; see, e.g., [7, Chapter 6]
or [13, Chapter 6.10].

The theory of [4] and some further developments have recently been surveyed
in [12]. There the Faber–Manteuffel theorem is formulated independently of the con-
jugate gradient context and solely as a result on the existence of a short recurrence
for generating orthogonal bases for Krylov subspaces of the matrix A. A new proof
of the sufficiency part is given, and the normality condition on A is thoroughly char-
acterized. For the proof of the (significantly more difficult) necessity part, however,
the authors refer to [4]. In particular, they suggest that, in light of the fundamental
nature of the result, it is desirable to find an alternative, and possibly simpler, proof.
Note that a proof similar to the one of Faber and Manteuffel but for other classes of
matrices has been given in [14].

Motivated by the description in [12], we here take a new approach to formulate
and prove the necessity part of the Faber–Manteuffel theorem. Instead of a matrix
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we consider a given linear operator A on a finite dimensional Hilbert space V . By the
cyclic decomposition theorem, the space V decomposes into cyclic invariant subspaces,
i.e., Krylov subspaces, of A (see section 2 for details). The Faber–Manteuffel theorem
then gives a necessary (and sufficient) condition on A, so that the standard Gram–
Schmidt algorithm for generating orthogonal bases of the cyclic subspaces reduces
from a full to a short recurrence.

We have chosen this setting because we believe that the proof of necessity is
easier to follow when we use linear operators rather than matrices. In this paper we
give two different proofs of the necessity part, both based on restriction of the linear
operator A to certain cyclic invariant subspaces. The resulting technicalities in the
matrix formulation would obstruct rather than help the understanding. Moreover,
our formulation may serve as a starting point for extending the results to infinite
dimensional spaces. We are not aware that any such extensions have been obtained
yet.

The paper is organized as follows. In section 2 we introduce the notation and the
required background from the theory of linear operators. In section 3 we translate the
matrix concepts introduced in [12] into the language of linear operators. In section 4
we state and prove several technical lemmas that are required in the proof of the main
result, which is given in section 5. In section 6 we give an alternative proof, which
we consider elementary and constructive. This proof involves structure-preserving
orthogonal transformations of Hessenberg matrices, which may be of interest beyond
our context here. In section 7 we discuss our rather theoretical analysis in the preceed-
ing sections. This discussion includes a matrix formulation of the Faber–Manteuffel
theorem, a high-level description of the strategies of our two proofs of the necessity
part, and our reasoning why necessity is more difficult to prove than sufficiency. For
obtaining a more detailed overview of the results in this paper, section 7 may be read
before the other sections.

2. Notation and background. In this section we introduce the notation and
recall some basic results from the theory of linear operators; see Gantmacher’s book [6,
Chapters VII and IX] for more details.

Let V be a finite dimensional Hilbert space, i.e., a complex vector space equipped
with a (fixed) inner product (·, ·). Let A : V → V be a given invertible linear operator.
For any vector v ∈ V , we can form the sequence

(2.1) v, Av, A2v, . . . .

Since V is finite dimensional, there exists an integer d = d(A, v) such that the vectors
v, Av, . . . , Ad−1v are linearly independent, while Adv is a linear combination of them.
This means that there exist scalars, α1, . . . , αd−1, not all equal to zero, such that

(2.2) Adv = −
d−1∑

j=0

αjA
jv .

Defining the monic polynomial φ(z) = zd + αd−1z
d−1 + · · · + α0, we can rewrite (2.2)

as

(2.3) φ(A)v = 0 .

We say that φ annihilates v. It would be more accurate to say “φ annihilates v with
respect to A,” but when it is clear which operator A is meant, the reference to A is
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omitted for the sake of brevity. The monic polynomial φ is the uniquely determined
monic polynomial of smallest degree that annihilates v, and it is called the minimal
polynomial of v. Its degree, equal to d(A, v), is called the grade of v, and v is said to
be of grade d(A, v).

Consider any basis of V , and define the polynomial Φ as the least common multiple
of the minimal polynomials of the basis vectors. Then Φ is the uniquely defined
(independent of the choice of the basis!) monic polynomial of smallest degree that
annihilates all vectors v ∈ V , and it is called the minimal polynomial of A. We denote
its degree by dmin(A). Apparently, dmin(A) ≥ d(A, v) for all v ∈ V , and Φ is divisible
by the minimal polynomial of every vector v ∈ V .

If v ∈ V is any vector of grade d, then

(2.4) span{v, . . . Ad−1v} ≡ Kd(A, v)

is a d-dimensional invariant subspace of A. Because of (2.2) and the special character
of the basis vectors, the subspace Kd(A, v) is called cyclic. The letter K has been
chosen because this space is often called the Krylov subspace of A and v. The vector v
is called the generator of this subspace.

A central result in the theory of linear operators on finite dimensional vector
spaces is that the space V can be decomposed into cyclic subspaces. This result
has several equivalent formulations, and in this paper we will use the one from [6,
Chapter VII, section 4, Theorem 3]: there exist vectors w1, . . . , wj ∈ V of respective
grades d1, . . . , dj such that

(2.5) V = Kd1(A, w1) ⊕ · · · ⊕ Kdj (A, wj) ,

where the minimal polynomial of w1 is equal to the minimal polynomial of A, and for
k = 1, . . . , j −1, the minimal polynomial of wk is divisible by the minimal polynomial
of wk+1.

Since the decomposition (2.5) is an important tool in this paper, we illustrate it
by a simple example (adapted from [9, section 7.2]; also see [10] for a short and self-
contained proof of the decomposition (2.5)). Suppose that A is the linear operator on
V = R3 whose matrix representation in the canonical basis of R3 is

⎡
⎣

2 −3 −3
−3 2 3

3 −3 −4

⎤
⎦ .

The characteristic polynomial of A is (z − 2)(z + 1)2, while the minimal polynomial
is Φ = (z − 2)(z + 1), so that dmin(A) = 2. Any nonzero vector in R3 is either of
grade one (and hence is an eigenvector) or of grade two. It is easy to see that the first
canonical basis vector is not an eigenvector. Thus, w1 ≡ [1, 0, 0]T is of grade d1 = 2,
i.e., Kd1(A, w1) has dimension two, and the minimal polynomial of w1 is Φ. Note that

Kd1
(A, w1) = span

⎧
⎨
⎩

⎡
⎣

1
0
0

⎤
⎦ ,

⎡
⎣

2
−3

3

⎤
⎦

⎫
⎬
⎭ =

⎧
⎨
⎩

⎡
⎣

α
β

−β

⎤
⎦ : α, β ∈ R

⎫
⎬
⎭ .

Since V = R3 has dimension three, it remains to find a vector w2 /∈ Kd1(A, w1) that is
of grade one and has minimal polynomial z +1, i.e., w2 is an eigenvector with respect
to the eigenvalue −1, that is not contained in Kd1(A, w1). These requirements are
satisfied by w2 ≡ [1, 0, 1]T , giving

R3 = Kd1(A, w1) ⊕ Kd2(A, w2) = span {w1, Aw1} ⊕ span {w2} .
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In the basis of R3 given by w1, Aw1, w2, the linear operator A has the matrix repre-
sentation

⎡
⎣

0 2
1 1

−1

⎤
⎦ .

Here the two diagonal blocks correspond to the decomposition (2.5), where each block
is the companion matrix of the minimal polynomial of the respective cyclic subspace
generators. This matrix representation is sometimes called the rational canonical
form. When this canonical form consists of a single diagonal block in companion
form, A is called nonderogatory. Hence in our example A is derogatory, but the
restriction of A to the cyclic subspace generated by w1 is nonderogatory. Loosely
speaking, this restriction is the “largest nonderogatory part” of A.

3. Orthogonalization of a cyclic subspace basis. Let v ∈ V be a vector
of grade d. For theoretical as well as practical purposes it is often convenient to
orthogonalize the basis v, . . . , Ad−1v of the cyclic subspace Kd(A, v). The classical
approach to orthogonalization, which appears in different mathematical areas (see,
e.g., [2, p. 15], [5, p. 74]) is the Gram–Schmidt algorithm:

v1 = v ,(3.1)

vn+1 = Avn −
n∑

m=1

hm,nvm ,(3.2)

hm,n =
(Avn, vm)

(vm, vm)
, m = 1, . . . , n , n = 1, . . . , d − 1 .(3.3)

The resulting vectors v1, . . . , vd are mutually orthogonal, and for n = 1, . . . , d they
satisfy span{v1, . . . , vn} = span{v, . . . , An−1v} . We call v (or v1) the initial vector
of the algorithm (3.1)–(3.3). When A is a (square) matrix, this algorithm is usually
referred to as Arnoldi’s method [1]. It can be equivalently written as

v1 = v ,(3.4)

A [v1, . . . , vd−1]︸ ︷︷ ︸
≡ Vd−1

= [v1, . . . , vd]︸ ︷︷ ︸
≡ Vd

⎡
⎢⎢⎢⎢⎢⎢⎣

h1,1 · · · h1,d−1

1
. . .

...
. . . hd−1,d−1

1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡ Hd,d−1

,(3.5)

(3.6) (vi, vj) = 0 for i �= j , i, j = 1, . . . , d .

The matrix Hd,d−1 is an unreduced upper Hessenberg matrix of size d × (d − 1).
Its band structure determines the length of the recurrence (3.2) that generates the
orthogonal basis. To state this formally, we need the following definition [12, Defini-
tion 2.1].

Definition 3.1. An unreduced upper Hessenberg matrix is called (s + 2)-band
Hessenberg when its sth superdiagonal contains at least one nonzero entry and all its
entries above its sth superdiagonal are zero.
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If Hd,d−1 is (s + 2)-band Hessenberg, then for n = 1, . . . , d − 1, the recurrence
(3.2) reduces to

(3.7) vn+1 = Avn −
n∑

m=n−s

hm,nvm ,

and thus the orthogonal basis is generated by an (s + 2)-term recurrence. Since
precisely the latest s + 1 basis vectors vn, . . . , vn−s are required to determine vn+1,
and only one operation with A is performed, an (s + 2)-term recurrence of the form
(3.7) is called optimal.

Definition 3.2 (linear operator version of [12, Definition 2.4]). Let A be an
invertible linear operator with minimal polynomial degree dmin(A) on a finite dimen-
sional Hilbert space, and let s be a nonnegative integer, s + 2 ≤ dmin(A).

(1) If for an initial vector the matrix Hd,d−1 in (3.4)–(3.6) is (s + 2)-band Hes-
senberg, then we say that A admits for the given initial vector an optimal
(s + 2)-term recurrence.

(2) If A admits for any given initial vector an optimal recurrence of length at
most s + 2, while it admits for at least one given initial vector an optimal
(s + 2)-term recurrence, then we say that A admits an optimal (s + 2)-term
recurrence.

We denote the adjoint of A by A∗. This is the uniquely determined operator that
satisfies (Av, w) = (v, A∗w) for all vectors v and w in the given Hilbert space. The
operator A is called normal if it commutes with its adjoint, AA∗ = A∗A. This holds
if and only if A has a complete orthonormal system of eigenvectors. Equivalently, A∗

can be written as a polynomial in A, A∗ = p(A), where p is completely determined
by the condition that p(λj) = λj for all eigenvalues λj of A (cf. [6, Chapter IX,
section 10]). We will be particularly interested in the degree of this polynomial.

Definition 3.3. Let A be an invertible linear operator on a finite dimensional
Hilbert space. If the adjoint of A satisfies A∗ = p(A), where p is a polynomial of
smallest degree s having this property, then A is called normal of degree s, or, shortly,
normal(s).

The condition that A is normal(s) is sufficient for A to admit an optimal (s + 2)-
term recurrence. The precise formulation of this statement is the following.

Theorem 3.4. Let A be an invertible linear operator with minimal polynomial
degree dmin(A) on a finite dimensional Hilbert space. Let s be a nonnegative integer,
s+2 < dmin(A). If A is normal(s), then A admits an optimal (s+2)-term recurrence.

Proof. A matrix version of this result is given in [12, Theorem 2.9], and the proof
given there can be easily adapted from matrices to linear operators.

The main result we will prove in this paper is that the condition that A is
normal(s) also is necessary.

Theorem 3.5. Let A be an invertible linear operator with minimal polynomial
degree dmin(A) on a finite dimensional Hilbert space. Let s be a nonnegative integer,
s+2 < dmin(A). If A admits an optimal (s+2)-term recurrence, then A is normal(s).

4. Technical lemmas. We prove Theorem 3.5 in section 5. To do so, we need
several technical lemmas that are stated and proved in this section.

Lemma 4.1. Let A be an invertible linear operator with minimal polynomial
degree dmin(A) on a finite dimensional Hilbert space. If 1 < i < n ≤ dmin(A) and
(u1, Aui) = 0 for every initial vector u1 of grade n, then (v1, Avi) = 0 for every initial
vector v1 of grade m, where i ≤ m ≤ n.
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(Here ui, vi are the ith basis vectors generated by (3.1)–(3.3) with initial vectors
u1, v1, respectively.)

Proof. If m = n, there is nothing to prove. Hence, suppose that m < n, and
let v1 be a vector of grade m, and u1 be a vector of grade n, such that the minimal
polynomial of v1 divides the minimal polynomial of u1. Define

(4.1) x1 ≡ x1(γ) ≡ v1 + γu1 ,

where γ is a scalar parameter. It is clear that, except for finitely many choices of γ,
the vector x1 is of grade n.

Suppose that γ has been chosen so that x1 is of grade n, and consider the corre-
sponding ith basis vector xi, where 1 < i ≤ m. By construction, xi = p(A)x1, where
p is a polynomial of (exact) degree i − 1. The vector xi is defined uniquely (up to
scaling) by the conditions

(Ajx1, xi) = (Ajx1, p(A)x1) = 0 , j = 0, . . . , i − 2 .

The hypothesis

(x1, Axi) = (x1, Ap(A)x1) = 0

gives one additional condition. We thus have i conditions that translate into i homo-
geneous linear equations for the i coefficients of the polynomial p. The existence of
xi implies that the determinant of the matrix M(x1) of these equations must be zero,
where

M(x1) =

⎡
⎢⎢⎢⎢⎢⎣

(x1, x1) (x1, Ax1) · · · (x1, A
i−1x1)

(Ax1, x1) (Ax1, Ax1) · · · (Ax1, A
i−1x1)

...
...

...
...

(Ai−2x1, x1) (Ai−2x1, Ax1) · · · (Ai−2x1, A
i−1x1)

(x1, Ax1) (x1, A
2x1) · · · (x1, A

ix1)

⎤
⎥⎥⎥⎥⎥⎦

.

Now note that detM(x1) is a continuous function of γ. By construction, this
function is zero for all but a finite number of choices of γ. Therefore detM(x1) = 0
for all γ, and in particular, detM(v1) = 0. Consequently, there exists a nontrivial
solution of the linear system with M(v1), defining a vector w = p(A)v1, where p is a
polynomial of degree at most i − 1. The first i − 1 rows mean that w is orthogonal to
v1, . . . , A

i−2v1, so w is a multiple of vi. The last row means that Aw and hence Avi

is orthogonal to v1.
The decomposition (2.5) shows that for any linear operator A on a finite dimen-

sional Hilbert space V , there exists a vector in V whose minimal polynomial coincides
with the minimal polynomial of A. The following result shows that there in fact exists
a basis of V consisting of vectors with this property.

Lemma 4.2. Let A be an invertible linear operator with minimal polynomial
degree dmin(A) on a finite dimensional Hilbert space V . Then there exists a basis of V
consisting of vectors that all are of grade dmin(A).

Proof. From the cyclic decomposition theorem, cf. (2.5), we know that there
exist vectors w1, . . . , wj with minimal polynomials φ1, . . . , φj of respective degrees
d1, . . . , dj , such that the space V can be decomposed as

V = Kd1(A, w1) ⊕ · · · ⊕ Kdj
(A, wj) ,
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where φ1 equals the minimal polynomial of A, and φk is divisible by φk+1 for k =
1, . . . , j − 1. In particular, d1 = dmin(A). Consequently, a basis of V is given by

w1, . . . , A
d1−1w1, w2, . . . , A

d2−1w2, . . . , wj , . . . , A
dj−1wj .

But then it is easy to see that

w1, . . . , A
d1−1w1, w2 + w1, . . . , A

d2−1w2 + w1, . . . , wj + w1, . . . , A
dj−1wj + w1

is a basis of V consisting of vectors that all are of grade d1.
The following result is a generalization of [11, Lemma 4.1], which in turn can be

considered a (considerably) strengthened version of [4, Lemma 2].
Lemma 4.3. Let A be an invertible linear operator with minimal polynomial

degree dmin(A) on a finite dimensional Hilbert space. Let B be a linear operator on
the same space, and let s be a nonnegative integer, s + 2 ≤ dmin(A). If

(4.2) Bv ∈ span{v, . . . , Asv} for all vectors v of grade dmin(A) ,

then AB = BA. In particular, if B = A∗, then A is normal(t) for some t ≤ s.
Proof. For notational convenience, we denote δ = dmin(A). Let v be any vector

of grade δ. Since A is invertible, Kδ(A, v) = Kδ(A, Av). In addition, except possibly
when γ is an eigenvalue of A, the vector w = (A−γI)v satisfies Kδ(A, w) = Kδ(A, v).
In the following, we exclude those values of γ. By assumption, there exist polynomials
pγ , q, and r of degree at most s, which satisfy

Bw = pγ(A)w, B(Av) = q(A)(Av), Bv = r(A)v,

where pγ depends on γ, but q and r do not. We can then write Bw as

Bw = pγ(A)w = pγ(A)Av − γpγ(A)v

and

Bw = BAv − γBv = q(A)Av − γr(A)v .

Combining these two identities yields

tγ(A)v = 0 , where tγ(z) = z(pγ(z) − q(z)) − γ(pγ(z) − r(z)) .

The polynomial tγ is of degree at most s+1 < s+2 ≤ δ. Thus, except for finitely many
γ, tγ = 0. Some straightforward algebraic manipulation gives, for all but these γ,

γ(q(z) − r(z)) = (z − γ)p̂γ(z) ,

where p̂γ ≡ pγ−q is of degree at most s−1. Therefore, every γ that is not an eigenvalue
of A is a root of the polynomial r − q, which consequently must be identically zero.

But then

B(Av) = q(A)(Av) = Aq(A)v = Ar(A)v = A(Bv) .

By Lemma 4.2, there exists a basis consisting of vectors of grade δ. Hence BAv = ABv
for a basis of vectors v, so that BA = AB.

Finally, if B = A∗, then AA∗ = A∗A, so that A is normal and hence A∗ = p(A)
for some polynomial. From (4.2) we see that the degree of p is at most s, so that A
is normal(t) for some t ≤ s.
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5. Proof of Theorem 3.5. Let A be an invertible linear operator on a finite
dimensional Hilbert space, and let s be a nonnegative integer, s + 2 < dmin(A).
Suppose that A admits an optimal (s + 2)-term recurrence.

Step 1. Restriction to a cyclic subspace of dimension s + 2.
If u1 is any vector of grade s + 3, then (with the obvious meaning of us+2)

(5.1) 0 = h1,s+2 = (u1, Aus+2) .

Consider any v1 of grade s + 2, and the corresponding cyclic subspace Ks+2(A, v1).

Let Â be the restriction of A to Ks+2(A, v1), i.e., the invertible linear operator

Â : Ks+2(A, v1) → Ks+2(A, v1) , v 	→ Av for v ∈ Ks+2(A, v1) .

Clearly, dmin(Â) = s + 2. Let Ks+2(A, v1) be equipped with the same inner product
as the whole space.

Let y1 ∈ Ks+2(A, v1) be any vector of grade s + 2. Obviously, the grade of y1

with respect to A is the same as the grade of y1 with respect to Â. Since (5.1) holds
for any u1 of grade s + 3 (with respect to A), Lemma 4.1 (with i = m = s + 2 and
n = s + 3) implies that (with the obvious meaning of ys+2)

(5.2) 0 = (y1, Ays+2) = (y1, Âys+2) = (Â∗y1, ys+2) ,

where Â∗ : Ks+2(A, v1) → Ks+2(A, v1) is the adjoint operator of Â. But this means
that

(5.3) Â∗y1 ∈ span{y1, . . . , Â
sy1} .

Since this holds for any vector y1 ∈ Ks+2(A, v1) = Ks+2(Â, v1) of grade s + 2 =

dmin(Â), Lemma 4.3 implies that Â is normal(t) for some t ≤ s. In particular, Â is
normal, and has s + 2 distinct eigenvalues, λk, k = 1, . . . , s + 2, with corresponding
eigenvectors that are mutually orthogonal. Moreover, there exists a polynomial of
degree at most s such that p(λk) = λk, k = 1, . . . , s + 2. By definition, any eigenpair

of Â is an eigenpair of A. Therefore, A acting on any vector of grade s + 2 has s + 2
distinct eigenvalues, and the corresponding eigenvectors are mutually orthogonal in
the given inner product.

Step 2. Extension to the whole space.
Consider the cyclic decomposition of the whole space as in (2.5). Then the cyclic

subspace Kd1
(A, w1), where w1 has the same minimal polynomial as A, can be further

decomposed into

Kd1
(A, w1) = Kc1

(A, z1) ⊕ · · · ⊕ Kc�
(A, z�) ,

where the minimal polynomial of zk is (z − λk)ck , k = 1, . . . , �, and λ1, . . . , λ� are the
distinct eigenvalues of A (see, e.g., [6, Chapter VII, section 2, Theorem 1]). In other
words, Kd1

(A, w1) is decomposed into � cyclic invariant subspaces of A, where each of
these corresponds to one of the � distinct eigenvalues of A. (Recall that the restriction
of A to Kd1

(A, w1) is nonderogatory; see the example at the end of section 2.) In
particular, if A is diagonalizable, then � = dmin(A), and c1 = · · · = c� = 1, and
z1, . . . , z� are eigenvectors of A corresponding to λ1, . . . , λ�, respectively. In general,
we can assume that c1 ≥ c2 ≥ · · · ≥ c�. If c1 ≥ s + 2, we can determine a vector v1 of
grade s + 2 in Kc1

(A, z1). But then the above implies that A acting on v1 has s + 2



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FABER–MANTEUFFEL THEOREM FOR LINEAR OPERATORS 1331

distinct eigenvalues, which is a contradiction. Hence c1 < s+2. We therefore can find
an index m so that c1 + · · · + cm−1 + c̃m = s + 2, 0 ≤ c̃m ≤ cm. Let z̃m be any vector
of grade c̃m in Kcm(A, zm); then w = z1 + · · · + zm−1 + z̃m is of grade s + 2. Hence A
acting on w has s + 2 distinct eigenvalues, which shows that c1 = c2 = · · · = c� = 1.
To these eigenvalues correspond s + 2 eigenvectors that are mutually orthogonal in
the given inner product.

In the cyclic decomposition (2.5), the minimal polynomial of wk is divisible by the
minimal polynomial of wk+1. Therefore the whole space completely decomposes into
one-dimensional cyclic subspaces of A, i.e., A has a complete system of eigenvectors.
We know that any s + 2 of these corresponding to distinct eigenvalues of A must
be mutually orthogonal. In the subspaces corresponding to a multiple eigenvalue
we can find an orthogonal basis. Therefore A has a complete orthonormal system of
eigenvectors, and hence A is normal. For every subset of s+2 distinct eigenvalues there
exists a polynomial p of degree at most s that satisfies p(λk) = λk for all eigenvalues
λk in the subset. If we take any two subsets having s + 1 eigenvalues in common,
the two corresponding polynomials must be identical. Thus all the polynomials are
identical, so that A is normal(t) for some t ≤ s.

If t < s, then by the sufficiency result in Theorem 3.4, A admits an optimal
(t + 2)-term recurrence, which contradicts our initial assumption. Hence t = s, so
that A is normal(s), which concludes the proof.

6. Another proof based on the Rotation Lemma. In this section we discuss
an elementary and more constructive approach to proving Theorem 3.5, which is based
on orthogonal transformations (“rotations”) of upper Hessenberg matrices. With this
approach, we can prove Theorem 3.5 with the assumption s + 2 < dmin(A) replaced
by s + 3 < dmin(A). We discuss the missing case s + 3 = dmin(A) in section 7.

As above, let A be an invertible linear operator with minimal polynomial degree
dmin(A) on a finite dimensional Hilbert space. Let s be a given nonnegative integer,
s + 3 < dmin(A). We assume that

(6.1) A admits an (s + 2)-term recurrence, but A is not normal(s),

and derive a contradiction.
For deriving the contradiction we need some notation. Suppose that the space is

decomposed into cyclic invariant subspaces of A as in (2.5). Let Â be the restriction
of A to Kd1(A, w1), i.e., the invertible linear operator defined by

Â : Kd1(A, w1) → Kd1
(A, w1) , v 	→ Av for v ∈ Kd1

(A, w1) .

The operator Â depends on the choice of w1, which we consider fixed here, so Â is fixed
as well. It is clear that d1 = dmin(A) = dmin(Â). We denote d = d1 for simplicity.

Now let v1 ∈ Kd(Â, w1) be any initial vector of grade d, and let v1, . . . , vd be the

corresponding orthogonal basis of Kd(Â, v1) = Kd(Â, w1) generated by (3.1)–(3.3).

Then the matrix representation of the operator Â with respect to this particular basis
is a d × d unreduced upper Hessenberg matrix Hd, which is defined by the equation

(6.2) Â [v1, . . . , vd] = [v1, . . . , vd]Hd .

The matrix formed by the first d − 1 columns of Hd coincides with the d × (d − 1)

upper Hessenberg matrix generated by (3.1)–(3.3) with Â and the initial vector v1,
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while the last column of Hd is given by the vector

(6.3) hd =

⎡
⎢⎣

h1,d

...
hd,d

⎤
⎥⎦ , where hm,d =

(Âvd, vm)

(vm, vm)
, m = 1, . . . , d .

In short, Hd = [Hd,d−1, hd]. We now proceed in two steps.
Step 1. Show that there exists a basis for which h1,d �= 0.
We first show that under assumption (6.1) there exists an initial vector v1 ∈

Kd(Â, w1) of grade d = dmin(Â) for which the matrix representation Hd of Â has

h1,d �= 0. Suppose not, i.e., for all v1 ∈ Kd(Â, w1) of grade dmin(Â), we have for the
resulting entry h1,d,

0 = h1,d =
(Âvd, v1)

(v1, v1)
=

(vd, Â
∗v1)

(v1, v1)
,

where Â∗ is the adjoint of Â. In particular, this implies that for all vectors v1 ∈
Kd(Â, w1) of grade d = dmin(Â),

Â∗v1 ∈ {v1, . . . , Â
d−2v1} .

By Lemma 4.3, Â is normal(t) for some t ≤ dmin(Â) − 2. Therefore, A acting on any
vector of grade dmin(A) has dmin(A) distinct eigenvalues and corresponding eigenvec-
tors that are mutually orthogonal. From this it is easy to see that A is normal(t). By
the sufficiency result in Theorem 3.4, A admits an optimal (t + 2)-term recurrence.
However, we have assumed in (6.1) that A admits an optimal (s+2)-term recurrence,
so t = s. But then A is normal(s), which contradicts the second part of the assump-
tion. In summary, there exists an initial vector v1 of grade d = dmin(A), such that
(6.2) holds with Hd = [Hd,d−1, hd], where Hd,d−1 is (s + 2)-band Hessenberg (this
follows from the first part of our assumption), while h1,d �= 0.

Step 2. Rotation of the nonzero entry h1,d.
The following result is called the Rotation Lemma for reasons apparent from its

proof.
Lemma 6.1 (Rotation Lemma). Let s, d be nonnegative integers, s + 3 < d. Let

Hd be a d×d unreduced upper Hessenberg matrix with h1,d �= 0 and Hd,d−1, the matrix
formed by the first d − 1 columns of Hd, being an (s + 2)-band Hessenberg matrix.

Then there exists a unitary matrix G such that H̃d ≡ G∗HdG is a d × d unreduced
upper Hessenberg matrix with [h̃1,d−1, h̃2,d−1] �= [0, 0].

Proof. The main idea of this proof is to find d − 1 (complex) Givens rotations of
the form

(6.4) Gi ≡

⎡
⎢⎢⎣

Id−1−i

ci si

−si ci

Ii−1

⎤
⎥⎥⎦ , c2

i + |si|2 = 1, ci ∈ R, i = 1, . . . , d − 1,

which, applied symmetrically to Hd, “rotate” the nonzero entry h1,d to the (d − 1)st

column of the resulting matrix H̃d = (G1 · · ·Gd−1)
∗Hd(G1 · · ·Gd−1). To prove the

assertion it suffices to show the following. First, H̃d must be an unreduced upper
Hessenberg matrix, and, second, at least one of its entries h̃1,d−1, h̃2,d−1 is nonzero.
See Figure 6.1 for an illustration of this idea.
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Fig. 6.1. Graphical illustration of the Rotation Lemma. Shown is the upper-right-hand corner
of Hd = [Hd,d−1, hd]. We know that Hd,d−1 is (s + 2)-band Hessenberg with s + 3 < d and that

h1,d �= 0. We construct an orthogonal transformation G such that the matrix H̃d = G∗HdG remains
unreduced upper Hessenberg, while the nonzero entry h1,d �= 0 is “rotated” to the last column of

H̃d,d−1, so that at least one of its entries h̃1,d−1 and h̃2,d−1 is nonzero.

Proceeding in an inductive manner, we denote H (0) ≡ Hd. To start, choose
s1 ∈ R \ {0} and c1 ∈ R such that c2

1 + s2
1 = 1. We have explicitly chosen real

parameters s1, c1 since this simplifies our arguments below. These two parameters
determine our first Givens rotation G1 of the form (6.4). By construction, the matrix
H (1) ≡ G∗

1H
(0)G1 is upper Hessenberg except for its entry

h(1)

d,d−2 = s1h
(0)

d−1,d−2.

Since s1 �= 0 and h(0)

d−1,d−2 �= 0 (H (0) is unreduced), we have h(1)

d,d−2 �= 0. The
transformation by G1 modifies only the last two rows and columns of H (0), so that
the entries on the subdiagonal of H (1) satisfy h(1)

i+1,i = h(0)

i+1,i �= 0, i = 1, . . . , d − 3.
Next, we determine G2 such that its application from the right to H (1) eliminates the
nonzero entry in position (d, d − 2). Application of G∗

2 from the left then introduces
a nonzero entry in position (d − 1, d − 3), which we will subsequently eliminate using
G3, and so forth.

In a general step j = 2, . . . , d − 1, suppose that sj−1 �= 0, h(j−1)

i+1,i = h(0)

i+1,i �= 0,

i = 1, . . . , d − j − 1, and h(j−1)

i+1,i �= 0 for i = d − j + 2, . . . , d − 1. Next suppose that

H (j−1) ≡ G∗
j−1H

(j−2)Gj−1

is an upper Hessenberg matrix except for its entry

h(j−1)

d−j+2,d−j = sj−1h
(0)

d−j+1,d−j �= 0.

The next Givens rotation Gj is (uniquely) determined to eliminate this nonzero entry,
i.e., we determine cj and sj by the equation

(6.5) [h(j−1)

d−j+2,d−j , h
(j−1)

d−j+2,d−j+1]

[
cj sj

−sj cj

]
= [0, h(j)

d−j+2,d−j+1].

Since h(j−1)

d−j+2,d−j �= 0, it is clear that sj �= 0 and h(j)

d−j+2,d−j+1 �= 0. As a result, the
matrix

H (j) ≡ G∗
jH

(j−1)Gj

is an upper Hessenberg except for its entry

h(j)

d−j+1,d−j−1 = sjh
(0)

d−j,d−j−1 �= 0.
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The unitary transformation determined by Gj modifies only (d−j)th and (d−j+1)st
rows and columns of H (j−1). Therefore, the subdiagonal entries of H (j) satisfy h(j)

i+1,i =

h(0)

i+1,i �= 0 for i = 1, . . . , d − j − 2, and, since h(j)

d−j+2,d−j+1 �= 0, we have shown

inductively that indeed h(j)

i+1,i �= 0 for i = d−j+1, . . . , d−1. In the end, we receive the
unitary matrix G = G1 · · ·Gd−1 and the upper Hessenberg matrix H (d−1) = G∗H (0)G
with h(d−1)

i+1,i �= 0 for i = 2, . . . , d − 1. To complete the proof we need to show that the

initial parameters s1, c1 can be chosen so that, first, h(d−1)

2,1 �= 0 (H (d−1) is unreduced),

and, second, [h(d−1)

1,d−1, h
(d−1)

2,d−1 ] �= [0, 0].

First, if h(d−1)

2,1 = 0, then we must have h(d−1)

1,1 �= 0, for if otherwise H (d−1) would
be singular. From H (d−1) = G∗H (0)G we receive H (0)G = GH (d−1), and thus the first
column of G is an eigenvector of H (0) corresponding to the eigenvalue h(d−1)

1,1 . Note
that the first column of G depends on our choice of s1, while the matrix H (0) is fixed
and has at most d linearly independent eigenvectors. Apparently, the case h(d−1)

2,1 = 0
happens only for a finite number of values of s1 (if any); almost every initial choice
of s1 will yield h(d−1)

2,1 �= 0.
Second, we have assumed that the first d − 1 columns of H (0) form an unreduced

(s+2)-band Hessenberg matrix with s+3 < d, and therefore h(0)

1,d−2 = h(0)

1,d−1 = 0 (see
Figure 6.1). Denote the entries of the (lower Hessenberg) matrix G by gi,j . It is easy
to see that gd,d−1 = −c2s1. Again consider the matrix equation H (0)G = GH (d−1).
Comparing the entries in position (1, d − 1) on both sides shows that

(6.6) −c2s1h
(0)

1,d = g1,1h
(d−1)

1,d−1 + g1,2h
(d−1)

1,d−1 ,

where h(0)

1,d �= 0 and s1 �= 0. Therefore, to show that [h(d−1)

1,d−1, h
(d−1)

2,d−1] �= [0, 0], it suffices
to show that c2 �= 0. For c2 it holds that (cf. (6.5))

h(1)

d,d−2c2 − h(1)

d,d−1s2 = 0.

We know that h(1)

d,d−2 �= 0 �= s2. Thus, c2 = 0 if and only if h(1)

d,d−1 = 0, which holds if
and only if

c1s1h
(0)

d−1,d−1 + c2
1h

(0)

d,d−1 − s2
1h

(0)

d−1,d − c1s1h
(0)

d,d = 0.

We write s1 = sin(θ), c1 = cos(θ) and apply standard identities for trigonometric
functions to see that the above equation is equivalent with

(
h(0)

d−1,d−1 − h(0)

d,d

)
sin(2θ) +

(
h(0)

d,d−1 + h(0)

d−1,d

)
cos(2θ) +

(
h(0)

d,d−1 − h(0)

d−1,d

)
= 0 .

The left-hand side in this equation is a nontrivial trigonometric polynomial of degree
two, which has at most two roots in the interval [0, 2π). Consequently, for almost all
choices of s1 we receive c2 �= 0, giving a nonzero right-hand side in (6.6). Hence, for
almost all choices of s1, we must have [h(d−1)

1,d−1, h
(d−1)

2,d−1] �= [0, 0].
We can now derive the contradiction to (6.1). Consider the relation (6.2), where

Hd is of the form assumed in the Lemma 6.1. Without loss of generality we may
assume that the columns of Vd are normalized (normalization does not alter the
nonzero pattern of Hd). By Lemma 6.1, there exists a unitary matrix G such that

H̃d = G∗HdG is unreduced upper Hessenberg with either h̃1,d−1 or h̃2,d−1 nonzero.
Then (6.2) is equivalent with

(6.7) Â(VdG) = (VdG)H̃d .
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Denote the entries of G by gi,j , and let VdG ≡ [y1, . . . , yd]. Then, since the basis
v1, . . . , vd is orthonormal and the matrix G is unitary, the basis y1, . . . , yd is orthonor-
mal,

(yi, yj) =

(
d∑

k=1

vkgk,i,

d∑

k=1

vkgk,j

)
=

d∑

k=1

gk,jgk,i = δi,j ,

where δi,j is the Kronecker delta. By (6.7), the vectors y1, . . . , yd form the unique (up

to scaling) basis of Kd(Â, y1) generated by (3.1)–(3.3) with Â and starting vector y1.

But since [h̃1,d−1, h̃2,d−1] �= [0, 0], we see that Â (and hence A) admits for the given y1

an optimal recurrence of length at least d − 1. Since we have assumed that A admits
an optimal (s + 2)-term recurrence, we must have d − 1 ≤ s + 2, or, equivalently,
d = dmin(A) ≤ s + 3. This is a contradiction since s + 3 < dmin(A).

As claimed at the beginning of this section, we now have shown Theorem 3.5,
with the assumption s + 2 < dmin(A) replaced by s + 3 < dmin(A).

7. Concluding discussion. In this section we discuss our rather theoretical
analysis above.

1. Matrix formulation and the Faber–Manteuffel theorem.
When formulated in terms of matrices rather than linear operators, Theorems 3.4

and 3.5 make up the Faber–Manteuffel theorem [4] in the formulation given in [12,
section 2]. We state this result here for completeness.

Theorem 7.1. Let A be an N × N nonsingular matrix with minimal polynomial
degree dmin(A). Let B be an N × N Hermitian positive definite matrix, and let s be
a nonnegative integer, s + 2 < dmin(A). Then A admits for the given B an optimal
(s + 2)-term recurrence if and only if A is B-normal(s).

In this formulation, the Hilbert space from Theorems 3.4 and 3.5 is CN , equipped
with the inner product generated by the Hermitian positive definite matrix B. (In case
A is real, we consider B to be real as well, and the adjoint A∗ is the regular transpose
AT .) The matrix A is B-normal(s) if its B-adjoint, i.e., the matrix A+ ≡ B−1A∗B,
is a polynomial of degree s in A, and s is the smallest degree for which this is true.
A complete characterization of the matrices A and B for which A is B-normal(s) is
given in [12, section 3].

In this paper we have chosen the linear operator rather than the matrix formula-
tion, because it appears to be a natural generalization. Moreover, both proofs we have
given use the restriction of the linear operator A to certain cyclic invariant subspaces.
In the matrix formulation, such restrictions lead to nonsquare as well as square but
singular matrices. This involves a more complicated notation, which obstructs rather
than helps the theoretical understanding. For instance, the restriction Â of a nonsin-
gular N × N matrix A to a cyclic invariant subspace of A with (orthonormal) basis

v1, . . . , vd can be represented as Â = V HV ∗, where V = [v1, . . . , vd] and H is a d × d

nonsingular matrix. If d < N , Â is a singular N × N matrix (more precisely, Â has
rank d < N). Any vector w in the cyclic invariant subspace can be represented as
w = V ω, where ω is a vector of length d containing the coefficients of w in the basis,
so that Aw = Âw = V Hω, where V H is a (nonsquare) matrix of size N × d. On the

other hand, in the linear operator formulation, Â is invertible, and we may simply
write Âw for the application of Â to any vector w in the space.

2. On the strategies of the two different proofs of Theorem 3.5.
The two different proofs of Theorem 3.5 given in this paper (with the second one

excluding the case s + 3 = dmin(A); see below) follow two different strategies.
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The first proof, given in section 5, is based on vectors of grade s+2, and works its
way up to vectors of full grade dmin(A). This general strategy is similar to the one in
the original paper of Faber and Manteuffel [4]. The details of our proof here, however,
are quite different from [4]. In particular, simple arguments about the number of
roots of certain polynomials (particularly in Lemmas 4.1 and 4.3) have replaced the
continuity and topology arguments in the proof of [4]. We therefore consider this a
simpler proof than the one given in [4].

The second proof, given in section 6, works immediately with vectors of full grade
dmin(A). We consider this approach more elementary than our first proof. We assume
that the assertion of Theorem 3.5 is false, i.e., that A admits an optimal (s + 2)-term
recurrence but is not normal(s). We show that if A is not normal(s), there must exist
at least one initial vector v1 of full grade d = dmin(A), for which the corresponding
matrix Hd has a nonzero entry above its sth superdiagonal. If this nonzero entry
already is in Hd,d−1, we are done. However, we cannot guarantee this, and therefore
we need the Rotation Lemma to rotate a nonzero from the dth column of Hd into the
(d−1)st column. This shows that A cannot admit an optimal (s+2)-term recurrence,
contradicting our initial assumption.

3. The Rotation Lemma and the missing case s + 3 = dmin(A).
In the Rotation Lemma we rotate the nonzero entry h1,d, where d = dmin(A), to

give h̃1,d−1 �= 0 or h̃2,d−1 �= 0; see Figure 6.1. Therefore, the matrix H̃d,d−1 is at least
(d−1)-band Hessenberg. The shortest possible optimal recurrence that A may admit
hence is of length d − 1, or s + 2 for s = d − 3. The assumption that A admits an
optimal recurrence of length s + 3 < dmin(A) then leads to a contradiction.

To prove also the missing case s + 3 = dmin(A), we need to guarantee that there

exists a choice of s1 so that h̃1,d−1 �= 0, giving a d-band Hessenberg matrix H̃d,d−1.
Since Theorem 3.5 also holds for the case s + 3 = dmin(A), we know that such s1

must exist, but we were unable to prove the existence without using Theorem 3.5.
Note, however, that in practical applications we are interested in recurrences of length
s + 2 
 dmin(A). Therefore the missing case of the Rotation Lemma is only of rather
theoretical interest.

We point out that the construction given in the Rotation Lemma, namely, the
structure-preserving unitary transformation of an upper Hessenberg matrix, may be
of interest beyond its application in our current context. To state this idea in a more
general way, we introduce some notation. Let Ωd be the set of the d × d unreduced
upper Hessenberg matrices, and let Ωd(s + 2) be the subset consisting of the (s + 2)-
band Hessenberg matrices (these are unreduced by assumption; cf. Definition 3.1).
Consider a fixed H ∈ Ωd, and define the set

RH ≡ {G∗HG ∈ Ωd : G is unitary } .

Hence RH is the set of all unitary transformations of H that are unreduced upper
Hessenberg. Note that since H ∈ RH , the set RH is nonempty. Using the Rotation
Lemma (for s + 3 < d) and Theorem 3.5 (for s + 3 = d) the following result can be
proved.

Theorem 7.2. Let s, d be given nonnegative integers, s+2 < d. For any H ∈ Ωd,
the following assertions are equivalent:

(1) H is I-normal(s), i.e., H∗ = p(H) for a polynomial of (smallest possible)
degree s;

(2) RH ⊂ Ωd(s + 2).
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This result means that an unreduced upper Hessenberg matrix H is I-normal(s)
if and only if H is (s + 2)-band Hessenberg, and all unitary transformations that
preserve the unreduced upper Hessenberg structure of H also preserve the (s + 2)-
band structure of H.

4. What distinguishes Theorem 3.5 from other results about normal operators.
Theorem 3.5 gives a necessary condition when an operator A is normal (of some

degree s). This condition is also sufficient, as shown by Theorem 3.4. Hence this
condition might be taken as a definition of normality, and it might be included among
the numerous equivalent definitions in [8, 3]. We believe, however, that the nature of
the result distinguishes it from the many other equivalent ones. This distinction is
clear from the second proof given in section 6.

Consider the linear operator A, and any cyclic invariant subspace Kd(A, v1). Then
the matrix representation of A with respect to the orthogonal basis v1, . . . , vd of
Kd(A, v1) generated by (3.1)–(3.3) is a d × d unreduced upper Hessenberg matrix
Hd (cf. (6.2), where this is shown for the restriction of A to Kd(A, v1)). Typically,
equivalent results for normality are derived using knowledge of the whole matrix, Hd

in this case. But Theorem 3.5 is based only on knowledge of a part of the matrix,
namely, the first d − 1 columns of Hd. Our experience in this area shows that this
difference also is the reason why Theorem 3.5 is rather difficult to prove, particularly
when compared with other results about normal matrices or operators.

Acknowledgments. We thank Tom Manteuffel and an anonymous referee for
suggestions that helped us to improve the presentation of the results.

REFERENCES

[1] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue
problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[2] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
[3] L. Elsner and K. D. Ikramov, Normal matrices: An update, Linear Algebra Appl., 285

(1998), pp. 291–303.
[4] V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existence of a

conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352–362.
[5] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, W. H. Free-

man, San Francisco, 1963.
[6] F. R. Gantmacher, The Theory of Matrices. Vols. 1, 2, Chelsea, New York, 1959.
[7] A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers in Appl. Math. 17,

SIAM, Philadelphia, 1997.
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Abstract Numerous algorithms in numerical linear algebra are based on
the reduction of a given matrix A to a more convenient form. One of the
most useful types of such reduction is the orthogonal reduction to (upper)
Hessenberg form. This reduction can be computed by the Arnoldi algorithm.
When A is Hermitian, the resulting upper Hessenberg matrix is tridiago-
nal, which is a significant computational advantage. In this paper we study
necessary and sufficient conditions on A so that the orthogonal Hessenberg
reduction yields a Hessenberg matrix with small bandwidth. This includes the
orthogonal reduction to tridiagonal form as a special case. Orthogonality here
is meant with respect to some given but unspecified inner product. While
the main result is already implied by the Faber-Manteuffel theorem on short
recurrences for orthogonalizing Krylov sequences (see Liesen and Strakoš,
SIAM Rev 50:485–503, 2008), we consider it useful to present a new, less
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technical proof. Our proof utilizes the idea of a “minimal counterexample”,
which is standard in combinatorial optimization, but rarely used in the context
of linear algebra.

Keywords Reduction to Hessenberg form · Krylov subspace methods ·
Arnoldi method · Lanczos method

Mathematics Subject Classifications (2000) 65F10 · 65F25

1 Introduction

Many applications in engineering and science lead to linear algebraic problems
involving a very large matrix A ∈ CN×N . A common approach to solve such
problems is to reduce A to a matrix that requires significantly less storage,
or that is well suited for further processing. Algebraically, such reduction
amounts to finding a more convenient basis for representing A.

One of the most useful types of such reduction is the orthogonal reduction to
(upper) Hessenberg form, which is used, for example, in modern implementa-
tions of the QR method for solving eigenvalue problems (see [10] for a recent
survey), and in the GMRES method for solving linear algebraic systems [9]. A
standard method for computing this reduction is the Arnoldi algorithm [1].
Given a matrix A, a hermitian positive definite (HPD) matrix B ∈ CN×N

defining the B-inner product 〈x, y〉B ≡ y∗ Bx, and an initial vector v1 ∈ CN , the
Arnoldi algorithm generates a B-orthogonal basis for the (maximal) Krylov
subspace of A and v1.

More precisely, let d be the grade of v1 with respect to A, i.e., the smallest
possible degree of a polynomial p that satisfies p(A)v1 = 0. Then the Arnoldi
algorithm sequentially generates vectors v1, . . . , vd, such that

span {v1, . . . , vn} = span {v1, . . . , An−1v1} ≡ Kn(A, v1), n = 1, . . . , d, (1.1)

〈vi, v j〉B = 0, i �= j, i, j = 1, . . . , d. (1.2)

This is achieved by the following steps: For n = 1, 2, . . . ,

vn+1 = Avn −
n∑

m=1

hm,nvm, where

hm,n = 〈Avn, vm〉B

〈vm, vm〉B
, for m = 1, . . . , n.

If vn+1 = 0 then stop.

Here we have stated the classical Gram-Schmidt variant of the Arnoldi
algorithm. For notational convenience, the basis vectors are not normalized.
Other implementations are often preferable from a numerical point of view.
In this paper, however, we assume exact arithmetic only, and do not consider
differences in the finite precision behavior of different implementations.
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Collecting the basis vectors in a matrix Vn, and the recurrence coefficients
hi, j in a matrix Hn, the Arnoldi algorithm can be written in the following
matrix form,

AVn = Vn Hn + vn+1eT
n , n = 1, . . . , d. (1.3)

Here en is the n-th column of the identity matrix In and Hn is an n × n
unreduced upper Hessenberg matrix given by

Hn =

⎡

⎢⎢⎢⎢⎢⎢⎣

h11 · · · h1,n−1 h1,n

1
. . .

...
...

. . . hn−1,n−1 hn−1,n

1 hn,n

⎤

⎥⎥⎥⎥⎥⎥⎦
. (1.4)

The B-orthogonality of the basis vectors means that V∗
n BVn is an invertible

n × n diagonal matrix, n = 1, . . . , d.
If d is the grade of v1 with respect to A, then Kd(A, v1) is A-invariant,

and vd+1 must be the zero vector, so that the Arnoldi algorithm terminates
at step n = d. Hence, at the d-th iteration step the relation (1.3) becomes

AVd = Vd Hd . (1.5)

Here Hd can be interpreted as the matrix representation of the linear
operator A restricted to the A-invariant subspace Kd(A, v1). Or, Hd can be
interpreted as a reduction of A to upper Hessenberg form. For more about the
theory and different implementations of the Arnoldi algorithm, we refer to
[8, Chapter 6.3].

Now suppose that A is self-adjoint with respect to the B-inner product, i.e.
that 〈Ax, y〉B = 〈x, Ay〉B for all vectors x, y ∈ CN . This holds if and only if
A∗ B = BA, or, equivalently, the B-adjoint A+ ≡ B−1 A∗ B satisfies A+ = A.
Denote D ≡ V∗

d BVd. Since A+ = A we obtain, cf. (1.5),

H∗
d D = H∗

dV∗
d BVd = V∗

d A∗ BVd = V∗
d BA+Vd = V∗

d BAVd = DHd .

Since D is diagonal, the upper Hessenberg matrix Hd must be tridiagonal.
In other words, when A is self-adjoint with respect to the B-inner product, the
Arnoldi algorithm B-orthogonally reduces A to tridiagonal form. In the special
case B = I and thus A+ = A∗, the algorithm for computing this reduction is
known as the Hermitian Lanczos algorithm [5].

Obviously, a reduction to tridiagonal form is very convenient from a nu-
merical point of view. It is therefore of great interest to study necessary and
sufficient conditions on A so that there exists an HPD matrix B for which A
can be orthogonally reduced to tridiagonal form or, more generally, to banded
upper Hessenberg form with small bandwidth. Apart from trivial cases, the
main necessary and sufficient condition on A is that there exists an HPD
matrix B for which the B-adjoint A+ is a low degree polynomial in A. As
described in [7], this result is implied by the Faber-Manteuffel theorem on
the existence of short recurrences for generating orthogonal Krylov subspace
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bases (in particular, see [7, Fig. 2.2]). Therefore, the question whether a
given matrix is orthogonally reducible to banded Hessenberg form with low
bandwidth has been completely answered. A separate proof of this result has
been attempted in [6], but, as described in [7], that proof is based on less
rigorous definitions and applies to nonderogatory matrices A only.

The purpose of this paper is to give a new proof of the necessary and
sufficient conditions for orthogonal reducibility to upper Hessenberg form with
small bandwidth. After recalling the sufficiency result from [7, Theorem 2.13],
we first prove the necessity result for nonderogatory matrices (similarly as
in [6], but starting from more rigorous definitions). We then show the gen-
eral case inductively using a “minimal counterexample” argument. This is a
standard argument in combinatorial optimization, but we have rarely seen this
idea applied in linear algebra. Here we show that the smallest matrix giving a
counterexample for the general case must be nonderogatory. Since we know
from the first step of the proof that the result holds for nonderogatory matrices,
no counterexample can possibly exist.

Reducibility to banded Hessenberg form with small bandwidth, particularly
tridiagonal form, is a key property in many applications. Nevertheless, we are
not aware that any complete proof of the necessary and sufficient conditions,
that is independent of the technically more complicated result of Faber and
Manteuffel, has appeared in the literature before. We point out that unlike
the proofs of the Faber-Manteuffel theorem in [2, 3] (also cf. [11] for a
related proof), our proof here is entirely based on linear algebra arguments.
Furthermore, we believe that the general idea of our proof is of interest in its
own right, which is a main reason for writing this paper.

2 Main definitions and sufficient conditions

Suppose that A ∈ CN×N is a given matrix, B ∈ CN×N is a given HPD matrix,
and v1 ∈ CN is a given initial vector. (When A is real, we only consider real
HPD matrices B and real initial vectors v1.) We denote the degree of the
minimal polynomial of A by dmin(A).

Consider the corresponding Hessenberg reduction of A as in (1.5). The
Krylov subspace basis vectors v1, . . . , vd in this reduction are defined uniquely
up to scaling by the conditions (1.1)–(1.2). This means that any other set
of basis vectors v̂1, . . . , v̂d that also satisfies (1.1)–(1.2) is given by v̂n = σnvn

for some (nonzero) scalars σ1, . . . , σn. In matrix form, this can be written as
V̂d = VdSd, where Sd = diag(σ1, . . . , σd). Hence for this other basis, A satisfies
the identity

AV̂d = V̂d Ĥd,

where Ĥd = S−1
d HdSd. Clearly, the nonzero patterns of Hd and Ĥd coincide.

In particular, the upper bandwidth of Hd is independent of the algorithm that
is used to compute the orthogonal reduction to Hessenberg form.
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In this paper we are mostly interested in this upper bandwidth. We say
that Hd is (s + 2)-band Hessenberg, when the s-th superdiagonal of Hd contains
at least one nonzero entry, and all entries above the s-th superdiagonal are
zero. (Here the diagonal of Hd is considered the 0-th superdiagonal.) We can
now rigorously define the concept of reducibility to banded upper Hessenberg
form. We use the same definition as in [7, Definition 2.11], with the exception
that here we do not require A to be nonsingular.

Definition 2.1 Let A ∈ CN×N , let B ∈ CN×N be an HPD matrix, and let s be a
nonnegative integer, s + 2 ≤ dmin(A).

(1) If for an initial vector v1 the matrix Hd in (1.5) is (s + 2)-band Hessenberg,
then we say that A is reducible for the given B and v1 to (s + 2)-band
Hessenberg form.

(2) If A is reducible for the given B and any initial vector v1 to at most (s + 2)-
band Hessenberg form, while it is reducible for the given B and at least
one v1 to (s + 2)-band Hessenberg form, then we say that A is reducible
for the given B to (s + 2)-band Hessenberg form.

Let us briefly explain why we assume s + 2 ≤ dmin(A) in this definition.
First, by this assumption we exclude the trivial case dmin(A) ≤ 1, in which
each initial vector v1 is an eigenvector of A. Second, the grade d of any
initial vector v1 is at most dmin(A), and hence the corresponding Hessenberg
matrix Hd in (1.5) has at most dmin(A) + 1 nonzero bands. Consequently, for
all nonnegative intergers s with s + 2 > dmin(A), the question whether Hd is
(s + 2)-band Hessenberg is uninteresting, since in this case the upper triangle
of Hd is allowed to be completely full.

Note that by this definition the integer s is uniquely determined. This
means that when A is reducible for the given B to (s + 2)-band Hessenberg
form, then A is not reducible for this B to (t + 2)-band Hessenberg form for
any t �= s.

Definition 2.2 Let A ∈ CN×N , and let B ∈ CN×N be HPD. Suppose that

A+ ≡ B−1 A∗ B = ps(A) , (2.1)

where ps is a polynomial of the smallest possible degree s having this property.
Then A is called normal of degree s with respect to B, or, shortly, B-normal(s).

Using this definition, it is possible to prove the following sufficiency result
for reducibility to (s + 2)-band Hessenberg form; see [7, Theorem 2.13] (also
cf. [4] for an analysis of the sufficient conditions in case B = I).

Theorem 2.3 Let A ∈ CN×N, let B ∈ CN×N be an HPD matrix, and let s be a
nonnegative integer, s + 2 ≤ dmin(A). If A is B-normal(s), then A is reducible
for the given B to (s + 2)-band Hessenberg form.
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Our statement of the sufficiency result is a little bit different from the
one in [7, Theorem 2.13]. Here we assume that s + 2 ≤ dmin(A), while [7,
Theorem 2.13] assumes s + 2 < dmin(A). The assumption in [7] is made for
notational consistency in that paper; extending the result to the case s + 2 =
dmin(A) is straightforward. Furthermore, we have formulated the result for
general matrices A, while in [7] it is assumed that A is nonsingular. The
extension to the singular case is easy.

3 Necessary conditions

In this section we prove the reverse direction of Theorem 2.3, i.e., we show
that if A is reducible for the given B to (s + 2)-band Hessenberg form, where
s + 2 ≤ dmin(A), then A is B-normal(s). Our proof is based on three technical
lemmas.

In the first lemma, we adopt [2, Lemma 4.3] to the notation used in this
paper, and we generalize the assertion to include the case of singular A.

Lemma 3.1 Let A ∈ CN×N, let B ∈ CN×N be an HPD matrix, and let s be
a nonnegative integer, s + 2 ≤ dmin(A). The matrix A is B-normal(s) if and
only if,

A+v ∈ Ks+1(A, v) for all vectors v of grade dmin(A), (3.1)

and there exists a vector v such that A+v /∈ Ks(A, v).

Proof Let A be B-normal(s). Then for each v, A+v = ps(A)v ∈ Ks+1(A, v).
Moreover, since s is the smallest degree of a polynomial for which A+ = ps(A),
there must exist a vector v such that A+v /∈ Ks(A, v).

In the proof of the other direction we first suppose that A is nonsingular.
Then by [2, Lemma 4.3], (3.1) implies that A is B-normal(t) for some t ≤ s.
Since there exists a vector v such that A+v /∈ Ks(A, v), we must have t ≥ s, and
thus t = s.

Now suppose that A is singular. Then there exists a scalar μ ∈ C such that
C ≡ A + μI is nonsingular. Clearly, dmin(A) = dmin(C). Furthermore, note
that for any vector v of grade dmin(A), we have Ks+1(A, v) = Ks+1(C, v).
Moreover, since

A+ = B−1 A∗ B = B−1C∗ B − μI = C+ − μI ,

A+v ∈ Ks+1(A, v) holds if and only if C+v ∈ Ks+1(C, v). Hence, if the singular
matrix A satisfies the assertion, then the nonsingular matrix C = A + μI
satisfies the assertion as well, so that C must be B-normal(s). But C+ = ps(C)

implies that A+ = qs(A), where qs is a polynomial of (smallest possible)
degree s. Hence A is B-normal(s) as well, which finishes the proof. 
�

In the next lemma we prove the necessity result for nonderogatory matri-
ces A (see also [6, pp. 2156–2157] for a similar argument).



Numer Algor (2009) 51:133–142 139

Lemma 3.2 Let A ∈ CN×N be a nonderogatory matrix, i.e., dmin(A) = N. Let
B ∈ CN×N be an HPD matrix, and let s be a nonnegative integer, s + 2 ≤
dmin(A). If A is reducible for the given B to (s + 2)-band Hessenberg form,
then A is B-normal(s).

Proof We prove the assertion by contradiction. Suppose that A is reducible for
the given B to (s + 2)-band Hessenberg form, but that A is not B-normal(s).
By Lemma 3.1, there either exists an integer t < s such that A+v1 ∈ Kt+1(A, v1)

for all vectors v1, or there exists a vector v1 of grade dmin(A) = N such that
A+v1 /∈ Ks+1(A, v1).

In the first case, one can easily show that the matrix A is reducible to (at
most) (t + 2)-band Hessenberg form, which is a contradiction since t < s.

In the second case, consider a vector v1 of grade N such that A+v1 /∈
Ks+1(A, v1). Since v1 is of full grade, we know that there exist scalars
β1, . . . , βN ∈ C, such that

A+v1 =
N∑

j=1

β jv j ,

where v1, . . . , vN is the B-orthogonal basis of KN(A, v1) generated by the
Arnoldi algorithm. By assumption, at least one β j, s + 2 ≤ j ≤ N, is nonzero.
If this nonzero scalar is βk, then the entry h1,k of HN satisfies

h1,k = 〈Avk, v1〉B

〈v1, v1〉B
= 〈vk, A+v1〉B

〈v1, v1〉B
= βk

〈vk, vk〉B

〈v1, v1〉B
�= 0 .

But since k ≥ s + 2, this means that Hd is not (s + 2)-band Hessenberg,
which contradicts our assumption that A is reducible to (s + 2)-band
Hessenberg form. 
�

We next show that the “minimal counterexample” of a matrix A that is
reducible for the given B to (s + 2)-band Hessenberg form but that is not
B-normal(s) must be nonderogatory.

Lemma 3.3 Suppose that s is a given nonnegative integer. Let A be a square
matrix of smallest possible dimension N and with dmin(A) ≥ s + 2 such that the
following holds: There exists HPD matrix B ∈ CN×N such that

1. A is reducible for the given B to (s + 2)-band Hessenberg form,
2. A is not B-normal(s).

Then A is nonderogatory (i.e. dmin(A) = N).

Proof Suppose that A is a matrix that satisfies the assumptions, and that B
is the corresponding HPD matrix for which A is reducible to (s + 2)-band
Hessenberg form, but with respect to which A is not normal of degree s.
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Let the Jordan normal form of A be given by A = W JW−1, where J = J1 ⊕
· · · ⊕ Jk with eigenvalues λ1, . . . , λk, and corresponding invariant subspaces of
dimensions s1, . . . , sk, respectively. If k = 1, then A is nonderogatory and we
are done. Hence we may assume that k > 1.

Suppose that v1 is any initial vector of grade d with respect to A and consider
the corresponding Hessenberg reduction (1.5) using the B-inner product.
Using the Jordan normal form of A, it is easy to see that this Hessenberg
reduction is equivalent with

JV̂d = V̂d Hd , V̂∗
d B̂V̂d diagonal , (3.2)

where V̂d ≡ W−1Vd and B̂ ≡ W∗ BW, which is HPD. Note that the Hessenberg
matrices in the Hessenberg reduction of A and in (3.2) coincide. Since A is
reducible for the given B to (s + 2)-band Hessenberg form, J is reducible for
the given B̂ to (s + 2)-band Hessenberg form (and vice versa).

It suffices to show that J is nonderogatory. Suppose not. Then there are
two Jordan blocks, say J1 and J2 with s1 ≤ s2, that correspond to the same
eigenvalue (i.e. λ1 = λ2). Define the (N − s1) × (N − s1) matrix J̃ ≡ J2 ⊕ · · · ⊕
Jk, which satisfies dmin( J̃) = dmin(J) ≥ s + 2. Now define an inner product [·, ·]
on CN−s1 × CN−s1 by

[x, y] ≡ 〈0s1 ⊕ x, 0s1 ⊕ y〉B̂ . (3.3)

Here 0s1 denotes the zero vector of length s1. This inner product is generated
by an HPD matrix B̃, [x, y] = y∗ B̃x for all vectors x and y. Using the standard
basis vectors and the definition of [·, ·] it is easy to show that B̃ is the (N −
s1) × (N − s1) trailing principal submatrix of B̂ (using MATLAB notation,
B̃ = B̂(1 + s1 : N, 1 + s1 : N)).

If y1 is any initial vector of grade d with respect to J̃, then v1 = 0s1 ⊕ y1 is
of grade d with respect to J. By construction, the corresponding Hessenberg
reductions of J̃ and J using the B̃- and B̂-inner products, respectively, lead to
the same unreduced upper Hessenberg matrix Hd. Consequently, the matrix J̃
is reducible for B̃ to (s + 2)-band Hessenberg form.

Since N − s1 < N, our initial assumption implies that the matrix J̃ is
B̃-normal(s). Then [7, Theorem 3.1] shows: First, J̃ is diagonalizable and hence
diagonal, in particular s2 = 1. Second, assuming that the eigenvalues of J̃ are
ordered so that the same eigenvalues form a single block, the HPD matrix B̃
is block diagonal with block sizes corresponding to those of J̃. Third, there
exists a polynomial ps of smallest possible degree s such that ps( J̃) = J̃∗ (i.e.,
ps(λ j) = λ j for all eigenvalues λ j of A).

Consequently, J is diagonal with the first two eigenvalues equal, and ps(J) =
J∗, where ps is a polynomial of smallest possible degree with this property.
Moreover, B̂ is HPD and block diagonal with block sizes corresponding to
those of J, except for possibly its first row and column. For simplicity of the
presentation, we assume that B̂ is diagonal except for its first row and column;



Numer Algor (2009) 51:133–142 141

the argument for the block diagonal case is more technical but mathematically
analogous. Then B̂ has the nonzero structure

B̂ =

⎡

⎢⎢⎢⎣

� � · · · �

� �
...

. . .

� �

⎤

⎥⎥⎥⎦ .

Now we reverse the roles of J1 and J2 and repeat the whole construction.
More specifically, we denote the columns of the matrix W (from the Jordan
decomposition of A) by w1, . . . , wN . Then A = W JW−1 = W1 JW−1

1 , where
W1 ≡ [w2, w1, w3, . . . , wN]. Here we have used that J1 = J2 and that J is
diagonal. Repeating the above construction yields a matrix B1 = W∗

1 BW1,
which is of the same form as B̂, i.e.

B1 = W∗
1 BW1 =

⎡

⎢⎢⎢⎣

� � · · · �

� �
...

. . .

� �

⎤

⎥⎥⎥⎦ .

In particular, by comparing the second row on both sides of this equation, we
see that

w∗
1 B[w2, w1, w3, . . . , wN] = [�, �, 0, · · · , 0] .

Then the first row of B̂ is given by w∗
1 BW = [�, �, 0, · · · , 0], which shows

that indeed B̂ is block diagonal with block sizes corresponding to those of J.
Hence the N × N matrix J is B̂-normal(s), which contradicts our assumption
and completes the proof. 
�

In the following theorem we state the main result of this paper. The
sufficiency part has already been stated in Theorem 2.3 above and is repeated
here for completeness.

Theorem 3.4 Let A ∈ CN×N, let B ∈ CN×N be an HPD matrix, and let s be a
nonnegative integer, s + 2 ≤ dmin(A). The matrix A is B-normal(s) if and only
if A is reducible for the given B to (s + 2)-band Hessenberg form.

Proof We only have to show that if A is reducible for the given B to (s + 2)-
band Hessenberg form, then A is B-normal(s). By Lemma 3.2, this statement
is true for nonderogatory matrices A. However, by Lemma 3.3, the minimal
counterexample is nonderogatory. Hence there is no minimal counterexample,
so that the assertion must hold. 
�
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ON CHEBYSHEV POLYNOMIALS OF MATRICES∗
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Abstract. The mth Chebyshev polynomial of a square matrix A is the monic polynomial that
minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial
is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general
properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations
of well-known properties of Chebyshev polynomials of compact sets in the complex plane. We also
derive explicit formulas of the Chebyshev polynomials of certain classes of matrices, and explore the
relation between Chebyshev polynomials of one of these matrix classes and Chebyshev polynomials
of lemniscatic regions in the complex plane.
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1. Introduction. Let A ∈ Cn×n be a given matrix, let m ≥ 1 be a given integer,
and let Mm denote the set of complex monic polynomials of degree m. We consider
the approximation problem

(1.1) min
p∈Mm

‖p(A)‖,

where ‖·‖ denotes the matrix 2-norm (or spectral norm). As shown by Greenbaum and
Trefethen [11, Theorem 2] (also cf. [13, Theorem 2.2]), problem (1.1) has a uniquely
defined solution when m is smaller than d(A), the degree of the minimal polynomial
of A. This is a nontrivial result since the matrix 2-norm is not strictly convex, and
approximation problems in such norms are in general not guaranteed to have a unique
solution; see [13, pp. 853–854] for more details and an example. In this paper we
assume that m < d(A), which is necessary and sufficient so that the value of (1.1) is
positive, and we denote the unique solution of (1.1) by T A

m(z). Note that if A ∈ Rn×n,
then the Chebyshev polynomials of A have real coefficients, and hence in this case it
suffices to consider only real monic polynomials in (1.1).

It is clear that (1.1) is unitarily invariant, i.e., that T A
m(z) = T U∗AU

m (z) for any
unitary matrix U ∈ Cn×n. In particular, if the matrix A is normal, i.e., unitarily
diagonalizable, then

min
p∈Mm

‖p(A)‖ = min
p∈Mm

max
λ∈Λ(A)

|p(λ)|,
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where Λ(A) denotes the set of the eigenvalues of A. The (uniquely defined) mth
degree monic polynomial that deviates least from zero on a compact set Ω in the
complex plane is called the mth Chebyshev polynomial 1 of the set Ω. We denote this
polynomial by T Ω

m(z).
The last equation shows that for a normal matrix A the matrix approximation

problem (1.1) is equal to the scalar approximation problem of finding T
Λ(A)
m (z), and

in fact T A
m(z) = T

Λ(A)
m (z). Because of these relations, problem (1.1) can be considered

a generalization of a classical problem of mathematics from scalars to matrices. As a
consequence, Greenbaum and Trefethen [11] as well as Toh and Trefethen [24] have
called the solution T A

m(z) of (1.1) the mth Chebyshev polynomial of the matrix A
(regardless of A being normal or not).

A motivation for studying problem (1.1) and the Chebyshev polynomials of ma-
trices comes from their connection to Krylov subspace methods, and in particular the
Arnoldi method for approximating eigenvalues of matrices [2]. In a nutshell, after m
steps of this method a relation of the form AVm = VmHm + rmeT

m is computed, where
Hm ∈ Cm×m is an upper Hessenberg matrix, rm ∈ Cn is the mth “residual” vector,
em is the mth canonical basis vector of Cm, and the columns of Vm ∈ Cn×m form an
orthonormal basis of the Krylov subspace Km(A, v1) = span{v1, Av1, . . . , A

m−1v1}.
The vector v1 ∈ Cn is an arbitrary (nonzero) initial vector. The eigenvalues of Hm

are used as approximations for the eigenvalues of A. Note that rm = 0 if and only
if the columns of Vm span an invariant subspace of A, and if this holds, then each
eigenvalue of Hm is an eigenvalue of A.

As shown by Saad [15, Theorem 5.1], the characteristic polynomial ϕm of Hm

satisfies

(1.2) ‖ϕm(A)v1‖ = min
p∈Mm

‖p(A)v1‖.

An interpretation of this result is that the characteristic polynomial of Hm solves the
Chebyshev approximation problem for A with respect to the given starting vector v1.
Saad pointed out that (1.2) “seems to be the only known optimality property that
is satisfied by the [Arnoldi] approximation process in the nonsymmetric case” [16,
p. 171]. To learn more about this property, Greenbaum and Trefethen [11, p. 362]
suggested “to disentangle [the] matrix essence of the process from the distracting
effects of the initial vector,” and hence study the “idealized” problem (1.1) instead of
(1.2). They referred to the solution of (1.1) as the mth ideal Arnoldi polynomial of A
(in addition to the name mth Chebyshev polynomial of A).

Greenbaum and Trefethen [11] seem to be the first who studied existence and
uniqueness of Chebyshev polynomials of matrices. Toh and Trefethen [24] derived an
algorithm for computing these polynomials based on semidefinite programming; see
also Toh’s Ph.D. thesis [21, Chapter 2]. This algorithm is now part of the SDPT3
Toolbox [23]. The paper [24] as well as [21] and [25, Chapter 29] give numerous
computed examples for the norms, roots, and coefficients of Chebyshev polynomials
of matrices. It is shown numerically that the lemniscates of these polynomials tend
to approximate pseudospectra of A. In addition, Toh has shown that the zeros of
T A

m(z) are contained in the field of values of A [21, Theorem 5.10]. This result is

1Pafnuti Lvovich Chebyshev (1821–1894) determined the polynomials TΩ
m(z) of Ω = [−a, a] (a real

interval symmetric to zero) in his 1859 paper [5], which laid the foundations of modern approximation
theory. We recommend Steffens’ book [18] to readers who are interested in the historical development
of the subject.
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part of his interesting analysis of Chebyshev polynomials of linear operators in infinite
dimensional Hilbert spaces [21, Chapter 5]. The first explicit solutions for the problem
(1.1) for a nonnormal matrix A we are aware of have been given in [13, Theorem 3.4].
It is shown there that T A

m(z) = (z − λ)m if A = Jλ, a Jordan block with eigenvalue
λ ∈ C. Note that in this case the Chebyshev polynomials of A are independent of the
size of A.

The above remarks show that problem (1.1) is a mathematically interesting gen-
eralization of the classical Chebyshev problem, which has an important application
in the area of iterative methods. Yet, our survey of the literature indicates that there
has been little theoretical work on Chebyshev polynomials of matrices (in particular
when compared with the substantial work on Chebyshev polynomials for compact
sets). The main motivation for writing this paper was to extend the existing the-
ory of Chebyshev polynomials of matrices. Therefore we considered a number of
known properties of Chebyshev polynomials of compact sets, and tried to find matrix
analogues. Among these are the behavior of T A

m(z) under shifts and scaling of A,
a matrix analogue of the “alternation property,” as well as conditions on A so that
T A

m(z) is even or odd (section 2). We also give further explicit examples of Chebyshev
polynomials of some classes of matrices (section 3). For a class of block Toeplitz ma-
trices, we explore the relation between their Chebyshev polynomials and Chebyshev
polynomials of lemniscatic regions in the complex plane (section 4).

All computations in this paper have been performed using MATLAB [20]. For
computing Chebyshev polynomials of matrices we have used the DSDP software pack-
age for semidefinite programming [3] and its MATLAB interface.

2. General results. In this section we state and prove results on the Chebyshev
polynomials of a general matrix A. In later sections we will apply these results to
some specific examples.

2.1. Chebyshev polynomials of shifted and scaled matrices. In the fol-
lowing we will write a complex (monic) polynomial of degree m as a function of the
variable z and its coefficients. More precisely, for x = [x0, . . . , xm−1]

T ∈ Cm we write

(2.1) p(z; x) ≡ zm −
m−1∑

j=0

xj zj ∈ Mm.

Let two complex numbers, α and β, be given, and define δ ≡ β − α. Then

p(β + z; x) = p((β − α) + (α + z); x) = (δ + (α + z))m −
m−1∑

j=0

xj(δ + (α + z))j

=

m∑

j=0

(
m

j

)
δm−j(α + z)j −

m−1∑

j=0

xj

j∑

�=0

(
j

�

)
δj−�(α + z)�

= (α + z)m +
m−1∑

j=0

((
m

j

)
δm−j(α + z)j − xj

j∑

�=0

(
j

�

)
δj−�(α + z)�

)
(2.2)

= (α + z)m −
m−1∑

j=0

⎛
⎝

m−1∑

�=j

(
�

j

)
δ�−jx� −

(
m

j

)
δm−j

⎞
⎠ (α + z)j

≡ (α + z)m −
m−1∑

j=0

yj(α + z)j ≡ p(α + z; y).
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A closer examination of (2.2) shows that the two vectors y and x in the identity
p(α + z; y) = p(β + z; x) are related by

⎡
⎢⎢⎢⎣

y0

y1

...
ym−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

(
0
0

)
δ0

(
1
0

)
δ1

(
2
0

)
δ2 · · ·

(
m−1

0

)
δm−1

(
1
1

)
δ0

(
2
1

)
δ1 · · ·

(
m−2

1

)
δm−2

. . .
...(
m−1
m−1

)
δ0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x0

x1

...
xm−1

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

(
m
0

)
δm

(
m
1

)
δm−1

...(
m

m−1

)
δ1

⎤
⎥⎥⎥⎥⎦

.

We can write this as

(2.3) y = hδ(x), where hδ(x) ≡ Mδx − vδ.

The matrix Mδ ∈ Cm×m is an invertible upper triangular matrix; all its diagonal
elements are equal to 1. Thus, for any δ ∈ C,

hδ : x �→ Mδx − vδ

is an invertible affine linear transformation on Cm. Note that if δ = 0, then Mδ = I
(the identity matrix) and vδ = 0, so that y = x.

The above derivation can be repeated with αI, βI, and A replacing α, β, and z,
respectively. This yields the following result.

Lemma 2.1. Let A ∈ Cn×n, x ∈ Cm, α ∈ C, and β ∈ C be given. Then for any
monic polynomial p of the form (2.1),

(2.4) p(βI + A; x) = p(αI + A; hδ(x)),

where δ ≡ β − α, and hδ is defined as in (2.3).
The assertion of this lemma is an ingredient in the proof of the following theorem.
Theorem 2.2. Let A ∈ Cn×n, α ∈ C, and a positive integer m < d(A) be given.

Denote by T A
m(z) = p(z; x∗) the mth Chebyshev polynomial of A. Then the following

hold:

min
p∈Mm

‖p(A + αI)‖ = min
p∈Mm

‖p(A)‖, T A+αI
m (z) = p(z; h−α(x∗)),(2.5)

where h−α is defined as in (2.3), and

min
p∈Mm

‖p(αA)‖ = |α|m min
p∈Mm

‖p(A)‖, T αA
m (z) = p(z; Dαx∗),(2.6)

where Dα ≡ diag(αm, αm−1, . . . , α).
Proof. We first prove (2.5). Equation (2.4) with β = 0 shows that p(A; x) =

p(A + αI; h−α(x)) holds for any x ∈ Cm. This yields

min
p∈Mm

‖p(A + αI)‖ = min
x∈Cm

‖p(A + αI; x)‖ = min
x∈Cm

‖p(A + αI; h−α(x))‖

= min
x∈Cm

‖p(A; x)‖ = min
p∈Mm

‖p(A)‖

(here we have used that the transformation h−α is invertible). To see that the poly-
nomial p(z; h−α(x∗)) is indeed the mth Chebyshev polynomial of A + αI, we note
that

‖p(A + αI; h−α(x∗))‖ = ‖p(A; x∗)‖ = min
p∈Mm

‖p(A)‖ = min
p∈Mm

‖p(A + αI)‖.
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The equations in (2.6) are trivial if α = 0, so we can assume that α �= 0. Then
the matrix Dα is invertible, and a straightforward computation yields

min
p∈Mm

‖p(αA)‖ = min
x∈Cm

‖p(αA; x)‖ = |α|m min
x∈Cm

‖p(A; D−1
α x)‖ = |α|m min

x∈Cm
‖p(A; x)‖

= |α|m min
p∈Mm

‖p(A)‖.

Furthermore,

‖p(αA; Dαx∗)‖ = |α|m ‖p(A; x∗)‖ = |α|m min
p∈Mm

‖p(A)‖ = min
p∈Mm

‖p(αA)‖,

so that p(z; Dαx∗) is the mth Chebyshev polynomial of the matrix αA.
The fact that the “true” Arnoldi approximation problem, i.e., the right-hand side

of (1.2), is translation invariant has been mentioned previously in [11, p. 361]. Hence
the translation invariance of problem (1.1) shown in (2.5) is not surprising. The
underlying reason is that the monic polynomials are normalized “at infinity.”

The result for the scaled matrices in (2.6), which also may be expected, has an
important consequence that is easily overlooked: Suppose that for some given A ∈
Cn×n we have computed the sequence of norms of problem (1.1), i.e., the quantities

‖T A
1 (A)‖, ‖T A

2 (A)‖, ‖T A
3 (A)‖, . . . .

If we scale A by α ∈ C, then the norms of the Chebyshev approximation problem for
the scaled matrix αA are given by

|α| ‖T A
1 (A)‖, |α|2 ‖T A

2 (A)‖, |α|3 ‖T A
3 (A)‖, . . . .

A suitable scaling can therefore turn any given sequence of norms for the problem
with A into a strictly monotonically decreasing (or, if we prefer, increasing) sequence
for the problem with αA. For example, the matrix

A =

⎡
⎣

1 2 3
4 5 6
7 8 9

⎤
⎦

yields

‖T A
0 (A)‖ = 1, ‖T A

1 (A)‖ ≈ 11.4077, ‖T A
2 (A)‖ = 9;

cf. [25, p. 280] (note that by definition T A
0 (z) ≡ 1 for any matrix A). The correspond-

ing norms for the scaled matrices 1
12 · A and 12 · A are then (approximately) given

by

1, 0.95064, 0.0625, and 1, 136.8924, 1296,

respectively. In general we expect that the behavior of an iterative method for solving
linear systems or for approximating eigenvalues is invariant under scaling of the given
matrix. In particular, by looking at the sequence of norms of problem (1.1) alone
we cannot determine how fast a method “converges.” In practice, we always have
to measure “convergence” in some relative (rather than absolute) sense. Note that
the quantity minp∈Mm ‖p(A)‖/‖Am‖ is independent of a scaling of the matrix A, and
hence in our context it may give relevant information. We have not explored this
topic further.
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2.2. Alternation property for block-diagonal matrices. It is well known
that Chebyshev polynomials of compact sets Ω are characterized by an alternation
property. For example, if Ω = [a, b] is a finite real interval, then p(z) ∈ Mm is the
unique Chebyshev polynomial of degree m on Ω if and only if p(z) assumes its extreme
values ± maxz∈Ω |p(z)| with successively alternating signs on at least m + 1 points
(the “alternation points”) in Ω; see, e.g., [4, section 7.5]. There exist generalizations
of this classical result to complex as well as to finite sets Ω; see, e.g., [6, Chapter 3]
and [4, section 7.5]. The following is a generalization to block-diagonal matrices.

Theorem 2.3. Consider a block-diagonal matrix A = diag(A1, . . . , Ah), let k ≡
max1≤j≤h d(Aj), and let � be a given positive integer such that k · � < d(A). Then
the matrix T A

k·�(A) = diag(T A
k·�(A1), . . . , T

A
k·�(Ah)) has at least � + 1 diagonal blocks

T A
k·�(Aj) with norm equal to ‖T A

k·�(A)‖.
Proof. The assumption that k · � < d(A) implies that T A

k·�(z) is uniquely defined.
For simplicity of notation we denote B = T A

k·�(A) and Bj ≡ T A
k·�(Aj), j = 1, . . . , h.

Without loss of generality we can assume that ‖B‖ = ‖B1‖ ≥ · · · ≥ ‖Bh‖.
Suppose that the assertion is false. Then there exists an integer i, 1 ≤ i ≤ �,

so that ‖B‖ = ‖B1‖ = · · · = ‖Bi‖ > ‖Bi+1‖. Let δ ≡ ‖B‖ − ‖Bi+1‖ > 0, and let
qj(z) ∈ Mk be a polynomial with qj(Aj) = 0, 1 ≤ j ≤ h. Define the polynomial

t(z) ≡
�∏

j=1

qj(z) ∈ Mk·�.

Let ε be a positive real number with

ε <
δ

δ + max
1≤j≤h

‖t(Aj)‖
.

Then 0 < ε < 1, and hence

rε(z) ≡ (1 − ε)T A
k·�(z) + ε t(z) ∈ Mk·�.

Note that ‖rε(A)‖ = max1≤j≤h ‖rε(Aj)‖. For 1 ≤ j ≤ i, we have

‖rε(Aj)‖ = (1 − ε) ‖Bj‖ = (1 − ε) ‖B‖ < ‖B‖.

For i + 1 ≤ j ≤ h, we have

‖rε(Aj)‖ = ‖(1 − ε)Bj + ε t(Aj)‖
≤ (1 − ε) ‖Bj‖ + ε ‖t(Aj)‖
≤ (1 − ε) ‖Bi+1‖ + ε ‖t(Aj)‖
= (1 − ε) (‖B‖ − δ) + ε ‖t(Aj)‖
= (1 − ε) ‖B‖ + ε (δ + ‖t(Aj)‖) − δ.

Since ε (δ + ‖t(Aj)‖) − δ < 0 by the definition of ε, we see that ‖rε(Aj)‖ < ‖B‖ for
i + 1 ≤ j ≤ h. But this means that ‖rε(A)‖ < ‖B‖, which contradicts the minimality
of the Chebyshev polynomial of A.

The numerical results shown in Table 1 illustrate this theorem. We have used
a block-diagonal matrix A with four Jordan blocks of size 3 × 3 on its diagonal, so
that k = 3. Theorem 2.3 then guarantees that T A

3�(A), � = 1, 2, 3, has at least � + 1
diagonal blocks with the same maximal norm. This is clearly confirmed for � = 1 and
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Table 1
Numerical illustration of Theorem 2.3: Here A = diag(A1, A2, A3, A4), where each Aj = Jλj

is a 3 × 3 Jordan block. The four eigenvalues are −3, −0.5, 0.5, 0.75.

m ‖T A
m(A1)‖ ‖T A

m(A2)‖ ‖T A
m(A3)‖ ‖T A

m(A4)‖
1 2.6396 1.4620 2.3970 2.6396
2 4.1555 4.1555 3.6828 4.1555
3 9.0629 5.6303 7.6858 9.0629
4 14.0251 14.0251 11.8397 14.0251
5 22.3872 20.7801 17.6382 22.3872
6 22.6857 22.6857 20.3948 22.6857

� = 2 (it also holds for � = 3). For these � we observe that exactly � + 1 diagonal
blocks achieve the maximal norm. Hence in general the lower bound of � + 1 blocks
attaining the maximal norm in step m = k ·� cannot be improved. In addition, we see
in this experiment that the number of diagonal blocks with the same maximal norm
is not necessarily a monotonically increasing function of the degree of the Chebyshev
polynomial.

Now consider the matrix

A = diag(A1, A2) =

⎡
⎢⎢⎣

1 1
1

−1 1
−1

⎤
⎥⎥⎦ .

Then for p(z) = z2 − αz − β ∈ M2 we get

p(A) =

⎡
⎢⎢⎣

1 − (α + β) 2 − α
1 − (α + β)

1 − (α + β) −2 − α
1 − (α + β)

⎤
⎥⎥⎦ .

For α = 0 and any β ∈ R we will have ‖p(A)‖ = ‖p(A1)‖ = ‖p(A2)‖. Hence there are
infinitely many polynomials p ∈ M2 for which the two diagonal blocks have the same
maximal norm. One of these polynomials is the Chebyshev polynomial T A

2 (z) = z2+1.
As shown by this example, the condition in Theorem 2.3 on a polynomial p ∈ Mk·�
that at least � + 1 diagonal blocks of p(A) have equal maximal norm is in general
necessary but not sufficient so that p(z) = T A

k·�(z).

Finally, as a special case of Theorem 2.3 consider a matrix A = diag(λ1, . . . , λn)
with distinct diagonal elements λ1, . . . , λn ∈ C. If m < n, then there are at least
m + 1 diagonal elements λj with |T A

m(λj)| = ‖T A
m(A)‖ = max1≤i≤n |T A

m(λi)|. Note
that T A

m(z) in this case is equal to the mth Chebyshev polynomial of the finite set
{λ1, . . . , λn} ⊂ C. This shows that the Chebyshev polynomial of degree m of a set in
the complex plane consisting of n ≥ m + 1 points attains its maximum value at least
at m + 1 points.

2.3. Chebyshev polynomials with known zero coefficients. In this section
we study properties of a matrix A so that its Chebyshev polynomials have known
zero coefficients. An extreme case in this respect is when T A

m(z) = zm, i.e., when all
coefficients of T A

m(z), except the leading one, are zero. This happens if and only if

‖Am‖ = min
p∈Mm

‖p(A)‖.
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Equivalently, this says that the zero matrix is the best approximation of Am from the
linear space span{I, A, . . . , Am−1} (with respect to the matrix 2-norm). To charac-
terize this property, we recall that the dual norm to the matrix 2-norm ‖ · ‖ is the
trace norm (also called energy norm or c1-norm),

(2.7) ||| M ||| ≡
r∑

j=1

σj(M) ,

where σ1(M), . . . , σr(M) denote the singular values of the matrix M ∈ Cn×n with
rank(M) = r. For X ∈ Cn×n and Y ∈ Cn×n we define the inner product 〈X, Y 〉 ≡
trace(Y ∗X). We can now adapt a result of Ziȩtak [27, p. 173] to our context and
notation.

Theorem 2.4. Let A ∈ Cn×n and a positive integer m < d(A) be given. Then

T A
m(z) = zm

if and only if there exists a matrix Z ∈ Cn×n with ||| Z ||| = 1 such that

(2.8) 〈Z, Ak〉 = 0, k = 0, . . . , m − 1, and Re 〈Z, Am〉 = ‖Am‖ .

As shown in [13, Theorem 3.4], the mth Chebyshev polynomial of a Jordan block
Jλ with eigenvalue λ ∈ C is given by (z − λ)m. In particular, the mth Chebyshev
polynomial of J0 is of the form zm. A more general class of matrices with T A

m(z) = zm

is studied in section 3.1 below.

It is well known that the Chebyshev polynomials of real intervals that are sym-
metric with respect to the origin are alternating between even and odd, i.e., every

second coefficient (starting from the highest one) of T
[−a,a]
m (z) is zero, which means

that T
[−a,a]
m (z) = (−1)mT

[−a,a]
m (−z). We next give an analogue of this result for

Chebyshev polynomials of matrices.

Theorem 2.5. Let A ∈ Cn×n and a positive integer m < d(A) be given. If there
exists a unitary matrix P such that either P ∗AP = −A, or P ∗AP = −AT , then

(2.9) T A
m(z) = (−1)mT A

m(−z).

Proof. We prove the assertion only in case P ∗AP = −A; the other case is similar.
If this relation holds for a unitary matrix P , then

‖(−1)mT A
m(−A)‖ = ‖T A

m(P ∗AP )‖ = ‖P ∗T A
m(A)P‖ = ‖T A

m(A)‖ = min
p∈Mm

‖p(A)‖,

and the result follows from the uniqueness of the mth Chebyshev polynomial of
A.

As a special case consider a normal matrix A and its unitary diagonalization
U∗AU = D. Then T A

m(z) = T D
m (z), so we may consider only the Chebyshev polyno-

mial of the diagonal matrix D. Since D = DT , the conditions in Theorem 2.5 are
satisfied if and only if there exists a unitary matrix P such that P ∗DP = −D. But
this means that the set of the diagonal elements of D (i.e., the eigenvalues of A) must
be symmetric with respect to the origin (i.e., if λj is an eigenvalue, −λj is an eigen-
value as well). Therefore, whenever a discrete set Ω ⊂ C is symmetric with respect
to the origin, the Chebyshev polynomial T Ω

m(z) is even (odd) if m is even (odd).
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As an example of a nonnormal matrix, consider

A =

⎡
⎢⎢⎣

1 ε
−1 1/ε

1 ε
−1

⎤
⎥⎥⎦ , ε > 0 ,

which has been used by Toh [22] in his analysis of the convergence of the GMRES
method. He has shown that PT AP = −A, where

P =

⎡
⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎦

is an orthogonal matrix.
For another example consider

(2.10) C =

[
Jλ

J−λ

]
, Jλ, J−λ ∈ Cn×n, λ ∈ C .

It is easily seen that

(2.11) J−λ = −I±JλI±, where I± = diag(1, −1, 1, . . . , (−1)n−1) ∈ Rn×n.

Using the symmetric and orthogonal matrices

P =

[
I

I

]
, Q =

[
I±

I±

]
,

we receive QPCPQ = −C.
The identity (2.11) implies that

‖T C
m(J−λ)‖ = ‖T C

m(−I±JλI±)‖ = ‖T C
m(Jλ)‖,

i.e., the Chebyshev polynomials of C attain the same norm on each of the two diagonal
blocks. In general, we can shift and rotate any matrix consisting of two Jordan blocks
of the same size and with respective eigenvalues λ, μ ∈ C into the form (2.10). It
then can be shown that the Chebyshev polynomials T A

m(z) of A = diag(Jλ, Jμ) satisfy
the “norm balancing property” ‖T A

m(Jλ)‖ = ‖T A
m(Jμ)‖. The proof of this property is

rather technical and we skip it for brevity.

2.4. Linear Chebyshev polynomials. In this section we consider the linear
Chebyshev problem

min
α∈C

‖A − αI‖.

Work related to this problem has been done by Friedland [8], who characterized solu-
tions of the problem minα∈R ‖A−αB‖, where A and B are two complex, and possibly
rectangular matrices. This problem in general does not have a unique solution. More
recently, Afanasjew et al. [1] have studied the restarted Arnoldi method with restart
length equal to 1. The analysis of this method involves approximation problems of
the form minα∈C ‖(A − αI)v1‖ (cf. (1.2)), whose unique solution is α = v∗

1Av1.
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Theorem 2.6. Let A ∈ Cn×n be any (nonzero) matrix, and denote by Σ(A) the
span of the right singular vectors of A corresponding to the maximal singular value
of A. Then T A

1 (z) = z if and only if there exists a vector w ∈ Σ(A) with w∗Aw = 0.

Proof. If T A
1 (z) = z, then ‖A‖ = minα∈C ‖A − αI‖. According to a result of

Greenbaum and Gurvits [10, Theorem 2.5], there exists a unit norm vector w ∈ Cn,
so that2

min
α∈C

‖A − αI‖ = min
α∈C

‖(A − αI)w‖.

The unique solution of the problem on the right-hand side is α∗ = w∗Aw. Our
assumption now implies that w∗Aw = 0, and the equations above yield ‖A‖ = ‖Aw‖,
which shows that w ∈ Σ(A).

On the other hand, suppose that there exists a vector w ∈ Σ(A) such that w∗Aw =
0. Without loss of generality we can assume that ‖w‖ = 1. Then

‖A‖ ≥ min
α∈C

‖A − αI‖ ≥ min
α∈C

‖Aw − αw‖ = min
α∈C

(‖Aw‖ + ‖αw‖) = ‖Aw‖.

In the first equality we have used that w∗Aw = 0, i.e., that the vectors w and Aw are
orthogonal. The assumption w ∈ Σ(A) implies that ‖Aw‖ = ‖A‖, and thus equality
must hold throughout the above relations. In particular, ‖A‖ = minα∈C ‖A − αI‖,
and hence T A

1 (z) = z follows from the uniqueness of the solution.

An immediate consequence of this result is that if zero is outside the field of values
of A, then ‖T A

1 (A)‖ < ‖A‖. Note that this also follows from [21, Theorem 5.10], which
states that the zeros of T A

m(z) are contained in the field of values of A.

We will now study the relation between Theorem 2.4 for m = 1 and Theorem 2.6.
Let w ∈ Σ(A) and let u ∈ Cn be a corresponding left singular vector, so that Aw =
‖A‖u and A∗u = ‖A‖w. Then the condition w∗Aw = 0 in Theorem 2.6 implies that
w∗u = 0. We may assume that ‖w‖ = ‖u‖ = 1. Then the rank-one matrix Z ≡ uw∗

satisfies |||Z||| = 1,

0 = w∗u =

n∑

i=1

wiui = trace(Z) = 〈Z, I〉 = 〈Z, A0〉 ,

and

〈Z, A〉 = trace(A∗uw∗) = ‖A‖ trace(ww∗) = ‖A‖
n∑

i=1

wiwi = ‖A‖ .

Hence Theorem 2.6 shows that T A
1 (z) = z if and only if there exists a rank-one matrix

Z satisfying the conditions (2.8).

Above we have already mentioned that T A
1 (z) = z holds when A is a Jordan

block with eigenvalue zero. It is easily seen that, in the notation of Theorem 2.6,
the vector w in this case is given by the last canonical basis vector. Furthermore,
T A

1 (z) = z holds for any matrix A that satisfies the conditions of Theorem 2.5, i.e.,
P ∗AP = −A or P ∗AP = −AT for some unitary matrix P .

2Greenbaum and Gurvits have stated this result for real matrices only, but since its proof mainly
involves singular value decompositions of matrices, a generalization to the complex case is straight-
forward.
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An interesting special case of Theorem 2.5 arises when the matrix A is normal,
so that

min
α∈C

‖A − αI‖ = min
α∈C

max
λi∈Λ(A)

|λi − α|.

It is well known that the unique solution α∗ of this problem is given by the center of
the (closed) disk of smallest radius in the complex plane that contains all the complex
numbers λ1, . . . , λn.3

For nonnormal matrices this characterization of α∗ is not true in general. For
example, if

A =

[
J1

−1

]
, J1 ∈ R4×4,

then the smallest circle that encloses all eigenvalues of A is centered at zero, but the
solution of minα∈C ‖A − αI‖ is given by α∗ ≈ −0.4545, and we have ‖T A

1 (A)‖ ≈
1.4545 < ‖A‖ ≈ 1.8794.

3. Special classes of matrices. In this section we apply our previous general
results to Chebyshev polynomials of special classes of matrices.

3.1. Perturbed Jordan blocks. Our first class consists of perturbed Jordan
blocks of the form

(3.1) A =

⎡
⎢⎢⎢⎢⎣

0 1
. . .

. . .

. . . 1
ν 0

⎤
⎥⎥⎥⎥⎦

= ν(JT
0 )n−1 + J0 ∈ Cn×n,

where ν ∈ C is a complex parameter. Matrices of this form have recently been studied
by Greenbaum in her analysis of upper and lower bounds for the norms of matrix
functions [9]. Note that for ν = 0 the matrix A is a Jordan block with eigenvalue
zero (and hence A is not diagonalizable), while for ν = 1 the matrix A is unitary (and
hence unitarily diagonalizable), and has the nth roots of unity as its eigenvalues. We
have d(A) = n for any ν ∈ C.

Theorem 3.1. If A is as in (3.1), where ν ∈ C is given, then, for 1 ≤ m ≤ n−1,

Am = ν(JT
0 )n−m + Jm

0 , ‖Am‖ = max{1, |ν|}, and T A
m(z) = zm.

Proof. For simplicity of notation we use J = J0 in this proof. Consider an
integer s, 0 ≤ s ≤ n − 2. Then a simple computation yields

(JT )n−1Js + J(JT )n−s = (JT )n−(s+1) (JT )sJs + JJT (JT )n−(s+1)

= (JT )n−(s+1) diag
(
0, . . . , 0︸ ︷︷ ︸

s

, 1, . . . , 1
)

+ diag (1, . . . , 1, 0) (JT )n−(s+1)

= (JT )n−(s+1).(3.2)

3The problem of finding this disk, which is uniquely determined either by two or by three of the
numbers, was first posed by Sylvester in [19]. This “paper” consists solely of the following sentence:
“It is required to find the least circle which shall contain a given set of points in a plane.”
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We prove the first identity inductively. For m = 1 the statement is trivial. Suppose
now that the assertion is true for some m, 1 ≤ m ≤ n − 2. Then

Am+1 = (ν(JT )n−1 + J) (ν(JT )n−m + Jm)

= ν2(JT )2n−m−1 + ν((JT )n−1Jm + J(JT )n−m) + Jm+1

= ν(JT )n−(m+1) + Jm+1,

where in the last equality we have used (3.2).
To prove the second identity it is sufficient to realize that each row and column of

Am contains at most one nonzero entry, either ν or 1. Therefore, ‖Am‖ = max{1, |ν|}.
Finally, note that the matrices I, A, . . . , An−1 have nonoverlapping nonzero pat-

terns. Therefore, for any p ∈ Mm, 1 ≤ m ≤ n − 1, at least one entry of p(A) is 1 and
at least one entry is ν, so ‖p(A)‖ ≥ max{1, |ν|}. On the other hand, we know that
‖Am‖ = max{1, |ν|}, and uniqueness of T A

m(z) implies that T A
m(z) = zm.

3.2. Special bidiagonal matrices. Let positive integers � and h, and � complex
numbers λ1, . . . , λ� (not necessarily distinct) be given. We consider the matrices

(3.3) D =

⎡
⎢⎢⎢⎢⎣

λ1 1

λ2
. . .

. . . 1
λ�

⎤
⎥⎥⎥⎥⎦

∈ C�×�, E = (JT
0 )�−1 ∈ R�×�,

and form the block Toeplitz matrix

(3.4) B =

⎡
⎢⎢⎢⎢⎣

D E

D
. . .

. . . E
D

⎤
⎥⎥⎥⎥⎦

∈ C�·h×�·h.

Matrices of the form (3.4) have been used by Reichel and Trefethen [14], who related
the pseudospectra of these matrices to their symbol fB(z) = D + zE. Chebyshev
polynomials for examples of such matrices have been studied numerically in [21, 24, 25]
(cf. our examples following Theorem 3.3).

Lemma 3.2. In the notation established above, χD(B) = J�
0, where χD(z) =

(z − λ1) · . . . · (z − λ�) is the characteristic polynomial of D.
Proof. Let e1, . . . , e�·h denote the canonical basis vectors of C�·h, and let e0 =

e−1 = · · · = e−�+1 = 0. It then suffices to show that χD(B)ej = ej−� for j =
1, 2, . . . , � · h, or, equivalently, that

(3.5) χD(B)ek·�+j = e(k−1)·�+j, k = 0, 1, . . . , h − 1, j = 1, 2, . . . , �.

To prove these relations, note that

χD(B) = (B − λ1I) · . . . · (B − λ�I),

where the factors on the right-hand side commute. Consider a fixed j between 1 and �.
Then it follows directly from the structure of the matrix B − λjI that

(B − λjI) ek·�+j = ek·�+j−1, k = 0, 1, . . . , h − 1.
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Consequently, for k = 0, 1, . . . , h − 1, and j = 1, 2, . . . , �,

χD(B) ek·�+j = (B − λj+1I) · . . . · (B − λ�I) · (B − λ1I) · . . . · (B − λjI) ek·�+j

= (B − λj+1I) · . . . · (B − λ�I) ek·�
= (B − λj+1I) · . . . · (B − λ�I) e(k−1)·�+�

= e(k−1)·�+j ,

which is what we needed to show.
This lemma allows us to derive the following result on the Chebyshev polynomials

of the matrix B.
Theorem 3.3. Let B be defined as in (3.4), and let χD(z) be the characteristic

polynomial of D. Then T B
k·�(z) = (χD(z))k for k = 1, 2, . . . , h − 1.

Proof. Let Mij denote the entry at position (i, j) of the matrix M . A well-known
property of the matrix 2-norm is ‖M‖ ≥ maxi,j |Mij |. For any p ∈ Mk·� we therefore
have

‖p(B)‖ ≥ max
i,j

|p(B)ij | ≥ |p(B)1,k·�+1| = 1.

On the other hand, Lemma 3.2 implies that

‖(χD(B))k‖ = ‖Jk·�
0 ‖ = 1.

Hence the polynomial (χD(z))m attains the lower bound on ‖p(B)‖ for all p ∈ Mk·�.
The uniqueness of the Chebyshev polynomial of B now implies the result.

In case � = 1, i.e., B = Jλ1 ∈ Cn×n, the theorem shows that (z −λ1)
m is the mth

Chebyshev polynomial of B, m = 1, . . . , n − 1. As mentioned above, this result was
previously shown in [13, Theorem 3.4]. The proof in that paper, however, is based on
a different approach, namely a characterization of matrix approximation problems in
the 2-norm obtained by Ziȩtak [26, 27].

As a further example consider a matrix B of the form (3.4) with

(3.6) D =

[
1 1
0 −1

]
.

This matrix B has been studied numerically in [24, Example 6] and [21, Example 6].
The minimal polynomial of D is given by (z − 1)(z + 1) = z2 − 1, and hence T B

2k(z) =
(z2 − 1)k for k = 1, 2, . . . , h − 1. However, there seems to be no simple closed formula
for the Chebyshev polynomials of B of odd degree. Our numerical experiments show
that these polynomials (contrary to those of even degree) depend on the size of the
matrix. Table 2 shows the coefficients of T B

m(z) for m = 1, 2, . . . , 7 for an (8 × 8)-
matrix B (i.e., there are four blocks D of the form (3.6) on the diagonal of B). The
coefficients in the rows of the table are ordered from highest to lowest. For example,
T B

4 (z) = z4 − 2z2 + 1.
It is somewhat surprising that the Chebyshev polynomials change significantly

when we reorder the eigenvalues on the diagonal of B. In particular, consider

(3.7) B̃ =

[
J1 E

J−1

]
∈ R2�×2�,

where E = (JT
0 )�−1 ∈ R�×�. The coefficients of T B̃

m(z), m = 1, 2, . . . , 7, for an (8 × 8)-
matrix of the form (3.7) are shown in Table 3.
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Table 2
Coefficients of T B

m (z) for an (8 × 8)-matrix B of the form (3.4) with D as in (3.6).

m
1 1 0
2 1 0 -1.000000
3 1 0 0.876114 0
4 1 0 -2.000000 0 1.000000
5 1 0 -1.757242 0 0.830598 0
6 1 0 -3.000000 0 3.000000 0 -1.000000
7 1 0 -2.918688 0 2.847042 0 0.927103 0

Table 3
Coefficients of T B̃

m(z) for an (8 × 8)-matrix B̃ of the form (3.7).

m
1 1 0
2 1 0 -1.595438
3 1 0 -1.975526 0
4 1 0 -2.858055 0 2.463968
5 1 0 -3.125673 0 2.608106 0
6 1 0 -3.771773 0 4.945546 0 -1.863541
7 1 0 -4.026082 0 5.922324 0 -3.233150 0

Table 4
Coefficients of T C

m(z) for an (8 × 8)-matrix C of the form (2.10) with λ = 1.

m
1 1 0
2 1 0 -1.763931
3 1 0 -2.194408 0
4 1 0 -2.896537 0 2.502774
5 1 0 -3.349771 0 3.696082 0
6 1 0 -3.799998 0 5.092302 0 -1.898474
7 1 0 -4.066665 0 6.199999 0 -4.555546 0

Note that the matrices B based on (3.6) and B̃ in (3.7) are similar (when they
are of the same size). Another matrix similar to these two is the matrix C in (2.10)
with c = 1. The coefficients of Chebyshev polynomials of such a matrix C of size
8 × 8 are shown in Table 4. It can be argued that the 2-norm condition number of
the similarity transformations between B, B̃, and C is of order 2� (we skip details for
brevity of the presentation). Hence this transformation is far from being orthogonal,
which indicates that the Chebyshev polynomials of the respective matrices can be
very different—and in fact they are. We were unable to determine a closed formula
for any of the nonzero coefficients of the Chebyshev polynomials of B̃ and C (except,
of course, for the leading one). Numerical experiments indicate that these in general
depend on the sizes of the respective matrices.

In Figure 1 we show the roots of the Chebyshev polynomials of degrees m = 5
and m = 7 corresponding to the examples in Tables 2–4. Each figure contains three
sets of roots. All the polynomials are odd, and therefore all of them have one root at
the origin.

4. Matrices and sets in the complex plane. In this section we explore the
relation between Chebyshev polynomials of matrices and of compact sets Ω in the
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Fig. 1. Roots of T B
m (z) (circles), T B̃

m (z) (crosses), and T C
m(z) (points) of degrees m = 5 (left)

and m = 7 (right) corresponding to the examples in Tables 2–4.

complex plane. Recall that for each m = 1, 2, . . . the problem

min
p∈Mm

max
z∈Ω

|p(z)|

has a unique solution T Ω
m(z) that is called the mth Chebyshev polynomial of Ω (cf. the

introduction). Similarly to the matrix case, Chebyshev polynomials of sets are known
explicitly only in a few special cases. One of these cases is a disk in the complex plane
centered at the point λ ∈ C, for which the mth Chebyshev polynomial is (z − λ)m;
see, e.g., [17, p. 352]. Kamo and Borodin [12] allow us to generate more examples of
Chebyshev polynomials.

Theorem 4.1. Let T Ω
k be the kth Chebyshev polynomial of the infinite compact

set Ω ⊂ C, let p(z) = a�z
� + · · · + a1z + a0, a� �= 0, be a polynomial of degree �, and

let

Ψ ≡ p−1(Ω) = {z ∈ C : p(z) ∈ Ω}

be the preimage of Ω under the polynomial map p. Then T Ψ
k·�, the Chebyshev polyno-

mial of degree m = k · � of the set Ψ, is given by

T Ψ
m(z) =

1

ak
�

T Ω
k (p(z)) .

This result has been shown also by Fischer and Peherstorfer [7, Corollary 2.2],
who applied it to obtain convergence results for Krylov subspace methods. Similar
ideas can be used in our context. For example, let SA = [a, b] with 0 < a < b and
p(z) = z2. Then

SB ≡ p−1(SA) = [−√
a, −

√
b] ∪ [

√
a,

√
b],

and Theorem 4.1 implies that T SB

2k (z) = T SA

k (z2). Such relations are useful when
studying two normal matrices A and B, whose spectra are contained in the sets SA

and SB , respectively.
For an application of Theorem 4.1 that to our knowledge has not been considered

before, consider a given polynomial p = (z−λ1)·. . .·(z−λ�) ∈ M� and the lemniscatic
region

(4.1) L(p) ≡ {z ∈ C : |p(z)| ≤ 1}.
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Note that L(p) is the preimage of the unit disk under the polynomial map p. Since
the kth Chebyshev polynomial of the unit disk is the polynomial zk, Theorem 4.1
implies that

T
L(p)
k·� = (p(z))k.

Using these results and Theorem 3.3 we can now formulate the following.
Theorem 4.2. Let λ1, . . . , λ� ∈ C and an integer h > 1 be given. Then for

p(z) = (z − λ1) · . . . · (z − λ�) ∈ M�, and each k = 1, 2, . . . , h − 1,

(p(z))k = T
L(p)
k·� (z) = T B

k·�(z),

where the lemniscatic region L(p) is defined as in (4.1), and the matrix B is of the
form (3.4). Moreover,

max
z∈L(p)

|T L(p)
k·� (z)| = ‖T B

k·�(B)‖.

This theorem connects Chebyshev polynomials of lemniscatic regions of the form
(4.1) to Chebyshev polynomials of matrices B of the form (3.4). The key observation
is the analogy between Theorems 3.3 and 4.1. We believe that it is possible to generate
further examples along these lines.

5. Concluding remarks. We have shown that Chebyshev polynomials of ma-
trices and Chebyshev polynomials of compact sets in the complex plane have a number
of common or at least related properties. Among these are the polynomials’ behavior
under shifts and scalings (of matrix or set), and certain “alternation” and even/odd
properties. Progress on the theory of Chebyshev polynomials of matrices can certainly
be made by studying other known characteristics of their counterparts of sets in the
complex plane. Furthermore, we consider it promising to further explore whether the
Chebyshev polynomials of a matrix can be related to Chebyshev polynomials of a set
and vice versa (see Theorem 4.2 for an example). This may give additional insight
into the question of where a matrix “lives” in the complex plane.

Acknowledgments. We thank two anonymous referees for helpful comments
and suggestions that improved the paper, and particulary led to a simplification of
our original proof of Theorem 3.1.
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descent method for matrix functions, Electron. Trans. Numer. Anal., 28 (2007/08), pp. 206–
222.

[2] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue
problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[3] S. Benson, Y. Ye, and X. Zhang, DSDP—Software for Semidefinite Programming, Vol. 5.8,
http://www.mcs.anl.gov/hs/software/DSDP (January 2006).

[4] E. K. Blum, Numerical Analysis and Computation: Theory and Practice, Addison–Wesley,
Reading, MA, 1972.

[5] P. L. Chebyshev, Sur les questions de minima qui se rattachent à la représentation approxi-
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[13] J. Liesen and P. Tichý, On best approximations of polynomials in matrices in the matrix

2-norm, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 853–863.
[14] L. Reichel and L. N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices,

Linear Algebra Appl., 162/164 (1992), pp. 153–185.
[15] Y. Saad, Projection methods for solving large sparse eigenvalue problems, in Matrix Pencils,

Lecture Notes in Math. 973, B. K̊agström and A. Ruhe, eds., Springer, Berlin, 1982,
pp. 121–144.

[16] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press,
Manchester, UK, 1992.

[17] V. I. Smirnov and N. A. Lebedev, Functions of a Complex Variable: Constructive Theory,
translated from the Russian by Scripta Technica Ltd., MIT Press, Cambridge, MA, 1968.

[18] K.-G. Steffens, The History of Approximation Theory: From Euler to Bernstein, Birkhäuser,
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PROPERTIES OF WORST-CASE GMRES∗

VANCE FABER† , JÖRG LIESEN‡ , AND PETR TICHÝ§

Abstract. In the convergence analysis of the GMRES method for a given matrix A, one quantity
of interest is the largest possible residual norm that can be attained, at a given iteration step k, over
all unit norm initial vectors. This quantity is called the worst-case GMRES residual norm for A and
k. We show that the worst-case behavior of GMRES for the matrices A and AT is the same, and we
analyze properties of initial vectors for which the worst-case residual norm is attained. In particular,
we prove that such vectors satisfy a certain “cross equality.” We show that the worst-case GMRES
polynomial may not be uniquely determined, and we consider the relation between the worst-case
and the ideal GMRES approximations, giving new examples in which the inequality between the two
quantities is strict at all iteration steps k ≥ 3. Finally, we give a complete characterization of how
the values of the approximation problems change in the context of worst-case and ideal GMRES for
a real matrix, when one considers complex (rather than real) polynomials and initial vectors.

Key words. GMRES method, worst-case convergence, ideal GMRES, matrix approximation
problems, minmax
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1. Introduction. Let a nonsingular matrix A ∈ Rn×n and a vector b ∈ Rn be
given. Consider solving the system of linear algebraic equationsAx = b with the initial
guess x0 = 0 using the GMRES method. This method generates a sequence of iterates
xk ∈ Kk(A, b) ≡ span{b, Ab, . . . , Ak−1b}, k = 1, 2, . . . , so that the corresponding kth
residual rk ≡ b−Axk satisfies

‖rk‖ = min
p∈πk

‖p(A)b‖ .(1.1)

Here ‖ · ‖ denotes the Euclidean norm, and πk denotes the set of real polynomials of
degree at most k and with value one at the origin; see the original paper of Saad and
Schultz [14] or, e.g., the books [4, 11, 13].

The convergence analysis of GMRES deals with bounding or estimating the right-
hand side of (1.1). This is a notoriously difficult problem; see, e.g., the respective
chapters in [4, 11, 13]. One way to simplify this problem is to split off the right-hand-
side vector b and to bound or estimate the value of the remaining polynomial matrix
approximation problem only, i.e., to consider

‖rk‖ ≤ ϕk(A) ‖b‖ , where ϕk(A) ≡ min
p∈πk

‖p(A)‖ .(1.2)

Greenbaum and Trefethen nicely described the motivation for this approach in [6,
pp. 361–362]. They called ϕk(A) the ideal GMRES value for A and k, and the
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(uniquely determined) polynomial that attains this value the ideal GMRES polynomial
for A and k (see [6, 12] for uniqueness proofs).

Since the majority of the existing GMRES convergence results are (upper or
lower) bounds on the ideal GMRES value ϕk(A), it is natural to ask how far this
value can be from an actual kth residual norm produced by GMRES. This question
was formulated by Greenbaum and Trefethen in [6, p. 366], and it can be approached
by looking at the following sequence of inequalities that holds for any given A ∈ Rn×n,
integer k ≥ 1, and unit norm vector b ∈ Rn:

‖rk‖ = min
p∈πk

‖p(A)b‖

≤ max
‖v‖=1

min
p∈πk

‖p(A)v‖ ≡ ψk(A)(1.3)

≤ min
p∈πk

max
‖v‖=1

‖p(A)v‖ = ϕk(A).

The value ψk(A) introduced in (1.3) is called the worst-case GMRES residual norm
for the given A and k. It gives an attainable upper bound on all possible kth GMRES
residual norms for the given matrix A. A unit norm initial vector and a corresponding
polynomial for which the value ψk(A) is attained are called a worst-case GMRES
initial vector and a worst-case GMRES polynomial for A and k, respectively.

Let us briefly summarize the most important previous results on worst-case and
ideal GMRES (see [15, sections 1–2] for a more detailed summary). First of all, if
A is singular, then ψk(A) = ϕk(A) = 1 for all k ≥ 1 (to see this, simply take v
as a unit norm vector in the kernel of A). Hence only nonsingular matrices A are
of interest in our context. For such A, both ψk(A) and ϕk(A) are monotonically
decreasing sequences, and ψk(A) = ϕk(A) = 0 for all k ≥ d(A), the degree of the
minimal polynomial of A. Therefore, we only need to consider 1 ≤ k ≤ d(A) − 1.

For a fixed k, both ψk(A) and ϕk(A) are continuous functions on the open set of
nonsingular matrices; see [7, Theorem 3.1] or [2, Theorem 2.5]. Moreover, the equality
ψk(A) = ϕk(A) holds for normal matrices A and any k, as well as for k = 1 and any
nonsingular A [5, 8]. Some nonnormal matrices A are known, however, for which
ψk(A) < ϕk(A), even ψk(A) � ϕk(A), for certain k; see [2, 16].

As shown in [18], the ideal GMRES approximation problem can be formulated
as a semidefinite program. Hence the ideal GMRES value ϕk(A) and the correspond-
ing ideal GMRES polynomial can be computed by any suitably applied semidefinite
program solver. In our computations we use the MATLAB package SDPT3, ver-
sion 4.0; see, e.g., [17]. On the other hand, we are not aware of any efficient algorithm
for solving the worst-case GMRES approximation problem. In our experiments we
use the general purpose nonlinear minimization routine fminsearch from MATLAB’s
Optimization Toolbox.

Our main goal in this paper is to contribute to the understanding of the worst-case
GMRES approximation problem (1.3). In particular, we will derive special properties
of worst-case GMRES initial vectors, and we will show that (in contrast to ideal
GMRES), worst-case GMRES polynomials for given A and k may not be uniquely
determined. Furthermore, we will give some new results on the relation between
worst-case and ideal GMRES, and on the tightness of the inequality ψk(A) ≤ ϕk(A).
Finally, we give a complete characterization of how the values of the approximation
problems in the context of worst-case and ideal GMRES for a real matrix change,
when one considers complex (rather than real) polynomials and initial vectors.

In this paper we do not consider quantitative estimation of the worst-case GMRES
residual norm ψk(A), and we do not study how this value depends on properties of A.
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This is an important problem of great practical interest, which is largely open. For
more details and a survey of the current state of the art, we refer the reader to [11,
section 5.7].

2. The cross equality. In this section we generalize two results of Zavorin [19].
The first shows that ψk(A) = ψk(AT ), and the second is a special property of worst-
case initial vectors (they satisfy the so-called cross equality). Zavorin proved these
results only for diagonalizable matrices using quite a complicated technique based
on a decomposition of the corresponding Krylov matrix. Using a simple algebraic
technique we prove these results for general matrices.

In our derivation we will use the following notation and basic facts about GMRES.
For any given nonsingular A ∈ Rn×n and b ∈ Rn the sequence of GMRES residual
norms ‖rk‖, k = 1, 2, . . . , is monotonically decreasing. It terminates with rk = 0 if and
only if k is equal to d(A, b), the degree of the minimal polynomial of b with respect to
A, where always d(A, b) ≤ d(A). A geometric characterization of the GMRES iterate
xk ∈ Kk(A, b), which is mathematically equivalent to (1.1), is given by

rk ⊥ AKk(A, b) .(2.1)

When we need to emphasize the dependence of the kth GMRES residual rk on A, b,
and k we will write

rk = GMRES(A, b, k) or rk = pk(A)b,

where pk ∈ πk is the kth GMRES polynomial of A and b, i.e., the polynomial that
solves the minimization problem on the right-hand side of (1.1). As long as rk 	= 0,
this polynomial is uniquely determined.

Lemma 2.1. Let A ∈ Rn×n be nonsingular, let k ≥ 1, and let b ∈ Rn be a unit
norm vector such that d(A, b) > k. Let

rk = GMRES(A, b, k), sk = GMRES

(
AT ,

rk
‖rk‖ , k

)
.

Then

‖rk‖ ≤ ‖sk‖(2.2)

with equality if and only if

sk

‖sk‖ = b.

As a consequence, if d(A, b) > k, then also d(AT , rk) > k.
Proof. Consider any unit norm vector b such that 1 ≤ k < d(A, b). Then the

corresponding kth GMRES residual vector rk = pk(A)b is nonzero. The defining
property (2.1) of rk means that 〈Ajb, rk〉 = 0 for j = 1, . . . , k. Hence, for any q ∈ πk,

‖rk‖2 = 〈pk(A)b, rk〉 = 〈b, rk〉 = 〈q(A)b, rk〉 = 〈b, q(AT )rk〉 ≤ ‖q(AT )rk‖,(2.3)

where the inequality follows from the Cauchy–Schwarz inequality and ‖b‖ = 1. Taking
the minimum over all q ∈ πk in (2.3) and dividing by ‖rk‖ we get

‖rk‖ ≤ min
q∈πk

∥∥∥∥q(AT )
rk

‖rk‖

∥∥∥∥ = ‖sk‖.
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Now ‖rk‖ > 0 implies ‖sk‖ > 0 and hence d(AT , rk) > k.
Next consider sk = qk(AT ) rk

‖rk‖ and substitute qk for q into (2.3) to obtain

‖rk‖2 = 〈b, qk(AT )rk〉 ≤ ‖qk(AT )rk‖ = ‖rk‖‖sk‖.(2.4)

Therefore, ‖rk‖ = ‖sk‖ if and only if

〈b, qk(AT )rk〉 = ‖qk(AT )rk‖.

Since ‖b‖ = 1, this happens if and only if

b =
qk(AT )rk

‖qk(AT )rk‖ =
qk(AT )rk
‖sk‖‖rk‖ =

sk

‖sk‖ ,

which finishes the proof.
We now can show that the worst-case GMRES residual norms for A and AT are

identical.
Theorem 2.2. If A ∈ Rn×n is nonsingular, then ψk(A) = ψk(AT ) for all k =

1, . . . , d(A) − 1.
Proof. If b is a worst-case GMRES initial vector for A and k, rk = GMRES(A, b, k),

and sk = GMRES(AT , rk

‖rk‖ , k), then, using Lemma 2.1,

ψk(A) = ‖rk‖ ≤ ‖sk‖ ≤ ψk(AT ).(2.5)

Now we can reverse the roles of A and AT to obtain the opposite inequality, i.e.,
ψk(AT ) ≤ ψk(A).

The following theorem describes a special property of worst-case initial vectors.
Theorem 2.3. Let A ∈ Rn×n be nonsingular, and let 1 ≤ k ≤ d(A) − 1. If

b ∈ Rn is a worst-case GMRES initial vector for A and k, and

rk = pk(A)b = GMRES(A, b, k),

sk = qk(AT )
rk

‖rk‖ = GMRES

(
AT ,

rk
‖rk‖ , k

)
,

then

‖sk‖ = ‖rk‖ = ψk(A), b =
sk

ψk(A)
,

and

qk(AT )pk(A) b = ψ2
k(A) b.(2.6)

Proof. By assumption, ‖rk‖ = ψk(A). Using Lemma 2.1 and Theorem 2.2,

ψk(AT ) = ψk(A) = ‖rk‖ ≤ ‖sk‖ ≤ ψk(AT ).

Therefore, ‖rk‖ = ‖sk‖ = ψk(A). Using Lemma 2.1 we obtain

b =
sk

‖sk‖ =
sk

ψk(A)
,

so that qk(AT )pk(A)b = qk(AT )rk = ‖rk‖sk = ψ2
k(A)b.
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Equation (2.6) shows that b is an eigenvector of the matrix qk(AT )pk(A) with the
corresponding eigenvalue ψ2

k(A). In Corollary 3.7 we will show that qk = pk, i.e., that
b is a right singular vector of the matrix pk(A).

To further investigate vectors with the special property introduced in Theorem 2.3
we use the following definition.

Definition 2.4. Let A ∈ Rn×n be nonsingular and let k ≥ 1. We say that a unit
norm vector b ∈ Rn with d(A, b) > k satisfies the cross equality for A and k if

b =
sk

‖sk‖ , where sk ≡ GMRES

(
AT ,

rk
‖rk‖ , k

)
, rk ≡ GMRES(A, b, k).

The following algorithm is motivated by this definition. Convergence properties
are shown in the theorem immediately below the algorithm statement.

Algorithm 1 (Cross iterations 1)

b(0) = b,
for j = 1, 2, . . . do

r
(j)
k = GMRES(A, b(j−1), k)

c(j−1) = r
(j)
k /‖r(j)k ‖

s
(j)
k = GMRES(AT , c(j−1), k)

b(j) = s
(j)
k /‖s(j)k ‖

end for

Theorem 2.5. Let A ∈ Rn×n be nonsingular and let k ≥ 1. If b ∈ Rn is any
unit norm vector with d(A, b) > k, then the vectors generated by Algorithm 1 are well
defined and it holds that

‖r(j)k ‖ ≤ ‖s(j)k ‖ ≤ ‖r(j+1)
k ‖ ≤ ‖s(j+1)

k ‖ ≤ ψk(A), j = 1, 2, . . . ,(2.7)

and the two sequences ‖r(j)k ‖, j = 1, 2, . . . , and ‖s(j)k ‖, j = 1, 2, . . . , converge to the
same limit. Moreover,

lim
j→∞

‖b(j) − b(j−1)‖ = 0 and lim
j→∞

‖c(j) − c(j−1)‖ = 0.

Proof. Using Lemma 2.1 we know that r
(1)
k as well as s

(1)
k are well defined and

it holds that ‖r(1)k ‖ ≤ ‖s(1)k ‖. Switching the roles of A and AT and using Lemma 2.1

again, it follows that r
(2)
k is well defined and that ‖s(1)k ‖ ≤ ‖r(2)k ‖. Hence, (2.7) follows

from Lemma 2.1 by induction.

By (2.7) the two sequences ‖r(j)k ‖ and ‖s(j)k ‖ interlace each other, are both nonde-
creasing, and are both bounded by ψk(A). This implies that both sequences converge
to the same limit, which does not exceed ψk(A).

The first equality in (2.4) shows that ‖r(j)k ‖ = 〈b(j−1), s
(j)
k 〉. Using this fact and

b(j) = s
(j)
k /‖s(j)k ‖ we obtain

1

2
‖b(j) − b(j−1)‖2 = 1 − 〈b(j−1), b(j)〉 = 1 − 〈b(j−1), s

(j)
k /‖s(j)k ‖〉 = 1 − ‖r(j)k ‖

‖s(j)k ‖
.

Since the sequences of norms ‖r(j)k ‖ and ‖s(j)k ‖ converge to the same limit for j → ∞,
their ratio converges to 1, so that ‖b(j) − b(j−1)‖ → 0 for j → 0.
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The proof of the property for the sequence c(j) is analogous.
The results in Theorem 2.5 can be interpreted as a generalization of a theorem

of Forsythe from 1968 [3, Theorem 3.8] from symmetric positive definite A to general
nonsingular A. As already noticed by Forsythe (for the symmetric positive definite
case), there is strong numerical evidence that for each initial b(0) the sequence b(j)

(resp., the sequence c(j)) converges to a uniquely defined limit vector b̃ (resp., c̃).
Unfortunately, we were not able to prove that this must always be the case. Such
proof could be used to settle the conjecture made by Forsythe in [3, p. 66]. For a
recent treatment and historical notes on this open problem we refer the reader to [1].

From the above it is clear that satisfying the cross equality represents a necessary
condition for a vector b(0) to be a worst-case initial vector. On the other hand, we can
ask whether this condition is sufficient, or, at least, whether the vectors that satisfy
the cross equality are in some sense special. To investigate this question we present
the following two lemmas.

Lemma 2.6. Let A ∈ Rn×n be nonsingular and let k ≥ 1. A unit norm vector
b ∈ Rn with d(A, b) > k satisfies the cross equality for A and k if and only if b ∈
Kk+1(A

T , rk), where rk = GMRES(A, b, k). In particular, if d(A) = n, then each unit
norm vector b with d(A, b) = n satisfies the cross equality for A and k = n− 1.

Proof. The nonzero GMRES residual rk ∈ b+AKk(A, b) ⊂ Kk+1(A, b) is uniquely
determined by the orthogonality conditions (2.1), which can be written as

0 = 〈Ajb, rk〉 = 〈b, (AT )jrk〉 for j = 1, . . . , k,

or, equivalently,

b ⊥ AT Kk(AT , rk).(2.8)

Now let sk = GMRES(AT , rk/‖rk‖, k). Then

sk ∈ rk
‖rk‖ +AT Kk(AT , rk) ⊂ Kk+1(A

T , rk), sk ⊥ AT Kk(AT , rk) .(2.9)

We will now prove the equivalence. On the one hand, if b satisfies the cross
equality for A and k, then b = sk/‖sk‖ and (2.9) implies that b ∈ Kk+1(A

T , rk).
On the other hand, suppose that b ∈ Kk+1(A

T , rk). From (2.8) it follows that also
b ⊥ AT Kk(AT , rk). Since AT Kk(AT , rk) is a k-dimensional subspace of the (k + 1)-
dimensional subspace Kk+1(A

T , rk), b has to be a multiple of sk, i.e., b = sk/‖sk‖
or b = −sk/‖sk‖. Finally, from (2.9) we get 〈b, sk〉 = ‖rk‖−1〈b, rk〉 = ‖rk‖ > 0.
Therefore, b = sk/‖sk‖.

For k = n − 1, we have Kk+1(A
T , rk) = Rn, i.e., b ∈ Kk+1(A

T , rk) is always
satisfied.

Lemma 2.7. Let

Jλ =

⎡
⎢⎢⎢⎢⎣

λ 1
. . .

. . .

. . . 1
λ

⎤
⎥⎥⎥⎥⎦

∈ Rn×n, λ 	= 0.(2.10)

Then en = [0, . . . , 0, 1]T satisfies the cross equality for Jλ and every k = 1, . . . , n− 1.
Proof. From [10, Example 2.3] we know that

rk = GMRES(Jλ, en, k) = ‖rk‖2[0, . . . , 0, (−λ)k, (−λ)k−1, . . . ,−λ, 1]T .(2.11)
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Fig. 2.1. Cross iterations for the 11 × 11 Jordan block J1, k = 5, and four different random
initial vectors. The left part shows results for Algorithm 1 and the right part for Algorithm 2. The
bold solid horizontal line represents the worst-case GMRES residual norm for J1.

Using Lemma 2.6, it is sufficient to show that en ∈ Kk+1(J
T
λ , rk). We will look at the

nonzero structure of the vectors (JT
λ )jrk. First, it holds that

JT
λ rk = (−1)k‖rk‖2λk+1en−k.

Consequently, for j = 1, . . . , k− 1, (JT
λ )j+1rk = (JT

λ )j(JT
λ rk) is a nonzero multiple of

the (n− k)th column of (JT
λ )j . Hence

[rk, J
T
λ rk, . . . , (J

T
λ )krk] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

◦ . . . . . . ◦
...

...
◦ . . . . . . ◦
• • . . . •
• ◦ . . .

...
...

...
. . . •

• ◦ . . . ◦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where “•” stands for a nonzero entry and “◦” represents a zero entry. From this
structure one can easily see that en ∈ Kk+1(J

T
λ , rk).

Our numerical tests predict that although en satisfies the cross equality for Jλ and
every k = 1, . . . , n− 1, en is not a worst-case GMRES initial vector for Jλ and any k.
We are able to prove this statement only in special cases, for example, if 1 ≤ k ≤ n/2
and λ > 2. In this case ψk(Jλ) = λ−k (cf. [15, Corollary 3.3]), while (2.11) shows that
rk = GMRES(Jλ, en, k) has the norm

‖rk‖ =

⎛
⎝λ2k +

k−1∑

j=0

λ2j

⎞
⎠

−1/2

< λ−k.

To give a numerical example for Algorithm 1, we consider A = J1 ∈ R11×11

and k = 5. In the left part of Figure 2.1 we plot the results of Algorithm 1 started
with four random unit norm initial vectors and executed for j = 1, 2, . . . , 10. Each

line represents one corresponding sequence ‖r(1)5 ‖, ‖s(1)5 ‖, ‖r(2)5 ‖, ‖s(2)5 ‖, . . . , ‖r(10)5 ‖,
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‖s(10)5 ‖. In each case we noted that the sequences numerically converge to uniquely
defined limit vectors (cf. our remarks following the proof of Theorem 2.5). Moreover,
in each case we obtain at the end a unit norm vector b(10) that satisfies (up to a small
inaccuracy) the cross equality for J1 and k = 5. We can observe that there seems to
be no special structure in the norms that are attained at the end. In particular, none
of the runs results in a worst-case initial vector for J1 and k = 5, i.e., none of the
curves attains the value ψ5(Jλ) that is visualized by the highest bold horizontal line
in the figure.

As indicated in the left part of Figure 2.1, the sequences of residual norms gen-
erated by Algorithm 1 usually stagnate after only a few iterations. Unfortunately,
this level is usually far below the worst-case level we want to reach. In order to get
closer to that level, we need to disturb the process and try a different initial vector
that could provide a greater GMRES residual norm. This motivates the following
modification of Algorithm 1, where in each step we decide between using A or AT to
generate the next residual norm.

Algorithm 2 (Cross iterations 2)

b(0) = b,
for j = 1, 2, . . . do
v = GMRES(A, b(j−1), k)
w = GMRES(AT , b(j−1), k)
if ‖v‖ < ‖w‖ then

t
(j)
k = w

else
t
(j)
k = v

end if
b(j) = t

(j)
k /‖t(j)k ‖

end for

Algorithm 2 is well defined and has similar convergence properties to those stated
in Theorem 2.5 for Algorithm 1. As shown in the right part of Figure 2.1, the strategy
of Algorithm 2 is a little better than the one of Algorithm 1 when looking for a worst-
case initial vector: It generates larger residual norms than Algorithm 1, but they are
still less than the true worst-case norm. While one may use the output of Algorithm 2
as an initial point for an optimization routine like fminsearch, finding an efficient
algorithm for computing a worst-case initial vector remains an open problem.

3. Optimization point of view. In this section we rewrite the worst-case GM-
RES approximation problem (1.3) in an equivalent form in order to characterize worst-
case GMRES initial vectors and the corresponding worst-case GMRES polynomials
as saddle points of a certain function. This formulation will in particular be used to
show that the worst-case GMRES polynomials for A and AT are identical.

Let a nonsingular matrix A ∈ Rn×n and a positive integer k < d(A) be given.
For vectors c = [c1, . . . , ck]T ∈ Rk and v ∈ Rn, we define the function

f(c, v) ≡ ‖p(A; c)v‖2 = vT p(A; c)T p(A; c)v,(3.1)

where

p(z; c) = 1 −
k∑

j=1

cjz
j.
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Equivalently, we can express the function f(c, v) using the matrix

K(v) ≡ [Av,A2v, . . . , Akv]

as

f(c, v) = ‖v −K(v)c‖2 = vT v − 2vTK(v)c+ cTK(v)TK(v)c.(3.2)

(Here only the dependence on v is expressed in the notation K(v), because A and
k are both fixed.) Note that K(v)TK(v) is the Gramian matrix of the vectors
Av,A2v, . . . , Akv,

K(v)TK(v) =
[
vT (AT )iAjv

]
i,j=1,...,k

.

Next, we define the function

g(v) ≡ min
c∈Rk

f(c, v),

which represents the kth squared GMRES residual norm for the matrix A and the
initial vector v, and we denote

Ω ≡ {u ∈ Rn : d(A, u) ≥ k}, Γ ≡ {u ∈ Rn : d(A, u) < k}.

The set Γ is a closed subset, Ω is an open subset of Rn, and Rn = Ω ∪ Γ. Note that
g(v) > 0 for all v ∈ Ω and g(v) = 0 for all v ∈ Γ. The following lemma is a special
case of [2, Proposition 2.2] for real data and nonsingular A.

Lemma 3.1. In the previous notation, the function g(v) is a continuous function
of v ∈ Rn, i.e., g ∈ C0(Rn), and it is an infinitely differentiable function of v ∈ Ω,
i.e., g ∈ C∞(Ω). Moreover, Γ has measure zero in Rn.

We next characterize the minimizer of the function f(c, v) as a function of v.
Lemma 3.2. For each given v ∈ Ω, the problem

min
c∈Rk

f(c, v)

has the unique minimizer

c∗(v) = (K(v)TK(v))−1K(v)T v ∈ Rk.

As a function of v ∈ Ω, this minimizer satisfies c∗(v) ∈ C∞(Ω). Given v ∈ Ω,
(c∗(v), v) is the only point in Rk × Ω with

∇cf(c∗(v), v) = 0.

Proof. Since v ∈ Ω and A is nonsingular, the vectors Av,A2v, . . . , Akv are linearly
independent and K(v)TK(v) is symmetric and positive definite. Therefore, if v ∈ Ω
is fixed, (3.2) is a quadratic functional in c, which attains its unique global minimum
at the stationary point

c∗(v) = (K(v)TK(v))−1K(v)T v.

Since K(v)TK(v) is nonsingular and each entry of (K(v)TK(v))−1 can be expressed
using Cramer’s rule, the function c∗(v) is a well-defined rational function of v ∈ Ω,
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and thus c∗(v) ∈ C∞(Ω). Note that the vector c∗(v) contains the coefficients of the
kth GMRES polynomial that corresponds to the initial vector v ∈ Ω.

As stated in Lemma 3.1, g(v) is a continuous function on Rn, and thus it is also
continuous on the unit sphere

S ≡ {u ∈ Rn : ‖u‖ = 1}.

Since S is a compact set and g(v) is continuous on this set, it attains its minimum
and maximum on S.

We are interested in the characterization of points (c̃, ṽ) ∈ Rk × S such that

f(c̃, ṽ) = max
v∈S

min
c∈Rk

f(c, v) = max
v∈S

g(v).(3.3)

This is the worst-case GMRES problem (1.3). Since g(v) = 0 for all v ∈ Γ, we have

max
v∈S

g(v) = max
v∈S∩Ω

g(v).

To characterize the points (c̃, ṽ) ∈ Rk ×S that satisfy (3.3), we define for every c ∈ Rk

and v 	= 0 the two functions

F (c, v) ≡ f

(
c,

v

‖v‖

)
=
f(c, v)

vT v
, G(v) ≡ g

(
v

‖v‖

)
=
g(v)

vT v
.

Clearly, for any α 	= 0, we have

F (c, αv) = F (c, v), G(αv) = G(v).

Lemma 3.3. It holds that G(v) ∈ C∞(Ω). A vector ṽ ∈ Ω ∩ S satisfies

g(ṽ) ≥ g(v) for all v ∈ S

if and only if ṽ ∈ Ω ∩ S satisfies

G(ṽ) ≥ G(v) for all v ∈ Rn\{0}.

Proof. Since g(v) ∈ C∞(Ω) and 0 /∈ Ω, it holds also G(v) ∈ C∞(Ω). If ṽ ∈ Ω∩S is
a maximum ofG(v), then αṽ is a maximum as well, so the equivalence is obvious.

Theorem 3.4. The vectors c̃ ∈ Rk and ṽ ∈ S ∩ Ω that solve the problem

max
v∈S

min
c∈Rn

f(c, v)

satisfy

∇cF (c̃, ṽ) = 0, ∇vF (c̃, ṽ) = 0,(3.4)

i.e., (c̃, ṽ) is a stationary point of the function F (c, v).
Proof. Obviously, for any v ∈ Ω,

F (c∗(v), v) =
f(c∗(v), v)

vT v
≤ f(c, v)

vT v
= F (c, v) for all c ∈ Rk,

i.e., c∗(v) also minimizes the function F (c, v). Hence,

∇cF (c∗(v), v) = 0, v ∈ Ω.
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We know that g(v) attains its maximum on S at some point ṽ ∈ Ω ∩ S. Therefore,
G(v) attains its maximum also at ṽ. Since G(v) ∈ C∞(Ω), it has to hold that

∇G(ṽ) = 0.

Denoting c̃ = c∗(ṽ) and writing the function G(v) as G(v) = F (c∗(v), v), we get

∇G(ṽ) = 0 = ∇vc∗(ṽ)∇cF (c̃, ṽ) + ∇vF (c̃, ṽ),(3.5)

where ∇vc∗(ṽ) is the n × k Jacobian matrix of the function c∗(v) : Rn → Rk at the
point ṽ. Here we used the standard chain rule for multivariate functions. Since ṽ ∈
Ω ∩ S, we know that ∇cF (c̃, ṽ) = 0, and, therefore, using (3.5), ∇vF (c̃, ṽ) = 0.

Theorem 3.5. If (c̃, ṽ) is a solution of the problem (3.3), then ṽ is a right singular
vector of the matrix p(A; c̃).

Proof. Since (c̃, ṽ) solves the problem (3.3), we have 0 = ∇vF (c̃, ṽ). Writing
F (c, v) as a Rayleigh quotient,

F (c, v) =
vT p(A; c)T p(A; c)v

vT v
,

we ask when ∇vF (c, v) = 0; for more details see [9, pp. 114–115]. By differentiating
F (c, v) with respect to v, we get

0 =
2p(A; c)T p(A; c)v ‖v‖2 − 2[vT p(A; c)T p(A; c)v] v

(vT v)2

and the condition 0 = ∇vF (c̃, ṽ) is equivalent to

p(A; c̃)T p(A; c̃)ṽ = F (c̃, ṽ) ṽ.

In other words, ṽ is a right singular vector of p(A; c̃) and σ =
√
F (c̃, ṽ) is the corre-

sponding singular value.
Theorem 3.6. A point (c̃, ṽ) ∈ Rk×S that solves the problem (3.3) is a stationary

point of F (c, v) in which the maximal value of F (c, v) is attained.
Proof. Using Theorem 3.4 we know that any solution (c̃, ṽ) ∈ Rk × S of (3.3) is a

stationary point of F (c, v). On the other hand, if (ĉ, v̂) ∈ Rk × S satisfies

∇vF (ĉ, v̂) = 0, ∇cF (ĉ, v̂) = 0,

then p(A; ĉ) is the GMRES polynomial that corresponds to v̂ and

F (ĉ, v̂) = ‖p(A; ĉ)v̂‖2 ≤ ‖p(A; c̃)ṽ‖2 = F (c̃, ṽ).

Hence, (c̃, ṽ) is a stationary point of F (c, v) in which the maximal value of F (c, v) is
attained.

As a consequence of previous results we can formulate the following corollary.
Corollary 3.7. With the same assumptions and notation as in Theorem 2.3, it

holds that pk = qk.
Proof. Using Theorems 3.5 and 3.6 we know that

ψ2
k(A)b = pk(AT )pk(A)b,(3.6)

i.e., that b is a right singular vector of the matrix pk(A) that corresponds to the
maximal value of F (c̃, ṽ), i.e., to ψ2

k(A). From (2.6) we also know that

ψ2
k(A) b = qk(AT )pk(A) b,(3.7)

where qk is the GMRES polynomial that corresponds to AT and the initial vector rk.
Comparing (3.6) and (3.7), and using the uniqueness of the GMRES polynomial qk,
it follows that pk = qk.
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4. Nonuniqueness of worst-case GMRES polynomials. In this section we
prove that a worst-case GMRES polynomial may not be uniquely determined, and
we give a numerical example for the occurrence of a nonunique case. Our results are
based on Toh’s parametrized family of (nonsingular) matrices

A = A(ω, ε) =

⎡
⎢⎢⎣

1 ε
−1 ω

ε
1 ε

−1

⎤
⎥⎥⎦ ∈ R4×4, 0 < ω < 2, 0 < ε.(4.1)

Toh used these matrices in [16] to show that ψ3(A)/ϕ3(A) → 0 for ε → 0 and each
ω ∈ (0, 2) [16, Theorem 2.3]. In other words, he proved that the ratio of the worst-case
and ideal GMRES approximations can be arbitrarily small.

Theorem 4.1. Let A be as in (4.1). If pk(z) is a worst-case GMRES polynomial
for A and k, then pk(−z) is also a worst-case GMRES polynomial for A and k.

In particular, p3(z) 	= p3(−z), so the worst-case GMRES polynomial for A and
k = 3 is not uniquely determined.

Proof. Let b be any worst-case initial vector for A and k, and consider the
orthogonal similarity transformation

A = −QATQT , Q =

⎡
⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎦ .

Then

pk(A)b = Qpk(−AT )QT b and ψk(A) = ‖pk(A)b‖ = ‖pk(−AT )w‖ = ψk(AT ),

where w = QT b. In other words, pk(−z) is a worst-case GMRES polynomial for AT

and k. Using Corollary 3.7, it is also a worst-case GMRES polynomial for A and k.
Let p3(z) ∈ π3 be any worst-case GMRES polynomial for A and k = 3. To show

that p3(−z) 	= p3(z) it suffices to show that p3(z) contains odd powers of z, i.e., that

p3(z) 	= 1 − βz2 for any β ∈ R.(4.2)

Define the matrix

B ≡

⎡
⎢⎢⎣

1 0 ω 0
1 0 ω

1 0
1

⎤
⎥⎥⎦ = A2.

From [16, Theorem 2.1] we know that the (uniquely determined) ideal GMRES poly-
nomial for A and k = 3 is of the form

p∗(z) = 1 + (α− 1)z2, α =
2ω2

4 + ω2
.(4.3)

Therefore,

min
p∈π3

‖p(A)‖ = min
p∈π1

max
‖v‖=1

‖p(B)v‖ = max
‖v‖=1

min
p∈π1

‖p(B)v‖,
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where the last equality follows from the fact that the ideal and worst-case GMRES
approximations are equal for k = 1 [8, 5]. If a worst-case polynomial for A and k = 3
is of the form 1 − βz2 for some β, then

ψ3(A) = max
‖v‖=1

min
p∈π3

‖p(A)v‖ = max
‖v‖=1

min
p∈π1

‖p(B)v‖ = min
p∈π3

‖p(A)‖ = ϕ3(A).

This, however, contradicts the main result by Toh that ψ3(A) < ϕ3(A); see [16,
Theorem 2.2].

To compute examples of worst-case GMRES polynomials for the Toh matrix (4.1)
numerically we chose ε = 0.1 and ω = 1, and we used the function fminsearch from
MATLAB’s Optimization Toolbox. We computed the value

ψ3(A) = 0.4579

(we present the numerical results only to 4 digits) with the corresponding third worst-
case initial vector

b = [−0.6376, 0.0471, 0.2188, 0.7371]T

and the worst-case GMRES polynomial

p3(z) = −0.025z3 − 0.895z2 + 0.243z + 1 =
−1

39.9
(z − 1.181)(z + 0.939)(z + 35.96).

One can numerically check that b is the right singular vector of p3(A) that corresponds
to the second maximal singular value of p3(A). From Theorem 4.1 we know that
q3(z) ≡ p3(−z) is also a third worst-case GMRES polynomial. One can now find the
corresponding worst-case initial vector leading to the polynomial q3 using the singular
value decomposition (SVD)

p3(A) = USV T ,

where the singular values are ordered nonincreasingly on the diagonal of S. We know
(by numerical observation) that b is the second column of V . We now compute the
SVD of q3(A) and define the corresponding initial vector as the right singular vector
that corresponds to the second maximal singular value of q3(A). It holds that

p3(A
T ) = p3(A)T = V SUT .

Since AT = −QAQT , we get Qp3(−A)QT = V SUT , or, equivalently,

q3(A) = (QTV )S(QTU)T .

So, the columns of the matrix QTU are right singular vectors of q3(A) and the vector
QTu2, where u2 is the second column of U , is the worst-case initial vector that gives
the worst-case GMRES polynomial q3(z) = p3(−z).

5. Ideal versus worst-case GMRES. As mentioned above, Toh [16] as well
as Faber et al. [2] have shown that worst-case GMRES and ideal GMRES are different
approximation problems in the sense that there exist matrices A and iteration steps k
for which ψk(A) < ϕk(A). In this section we further study these two approximation
problems. We start with a geometrical characterization related to the function f(c, v)
from (3.2).
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Theorem 5.1. Let A ∈ Rn×n be a nonsingular matrix and let 1 ≤ k ≤ d(A) − 1.
The kth ideal and worst-case GMRES approximations are equal, i.e.,

max
v∈S

min
c∈Rk

f(c, v) = min
c∈Rk

max
v∈S

f(c, v),(5.1)

if and only if f(c, v) has a saddle point in Rk × S.
Proof. If f(c, v) has a saddle point in Rk ×S, then there exist vectors c̃ ∈ Rk and

ṽ ∈ S such that

f(c̃, v) ≤ f(c̃, ṽ) ≤ f(c, ṽ) for all c ∈ Rk and all v ∈ S.

The condition f(c̃, v) ≤ f(c̃, ṽ) for all v ∈ S implies that ṽ is a maximal right singular
vector of the matrix p(A; c̃). If f(c̃, ṽ) ≤ f(c, ṽ) for all c ∈ Rk, then p(z; c̃) is the
GMRES polynomial that corresponds to the initial vector ṽ. In other words, if f(c, v)
has a saddle point in Rk × S, then there exist a polynomial p(z; c̃) and a unit norm
vector ṽ such that ṽ is a maximal right singular vector of p(A; c̃) and

p(A; c̃)ṽ ⊥ AKk(A, ṽ).

Using [15, Lemma 2.4], the kth ideal and worst-case GMRES approximations are then
equal.

On the other hand, if the condition (5.1) is satisfied, then f(c, v) has a saddle
point in Rk × S.

In other words, the kth ideal and worst-case GMRES approximations are equal
if and only if the points (c̃, ṽ) ∈ Rk × S that solve the worst-case GMRES problem
are also the saddle points of f(c, v) in Rk × S.

We next extend the original construction of Toh [16] to obtain some further nu-
merical examples in which ψk(A) < ϕk(A). Note that the Toh matrix (4.1) is not

diagonalizable. In particular, for ω = 1 we have A = XJ̃X−1, where

J̃ =

⎡
⎢⎢⎣

1 1
1

−1 1
−1

⎤
⎥⎥⎦ , X =

⎡
⎢⎢⎣

ε ε ε −ε
−2 −1 0 1
0 −2ε 0 2ε
0 4 0 0

⎤
⎥⎥⎦ .

One can ask whether the phenomenon ψk(A) < ϕk(A) can also appear for diago-
nalizable matrices. The answer is yes, since both ψk(A) and ϕk(A) are continuous
functions on the open set of nonsingular matrices; see [2, Theorems 2.5 and 2.6].
Hence one can slightly perturb the diagonal of the Toh matrix (4.1) in order to obtain

a diagonalizable matrix Ã for which ψk(Ã) < ϕk(Ã).
For ω = 1, the Toh matrix is an upper bidiagonal matrix with the alternating

diagonal entries 1 and −1, and the alternating superdiagonal entries ε and ε−1. One
can consider such a matrix for any n ≥ 4, i.e.,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ε
−1 ε−1

1 ε
. . .

. . .

. . . ε±1

±1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×n,
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Fig. 5.1. Ideal and worst-case GMRES can differ from step 3 up to step 2n − 1.

and look at the values of ψk(A) and ϕk(A). If n is even, we found numerically that
ψk(A) = ϕk(A) for k 	= n−1 and ψn−1(A) < ϕn−1(A). If n is odd, then our numerical
experiments showed that ψk(A) = ϕk(A) for k 	= n − 2 and ψn−2(A) < ϕn−2(A).
Hence for all such matrices worst-case and ideal GMRES differ from each other for
exactly one k.

Inspired by the Toh matrix, we define the n× n matrices (for any n ≥ 2)

Jλ,ε ≡

⎡
⎢⎢⎢⎢⎣

λ ε
. . .

. . .

. . . ε
λ

⎤
⎥⎥⎥⎥⎦
, Eε ≡

⎡
⎢⎢⎢⎣

0 0 . . . 0
...

...
0 0 . . . 0
ε−1 0 . . . 0

⎤
⎥⎥⎥⎦

and use them to construct the matrix

A =

[
J1,ε ωEε

J−1,ε

]
∈ R2n×2n, ω > 0.

One can numerically observe that here ψk(A) < ϕk(A) for all steps k = 3, . . . , 2n− 1.
As an example, we plot in Figure 5.1 the ideal and worst-case GMRES convergence
curves for n = 4, i.e., A is an 8 × 8 matrix, ω = 4, and ε = 0.1. Varying the
parameter ω will influence the difference between the worst-case and ideal GMRES
values in these examples. Decreasing ω leads to a smaller difference, and increasing
ω leads to a larger difference for large k, while the two values need not differ for some
small k.

6. Ideal and worst-case GMRES for complex vectors or polynomials.
We now ask whether the values of the min-max approximation (1.2) and the max-min
approximation (1.3) for a matrix A ∈ Rn×n can change if we allow the maximization
over complex vectors and/or the minimization over complex polynomials. We will give
a complete answer to this question in Theorems 6.1 and 6.3 below. In short, for the
min-max approximation related to ideal GMRES the underlying fields of minimization
and maximization do not matter, while for the max-min approximation related to
worst-case GMRES different fields may in some cases indeed lead to different values.
These results again indicate the different nature of the two approximation problems,
and they complement (and in some sense complete) previous results in the literature
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dealing with the same question; see, in particular, [2, section 2], [8, section 3], and
[20, section 4].

Let us define

ϕk,K,F(A) ≡ min
p∈πk,K

max
b∈Fn

‖b‖=1

‖p(A)b‖, ψk,K,F(A) ≡ max
b∈Fn

‖b‖=1

min
p∈πk,K

‖p(A)b‖,

where K and F are either the real or the complex numbers. Hence, the previously used
ϕk(A), ψk(A), and πk are now denoted by ϕk,R,R(A), ψk,R,R(A), and πk,R, respectively.
We first analyze the case of ϕk,K,F(A).

Theorem 6.1. For a nonsingular matrix A ∈ Rn×n and 1 ≤ k ≤ d(A) − 1,

ϕk,R,R(A) = ϕk,C,R(A) = ϕk,R,C(A) = ϕk,C,C(A).

Proof. Since

max
b∈Rn

‖b‖=1

‖Bv‖ = ‖B‖ = max
b∈Cn

‖b‖=1

‖Bv‖

holds for any real matrix B ∈ Rn×n, we have ϕk,R,R(A) = ϕk,R,C(A).
Next, from R ⊂ C we get immediately ϕk,C,R(A) ≤ ϕk,R,R(A). On the other hand,

writing p ∈ πk,C in the form p = pr + i pi, where pr ∈ πk,R and pi is a real polynomial
of degree at most k such that pi(0) = 0, we get

ϕ2
k,C,R(A) = min

p∈πk,C
max
b∈Rn

‖b‖=1

‖p(A)b‖2 = min
p∈πk,C

max
b∈Rn

‖b‖=1

(
‖pr(A)b‖2 + ‖pi(A)b‖2

)

≥ min
pr∈πk,R

max
b∈Rn

‖b‖=1

‖pr(A)b‖2 = ϕ2
k,R,R(A),

so that ϕk,C,R(A) = ϕk,R,R(A). Finally, from [7, Theorem 3.1] we obtain ϕk,R,R(A) =
ϕk,C,C(A).

Since the value of ϕk,K,F(A) does not change when choosing for K and F real or
complex numbers, we will again use the simple notation ϕk(A) in the following text.
The situation for the quantities corresponding to the worst-case GMRES approxima-
tion is more complicated. Our proof of this fact uses the following lemma.

Lemma 6.2. If A = A(ω, ε) is the Toh matrix defined in (4.1) and

B ≡
[
A 0
0 A

]
,(6.1)

then ψ3,R,R(B) = ϕ3(A).
Proof. Using the structure of B it is easy to see that ψk,R,R(B) ≤ ϕk(A) for any k.

To prove the equality, it suffices to find a real unit norm vector w with

min
p∈π3,R

‖p(B)w‖ = ϕ3(A) = min
p∈π3,R

‖p(A)‖.(6.2)

The solution p∗ of the ideal GMRES problem on the right-hand side of (6.2) is given by
(4.3). Toh showed in [16, p. 32] that p∗(A) has a twofold maximal singular value σ, and
that the corresponding right and left singular vectors are given (up to a normalization)
by

[v1, v2] =

⎡
⎢⎢⎣

0 ω
ω 0
0 −2

−2 0

⎤
⎥⎥⎦ , [u1, u2] =

⎡
⎢⎢⎣

0 2
2 0
0 −ω

−ω 0

⎤
⎥⎥⎦ ,
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i.e., σu1 = p∗(A)v1 and σu2 = p∗(A)v2, where σ = ‖p∗(A)‖.
Let us define

w ≡
[
v1
v2

]
/

∥∥∥∥
[
v1
v2

]∥∥∥∥ , q(z) ≡ p∗(z).

Using

q(B)

[
v1
v2

]
= σ

[
u1

u2

]
and

∥∥∥∥
[
v1
v2

]∥∥∥∥ =

∥∥∥∥
[
u1

u2

]∥∥∥∥ ,

we see that ‖q(B)w‖ = σ. To prove (6.2) it is sufficient to show that q is the third
GMRES polynomial for B and w, i.e., that q satisfies q(B)w ⊥ Bjw for j = 1, 2, 3,
or, equivalently,

[
u1

u2

]T [
Aj 0
0 Aj

] [
v1
v2

]
= uT

1 A
jv1 + uT

2 A
jv2 = 0, j = 1, 2, 3.

Using linear algebra calculations we get uT
1 Av1 = −4ω = −uT

2Av2, and

0 = uT
1 A

2v1 = uT
2 A

2v2 = uT
1 A

3v1 = uT
2 A

3v2.

Therefore, we have found a unit norm initial vector w and the corresponding third
GMRES polynomial q such that ‖q(B)w‖ = ϕ3(A).

We next analyze the quantities ψk,K,F(A).
Theorem 6.3. For a nonsingular matrix A ∈ Rn×n and 1 ≤ k ≤ d(A) − 1,

ψk,R,R(A) = ψk,C,R(A) ≤ ψk,C,C(A) ≤ ψk,R,C(A) ≤ ϕk(A) ,

where the first and second inequalities can be strict.
Proof. For a real initial vector b, the corresponding GMRES polynomial is

uniquely determined and real. This implies ψk,C,R(A) = ψk,R,R(A). Next, from [7,
Theorem 3.1] it follows that ψk,R,R(A) ≤ ψk,C,C(A). Finally, using R ⊂ C we get
ψk,C,C(A) ≤ ψk,R,C(A). It remains to show that the first and second inequalities can
be strict, and that ψk,R,C(A) ≤ ϕk(A).

For the first inequality, as shown in [20, section 4], there exist real matrices A
and certain complex (unit norm) initial vectors b for which minp∈πk,C ‖p(A)b‖ = 1
for k = 1, . . . , n− 1 (complete stagnation), while such complete stagnation does not
occur for any real (unit norm) initial vector. Therefore, there are matrices for which
ψk,C,R(A) < ψk,C,C(A).

To show that the second inequality can be strict, we note that for any A ∈ Rn×n,
the corresponding matrix B ∈ R2n×2n of the form (6.1), and 1 ≤ k ≤ d(A) − 1,

ψ2
k,R,C(A) = max

b∈Cn

‖b‖=1

min
p∈πk,R

‖p(A)b‖2 = max
u,v∈Rn

‖u‖2+‖v‖2=1

min
p∈πk,R

‖p(A)(u + i v)‖2

= max
u,v∈Rn

‖u‖2+‖v‖2=1

min
p∈πk,R

(‖p(A)u‖2 + ‖p(A)v‖2)

= max
v∈R2n

‖v‖=1

min
p∈πk,R

‖p(B)v‖2 = ψ2
k,R,R(B).(6.3)

Now let A be the Toh matrix (4.1) and let k = 3. Toh showed in [16, Theorem 2.2] that
for any unit norm b ∈ C4 and the corresponding third GMRES polynomial pb ∈ π3,C,

‖pb(A)b‖ < ϕ3(A).
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Hence ψ3,C,C(A) < ϕ3(A). Lemma 6.2 and (6.3) imply ϕ3(A) = ψ3,R,C(A) for the Toh
matrix, and, therefore, the second inequality can be strict.

Finally, since ‖p(A)‖ = ‖p(B)‖ for any polynomial p, we get ϕ3(B) = ϕ3(A), and,
using (6.3), ψ3,R,C(A) = ψ3,R,R(B) ≤ ϕ3(B) = ϕ3(A).

We do not know whether the first and second inequalities in Theorem 6.3 can be
strict simultaneously, i.e., can both be strict for the same A and k. Concerning the
last inequality in Theorem 6.3, we are in fact able to prove that ψk,R,C(A) = ϕk(A).
Since the techniques used in this proof are beyond the scope of this paper, we will
publish it elsewhere.

Our proof concerning the strictness of the first inequality in the previous theorem
relied on a numerical example given in [20, section 4]. We will now give an alternative
construction based on the nonuniqueness of the worst-case GMRES polynomial, which
will lead to an example with ψk,R,R(A) < ψk,R,C(A).

Suppose that A is a real matrix for which in a certain step k two different worst-
case polynomials pb ∈ πk,R and pc ∈ πk,R with corresponding real unit norm initial
vectors b and c exist, so that

ψk,R,R(A) = ‖pb(A)b‖ = ‖pc(A)c‖.
Note that since pb and pc are the uniquely determined GMRES polynomials that solve
the problem (1.1) for the corresponding real initial vectors, it holds that

‖pb(A)b‖ < ‖p(A)b‖, ‖pc(A)c‖ < ‖p(A)c‖(6.4)

for any polynomial p ∈ πk,C \ {pb, pc}.
Writing any complex vector w ∈ Cn in the form w = (cos θ)u + i (sin θ) v, with

u, v ∈ Rn, ‖u‖ = ‖v‖ = 1, we get

ψ2
k,R,C(A) = max

w∈Cn

‖w‖=1

min
p∈πk,R

‖p(A)b‖2

= max
θ∈R,u,v∈Rn

‖u‖=‖v‖=1

min
p∈πk,R

(
cos2 θ ‖p(A)u‖2 + sin2 θ ‖p(A)v‖2

)

≥ max
θ∈R

min
p∈πk,R

(
cos2 θ‖p(A)b‖2 + sin2 θ‖p(A)c‖2

)

> (cos2 θ)ψ2
k,R,R(A) + (sin2 θ)ψ2

k,R,R(A) = ψ2
k,R,R(A),

where the strict inequality follows from (6.4) and from the fact that ‖p(A)b‖2 and
‖p(A)c‖2 do not attain their minima for the same polynomial.

To demonstrate the strict inequality ψk,R,R(A) < ψk,R,C(A) numerically we use the
Toh matrix (4.1) with ε = 0.1 and ω = 1, and k = 3. Let b and c be the corresponding
two different worst-case initial vectors introduced in section 4. We vary θ from 0 to
π and compute the quantities

min
p∈π3,R

(
cos2 θ ‖p(A)b‖2 + sin2 θ ‖p(A)c‖2

)
= min

p∈π3,R
‖p(B)gθ‖2,(6.5)

where

B =

[
A 0
0 A

]
and gθ =

[
(cos θ)b
(sin θ)c

]
.

In Figure 6.1 we can see clearly that for θ /∈ {0, π/2 , π} the value of (6.5) is strictly
larger than ψ3,R,R(A) = 0.4579 (dashed line). Numerical computations predict that
ψ3,R,R(A) = ψ3,C,C(A) for the Toh matrix. Finally, Lemma 6.2 and (6.3) imply
ψ3,R,C(A) = ψ3,R,R(B) = ϕ3(A) (dash-dotted line).
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Fig. 6.1. Illustration of the value of (6.5) and different quantities from Theorem 6.3 for the
Toh matrix A(1.0, 0.1) in (4.1) and k = 3.
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Abstract.

We study the convergence of GMRES for linear algebraic systems with normal ma-
trices. In particular, we explore the standard bound based on a min-max approximation
problem on the discrete set of the matrix eigenvalues. This bound is sharp, i.e. it is
attainable by the GMRES residual norm. The question is how to evaluate or estimate
the standard bound, and if it is possible to characterize the GMRES-related quantities
for which this bound is attained (worst-case GMRES). In this paper we completely
characterize the worst-case GMRES-related quantities in the next-to-last iteration step
and evaluate the standard bound in terms of explicit polynomials involving the matrix
eigenvalues. For a general iteration step, we develop a computable lower and upper
bound on the standard bound. Our bounds allow us to study the worst-case GMRES
residual norm as a function of the eigenvalue distribution. For hermitian matrices the
lower bound is equal to the worst-case residual norm. In addition, numerical experi-
ments show that the lower bound is generally very tight, and support our conjecture
that it is to within a factor of 4/π of the actual worst-case residual norm. Since
the worst-case residual norm in each step is to within a factor of the square root
of the matrix size to what is considered an “average” residual norm, our results are of
relevance beyond the worst case.

AMS subject classification (2000): 15A06, 15A09, 15A18, 65F10, 65F15, 65F20,
41A10.

Key words: GMRES, evaluation of convergence, ideal GMRES, normal matrices,
min-max problem.

1 Introduction.

Convergence analysis of GMRES [14] has been an active area of research since
the algorithm’s introduction, and numerous papers have been devoted to this
subject, see, e.g., [3, Chapter 3] and [10, Section 5.2] for surveys of results. When
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the system matrix is normal, the earliest upper bound on the GMRES residual
norms (henceforth called the “standard bound”) represents a certain min-max
approximation problem on the set of the matrix eigenvalues [14, Proposition 4].
Being independent of the initial residual, the standard bound is in fact a bound
on the “worst-case” GMRES residual norms for the given system matrix. For
normal matrices the standard bound has been shown to be sharp in the sense
that for each GMRES iteration step there exists an initial residual (depending
on the matrix and the iteration step) for which the bound is attained [4, 8]. In
addition, for normal matrices the worst-case GMRES and the “average” GMRES
behavior agree to within a factor of n1/2 (n = matrix size). By average behavior
we here mean that GMRES is started with an initial residual having components
in the matrix eigenvectors of approximately equal size (see Section 5 for details).

The sharpness of the standard bound and its closeness to the average case
sometimes lead to the impression that the GMRES convergence behavior for
normal matrices is fully understood. However, two major problems still remain
open. First, the solution of the min-max approximation is unknown except for
special cases, and its known estimates based on only a few properties of the
matrix (such as the condition number) are often misleading. Second, in many
practical applications the initial residual is not “average”, and a systematic study
of the consequences for the GMRES convergence needs yet to be performed.

This paper is devoted to the first of the two problems, as its solution appears
to be a prerequisite for studying the second. To this end it is of great interest
to characterize the min-max approximation problem in terms of easily compre-
hensible expressions involving the matrix eigenvalues as well as to determine the
initial residuals for which the standard bound is attained. Several results in this
direction have been previously obtained in the literature. For (real) symmetric
positive definite matrices, the initial residuals leading to the worst-case residual
norm are completely characterized in [2, Section 2]. The analysis in [2] is based
on classical results of approximation theory. In particular, in case of a symmetric
positive definite matrix, the polynomial that solves the approximation problem
on the matrix eigenvalues, i.e. the one for which the standard bound is attained,
is the well-known min-max polynomial on a discrete set of real points (here the
matrix eigenvalues). The result of [2] is derived in the context of the conjugate
gradient method and can be applied in the GMRES context and to all complex
Hermitian matrices. A special case of this result (which in particular also assumes
that the eigenvalues are real) is proved in [17] by solving a constrained optimiza-
tion problem using Lagrange multipliers. The related paper [18] gives necessary
and sufficient conditions on the eigenvalues of normal matrices so that there
exists an initial residual for which GMRES stagnates throughout the iteration
(called “complete stagnation” of GMRES). For any normal matrix satisfying
these conditions the authors give formulas based on the matrix eigenvalues for
all initial residuals that lead to complete stagnation [18, Theorem 3.1]. The
complete stagnation obviously represents a special case of worst-case GMRES
convergence behavior.
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General bounds on the GMRES residual norms for normal matrices that
depend on the matrix eigenvalues and the initial residual are derived in [7].
The main tool in this analysis is a factorization of the Krylov matrix. Using a
similar starting point as in [7] we characterize the quantities in the next-to-last
GMRES iteration step for normal matrices ((n − 1)st step in case of an n by n
matrix having n distinct eigenvalues) in terms of the initial residual and explicit
polynomials involving the matrix eigenvalues. We give numerical illustrations of
our analytic formulas that show how GMRES behaves for different eigenvalue
distributions. Based on these results we completely characterize the worst-case
GMRES quantities in the next-to-last iteration step. Then we analyze the worst-
case GMRES residual norm in a general iteration step and develop a lower
bound on this quantity. In case of hermitian matrices our results are the same
as in [2, Section 2], but with a different proof. For the general (normal) case
our results complement the existing literature. We prove that our lower bound
is to within a factor of (at most) the order n to the actual worst-case residual
norm. Furthermore, we conjecture that this bound is much more tight (namely
to within a constant factor), and give supporting numerical evidence.

The paper is organized as follows. In Section 2 we develop the basic tools
needed for our general analysis in Section 3. Numerical examples studying the
closeness of the lower bound to the standard bound are given in Section 4, and
a concluding discussion in Section 5 closes the paper.

Throughout the paper we assume exact arithmetic.

2 Basic concepts.

In this section we define and develop the basic tools needed for our analysis.
Let a linear system

Ax = b,(2.1)

with a nonsingular and normal matrix A ∈ Cn×n and b ∈ Cn be given. Fur-
thermore, let A = QΛQH be the eigendecomposition of A, where QHQ = I,
Λ = diag(λ1, . . . , λn), and let L = {λ1, . . . , λn} denote the set of all eigenvalues
of A. To avoid unnecessary technical complications we will assume throughout
this paper that all eigenvalues of A are distinct.

Suppose that we solve (2.1) with GMRES [14]. Starting from an initial guess
x0, this method computes the initial residual r0 = b − Ax0 and a sequence of
iterates x1, x2, . . ., so that the ith residual ri ≡ b − Axi satisfies

‖ri‖ = ‖pi(A)r0‖ = min
p∈πi

‖p(A)r0‖,(2.2)

where πi denotes the set of polynomials of degree at most i and with value one
at the origin, and ‖ · ‖ denotes the 2-norm. We parameterize the initial residual
r0 by

r0 = Q[�1, . . . , �n]T,(2.3)

so that

ri = pi(A)r0 = Q[pi(λ1)�1, . . . , pi(λn)�n]T,(2.4)
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and (2.2) can be written in the form

‖ri‖ = min
p∈πi

(
n∑

j=1

|p(λj)�j |2
)1/2

.(2.5)

It is well-known that for each GMRES iteration step i and each initial residual
r0 with at least i + 1 nonzero coordinates �j , there exists a unique polynomial
pi ∈ πi that solves (2.5). This pi(λ) is called the ith GMRES polynomial.

Similar to [7, 17, 18], we start with a factorization of the Krylov matrix,

Ki+1 ≡ [r0, Ar0, . . . , A
ir0](2.6)

for some i, 0 ≤ i ≤ n − 1. We denote D ≡ diag(�1, . . . , �n), and

Vi+1 ≡




1 λ1 · · · λi
1

...
...

...
1 λn · · · λi

n


 .(2.7)

Then Ki+1 = QDVi+1, and the Moore–Penrose generalized inverse of Ki+1 is
given by K+

i+1 = (DVi+1)
+QH . If rank(D) ≥ i + 1, then Ki+1 has full column

rank, and GMRES does not terminate before the step i + 1. In this case, as
shown in [7, Theorem 2.1], see also [11, Theorem 2.1], the ith GMRES residual
satisfies

ri = ‖ri‖2(K+
i+1)

He1(2.8)

= ‖ri‖2Q
[
(DVi+1)

+
]H

e1,

where e1 = [1, 0, . . . , 0]T. Comparing (2.4) and (2.9) shows that

pi(λj)�j = ‖ri‖2
[
(DVi+1)

+
]H

j1
, j = 1, . . . , n,(2.9)

where [(DVi+1)
+]

H
j1 denotes the jth entry in the first column of [(DVi+1)

+]
H

.
Note that (2.9) gives the complete correspondence between the ith GMRES poly-
nomial, the ith GMRES residual norm, the coordinates of r0 in the eigenvectors
of A, and the eigenvalues of A. To understand fully the behavior of GMRES for
normal matrices it would be desirable to have a general formula for the entries

in the first column of [(DVi+1)
+]

H
. However, such a formula is for a general

value of i unknown. In the following subsection we will study the special case
i = n − 1, in which (2.9)–(2.9) can be significantly simplified.

2.1 The (n − 1)st GMRES step.

Without loss of generality we restrict our analysis in this subsection to vectors
r0 with nonzero coordinates �j , j = 1, . . . , n. In case d ≥ 1 coordinates �j are
zero, the corresponding eigencomponents do not play any role for GMRES, and
hence the formulas for i = n− 1 derived below will hold for i = n − d − 1. When
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�j �= 0 for all j, GMRES terminates, i.e. computes the solution x, exactly in
step n, and its residual norms satisfy

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rn−1‖ > ‖rn‖ = 0.(2.10)

In the step i = n − 1, the Vandermonde matrix Vn is square and invertible (all
eigenvalues are distinct). Then [(DVn)+]H = D−HV −H

n , and (2.9) is equivalent
to

rn−1 = ‖rn−1‖2QD−HV −H
n e1.(2.11)

Formulas for the entries of an inverse Vandermonde matrix are well known, see,
e.g., [6, Chapter 21.1]. In general, the jth entry in the mth column of the matrix
V −T

n is the coefficient of the jth Lagrange polynomial,

lj(λ) ≡
n∏

k=1
k �=j

λk − λ

λk − λj
,(2.12)

corresponding to λm−1, m = 1, . . . , n. Hence the first column of V −H
n is given

by the complex conjugates of the constant terms of the lj(λ), i.e.

V −H
n e1 = [l1(0), . . . , ln(0)]

H
=

[
n∏

k=1
k �=1

λk

λk − λ1
, . . . ,

n∏

k=1
k �=n

λk

λk − λn

]H

.(2.13)

The following theorem explains how the (n−1)st GMRES residual and iteration
polynomial depend on the eigenvalue distribution of A (represented by the values
lj(0)) and on the initial residual r0 (represented by the coordinates �j).

Theorem 2.1. Suppose that GMRES is applied to the system (2.1) with the
normal matrix A ∈ Cn×n having n distinct eigenvalues, and that r0 is parame-
terized by (2.3) with �j �= 0 for all j. Then the norm of the (n − 1)st GMRES
residual rn−1 satisfies

‖rn−1‖ =

(
n∑

j=1

∣∣∣∣
lj(0)

�j

∣∣∣∣
2
)−1/2

,(2.14)

and the (n − 1)st GMRES polynomial pn−1(λ) has the form

pn−1(λ) = ‖rn−1‖2
n∑

j=1

lj(0)

|�j |2
lj(λ).(2.15)

Proof. Inserting (2.13) into (2.11) yields

rn−1 = ‖rn−1‖2Q
[
l1(0)�−1

1 , . . . , ln(0)�−1
n

]H
,(2.16)
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from which (2.14) follows immediately by taking norms. Next, using the property
lj(λk) = δjk, the polynomial pn−1(λ) can be written as a linear combination of
the Lagrange polynomials,

pn−1(λ) =

n∑

j=1

pn−1(λj)lj(λ).(2.17)

Equating (2.4) for i = n − 1 with (2.16) shows that

pn−1(λj) = ‖rn−1‖2 lj(0)

|�j |2
, j = 1, . . . , n,(2.18)

which, inserted into (2.17), shows (2.15). �
Theorem 2.1 gives formulas for the (n−1)st GMRES residual and polynomial

in terms of the eigenvalues of A and the coordinates of r0 in the eigenvectors
of A. The influences of both quantities are well separated in (2.14) and (2.15),
so that these formulas answer all questions about the (n − 1)st step of GMRES
applied to normal matrices.

Note that the relation (2.14) implies the upper bound

‖rn−1‖ ≤ min
1≤j≤n

∣∣∣∣
�j

lj(0)

∣∣∣∣ .(2.19)

The same upper bound follows from [7, Theorem 4.1] with i = n − 1.

Example 2.1. For numerical illustration we compute the values |lj(0)| for
four different real eigenvalue distributions. Each dot in Figure 2.1 represents a
data point (λj , |lj(0)|).

For the top left figure we use uniformly distributed eigenvalues in the inter-
val [1/20, 1], i.e. λj = j/20, for j = 1, . . . , 20. We see that |l10(0)| ≈ 105 is
the largest of the values |lj(0)|. Then (2.19) implies that for any normal matrix
having such eigenvalues, the GMRES residual norm in the next-to-last step will
be of order 10−5 or smaller (note that 0 < |�j | < 1 by assumption).

For the top right figure we use the eigenvalues of the 20 by 20 prolate matrix
generated by the MATLAB command A=gallery(’prolate’,20). Prolate ma-
trices arise in signal processing. They are symmetric, extremely ill conditioned
(here: λ1 ≈ 1.76 ∗ 10−14, λ20 = 1 − λ1, condition number ≈ 5.69 ∗ 1013), and
their eigenvalues form two clusters that are symmetric about a certain point
(here: symmetric about 0.5); see [16] for more information. In our example the
cluster close to zero causes severe trouble for GMRES. None of the values |lj(0)|
is larger than one, which typically (i.e., unless a very peculiar distribution of
the coefficients �j is constructed) will lead to almost complete stagnation until
the very last step, cf. (2.14). This represents a counterexample for the frequent
assertion that in case of k (here: k = 2) eigenvalue clusters GMRES will essen-
tially need only k steps for a significant reduction of the residual norm. In fact,
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Figure 2.1: The values |lj(0)| for example eigenvalue distributions.

the location of the clusters relative to the origin and relative to each other is of
great importance for the GMRES performance. This is also demonstrated in the
two further examples.

The bottom left and bottom right figures show the values |lj(0)| for the
eigenvalue distributions

λ(0)

j = j2/400, j = 1, . . . , 20, and

λ(1)

j = log(j)/ log(20), j = 2, . . . , 20, λ(1)

1 = 1/400,

having clusters close to zero and one, respectively. Each normal matrix having
either the λ(0)

j or the λ(1)

j as its eigenvalues has the (moderate) condition num-
ber 400. Nevertheless, the GMRES residual norms in the next-to-last step for
the two eigenvalue sets may differ by several orders of magnitude. While the
value of (2.14) for the eigenvalues λ(0)

j is typically close to one, it is typically

of order 10−10 for the eigenvalues λ(1)

j . This is a numerical illustration why the
convergence bounds for GMRES and other Krylov subspace methods such as
CG and MINRES that are based on the condition number only (see [3, Chap-
ter 3.1] for an overview), can provide misleading information about the actual
convergence behavior.
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3 Worst-case residual norm.

In this section we study the worst-case GMRES residual norms for normal
matrices. By “worst-case” we mean, for a given matrix A, the maximally attain-
able GMRES residual norm in every iteration step i. To make our notion precise
we introduce the following definition.

Definition 3.1. An ith worst-case GMRES residual rw

i for A ∈ Cn×n is a
GMRES residual that satisfies

‖rw

i ‖ = max
‖r0‖=1

min
p∈πi

‖p(A)r0‖, i = 1, . . . , n − 1.(3.1)

A few remarks concerning our definition are in place. First, the restriction that
‖r0‖ = 1 in (3.1) is made for convenience only. If we drop this restriction, then
the right-hand side of (3.1) and all subsequent formulas based on (3.1) must be
multiplied by ‖r0‖.

Second, as indicated by the wording of the definition, worst-case residuals are
not unique. For example, when r(i)

0 yields a certain ith worst-case residual rw
i

for a given matrix A, then for all |α| = 1, αr(i)

0 yields, for the same A, the ith
GMRES residual αrw

i . Obviously, ‖rw

i ‖ = ‖αrw

i ‖, so that all vectors αrw

i are ith
worst-case residuals for A.

Third, for each normal matrix A ∈ Cn×n (with n distinct eigenvalues) and
each GMRES iteration step i = 1, . . . , n − 1, there exists an ith worst-case
residual rw

i . The reasoning goes as follows. Assuming that ‖r0‖ = 1, the standard
upper bound on the GMRES residual norms [14, Proposition 4] follows easily
from (2.2),

‖ri‖ ≤ min
p∈πi

‖p(A)‖ = min
p∈πi

max
λj∈L

|p(λj)|.(3.2)

The quantity minp∈πi ‖p(A)‖ (called the “ideal GMRES” approximation [5]) is
independent of r0 and thus represents an upper bound on the worst-case GMRES
residual norm for the matrix A in step i. As shown independently in [4] and [8],
for each normal matrix A and each step i, there exists an initial residual r(i)

0 so
that equality holds in (3.2). Clearly, the ith GMRES residual corresponding to
r(i)

0 is an ith worst-case GMRES residual for A in the sense of Definition 3.1.
Fourth, except for special cases, there exists no single initial residual that

leads to a worst-case GMRES residual norm ‖rw
i ‖ in every step i. Typically

the worst-case GMRES residual norm is in each step i achieved by a different
initial residual r(i)

0 .
Fifth, since we assume that all eigenvalues are distinct, it holds ‖rw

i ‖ > 0 for
i = 0, . . . , n − 1. Therefore, the initial residual r(i)

0 corresponding to rw

i has at
least i + 1 nonzero coordinates in the eigenvector basis.

For each subset S of the eigenvalues of A, S ⊆ L, we denote

MS

i ≡ min
p∈πi

max
λj∈S

|p(λj)|.(3.3)

The result of [4, 8], which will play an important role in our further development,
can in this notation be phrased as follows: For each normal matrix A ∈ Cn×n
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(with n distinct eigenvalues) and each i = 1, . . . , n − 1, there exists a worst-case
GMRES residual rw

i with

‖rw

i ‖ = ML

i .(3.4)

As outlined in the Introduction it is of great interest to find explicit formulas
for the polynomials that achieve the min-max value ML

i , and to identify the
properties of the initial residuals r(i)

0 that yield a worst-case GMRES residual in
step i. In the following we will address these questions. We will first consider the
iteration step i = n − 1, and then the case of a general iteration step i.

3.1 Worst case in step n − 1.

The following result completely characterizes the worst-case GMRES in the
next-to-last iteration step.

Theorem 3.1. For a given normal matrix A ∈ Cn×n with n distinct eigen-
values the unit norm initial residual r(n−1)

0 yields an (n−1)st worst-case GMRES
residual if and only if the coordinates of r(n−1)

0 in the eigenvectors of A satisfy

|�(n−1)

j |2 =
|lj(0)|∑n

k=1 |lk(0)| , j = 1, . . . , n.(3.5)

The norm of the (n − 1)st worst-case GMRES residual rw
n−1 is given by

‖rw

n−1‖ =

(
n∑

k=1

|lk(0)|
)−1

,(3.6)

and the corresponding worst-case GMRES polynomial pw
n−1(λ) has the form

pw

n−1(λ) = ‖rw

n−1‖
n∑

j=1

lj(0)

|lj(0)| lj(λ).(3.7)

Moreover,

|pw

n−1(λj)| = ‖rw

n−1‖ = ML

n−1, j = 1, . . . , n,(3.8)

where L denotes the set of eigenvalues of A.
Proof. To find an (n−1)st worst-case GMRES residual we need to maximize

the GMRES residual norm given by (2.14) under the constraint that the initial
residual has unit norm. This is equivalent to solving the following constraint min-
imization problem for the coordinates of the initial residual in the eigenvectors
of A,

min
�
(n−1)
1 �=0,...,�

(n−1)
n �=0

n∑

j=1

|lj(0)|2
|�(n−1)

j |2 , where

n∑

j=1

|�(n−1)

j |2 = 1.

According to Cauchy’s inequality,

n∑

j=1

∣∣∣∣∣
lj(0)

�(n−1)

j

∣∣∣∣∣

2

=

n∑

j=1

∣∣∣∣∣
lj(0)

�(n−1)

j

∣∣∣∣∣

2 n∑

j=1

|�(n−1)

j |2 ≥
(

n∑

j=1

|lj(0)|
)2

,
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with equality if and only if

ξ

∣∣∣∣∣
lj(0)

�(n−1)

j

∣∣∣∣∣ = |�(n−1)

j | ⇔ ξ|lj(0)| = |�(n−1)

j |2,

for all j = 1, . . . , n and some real ξ. The number ξ is determined from

ξ

n∑

k=1

|lk(0)| =

n∑

k=1

|�(n−1)

k |2 = 1 ⇒ ξ =

(
n∑

k=1

|lk(0)|
)−1

.

Hence |�(n−1)

j |2 satisfies (3.5) and the norm of the corresponding worst-case
residual is given by (3.6).

Next, if we substitute |�(n−1)

j |2 in the form (3.5) into (2.15) and use the fact

that |�(n−1)

j |2 = |lj(0)|‖rw
n−1‖, then we obtain the worst-case polynomial (3.7).

Finally, since lj(λk) = δjk, the worst-case polynomial has at every eigenvalue
the same absolute value as shown in the first equality in (3.8), and the second
equality in (3.8) follows from (3.4) with i = n − 1. �

Remark 3.1. Note that the theorem gives, besides the GMRES context, the
explicit solution for a general polynomial approximation problem in the complex
plane. In particular, (3.6) can be derived with some effort from the results of
[13, Section 3]. It can be shown that (3.6) is equivalent to

ML

i =
|detVn|

n∑
j=1

|detV (j)
n |

,

where V (j)
n denotes the (n − 1)-by-(n − 1) matrix resulting from deletion of the

first column and jth row of Vn. In our notation, this corresponds to the formula
given in [13, Remark 3, p. 692]. The formulas (3.5) and (3.6) were derived in [17,
Lemma 4.1] for real symmetric matrices. However, we are unaware that (3.5) or
(3.7) have been derived before for general normal matrices.

Remark 3.2. We point out that the (n−1)st worst-case GMRES polynomial
pw

n−1(λ) as given in (3.7) is uniquely determined, since it depends only on the
uniquely determined quantities ‖rw

n−1‖ and lj(λ), j = 1, . . . , n.

Theorem 3.1 generalizes the results of [2, Section 2] (for i = n − 1) from
Hermitian to all normal matrices. In addition, the theorem allows to give new
proofs for a number of known results. We present two examples:

1. Complete stagnation of GMRES. The question we ask is whether for a given
normal matrix A there exists a unit norm vector r(n−1)

0 such that GMRES
completely stagnates, i.e.

1 = ‖r(n−1)

0 ‖ = ‖rw

n−1‖.
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Using Theorem 3.1 and the uniqueness of the (n − 1)st worst-case GM-
RES polynomial it is easy to see that in case of complete stagnation this
polynomial is given by pw

n−1(λ) ≡ 1. Then (3.7) implies

pw

n−1(λj) =
lj(0)

|lj(0)| = 1, j = 1, . . . , n.

In other words, complete stagnation can occur only if all lj(0), j = 1, . . . , n,
are real and positive. Using other means this result was previously derived
in [18, Theorem 3.1].

2. Ideal GMRES approximation. The proofs of (3.4) in [4, 8] are based on
intricate constructions. For the special case i = n − 1 we now give a simple
proof of (3.4), i.e. that

max
‖r0‖=1

min
p∈πi

‖p(A)r0‖ = min
p∈πi

‖p(A)‖

holds for all normal matrices A. As in (3.6) and (3.7), let rw
n−1 and pw

n−1(λ)
denote an (n − 1)st worst-case GMRES residual and polynomial for A,
respectively. Then

min
p∈πn−1

‖p(A)‖ = min
p∈πn−1

max
λj∈L

|p(λj)|

≤ max
λj∈L

|pw

n−1(λj)|

= ‖rw

n−1‖
= max

‖r0‖=1
min

p∈πn−1

‖p(A)r0‖

≤ min
p∈πn−1

‖p(A)‖,

so that equality must hold throughout. Note that for the last inequality we
have used the standard bound (3.2).

3.2 Worst case in a general step i.

We next attempt to characterize the worst-case GMRES in a general iteration
step i < n − 1. To this end we derive a lower bound on the min-max value

ML

i = min
p∈πi

max
λj∈L

|p(λj)|.

We use the simple fact that

ML

i ≥ MS

i(3.9)

holds for any set S ⊆ L. For any set S ⊆ L containing i + 1 distinct elements
there exists a normal (i + 1)-by-(i + 1) matrix with the spectrum S. To this
matrix we can apply Theorem 3.1 which completely characterizes the worst-case
GMRES in step i, and in particular shows that

MS

i =

(
i+1∑

k=1

|lS

k(0)|
)−1

,(3.10)
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where lS

k(λ), k = 1, . . . , i+1, denotes the kth Lagrange polynomial corresponding
to the elements in the set S. Using (3.9) and (3.10) it is easy to see that for the
given matrix A with the spectrum L,

ML

i ≥ max
S⊆L

|S|=i+1

MS

i = max
S⊆L

|S|=i+1

(
i+1∑

k=1

|lS

k(0)|
)−1

.(3.11)

The natural question arises how close is the lower bound (3.11). In the following
we will discuss this question and distinguish between two situations: Either all
eigenvalues of A are real, or A has at least one non-real eigenvalue. The first
case covers symmetric and hermitian matrices, the second case all other normal
matrices.

3.2.1 All eigenvalues are real: (3.11) is an equality.

When all eigenvalues forming the set L are real, then it follows from a classical
result of approximation theory that (3.11) is an equality for i = 1, . . . , n−1. This

means that for each i = 1, . . . , n − 1 there exists a set Ŝ ⊆ L with |Ŝ| = i + 1,
such that

ML

i = M Ŝ

i =

(
i+1∑

k=1

|lŜ

k(0)|
)−1

,

see, e.g., [1, Theorem 2.4 and Corollary 2.5]. In this case Theorem 3.1 can be

applied to a normal (i + 1)-by-(i + 1) matrix having the elements of Ŝ as its
eigenvalues. Then (3.5) shows that the coordinates of r(i)

0 yielding the worst-case
GMRES residual for A in step i satisfy

|�(i)

j |2 =
|lŜ

j (0)|
∑i+1

k=1 |lŜ

k(0)|
if λj ∈ Ŝ, �(i)

j = 0 if λj /∈ Ŝ.

Since r(i)

0 has only i + 1 nonzero coordinates in the eigenvectors of A, GMRES
will for this initial residual have the worst-case residual norm in the step i, but
then terminate in the subsequent step i + 1. Using a different approach, these
results have been previously derived for symmetric positive definite matrices in
the context of the conjugate gradient method [2].

3.2.2 At least one non-real eigenvalue: (3.11) may be strict.

When L contains at least one non-real eigenvalue, then (3.11) may be strict
for i = 1, . . . , n − 2. In fact, the smallest set S ⊆ L for which ML

i = MS

i

might contain as many as 2i + 1 distinct elements in the general complex case,
see, e.g., [1, Corollary 2.5]. For |S| > i + 1, however, the results of Theorem 3.1
cannot be used, and we are unable to express MS

i in terms of explicit polynomials.
Still, the inequality (3.11) represents a lower bound for ML

i . Furthermore, we
can find an upper bound for ML

i using an approach similar to the proof of [7,
Theorem 4.1].



THE WORST-CASE GMRES FOR NORMAL MATRICES 91

Theorem 3.2. For any set L of n distinct complex points it holds

ML

i ≤
√

(i + 1)(n − i) max
S⊆L

|S|=i+1

MS

i , i = 1, . . . , n − 2.(3.12)

Proof. Consider any normal matrix A ∈ Cn×n having n distinct eigenvalues
forming the set L. Let r(i)

0 denote an initial residual that yields an ith worst-case
GMRES residual rw

i and let �(i)

j , j = 1, . . . , n, denote the coordinates of r(i)

0 in
the eigenvectors of A. The min-max value ML

i can be written, according to (3.4)
and (2.9), in the form

ML

i = ‖rw

i ‖ = ‖eH
1 (DiVi+1)

+‖−1,

where Di ≡ diag(�(i)

1 , . . . , �(i)
n ). Now consider i + 1 rows of DiVi+1 that form a

square matrix U of order i + 1 such that |det(U)| is maximal. Then, as in the
proof of [7, Theorem 4.1],

‖rw

i ‖ ≤
√

(i + 1)(n − i) ‖U−He1‖−1.(3.13)

The matrix U is defined by some i+ 1 eigenvalues and by corresponding coordi-
nates �(i)

j . Denote the set of eigenvalues that define U by Ŝ = {λŜ
1 , . . . , λŜ

i+1} and

the corresponding (nonzero) coordinates by �Ŝ
1 , . . . , �Ŝ

i+1. Using (2.13), ‖r(i)

0 ‖ = 1,
and Cauchy’s inequality we obtain

‖U−He1‖2 =
i+1∑

j=1

∣∣∣∣∣
lŜ

j (0)

�Ŝ
j

∣∣∣∣∣

2

≥
i+1∑

j=1

∣∣∣∣∣
lŜ

j (0)

�Ŝ
j

∣∣∣∣∣

2 i+1∑

j=1

∣∣�Ŝ

j

∣∣2 ≥
(

i+1∑

j=1

|lŜ

j (0)|
)2

,

i.e.

‖U−He1‖−1 ≤
(

i+1∑

j=1

|lŜ

j (0)|
)−1

= M Ŝ

i .(3.14)

Thus we have found a set Ŝ ⊆ L, |Ŝ| = i + 1, such that

‖rw

i ‖ ≤
√

(i + 1)(n − i) M Ŝ

i .(3.15)

Substituting in (3.15) for M Ŝ
i the maximum of MS

i over all subsets S ⊆ L,
|S| = i + 1, we obtain (3.12). �

Our numerical experiments with various spectra (see Section 4) show that the
lower bound (3.11) is very tight and that the upper bound (3.12) represents an
overestimation. In particular, we conjecture that there exists a small constant
C > 1 such that

max
S⊆L

|S|=i+1

MS

i ≤ ML

i ≤ C max
S⊆L

|S|=i+1

MS

i , i = 1, . . . , n − 2,(3.16)
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holds for all sets L containing n distinct complex numbers (for i = n − 1, (3.16)
obviously holds with C = 1). In our numerical tests the ratio

ML

i

max
S⊆L

|S|=i+1

MS

i

(3.17)

was maximal for sets L containing n numbers uniformly distributed on the unit
circle. On such sets of points, (3.17) for i = n − 2 converges from below to 4/π
as n → ∞. Hence C = 4/π is the smallest constant for which (3.16) can hold for
all sets L with |L| = n, cf. the Appendix. On the other hand, we were unable to
find a set L for which the ratio (3.17) was larger than 4/π.

4 Numerical experiments.

We now study the worst-case GMRES residual norms, our lower bound (3.11),
and our conjecture (3.16) with C = 4/π for four different eigenvalue sets L. In
the left part of Figures 4.1– 4.4 we plot the worst-case GMRES residual norms
‖rw

i ‖ (bold line), and the values

max
S⊆L

|S|=i+1

MS

i (solid line),

4

π
max
S⊆L

|S|=i+1

MS

i (dashed line).

Our conjecture is that the dashed curve is an upper bound on the worst-case
GMRES residual norm in every step. The right part of each figure shows the
corresponding eigenvalue distributions. In the step i, we compute the values
MS

i for all subsets S ⊆ L, |S| = i + 1, and determine our bounds from their
maximum. This computation is quite expensive, so we consider only small sets of
points (n = 18). The worst-case GMRES residual norm in every step is computed
using the function cheby0 of the semidefinite programming package SDPT3 [15].
Although this function may fail to converge when ‖rw

i ‖ becomes very small (see
below for details), it is the most reliable function we know for this type of
computation. All experiments are performed in Matlab 6.5 Release 13 on an
AMD Athlon XP 2100+ personal computer with machine precision ε ∼ 10−16.

Roots of unity. In the first numerical experiment we consider the eigenvalue
set L consisting of the 18th roots of unity, i.e.

λk = ei
2kπ
18 , k = 1, . . . , 18.(4.1)

In this case worst-case GMRES completely stagnates, cf. [18], which is confirmed
by the bold line in Figure 4.1. The lower bound (3.11) closely approximates the
worst-case residual norm, and the lower bound multiplied by 4/π represents
an upper bound. As shown in the Appendix, see also [12], the lower bound
approaches π/4 from above in the step i = n − 2 (here: i = 16) when n → ∞.
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Figure 4.1: Worst-case GMRES and our bounds for roots of unity.

Figure 4.2: Worst-case GMRES and our bounds for random eigenvalues on the unit circle.

Hence in this step the lower bound multiplied by 4/π is proven to be a (sharp)
upper bound on the worst-case GMRES. The tightness of this bound, even for
the moderate n = 18, is clearly visible in Figure 4.1.

Random eigenvalues on the unit circle. For random eigenvalues on the unit
circle (cf. the right part of Figure 4.2), the worst-case GMRES residual norms
do not stagnate completely, but still converge very slowly (decreasing only about
one order of magnitude until the next-to-last step). The lower bound (3.11) is
very close to the worst-case residual norm, only in the iteration steps 4, 7, 11 and
15 they differ slightly. As above, the lower bound multiplied by 4/π represents
an upper bound.

Random eigenvalues in the region [0, 1]× i[0, 1]. In this case the convergence of
the worst-case residual norms is moderately fast; they decrease about 4 orders
of magnitude until the next-to-last step, cf. Figure 4.3. Again the lower bound
(3.11) is a good estimate (bold and soild line almost coincide), and the dashed
line represents an upper bound.
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Figure 4.3: Worst-case GMRES and our bounds for random eigenvalues in the region
[0, 1] × i[0, 1].

Figure 4.4: Worst-case GMRES and our bounds for the Helmert matrix.

Helmert matrix. For the last experiment we use the Helmert matrix generated
by the Matlab command gallery(’orthog’,18,4). Helmert matrices occur in
a number of practical problems, for example in applied statistics [9]. Our matrix
is orthogonal, and the eigenvalues cluster around −1, see the right part of Fig-
ure 4.4. The worst-case GMRES residual norm decreases quickly throughout the
iteration. Until the 12th step the worst-case curve and the lower bound almost
coincide, and the lower bound multiplied by 4/π represents an upper bound.
However, when the worst-case residual norm drops below the level of 10−10

(iteration step 13 and beyond), the function cheby0 apparently has reached its
final level of accuracy and henceforth stagnates. Such stagnation (sometimes di-
vergence) can be generally observed when the final accuracy level is reached, but
we are unaware of an analysis how this level depends on the problem parameters.

In summary, the numerical experiments demonstrate that our lower bound
(3.11) is very tight. Moreover, in all experiments the lower bound multiplied
by 4/π represents an upper bound on the worst-case GMRES residual norms,
which supports that our conjecture (3.16) with C = 4/π is true. Note that in
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all experiments the bound (3.12), which contains a factor between n1/2 and n,
represents an overestimation.

5 Concluding discussion.

We conclude the paper with a discussion of our results and starting points for
further work.

1. Interpretation of the lower bound (3.11). Recall that the worst-case GMRES
residual norm in step i is equal to the min-max value ML

i . This value represents
the solution of an ith degree polynomial approximation problem on n distinct
eigenvalues forming the set L. We bound this value from below by the same
approximation problem, but on subsets of L containing exactly i+1 eigenvalues.
The solution of each “reduced” problem (polynomial of degree i on i+1 distinct
points) is given in Theorem 3.1.

For illustration of this process we consider the set L consisting of the nth roots
of unity, cf. Figure 4.1 for n = 18. As shown in [18, Theorem 3.4], worst-case
GMRES completely stagnates in this case, i.e. ML

n−1 = 1. Intuitively, for each

i < n − 1 there exists a subset Ŝ ⊂ L, |Ŝ| = i + 1, that closely resembles the
(i + 1)st roots of unity. For such a set the min-max value M Ŝ

i is close to one
(in orders of magnitude), which is why the lower bound (3.11) is very tight. In

particular, whenever n mod (i + 1) = 0, there exists a set Ŝ ⊂ L consisting of
exactly the (i+1)st roots of unity. For all such iteration steps i, the lower bound
(3.11) is an equality, cf. i = 1, 2, 5, 8 for n = 18 in Figure 4.1.

Note that here, and for general sets L, MS
i is close to ML

i only for special
sets S ⊂ L with |S| = i + 1. Analyzing the structure of these sets based on the
eigenvalue distribution of A is a topic we plan to pursue in our future work.

2. Worst case vs. average (unbiased) case. Due to orthogonality of the eigen-
vectors of A, initial residuals with (approximately) equal components in all
eigenvectors are often considered the “average” case, see, e.g., [5, Section 7]. We
prefer to call them “unbiased” since they are not biased towards a certain eigen-
vector direction. For simplicity, consider any unbiased unit norm initial residual
ru
0 with eigenvector components of equal size, i.e. |�u

j | = n−1/2, j = 1, . . . , n.
Then (2.5) and (3.4) show that the ith GMRES residual ru

i corresponding to ru
0

satisfies

‖rw

i ‖ ≥ ‖ru

i ‖ = n−1/2 min
p∈πi

(
n∑

j=1

|p(λj)|2
)−1/2

≥ n−1/2 min
p∈πi

max
1≤j≤n

|p(λj)|

= n−1/2‖rw

i ‖.

Since the unbiased (average) and the worst case GMRES residual norms agree
up to a factor of n1/2, our results are relevant beyond the specific analysis of the
worst-case GMRES.



96 J. LIESEN AND P. TICHÝ

In practical applications the initial residual may, for example, be biased to-
wards the eigenvalue distribution of A. Often such biased initial residuals result
from choosing a nonzero initial guess x0. The biased case depends strongly on
the specific application, and a general analysis is beyond the scope of this paper.
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Appendix.

Proposition A.1. The smallest constant C for which (3.16) can hold for all
sets L containing n distinct complex numbers is C = 4/π.

Proof. We will show that for the set L = {λ1, . . . , λn} defined by

λk = ei
2kπ

n , k = 1, . . . , n,(A.1)

the ratio (3.17) for i = n − 2 converges from below to C = 4/π as n → ∞.
Note that all sets S ⊂ L with |S| = n − 1 can be obtained by rotation of the

set L − {λ1}. Therefore

max
S⊆L

|S|=n−1

MS

n−2 = ML−{λ1}
n−2 =

(
n∑

k=2

n∏

j=2
j �=k

|λj |
|λj − λk|

)−1

.

Substituting |λj | = 1 for all j, and

|λj − λk| = |ei 2jπ
n − ei

2kπ
n | = 2 sin

( |j − k|π
n

)
,

shows that

M
L−{λ1}
n−2 =

(
n−1∑

k=1

1

2n−2

n−1∏

j=1
j �=k

1

sin
(

jπ
n

)
)−1

= 2n−2

(∑n−1
k=1 sin

(
kπ
n

)

∏n−1
j=1 sin

(
jπ
n

)
)−1

.

Using the standard formula

n−1∏

j=1

sin
( jπ

n

)
=

n

2n−1
,

we obtain

ML−{λ1}
n−2 =

[
2

n

n−1∑

k=1

sin
(kπ

n

)]−1

=
π

2

[
π

n

n−1∑

k=1

sin
(kπ

n

)]−1

.(A.2)
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Figure A.1: The approximation of the integral for n even (left part) and n odd (right part).

Note that the expression on the right-hand side of (A.2) is an approximation of
an integral,

π

n

n−1∑

k=1

sin
(kπ

n

)
<

∫ π

0

sin(x)dx = 2, lim
n→∞

[
π

n

n−1∑

k=1

sin
(kπ

n

)]
= 2,

see Figure A.1 for a numerical illustration. Therefore,

ML−{λ1}
n−2 >

π

4
, lim

n→∞
ML−{λ1}

n−2 =
π

4
.

As shown in [18], complete stagnation of GMRES can occur for normal ma-
trices having the spectrum L, and hence ML

i = 1 for i = 1, . . . , n − 1. Therefore,

ML

n−2 <
4

π
max
S⊆L

|S|=n−1

MS

i , lim
n→∞

[
4

π
max
S⊆L

|S|=n−1

MS

i

]
= ML

n−2,

which completes the proof. A similar result can be shown for other i; see [12] for
more details. �
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12. J. Liesen and P. Tichý, A min-max problem on roots of unity, Preprint 28-2003, Institute
of Mathematics, Technical University of Berlin, 2003.

13. T. J. Rivlin and H. S. Shapiro, A unified approach to certain problems of approximation
and minimization, J. Soc. Indust. Appl. Math., 9 (1961), pp. 670–699.

14. Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
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One of the most powerful tools for solving large and sparse systems oflinear algebraic equa-
tions is a class of iterative methods called Krylov subspace methods. Theirsignificant ad-
vantages like low memory requirements and good approximation properties make them very
popular, and they are widely used in applications throughout science andengineering. The
use of the Krylov subspaces in iterative methods for linear systems is even counted among
the “Top 10” algorithmic ideas of the 20th century. Convergence analysisof these methods
is not only of a great theoretical importance but it can also help to answerpractically relevant
questions about improving the performance of these methods. As we show, the question about
the convergence behavior leads to complicated nonlinear problems. Despite intense research
efforts, these problems are not well understood in some cases. The goal of this survey is to
summarize known convergence results for three well-known Krylov subspace methods (CG,
MINRES and GMRES) and to formulate open questions in this area.

Copyright line will be provided by the publisher

1 Introduction

Krylov subspace methods represent one of the most importantclasses of iterative methods for
solving linear algebraic systems. Their main common ingredient are the Krylov subspaces,
which are spanned by the initial residual and by vectors formed by repeated multiplication
of the initial residual by the system matrix. These subspaces first appeared in a paper by the
Russian scientist and navy general Aleksei Nikolaevich Krylov (1863–1945), published in
1931 [44]. Motivated by an application in naval science, Krylov was interested in analyzing
oscillations of mechanical systems, and proposed a method for computing the minimal poly-
nomial of a given matrix (see, e.g., [21, Section 42], [25, Chapter VII], or [38, Chapter 6]
for detailed accounts of Krylov’s method). Independently of Krylov’s work, the first Krylov
subspace methods for solving linear algebraic systems appeared two decades later with the
publication of the conjugate gradient (CG) method for hermitian positive definite matrices by
Hestenes and Stiefel [36], and the closely related methods developed by Lanczos [45, 46].
Driven by the need to solve linear systems of vastly increasing dimension and the accompa-
nying rapid development of computational resources, theseKrylov subspace methods were

∗ Corresponding author: e-mail:liesen@math.tu-berlin.de, Phone: +49 30 314 29295, Fax: +49 30 314 79706
† This work was supported by the Emmy Noether-Programm of the Deutsche Forschungsgemeinschaft.
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used in many applications, particularly in the engineeringcommunity. In the numerical linear
algebra community, the potential of Krylov subspace methods was fully recognized only after
an influential paper of Reid appeared in 1971 [58]. Subsequently, numerous additional Krylov
subspace methods were developed, with focus on indefinite and nonhermitian matrices. To-
day, the use of the Krylov subspaces in iterative methods forlinear systems is counted among
the “Top 10” algorithmic ideas of the 20th century [10]. One of the main reasons for this
success is that the Krylov subspaces can be build up using only a function that computes the
multiplication of the system matrix and a vector, so that thesystem matrix itself never has to
be formed or stored explicitly. Hence Krylov subspace methods are particularly well suited
for application to large and sparse linear systems, which today are commonplace throughout
applications in science and engineering.

Mathematically, Krylov subspace methods are based on projection methods. Instead of
solving the potentially very large linear system, the idea is to approximate the systems’ so-
lution from Krylov subspaces of small dimension. The goal ofthe convergence analysis of
these methods is todescribe the convergence of this process in terms of input data of the given
problem, i.e. in dependence on properties of the system matrix, the right hand side vector and
the initial guess. Understanding the convergence of Krylovsubspace methods is particularly
important to answer the practically relevant questions howto accelerate the convergence (in
particular how to precondition the system), and how to choose potential restart parameters.

The goal of this paper is to survey the known theory of convergence of Krylov subspace
methods that are based on two basic types of projection methods, namely the Galerkin (orthog-
onal residual (OR)) method and the minimal residual (MR) method. Both types of methods
have been implemented in various commonly used algorithms.An example of the OR Krylov
subspace method is the CG method [36] for hermitian positivedefinite matrices. Implemen-
tations of the MR Krylov subspace method are the MINRES method [56] for nonsingular
hermitian indefinite matrices and the GMRES method [62] for general nonsingular matrices.
The distinction between OR and MR methods made in this paper is not new. In fact it has
been extensively used in the past to derive relations between the convergence quantities (e.g.
error or residual norms) of different methods, see, e.g., [12, 14, 37]. Here our focus is on
giving bounds for the convergence quantities of each methodseparately.

For normal system matricesA, the (worst-case) convergence behavior of CG, MINRES
and GMRES is completely determined by the spectrum ofA. The convergence analysis then
reduces to analyzing a certain min-max approximation problem on the matrix eigenvalues.
In the nonnormal case, however, the convergence behavior ofthe GMRES method may not
be related to the eigenvalues at all. As a consequence, otherproperties of the input data
must be considered to describe the convergence. Despite intense efforts to identify descriptive
properties, understanding the convergence of GMRES in the general nonnormal case still
remains a largely open problem.

After a brief introduction to the mathematical background of Krylov subspace methods
(Section 2), we survey in Section 3 the theory of convergenceof these methods. We dis-
tinguish between the normal (Section 3.1) and the nonnormal(Section 3.2) case. Section 4
contains concluding remarks. We point out that all convergence results we state in this paper
were derived assuming exact arithmetic. A recent survey of the numerical stability of Krylov
subspace methods that also discusses effects of finite precision arithmetic on the convergence
is given in [65].

Copyright line will be provided by the publisher
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2 Krylov subspace methods

In this section we briefly describe the mathematical background of the Krylov subspace meth-
ods for solving linear algebraic systems of the form

Ax = b , (1)

whereA is a real or complex nonsingularN by N matrix, andb is a real or complex vector of
lengthN . Suppose thatx0 is an initial guess for the solutionx, and define the initial residual
r0 = b−Ax0. As shown originally by Saad [59, 60] (see his book [61] for a summary), Krylov
subspace methods can be derived from the followingprojection method: Thenth iteratexn,
n = 1, 2, . . . , is of the form

xn ∈ x0 + Sn , (2)

whereSn is somen-dimensional space, called the search space. Because of then degrees
of freedom,n constraints are required to makexn unique. This is done by choosing ann-
dimensional spaceCn, called the constraints space, and by requiring that thenth residual is
orthogonal to that space, i.e.,

rn = b − Axn ∈ r0 + ASn , rn ⊥ Cn . (3)

Orthogonality here is meant in the Euclidean inner product.A similar type of projection
process appears in many areas of mathematics. As an example,consider the Petrov-Galerkin
framework in the context of the finite element method for discretizing partial differential equa-
tions, see e.g. [57, Chapter 5]. There the notions of test andtrial spaces correspond to search
and constraints spaces in (2)–(3).

In this paper we concentrate on the projection method (2)–(3) and two basic relations be-
tweenSn andCn, that to our mind are among the most important ones:

Cn = Sn (Galerkin method), (4)

Cn = ASn (Minimal residual method) . (5)

The Galerkin and the minimal residual (MR) method are calleda Krylov subspace method
when the so-called Krylov subspacesKn(A, r0) are used as search spaces, i.e.

Sn = Kn(A, r0) ≡ span{r0, Ar0, . . . , A
n−1r0} , n = 1, 2, . . . . (6)

Using these spaces in the Galerkin method, we construct residualsrn = b − Axn that are
orthogonal to all previous residualsrn−1, . . . , r0. That is why, in the context of Krylov sub-
spaces, the Galerkin method is often called orthogonal residual (OR) method.

There are many possible choices of Krylov subspaces and their variants (e.g.AKn(A, r0),
Kn(AH , r0), AHKn(AH , r0), etc.) in the projection process (2)–(3). This fact certainly
contributes to the overabundant supply of these methods. Also note that for each mathematical
description there may be several different implementations that in exact arithmetic satisfy (2)–
(3) for given search and constraint spaces, but that may differ in their finite precision behavior.
Particularly comprehensive and systematic surveys of existing Krylov subspace methods can
be found in [4, 9] and [14].
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6 J. Liesen and P. Tichý: Analysis of Krylov Subspace Methods

The Krylov subspaces form a nested sequence that ends with a subspace of maximal di-
mensiond = dimKN (A, r0), i.e.,

K1(A, r0) ⊂ · · · ⊂ Kd(A, r0) = · · · = KN (A, r0) .

The number of steps of the OR/MR Krylov subspace method is limited by the maximal Krylov
subspace dimensiond. We say that a projection processbreaks downin stepn if no iteratexn

exists, or ifxn is not unique. Naturally, we are interested in projection methods that ensure
existence and uniqueness of their iteratesxn for each stepn ≤ d. Suchwell-definedmethods
terminate with the exact solution in the stepd, which is called thefinite termination property.
If a method is well-defined or not, depends on the properties of the matrixA.

In general, the OR Krylov subspace method yields uniquely defined iterates for eachn
whenever zero is outside thefield of valuesof A, which is defined as

F(A) =
{
vHAv : ‖v‖ = 1 , v ∈ CN

}
. (7)

However, in this paper we limit our discussion to the OR Krylov subspace method for her-
mitian positive definite matrices, since only in this case the given system matrix defines a norm
in which the errors are minimized (see Section 3.1.1 for details). A particular implementation
in this case is the CG method [36].

The MR Krylov subspace method is well defined wheneverA is nonsingular. This feature
makes this method very popular, since it can be used for general matrices. The most well-
known implementations are the MINRES method [56] for hermitian indefinite matrices and
the GMRES method [62] for general nonsingular matrices.

Finally, note that the conditionsxn ∈ x0 + Kn(A, r0) andrn ∈ r0 + AKn(A, r0) imply
that the errorx − xn and the residualrn can be written in the polynomial form

x − xn = pn(A)(x − x0), rn = pn(A)r0, (8)

wherepn is a polynomial of degree at mostn and with value one at the origin. For a well-
defined OR/MR Krylov subspace method, the polynomialpn is uniquely determined by the
constraint conditions (3).

3 Convergence analysis

In exact arithmetic, well-defined Krylov subspace methods terminate in a finite number of
steps. Therefore no limit can be formed, and terms like “convergence” or “rate of conver-
gence” loose their classical meaning; see, e.g., [35, Chapter 9.4] for a cautioning in this di-
rection. This situation requires approaches that are substantially different from the analysis of
classical fixed point iteration methods such as Gauß-Seidelor SOR. The convergence of the
latter methods has typically been described asymptotically, with the “asymptotic convergence
factor” of the iteration matrix being the central concept. Surprisingly, this principal difference
between the Krylov subspace methods and the classical iteration methods is still not always
accepted. For example, the classical convergenceboundfor the CG method that is based on
the matrix condition number (see equation (15) below) is sometimes confused with the actual
convergencebehaviorof the method. Hence the actual convergence is identified with a bound
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based on the asymptotic convergence factor of the convex hull of the spectrum, without con-
sidering any other properties of the given data. Clearly, this approach can be very misleading
in some situations.

A related difficulty in the convergence analysis is the typical requirement of finding an
acceptable approximate solutionxn in n ≪ N steps. Therefore it is important to understand
the convergence from the very beginning, i.e., in the classical terminology, to understand the
“transient” behavior. This early stage of convergence, however, can depend significantly on
the right hand sideb and the initial guessx0. In general, the non-existing limiting process,
the relevance of the transient phase, and the dependence of this phase onb andx0 make the
convergence analysis of Krylov subspace methods a difficultnonlinear problem – although
the system to be solved is linear.

We divide our discussion about the convergence of Krylov subspace methods into two
parts. In the first part (Section 3.1) we consider normal system matricesA and show that in
this case the spectral information is important for analyzing the convergence. The second part
(Section 3.2) shows the difficulties with estimating the convergence in the nonnormal case.

3.1 Convergence analysis for normal matrices

Consider a nonsingular andnormalmatrixA, and let

A = V ΛV H , where V HV = I, Λ = diag(λ1, . . . , λN ) ,

be its eigendecomposition. The orthogonality of the eigenvector basis lead s to a significant
simplification in the convergence analysis of Krylov subspace methods: ConsideringAn in
the formV ΛnV H and using (8), the errors and residuals of a Krylov subspace method satisfy

x − xn = V pn(Λ)V H(x − x0), rn = V pn(Λ)V Hr0 . (9)

Because the projection property usually refers to some sortof optimality, we can expect that
Krylov subspace methods for normal matrices solve some weighted polynomial minimiza-
tion problem on the matrix spectrum. In the following subsections we explain that in the
worst-case, the convergence speed of well-known Krylov subspace methods (CG, MINRES,
GMRES) is determined by the value

min
p∈πn

max
k

|p(λk)| , (10)

whereπn denotes the set of polynomials of degree at mostn and with value one at the ori-
gin. Note that the value (10) represents a min-max approximation problem on the discrete
set of the matrix eigenvalues. The value (10) depends in a complicated (nonlinear) way on
the eigenvalue distribution. Consider, for simplicity, that all eigenvalues are real and dis-
tinct. The results in [26, 51] show that there exists a subsetof n + 1 (distinct) eigenvalues
{µ1, . . . , µn+1} ⊆ {λ1, . . . , λN}, such that

min
p∈πn

max
k

|p(λk)| =




n+1∑

j=1

n+1∏

k=1
k 6=j

|µk|
|µk − µj |




−1

. (11)
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8 J. Liesen and P. Tichý: Analysis of Krylov Subspace Methods

If at least one eigenvalue ofA is complex, the equality (11) does not hold in general, cf. [51].
Nevertheless, in [51] we formulate a conjecture, supportedby numerical experiments and by
some theoretical results, that there exist a set ofn + 1 eigenvalues such that the value on the
right hand site of (11) is equal to (10) up to a factor between 1and4/π.

Of course, except for model problems and special situations, not all eigenvalues ofA are
known, and hence an analysis based on (11) cannot be applied.In the following we will
concentrate on the practically more relevant approach to estimate the value of (10) using
only a partial knowledge of the spectrum, in particular onlysome set that contains all the
eigenvalues (a so-called inclusion set). An inclusion set is often known a priori or can be
easily estimated. We discuss the resulting convergence bounds for CG (hermitian positive
definiteA), MINRES (hermitianA) and GMRES (general normalA).

3.1.1 Convergence analysis for CG

Consider ahermitian positive definitematrix A. Each such matrix defines a norm (the so-
calledA-norm),

‖u‖A =
(
uHAu

) 1
2 , (12)

and it is well known (see, e.g., [27]) that the OR Krylov subspace iteratesxn are in this case
uniquely defined in each iterative stepn and can be computed using the CG method. The CG
iteratesxn satisfy

‖x − xn‖A = min
p∈πn

‖p(A)(x − x0)‖A . (13)

In other words, the CG method constructs an approximationxn from the affine subspace
x0+Kn(A, r0) with minimalA-norm of the error. It can be shown that theA-norm of the error
is strictly monotonically decreasing, i.e., that‖x − xn‖A < ‖x − xn−1‖A for n = 1, . . . , d.
TheA-norm of the error often has a counterpart in the underlying real-world problem. For
example, when the linear system comes from finite element approximations of self-adjoint
elliptic PDEs, then theA-norm of the error can be interpreted as the discretized measure of
energy which is to be minimized; see, e.g., [1, 2].

A simple algebraic manipulation shows that the value (10) represents an upper bound on
the relativeA-norm of the error,

‖x − xn‖A

‖x − x0‖A
≤ min

p∈πn

max
k

|p(λk)| . (14)

This convergence bound is sharp, i.e., for each iteration stepn there exist a right hand sideb
or an initial guessx0 (depending onn andA) such that equality holds in (14), see [26]. In
this sense, the bound (14) completely describes theworst-case behaviorof the CG method.
When the whole spectrum ofA is known, one can try to determine the value of the right hand
side of (14) using the formula (11). However, it is in generalan open problem which subset
of n + 1 eigenvalues leads to equality in (11).

Obviously, the bound (14) depends only on the matrix eigenvalues and not on any other
properties ofA, b, or x0. If a particular right hand sideb is known, it is sometimes possible
to incorporate the information aboutb into the analysis, and thus to obtain a better estimate of
the actual convergence behavior.
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Estimating the bound (14). Often, the largest and smallest eigenvalue (or at least esti-
mates for them) are known. Then the classical approach is to replace the discrete set of the
matrix eigenvalues by an interval containing all eigenvalues and to use Chebyshev polynomi-
als of the first kind to estimate the min-max approximation (14). This results in the following
well-known upper bound based on the condition number ofA, i.e. the ratio of the largest and
the smallest eigenvalue (see, e.g., [27]),

‖x − xn‖A

‖x − x0‖A
≤ 2

(√
κ − 1√
κ + 1

)n

, κ =
λmax

λmin
. (15)

We stress that there is a principal difference between the bounds (14) and (15). The bound
(14) represents a min-max approximation problem on thediscrete setλ1, . . . , λN , and it de-
scribes the convergence behavior in the worst-case sense. On the other hand, the bound (15)
represents an estimate of the min-max approximation on theinterval [λmin, λmax] containing
all eigenvalues ofA. It therefore bounds the worst-case behavior for all possible eigenvalue
distributions in the given interval. In other words, the bounds (14) and (15) describe differ-
ent approximation problems, and thus their values can differ significantly. Clearly, the bound
(15) cannot be identified with the CG convergence, and it represents an overestimate even of
the worst-case behavior except for very special eigenvaluedistributions in the given interval
(see [50] for further discussion of this fact). The bound (15) shows, however, that a small
condition number (close to1) implies fast convergence of the CG method. This justifies the
classical goal of “preconditioning”, namely to decrease the condition number of the given sys-
tem matrix. On the other hand, the bound (15) doesnot show that a large condition number
implies slow convergence of the CG method.

Example 3.1 Consider two example eigenvalue distributions in the interval [1/400, 1].
The first eigenvalue set, given by

λk = k2/400 , k = 1, . . . , 20 , (16)

has a cluster close to zero, whereas the second set, given by

λk = log(k)/ log(20) , k = 2, . . . , 20 , λ1 = 1/400 , (17)

has a cluster close to one. Each hermitian and positive definite matrix having the eigenval-
ues (16) or (17) has the (moderate) condition number400. Fig. 1 shows that the worst-case
CG convergence behavior differs significantly for the eigenvalue set (16) (solid) and for the
eigenvalue set (17) (dashed). Since the bound (15) (dash-dotted) represents an upper bound
on the worst-case CG behavior for any eigenvalue distribution in the given interval, it cannot
describe the actual CG convergence for a particular eigenvalue set like (17).

An alternative estimate for the value (10), based on the ratio of arithmetic and geometric
averages of the eigenvalues (the so-calledK-condition number), was introduced by Kaporin
[41]. This and other related estimates can also be found in [5, Chapter 13]. In [6], Axels-
son and Kaporin propose convergence estimates for the CG method based on a generalized
condition number ofA, which also depends on the initial error.

Superlinear convergence of CG.In many applications it has been observed that theA-
norm of the error in the CG method converges “superlinearly”, which means that speed of
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10 J. Liesen and P. Tichý: Analysis of Krylov Subspace Methods

0 2 4 6 8 10 12 14 16 18

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

worst−case CG for (16)
worst−case CG for (17)
bound (15)

Fig. 1 For a particular eigenvalue distribution (17), the worst-case CG behavior(dashed) can signifi-
cantly differ from the bound(15) (dash-dotted).

convergence increases during the iteration. Some attemptshave been made to explain this
behavior using the convergence of Ritz values in the Lanczosprocess that underlies the CG
method. An intuitive explanation of the superlinear behavior, given in the early paper [11], is
that when the extremal eigenvalues ofA are well approximated by the Ritz values, then the
CG method proceeds as if the corresponding eigenvectors were not present . This leads to a
smaller “effective” condition number ofA, which in turn might explain the faster convergence.
This situation is discussed and analyzed, for example, in [52, 71, 69]; see [70, Chapter 5.3]
for a recent summary.

The results just mentioned attempt to explain the behavior of the CG method using in-
formation that is generated during the run of the method. A different, and certainly not less
interesting problem is to identify (a priori) properties ofthe input dataA, b andx0 that im-
ply superlinear convergence behavior. This problem is considered in an asymptotic setting
by Beckermann and Kuijlaars [7, 8]. They show that superlinear CG convergence can be ob-
served when solving a sequence of linear systems with hermitian positive definite matrices
whose eigenvalue distributions are far from an equilibriumdistribution [7] (see, e.g., [22] for
an introduction to these asymptotic concepts). Such favorable eigenvalue distributions occur,
for example, when the system matrices come from the standardfive-point finite difference
discretizations of the two-dimensional Poisson equation.Another situation where superlinear
convergence is observed despite an equilibrium distribution of the eigenvalues is when the
components of the initial error in the eigenvector basis of the system matrices strongly vary in
size [8]. In a finite dimensional setting, analytic examplesfor this phenomenon in the context
of the discretized one-dimensional Poisson equation are given in [50].

Example 3.2 Consider theN by N tridiagonal symmetric and positive definite Toeplitz
matrix A = tridiag(−1, 2,−1) for N = 120, that arises by the central finite difference
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approximation of the one-dimensional Poisson equation. Asproved asymptotically by Beck-
ermann and Kuijlaars [8], CG may for this model problem converge superlinearly when the
initial error exhibits certain distributions of components in the eigenvector basis ofA.

For particular initial errors, the superlinear convergence can in this model problem even
be proved in a finite dimensional setting. In particular, consider an initial error whose com-
ponents in the eigenvector basis ofA are given byγ sin−2(kπ/(2N + 2)), k = 1, . . . , N ,
whereγ represents a nonzero scaling factor; cf. the solid line in the right part of Fig 2. Ap-
parently, these components strongly vary in size, with larger components corresponding to
smaller eigenvalues ofA. Using the results of Naiman et al. [54], it can be shown by an
elementary computation [50], that the CG errors for this initial error satisfy

‖x − xn‖A

‖x − xn−1‖A
=

(
N − n

N − n + 3

)1/2

, n = 1, . . . , N .

The right hand side in the above equation is a strictly decreasing function of the iteration
stepn, which gives an analytic proof for the superlinear CG convergence forA and this initial
error. The superlinear CG convergence curve is shown as the solid line in the left part of Fig. 2.
For comparison, we use an initial error with eigencomponents that are equally distributed; cf.
the dashed line in the right part of Fig 2. As shown by the dashed line in the left part of Fig 2,
no superlinear convergence can be observed in this case.
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Fig. 2 CG convergence curves (left part) for two distributions of eigencomponents of the initial error
(right part).

In summary, the convergence behavior of the CG method is relatively well understood,
but some open problems still remain. The right approach for investigating the convergence
behavior is to use all information about the eigenvalue distribution we have at our disposal.
If a particular right hand sideb and initial guessx0 are given, they should be incorporated in
the analysis. An example for such an approach for the model problem of the one-dimensional
Poisson equation is given in [50].

3.1.2 Convergence analysis for MINRES and GMRES

In this subsection we consider nonsingular andnormalmatricesA. It is well known (see, e.g.,
[27]) that the iteratesxn of the MR Krylov subspace method are for any such matrix uniquely
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12 J. Liesen and P. Tichý: Analysis of Krylov Subspace Methods

defined in each iterative stepn, and that thenth residualrn = b − Axn satisfies

‖rn‖ = min
p∈πn

‖p(A)r0‖. (18)

The residual norms decrease strictly monotonically whenever zero is outside the field of val-
ues ofA, see [15, 33] for different proofs. However, in general no strict monotonicity is
guaranteed. In fact, any (finite) nonincreasing sequence ofnumbers represents a convergence
curve of the MR Krylov subspace residual norms applied to some linear system with a normal
system matrix [3, 32, 48]. The normal matrix can even be chosen to have all its eigenvalues
on the unit circle.

In the normal case, the relative residual norm of the MR Krylov subspace method can be
bounded similarly as in (14),

‖rn‖
‖r0‖

≤ min
p∈πn

max
k

|p(λk)| (19)

and again, the bound (19) is sharp [31, 40]. In other words, the bound (19) describes the
worst-case behavior of the MR Krylov subspace method. If thefull spectral information is
available, then the approach in [51] (cf. the discussion of formula (11)) can be used for
estimating the worst-case convergence behavior. Otherwise, one can try to estimate the worst-
case bound (19) similarly as in the hermitian positive definite case, i.e., by replacing the
discrete spectrum by a continuous inclusion set. However, as we will see, the estimation of
the min-max approximation becomes much more complicated now.

The hermitian indefinite case.WhenA is hermitian indefinite, the MR Krylov subspace
method MINRES can be used. An estimate on the min-max approximation (19) that represents
the worst-case MINRES convergence behavior, can be obtained by replacing the discrete set
of the eigenvalues by the union of two intervals containing all of them andexcluding the
origin, sayI− ∪ I+ ≡ [λmin, λs] ∪ [λs+1, λmax] with λmin ≤ λs < 0 < λs+1 ≤ λmax.
Note that if zero would be contained in the inclusion setI− ∪ I+, then the optimal min-max
polynomial fromπn on this set would be the constant polynomialpn(z) = 1 for all n, and the
resulting convergence bounds would be useless.

When both intervals are of the same length, i.e.,λmax − λs+1 = λs − λmin, the following
bound for the min-max value can be found,

min
p∈πn

max
k

|p(λk)| ≤ min
p∈πn

max
z∈I−∪I+

|p(z)| (20)

≤ 2

(√
|λminλmax| −

√
|λsλs+1|√

|λminλmax| +
√

|λsλs+1|

)[k/2]

, (21)

where[k/2] denotes the integer part ofk/2, see [27, Chapter 3]. For an illustration of this
bound suppose that|λmin| = λmax = 1 and|λs| = λs+1. Then the condition number ofA is
κ = λ−1

s+1, and the right hand side of (21) reduces to

2

(
κ − 1

κ + 1

)[k/2]

. (22)

Apparently, (22) corresponds to the value of right hand sideof (15) at step[k/2] for a hermitian
positive definite matrix having all its eigenvalues in the interval[λ2

s+1, 1], and thus a condition
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number ofλ−2
s+1. Hence the convergence bound for an indefinite matrix with condition number

κ needs twice as many steps to decrease to the value of the boundfor a definite matrix with
condition numberκ2. Although neither of the two bounds is sharp, this clearly indicates that
solving indefinite problems represents a significant challenge. In the general case when the
two intervalsI− and I+ are not of the same length, the explicit solution of the min-max
approximation problem onI− ∪I+ becomes quite complicated, see, e.g., [22, Chapter 3], and
no simple and explicit bound on the min-max value is known. One may of course extend the
smaller interval to match the length of the larger one, and still apply (21). But this usually
results in a significantly weaker convergence bound, which fails to give relevant information
about the actual convergence behavior. Similar as in the case of the CG method we stress
that there is a principal difference between the bounds (19)and (21). These bounds describe
different approximation problems, and thus their values can differ significantly.

The general normal case. If A is a general normal matrix, the MR Krylov subspace
method GMRES can be used. Again, an estimate of the right handside of (19) can be obtained
by replacing the discrete set of the eigenvalues ofA by some (compact) inclusion setΩ ⊂ C on
which (nearly) optimal polynomials are explicitly known. Usually one works with connected
inclusion sets, since polynomial approximation on disconnected sets is not well understood
(even in the case of two disjoint intervals; see above). Because of the normalization of the
polynomials at zero, the setΩ should not include the origin.

The simplest result is obtained when the spectrum ofA is contained in a disk in the com-
plex plane (that excludes the origin), say with radiusr > 0 and center atc ∈ C. Then the
polynomialpn(z) = ((c − z)/c)n ∈ πn can be used to show that

min
p∈πn

max
k

|p(λk)| ≤
∣∣∣r
c

∣∣∣
n

.

In particular, a disk of small radius that is far from the origin guarantees fast convergence of
the GMRES residual norms.

More refined bounds can be obtained using the convex hullE of an ellipse instead of a disk.
For example, suppose that the spectrum is contained in an ellipse with center atc ∈ R, focal
distanced > 0 and major semi axisa > 0. If 0 /∈ E , it can be shown that

min
p∈πn

max
k

|p(λk)| ≤ Cn(a/d)

|Cn(c/d)| ≈
(

a +
√

a2 − d2

c +
√

c2 − d2

)n

,

whereCn(z) denotes thenth complex Chebyshev polynomial, see, e.g., [59]. We remark
that, as shown by Fischer and Freund [23], the polynomialsCn(z)/Cn(0) are in general not
the optimal min-max polynomials fromπn onE . However, these polynomials are asymptoti-
cally optimal and hence predict the correct rate of convergence of the min-max approximation
problem onE . For more details we refer to [61].

Of course, one would like to find a setΩ in the complex plane that yields the smallest
possible upper bound on the right hand side of (19). Both a disk and the convex hull of an
ellipse are convex, so one can probably improve the convergence bound by using the smallest
convex set containing all the eigenvalues, i.e., the convexhull of the eigenvalues. SinceA
is assumed normal, this set coincides with the field of valuesF(A). Hence the bound (28)
studied below in the context of nonnormal matrices can in principle be used in the normal
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Fig. 3 Tight inclusion of the eigenvalues of the GRCAR matrix by two elements of the class of sets
introduced in [43, 47].

case as well. However, all convex inclusion setsΩ are limited in their applicability by the
strict requirement that0 /∈ Ω. In particular, if zero is inside the convex hull of the eigenvalues
of A, then no convex inclusion set for these points can be used. Moreover, if the convex hull
is close to the origin, then any bound derived from this set will be poor, regardless of the
distance of the eigenvalues to the origin. Another difficulty with using the convex hull of the
eigenvalues (or any other inclusion set bounded by a polygon) is that the boundary of this set
in not smooth and hence the computation of (nearly) optimal polynomials on these sets such
as the Faber polynomials is complicated, see, e.g., [64].

To overcome such difficulties, a parameterized class of non-convex sets with analytic
boundaries is constructed in [47] (also see [43]), for whichthe Faber polynomials are ex-
plicitly known. These polynomials give rise to analytic andeasily computable bounds for the
min-max approximation problem; see [47] for details. Two examples of the inclusion sets
are show in Fig. 3. The plus signs in this figure show the eigenvalues of the so-called Grcar
matrix of order 250, generated by the MATLAB commandgallery(’grcar’,250,6).
Obviously, the convex hull of these eigenvalues contains the origin (indicated by the star). On
the other hand, none of the eigenvalues is particularly close to the origin, which should be
exploited by the choice of the inclusion set. The boundariesof the two example inclusion sets
are shown by the dashed and the solid curves.

3.2 Convergence analysis for nonnormal matrices (GMRES)

In this section we consider the case of a general nonsingularandnonnormalmatrix A. In
this general case, an MR Krylov subspace method such as GMRESyields uniquely defined
iteratesxn so that thenth residualrn = b − Axn satisfies

‖rn‖ = min
p∈πn

‖p(A)r0‖. (23)
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Similarly to the convergence analysis for normal matrices presented above, we are interested
in finding a (sharp) bound on the right hand side of (23).

Eigenvalues and convergence.If A is diagonalizable,A = V ΛV −1, Λ = diag(λ1, . . . , λN ),
then the following convergence bound easily follows from (23),

‖rn‖
‖r0‖

= min
p∈πn

‖V p(Λ)V −1r0‖
‖r0‖

≤ κ(V ) min
p∈πn

max
k

|p(λk)| , (24)

see, e.g., [62]. Hereκ(V ) = ‖V ‖ ‖V −1‖ denotes the condition number of the eigenvector
matrixV . A bound similar to (24) can be derived for nondiagonalizable matrices.

The bound (24) frequently is the basis for discussions of theGMRES convergence be-
havior. As mentioned in Section 3.1.2, this bound is sharp whenA is normal. Whenκ(V )
is small, the right hand side of (24) typically represents a good convergence bound, and its
value can be estimated using the tools described above. However, whenV is far from unitary,
the bound (24) may fail to provide any reasonable information about the GMRES conver-
gence. To see this, note that when the eigenvector matrixV is ill-conditioned, then some
components of the vectorV −1r0 can be very large, potentially much larger than‖r0‖. On the
other hand,‖rn‖ in (24) is bounded from above by‖r0‖. Therefore, the linear combination
V [p(Λ)V −1r0] can contain a significant cancellation, which is not reflected in the minimiza-
tion problem on the right hand side of (24). Apart from the fact, that the factorκ(V ) can be
very large in case of ill-conditioned eigenvectors, the principal weakness of the bound (24) is
that the min-max problem on the matrix eigenvalues need not have any connection with the
GMRES convergence for the given nonnormal matrix. As a consequence, the curve produced
by the min-max approximations on matrix eigenvalues can be substantially different from
the (worst-case) GMRES convergence curve and the bound can fail to give any reasonable
convergence information.

Example 3.3 For a numerical illustration consider the twoN by N tridiagonal Toeplitz
matrices

Aλ = tridiag(−1, λ,−1) and Bλ = tridiag(−λ, λ,−1/λ) ,

whereλ ≥ 2 is a real parameter. BothAλ andBλ havethe same eigenvalues, namelyλ −
2 cos(kπ/(N + 1)), k = 1, . . . , N . While Aλ is symmetric positive definite,Bλ is highly
nonnormal (e.g. a MATLAB computation yieldsκ(V ) ≈ 1027 for N = 40 andλ = 3). The
relative GMRES residual norms forx0 = 0 and the order 40 systemsAλx = [1, 0, . . . , 0]T

andBλx = [1, 0, . . . , 0]T , for λ = 3, 4, . . . , 18, are shown in Fig. 4. The relative residual
norms for the systems withAλ are plotted by solid lines (faster convergence correspondsto
largerλ), and for the systems withBλ they are plotted by dashed lines (essentially the same for
all λ). We observe that the GMRES convergence speed forAλ increases when the spectrum
moves away from the origin. On the other hand, forBλ spectral information is obviously
useless for describing the GMRES convergence. In this example essentially nothing happens
during the firstN − 1 steps, and then termination occurs in the final stepN . Moreover, the
spectrum ofBλ gives no information about the convergence behavior after some “transient
delay”, which some authors attribute to the potentially large constantκ(V ) in (24).

The above example for the matricesBλ clearly shows that in the nonnormal case eigen-
value information is not sufficient for describing the convergence behavior of GMRES. In
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Fig. 4 Relative GMRES residual norms for the normal matricesAλ (solid) and the nonnormal matrices
Bλ (dashed) forλ = 3, 4, . . . , 18 andr0 = [1, 0, . . . , 0]T .

fact, in this case the eigenvalues may have nothing to do withthe convergence behavior at
all. As shown in [3, 32], any nonincreasing convergence curve of relative GMRES residual
norms is attainable for a system matrixA having any prescribed eigenvalues. On the other
hand, it needs to be stressed that from an analytic point of view the principal difficulty of
nonnormality isnot the often met belief that the convergence is slower for nonnormal than for
normal matrices. This belief is incorrect because for each nonnormal matrixA there exists
a normal matrixB for which the same convergence behavior can be observed (forthe same
initial residualr0), cf. [33, 48]. Unfortunately, the mapping from the matrixA to the normal
matrix B is highly nonlinear, and it depends strongly onr0. Hence it is not suitable for an a
priori analysis of the GMRES convergence behavior for the givenA andr0.

The idea to analyze the given nonnormal problem using a related normal problem is also
used by Huhtanen and Nevanlinna [39]. They propose to split the matrixA into A = Ã + E,
whereÃ is normal andE is of smallest possible rank. Using such splitting, lower bounds for
the quantityminp∈πn

‖p(A)‖ (cf. (26) below) can be given in terms of certain eigenvaluesof
Ã; see [39] for details.

Worst-case GMRES analysis in the nonnormal case.It should be clear by now that
in the nonnormal case the GMRES convergence behavior issignificantly more difficult to
analyzethan in the normal case. A general approach to understand theworst-case GMRES
convergence in the nonnormal case is to replace the complicated minimization problem (23)
by another one that is easier to analyze and that, in some sense, approximates the original
problem (23). Natural bounds on the GMRES residual norm arise by excluding the influence
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of the initial residualr0,

‖rn‖
‖r0‖

= min
p∈πn

‖p(A)r0‖
‖r0‖

(GMRES)

≤ max
‖v‖=1

min
p∈πn

‖p(A)v‖ (worst-case GMRES) (25)

≤ min
p∈πn

‖p(A)‖ (ideal GMRES). (26)

The bound (25) corresponds to theworst-caseGMRES behavior and represents a sharp upper
bound, i.e. a bound that is attainable by the GMRES residual norm. In this sense, (25) is
the best bound on‖rn‖/‖r0‖ that is independent ofr0. Despite the independence ofr0, it
is not clear in general, which properties ofA influence the bound (25); see, e.g., [20]. The
expression (25) can be bounded by theideal GMRES approximation problem (26), which
was introduced by Greenbaum and Trefethen [34]. To justify the relevance of the bound (26),
several researchers tried to identify cases in which (25) isequal to (26). The best known result
of this type is that (25) is equal to (26) wheneverA is normal [31, 40]. Despite the existence
of some counterexamples [20, 67], it is still an open question whether (25) is equal or close to
(26) for larger classes of nonnormal matrices. In [66] we consider this problem for a Jordan
block, a representative of a nonnormal matrix, and prove equality of the expressions (25) and
(26) in some steps.

A possible way to approximate the value of the matrix approximation problem (26) is to
determine setsΩ ⊂ C and Ω̂ ⊂ C, that are somehow associated withA, and that provide
lower and upper bounds on (26),

c1 min
p∈πn

max
z∈Ω

|p(z)| ≤ min
p∈πn

‖p(A)‖ ≤ c2 min
p∈πn

max
z∈Ω̂

|p(z)|.

Herec1 andc2 should be some (moderate size) constants depending onA and possibly onn.
This approach represents a generalization of the idea for normal matrices, where the appro-
priate set associated withA is the spectrum ofA andc1 = c2 = 1.

Trefethen [68] has suggested takingΩ̂ to be theǫ-pseudospectrumof A,

Λǫ(A) =
{
z ∈ C : ‖(zI − A)−1‖ ≥ ǫ−1

}
.

Denoting byL the arc length of the boundary ofΛǫ(A), the following bound can be derived,

min
p∈πn

‖p(A)‖ ≤ L

2πǫ
min
p∈πn

max
z∈Λǫ(A)

‖p(z)‖ , (27)

see, e.g., [53]. The parameterǫ gives some flexibility, but choosing a good value can be tricky.
Note that in order to make the right hand side of (27) reasonably small, one must chooseǫ
large enough to make the constantL/2πǫ small, but small enough to make the setΛǫ(A)
not too large. The bound (27) works well in some situations (see, e.g., [17]), but it is easy
to construct examples for which no choice ofǫ gives a tight estimate of the ideal GMRES
approximation problem (see, e.g., [33]).

Another approach is based on thefield of valuesof A, cf. (7). Denote byν(F(A)) the
distance ofF(A) from the origin,ν(F(A)) = minz∈F(A) |z|, then

min
p∈πn

‖p(A)‖ ≤
(
1 − ν(F(A))ν(F(A−1))

)n/2
, (28)
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see, e.g., [14]. Suppose thatM = (A + AH)/2, the hermitian part ofA, is positive definite.
Then a special case of (28) is

min
p∈πn

‖p(A)‖ ≤
(

1 − λmin(M)

λmax(AHA)

)n/2

,

which is one of the earliest convergence results for the MR Krylov subspace method [15,
16]. SinceF(A) is a convex set that contains the convex hull of the eigenvalues ofA, the
requirement0 /∈ F(A) makes the bound (28) useless in many situations. However, the field of
values analysis can be very useful when the given linear system comes from the discretization
of elliptic PDEs by the Galerkin finite element method. In such cases the coefficients of the
N by N system matrixA are given byAij = a(φi, φj), wherea(u, v) is the bilinear form
from the weak formulation of the PDE, andφ1, . . . , φN are the nodal basis functions. Let
Vh denote the finite element space. Then a functionuh ∈ Vh is represented by a vector
uN ∈ RN that contains the values ofuh at the nodes of the triangulation. The matrixA
satisfiesuT

NAvN = a(uh, vh) for all uh, vh ∈ Vh. These relations can be exploited to give
bounds for the quantitya(x−xn, x−xn) = (x−xn)T A(x−xn), wherex is the exact solution
of the discretized PDE, andxn is a Krylov subspace iterate. This leads naturally to bounds
of the type (28) involving the smallest real parts ofF(A) andF(A−1); see, e.g., [42, 63]
for more details. Note that under the usual assumption that the bilinear form is coercive, the
smallest real parts ofF(A) andF(A−1) are both positive. In a more abstract setting, the field
of values has been used in the convergence analysis by Eiermann [13].

A generalization of the field of values ofA is thepolynomial numerical hull, introduced
by Nevanlinna [55], and defined as

Hn(A) = {z ∈ C : ‖p(A)‖ ≥ |p(z)| for all p ∈ Pn} ,

wherePn denotes the set of polynomials of degreen or less. It can be shown thatF(A) =
H1(A). The setHn(A) provides a lower bound on (26),

min
p∈πn

max
z∈Hn(A)

|p(z)| ≤ min
p∈πn

‖p(A)‖. (29)

In some way,Hn(A) reflects the complicated relation between the polynomial ofdegreen
and the matrixA, and provides often a very good estimate of the value of the ideal GMRES
approximation (26). Greenbaum and her co-workers [19, 28, 29, 30] have obtained theoretical
results aboutHn(A) for Jordan blocks, banded triangular Toeplitz matrices andblock diag-
onal matrices with triangular Toeplitz blocks. Clearly, for a larger applicability of the bound
(29), the class of matrices for whichHn(A) is known needs to be extended. But in general,
the determination of these sets represents a nontrivial open problem.

The bounds stated above are certainly useful to obtain a priori convergence estimates in
terms of properties ofA, and possibly to analyze the effectiveness of preconditioning tech-
niques. However, the worst-case behavior of GMRES for nonnormal matrices is still not well
understood. We again point out that the bound (26) is not sharp, and that it is in many situa-
tions unclear how closely the ideal GMRES approximates the worst-case GMRES. Moreover,
none of the bounds stated above is able tocharacterizesatisfactorily in terms of matrix prop-
erties, which approximation problem is solved by the worst-case GMRES in the nonnormal
case.
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The influence of the initial residual: A model problem. Users of Krylov subspace meth-
ods usually want to solve a particular linear system, and hence a worst-case analysis may
be of lesser interest to them. In such context one needs to understand also how the conver-
gence is influenced by the particular right hand side or initial residualr0. It seems to be well
known that the initial residual may have a significant influence on the GMRES convergence,
in particular in the nonnormal case. However, no systematicstudy of this influence exists, and
given the lack of understanding of even the worst-case behavior, it is unlikely that a complete
understanding of the influence ofr0 on the convergence will be obtained in the near future.

In the context of discretized PDEs,r0 is directly related to the boundary conditions and/or
the source terms. It is of great importance to understand howsuch PDE data influences the
convergence of an iterative solver like GMRES, as understanding of these relations will pave
the way to efficient preconditioning techniques. Recently,this topic was addressed in an
analysis of the GMRES convergence behavior for a well known convection-diffusion model
problem [49], that was introduced in [24]. Here the convergence of GMRES applied to the
discretized system is characterized by an initial phase of slow convergence, followed by a
faster decrease of the residual norms. The length of the initial phase depends on the initial
residual, which is determined by the boundary conditions (for simplicity, the source term in
the PDE and the initial guessx0 are chosen equal to zero in [49]). Typical examples for the
convergence behavior are shown in Fig. 5. The GMRES convergence curves in this figure
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Fig. 5 Relative GMRES residual norms for the discretized convection-diffusion model problem consid-
ered in [49]. Different behavior corresponds to the same discretizedoperator but to different boundary
conditions.

correspond to the same discretized operator but to different boundary conditions. For the con-
sidered model problem, the convergence analysis confirms anearlier conjecture of Ernst [18],
that the duration of the initial phase is governed by the timeit takes for boundary information
to pass from the inflow boundary across the domain following the longest streamline of the
velocity field. The paper [49] also discusses the question why the convergence in the second
phase accelerates. Numerical results show that the speed ofconvergence after the initial delay
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is slower for larger mesh Peclet numbers, but a complete quantitative understanding of this
phenomenon remains a difficult open problem.

4 Concluding remarks

The worst-case convergence behavior of many well known Krylov subspace methods (CG,
MINRES, GMRES) for normal matrices is described by the min-max approximation problem
on the discrete set of the matrix eigenvalues,

min
p∈πn

max
k

|p(λk)| . (30)

In this sense, the worst-case convergence behavior is well understood. Still, for a given eigen-
value distribution the min-max value is often not known, andhas to be estimated. Such esti-
mation is of course always necessary, when only a partial information about the spectrum is
known. A general approach tries to find inclusion sets for (the estimate of) the spectrum, and
uses (close to) optimal polynomials on these sets to approximate the min-max value. However,
this approach solves a different kind of approximation problem and can provide misleading
information about the convergence.

For nonnormal matrices, the situation is even less clear. Tobound the worst-case GMRES
residual norm, one can use the ideal GMRES approximation

min
p∈πn

‖p(A)‖ , (31)

that represents a matrix approximation problem. Although the value (31) need not describe
GMRES worst-case behavior, it can be considered as a good approximation of the worst-
case approximation in many practical cases. A general approach for approximating this value
consists in finding a set in the complex plain associated withthe matrixA and bounding the
value (31) by the min-max approximation on this set. However, theoretical results in this field
are still unsatisfactory.

Finally, it is important to note that the convergence can depend strongly on the right hand
side or the initial guess so that the values (30) and (31) can overestimate the actual conver-
gence of a Krylov subspace method.
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ON THE WORST-CASE CONVERGENCE OF MR AND CG FOR
SYMMETRIC POSITIVE DEFINITE TRIDIAGONAL TOEPLITZ MATRICES

�
JÖRG LIESEN

�
AND PETR TICHÝ

�
Abstract. We study the convergence of the minimal residual (MR) and the conjugate gradient (CG) method

when applied to linear algebraic systems with symmetric positive definite tridiagonal Toeplitz matrices. Such systems
arise, for example, from the discretization of one-dimensional reaction-diffusion equations with Dirichlet boundary
conditions. Based on our previous results in [J. Liesen and P. Tichý, BIT, 44 (2004), pp. 79–98], we concentrate
on the next-to-last iteration step, and determine the initial residuals and initial errors for the MR and CG method,
respectively, that lead to the slowest possible convergence. By this we mean that the methods have made the least
possible progress in the next-to-last iteration step. Using these worst-case initial vectors, we discuss which source
term and boundary condition in the underlying reaction-diffusion equation are the worst in the sense that they lead
to the worst-case initial vectors for the MR and CG methods. Moreover, we determine (or very tightly estimate) the
worst-case convergence quantities in the next-to-last step, and compare these to the convergence quantities obtained
from average (or unbiased) initial vectors. The spectral structure of the considered matrices allows us to apply our
worst-case results for the next-to-last step to derive worst-case bounds also for other iteration steps. We present a
comparison of the worst-case convergence quantities with the classical convergence bound based on the condition
number of � , and finally we discuss the MR and CG convergence for the special case of the one-dimensional Poisson
equation with Dirichlet boundary conditions.

Key words. Krylov subspace methods, conjugate gradient method, minimal residual method, convergence
analysis, tridiagonal Toeplitz matrices, Poisson equation

AMS subject classifications. 15A09, 65F10, 65F20

1. Introduction. This paper is concerned with the convergence analysis of Krylov sub-
space methods for solving linear algebraic systems of the form�����	��

(1.1)

with a symmetric positive definite matrix
����������

, and a right hand side vector
�������

.
We obviously assume ����� . Starting from an initial guess

���
, Krylov subspace methods

compute the initial residual � �����! "�#�$� , and a sequence of approximate solutions (iterates)��%&
'�)(&
+*,*,*
, such that the - th residual �/. �0�# 1�#� . and the - th error 23. �4�" 1� . are of the

form � . �65 .87 ��9 � �:
 2 . �;5 .'7 �<9 2 �=
>5 . �"? . 

where

? . denotes the set of polynomials of degree at most - and with value one at the ori-
gin. Two choices of conditions for determining the polynomials

5 . have emerged as de facto
standards.

In the minimal residual (MR) Krylov subspace method, the polynomial is chosen so that
the Euclidean norm ( @BAC@ � 7 A�DEA 9 %GFG( ) of the residuals is minimized,@H�+.I@ �KJMLONP3QSR/T @ 5 7 �<9 � � @ (MR)

*
(1.2)

There are several algorithms for implementing the MR method that try to exploit as much
as possible from the properties of

�
. Examples are the conjugate residual (CR) method [18]U
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for symmetric positive definite
�

, the minimal residual (MINRES) method [17] symmetric
and nonsingular

�
, and the generalized minimal residual (GMRES) method [19] for general

nonsingular
�

.
In the orthogonal residual Krylov subspace method, the - th iterate

� . is determined
such that the - th residual �V. is orthogonal to all previous residuals � � 
+*,*,*+
 �V.XW % . A par-
ticular implementation for symmetric positive definite matrices

�
is the conjugate gradi-

ent (CG) method [8]. The symmetric positive definite matrix
�

defines a norm (
�

-norm,@BAC@HY � 7 A D � A 9 %GF8( ) in which the errors are minimized,@,2 . @HY �KJMLONP3QSR T @ 5 7 ��9 2 � @,Y (CG)
*

(1.3)

The standard approach to analyze (1.2) and (1.3) is to exclude the influence of � � and 2 � ,
and hence to consider the worst-case convergence instead of the convergence for the particular
initial vectors. It is well known [4, 6, 9] that the (attainable) worst-case convergence quantities
are given byJ[Z&\]_^/`a � JbLcNP3QSR/T @ 5 7 �<9 � � @@H� � @ �dJ[Z3\ef^/`a � JMLcNP3QSR/T @ 5 7 �<9 2 � @HY@,2 � @ Y �KJMLONP3QSR/T J[Z3\gih 5 7kj g 9 h 
(1.4)

where j g , l � � 
+*,*+*H
 � , are the eigenvalues of
�

. The rightmost term in (1.4) depends in a
nonlinear way on the eigenvalue distribution, and no explicit solution for this min-max ap-
proximation problem is known in general. Therefore, to analyze the worst-case convergence
of the MR and CG methods one needs to estimate this min-max value. Such estimation can
be based either on a suitable superset of the eigenvalues, or a suitable subset, where the first
choice leads to an upper and the second to a lower bound on the worst-case convergence.

The standard choice of a superset of the discrete set of matrix eigenvalues is their convex
hull m j$npo q 
 j$npr's/t . Using scaled and shifted Chebyshev polynomials of the first kind on this
interval, one can show the classical boundJMLONP3QSR T J[Z3\g h 5 7kj g 9 hvudw x�y z 7 �<9p �y z 7 �<9!{ ��| . 
(1.5)

where
z 7 �<9�� j nprGs~} j npo q is the condition number of

�
; see, e.g., [5, Theorem 3.1.1]. Be-

cause of (1.4), the term on the right hand side of (1.5) represents a bound on the relative
residual norm @H�V.8@ } @B� � @ for MR and the relative

�
-norm of the error @H2&.G@ Y } @,2 � @ Y for CG

for each initial residual � � and each initial error 2 � , respectively. The bound (1.5) is particu-
larly useful in practical applications when only partial information about the spectrum of

�
is available or can be estimated. But one should be aware that this bound is obtained from
a different kind of approximation problem than the one solved by the MR and CG methods
(worst-case rather than for a specific � � or 2 � , and continuous rather than discrete), and hence
that it might provide misleading information about the actual convergence of these methods;
see [12] for more details and references.

To obtain a lower bound on the worst-case convergence one can in principle consider
any subset of the eigenvalues. As shown in [4, 13], for each subset of exactly - { � distinct
eigenvalues �+� %/
,*+*,*+
 �C.c� %V��� � j %3
+*,*,*,
 j � � ,JMLONP3QSR T J[Z3\g h 5 7�j g 9 hb� JMLONP3QSR T J[Z3\g h 5 7 � g 9 h � ��� .c� %�� a % .O� %� ���������&� h ��� hh ���  � � h��,�� W % *(1.6)
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Apparently, for each choice of - { � distinct eigenvalues � % 
+*,*,*+
 � .c� % , the right hand side of
(1.6) represents an explicit lower bound on the worst-case convergence quantities. Moreover,
in our case of real eigenvalues, there exists a subset of - { � eigenvalues, for which the lower
bound (1.6) is attained. Therefore, if the subset of - { � eigenvalues is properly chosen, one can
obtain a very good convergence estimate. Since this estimate of the worst-case convergence
requires precise knowledge about at least some eigenvalues of

�
, its main use is in the analysis

of model problems, where the eigenvalues are known explicitly.
In this paper we consider such a class of model problems, namely the linear systems with

symmetric positive definite tridiagonal Toeplitz matrices
�

. Such systems arise, for example,
in the discretization of one-dimensional reaction-diffusion equations. We focus on the slow-
est possible convergence of the MR and CG methods. By this we mean the situation when the
worst-case convergence quantity is attained in the next-to-last iteration step. For this step the
only possible subset �V� %V
,*+*,*+
 �C.c� %/� of the eigenvalues of

�
to be chosen in (1.6) is the set

of all distinct eigenvalues of
�

, so that the solution of the min-max approximation problem
is known explicitly. Based on our previous results in [13], we determine the worst possible
initial data, i.e. the vectors �&�� and 2/�� leading to the slowest possible convergence of the MR
and CG method, respectively. Knowing the initial vector 2S�� explicitly, we identify source
terms and boundary conditions in the one-dimensional reaction-diffusion equation that yield,
after discretization, the slowest possible CG convergence. We also address the identification
of such data for the MR method, which appears to be considerably more complicated than
for CG. Moreover, we determine (or very tightly estimate) the worst-case convergence quan-
tities in the next-to-last step, and compare these to the convergence quantities obtained from
average (or unbiased) initial residuals as well as the classical convergence bound (1.5). The
spectral structure of the considered matrices allows us to apply our worst-case results for the
next-to-last step to derive worst-case bounds also for other iteration steps. Finally, we con-
sider the case of one-dimensional Poisson equation, which is a popular model problem for the
convergence analysis of Krylov subspace methods, in particular of CG; see, e.g., [1, 2, 15, 16].

We point out that the convergence of GMRES for nonsymmetric tridiagonal Toeplitz
matrices is studied in [10]. The results in [10] hold explicitly for the highly nonnormal case,
i.e. the case when a tridiagonal Toeplitz matrix can be considered a perturbed Jordan block.
Hence the results presented in this paper are neither special cases nor generalizations of the
results in [10].

The paper is organized as follows. Section 2 presents basic formulas for the next-to-last
MR and CG iteration step. In Section 3 we focus on symmetric positive definite tridiago-
nal Toeplitz matrices that arise from the discretization of one-dimensional reaction-diffusion
equations with Dirichlet boundary conditions, and study the MR and CG convergence quanti-
ties in the next-to-last step. Section 4 compares our results with known results for the Poisson
equation model problem. Our conclusions are given in Section 5, and the Appendix lists all
trigonometric formulas used in the proofs.

2. Formulas for the next-to-last MR and CG iteration step. Let a symmetric positive
definite matrix

�������)���
be given and denote by

��� ��¡¢� D its eigendecomposition,
where

� D ���¤£ and
¡���¥�L¦Z&§ 7�j % 
,*,*+*,
 j � 9 . To avoid unnecessary technical complications

we assume that all eigenvalues of
�

are distinct. Next, we parameterize the initial residual � �
and the initial error 2 � by� �¨�>� mª© % 
,*+*,*H
 © � t D 
 2 ���>� m « % 
+*,*+*,
 « � t D *(2.1)

Note that, since � � �¬� 2 � , we have © g � j g « g for all l � � 
,*+*,*H
 � . Without loss of
generality we restrict our analysis to vectors � � with © g®�°¯ for all l � � 
,*,*+*H
 � . In case
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hence the formulas for - � �  � presented below will hold for - � �  ±  � .

2.1. General results. As shown in [13, Theorem 2.1], the MR residual norm in the7 �  � 9 st (next-to-last) iteration step is given by@H�&²=³� W % @ � �� ��� a %�´´´´~µ �© � ´´´´
( �� W %'F8( � �� ��� a %�´´´´¶µ �j � « � ´´´´

( �� W %GF8( 
(2.2)

where

µ g¨·
�� ���¸��8��~¹ h j � hh j �  j g h *(2.3)

To obtain a similar result for the
�

-norm of the CG error, it suffices to realize that@ 5 7 ��9 2 � @,Y � @ 5 7 �<9'� %GFG( 2 � @ · @ 5 7 �<93º� � @ *(2.4)

Hence the
�

-norm of the CG error can be seen as the MR residual norm, when MR is started
with the initial residual

º� � �»� %GF8( 2 � . Parameterizing
º� � by

º� � ��� m º© %3
,*,*+*,
¸º© � t�D , i.e.
º© g �j �k¼¾½g « g � j W �k¼¾½g © g , we obtain@,23¿�À� W % @,Y � �� ��� a % ´´´´´ µ �j %GF8(� « � ´´´´´

( �� W %GFG( � �� ��� a % ´´´´´ j
%GF8(� µ �© � ´´´´´

( �� W %GFG( *(2.5)

The formulas (2.2) and (2.5) provide explicit a priori information about the next-to-last MR
and CG convergence quantities in terms of the matrix eigenvalues and the coordinates of � �
or 2 � in the matrix eigenvectors. To simplify the notation, we will write residuals and errors
without superscript MR or CG. When we speak about residuals � . , we always mean residuals� ²=³. of the MR method. Similarly, 2 . always denotes the error 2 ¿¸À. of the CG method. The
superscript can be now used to indicate the association of a residual or error with a particular
initial residual or error.

2.2. Convergence quantities for different initial vectors. As described in the Intro-
duction, we are interested in initial residuals and initial errors that lead to the maximal relative
convergence quantities of the MR and CG method, respectively, in the next-to-last iteration
step. We denote such a worst-case initial residual for the MR method by � �� , and the corre-
sponding residual in the next-to-last step by �S�� W % . In [13, Theorem 3.1] we show that� �� ��� mª© � % 
,*+*,*+
 © �� t D 
 h © � g h ( �dÁ µ g 
 l � � 
,*+*,*H
 � 
(2.6)

where
Á � ¯ is any scaling factor, and that@B�3�� W % @@B� �� @ ��J[Z&\] ^ `a � JMLcNP3QSR/Â3Ã � @ 5 7 ��9 � � @@B� � @ � x ��g a % µ g |

W % *
(2.7)

Using the relation (2.4) and the definition of �&�� it is not hard to see that the corresponding
worst-case initial error 23�� for CG is given by2 �� �¨� m « �% 
+*,*+*,
 « �� t D 
 h « �g h ( �ÄÁ j W %g µ g for l � � 
,*,*+*H
 � 
(2.8)
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where
Á � ¯ is any scaling factor, and that@H2/�� W % @ Y@H2 �� @,Y ��J[Z3\ef^3`a � JMLcNP3QSRVÂ&Ã � @ 5 7 ��9 2 � @ Y@H2 � @,Y � x ��g a % µ g |

W % *
(2.9)

We also consider the initial residual�3Å� �Æ� mª©/Å% 
,*+*,*H
 ©/Å� t D 
 ©3Åg � � 
 l � � 
,*+*,*H
 � *(2.10)

The vector � Å� can be considered as a representative of the initial residuals which are uncor-
related with the matrix

�
, in the sense that their components in the eigenvectors of

�
are

of (approximately) equal size. We call such vectors unbiased with respect to
�

. The MR
method started with the initial residual (2.10) will produce, in the next-to-last iteration step,
the residual vector � Å� W % . Using (2.2), the relative MR residual norm is given by@H� Å� W % @@H� Å� @ � x � ��g a % µ

( g | W %GF8( *(2.11)

The CG method started with the initial residual � Å� , i.e. with the initial error2 Å� �>� W % � Å� �>� m « Å% 
,*,*+*,
 « Å� t D �Ç� m j W %% 
,*,*+*H
 j W %� t D 
(2.12)

generates in the next-to-last iteration step the error 2 Å� W % . Based on (2.5), the relative
�

-norm
of this error is given by@H2 Å� W % @ Y@H2 Å� @HY � x ��g a % j g µ

( g | W %GF8( x ��g a % �j g | W %GF8( *(2.13)

The vector 2 Å� is by its definition correlated with the eigenvalue distribution of
�

and thus
can be considered biased. We have deliberately made this choice to contrast the convergence
quantities of MR and CG for the same initial residual.

3. Symmetric positive definite tridiagonal Toeplitz matrices. Consider the one-dim-
ensional reaction-diffusion equation ÉÈ)Ê Ê 7ÌË 9C{1Í�È 7ÌË 9���Î 7�Ë 9H
 Ë � 7 ¯Ï
 � 9B
(3.1)

for some parameter
Í � ¯ , with Dirichlet boundary conditionsÈ 7 ¯~9��ÐÈ � 
ÑÈ 7 � 9��ÐÈ�%�*(3.2)

Then for each positive integer � , the central finite difference approximation of (3.1)–(3.2) on
the uniform grid lÏÒ , l � � 
,*+*,*H
 � , Ò � 7 � { � 9 W % , leads to a linear system of the formÓÔÔÔÔÕ w 7 � {®Ö&9× � � . . . . . .

. . . . . .
 � � w 7 � {®Ö&9

ØªÙÙÙÙÚÛ ÜBÝ Þ�
�ß� Ò ( ÓÔÔÔÔÕ Î 7 Ò 9

...

...Î 7 �EÒ 9
ØªÙÙÙÙÚ {

ÓÔÔÔÔÕ È)�ÈC%
ØªÙÙÙÙÚÛ ÜBÝ Þ�
*

(3.3)
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In the expression for
�

we have defined
Ö · Í Ò ( } w for notational convenience.

The � distinct and positive eigenvalues j g , and the normalized eigenvectors à g of
�

are
given byj g � w 7 � {®Ö&9� w�á g � w Öâ{1ã:äGLON ( 7 l ? Ò } w 9�
 á gå·�æHç ä 7 l ? Ò 9�
(3.4) à g � 7 w Ò 9 %GF8( m ä'LcN 7 l ? Ò 9�
8ä'LcN 7 w l ? Ò 9�
,*,*+*H
GäGLcN 7 �El ? Ò 9 t D 
 l � � 
+*,*,*,
 � 
(3.5)

cf., e.g., [20, pp. 113–115]. We write the eigendecomposition of
�

as
�è�0�é¡¢� D , where��� m à %&
,*,*+*H
 à � t , and

¡®��¥�L¦Z&§ 7�j %&
,*+*,*,
 j � 9 .
REMARK 3.1. We have chosen to derive our results for the tridiagonal Toeplitz ma-

trix
�0��ê8ëGL¦¥�L¦Z&§ 7  � 
 w 7 � {ìÖ&9H
, � 9 in (3.3) because of its direct relation to the differential

equation (3.1)–(3.2). However, our results hold equally well for any symmetric tridiagonal
Toeplitz matrix of the form í �Äê8ëGL¦¥�L¦Z&§ 7Xî 
8ï:
 î 9 with

ïð� w$h î h 7 � {ðÖ&9 � ¯ , for some
Ö � ¯ .

Obviously, í � h î h ê8ëGL¦¥�L¦Z&§ 7Xî } h î h 
 w 7 � {®Ö&9B
 î } h î h 9 . If îòñ ¯ , then í � h î h � , and if î � ¯ ,
then í � h î h £�ó���£�ó , where

£�óô��¥�LcZS§ 7 � 
, � 
,*+*,*H
 7  � 9'� � % 9 . In either case,
�

and í have
the same set of orthogonal eigenvectors, and the eigenvalues í coincide with those of

�
up

to a scaling by h î h . It is easy to check that all of our results are invariant under such scaling
of the eigenvalues of

�
.

3.1. Connection with Chebyshev polynomials of the second kind. The relation of the
eigenvalues of

�
given in (3.4) to the roots of the � th Chebyshev polynomial of the second

kind, denoted by õ � 7ÌË 9 , will prove useful in our context. The polynomial õ � 7�Ë 9 has degree� , and its � distinct roots are the values á g � æHç ä 7 l ? Ò 9 , l � � 
,*+*,*H
 � . Hence all roots are
contained in the open interval 7  � 
 � 9 . The leading coefficient of õ � 7ÌË 9 is w � , which means
that õ � 7�Ë 9 can be written as õ � 7ÌË 9�� w � ��g a % 7ÌË  á g 9�*
This relation shows that the product of all eigenvalues of

�
can be expressed as��g a % j g � w � ��g a % 7 � {®Ö� á g 9ö� õ � 7 � {®Ö&9�*(3.6)

Below we study how much the MR and CG convergence quantities change with changingÖ
. For this we first need to understand the behavior of õ � 7 � {¨Ö&9 as a function of

Ö � ¯ .
To get a feeling of the growth of õ � 7ÌË 9 outside the interval 7  � 
 � 9 , we use the alternative
representation õ � 7ÌË 9�� �w 7�Ë {�÷ Ë (  � 9_� � %  7�Ë  1÷ Ë (  � 9_� � %÷ Ë (  � 

(3.7)

see, e.g., [14, p. 15]. Using this formula, elementary real analysis shows thatõ � 7 � 9:� h õ � 7  � 9 h � � { � 

and that õ Ê� 7ÌË 9 � ¯ for Ë � � . In particular, õ � 7 � {®Ö&9 is positive and strictly increasing forÖ � ¯ . As shown by (3.7), h õ � 7ÌË 9 h grows exponentially outside 7  � 
 � 9 . This is illustrated in
Fig. 3.1, where we plot õ � 7ÌË 9 } 7 � { � 9 for � ��ã$
Gø$
 � ¯ .
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186 JÖRG LIESEN AND PETR TICHÝ
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3.2. Worst-case data. Our goal here is to characterize data (source term
Î

and boundary
conditions) in (3.1)–(3.2), that lead to the maximal relative convergence quantities in the
next-to-last step when MR and CG with the initial guess

�����Ð¯
are applied to the discretized

system (3.3). Our main tools are the parameterizations (2.6) and (2.8) of the worst-case initial
vectors �3�� and 2/�� , which we evaluate explicitly using the known eigendecomposition of

�
,

and then translate back into data for (3.1)–(3.2). The vectors �3�� and 2/�� depend on the terms

µ g , which are characterized by the following lemma.

LEMMA 3.2. Suppose that j % 
+*,*+*H
 j � are given by 7 3.4
9

for some
Ö � ¯ . Then µ g as

defined in 7 2.3
9

satisfies

µ g � Ò�õ � 7 � {®Ö&9
ä'LcN ( 7 l ? Ò 9Ö { w äGLON (�� g R��(�� *(3.8)

In particular, for
Ö ��¯

,

µ g � w æHç ä (
	 l ? Òw�� *(3.9)

Proof. The denominator of µ g can be written as�� ������G���¹ h j �  j g h � �� ���¸��G��~¹ h w�á g  w�á � h � w ( � W ( �� ������G���¹ ´´´´ äGLON ( 	� Ò ?w��  öäGLON ( 	 lÏÒ ?w�� ´´´´� � { �w äGLON ( 7 l ? Ò 9 
(3.10)

cf. identity (A.1). According to (2.3), (3.6) and (3.10),

µ g � õ � 7 � {®Ö&9j g � w äGLcN ( 7 l ? Ò 9� { � � Ò<õ � 7 � {®Ö&9 ä'LcN ( 7 l ? Ò 9Öâ{ w äGLON ( � g R��(�� *(3.11)
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The relation (3.9) for
Öé��¯

follows immediately from õ � 7 � 9�� � { � � Ò W % and
äGLON 7 l ? Ò 9��w äGLON 7 l ? Ò } w 9 æ,ç ä 7 l ? Ò } w 9 .

Now consider the parameterization of 2 �� given in (2.8). Clearly, for any
Á � ¯ , the set

of coefficients « �g · � Á j W %g µ g �
%GFG( 
 l � � 
+*,*,*,
 � 
(3.12)

leads to a worst-case initial error 23�� � � m «&�% 
+*,*,*+
 «&�� t¦D for CG. If CG is started with initial
guess

� � ��¯
, then 2/�� represents the solution, and

� 23�� the right hand side of a linear system
that leads to the maximal relative

�
-norm of the error in the next-to-last iteration step.

Using the coefficients (3.12), and the explicit form of µ g in (3.11),j g « �g � j g 	 Á j W %g õ � 7 � {®Ö&9j g � w äGLON ( 7 l ? Ò 9� { � � %'F8(� 7 Á w Ò<õ � 7 � {1Ö&9G9 %GF8( ä'LcN 7 l ? Ò 9�

and, therefore, � 2 �� � 7 �é¡â� D 9 7 � m « �% 
+*,*,*,
 « �� t D 9�Æ� m j % « �% 
,*,*+*,
 j � « �� t D� 7 Á w Ò<õ � 7 � {1Ö&9G9 %GFG( � m äGLON 7 ? Ò 9H
,*+*,*,
8ä'LcN 7 � ? Ò 9 t D� 7 Á w Ò<õ � 7 � {1Ö&9G9 %GFG( � 7 w Ò 9 W %'F8( à %� 7 Á õ � 7 � {®Ö&9'9 %'F8( mO� 
G¯$
,*+*,*H
8¯ t D *(3.13)

Since
Á � ¯ can be chosen arbitrarily, we conclude that any right hand side vector

�
that is

a positive multiple of the first unit vector leads to the worst possible relative
�

-norm of the
error in the next-to-last step of CG (with

� � ��¯
) for the linear system

�#� �Æ�
given by (3.3).

The convergence of CG (with
� � � ¯

) for
���ò�è�

is obviously the same as for
�#�®�° ��

,
and therefore any negative multiple of the first unit vector is a worst-case right hand side in
the just described sense as well.

Instead of the coefficients (3.12) we may define« �g · 7  � 9 g � % � Á j W %g µ g �
%GF8( 
 l � � 
+*,*+*H
 � *(3.14)

Then, using 7  � 9 g � % äGLON 7 l ? Ò 9:�ÐäGLcN 7 �El ? Ò 9 , we obtainj g « �g � 7 Á w Ò<õ � 7 � {®Ö&9'9 %GFG( äGLcN 7 �El ? Ò 9�*
A computation analogous to the one leading to (3.13) shows that, for the initial error 23��
defined by the coefficients (3.14),� 2 �� � 7 Á õ � 7 � {®Ö&9G9 %'F8( m ¯Ï
,*+*,*H
8¯Ï
 � t D 
(3.15)

i.e., any nonzero multiple of the � th unit vector also is a worst-case right hand side for CG.
Both examples show that the right hand sides leading to the very unfavorable conver-

gence behavior of CG may look rather unsuspicious at first sight. In terms of the differential
equation (3.1)–(3.2), the worst possible relative

�
-norm of the next-to-last error in CG (for� � ��¯

) is obtained simply byÎ"�Ð¯
and

È � ���3
!ÈC% �Ð¯$

or

È � �Ð¯$
!ÈC%â����

(3.16)
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188 JÖRG LIESEN AND PETR TICHÝ

for any nonzero constant
�
.

As shown in (2.4), CG for the initial error 23�� defined by (3.12) is equivalent to MR for
the initial residual

� �k¼¾½ 2/�� that can be written in the form� %GF8( 2 �� ��� W %GF8( � 2 ��� 7 Á õ � 7 � {®Ö&9'9 %GF8( � W %'F8( mª� 
G¯Ï
+*,*+*H
G¯ t D� 7 Á õ � 7 � {®Ö&9'9 %GF8( �é¡ W %GFG( à % *
Therefore, any nonzero multiple of the vector � �� · �é¡ W %GF8( à % leads to the worst-case rel-
ative residual norm in the next-to-last MR step. Obviously, the coordinates of �~�� in the
eigenvectors of

�
are given by© � g � m w Ö {òã:äGLcN ( 7 l ? Ò } w 9 t W %'F8( äGLON 7 l ? Ò 9B
 l � � 
,*+*,*H
 � *(3.17)

Because of the complicated form of the ©S�g , no simple expression for the vector �&�� �� mª©/�% 
,*+*,*H
 ©/�� t¦D exists in general. An exception for which �&�� can be found in a relatively
simple form is the case

Ö �å¯
, where ©&�g � æHç ä 7 l ? Ò } w 9 , and the


th entry of �3�� , denoted by�3���� � for

 � � 
,*+*,*H
 � , satisfies� ���� � � 7 w Ò 9 %GF8( äGLON 7  ? Ò 9æHç ä � R��(��  æ,ç ä 7  ? Ò 9 *(3.18)

As (3.18) indicates, for MR it is not as straightforward as for CG to find data for (3.1)–(3.2)
that leads to the worst case in the next-to-last step. For more details and a proof of (3.18) we
refer to [11].

3.3. Worst-case and unbiased convergence quantities. After having characterized the
worst-case initial vectors �&�� and 2/�� for the system (3.3), we next evaluate the corresponding
convergence quantity (2.7) and compare it to the quantities (2.11) and (2.13) resulting from
the initial vectors � Å� and 2 Å� . We start with deriving bounds on (2.7) and (2.11).

THEOREM 3.3. Suppose that MR is applied to a system of the form 7 3.3
9
, and the initial

residual is either �&�� or � Å� . Then� W % w {®Öõ � 7 � {1Ö&9 ñ @B� Å� W % @@B� Å� @ ñ @H�3�� W % @@H� �� @ u � w {®Öõ � 7 � {1Ö&9 *(3.19)

In particular, for
Ö ��¯

,���� w� ñ � w� � (  � � @B� Å� W % @@B� Å� @ ñ @H�/�� W % @@H� �� @ � �� *(3.20)

Proof. We first prove (3.19). The middle inequality is trivial. To show the leftmost
inequality it suffices to use the relation (2.11) and to find an upper bound on the sum of the

µ
( g . Using (3.8) and (A.4),��g a % µ

( g u õ (� 7 � {®Ö&97 � { � 9 ( 7�� ( { � 9 ( ��g a % äGLON�� 7 l ? Ò 9ã:äGLON�� � g R��(��� � ø õ (� 7 � {1Ö&97 � { � 9 ( 7 Ö#{ w 9 ( ��g a % æ,ç ä � 	 l ? Òw��� 7 ø �  w 9 õ (� 7 � {1Ö&97 � { � 9 ( 7 Ö#{ w 9 ( *
(3.21)
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Then (2.11) impliesx � ��g a % µ
( g | W %'F8( � 7 � { � 9 7 Ö#{ w 9y 7 ø �  w 9 ��õ � 7 � {1Ö&9 � �� Ö#{ wõ � 7 � {®Ö&9 *

Next note that, using (A.3),��g a % µ g � õ � 7 � {1Ö&9Ö#{ w ��g a % äGLcN ( 7 l ? Ò 9� { � � �w õ � 7 Ö { � 9Ö#{ w �� { �� �� õ � 7 Ö { � 9Ö { w 

(3.22)

and thus the rightmost inequality in (3.19) follows from applying (3.22) to (2.7).
For

Ö ��¯
we have ��g a % µ g � w

��g a % æHç ä ( 	 l ? Òw�� � � 
(3.23)

cf. (A.3), and ��g a % µ
( g � õ (� 7 � 97 � { � 9 ( ��g a % äGLcN!� 7 l ? Ò 9ã:äGLcN�� � g R��( ��Çã ��g a % æHç ä � 	 l ? Òw�� � � �  �w 


(3.24)

cf. (A.4). Substituting (3.23) and (3.24) into (2.7) and (2.11), we obtain (3.20).

Since @B�3�� W % @ } @B�3�� @ � @H2/�� W % @HY } @H2/�� @HY (compare (2.7) and (2.9)) the theorem also
characterizes @,2/�� W % @HY } @H2/�� @HY , the next-to-last worst-case relative

�
-norm of the error for

CG.
The rightmost equation in (3.20) shows that, for

Öb�¤¯
, MR in the worst case decreases

the relative residual norm in the first �  � iteration steps only to � W % . On the other hand,
since @H�3�� W % @ } @H�/�� @
" 7 � {ÄÖ&9 } õ � 7 � {ÄÖ&9 for all

Ö
, the next-to-last worst-case MR residual

norm decreases exponentially with increasing
Ö
, and hence increasing diagonal dominance of�

. Moreover, Theorem 3.3 shows that the progress MR has made in the next-to-last iteration
step for the unbiased initial residual � Å� is at most a constant factor (less than � }$# ) apart from
the worst case. In general the two cases may differ by a factor of up to � %'F8( ; see [13, Section
5], [7, Section 5].

The spectral structure of
�

allows to use the worst-case convergence result for the next-
to-last step in Theorem 3.3 to obtain a worst-case convergence bound also for other iteration
steps.

COROLLARY 3.4. Suppose that the positive integer % divides � { � . Then for all- · 7 � { � 9 } %  w �å� ,J[Z3\] ^ `a � JMLcNP3QSR T @ 5 7 �<9 � � @@H� � @ ��J[Z3\e ^ `a � JMLcNP/QSR T @ 5 7 ��9 2 � @ Y@,2 � @HY � � W % w {1Öõ .c� % 7 � {1Ö&9 *(3.25)
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Proof. Consider the subset �+� % 
,*,*+*,
 � .O� % � � � j % 
,*+*,*H
 j � � of - { � eigenvalues of
�

given by � � � w 	 � {®Ö� æ,ç ä �  ?- { w � � 
  � � 
,*,*+*H
 - { � *
It is easy to see that the set �+� %3
,*+*,*,
 �C.O� %V� consists of the - { � distinct eigenvalues of� .c� % · êGë8L¦¥�LcZS§ 7  � 
 w 7 � {®Ö&9B
, � 9¢�¶�'& .c� % ( �)& .c� %*( . ThenJ[Z3\] ^ `a � JMLcNP3QSR T @ 5 7 �<9 � � @@H� � @ �KJbLcNP3QSR T JMZ&\g h 5 7kj g 9 h� JbLcNP3QSR/T JMZ&\g h 5 7 � g 9 h��J[Z3\]_^V`a � JMLcNP/QSR T @ 5 7 � .O� %,9 � � @@H� � @� � W % w {1Öõ .c� % 7 � {1Ö&9 

where the final lower bound results from applying Theorem 3.3 to the linear system with� .c� % .

For example, in case � � #�# , the lower bound (3.25) would apply in the steps - �w 
,+Ï
 � +Ï
 w � 
'ã�+$
 # + . Hence in addition to just the lower bound on @B�S�� W % @ } @B�3�� @ in (3.19),
which corresponds to (3.25) for - � �  � , we get additional lower bounds particularly for
the earlier phase of the iteration.

Theorem 3.3 does not characterize (2.13), i.e. the case of CG for the initial error 2 Å� . This
is done in the following result.

THEOREM 3.5. Suppose that CG is applied to a system of the form (3.3), and the initial
error is 2 Å� . Then � W % Öõ � 7 � {1Ö&9 ñ @,2 Å� W % @ Y@,2 Å� @ Y ñ � w {1Öõ � 7 � {®Ö&9 *(3.26)

For
Ö ñ � } ã , � W % Ö#{ w� %'F8( õ � 7 � {®Ö&9 ñ @,2 Å� W % @HY@H2 Å� @ Y 


(3.27)

and for
Öé��¯

, @,2 Å� W % @HY@H2 Å� @ Y � ÷ øy � 7 � { � 9 7 � { w 9 ��� W)- F8( *(3.28)

Proof. The second inequality in (3.26) follows easily from (3.19). We prove the first
inequality. Using Cauchy’s inequality we obtain, cf. (2.13),@,2 Å� @ (Y@,2 Å� W % @ (Y u x ��g a % µ � g |

%GF8( x ��g a % j ( g | %GFG( x ��g a % �j g | *(3.29)
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Since j � is the largest eigenvalue,x ��g a % j ( g | %'F8( x ��g a % �j g | ñ � %GF8( j � x ��g a % �j g | ñ � - F8( j �j %� � - F8( � {®Ö#{ á %� {®Ö� á %ñ � - F8( w {®ÖÖ *
(3.30)

It remains to find a bound on the sum of the µ � g . Using (3.8) and (A.5),��g a % µ � g u õ �� 7 � {®Ö&97 � { � 9 � 7 �( { � 9 � ��g a % ä'LcN�. 7 l ? Ò 9w � äGLcN . � g R��(��� w . õ �� 7 � {®Ö&97 � { � 9 � 7 Öâ{ w 9 � ��g a % æHç ä . 	 l ? Òw��ñ � � ��õ �� 7 � {®Ö&97 � { � 9 � 7 Öâ{ w 9 � *(3.31)

From (3.29)–(3.31) we now obtain (3.26).
Now consider the case

Ö ñ � } ã . Thenx ��g a % j ( g | %GF8( ��g a % �j g � x ��g a % 7 � {1Ö< á g 9 ( | %GF8( ��g a % �� {1Ö< á gñ x ��g a % 70/ } ãé á g 9 ( | %'F8( ��g a % ��  á g� 	 ���� ø �  �w1� %'F8( ��g a % �w äGLcN (2� g R��( �ñ 	 � ø� ø � � %GFG( � 7 � { w 9�� � %GFG( � 7 � { w 9wñ � %GFG( 7 � { � 9 (w 

(3.32)

where we have used the identities (A.7) and (A.8). Then (3.27) follows from (3.29), (3.31)
and (3.32).

For
Ö ��¯

,@H2 Å� @ (Y@H2 Å� W % @ (Y � x ��g a % ã=ä'LcN (
	 l ? Òw�� ã æ,ç ä*� 	 l ? Òw�� | x ��g a % �ã:äGLON ( � g R��( � |� 7 � { � 9 	 � 7 � { w 9ø � 

where we have used (A.6) and (A.7).
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A comparison of Theorems 3.3 and 3.5 shows that, for small
Ö
,

(MR)
@B� Å� W % @@B� Å� @ "Ç� %'F8( @,2 Å� W % @,Y@,2 Å� @ Y (CG)

*
For larger

Ö
, this difference is much less pronounced, and these MR and CG quantities are at

most a small constant apart from each other.

3.4. Comparison of the worst-case bound and the classical bound. We next compare
our worst-case convergence results in Theorem 3.3 with the classical convergence bound
(1.5), JMLcNP/QSR/T J[Z3\g h 5 7�j g 9 h u�w�3 . 
 - �Ð¯$
,*,*+*H
 �  � 
(3.33)

where 3 · 7 y z 7 ��9� � 9 } 7 y z 7 �<9E{ � 9 ñ � , for - � �  � .
For our comparison we express õ � 7 � {öÖ&9 in terms of the condition number of

�
, which

is given by
z 7 �<9:� j � } j % . First note that, by (3.4),� {®ÖÆ� á % j � { j %j �  j % � á % z 7 �<9E{ �z 7 �<9� � · á %)4 *

Next, 4  y 4 (  � � y z 7 ��9� �y z 7 ��9E{ � · 3 
 4 { y 4 (  � � 3 W % 
(3.34)

which, inserted into (3.7), yieldsõ � 7 4 91� 3 � � %  3 W &O� � %*(3  3 W % *
(3.35)

Since õ � 7�Ë 9 is strictly monotonically increasing for Ë � � , and á %65 � ,õ � 7 � {®Ö&9�5 õ � 7 4 91� 3 W � { 3 W � � ( { 3 W � � � {Ð*+*,*V{ 3 � 
(3.36)

where “
5

” means that the inequality is close. In the notation established above,w�3 � W % � @H�/�� W % @@H� �� @ � @H2/�� W % @ Y@H2 �� @,Y(3.37) 7 @H� Å� W % @@B� Å� @ " ãá % w {®Öõ � 7 � {1Ö&9(3.38) 7 ã 4õ � 7 4 9(3.39) 7 w3 õ � 7 4 9 � w83 � W %� { 3 ( {�*,*,*/{ 3 ( &O� W %*( { 3 ( � *(3.40)

In (3.37) we use (3.33) for - � �  � , and in (3.38) we use (3.19), where the unimportant
multiplicative factor (between � } � and

�
) was replaced by

ã } á % for convenience. Next, in
(3.39) we use (3.36) as well as the relation

4 � 7 � {ìÖ&9 } á % , from which we receive (3.40)
using (3.36) and the inequality w 4 ��3 W % � 4

.
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The main point in this derivation is that the actual convergence quantities on the right
hand side of the inequality in (3.37) are always quite close to (3.40), i.e.@H�/�� W % @@H� �� @ � @H2/�� W % @HY@H2 �� @ Y " w93 � W %� { 3 ( {�*,*+*V{ 3 ( &O� W % ( { 3 ( � *
The tightness of the upper bound (3.37) to the actual convergence quantities therefore depends
on the size of 3 , and hence on

z 7 �<9 , which for a fixed matrix size � is a strictly decreasing
function of the parameter

Ö � ¯ .
For small

z 7 �<9 (or
Ö

bounded away from zero), the difference between (3.37) and (3.40)
is small, i.e. the classical bound provides accurate information about the actual convergence
quantities of CG and MR in (3.37) and (3.38). On the other hand, when

z 7 �<9 is large (orÖ
is close to zero), then the lower bound (3.40), and with it the CG and MR convergence

quantities will be smaller (up to the factor � W % ) than predicted by the classical upper bound
(3.37). In the limiting case

Ö��Ð¯
,JMLcNP3QSR Â3Ã � J[Z3\%;: g : � h 5 7�j g 9 h � ��=< w�3 � W % Â?>9@ )A w 2 W R *

This clearly demonstrates that, for reasonably large � , the classical bound (3.33) cannot de-
scribe the worst-case convergence values of CG or MR in later iterations. Asymptotically
(for � ACB

) the weakness of the classical bound in this context has also been noticed before
by Axelsson [1, Example 13.7] and others.

4. Poisson equation. Now we consider the case of one-dimensional Poisson equation
with Dirichlet boundary conditions, i.e. the problem (3.1)–(3.2) with

Í¨�°¯
. Then

Öô�°¯
and the corresponding system matrix in (3.3) is

�¨�ÐêGë8Lc¥ÏLcZS§ 7  � 
 w 
, � 9 . In this case, simple
explicit expressions for �&�� as well as 2/�� are known (see Section 3.2). Moreover, we have
determined the exact MR and CG convergence quantities in the next-to-last step for the worst-
case as well as the unbiased initial vectors (see Theorems 3.3 and 3.5). In addition, it is
possible, in this particular case and for special starting vectors including the ones considered
in this paper, to determine the whole MR and CG convergence curve a priori. In the following
we recall known results from [15] for the unbiased case, and state (without proof) a new
convergence result for the worst case.

Assuming that
���ð��¯

, and hence 2 �ð� �
, the papers [15, 16] present exact analytic

expressions for the relative
�

-norm of the CG errors for solutions of the form�EDGF0HE�¨� m « DIFJH% 
,*+*,*,
 « DGF0H� t D 
 « DGF0Hg ��äGLON WEK 	 l ? Òw�� 

(4.1)

for some parameter L ��M �
. Two of these solutions are of particular interest in our context.

A simple calculation shows that
� D ½ H �Æã 2 Å� as defined in (2.12). Moreover,

� %'F8( � D � H � w � Å� ,
where � Å� is defined in (2.10). Using these relations and the exact analytic convergence curves
derived in [15] gives the following result.

PROPOSITION 4.1. Suppose that CG and MR are applied to the system 7 3.3
9

with
Öé��¯

,
and the respective initial error and residual are given by 2 Å� and � Å� . Then the resulting CG
errors 2 Å. and MR residuals � Å. , - ��¯Ï
+*,*,*,
 � , satisfy@H2 Å. @ Y@H2 Å� @ Y � N 7 �  - 9 - { � 7 �  - 9 ( { w 7 �  - 9� 7 � { � 9 7 � { w 9 O %'F8( ·QP ¿ 7 - 9�
(4.2) @B� Å. @@B� Å� @ � N 7 �  - 9C{ 7 �  - 9 (� 7 � { � 9C{ w ��- 7 �  - 9 O %'F8( ·QP ² 7 - 9�*(4.3)
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An elementary computation using (4.2) shows thatP ¿ 7 - 9P ¿ 7 -  � 9 � 	 �  -�  - { � � %GF8( 
 - � � 
,*+*,*H
 � 

which represents a strictly decreasing function of the iteration step - . The “superlinear” be-
havior of P ¿ 7 - 9 can be related to the distribution of the eigenvector coordinates of the initial
error 2 Å� . As proved asymptotically by Beckermann and Kuijlaars [2], CG may for the model
problem (3.3) with

Ö®�6¯
converge superlinearly, when the initial error exhibits a certain

distribution of eigencomponents that is far from an equilibrium distribution. This appears to
be the case in our example, where 2 Å� is biased, cf. (2.12).

Using the same techniques as in [15] based on Lagrange multipliers, it is also possible
to determine the exact values of the relative

�
-norm of the error in every step of CG with

the initial error 2/�� . This technique is quite involved, and the full proof would take us several
pages to state. The final result is the following,@H2/�. @,Y@H2 �� @,Y � N �  -� 7 - { � 9RO %GF8( ·SPUT 7 - 9�
 - �¨¯Ï
,*+*,*H
 � *(4.4)

Because of the equivalence (2.4) between CG and MR, the relative MR residual norms for
the initial residual �&�� also satisfy @B�3�. @ } @H�3�� @ � P8T 7 - 9 . Note thatP ² 7 - 9 ñ P8T 7 - 9 ñ ÷ w P ² 7 - 9�
 - � � 
,*,*+*H
 �  � *(4.5)

Obviously, the worst-case convergence value (1.4) of CG and MR at each step - must be
larger than (or equal) to any other attainable convergence value. Hence the maximum of the
three convergence curves P ¿ 7 - 9 , P ² 7 - 9 and P T 7 - 9 forms a lower bound on the worst-case
value, JbLcNP3QSR T JMZ&\g h 5 7kj g 9 h¸� J[Z3\ � P ¿ 7 - 9B
 P ² 7 - 9B
 P T 7 - 9I�:
 - ��¯Ï
,*+*,*H
 �  � *(4.6)

Figure 4.1 illustrates the above results for the model problem (3.3) with � � � w ¯ andÖv�¤¯
. The computations were performed in MATLAB [21], on an AMD Athlon XP 2100+

personal computer with machine precision V
W¤� ¯ W % X .
As predicted by (4.5), the curves P ² 7 - 9 (dashed dotted) and P9T 7 - 9 (solid) are very close.

The left hand side of (4.6) (bold) was computed by the function cheby0 of the semidefinite
programming package SDPT3 [22]. Except for the last few steps, the maximum on the right
hand side of (4.6) is given by P ¿ 7 - 9 (dashed). Overall, the bound (4.6) is quite tight. The
bound (3.33) is tight in step - , if there exist -  � eigenvalues of

�
, that closely approximate

extrema of the - th scaled and shifted Chebyshev polynomial of the first kind. In our example
this is not the case for the later phase of the iteration, where the two sides of (3.33) differ
significantly.

As mentioned above, MR with the right hand side �S�� (we used
� � � ¯

for MR and
CG) and CG with the right hand side

� 2 �� have the same convergence curve given by P'T 7 - 9
(solid). However, the curves of MR with the right hand side

� 2&�� (dotted) and CG with the
right hand side �&�� (dashed dotted; coincides with P ² 7 - 9 ) differ by orders of magnitude from
each other. Hence a right hand side that leads to the worst-case convergence for one method
does not lead (in general) to similar convergence for the other method.
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FIG. 4.1. CG and MR convergence curves, and both sides of û 3.33 ý .
5. Conclusions. In this paper we have applied our previous results in [13] to study the

convergence of the CG and MR methods for linear systems with symmetric positive definite
tridiagonal Toeplitz matrices. The structure of the matrix spectra allowed us to answer the
questions how slow the convergence of the iterative solvers might possibly be for the consid-
ered model problems, which initial vectors lead to the maximal convergence quantity in the
next-to-last iteration step, and how much the convergence quantity in this case differs from
an “average” (or unbiased) case. We also were able to derive lower bounds on the worst-case
convergence quantities in other iteration steps using the lower bound for the next-to-last step.
The presented approach can be applied also to other classes of model problems in which the
matrix eigenvalues are known, and the Lagrange factors µ g in (2.3) can be evaluated.

Acknowledgments. We thank Miro Rozložnı́k, Daniel Szyld and anonymous referees
for helpful comments and suggestions that improved the paper.

Appendix. Let Ò � 7 � { � 9 W % , � �YM
. Then the following identities hold:� { �w ( � W % �ä'LcN ( 7 l ? Ò 9 � �� ���¸��G���¹ ´´´´ ä'LcN ( 	  ? ÒwZ�  ÉäGLcN ( 	 l ? Òw�� ´´´´ 
(A.1) � { �w � � ��� a % äGLON 7  ? Ò 9�
(A.2) � w � ��� a % æHç ä ( 7  ? Ò 9ö� ��� a % äGLON ( 7  ? Ò 9�
(A.3) � �  �w - � ��� a % æHç ä � 	� ? Òw[� 
(A.4) � / �  w #w]\ � ��� a % æHç ä . 	  ? Òw[� 
(A.5)
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	  ? Òw � æ,ç ä � 	  ? Òw � 

(A.6) w � 7 � { w 9� � ��� a % äGLON W ( 	  ? ÒwZ� 
(A.7) ���� ø �  �w � ��� a % 	 /ã  æHç ä 7  ? Ò 9 � ( *(A.8)

Identity (A.2) can be found in [3, p. 40], and the sums (A.3)–(A.8) can be verified using
MAPLE [23]. To prove the non-standard identity (A.1), we note that�� ���¸��8��~¹ NXä'LcN (
	  ? ÒwZ�  öä'LcN (
	 l ? Òw�� O� �� ���¸��8��~¹ äGLON 	 7  { l 9_? Òw � �� ���¸��G�� Â�^ � Ã ¹ æHç ä 	 7  { l 9f? Òw � *
If lÏÒ � %( then, � { �  l � l , and the product in (A.1) takes the form�� ���¸��G���¹ ´´´´ ä'LcN 	 7  { l 9f? Òw � æHç ä 	 7  { l 9f? Òw � ´´´´ � �w � W % �� �k����G���¹ h äGLON 7G7  { l 9_? Ò 9 h� �w � W % ��� a % äGLcN 7  ? Ò 9ö� � { �w ( � W % 

cf. (A.2). Clearly, (A.1) holds since

ä'LcN ( 7 l ? Ò 9�� � for l$Ò � %( .
If lÏÒ � %( , then the product in (A.1) can be written ash æ,ç ä 7 l ? Ò 9 h �� �k����G���¹�G�� Â�^ � Ã ¹ ´´´´ ä'LcN 	 7  { l 9f? Òw � æHç ä 	 7  { l 9f? Òw � ´´´´� h æ,ç ä 7 l ? Ò 9 hw � W ( �� �k����G���¹�G�� Â�^ � Ã ¹ h ä'LcN 7G7  { l 9f? Ò 9 h� h æHç ä 7 l ? Ò 9 hw � W ( h ä'LcN 7 w l ? Ò 9 h � �� �k����G�� Â�^ � Ã ¹ h ä'LcN 7G7  { l 9f? Ò 9 h� w äGLcN 7 l ? Ò 9 æ,ç ä 7 l ? Ò 9w � W % äGLON 7 l ? Ò 9�äGLON 7 w l ? Ò 9 � �äGLcN 7 l ? Ò 9 ��� a % ä'LcN 7  ? Ò 9� � { �w ( � W % �ä'LcN ( 7 l ? Ò 9 *
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[15] A. E. NAIMAN, I. M. BABUŠKA, AND H. C. ELMAN, A note on conjugate gradient convergence, Numer.

Math., 76 (1997), pp. 209–230.
[16] A. E. NAIMAN AND S. ENGELBERG, A note on conjugate gradient convergence. II, III, Numer. Math., 85

(2000), pp. 665–683, 685–696.
[17] C. C. PAIGE AND M. A. SAUNDERS, Solutions of sparse indefinite systems of linear equations, SIAM J.

Numer. Anal., 12 (1975), pp. 617–629.
[18] Y. SAAD, Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics,

Philadelphia, PA, second ed., 2003.
[19] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[20] G. D. SMITH, Numerical solution of partial differential equations, The Clarendon Press Oxford University

Press, New York, second ed., 1978. Finite difference methods, Oxford Applied Mathematics and Com-
puting Science Series.

[21] THE MATHWORKS, INC., MATLAB 6.5, Release 13. Natick, Massachusetts, USA, 2002.
[22] K. TOH, M. TODD, AND R. TÜTÜNCÜ, SDPT3 – a Matlab software package for semidefinite programming,

version 2.1. Interior point methods. June 2001.
[23] WATERLOO MAPLE, INC., Maple 8.0. Waterloo, Ontario, Canada, 2002.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATRIX ANAL. APPL. c© 2009 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 853–863

ON BEST APPROXIMATIONS OF POLYNOMIALS IN MATRICES
IN THE MATRIX 2-NORM∗

JÖRG LIESEN† AND PETR TICHÝ‡

Abstract. We show that certain matrix approximation problems in the matrix 2-norm have
uniquely defined solutions, despite the lack of strict convexity of the matrix 2-norm. The problems
we consider are generalizations of the ideal Arnoldi and ideal GMRES approximation problems
introduced by Greenbaum and Trefethen [SIAM J. Sci. Comput., 15 (1994), pp. 359–368]. We also
discuss general characterizations of best approximation in the matrix 2-norm and provide an example
showing that a known sufficient condition for uniqueness in these characterizations is not necessary.
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2-norm, GMRES, Arnoldi’s method
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1. Introduction. Much of the work in approximation theory concerns the ap-
proximation of a given function f on some (compact) set Ω in the complex plane by
polynomials. Classical results in this area deal with the best approximation problem

min
p∈Pm

‖f − p‖Ω ,(1.1)

where ‖g‖Ω ≡ maxz∈Ω |g(z)| and Pm denotes the set of polynomials of degree at
most m. (Note that since in (1.1) we seek an approximation from a finite-dimensional
subspace, the minimum is indeed attained by some polynomial p∗ ∈ Pm.)

Scalar approximation problems of the form (1.1) have been studied since the mid
1850s. Accordingly, numerous results on the existence and uniqueness of the solution
as well as estimates for the value of (1.1) are known. Here we consider a problem that
at first sight looks similar, but apparently is much less understood: Let f be a function
that is analytic in an open neighborhood of the spectrum of a given matrix A ∈ Cn×n,
so that f(A) is well defined, and let | · | be a given matrix norm. Consider the matrix
approximation problem

min
p∈Pm

|f(A) − p(A)| .(1.2)

Does this problem have a unique solution?
An answer to this question of course depends on the norm used in (1.2). A

norm | · | on a vector space V is called strictly convex when for all vectors v1, v2 ∈ V
the equation |v1| = |v2| = 1

2 |v1 + v2| implies that v1 = v2. A geometric interpretation
of strict convexity is that the unit sphere in V with respect to the norm | · | does not
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May 21, 2009; published electronically July 30, 2009.

http://www.siam.org/journals/simax/31-2/72829.html
†Institute of Mathematics, Technical University of Berlin, Straße des 17. Juni 136, 10623 Berlin,

Germany (liesen@math.tu-berlin.de). The work of this author was supported by the Heisenberg
Program of the Deutsche Forschungsgemeinschaft.

‡Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou
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contain any line segments. If S ⊆ V is a finite-dimensional subspace, then for any
given v ∈ V there exists a unique s∗ ∈ S so that

|v − s∗| = min
s∈S

|v − s| .

A proof of this classical result can be found in most books on approximation theory;
see, e.g., [3, Chapter 1]. In particular, if the norm is strictly convex, then (1.2) is
guaranteed to have a unique solution as long as the value of (1.2) is positive.

A useful matrix norm that is met in many applications is the matrix 2-norm (or
spectral norm), which for a given matrix A is equal to the largest singular value of A.
We denote the 2-norm of A by ‖A‖. This norm is not strictly convex, as can be seen
from the following simple example: Suppose that we have two matrices A1, A2 ∈ Cn×n

of the form

A1 =

[
B 0
0 C

]
, A2 =

[
B 0
0 D

]
,

with ‖A1‖ = ‖A2‖ = ‖B‖ ≥ 1
2 ‖C + D‖. Then 1

2 ‖A1 + A2‖ = ‖B‖, but whenever
C �= D, we have A1 �= A2. Consequently, in the case of the matrix 2-norm, the
classical uniqueness result mentioned above does not apply, and our question about
the uniqueness of the solution of the matrix approximation problem (1.2) is nontrivial.

It is well known that when the function f is analytic in an open neighborhood
of the spectrum of the matrix A ∈ Cn×n, then f(A) is a well-defined complex n × n
matrix. In fact, f(A) = pf (A), where pf is a polynomial that depends on the values
and possibly the derivatives of f on the spectrum of A. The recent book of Higham [5]
gives an extensive overview of definitions, applications, and computational techniques
for matrix functions. Our above question now naturally leads to the following math-
ematical problem: Let a polynomial b and a nonnegative integer m < deg b be given.
Determine conditions so that the best approximation problem

min
p∈Pm

‖b(A) − p(A)‖(1.3)

has a unique solution, where ‖ · ‖ is the matrix 2-norm and Pm denotes the set of
polynomials of degree at most m.

When searching the literature we found a number of results on general character-
izations of best approximations in normed linear spaces of matrices, e.g., in [7, 9, 15,
16], but just a few papers related to our specific problem. In particular, Greenbaum
and Trefethen consider in [4] the two approximation problems

min
p∈Pm

∥∥Am+1 − p(A)
∥∥ ,(1.4)

min
p∈Pm

‖I − Ap(A)‖.(1.5)

They state that both (1.4) and (1.5) (for nonsingular A) have a unique minimizer.1

The problem (1.4) is equal to (1.3) with b(A) = Am+1. Because of its relation to
the convergence of the Arnoldi method [1] for approximating eigenvalues of A, the
uniquely defined monic polynomial zm+1 − p∗ that solves (1.4) is called the (m + 1)st

1The statement of uniqueness is true, but the proof given in [4], which was later repeated in [14,
Chapter 29], contains a small error at the very end. After the error was spotted by Michael Eiermann,
it was fixed by Anne Greenbaum in 2005, but the correction has not been published.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON BEST APPROXIMATIONS OF POLYNOMIALS IN MATRICES 855

ideal Arnoldi polynomial of A. In a paper that is mostly concerned with algorithmic
and computational results, Toh and Trefethen [13] call this polynomial the (m + 1)st
Chebyshev polynomial of A. The reason for this terminology is the following: When
the matrix A is normal, i.e., unitarily diagonalizable, problem (1.4) becomes a scalar
approximation problem of the form (1.1) with f(z) = zm+1 and Ω being the spectrum
of A. The resulting monic polynomial is the (m + 1)st Chebyshev polynomial on this
(discrete) set Ω, i.e., the unique monic polynomial of degree m + 1 with minimal
maximum norm on Ω. In this sense, the matrix approximation problem (1.3) we
study here can be considered a generalization of the classical scalar approximation
problem (1.1). Some further results on Chebyshev polynomials of matrices are given
in [11] and [14, Chapter 29].

The quantity (1.5) can be used for bounding the relative residual norm in the
GMRES method [8]; for details see, e.g., [10, 12]. Therefore, the uniquely defined
polynomial 1 − z p∗ that solves (1.5) is called the (m + 1)st ideal GMRES polynomial
of A.

In this paper we show that, despite the lack of strict convexity of the matrix
2-norm, the approximation problem (1.3) as well as a certain related problem that
generalizes (1.5) have a unique minimizer. Furthermore, we discuss some of the above-
mentioned general characterizations of best approximations with respect to the 2-
norm in linear spaces of matrices. On the example of a Jordan block, we show
that a sufficient condition for the uniqueness of the best approximation obtained
by Ziȩtak [15] does not hold. We are not aware that such an example for a nonnormal
matrix has been given before.

2. Uniqueness results. Let � ≥ 0 and m ≥ 0 be given integers, and consider a
given polynomial b of the form

b =
�+m+1∑

j=0

βjz
j ∈ P�+m+1 .

Let us rewrite the approximation problem (1.3) in a more convenient equivalent form:

min
p∈Pm

‖b(A) − p(A)‖ = min
p∈Pm

∥∥∥∥∥∥
b(A) −

⎛
⎝p(A) +

m∑

j=0

βjA
j

⎞
⎠

∥∥∥∥∥∥

= min
p∈Pm

∥∥∥∥∥∥

�+m+1∑

j=m+1

βjA
j − p(A)

∥∥∥∥∥∥

= min
p∈Pm

∥∥∥∥∥∥
Am+1

�∑

j=0

βj+m+1A
j − p(A)

∥∥∥∥∥∥
.(2.1)

The polynomials in (2.1) are of the form zm+1g + h, where the polynomial g ∈ P� is
given and h ∈ Pm is sought. Hence (1.3) is equivalent to the problem

min
h∈Pm

∥∥Am+1g(A) + h(A)
∥∥ ,(2.2)

where g ∈ P� is a given polynomial or

min
p∈G(g)

�,m

‖p(A)‖, where G(g)

�,m ≡
{
zm+1g + h : g ∈ P� is given, h ∈ Pm

}
.(2.3)

With � = 0 and g = 1, (2.3) reduces to (1.4).
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Similarly, we may consider the approximation problem

min
p∈H(h)

�,m

‖p(A)‖, where H(h)

�,m ≡
{
zm+1g + h : h ∈ Pm is given, g ∈ P�

}
.(2.4)

Setting m = 0 and h = 1 in (2.4), we retrieve a problem of the form (1.5).
The problems (2.3) and (2.4) are trivial for g = 0 and h = 0, respectively. Both

cases are unconstrained minimizations problems, and it is easily seen that the resulting
minimum value is zero. In the following we will therefore exclude the cases g = 0 in
(2.3) and h = 0 in (2.4). Under this assumption, both G(g)

�,m and H(h)

�,m are subsets

of P�+m+1, where certain coefficients are fixed. In the case of G(g)

�,m, these are the

coefficients at the � + 1 largest powers of z, namely, zm+1, . . . , z�+m+1. For H(h)

�,m

these are the coefficients at the m + 1 smallest powers of z, namely, 1, . . . , zm.
We start with conditions so that the values of (2.3) and (2.4) are positive for all

given nonzero polynomials g ∈ P� and h ∈ Pm, respectively.
Lemma 2.1. Consider the approximation problems (2.3) and (2.4), where � ≥ 0

and m ≥ 0 are given integers. Denote by d(A) the degree of the minimal polynomial
of the given matrix A ∈ Cn×n. Then the following two assertions are equivalent:

(1) min
p∈G(g)

�,m

‖p(A)‖ > 0 for all nonzero polynomials g ∈ P�.

(2) m + � + 1 < d(A).
If A is nonsingular, the two assertions are equivalent with

(3) min
p∈H(h)

�,m

‖p(A)‖ > 0 for all nonzero polynomials h ∈ Pm.

Proof. (1) ⇒ (2): We suppose that m + � + 1 ≥ d(A) and show that (1) fails to
hold. Denote the minimal polynomial of A by ΨA. If m + 1 ≤ d(A) ≤ � + m + 1,

then there exist uniquely determined polynomials ĝ ∈ P�, ĝ �= 0, and ĥ ∈ Pm, so that
zm+1 · ĝ + ĥ = ΨA. Hence min

p∈G(g)
�,m

‖p(A)‖ = 0 for g = ĝ. If 0 ≤ d(A) ≤ m, let ĝ be

any nonzero polynomial of degree at most �. By the division theorem for polynomials,2

there exist uniquely defined polynomials q ∈ Pm+�+1−d(A) and h ∈ Pm−1, so that
zm+1·ĝ = q·ΨA−h, or, equivalently, zm+1·ĝ+h = q·ΨA. Hence Am+1ĝ(A)+h(A) = 0,
which means that min

p∈G(g)
�,m

‖p(A)‖ = 0 for the nonzero polynomial g = ĝ ∈ P�.

(2) ⇒ (1): If m+�+1 < d(A), then G(g)

�,m ⊂ Pm+�+1 implies min
p∈G(g)

�,m

‖p(A)‖ > 0
for every nonzero polynomial g ∈ P�.

(2) ⇒ (3): If m+�+1 < d(A), then H(h)

�,m ⊂ Pm+�+1 implies min
p∈H(h)

�,m

‖p(A)‖ > 0
for every nonzero polynomial h ∈ Pm.

(3) ⇒ (2): For this implication we use that A is nonsingular. Suppose that (2)
does not hold, i.e., that 0 ≤ d(A) ≤ m + � + 1. Then there exist uniquely defined

polynomials ĝ ∈ P� and ĥ ∈ Pm such that zm+1 · ĝ + ĥ = ΨA. Since A is assumed
to be nonsingular, we must have ĥ �= 0. Consequently, min

p∈H(h)
�,m

‖p(A)‖ = 0 for the
nonzero polynomial h = ĥ ∈ Pm.

In the following Theorem 2.2, we show that the problem (2.3) has a uniquely
defined minimizer when the value of this problem is positive (and not zero). In the
previous lemma we have shown that m + � + 1 < d(A) is necessary and sufficient so
that the value of (2.3) is positive for all nonzero polynomials g ∈ P�. However, it is
possible that for some nonzero polynomial g ∈ P� the value of (2.3) is positive even
when m+1 ≤ d(A) ≤ m+ �+1. It is possible to further analyze this special case, but

2If f and g �= 0 are polynomials over a field F, then there exist uniquely defined polynomials s
and r over F such that (i) f = g · s + r, and (ii) either r = 0 or deg r < deg g. If deg f ≥ deg g, then
deg f = deg g + deg s. For a proof of this standard result, see, e.g., [6, Chapter 4].
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for the ease of the presentation we simply assume that the value of (2.3) is positive.
The same assumption is made in Theorem 2.3 below, where we prove the uniqueness
of the minimizer of (2.4) (under the additional assumption that A is nonsingular).

We point out that Lemma 2.1 implies that the approximation problems (1.4) and
(1.5) for nonsingular A have positive values if and only if m + 1 < d(A). Of course,
if m + 1 = d(A), then the value of both problems is zero. In this case, the (m + 1)st
ideal Arnoldi polynomial that solves (1.4) is equal to the minimal polynomial of A,
and the (m + 1)st ideal GMRES polynomial that solves (1.5) is a scalar multiple of
that polynomial.

Theorem 2.2. Let A ∈ Cn×n be a given matrix, � ≥ 0 and m ≥ 0 be given
integers, and g ∈ P� be a given nonzero polynomial. If the value of (2.3) is positive,
then this problem has a uniquely defined minimizer.

Proof. The general strategy in the following is similar to the construction in [4,
section 5]. We suppose that q1 = zm+1g + h1 ∈ G(g)

�,m and q2 = zm+1g + h2 ∈ G(g)

�,m are
two distinct solutions to (2.3) and derive a contradiction. Suppose that the minimal
norm attained by the two polynomials is

C = ‖q1(A)‖ = ‖q2(A)‖.

By assumption, C > 0. Define q ≡ 1
2 (q1 + q2) ∈ G(g)

�,m, then

‖q(A)‖ ≤ 1

2
(‖q1(A)‖ + ‖q2(A)‖) = C.

Since C is assumed to be the minimal value of (2.3), we must have ‖q(A)‖ = C.
Denote the singular value decomposition of q(A) by

q(A) = V diag(σ1, . . . , σn)W ∗ .(2.5)

Suppose that the maximal singular value σ1 = C of q(A) is J-fold, with left and right
singular vectors given by v1, . . . , vJ and w1, . . . , wJ , respectively.

It is well known that the 2-norm for vectors v ∈ Cn, ‖v‖ ≡ (v∗v)1/2, is strictly
convex. For each wj , 1 ≤ j ≤ J , we have

C = ‖q(A)wj‖ ≤ 1

2
(‖q1(A)wj‖ + ‖q2(A)wj‖) ≤ C ,

which implies

‖q1(A)wj‖ = ‖q2(A)wj‖ = C, 1 ≤ j ≤ J .

By the strict convexity of the vector 2-norm,

q1(A)wj = q2(A)wj , 1 ≤ j ≤ J .

Similarly, one can show that

q1(A)∗vj = q2(A)∗vj , 1 ≤ j ≤ J.

Thus,

(q2(A) − q1(A))wj = 0, (q2(A) − q1(A))∗vj = 0, 1 ≤ j ≤ J.(2.6)
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By assumption, q2 − q1 ∈ Pm is a nonzero polynomial. By the division theorem for
polynomials (see footnote 2), there exist uniquely defined polynomials s and r, with
deg s ≤ � + m + 1 and deg r < deg (q2 − q1) ≤ m (or r = 0), so that

zm+1g = (q2 − q1) · s + r .

Hence we have shown that for the given polynomials q2 − q1 and g there exist poly-
nomials s and r such that

q̃ ≡ (q2 − q1) · s = zm+1g − r ∈ G(g)

�,m.

Since g �= 0, we must have q̃ �= 0. For a fixed ε ∈ (0, 1), consider the polynomial

qε = (1 − ε)q + εq̃ ∈ G(g)

�,m .

By (2.6),

q̃(A)wj = 0, q̃(A)∗vj = 0, 1 ≤ j ≤ J,

and thus

qε(A)∗qε(A)wj = (1 − ε)qε(A)∗q(A)wj = (1 − ε)Cqε(A)∗vj

= (1 − ε)2Cq(A)∗vj = (1 − ε)2C2wj ,

which shows that w1, . . . , wJ are right singular vectors of qε(A) corresponding to the
singular value (1 − ε)C. Note that (1 − ε)C < C since C > 0.

Now there are two cases: Either ‖qε(A)‖ = (1− ε)C, or (1− ε)C is not the largest
singular value of qε(A). In the first case we have a contradiction to the fact that C is
the minimal value of (2.3). Therefore, the second case must hold. In that case, none
of the vectors w1, . . . , wJ correspond to the largest singular value of qε(A). Using this
fact and the singular value decomposition (2.5), we get

‖qε(A)‖ = ‖qε(A)W‖
= ‖qε(A)[wJ+1, . . . , wn]‖
= ‖(1 − ε)q(A)[wJ+1, . . . , wn] + εq̃(A)[wJ+1, . . . , wn]‖
≤ (1 − ε) ‖[vJ+1, . . . , vn] diag(σJ+1, . . . , σn)‖ + ε‖q̃(A)[wJ+1, . . . , wn]‖
≤ (1 − ε)σJ+1 + ε‖q̃(A)[wJ+1, . . . , wn]‖ .(2.7)

Note that the norm ‖q̃(A)[wJ+1, . . . , wn]‖ in (2.7) does not depend on the choice of ε
and that (2.7) goes to σJ+1 as ε goes to zero. Since σJ > σJ+1, one can find a positive
ε∗ ∈ (0, 1) such that (2.7) is less than σJ for all ε ∈ (0, ε∗). Any of the corresponding
polynomials qε gives a matrix qε(A) whose norm is less than σJ . This contradiction
finishes the proof.

In the following theorem we prove that the problem (2.4), and hence in particular
the problem (1.5), has a uniquely defined minimizer.

Theorem 2.3. Let A ∈ Cn×n be a given nonsingular matrix, � ≥ 0 and m ≥ 0
be given integers, and h ∈ Pm be a given nonzero polynomial. If the value of (2.4) is
positive, then this problem has a uniquely defined minimizer.

Proof. Most parts of the following proof are analogous to the proof of Theorem 2.2
and are stated only briefly. However, the construction of the polynomial qε used to
derive the contradiction is different.
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We suppose that q1 = zm+1g1+h ∈ H(h)

�,m and q2 = zm+1g2+h ∈ H(h)

�,m are two dis-
tinct solutions to (2.4) and that the minimal norm attained by them is C = ‖q1(A)‖ =
‖q2(A)‖. By assumption, C > 0. Define q ≡ 1

2 (q1 + q2) ∈ H(h)

�,m; then ‖q(A)‖ = C.
Denote the singular value decomposition of q(A) by q(A) = V diag(σ1, . . . , σn)W ∗,
and suppose that the maximal singular value σ1 = C of q(A) is J-fold, with left and
right singular vectors given by v1, . . . , vJ and w1, . . . , wJ , respectively. As previously,
we can show that

(q2(A) − q1(A))wj = 0, (q2(A) − q1(A))∗vj = 0, 1 ≤ j ≤ J.

Since A is nonsingular and q2 − q1 = zm+1(g2 − g1), these relations imply that

(g2(A) − g1(A))wj = 0, (g2(A) − g1(A))∗vj = 0, 1 ≤ j ≤ J.(2.8)

By assumption, 0 �= g2 − g1 ∈ P�. Hence there exists an integer d, 0 ≤ d ≤ �, so that

g2 − g1 =

�∑

i=d

γiz
i , with γd �= 0 .

Now define

g̃ ≡ z−d(g2 − g1) ∈ P�−d .

By construction, g̃ is a polynomial with a nonzero constant term. Furthermore, define

ĥ ≡ z−m−1−�+d h and ĝ ≡ z−�+d g̃ .

After a formal change of variables z−1 �→ y, we obtain

ĥ(y) ∈ Pm+1+�−d and ĝ(y) ∈ P�−d \ P�−d−1 .

(Here P−1 ≡ ∅ in case d = �.) By the division theorem for polynomials (see footnote
2), there exist uniquely defined polynomials s(y) and r(y) with deg s ≤ m + 1 (since
ĝ �= 0 is of exact degree � − d) and deg r < � − d (or r = 0) such that

ĥ(y) = ĝ(y) · s(y) − r(y) .

We now multiply the preceding equation by y−m−1−�+d, which gives

y−m−1−�+d ĥ(y) =
(
y−�+dĝ(y)

)
·
(
y−m−1s(y)

)
− y−m−1

(
y−�+d r(y)

)
.

Since y−1 = z, this equation is equivalent to

h = g̃ · s̃ − zm+1 r̃,

where s̃ ∈ Pm+1 and r̃ ∈ P�−d−1. Hence we have shown that for the given polynomi-
als h and g̃ there exist polynomials s̃ ∈ Pm+1 and r̃ ∈ P�−d−1 such that

q̃ ≡ g̃ · s̃ = zm+1 r̃ + h ∈ H(h)

�,m.

For a fixed ε ∈ (0, 1), consider

qε = (1 − ε)q + εq̃ ∈ H(h)

�,m .
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Since q̃ = s̃z−d(g2 − g1), (2.8) implies that

q̃(A)wj = 0, q̃(A)∗vj = 0, 1 ≤ j ≤ J,

which can be used to show that

qε(A)∗qε(A)wj = (1 − ε)2C2wj , 1 ≤ j ≤ J.

Now the same argument as in the proof of Theorem 2.2 gives a contradiction to the
original assumption that q2 �= q1.

Remark 2.4. Similarly as in Lemma 2.1, the assumption of nonsingularity in
the previous theorem is in general necessary. In other words, when A is singular
the approximation problem (2.4) might have more than one solution even when the
value of (2.4) is positive. The following example demonstrating this fact was pointed
out to us by Ziȩtak: Consider a normal matrix A = UΛU∗, where U∗U = I and
Λ = diag(λ1, . . . , λn). Suppose that A is singular with n distinct eigenvalues, and
λ1 = 0. Furthermore, suppose that h ∈ Pm is any given polynomial that satisfies
h(0) �= 0 and |h(0)| > |h(λj)| for j = 2, . . . , n. Then for any integer � ≥ 0,

min
p∈H(h)

�,m

‖p(A)‖ = min
g∈P�

max
j

∣∣λm+1
j g(λj) + h(λj)

∣∣ = |h(0)| > 0 .

One solution of this problem is given by the polynomial g = 0. Moreover, the minimum
value is attained for any polynomial g ∈ P� that satisfies

min
g∈P�

max
2≤j≤n

∣∣λm+1
j g(λj) + h(λj)

∣∣ ≤ |h(0)| ,

i.e., for any polynomial g ∈ P� that is close enough to the zero polynomial.

3. Characterization of best approximation with respect to the matrix
2-norm. In this section we discuss general characterizations of best approximation in
linear spaces of matrices with respect to the matrix 2-norm obtained by Ziȩtak [15, 16],
and we give an example from our specific problem. To state Ziȩtak’s results, we need
some notation. Suppose that we are given m matrices A1, . . . , Am ∈ Cn×n that are
linearly independent in Cn×n. We assume that 1 ≤ m < n2 to avoid trivialities.
Denote A ≡ span {A1, . . . , Am}, which is an m-dimensional subspace of Cn×n. As
above, let ‖ · ‖ denote the matrix 2-norm. For a given matrix B ∈ Cn×n\A, we
consider the best approximation (or matrix nearness) problem

min
M∈A

‖B − M‖ .(3.1)

A matrix A∗ ∈ A for which this minimum is achieved (such a matrix exists, since A is
finite dimensional) is called a spectral approximation of B from the subspace A. The
corresponding matrix R(A∗) = B − A∗ is called a residual matrix.

The approximation problems (2.3) and (2.4) studied in the previous section are
both special cases of (3.1). In the case of (2.3),

B = Am+1g(A), where g ∈ P� is given and A = {I, A, . . . , Am} ,

while in case of (2.4),

B = h(A), where h ∈ Pm is given and A =
{
Am+1, . . . , A�+m+1

}
.
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We have shown that when the values of these approximation problems are positive
(which is true if � + m + 1 < d(A)), for both these problems there exists a uniquely
defined spectral approximation A∗ of B from the subspace A (in the case of (2.4),
we have assumed that A is nonsingular). Another approximation problem that fits
into the template (3.1) arises in the convergence theory for Arnoldi eigenvalue itera-
tions in [2], where the authors study the problem of minimizing ‖I − h(A)p(A)‖ over
polynomials p ∈ P�−2m, � ≥ 2m ≥ 2, and h ∈ Pm is a given polynomial.

In general, the spectral approximation of a matrix B ∈ Cn×n from a subspace A ⊂
Cn×n is not unique. Ziȩtak [15] studies the problem (3.1) and gives a general char-
acterization of spectral approximations based on the singular value decomposition of
the residual matrices. In particular, combining results of [16] with [15, Theorem 4.3]
yields the following sufficient condition for uniqueness of the spectral approximation.

Lemma 3.1. In the notation established above, let A∗ be a spectral approximation
of B from the subspace A. If the residual matrix R(A∗) = B−A∗ has an n-fold singular
value, then the spectral approximation A∗ of B from the subspace A is unique.

It is quite obvious that the sufficient condition in Lemma 3.1 is, in general, not
necessary. To construct a nontrivial counterexample, we recall that the dual norm to
the matrix 2-norm is the trace norm (also called energy norm or c1-norm)

||| M ||| ≡
r∑

j=1

σj(M) ,(3.2)

where σ1(M), . . . , σr(M) denote the singular values of the matrix M ∈ Cn×n with
rank(M) = r. For X ∈ Cn×n and Y ∈ Cn×n we define the inner product 〈X, Y 〉 ≡
trace(Y ∗X). Using this notation, we can state the following result, which is given in
[16, p. 173].

Lemma 3.2. The matrix A∗ ∈ A is a spectral approximation of B from the
subspace A if and only if there exists a matrix Z ∈ Cn×n, with ||| Z ||| = 1 such that

〈Z, X〉 = 0 for all X ∈ A and Re 〈Z, B − A∗〉 = ‖B − A∗‖ .(3.3)

Remark 3.3. Lemmas 3.1 and 3.2 are both stated here for square complex ma-
trices. Originally, Lemma 3.1 is formulated in [15] for real rectangular matrices and
Lemma 3.2 given in [16] for square complex matrices. A further generalization to
rectangular complex matrices seems possible, but it is out of our focus here.

Based on Lemma 3.2 we can prove the following result.
Theorem 3.4. For λ ∈ C, consider the n × n Jordan block

Jλ ≡

⎛
⎜⎜⎜⎝

λ 1
. . .

. . .

. . . 1
λ

⎞
⎟⎟⎟⎠ .

Then for any nonnegative integer m with m+1 ≤ n, the solution to the approximation
problem (1.4) with A = Jλ, i.e., the (m+1)st ideal Arnoldi (or Chebyshev) polynomial
of Jλ, is uniquely defined and given by (z − λ)m+1.

Proof. With A = Jλ, the approximation problem (1.4) reads

min
p∈Pm

∥∥Jm+1
λ − p(Jλ)

∥∥ .(3.4)
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In the notation established in this section, we seek a spectral approximation A∗ of
B = Jm+1

λ from the subspace A = span {I, Jλ, . . . , Jm
λ }. We claim that the uniquely

defined solution is given by the matrix A∗ = Jm+1
λ − (Jλ − λI)m+1. For this matrix

A∗ we get

B − A∗ = Jm+1
λ − A∗ = (Jλ − λI)m+1 = Jm+1

0 .

For m + 1 = n, A∗ = Jn
λ − (Jλ − λI)n = Jn

λ yields B − A∗ = Jn
0 = 0. The

corresponding ideal Arnoldi polynomial of Jλ is uniquely defined and equal to (z−λ)n,
the minimal polynomial of Jλ.

For m + 1 < n, the value of (3.4) is positive, and hence Theorem 2.2 ensures that
the spectral approximation of Jm+1

λ from the subspace A is uniquely defined. We
prove our claim using Lemma 3.2. Define Z ≡ e1e

T
m+2 then |||Z||| = 1,

〈
Z, Jj

λ

〉
= 0 for j = 0, . . . , m ,

and ‖B − A∗‖ = ‖Jm+1
0 ‖ = 1, so that

〈Z, B − A∗〉 =
〈
Z, Jm+1

0

〉
= 1 = ‖B − A∗‖,

which shows (3.3) and completes the proof.
The proof of this theorem shows that the residual matrix of the spectral approx-

imation A∗ of B = Jm+1
λ from the subspace A = span {I, Jλ, . . . , Jm

λ } is given by
R(A∗) = Jm+1

0 . This matrix R(A∗) has m + 1 singular values equal to zero and
n − m − 1 singular values equal to one. Hence, for m + 1 < n, the maximal singular
value of the residual matrix is not n-fold, and the sufficient condition of Lemma 3.1
does not hold. Nevertheless, the spectral approximation of B from the subspace A is
unique whenever m + 1 < n.

As shown above, for m = 0, 1, . . . , n − 1, the polynomial (z − λ)m+1 solves the
ideal Arnoldi approximation problem (1.4) for A = Jλ. For λ �= 0, we can write

(z − λ)m+1 = (−λ)m+1 ·
(
1 − λ−1z

)m+1
.

Note that the rightmost factor is a polynomial that has value one at the origin. Hence
it is a candidate for the solution of the ideal GMRES approximation problem (1.5)
for A = Jλ. More generally, it is tempting to assume that the (m+1)st ideal GMRES
polynomial for a given matrix A is equal to a scaled version of its (m + 1)st ideal
Arnoldi (or Chebyshev) polynomial. However, this assumption is false, as we can
already see in case A = Jλ. As shown in [10], the determination of the ideal GMRES
polynomials for a Jordan block is an intriguing problem, since these polynomials can
become quite complicated. They are of the simple form (1 − λ−1z)m+1 if and only
if 0 ≤ m + 1 < n/2 and |λ| ≥ �−1

m+1,n−m−1; cf. [10, Theorem 3.2]. Here �k,n denotes
the radius of the polynomial numerical hull of degree k of an n×n Jordan block (this
radius is independent of the eigenvalue λ).

Now let n be even, and consider m + 1 = n/2. If |λ| ≤ 2−2/n, the ideal GMRES
polynomial of degree n/2 of Jλ is equal to the constant polynomial 1. If |λ| ≥ 2−2/n,
the ideal GMRES polynomial of degree n/2 of Jλ is equal to

2

4λn + 1
+

4λn − 1

4λn + 1

(
1 − λ−1z

)n/2
;(3.5)

cf. [10, p. 465]. Obviously, neither the polynomial 1 nor the polynomial (3.5) are
scalar multiples of (z − λ)n/2, the ideal Arnoldi polynomial of degree n/2 of Jλ.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON BEST APPROXIMATIONS OF POLYNOMIALS IN MATRICES 863

Acknowledgments. We thank Krystyna Ziȩtak for many discussions and sug-
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Abstract. We give a new proof of an equality of certain max-min and min-max approximation problems in-
volving normal matrices. The previously published proofs of this equality apply tools from matrix theory, (analytic)
optimization theory, and constrained convex optimization. Our proof uses a classical characterization theorem from
approximation theory and thus exploits the link between the two approximation problems with normal matrices on
the one hand and approximation problems on compact sets in the complex plane on the other.
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1. Introduction. Let A be a real or complex square matrix, i.e.,A ∈ Fn×n with
F = R or F = C. Suppose thatf and ϕ1, . . . , ϕk are given (scalar) functions so
that f(A) ∈ Fn×n and ϕ1(A), . . . , ϕk(A) ∈ Fn×n are well defined matrix functions in
the sense of [9, Definition 1.2]. (In the caseF = R, this requires a subtle assumption
which is explicitly stated in (2.4) below.) LetPk(F) denote the linear span of the func-
tions ϕ1, . . . , ϕk with coefficients inF so that in particularp(A) ∈ Fn×n for each linear
combinationp = α1ϕ1 + · · · + αkϕk ∈ Pk(F).

With this notation, the optimality property of many useful methods of numerical linear
algebra can be formulated as an approximation problem of theform

(1.1) min
p∈Pk(F)

‖f(A)v − p(A)v‖,

wherev ∈ Fn is a given vector and‖ · ‖ denotes the Euclidean norm onFn. In (1.1) we seek
a best approximation (with respect to the given norm) of the vectorf(A)v ∈ Fn from the
subspace ofFn spanned by the vectorsϕ1(A)v, . . . , ϕk(A)v. An example of such a method
is the GMRES method [15] for solving the linear algebraic problemAx = b with A ∈ Fn×n,
b ∈ Fn, and the initial guessx0 ∈ Fn. Its optimality property is of the form (1.1) with
f(z) = 1, ϕi(z) = zi, for i = 1, . . . , k, andv = b − Ax0.

If the given vectorv has unit norm, which usually can be assumed without loss of gener-
ality, then an upper bound on (1.1) is given by

(1.2) min
p∈Pk(F)

‖f(A) − p(A)‖,

where‖ · ‖ denotes the matrix norm associated with the Euclidean vector norm, i.e., the
matrix 2-norm or spectral norm onFn×n. In (1.2) we seek a best approximation (with respect
to the given norm) of the matrixf(A) ∈ Fn×n from the subspace ofFn×n spanned by the
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matricesϕ1(A), . . . , ϕk(A). An example of this type is the Chebyshev matrix approximation
problem withA ∈ Fn×n, f(z) = zk, andϕi(z) = zi−1, i = 1, . . . , k. This problem was
introduced in [8] and later studied, for example, in [3] and [17].

In order to analyse how close the upper bound (1.2) can possibly be to the quantity (1.1),
one can maximize (1.1) over all unit norm vectorsv ∈ Fn and investigate the sharpness of
the inequality

max
v∈Fn

‖v‖=1

min
p∈Pk(F)

‖f(A)v − p(A)v‖ ≤ min
p∈Pk(F)

‖f(A) − p(A)‖(1.3)

= min
p∈Pk(F)

max
v∈Fn

‖v‖=1

‖f(A)v − p(A)v‖.

From analyses of the GMRES method it is known that the inequality (1.3) can be strict. For
example, certain nonnormal matricesA ∈ R4×4 were constructed in [2, 16] for which (1.3)
is strict with k = 3, f(z) = 1, andϕi(z) = zi, i = 1, 2, 3. More recently, nonnormal
matricesA ∈ R2n×2n, n ≥ 2, were derived in [4] for which the inequality (1.3) is strict for
all k = 3, . . . , 2n − 1, f(z) = 1, andϕi(z) = zi, i = 1, . . . , k.

On the other hand, the following result is well known.
THEOREM 1.1. Under the assumptions made in the first paragraph of the introduction,

if A ∈ Fn×n is normal, then equality holds in (1.3).
At least three different proofs of this theorem or variants of it can be found in the litera-

ture. Greenbaum and Gurvits proved it forF = R using mostly methods from matrix theory;
see [7, Section 2] as well as Section3 below for their formulation of the result. Using (ana-
lytic) methods of optimization theory, Joubert proved the equality for the case of the GMRES
method withf(z) = 1, ϕi(z) = zi, i = 1, . . . , k, and he distinguished the casesF = R and
F = C; see [11, Theorem 4]. Finally, Bellalij, Saad, and Sadok also considered the GMRES
case withF = C, and they applied methods from constrained convex optimization; see [1,
Theorem 2.1].

In this paper we present yet another proof of Theorem1.1, which is rather simple because
it fully exploits the link between matrix approximation problems for normal matrices and
scalar approximation problems in the complex plane. We observe that when formulating the
matrix approximation problems in (1.3) in terms of scalar approximation problems, the proof
of Theorem1.1 reduces to a straightforward application of a well-known characterization
theorem of polynomials of best approximation in the complexplane. While the proof of the
theorem forF = C can be accomplished in just a few lines, the caseF = R contains some
technical details that require additional attention.

The characterization theorem from approximation theory weuse in this paper and some
of its variants have been stated and applied also in other publications in this context, in par-
ticular in [1, Theorem 5.1]. To our knowledge the theorem has, however, not been used to
give a simple and direct proof of Theorem1.1.

Personal note.We have written this paper in memory of our colleague Bernd Fischer,
who passed away on July 15, 2013. Bernd’s achievements in theanalysis of iterative methods
for linear algebraic systems using results of approximation theory, including his nowadays
classical monograph [5], continue to inspire us in our own work. One of Bernd’s last pub-
lications in this area (before following other scientific interests), written jointly with Franz
Peherstorfer (1950–2009) and published in 2001 in ETNA [6], is also based on a variant of
the characterization theorem that we apply in this paper.

2. Characterization theorem and proof of Theorem1.1. In order to formulate the
characterization theorem of best approximation in the complex plane, we follow the treatment
of Rivlin and Shapiro [14] that has been summarized in Lorentz’ book [13, Chapter 2].
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Let Γ be a compact subset ofF, where eitherF = R or F = C, and letC(Γ) denote the
set of continuous functions onΓ. If Γ consists of finitely many single points (which is the
case of interest in this paper), theng ∈ C(Γ) means that the functiong has a well defined
(finite) value at each point ofΓ. Forg ∈ C(Γ) we denote the maximum norm onΓ by

‖g‖Γ ≡ max
z∈Γ

|g(z)|.

Now let f ∈ C(Γ) andϕ1, . . . , ϕk ∈ C(Γ) be given functions with values inF. As
above, letPk(F) denote the linear span of the functionsϕ1, . . . , ϕk with coefficients inF.
Forp ∈ Pk(F), define

Γ(p) ≡ {z ∈ Γ : |f(z) − p(z)| = ‖f − p‖Γ}.

A functionp∗ = α1ϕ1 + · · · + αkϕk ∈ Pk(F) is called apolynomial of best approxima-
tion for f onΓ when

(2.1) ‖f − p∗‖Γ = min
p∈Pk(F)

‖f − p‖Γ.

Under the given assumptions, such a polynomial of best approximation exists; see, e.g., [13,
Theorem 1, p. 17]. The following well known result (see, e.g., [13, Theorem 3, p. 22] or [14,
pp. 672-674]) characterizes the polynomials of best approximation.

THEOREM 2.1. In the notation established above, the following two statements are
equivalent:

1. The functionp∗ ∈ Pk(F) is a polynomial of best approximation forf onΓ.
2. For the functionp∗ ∈ Pk(F) there existℓ pairwise distinct pointsµi ∈ Γ(p∗),

i = 1, . . . , ℓ, where1 ≤ ℓ ≤ k + 1 for F = R and1 ≤ ℓ ≤ 2k + 1 for F = C, andℓ
real numbersω1, . . . , ωℓ > 0 with ω1 + · · · + ωℓ = 1, such that

(2.2)
ℓ∑

j=1

ωj [f(µj) − p∗(µj)]p(µj) = 0, for all p ∈ Pk(F).

A well known geometric interpretation of the condition (2.2) is that the origin is con-
tained in the convex hull of the points

{(
[f(µ) − p∗(µ)]ϕ1(µ), . . . , [f(µ) − p∗(µ)]ϕk(µ)

)
∈ Fk : µ ∈ Γ(p∗)

}
;

see, e.g., [13, Equation (5), p. 21]. Here we will not use this interpretation but rewrite (2.2)
in terms of an algebraic orthogonality condition involvingvectors and matrices. Using that
condition we will be able to prove Theorem1.1in a straightforward way. We will distinguish
the cases of complex and real normal matrices because the real case contains some subtleties.

2.1. Proof of Theorem1.1 for F = C. Let A ∈ Cn×n be normal. ThenA is unitarily
diagonalizable,A = QΛQH with Λ = diag(λ1, . . . , λn) andQQH = QHQ = In. In
the notation established above, letΓ = {λ1, . . . , λn} and suppose thatp∗ ∈ Pk(C) is a
polynomial of best approximation forf on Γ so that statement 2 from Theorem2.1 applies
to p∗. With this setting, the matrix approximation problem (1.2) can be seen as the scalar best
approximation problem (2.1), i.e.,

min
p∈Pk(C)

‖f(A) − p(A)‖ = min
p∈Pk(C)

‖f(Λ) − p(Λ)‖ = min
p∈Pk(C)

‖f − p‖Γ .
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Without loss of generality, we may assume that the eigenvalues of A are ordered so that
λj = µj for j = 1, . . . , ℓ. We denote

δ ≡ ‖f − p∗‖Γ = |f(λj) − p∗(λj)|, j = 1, . . . , ℓ.

Next, we define the vector

(2.3) v∗ ≡ Qξ, where ξ ≡ [ξ1, . . . , ξℓ, 0, . . . , 0]
T ∈ Cn, ξj ≡ √

ωj , j = 1, . . . , ℓ.

SinceQ is unitary andω1 + · · · + ωℓ = 1, we have‖v∗‖ = 1.
The condition (2.2) can be written as

0 =

ℓ∑

j=1

|ξj |2p(λj) [f(λj) − p∗(λj)] = ξHp(Λ)H [f(Λ) − p∗(Λ)] ξ

= vH
∗ p(A)H [f(A) − p∗(A)] v∗ , for all p ∈ Pk(C),

or, equivalently,

f(A)v∗ − p∗(A)v∗ ⊥ p(A)v∗ , for all p ∈ Pk(C).

It is well known that this algebraic orthogonality condition with respect to the Euclidean inner
product is equivalent to the optimality condition

‖f(A)v∗ − p∗(A)v∗‖ = min
p∈Pk(C)

‖f(A)v∗ − p(A)v∗‖;

see, e.g., [12, Theorem 2.3.2].
Using the previous relations we now obtain

min
p∈Pk(C)

‖f(A) − p(A)‖ = δ =




ℓ∑

j=1

|ξj |2δ2




1/2

=




ℓ∑

j=1

|ξj |2 |f(λj) − p∗(λj)|2



1/2

= ‖ [f(Λ) − p∗(Λ)] ξ‖
= ‖Q [f(Λ) − p∗(Λ)] QHQξ‖
= ‖f(A)v∗ − p∗(A)v∗‖
= min

p∈Pk(C)
‖f(A)v∗ − p(A)v∗‖

≤ max
v∈Cn

‖v‖=1

min
p∈Pk(C)

‖f(A)v − p(A)v‖.

This is just the reverse of the inequality (1.3) for F = C, and hence the proof of Theorem1.1
for F = C is complete.

2.2. Proof of Theorem1.1 for F = R. If A ∈ Rn×n is symmetric, then we can
write A = QΛQT with a real diagonal matrixΛ and a real orthogonal matrixQ. The proof
presented in the previous section also works in this case. Inparticular, for a real matrixQ, the
vectorv∗ = Qξ constructed in (2.3) is real, and for a real matrixA, the maximization in (1.3)
is performed overv ∈ Rn.
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From now on we consider a general normal matrixA ∈ Rn×n. In the spectral decompo-
sitionA = QΛQH , the diagonal matrixΛ = diag(λ1, . . . , λn) and the unitary matrixQ are
in general complex. Since this would lead to a complex vectorv∗ = Qξ in (2.3), the previous
proof requires some modifications.

As above, letΓ = {λ1, . . . , λn}. SinceA is real, the setΓ may contain non-real points
(appearing in complex conjugate pairs), and thus we must allow complex-valued functions
f ∈ C(Γ) and ϕ1, . . . , ϕk ∈ C(Γ). This means that we must work with Theorem2.1
for F = C, althoughA is real. However, we will assume that for each eigenvalueλj of A the
given functionsf andϕ1, . . . , ϕk satisfy

(2.4) f(λj) = f(λj) and ϕi(λj) = ϕi(λj), i = 1, . . . , k.

This is a natural assumption for real matricesA since it guarantees that the matricesf(A) and
ϕ1(A), . . . , ϕk(A) are real as well; see [9, Remark 1.9] (for analytic functions it is actually a
necessary and sufficient condition; see [9, Theorem 1.18]).

Now let q∗ =
∑k

i=1 αiϕi ∈ Pk(C) be a polynomial of best approximation forf on Γ.
Then, for any eigenvalueλj of A,

∣∣f(λj) −
k∑

i=1

αiϕi(λj)
∣∣ =

∣∣f(λj) −
k∑

i=1

αiϕi(λj)
∣∣ =

∣∣f(λj) −
k∑

i=1

αiϕi(λj)
∣∣.

Since bothλj andλj are elements ofΓ, we see that alsoq∗ ≡ ∑k
i=1 αiϕi is a polynomial of

best approximation forf onΓ. Denote

δ ≡ ‖f − q∗‖Γ = ‖f − q∗‖Γ ,

then for any0 ≤ α ≤ 1 we obtain

δ ≤ ‖f − αq∗ − (1 − α)q∗‖Γ = ‖α(f − q∗) + (1 − α)(f − q∗)‖Γ

≤ α ‖f − q∗‖Γ + (1 − α) ‖f − q∗‖Γ = δ,

which shows that any polynomial of the formαq∗+(1−α)q∗, 0 ≤ α ≤ 1, is also a polynomial
of best approximation forf on Γ. In particular, forα = 1

2 we obtain thereal polynomial of
best approximation

p∗ ≡ 1

2
(q∗ + q∗) ∈ Pk(R).

Usingp∗ ∈ Pk(R) and (2.4) we get

|f(z) − p∗(z)| = |f(z) − p∗(z)| = |f(z) − p∗(z)|, for all z ∈ Γ.

Therefore, the setΓ(p∗) of all pointsz which satisfy|f(z)−p∗(z)| = ‖f −p∗‖Γ is symmetric
with respect to the real axis, i.e.,z ∈ Γ(p∗) if and only if z ∈ Γ(p∗).

For simplicity of notation we denote

ζp(z) ≡ [f(z) − p∗(z)]p(z).

In the definition ofζp(z) we indicate only its dependence onp andz sincef is a given function
andp∗ is fixed. If p ∈ Pk(R), then the corresponding functionζp(z) satisfiesζp(z) = ζp(z)
for all z ∈ Γ.
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Now, Theorem2.1(with F = C) implies the existence of a set

G∗ ≡ {µ1, . . . , µℓ} ⊆ Γ(p∗) ⊆ Γ,

and the existence of positive real numbersω1, . . . , ωℓ with
∑ℓ

j=1 ωj = 1 such that

(2.5)
ℓ∑

j=1

ωj ζp(µj) = 0, for all p ∈ Pk(R),

where we have used thatPk(R) ⊂ Pk(C). To define a convenient real vectorv∗ similar to
the construction leading to (2.3), we will “symmetrize” the condition (2.5) with respect to the
real axis.

Taking complex conjugates in (2.5) and using thatζp(z) = ζp(z) for any z ∈ Γ, we
obtain another relation of the form

ℓ∑

j=1

ωj ζp(µj) = 0, for all p ∈ Pk(R),

and therefore

(2.6)
1

2

ℓ∑

j=1

ωj ζp(µj) +
1

2

ℓ∑

j=1

ωj ζp(µj) = 0, for all p ∈ Pk(R).

Here (2.6) is the desired “symmetrized” condition. We now define the set

Gsym
∗ ≡ {θ1, . . . , θm} ≡ G∗ ∪ G∗,

where eachθi ∈ Gsym
∗ corresponds to someµj or µj , and clearlyℓ ≤ m ≤ 2ℓ. (The exact

value ofm is unimportant for our construction.) Writing the condition(2.6) as a single sum
over all points fromGsym

∗ , we get

(2.7)
m∑

i=1

ω̃i ζp(θi) = 0, for all p ∈ Pk(R),

where the coefficients̃ωi are defined as follows.
If µj ∈ R, thenζp(µj) appears in both sums in (2.6) with the same coefficientωj/2.

Sinceθi = µj ∈ R, the termζp(θi) appears in (2.7) with the coefficient̃ωi = ωj .
If µj /∈ R andµj /∈ G∗, thenζp(µj) appears only in the left sum in (2.6) with the

coefficientωj/2. Therefore, the termζp(µj) corresponds to a single termζp(θi) in (2.7)
with the coefficientω̃i = ωj/2. Similarly, ζp(µj) appears only in the right sum in (2.6)
with the coefficientωj/2, and it corresponds to a single term, sayζp(θs), in (2.7) with the
coefficientω̃s = ωj/2.

If µj /∈ R andµj ∈ G∗, thenµj = µs for some indexs 6= j, 1 ≤ s ≤ ℓ. Therefore,
the termζp(µj) appears in both sums in (2.6), in the left sum with the coefficientωj/2 and in
the right sum with the coefficientωs/2. Hence,ζp(µj) corresponds to a single termζp(θi) in
(2.7) with the coefficient̃ωi = ωj/2+ωs/2. Similarly,ζp(µj) corresponds to the termζp(θi)
in (2.7) with the coefficient equal toωj/2 + ωs/2.

One can easily check thatω̃i > 0, for i = 1, . . . , m, and that

m∑

i=1

ω̃i = 1.
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Moreover, ifθj = θi for j 6= i, thenω̃j = ω̃i.
Based on the relation (2.7) we set

v∗ ≡ Qξ, ξ ≡ [ξ1, . . . , ξn]
T ∈ Rn,

where theξj , j = 1, . . . , n, are defined as follows: ifλj ∈ Gsym
∗ , then there exits an indexi

such thatλj = θi, and we defineξj ≡
√

ω̃i. If λj /∈ Gsym
∗ , we setξj = 0.

It remains to justify that the resulting vectorv∗ is real. Ifλj ∈ R, then the corresponding
eigenvectorqj (i.e., thejth column of the matrixQ) is real, andξjqj is real. If λj /∈ R
andλj ∈ Gsym

∗ , then alsoλj ∈ Gsym
∗ , andλj = λi for somei 6= j. The corresponding

eigenvector isqi = qj , and sinceξi = ξj , the linear combinationξjqj + ξiqi = ξj(qj + qj)
is a real vector. Therefore, the resulting vectorv∗ = Qξ is real.

Using (2.7), analogously to the previous section, we get

0 = vT
∗ p(A)T [f(A) − p∗(A)] v∗ , for all p ∈ Pk(R),

or, equivalently,

‖f(A)v∗ − p∗(A)v∗‖ = min
p∈Pk(R)

‖f(A)v∗ − p(A)v∗‖

so that

min
p∈Pk(R)

‖f(A) − p(A)‖ = δ = ‖f(A)v∗ − p∗(A)v∗‖

= min
p∈Pk(R)

‖f(A)v∗ − p(A)v∗‖

≤ max
v∈Rn

‖v‖=1

min
p∈Pk(R)

‖f(A)v − p(A)v‖.

This is just the reverse of the inequality (1.3) for F = R, and hence the proof of Theorem1.1
for F = R is complete.

3. A different formulation. Theorem1.1 can be easily rewritten as a statement about
pairwise commuting normal matrices. In the following we only discuss the complex case.
The real case requires an analogous treatment as in Section2.2.

Let A0, A1, . . . , Ak ∈ Cn×n be pairwise commuting normal matrices. Then these matri-
ces can be simultaneously unitarily diagonalized, i.e., there exists a unitary matrixU ∈ Cn×n

so that

UHAiU = Λi = diag(λ
(i)
1 , . . . , λ(i)

n ), i = 0, 1, . . . , k;

see, e.g., [10, Theorem 2.5.5]. LetΓ ≡ {λ1, . . . , λn} be an arbitrary set containingn pairwise
distinct complex numbers, and letA ≡ Udiag(λ1, . . . , λn)UH ∈ Cn×n. We nowdefinethe
functionsf ∈ C(Γ) andϕ1, . . . , ϕk ∈ C(Γ) to be any functions satisfying

f(λj) ≡ λ
(0)
j , ϕi(λj) ≡ λ

(i)
j , j = 1, . . . , n, i = 1, . . . , k.

Thenf(A) = A0 andϕi(A) = Ai for i = 1, . . . , k, so that Theorem1.1 implies

max
v∈Cn

‖v‖=1

min
α1,...,αk∈C

‖A0v −
k∑

i=1

αiAiv‖ = max
v∈Cn

‖v‖=1

min
α1,...,αk∈C

‖f(A)v −
k∑

i=1

αiϕi(A)v‖

= min
α1,...,αk∈C

‖f(A) −
k∑

i=1

αiϕi(A)‖

= min
α1,...,αk∈C

‖A0 −
k∑

i=1

αiAi‖.
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This equality is in fact the version of Theorem1.1 proven by Greenbaum and Gurvits in [7,
Theorem 2.3] for the caseF = R.

Acknowledgments. We thank the anonymous referees for comments that helped to im-
prove the presentation.
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1 Introduction

Today the Conjugate Gradient (CG) algorithm is the iterative method of
choice for solving linear systems with a real positive definite symmetric matrix.
It is almost always used with a preconditioner to speed up convergence.
CG was introduced in the beginning of the 1950s by Magnus Hestenes and
Eduard Stiefel [17]. It can be derived from several different perspectives, as
an orthogonalization algorithm or as a minimization process. It can also be
obtained from the Lanczos algorithm [19] that was published almost at the
same time.

When using CG for solving a linear system Ax = b an important question
is when to stop the iterations. Ideally, one would like to stop the iterations
when the norm of the error εk = x − xk, where xk are the CG iterates, is small
enough. However, the error is unknown and most CG implementations rely on
stopping criteria like ‖rk‖ ≤ ε‖b‖ where rk = b − Axk is the residual vector,
which is computed in CG or even ‖rk‖ ≤ ε‖r0‖. These types of stopping criteria
can be misleading depending on the norm of A or the choice of the initial
approximation. This was already noticed in the Hestenes and Stiefel paper
[17, p. 410]. It can stop the iterations too early when the norm of the error
is still too large, or too late in which case too many floating point operations
have been done for obtaining the required accuracy. This motivated some
researchers to look for ways to compute estimates of some norms of the error
during CG iterations. The norm of the error which is particularly interesting
for CG is the A-norm (also called the energy norm) which is minimized at each
iteration. The A-norm of the error has an important meaning in physics and
mechanics, and plays a fundamental role in evaluating convergence [1, 18]. It is
defined as

‖εk‖A ≡ (
εT

k Aεk
)1/2

. (1.1)

Inspired by the connection of CG with Riemann-Stieltjes integrals (already
noticed in [17]), a way of research on this topic was started by Gene Golub in
the 1970s and continued throughout the years with several collaborators [6–
8, 11, 12, 14]. In particular, it was known that the A-norm of the error can
be written as a Riemann-Stieltjes integral for an unknown stepwise constant
measure depending on the eigenvalues of A. The main idea of Golub and his
collaborators was to obtain bounds for this integral by using Gauss quadrature
rules. It turns out that these bounds can be computed without the knowledge of
the stepwise constant measure and at almost no cost during the CG iterations
as we will see in the next sections.

In [11], these techniques were used for providing lower and upper bounds
for quadratic forms uT f (A)u where f is a smooth function, A is a symmetric
matrix and u is a given vector. The algorithm GQL (Gauss Quadrature and
Lanczos) was based on the Lanczos algorithm and on computing functions of
Jacobi matrices (and their rank-one or rank-two modifications). Later [12, 21],
these techniques were adapted to the CG algorithm to compute lower and
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upper bounds on the A-norm of the error for which the function is f (x) = 1/x.
The idea was to use CG instead of the Lanczos algorithm, to compute explicitly
the entries of the corresponding Jacobi matrices and their modifications from
the CG coefficients, and then to use the same formulas as in GQL. The
formulas were summarized in the CGQL algorithm (QL standing again for
Quadrature and Lanczos). Extensions to preconditioned CG were given in
[22, 29]. This research is summarized in the books [13, 23]. The formula for
the Gauss rule was analyzed for finite precision arithmetic in [28] where it is
shown that it is still valid in finite precision up to small terms proportional to
the unit roundoff.

The CGQL algorithm, whose most recent version is described in [13], may
seem complicated, particularly for computing bounds with the Gauss-Radau or
Gauss-Lobatto quadrature rules. It uses the tridiagonal Jacobi matrix obtained
by translating the coefficients computed in CG into the Lanczos coefficients.
Therefore the analysis of the formulas is difficult. Our aim in this paper is to
show that these formulas can be considerably simplified by working with the
LDLT factorizations of the Jacobi matrices and their modifications instead
of computing the Lanczos coefficients explicitly. In other words, one can
obtain the bounds from the CG coefficients without computing the Lanczos
coefficients. Therefore we hope that with the simpler new formulas the com-
putation of upper bounds for the A-norm of the error can be incorporated
more easily into existing CG codes.

It is fair to note that there exist other ways to compute estimates of the
norms of the error; see [2, 3]. The paper [3] uses extrapolation techniques.
However, this only gives estimates of the norm of the error and not bounds.

The outline of the paper is as follows. Section 2 recalls some basic facts about
the Lanczos and CG algorithms, their connection to the approximation of the
Riemann-Stieltjes integral using various quadrature rules, about computing
quadratures using a convenient modification of the corresponding Jacobi
matrix, and finally about estimating the A-norm of the error in CG. Section 3
describes the algebraic background for the new formulas; it is shown how
to compute efficiently the entries of the LDLT factorizations of modified
Jacobi matrices. These results are then used in Section 4 in the formulation
of the new algorithm called CGQ. Section 5 shows how to modify these new
formulas when using preconditioning and finally, Section 6 presents numerical
experiments which show that the new formulas are not only simpler but also
slightly more accurate than the previous ones.

Throughout the paper ek denotes the kth column of the identity matrix of
appropriate order.

2 Conjugate Gradient, Lanczos and quadratures

In this section we briefly recall the Lanczos and Conjugate Gradient algorithms
as well as their relationships; see, for instance, [15, 23].
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Algorithm 1 Lanczos algorithm
input A, v

β0 = 0, v0 = 0
v1 = v/‖v‖
for k = 1, . . . do

w = Avk − βk−1vk−1

αk = vT
k w

w = w − αkvk

βk = ‖w‖
vk+1 = w/βk

end for

2.1 The Lanczos and CG algorithms

Given a starting vector v and a symmetric matrix A ∈ RN×N , one can consider
a sequence of nested subspaces

Kk(A, v) ≡ span
{
v, Av, . . . , Ak−1v

}
, k = 1, 2, . . . ,

called Krylov subspaces. The dimension of these subspaces is increasing up
to an index n called the grade of v with respect to A, at which the maximal
dimension is attained, and Kn(A, v) is invariant under multiplication with A.
Assuming that k < n, the Lanczos algorithm (Algorithm 1) computes an ortho-
normal basis v1, . . . , vk+1 of the Krylov subspace Kk+1(A, v). In Algorithm 1
we have used the modified Gram-Schmidt form of the algorithm. The basis
vectors v j satisfy the matrix relation

AVk = VkTk + βkvk+1eT
k

where Vk = [v1 · · · vk] and Tk is the k × k symmetric tridiagonal matrix of the
recurrence coefficients computed in Algorithm 1:

Tk =

⎡

⎢⎢
⎢
⎢
⎣

α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk

⎤

⎥⎥
⎥
⎥
⎦

.

The coefficients β j being positive, Tk is a Jacobi matrix. The Lanczos algorithm
works for any symmetric matrix, but if A is positive definite, then Tk is positive
definite as well.

When solving a system of linear algebraic equations Ax = b with symmetric
and positive definite matrix A, the CG method (Algorithm 2) can be used. CG
computes iterates xk that are optimal since the A-norm of the error defined in
(1.1) is minimized over the manifold x0 + Kk(A, r0),

‖x − xk‖A = min
y∈x0+Kk(A,r0)

‖x − y‖A.
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Algorithm 2 Conjugate gradient algorithm
input A, b , x0

r0 = b − Ax0

p0 = r0

for k = 1, . . . , n until convergence do

γk−1 = rT
k−1rk−1

pT
k−1 Apk−1

xk = xk−1 + γk−1 pk−1

rk = rk−1 − γk−1 Apk−1

δk = rT
k rk

rT
k−1rk−1

pk = rk + δk pk−1

end for

The residual vectors rk = b − Axk are proportional to the Lanczos basis
vectors v j and hence mutually orthogonal,

v j+1 = (−1) j r j

‖r j‖ , j = 0, . . . , k.

Therefore, the residual vectors r j yield an orthogonal basis of the Krylov
subspaces Kk+1(A, r0). In this sense, CG can be seen as an algorithm for
computing an orthogonal basis of the Krylov subspace Kk+1(A, r0) and there
is a close relationship between the CG and Lanczos algorithms. It is well-
known (see, for instance [23]) that the recurrence coefficients computed in
both algorithms are connected via

βk =
√

δk

γk−1
, αk = 1

γk−1
+ δk−1

γk−2
. δ0 = 0, γ−1 = 1.

Writing these formulas in a matrix form, we get

Tk = Lk DkLT
k (2.1)

where Tk is the Jacobi matrix resulting from the Lanczos algorithm and

Lk ≡

⎡

⎢
⎢⎢
⎢
⎣

1
√

δ1
. . .

. . .
. . .√
δk−1 1

⎤

⎥
⎥⎥
⎥
⎦

, Dk ≡

⎡

⎢
⎢⎢
⎢
⎣

γ −1
0

. . .

. . .

γ −1
k−1

⎤

⎥
⎥⎥
⎥
⎦

. (2.2)

In other words, CG implicitly computes an LDLT factorization of the Jacobi
matrix Tk generated by the Lanczos algorithm. In this paper we are interested
in computing bounds for the A-norm of the error. Noticing that the error εk

and the residual rk are related through Aεk = rk, we have

‖εk‖2
A = εT

k Aεk = rT
k A−1rk.



168 Numer Algor (2013) 62:163–191

The quantity on the right-hand side is a quadratic form. In the next subsection
we briefly recall how quadratic forms are related to Riemann-Stieltjes inte-
grals. This will allow us to compute bounds for the norm of the error.

2.2 Connection with Riemann-Stieltjes integrals

Let

A = U�U T , UU T = U TU = I, (2.3)

be the eigendecomposition of the symmetric matrix A where � = diag(λ1, . . . ,

λN) and U = [u1, . . . , uN]. For simplicity of notation we assume that all the
eigenvalues of A are distinct and ordered as λ1 < λ2 < · · · < λN (the general-
ization of the below defined function ω(λ) to the case of multiple eigenvalues
is straightforward). Let v1 be a given unit vector. Define the weights ωi by

ωi ≡ (v1, ui)
2 so that

N∑

i=1

ωi = 1 , (2.4)

and the (nondecreasing) distribution function ω(λ) with a finite number of
points of increase λ1, λ2, . . . , λN ,

ω(λ) ≡

⎧
⎪⎨

⎪⎩

0 for λ < λ1 ,
∑i

j=1 ω j for λi ≤ λ < λi+1 , 1 ≤ i ≤ N − 1 ,

1 for λN ≤ λ .

(2.5)

Having the distribution function ω(λ) and an interval 〈ζ, ξ〉 such that ζ <

λ1 < λ2 < · · · < λN < ξ , for any continuous function f , one can define the
Riemann-Stieltjes integral (see, for instance [13])

∫ ξ

ζ

f (λ) dω(λ). (2.6)

Since ω(λ) is a stepwise constant function and all points of increase lie in the
open interval (ζ, ξ), the integral (2.6) is a finite sum and it holds that

∫ ξ

ζ

f (λ) dω(λ) =
N∑

i=1

ωi f (λi) = vT
1 f (A)v1. (2.7)

The quantity vT
1 f (A)v1 can be expressed using the tridiagonal matrix Tn

stemming from the Lanczos algorithm (note that n is the grade of v1 with
respect to A). In the nth step of the Lanczos algorithm we get the full
orthonormal basis of Kn(A, v1) and we have

AVn = VnTn ⇒ f (A)Vn = Vn f (Tn)

and, therefore,

vT
1 f (A)v1 = vT

1 f (A)Vne1 = vT
1 Vn f (Tn)e1 = eT

1 f (Tn)e1.
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From this it is clear that the quadratic form we are interested in, rT
k A−1rk, can

be written as a Riemann-Stieltjes integral for the function f (λ) = 1/λ.

2.3 Quadrature formulas

The integral (2.7), i.e. the quantity vT
1 f (A)v1, can be approximated by quadra-

ture formulas, for example the Gauss, Gauss-Radau and Gauss-Lobatto rules;
see, for instance, [9, 13]. The general quadrature formula we use has the form

∫ ξ

ζ

f dω(λ) =
k∑

i=1

wi f (νi) +
m∑

j=1

w̃ j f (̃ν j) + Rk[ f ],

where the weights [wi]k
i=1, [w̃ j]m

j=1 and the nodes [νi]k
i=1 are unknowns and the

nodes [̃ν j]m
j=1 are prescribed outside the open integration interval. In our case

it is sufficient when the prescribed nodes are strictly smaller than λ1 or strictly
larger than λN . The unknown nodes and weights are chosen to maximize the
degree of exactness of the quadrature rule. If m = 0, there are no prescribed
nodes, and we obtain the Gauss rule. If m = 1 we have the Gauss-Radau rule
and if m = 2, this is the Gauss-Lobatto rule. It is known (see, for instance, [27])
that if f ∈ C2k+m, then the remainder is

Rk[ f ] = f (2k+m)(υ)

(2k + m)!
∫ ξ

ζ

m∏

j=1

(λ − ν̃ j)

[
k∏

i=1

(λ − νi)

]2

dω(λ) , υ ∈ (ζ, ξ).

For some functions f of interest the sign of the remainder term is known.
Consider first the Gauss rule, i.e. m = 0. The nodes νi and the weights

wi of the kth Gauss quadrature approximation are implicitly determined by
the Lanczos algorithm; the nodes are the eigenvalues of Tk generated by the
Lanczos algorithm started from v1 and the weights are the squares of the first
components of the normalized eigenvectors of Tk; see [16, 30].

To obtain the Gauss-Radau and Gauss-Lobatto rules, we must extend the
matrix Tk in such a way that it has the prescribed nodes as eigenvalues; see
[10]. Suppose that μ is a prescribed node. For the Gauss-Radau quadrature
rule, we have to determine the coefficient α̃

(μ)

k+1 so that μ is an eigenvalue of
the extended matrix

T̃(μ)

k+1 =

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk βk

βk α̃
(μ)

k+1

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

. (2.8)
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Given two prescribed nodes μ and η, for the Gauss-Lobatto quadrature rule we
have to find the coefficients α̃

(μ,η)

k+1 and β̃
(μ,η)

k such that μ and η are eigenvalues
of the extended matrix

T̃(μ,η)

k+1 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk β̃
(μ,η)

k

β̃
(μ,η)

k α̃
(μ,η)

k+1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

. (2.9)

Having the matrices Tk, T̃(μ)

k+1 and T̃(μ,η)

k+1 , the Gauss, Gauss-Radau and Gauss-
Lobatto quadrature rules can be respectively written in the form (see [13])

eT
1 f (Tn)e1 = eT

1 f (Tk)e1 + R(G)

k [ f ] ,
eT

1 f (Tn)e1 = eT
1 f

(
T̃(μ)

k+1

)
e1 + R(R)

k [ f ] ,

eT
1 f (Tn)e1 = eT

1 f
(

T̃(μ,η)

k+1

)
e1 + R(L)

k [ f ] .

These rules can provide lower and upper bounds on the integral (2.7), based
on the following implications (see, e.g., [13, Theorem 6.4 and 6.5]):

If f (2k)(λ) > 0 for all λ ∈ 〈ζ, ξ〉, then R(G)

k [ f ] > 0. (2.10)

If f (2k+1)(λ) < 0 for all λ ∈ 〈ζ, ξ〉, and μ ≤ λ1, then R(R)

k [ f ] < 0. (2.11)

If f (2k+2)(λ) > 0 for all λ ∈ 〈ζ, ξ〉, and μ ≤ λ1 and λN ≤ η, then R(L)

k [ f ] < 0.

(2.12)

If the derivatives of the function f satisfy the assumptions in (2.10)–
(2.12), then the Gauss rule gives a lower bound and the Gauss-Radau and
Gauss-Lobatto rules give upper bounds for the integral (2.7). Note that the
assumptions on the sign of the derivatives of f in (2.10)–(2.12) are satisfied for
the function f (λ) = 1/λ.

2.4 CG and Gauss quadrature

For the quadratic form involved in CG we are interested in the function f (λ) =
1/λ. Previous results imply that we can express the Gauss quadrature rule using
the Lanczos-related quantities as

(
T−1

n

)
1,1 = (

T−1
k

)
1,1 + R(G)

k [λ−1].
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In [28] the authors show that the same equation multiplied by ‖r0‖2 can be
written using the CG-related quantities

‖x − x0‖2
A =

k−1∑

j=0

γ j‖r j‖2 + ‖x − xk‖2
A .

In other words, CG can be see as a procedure that implicitly determines
weights and nodes of the Gauss quadrature rule applied to the Riemann-
Stieltjes integral

∫ ξ

ζ

λ−1 dω(λ) = ‖x − x0‖2
A

‖r0‖2

for which the Gauss quadrature approximation is given by

(
T−1

k

)
1,1 = 1

‖r0‖2

k−1∑

j=0

γ j‖r j‖2. (2.13)

The remainder is nothing but the scaled and squared A-norm of the kth error,

R(G)

k

[
λ−1

] = ‖x − xk‖2
A

‖r0‖2
.

For more information on this topic see, e.g., [14, 28, Section 3] or [24,
Subsection 3.3].

2.5 Estimating the A-norm of the error in CG

Of course, at CG iteration k we do not know (T−1
n )1,1 or ‖x − x0‖A. For

estimating the A-norm of the error in CG we consider the Gauss quadrature
rule at step k,

‖x − x0‖2
A = ‖r0‖2

(
T−1

k

)
1,1 + ‖x − xk‖2

A, (2.14)

and a (eventually modified) quadrature rule at step k + d, d > 0,

‖x − x0‖2
A = ‖r0‖2

(
T̂−1

k+d

)

1,1
+ R̂k+d

[
λ−1

]
, (2.15)

where T̂k+d stands for the matrix Tk+d (in the case of using Gauss rule) or
a suitable modification of Tk+d (in the case of using Gauss-Radau or Gauss-
Lobatto rules). From (2.14) and (2.15) we get

‖x − xk‖2
A = Q̂k,d + R̂k+d

[
λ−1

]
, Q̂k,d ≡ ‖r0‖2

((
T̂−1

k+d

)

1,1
− (

T−1
k

)
1,1

)
.

(2.16)

Q̂k,d represents either a lower bound on ‖x − xk‖2
A if R̂k+d

[
λ−1

]
> 0, or an

upper bound in the case R̂k+d
[
λ−1

]
< 0. It means that at CG iteration k + d,
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by computing Q̂k,d, we can obtain a bound for the A-norm of the error at
iteration k.

From the computational point of view, as noted in [14] and [21], it is not

convenient to compute Q̂k,d by first computing
(
T−1

k

)
1,1,

(
T̂−1

k+d

)

1,1
, and then

taking the difference. By subtracting both quantities we loose accuracy and,
as a result, the use of the estimate is limited by the square root of machine
precision. Instead of subtracting, it is better to use the following identity

(
T̂−1

k+d

)

1,1
−(

T−1
k

)
1,1 =

(
T̂−1

k+d

)

1,1
−(

T−1
k+d−1

)
1,1

+
k+d−2∑

j=k

[(
T−1

j+1

)

1,1
−
(

T−1
j

)

1,1

]
.

From (2.13) we have

‖r0‖2

[(
T−1

j+1

)

1,1
−

(
T−1

j

)

1,1

]
= γ j‖r j‖2 (2.17)

so that Q̂k,d takes the form

Q̂k,d = ‖r0‖2

[(
T̂−1

k+d

)

1,1
− (

T−1
k+d−1

)
1,1

]
+

k+d−2∑

j=k

γ j‖r j‖2.

Therefore, the problem of computing Q̂k,d reduces to the problem of comput-
ing efficiently the difference

‖r0‖2

[(
T̂−1

j+1

)

1,1
−

(
T−1

j

)

1,1

]
, j = k + d − 1, (2.18)

using the CG-related quantities that are available during the CG iterations.
This is easy for the Gauss rule since it is given by (2.17) but, for the Gauss-
Radau and Gauss-Lobatto rules we need to use results about factorizations of
tridiagonal matrices. They are recalled in the next section.

3 Factorizations of tridiagonal matrices

In this section our aim is to show how to compute the quantities we need
for the quadrature rules by relying only on the LDLT factorizations of the
tridiagonal matrices. For doing this we will use variants of the qd algorithm;
see [25]. Although the matrices in our problem are positive definite in theory,
it can happen during finite precision computations that the computed tridi-
agonal matrices are indefinite. Therefore, we will assume that our symmetric
tridiagonal matrices are indefinite. However, we also assume that their LDLT

factorizations exist.
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3.1 LDLT factorization of Tk and of its extension T̂k+1

Consider a symmetric tridiagonal matrix Tk with diagonal entries α j and
subdiagonal entries β j 
= 0,

Tk =

⎡

⎢⎢
⎢
⎢
⎣

α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk

⎤

⎥⎥
⎥
⎥
⎦

(3.1)

and its LDLT factorization, Tk = Lk DkLT
k , denoted as

Tk =

⎡

⎢
⎢
⎢⎢
⎣

1

�1
. . .

. . .
. . .

�k−1 1

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

d1

. . .

. . .

dk

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

1 �1

. . .
. . .

. . . �k−1

1

⎤

⎥
⎥
⎥⎥
⎦

. (3.2)

To compute this factorization, one can use the following recurrence relations,
see, e.g., [13, p.25],

d1 = α1, � j = β j

d j
, d j+1 = α j+1 − β j� j, j = 1, . . . , k − 1. (3.3)

If Tk is extended by one row and one column to the matrix T̂k+1,

T̂k+1 =
[

Tk β̂kek

β̂keT
k α̂k+1

]
, (3.4)

the LDLT factorization of T̂k+1 is just a straightforward extension of the
LDLT factorization of Tk,

T̂k+1 =
⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

1

�1
. . .

. . .
. . .

�k−1 1
�̂k 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

d1

. . .

. . .

dk

d̂k+1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

1 �1

. . .

. . . �k−1

1 �̂k

1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

where the additional entries are given by

�̂k = β̂k

dk
, d̂k+1 = α̂k+1 − β̂k�̂k = α̂k+1 − β̂2

k

dk
.
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3.2 The difference between (1, 1) entries of T̂−1
k+1 and T−1

k

To compute various types of quadratures, we need to compute efficiently
the difference between (1, 1) entries of inverses of some tridiagonal matrices;
see (2.18). This can be done using the following formula, see Theorem 3.9
in [13, p. 31],

(
T̂−1

k+1

)

1,1
− (

T−1
k

)
1,1 = d̂−1

k+1

(
β1 . . . βk−1β̂k

)2

(d1 . . . dk)
2 = �̂2

k

d̂k+1

(�1 . . . �k−1)
2 , (3.5)

where we have used that β j = � jd j, j = 1, . . . , k − 1 and β̂k = �̂kd̂k. In other
words, having the LDLT factorizations of Tk and T̂k+1, one can compute the
required difference without subtraction.

3.3 LDLT factorization of a shifted tridiagonal matrix

We will see that for prescribing some eigenvalues we have to deal with shifted
tridiagonal matrices. Let the shift μ be given such that it is different from any
eigenvalue of Tk so that Tk − μI is nonsingular. In the application μ will be
smaller (resp. larger) than the smallest (resp. largest) eigenvalue of A. We
denote the LDLT factorization of Tk − μI (when it exists) as,

Tk − μI = L̄(μ)

k D̄(μ)

k

(
L̄(μ)

k

)T
. (3.6)

The entries of the LDLT factorization of Tk − μI are denoted with a bar,
the dependence on the parameter μ is denoted by the superscript within
parentheses. This factorization can be computed from scratch using (3.3) since
Tk − μI differs from Tk only in diagonal entries by

d̄(μ)

1 = α1 − μ, �̄
(μ)

j = β j

d̄(μ)

j

, d̄(μ)

j+1 = α j+1 − μ − β j�̄
(μ)

j , j = 1, . . . , k − 1.

However, suppose now that Tk is given in the form of its LDLT factoriza-
tion, i.e. we know the entries d1, . . . , dk and �1, . . . , �k−1 and want to compute
the factorization (3.6) directly from these entries. This can be done using the

Algorithm 3 stqds
input μ, d1, . . . , dk, �1, . . . , �k−1

d̄(μ)

1 = d1 − μ

for j = 1, . . . , k − 1 do
�̄

(μ)

j = d j� j

d̄(μ)

j

d̄(μ)

j+1 = (d j+1 − μ) + d j�
2
j − d j� j�̄

(μ)

j
end for
output d̄(μ)

1 , . . . , d̄(μ)

k , �̄
(μ)

1 , . . . , �̄
(μ)

k−1
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Algorithm 4 dstqds
input μ, d1, . . . , dk, �1, . . . , �k−1

s(μ)

1 = μ

for j = 1, . . . , k − 1 do
d̄(μ)

j = d j − s(μ)

j

�̄
(μ)

j = d j� j

d̄(μ)

j

s(μ)

j+1 = μ + � j�̄
(μ)

j s(μ)

j
end for
d̄(μ)

k = dk − s(μ)

k

output d̄(μ)

1 , . . . , d̄(μ)

k , �̄
(μ)

1 , . . . , �̄
(μ)

k−1

stqds algorithm (Algorithm 3) which is a variant of the Rutishauser qd algo-
rithm, see [25, 26] or [13, p. 35]. This can be further improved by introducing
the difference s(μ)

j ≡ d j − d̄(μ)

j . It yields another version of the stqds algorithm
called dstqds (Algorithm 4) which avoids some subtractions.

3.4 Rank-one modification of Tk+1 with a prescribed eigenvalue

Given a real number μ different from any eigenvalue of Tk, our aim in this
subsection is to modify the (k + 1, k + 1)st entry of Tk+1 so that the resulting
matrix T̃(μ)

k+1 defined in (2.8) has μ as a prescribed eigenvalue. In [10] it has
been shown that

α̃
(μ)

k+1 = μ + ξ
(μ)

k

where ξ
(μ)

k is the last component of the solution of the tridiagonal system

⎡

⎢⎢
⎢
⎢
⎣

α1 − μ β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk − μ

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢⎢
⎣

ξ
(μ)

1
...

ξ
(μ)

k−1

ξ
(μ)

k

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

0
...

0
β2

k

⎤

⎥
⎥⎥
⎦

, (3.7)

see also [13, pp. 88–89]. Considering the LDLT factorization (3.6) of Tk − μI,
it is easy to show that

ξ
(μ)

k = β2
k

d̄(μ)

k

, i.e. α̃
(μ)

k+1 = μ + β2
k

d̄(μ)

k

.

Suppose now that the matrix Tk+1 is given in the form of the LDLT

factorization (Tk+1 is not given explicitly). We would like to modify this
factorization in such a way that we obtain the LDLT factorization of T̃(μ)

k+1 .
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First we observe that if Tk+1 = Lk+1 Dk+1LT
k+1 , then the LDLT factorization

of T̃(μ)

k+1 is given by

T̃(μ)

k+1 = Lk+1

⎡

⎢
⎢⎢
⎢
⎢⎢
⎣

d1

. . .

. . .

dk

d̃(μ)

k+1

⎤

⎥
⎥⎥
⎥
⎥⎥
⎦

LT
k+1, (3.8)

(see (3.5)) where

d̃(μ)

k+1 = α̃
(μ)

k+1 − βk�k = μ + ξ
(μ)

k − dk�
2
k = μ + β2

k

d̄(μ)

k

− dk�
2
k. (3.9)

In the following lemma we show that d̃(μ)

k+1 = dk+1 − d̄(μ)

k+1 where d̄(μ)

k+1 is the last
diagonal entry of the factorization of Tk+1 − μI.

Lemma 3.1 Given μ dif ferent from any eigenvalue of Tk, consider the LDLT

factorizations of Tk+1 and Tk+1 − μI,

Tk+1 = Lk+1 Dk+1LT
k+1, Tk+1 − μI = L̄(μ)

k+1 D̄(μ)

k+1

(
L̄(μ)

k+1

)T
.

Let T̃(μ)

k+1 be the rank-one modif ication (2.8) of Tk+1 such that μ is an eigenvalue

of T̃(μ)

k+1 and consider its LDLT factorization (3.8). Then it holds that

d̃(μ)

k+1 = dk+1 − d̄(μ)

k+1.

Proof By a simple algebraic manipulation we obtain

dk+1 − d̄(μ)

k+1 = dk+1 −
(
(dk+1 − μ) + dk�

2
k − dk�k�̄

(μ)

k

)
= (

μ − dk�
2
k

) + dk�k�̄
(μ)

k .

From (3.9) it follows that μ − dk�
2
k = d̃(μ)

k+1 − βk
βk

d̄(μ)

k

, therefore

dk+1 − d̄(μ)

k+1 = d̃(μ)

k+1 − βk
βk

d̄(μ)

k

+ dk�k�̄
(μ)

k = d̃(μ)

k+1 − �kdk�̄
(μ)

k + dk�k�̄
(μ)

k = d̃(μ)

k+1

which proves the result. ��

The formula for d̃(μ)

k+1 requires not only the (known) entry dk+1, but also the
(so far unknown) entry d̄(μ)

k+1 from the LDLT factorization of Tk+1 − μI. In
the following we show how to recursively compute the entry d̃(μ)

k+1 so that the
LDLT factorization of Tk+1 − μI need not to be computed.

Lemma 3.2 With the notation above,

d̃(μ)

1 ≡ μ, d̃(μ)

k+1 = μ + �2
k

dkd̃(μ)

k

dk − d̃(μ)

k

for k ≥ 1. (3.10)
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Proof From Lemma 3.1 it follows that d̃(μ)

k+1 is nothing but the difference s(μ)

k+1 =
dk+1 − d̄(μ)

k+1 introduced in Algorithm 4. Using

s(μ)

k+1 −μ = �k�̄
(μ)

k s(μ)

k = �k
dk�k

d̄(μ)

k

s(μ)

k = �k
dk�k

dk − s(μ)

k

s(μ)

k

and d̃(μ)

k = s(μ)

k we obtain the formula (3.10). ��

Formula (3.10) will be used to compute the inverse of d̃(μ)

k+1.

3.5 Rank-two modification of Tk+1 with two prescribed eigenvalues

Given two numbers μ and η different from any eigenvalue of Tk, we would
like to find a rank-two modification of the matrix Tk+1 so that the matrix T̃(μ,η)

k+1
defined in (2.9) has μ and η as prescribed eigenvalues. In [10] it has been shown
that α̃

(μ,η)

k+1 and β̃
(μ,η)

k satisfy

α̃
(μ,η)

k+1 = μ +
(
β̃

(μ,η)

k

)2
ζ

(μ)

k , α̃
(μ,η)

k+1 = η +
(
β̃

(μ,η)

k

)2
ζ

(η)

k ,

where ζ
(μ)

k , respectively ζ
(η)

k , is the last component of the tridiagonal system

(Tk − μI)ζ (μ) = ek, ζ (μ) ≡
[
ζ

(μ)

1 , . . . , ζ
(μ)

k

]T
,

respectively,

(Tk − ηI)ζ (η) = ek, ζ (η) ≡
[
ζ

(η)

1 , . . . , ζ
(η)

k

]T
.

Summarizing, we first solve systems (Tk − μI)ζ (μ) = ek, (Tk − ηI)ζ (η) = ek and

then we obtain α̃
(μ,η)

k+1 and
(
β̃

(μ,η)

k

)2
as the solution of the 2 × 2 linear system

[
1 −ξ

(μ)

k

1 −ξ
(η)

k

][
α̃k+1(

β̃
(μ,η)

k

)2

]

=
[

μ

η

]
.

We are now interested in the LDLT factorization of the matrix T̃(μ,η)

k+1 , see
(2.9),

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

1

�1
. . .

. . .
. . .

�k−1 1
�̃

(μ,η)

k 1

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

d1

. . .

dk

d̃(μ,η)

k+1

⎤

⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

1 �1

. . .
. . .

. . . �k−1

1 �̃
(μ,η)

k
1

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

. (3.11)

In the following lemma we express �̃
(μ,η)

k and d̃(μ,η)

k+1 using the entries of the
LDLT factorizations of Tk − μI and Tk − ηI.
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Lemma 3.3 The entries �̃
(μ,η)

k and d̃(μ,η)

k+1 from (3.11) can be computed using the
following formulas,

(
�̃

(μ,η)

k

)2 = d̄(μ)

k d̄(η)

k

d2
k

η − μ

d̄(η)

k − d̄(μ)

k

, d̃(μ,η)

k+1 = ηd̄(η)

k − μd̄(μ)

k

d̄(η)

k − d̄(μ)

k

− dk

(
�̃

(μ,η)

k

)2
.

(3.12)

Proof For simplicity of notation in this proof, we will omit the (μ, η) upper
indices. From (3.11), it follows that �̃k and d̃k+1 satisfy

�̃2
k = β̃2

k

d2
k

, d̃k+1 = α̃k+1 − β̃k�̃k = α̃k+1 − β̃2
k

dk
.

Therefore,
[

d̃k+1

�̃2
k

]
=

[
1 −d−1

k
0 d−2

k

] [
α̃k+1

β̃2
k

]
,

[
α̃k+1

β̃2
k

]
=

[
1 dk

0 d2
k

] [
d̃k+1

�̃2
k

]

and �̃2
k and d̃k+1 solve the system

[
μ

η

]
=

[
1 −ζ

(μ)

k

1 −ζ
(η)

k

][
1 dk

0 d2
k

] [
d̃k+1

�̃2
k

]
=

[
1 dk − d2

kζ
(μ)

k

1 dk − d2
kζ

(η)

k

][
d̃k+1

�̃2
k

]
.

Using Cramer’s rule we obtain

det

[
1 dk − d2

kζ
(μ)

k

1 dk − d2
kζ

(η)

k

]

= d2
k

(
ζ

(μ)

k − ζ
(η)

k

)
,

det

[
μ dk − d2

kζ
(μ)

k

η dk − d2
kζ

(η)

k

]

= dk(μ − η) − d2
k

(
μζ

(η)

k − ηζ
(μ)

k

)
, det

[
1 μ

1 η

]
= η − μ,

and, therefore

�̃2
k = η − μ

d2
k

(
ζ

(μ)

k − ζ
(η)

k

) ,

d̃k+1 =
μ − η − dk

(
μζ

(η)

k − ηζ
(μ)

k

)

dk

(
ζ

(μ)

k − ζ
(η)

k

) = ηζ
(μ)

k − μζ
(η)

k

ζ
(μ)

k − ζ
(η)

k

− dk�̃
2
k.

Using

ζ
(η)

k = 1

d̄(η)

k

, ζ
(μ)

k = 1

d̄(μ)

k
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we obtain

�̃2
k = η − μ

d2
k

(
1

d̄(μ)

k

− 1
d̄(η)

k

) = d̄(μ)

k d̄(η)

k

d2
k

η − μ

d̄(η)

k − d̄(μ)

k

,

d̃k+1 =
η

d̄(μ)

k

− μ

d̄(η)

k

1
d̄(μ)

k

− 1
d̄(η)

k

− dk�̃
2
k = ηd̄(η)

k − μd̄(μ)

k

d̄(η)

k − d̄(μ)

k

− dk�̃
2
k,

which completes the proof. ��

Using the formula (3.10) we can update the entries d̃(μ)

k and d̃(η)

k . Then, we
can use the relations

d̄(μ)

k = dk − d̃(μ)

k , d̄(η)

k = dk − d̃(η)

k

and compute �̃
(μ,η)

k and d̃(μ,η)

k+1 using d̃(μ)

k and d̃(η)

k , as it is shown the following
lemma.

Lemma 3.4 The entries �̃
(μ,η)

k and d̃(μ,η)

k+1 from (3.11) can be computed using the
following formulas,

(
�̃

(μ,η)

k

)2 =
(

dk − d̃(μ)

k

) (
dk − d̃(η)

k

)
(η − μ)

(
d̃(μ)

k − d̃(η)

k

)
d2

k

, (3.13)

d̃(μ,η)

k+1 = dk(η − μ) + μd̃(μ)

k − ηd̃(η)

k

d̃(μ)

k − d̃(η)

k

− dk

(
�̃

(μ,η)

k

)2
. (3.14)

Proof Using d̄(μ)

k = dk − d̃(μ)

k , d̄(η)

k = dk − d̃(η)

k we get

d̄(η)

k − d̄(μ)

k = dk − d̃(η)

k − (dk − d̃(μ)

k ) = d̃(μ)

k − d̃(η)

k ,

ηd̄(η)

k − μd̄(μ)

k = η(dk − d̃(η)

k ) − μ(dk − d̃(μ)

k ) = dk(η − μ) + μd̃(μ)

k − ηd̃(η)

k

and by substituting into the formulas (3.12) we obtain

(
�̃

(μ,η)

k

)2 = d̄(μ)

k d̄(η)

k

d2
k

η − μ

d̄(η)

k − d̄(μ)

k

=
(

dk − d̃(μ)

k

) (
dk − d̃(η)

k

)
(η − μ)

(
d̃(μ)

k − d̃(η)

k

)
d2

k

,

d̃(μ,η)

k+1 = ηd̄(η)

k −μd̄(μ)

k

d̄(η)

k −d̄(μ)

k

−dk

(
�̃

(μ,η)

k

)2 = dk(η−μ)+μd̃(μ)

k −ηd̃(η)

k

d̃(μ)

k −d̃(η)

k

−dk

(
�̃

(μ,η)

k

)2
,

which completes the proof. ��
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In the formulas that we will use later, we need the ratio

(
�̃

(μ,η)

k

)2

d̃(μ,η)

k+1

rather than the values �̃
(μ,η)

k and d̃(μ,η)

k+1 . The following lemma shows the formula
for computing this ratio.

Lemma 3.5 It holds that

(
�̃

(μ,η)

k

)2

d̃(μ,η)

k+1

=

((
d̃(η)

k

)−1 − d−1
k

)((
d̃(μ)

k

)−1 − d−1
k

)
(η − μ)

η

((
d̃(μ)

k

)−1 − d−1
k

)
− μ

((
d̃(η)

k

)−1 − d−1
k

) . (3.15)

Proof Using formulas (3.13) and (3.14) and simple algebraic manipulations
we get

⎛

⎜
⎝

(
�̃

(μ,η)

k

)2

d̃(μ,η)

k+1

⎞

⎟
⎠

−1

= dk(η − μ) + μd̃(μ)

k − ηd̃(η)

k

d̃(μ)

k − d̃(η)

k

(
�̃

(μ,η)

k

)−2 − dk

= dk(η−μ)+μd̃(μ)

k −ηd̃(η)

k

d̃(μ)

k −d̃(η)

k

(
d̃(μ)

k −d̃(η)

k

)
d2

k
(

dk−d̃(μ)

k

) (
dk−d̃(η)

k

)
(η−μ)

−dk

= dk

⎡

⎣dk
dk(η − μ) + μd̃(μ)

k − ηd̃(η)

k(
dk − d̃(μ)

k

) (
dk − d̃(η)

k

)
(η − μ)

− 1

⎤

⎦

=
d2

k

(
ηd̃(μ)

k − μd̃(η)

k

)
− dk

(
d̃(μ)

k d̃(η)

k

)
(η − μ)

(
dk − d̃(μ)

k

) (
dk − d̃(η)

k

)
(η − μ)

=
η
(

d̃(η)

k

)−1 − μ
(

d̃(μ)

k

)−1 − d−1
k (η − μ)

((
d̃(μ)

k

)−1 − d−1
k

)((
d̃(η)

k

)−1 − d−1
k

)
(η − μ)

=
η

((
d̃(η)

k

)−1 − d−1
k

)
− μ

((
d̃(μ)

k

)−1 − d−1
k

)

((
d̃(μ)

k

)−1 − d−1
k

)((
d̃(η)

k

)−1 − d−1
k

)
(η − μ)

which completes the proof. ��
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3.6 Another rank-two modification of Tk+1

The last modification of Tk+1 that we consider, is to replace βk in Tk+1 by c βk

where c is a given constant. The corresponding Jacobi matrix T̂(c)
k+1 has the same

LDLT factorization as Tk+1 up to

(
�̂

(c)
k

)2 = c2β2
k

d2
k

= c2 �2
k, d̂(c)

k+1 = αk+1 − c2 dk�
2
k = dk+1 + (1 − c2) dk�

2
k ,

and, therefore,
(
�̂

(c)
k

)2

d̂(c)
k+1

= c2

dk+1 + (1 − c2) dk�
2
k

�2
k . (3.16)

4 Algorithms

In this section we use the results from the previous sections for the tridiagonal
matrices resulting from the Lanczos and CG algorithms. This will allow us to
obtain simple formulas for computing lower and upper bounds for the A-norm
of the error. Matching the LDLT of Tk in (3.2) and (2.1), we obtain

�2
j = δ j, d j = γ −1

j−1.

Given two prescribed nodes μ and η, let us now consider various modifications
of the matrix Tk+1 and define

γ̃
(μ)

k ≡
(

d̃(μ)

k+1

)−1
, γ̃

(η)

k ≡
(

d̃(η)

k+1

)−1
, γ̃

(μ,η)

k ≡
(
�̃

(μ,η)

k

)2 (
d̃(μ,η)

k+1

)−1
.

Using (3.10) and (3.15) we get the updating formulas

γ̃
(μ)

0 = 1

μ
, γ̃

(μ)

k = γ̃
(μ)

k−1 − γk−1

μ
(
γ̃

(μ)

k−1 − γk−1

)
+ δk

,

γ̃
(η)

0 = 1

η
, γ̃

(η)

k = γ̃
(η)

k−1 − γk−1

η
(
γ̃

(η)

k−1 − γk−1

)
+ δk

,

γ̃
(μ,η)

k =
(
γ̃

(μ)

k−1 − γk−1

) (
γ̃

(η)

k−1 − γk−1

)
(η − μ)

η
(
γ̃

(η)

k−1 − γk−1

)
− μ

(
γ̃

(μ)

k−1 − γk−1

) .

Using (3.5) and

‖r0‖2 (�1 . . . �k−1)
2 = ‖r0‖2δ1 . . . δk−1 = ‖r0‖2 ‖r1‖2

‖r0‖2
. . .

‖rk−1‖2

‖rk−1‖2
= ‖rk−1‖2,
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one obtains

‖r0‖2

([(
T̃(μ)

k+1

)−1
]

1,1

− (
T−1

k

)
1,1

)

= �2
k

d̃(μ)

k+1

‖rk−1‖2 = ‖rk‖2

d̃(μ)

k+1

.

We can now compute the quantities of the form (2.18),

gk ≡ ‖r0‖2
((

T−1
k+1

)
1,1

− (
T−1

k

)
1,1

)
= γk‖rk‖2,

g(μ)

k ≡ ‖r0‖2

([(
T̃(μ)

k+1

)−1
]

1,1

− (
T−1

k

)
1,1

)

= γ̃
(μ)

k ‖rk‖2,

g(η)

k ≡ ‖r0‖2

([(
T̃(η)

k+1

)−1
]

1,1

− (
T−1

k

)
1,1

)

= γ̃
(η)

k ‖rk‖2,

g(μ,η)

k ≡ ‖r0‖2

([(
T̃(μ,η)

k+1

)−1
]

1,1

− (
T−1

k

)
1,1

)

= γ̃
(μ,η)

k ‖rk−1‖2.

Hence, the quantities for the three different rules are given almost in the same
form. The index of the residual differs for the Gauss-Lobatto rule because
the term (�̃

(μ,η)

k )2 is incorporated in γ̃
(μ,η)

k . Using the updating formulas for
the coefficients γ̃

(μ)

k , γ̃
(η)

k and γ̃
(μ,η)

k we can derive updating formulas for g(μ)

k ,
g(η)

k and g(μ,η)

k such that the coefficients γ̃
(μ)

k , γ̃
(η)

k and γ̃
(μ,η)

k need not to be
computed. Since

γ̃
(μ)

k = γ̃
(μ)

k−1 − γk−1

μ
(
γ̃

(μ)

k−1 − γk−1

)
+ δk

= ‖rk−1‖2γ̃
(μ)

k−1 − ‖rk−1‖2γk−1

μ
(
‖rk−1‖2γ̃

(μ)

k−1 − ‖rk−1‖2γk−1

)
+ ‖rk‖2

= g(μ)

k−1 − gk−1

μ
(

g(μ)

k−1 − gk−1

)
+ ‖rk‖2

,

the formulas for g(μ)

k and g(η)

k can be written as

g(μ)

0 = ‖r0‖2

μ
, g(η)

0 = ‖r0‖2

η
, (4.1)

g(μ)

k = ‖rk‖2 g(μ)

k−1 − gk−1

μ
(

g(μ)

k−1 − gk−1

)
+ ‖rk‖2

, g(η)

k = ‖rk‖2 g(η)

k−1 − gk−1

μ
(

g(η)

k−1 − gk−1

)
+ ‖rk‖2

.
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The formula for g(μ,η)

k = γ̃
(μ,η)

k ‖rk−1‖2 takes the form

g(μ,η)

k = γ̃
(μ,η)

k ‖rk−1‖2 = ‖rk−1‖2

(
γ̃

(μ)

k−1 − γk−1

) (
γ̃

(η)

k−1 − γk−1

)
(η − μ)

η
(
γ̃

(η)

k−1 − γk−1

)
− μ

(
γ̃

(μ)

k−1 − γk−1

)

=
(
‖rk−1‖2γ̃

(μ)

k−1 − ‖rk−1‖2γk−1

) (
‖rk−1‖2γ̃

(η)

k−1 − ‖rk−1‖2γk−1

)
(η − μ)

η
(
‖rk−1‖2γ̃

(η)

k−1 − ‖rk−1‖2γk−1

)
− μ

(
‖rk−1‖2γ̃

(μ)

k−1 − ‖rk−1‖2γk−1

)

=
(

g(μ)

k−1 − gk−1

) (
g(η)

k−1 − gk−1

)
(η − μ)

η
(

g(η)

k−1 − gk−1

)
− μ

(
g(μ)

k−1 − gk−1

) .

Summarizing, starting with the formulas (4.1) we obtain for k = 1, . . . updating
formulas taking the simple following form,

gk−1 = γk−1‖rk−1‖2, �
(μ)

k−1 ≡ g(μ)

k−1 − gk−1, �
(η)

k−1 ≡ g(η)

k−1 − gk−1, (4.2)

and

g(μ)

k = ‖rk‖2 �
(μ)

k−1

μ�
(μ)

k−1 + ‖rk‖2
, g(η)

k = ‖rk‖2 �
(η)

k−1

η�
(η)

k−1 + ‖rk‖2
, (4.3)

g(μ,η)

k = (η − μ)
�

(μ)

k−1�
(η)

k−1

η�
(η)

k−1 − μ�
(μ)

k−1

. (4.4)

Now we have all the needed material to compute bounds. We distinguish
three parts in the algorithm for running CG and obtaining bounds for the A-
norm of the error.

1. The first part is simply the CG-iteration which computes two scalars and
updates the vectors,

γk−1 = rT
k−1rk−1

pT
k−1 Apk−1

,

xk = xk−1 + γk−1 pk−1,

rk = rk−1 − γk−1 Apk−1,

δk = rT
k rk

rT
k−1rk−1

,

pk = rk + δk pk−1.
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2. The second part is called the Quadrature part. It computes the quantities
gk−1, g(μ)

k , g(η)

k and g(μ,η)

k using the formulas (4.2), (4.3), and (4.4) if we
are interested in computing the Gauss, Gauss-Radau and Gauss-Lobatto
bounds.

3. The third part is called the Estimates part for iteration k − d. In this paper,
we use the following way of constructing the estimates from gk−1, g(μ)

k , g(η)

k

and g(μ,η)

k . If k > d, then compute

Qk−d,d =
k∑

j=k−d+1

g j,

Ek−d = √
Qk−d,d, E(μ)

k−d =
√

Qk−d,d + g(μ)

k ,

E(η)

k−d =
√

Qk−d,d + g(η)

k , E(μ,η)

k−d =
√

Qk−d,d + g(μ,η)

k

Ek−d is the Gauss lower bound. If μ < λ1 (resp. η > λN) E(μ)

k−d (resp. E(η)

k−d)
is the Gauss-Radau upper (resp. lower) bound and E(μ,η)

k−d is the Gauss-Lobatto
upper bound. Note that d is a given positive integer indicating how many steps
of CG should be precomputed to have the estimate at iteration k − d.

Algorithm 5 recalls the CGQL algorithm described in [21] and [13].
Algorithm 6 is the new version using the simpler formulas derived in this paper.
We denote it as CGQ (in reference to CGQL, dropping the L because we do
not use the Lanczos coefficients any longer). We see that computing the Gauss-
Radau upper bound is almost as simple as computing the Gauss lower bound
provided we have a μ < λ1.

In practical computations we usually only use the lower bound based on
Gauss quadrature and the upper bound based on Gauss-Radau when a lower
bound of the smallest eigenvalue of A is available. In that case we only need
to compute gk and g(μ)

k using the formulas from Algorithm 6.
Note that in the same way we can also obtain formulas for the anti-Gauss

quadrature rule [4, 20]. Defining

ĝ(c)
k ≡ ‖r0‖2

([(
T̂(c)

k+1

)−1
]

1,1

− (
T−1

k

)
1,1

)

and using the formula (3.16) we obtain

ĝ(c)
k = c2 gkgk−1

gk−1 + (1 − c2)gk
. (4.5)
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Algorithm 5 CGQL (Conjugate Gradients and Quadrature via Lanczos
coefficients)

input A, b , x0, μ

r0 = b − Ax0, p0 = r0

δ0 = 0, γ−1 = 1, c1 = 1, β0 = 0, d0 = 1, α̃
(μ)

1 = μ, α̃
(η)

1 = η

for k = 1, . . . , until convergence do
CG-iteration (k)

αk = 1

γk−1
+ δk−1

γk−2
, β2

k = δk

γ 2
k−1

dk = αk − β2
k−1

dk−1
, gk = ‖r0‖2 c2

k

dk
,

d̄(μ)

k = αk − α̃
(μ)

k , α̃
(μ)

k+1 = μ + β2
k

d̄(μ)

k

, g(μ)

k = ‖r0‖2 β2
kc2

k

dk

(
α̃

(μ)

k+1dk − β2
k

)

d̄(η)

k = αk − α̃
(η)

k , α̃
(η)

k+1 = η + β2
k

d̄(η)

k

, g(η)

k = ‖r0‖2 β2
kc2

k

dk

(
α̃

(η)

k+1dk − β2
k

)

α̃
(μ,η)

k+1 = d̄(μ)

k d̄(η)

k

d̄(η)

k − d̄(μ)

k

(
η

d̄(μ)

k

− μ

d̄(η)

k

)

,
[
β̃

(μ,η)

k

]2 = d̄(μ)

k d̄(η)

k

d̄(η)

k − d̄(μ)

k

(η − μ)

g(μ,η)

k = ‖r0‖2

[
β̃

(μ,η)

k

]2
c2

k

dk

(
α̃

(μ,η)

k+1 dk −
[
β̃

(μ,η)

k

]2
)

c2
k+1 = β2

kc2
k

d2
k

Estimates(k,d)
end for

The anti-Gauss quadrature estimate can be then computed analogously,

Ê(c)
k−d =

√
Qk−d,d + ĝ(c)

k .
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Algorithm 6 CGQ (Conjugate Gradients and Quadrature)
input A, b , x0, μ, η

r0 = b − Ax0, p0 = r0

g(μ)

0 = ‖r0‖2

μ
, g(η)

0 = ‖r0‖2

η

for k = 1, . . . , until convergence do
CG-iteration(k)

gk−1 = γk−1‖rk−1‖2,

�
(μ)

k−1 = g(μ)

k−1 − gk−1 , g(μ)

k = ‖rk‖2�
(μ)

k−1

μ�
(μ)

k−1 + ‖rk‖2

�
(η)

k−1 = g(η)

k−1 − gk−1 , g(η)

k = ‖rk‖2�
(η)

k−1

η�
(η)

k−1 + ‖rk‖2

g(μ,η)

k = (η − μ)
�

(μ)

k−1�
(η)

k−1

η�
(η)

k−1 − μ�
(μ)

k−1

.

Estimates(k,d)
end for

5 Error estimation in preconditioned CG

In the standard view of preconditioning, the CG method is thought of as being
applied to a “preconditioned” system

Âx̂ = b̂ , Â = L−1 AL−T , b̂ = L−1b , (5.1)

where L represents a nonsingular (eventually lower triangular) matrix. Denot-
ing the corresponding CG coefficients and vectors with hat and defining

xk ≡ L−T x̂k, rk ≡ L r̂k, pk ≡ L−T p̂k, zk ≡ L−T L−1rk ≡ P−1rk,

(here xk and rk represent the approximate solution and residual for the original
problem Ax = b), we obtain the standard version of the preconditioned CG
(PCG) method which involves only P = LLT ; for more details see, e.g. [22]
or [29].

Since

‖r̂k‖2 = rT
k L−T L−1rk = rT

k P−1rk = (rk, zk) ,

‖x̂ − x̂k‖Â = (
LT x − LT xk

)T
L−1 AL−T (

LT x − LT xk
) = ‖x − xk‖2

A,

the A-norm of the error in PCG can be estimated similarly as in ordinary CG.
One can compute the quadratures-based estimates of the A-norm of the error
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Algorithm 7 Preconditioned CGQ (PCGQ) algorithm
input A, b , x0, P, μ, η

r0 = b − Ax0, z0 = P−1r0, p0 = z0

g(μ)

0 = (r0,z0)

μ
, g(η)

0 = (r0,z0)

η

for k = 1, . . . , n until convergence do

γ̂k−1 = zT
k−1rk−1

pT
k−1 Apk−1

xk = xk−1 + γ̂k−1 pk−1

rk = rk−1 − γ̂k−1 Apk−1

zk = P−1rk

δ̂k = zT
k rk

zT
k−1rk−1

pk = zk + δ̂k pk−1

gk−1 = γ̂k−1(rk−1, zk−1),

�
(μ)

k−1 = g(μ)

k−1 − gk−1 , g(μ)

k = (rk, zk)�
(μ)

k−1

μ�
(μ)

k−1 + (rk, zk)

�
(η)

k−1 = g(η)

k−1 − gk−1 , g(η)

k = (rk, zk)�
(η)

k−1

η�
(η)

k−1 + (rk, zk)

g(μ,η)

k = (η − μ)
�

(μ)

k−1�
(η)

k−1

η�
(η)

k−1 − μ�
(μ)

k−1

.

Estimates(k,d)
end for

using the PCG coefficients γ̂k−1 and inner products (rk, zk) (instead of using
‖r̂k‖2). The resulting Algorithm 7 is called PCGQ.

6 Numerical experiments

We present two examples where we demonstrate the effectivity of the new
formula

g(μ)

k =
‖rk‖2

(
g(μ)

k−1 − gk−1

)

μ
(

g(μ)

k−1 − gk−1

)
+ ‖rk‖2

that is key for computing the Gauss-Radau quadrature estimate (GR-
estimate). Both examples are chosen such that many iterations are necessary
for CG (or PCG) to converge, and such that the influence of rounding errors is
substantial (in both examples we observe a significant delay of convergence).
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The aim of numerical experiments is not to focus on the question of how
to estimate the A-norm of the error and when to stop the algorithm, but to
compare the new and the old formula for computing the existing estimate. For
further discussion on estimating the A-norm of the error, stopping criteria,
and numerical experiments we refer to [1, 4, 5, 22, 23, 28, 29]. The following
experiments are performed in Matlab 7.13 (R2011b).

In the first numerical experiment we solve the system Ax = b with the
matrix bcsstk01 (Harwell-Boeing collection) of order n = 48; see also nu-
merical experiments in [23, Chapter 7]. The right-hand side b has been chosen
such that b has equal components in the eigenvector basis, and such that ‖b‖ =
1. We choose x0 = 0, d = 1, and μ = 3.417267e + 3 (the smallest eigenvalue of
the matrix is 3.417267562666500e+3).

In the upper part of Fig. 1 we plot the A-norm of the error (bold solid line),
the Gauss quadrature estimate Ek−1 (solid line, GQ-estimate), and the GR-
estimate E(μ)

k−1, where g(μ)

k is computed using CGQ (dashed line) and using
CGQL (dotted line). Visually, it is not possible to distinguish between the
estimate E(μ)

k−1 computed using CGQ (the new formula) and CGQL (the old
formula). However, the lower part of Fig. 1 indicates that the new formula is
not only simpler but also more accurate than the old one.
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Fig. 1 The upper part: the A-norm of the error (bold solid), the GQ-estimate (solid) and the GR-
estimate computed using CGQ (dashed) and CGQL (dotted). The lower part: relative accuracy of
the GR-estimate computed using CGQ (dashed) and CGQL (dotted)
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In the lower part of Fig. 1 we compare the relative accuracy of results
computed using the two formulas. First, we compute the quantities ‖rk‖2 and
γk using the standard double precision CG. Second, we use variable-precision
arithmetic in Matlab (Symbolic Toolbox, 64 digits) to get a reasonably accurate
value of E(μ)

k−1 (computed from the double precision quantities ‖rk‖2 and γk).
Third, we compute E(μ)

k−1 using the standard double precision arithmetic and
the two formulas; the corresponding computed values are denoted by Ê(μ,new)

k−1

and Ê(μ,old)

k−1 . Finally, in the lower part of Fig. 1 we plot the quantities
∣
∣
∣∣
∣

Ê(μ,new)

k−1 − E(μ)

k−1

E(μ)

k−1

∣
∣
∣∣
∣

(dashed) and

∣
∣
∣∣
∣

Ê(μ,old)

k−1 − E(μ)

k−1

E(μ)

k−1

∣
∣
∣∣
∣

(dotted)

that characterize the relative accuracy of the computed value of E(μ)

k−1. We can
observe that the new formula is less sensitive to rounding error.

In the second numerical experiment we solve the system Ax = b with the
matrix msc04515 (The University of Florida sparse matrix collection) of
order n = 4515; see also numerical experiments in [23, Chapter 7]. The right-
hand side b has again been chosen such that b has equal components in the

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

_20

10
_15

10
_10 

10
_5 

100
A_norm of the error and the estimates (msc04515), d=1

 

 

A_ norm of the error
GR_new
GR old
GQ

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

_20 

10
_15 

10
_10 

10
_5 

The relative accuracy of the GR_new and GR_old formulas (msc04515)

 

 
GR new
GR old

_

_
_

Fig. 2 The upper part: the A-norm of the error (bold solid), the GQ-estimate (solid) and the GR-
estimate computed using CGQ (dashed) and CGQL (dotted). The lower part: relative accuracy of
the GR-estimate computed using CGQ (dashed) and CGQL (dotted)
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eigenvector basis, and ‖b‖ = 1. We choose x0 = 0, d = 1, and use the diagonal
preconditioner (the preconditioned matrix is diagonally normalized with 1’s on
the diagonal). The value of μ is given by μ = 1.75e − 6 (the smallest eigenvalue
of the preconditioned matrix is equal to 1.751795139099631e-6).

In Fig. 2 we observe more or less the same behaviour as for the first example;
the GR-estimate computed using the new formula gives visually the same re-
sults, however, the new formula is simpler and more accurate that the old one.

7 Conclusion

In this paper we have described how the bounds based on Gauss quadrature
rules for the CG A-norm of the error can be computed in a simple way. In
particular, for the Gauss-Radau and Gauss-Lobatto bounds, the preceding
implementations computed explicitly the entries of the (modified) Jacobi
matrices and used them to compute the bounds. Here we exploited the fact
that the LDLT factorization of the corresponding Jacobi matrix is available
in CG and showed how to update LDLT factorizations of modified Jacobi
matrices. The bounds are then computed directly from the known entries of
LDLT factorizations. The algebraic derivation of the new formulas is more
difficult than it was when using Jacobi matrices but, in the end, the formulas
are simpler. Obtaining simple formulas is a prerequisite for analyzing the
behaviour of the bounds in finite precision arithmetic and also for a better
understanding of their dependence on the auxiliary parameters μ and η which
are lower and upper bounds (or estimates) of the smallest and largest eigen-
values. Numerical experiments predict that the new formulas are less prone to
the growth of rounding errors. Therefore, we hope that these improvements
will help the implementation of quadrature-based error bounds into existing
and forthcoming CG codes.
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Erratum to: Numer Algor (2013) 62:163-191
DOI 10.1007/s11075-012-9591-9

1 The algorithm CGQL

In our paper [1] we found two typographical errors that can negatively influence the
correct implementation of the algorithms by potential users. Therefore, we consider
important to present this erratum.

The first typographical error in [1] appears in the main part of Algorithm 5 CGQL
(surrounded by the frame) on page 185. To be consistent with the definition of gk

on page 182, the symbol gk that appears only once in the main part of Algorithm 5
CGQL, should by replaced by gk−1. Hence,

gk−1 = ‖r0‖2 c2
k

dk

is the correct formula.
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2 The Estimates part

The second typographical error is closely related with the first one and it is hidden
in the “Estimates part” on page 184, that is common for both algorithms, CGQL and
CGQ. It is again about wrong indexing of gk , this time in the definition of Qk−d,d .
The corrected text on page 184 is the following: If k ≥ d , then compute

Qk−d,d =
k−1∑

j=k−d

gj .

3 Final comments

We would like to assure the interested readers that these typographical errors did
not appear in our Matlab codes so that the numerical experiments presented in our
paper are correct. As it is clear form the above text, the first error arose in the CGQL
algorithm where the CG related quantities are indexed from 0 while the tridiagonal
matrices related quantities are indexed from 1. The first typographical error caused
then the second one in the Estimates part.
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Received: 8 September 2006 / Revised: 15 March 2007 / Published online: 14 April 2007
© Springer-Verlag 2007

Abstract In numerical computations the question how much does a function change
under perturbations of its arguments is of central importance. In this work, we investi-
gate sensitivity of Gauss–Christoffel quadrature with respect to small perturbations of
the distribution function. In numerical quadrature, a definite integral is approximated
by a finite sum of functional values evaluated at given quadrature nodes and multi-
plied by given weights. Consider a sufficiently smooth integrated function uncorrelated
with the perturbation of the distribution function. Then it seems natural that given the
same number of function evaluations, the difference between the quadrature approx-
imations is of the same order as the difference between the (original and perturbed)
approximated integrals. That is perhaps one of the reasons why, to our knowledge, the
sensitivity question has not been formulated and addressed in the literature, though
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several other sensitivity problems, motivated, in particular, by computation of the
quadrature nodes and weights from moments, have been thoroughly studied by many
authors. We survey existing particular results and show that even a small perturbation
of a distribution function can cause large differences in Gauss–Christoffel quadrature
estimates. We then discuss conditions under which the Gauss–Christoffel quadrature
is insensitive under perturbation of the distribution function, present illustrative exam-
ples, and relate our observations to known conjectures on some sensitivity problems.

1 Introduction

The computation of orthogonal polynomials and Gauss–Christoffel quadrature draws
upon several fields from classical analysis and approximation theory as well as mod-
ern numerical linear algebra. It has been intensively studied by many generations of
mathematicians.

Here we consider linear functionals in the form of the Riemann–Stieltjes integral
and restrict ourselves to distribution functions that are nondecreasing on a finite inter-
val [a, b] on the real line. By the k-point Gauss–Christoffel quadrature we mean the
approximation of a given Riemann–Stieltjes integral

Iω( f ) =
b∫

a

f (x) dω(x) (1)

by the discrete linear functional

I k
ω( f ) =

k∑

j=1

ϑ j f (t j ) ,

determined by nodes a ≤ t1 < · · · < tk ≤ b and positive weights {ϑ1, . . . , ϑk} such
that I k

ω( f ) = Iω( f ) whenever f is a polynomial of degree at most 2k−1 [6, Sect. 2.7],
[18]. The recent encyclopedic book by Gautschi [23], his surveys [18,24] and the
survey by Laurie [38] describe the state-of-the-art of Gauss–Christoffel quadrature
computation, and can be recommended as fundamental reading for anyone interested
in related problems.

In this paper we investigate sensitivity of Gauss–Christoffel quadrature with respect
to small perturbations in the distribution function. Suppose we have two distribution
functions ω(x) and ω̃(x) which are nondecreasing on the finite interval [a, b] and
close to each other. We are interested in estimating the two integrals

Iω =
b∫

a

f (x) dω(x), Iω̃ =
b∫

a

f (x) dω̃(x). (2)

Although it seems natural to expect that the Gauss–Christoffel quadrature estimates
of the same degree will be close when f is sufficiently smooth (and also uncorrelated
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with the difference between the given distribution functions), it is not clear that this
is true. If we use Gauss–Christoffel quadrature to compute the estimates, then ω(x)

and ω̃(x) induce different sequences of orthogonal polynomials. Therefore, the quad-
rature weights and nodes for the same degree of the quadrature might be different
from each other and in fact can be sensitive to small perturbations to the distribu-
tion function. Indeed, in Sect. 2 we present an example in which small changes in
the distribution function produce large changes in the nodes, weights and quadrature
approximations, even though the value of the approximated integral does not change
much. This motivates our further considerations.

In Sect. 3, we review particular subproblems arising from different methods for
computing Gauss–Christoffel quadrature formulas, with the emphasis on the sensi-
tivity of maps from (modified) moments to the nodes and weights of the computed
quadrature. For earlier results, refer to [15, p. 252 and Sect. 2], and for recent analysis
to [1,23,38]. Despite the vast literature on related subjects, the problem of sensitivity of
the Gauss–Christoffel quadrature has, to our knowledge, not been posed or examined
in the literature. That problem certainly is of theoretical importance, and it is desirable
to investigate its relationship with the subproblems studied in the literature. Section 4
recalls some basics about the error in Gauss–Christoffel quadrature approximations.
In Sect. 5 we present discussion and further examples that lead to some understanding
of the sensitivity of Gauss–Christoffel quadrature approximations. Section 6 gives a
summary and open questions.

Our interest in this problem originated in analysis of the conjugate gradient method
for solving linear systems and of the Lanczos method for solving the symmetric eigen-
value problem. The close relationship of these methods of numerical linear algebra
to Gauss–Christoffel quadrature of the Riemann–Stieltjes integral has been known
since their introduction; see [31, Sect. 14–18], [57, Chap. III]. In particular, the con-
jugate gradient method generates a sequence of Gauss–Christoffel approximations to
the piecewise constant distribution function that has jumps at the eigenvalues of the
linear operator equal in magnitude to the squared components of the normalized initial
residual along the corresponding eigenfunctions. Moreover, the size of the A-norm of
the error at the kth step of the conjugate gradient method has a natural interpretation
as the scaled remainder of the kth order Gauss–Christoffel quadrature approximation
of the Riemann–Stieltjes integral; see [5] and [40, Sects. 2.2 and 3.3] for a recent
review of related results and bibliography. There is also an interesting relationship of
the sensitivity of Gauss–Christoffel quadrature to the convergence properties of the
conjugate gradient and Lanczos algorithms in finite precision arithmetic. Its detailed
investigation is, however, out of the scope of this paper.

All experiments in this paper were performed using matlab on a computer with
machine precision ≈ 10−16.

2 Motivating examples

We now present an example of a nondecreasing discontinuous distribution function
ω(x) with finite points of increase, and a perturbation of this function, for which the
Gauss–Christoffel quadrature estimates can be quite sensitive. We use a distribution
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function from [51] with the value between a and the first point of increase zero, and
points of increase λ1 < · · · < λn ,

λi = λ1 + i − 1

n − 1
(λn − λ1) γ n−i , i = 2, . . . , n − 1,

where 0 < a < λ1, λn < b and γ ∈ (0, 1) is a properly chosen parameter. The sizes
of the individual jumps δi , i = 1, . . . , n are randomly generated using the matlab
command rand and normalized so that

b∫

a

dω(x) =
n∑

i=1

δi = 1.

We construct the related “perturbed” distribution function ω̃(x) to have two points
of increase for each single point of increase of ω(x). Given a positive perturbation
parameter ζ , where ζ � λ1 and ζ � λ2 − λ1, we replace each point of increase
λi of ω by two close points λ̃2i−1 ≡ λi − ζ and λ̃2i ≡ λi + ζ . We proportion the
jumps δ̃2i−1 and δ̃2i randomly (again using the matlab function rand), scaling so
that δ̃2i−1 + δ̃2i = δi . For a small ζ the distribution functions ω and ω̃ are close to
each other.

We consider a smooth function f (x) = x−1 and demonstrate that the difference
between the Gauss–Christoffel quadrature estimates of the same degree for Iω and Iω̃
can for some values of k become much larger than the difference between the integrals
themselves.

In our experiment we take λ1 = 0.1, λn = 100, a = λ1 − 10−5, b = λn +
10−5, n = 24, γ = 0.55, and ζ = 10−8. The Jacobi matrices containing the
recurrence coefficients of the corresponding orthogonal polynomials were computed
from the spectral data using the algorithm of Gragg and Harrod implemented in the
matlab routine rkpw.m; see [23,24,29].1 The Gauss–Christoffel quadrature nodes
and weights were computed as the eigenvalues and the squared first components of
the corresponding normalized eigenvectors of the Jacobi matrices using the matlab
routine gauss.m, see [23,24].2

In this first example, the Jacobi matrices could also be computed via the double-
reorthogonalized Lanczos process (conjugate gradient algorithm) applied to the diag-

onal matrix A = diag(λ1, . . . , λn) with the starting vector v1 = [(δ1)
1
2 , . . . , (δn)

1
2 ]T;

see [29,52]. Similarly, one could use the Lanczos process (CG algorithm) on Ã =
diag(λ̃1, . . . , λ̃2n) and ṽ1 = [(δ̃1)

1
2 , . . . , (δ̃2n)

1
2 ]T to compute the perturbed nodes and

weights. In this way the close relationship between the Gauss–Christoffel quadrature
and the Lanczos process (conjugate gradient method) could be exploited. For small
values of n the computational cost is negligible and the cost of reorthogonalization,

1 Please note that in [23,24] the same implementation is called lanczos.m. Since that might cause a
confusion with the implementation of the Lanczos process, we use the original name from [29, p. 328].
2 An interested reader can find all m-files used for generating our figures, including the extended precision
implementations, at http://www.cs.cas.cz/mweb, section “Applications”.

123



On sensitivity of Gauss–Christoffel quadrature 151

0 5 10 15 20
10

−10

10
−5

10
0

k

quadrature error − perturbed integral
quadrature error − original integral

0 5 10 15 20
10

−10

10
−5

10
0

k

difference − estimates
difference − integrals

Fig. 1 Sensitivity of the Gauss–Christoffel quadrature for distribution functions with finite points of
increase, ζ = 10−8. The top graph shows the error of the Gauss–Christoffel quadrature approximation
for f (x) = x−1 corresponding to the original stepwise distribution function ω (dash-dotted line) and to its
perturbation ω̃ with doubled points of increase (dashed line). The bottom graph displays the absolute value
of difference in the estimates (solid line) and the difference between the approximated integrals (dots)

considered in [29, p. 325], does not play a role. In the matlab routine pftoqd.m
we have also implemented the algorithm by Laurie which requires no subtractions;
see [36]. We emphasize that the same sensitivity phenomenon can be observed, with
differences which are here insignificant, using various computations of the recurrence
coefficients from the spectral data.3

In the top of Fig. 1 we plot the error of the Gauss–Christoffel quadrature approx-
imations |Ek

ω| ≡ |Iω − I k
ω| (dash-dotted line) and |Ek

ω̃
| ≡ |Iω̃ − I k

ω̃
| (dashed line),

and in the bottom we plot the difference between the Gauss–Christoffel approxima-
tions |I k

ω̃
− I k

ω| (solid line) and the difference between the approximated integrals
|∆| ≡ |Iω − Iω̃|≈ 3.443 × 10−9 (dots). (Both Iω ≈ 5.50658692032301 and Iω̃ were
computed as finite sums of positive numbers to a relative accuracy close to machine
precision). For k ≥ 8 the Gauss–Christoffel approximations of the integrals Iω̃ and
Iω start to differ very dramatically, and the size of that difference exceeds 10−1 for
k = 10. After that it is approximately equal to the error |Iω̃ − I k

ω̃
| until that quantity

drops below the size of the difference between the approximated integrals for k = 21.
This dramatic change in the estimates of the integral can be linked to a correspond-

ing sensitivity in the orthogonal polynomials. Though the distribution functions ω and
ω̃ seem very close, the corresponding systems of orthogonal polynomials are quite
different. This is illustrated in Fig. 2, which shows the entries of the Jacobi matrices

3 That has been confirmed independently by Dirk Laurie, who computed, with the data from the motivat-
ing example, the Jacobi matrices, nodes and weights of the quadrature to full 16 digits of accuracy using
his software package (D. Laurie, Personal communication, October 2006). Other valuable independent
experiments were performed by Jarda Kautský (Personal communication, October 2006).
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Fig. 2 Top left: Diagonal and off-diagonal entries of the Jacobi matrices corresponding to the distribution
functions ω (solid line and dashed line, respectively) and ω̃ (dots and stars, respectively). The other plots
depict the quadrature nodes corresponding to the distribution function ω (circles) and ω̃ (pluses) versus. the
number of nodes k in the quadrature. Top right : all nodes. Bottom left: nodes near λn . Bottom right: nodes
near λ1

and the quadrature nodes (the zeros of the corresponding orthogonal polynomials) for
ω, ω̃ for iterations k = 5, . . . , 15. In the top left part the diagonal entries of the Jacobi
matrices for ω, ω̃ are plotted by the solid line and by dots, respectively. Similarly,
the off-diagonal elements are plotted by the dashed line and by stars, respectively.
Up to k = 7 the computed Jacobi matrices are very close with their difference close
to the square root of the machine precision. For k = 8, 9 the difference grows very
rapidly (though in the figure the entries are still graphically indistinguishable). The
corresponding entries suddenly completely depart at k = 10. The same is true for
some quadrature nodes. Up to k = 8 they are graphically indistinguishable. For k = 9
the nodes corresponding to ω (circles) and ω̃ (plusses) close to λ1 start to visually
differ, and eventually there are many fewer nodes for ω̃ near λ1 than there are for ω.
The missing nodes for ω̃ can be found close to λn , where they lie in pairs near the
nodes for ω. We can see that for ω̃, λ̃2n−1 and λ̃2n are approximated to full accuracy
starting from k = 13. Results are similar for different values of ζ , providing that
ζ � λ1, ζ � λ2 − λ1.

This first example motivates our investigation. In this paper we ask when, as illus-
trated in Figs. 1 and 2, Gauss–Christoffel quadrature is sensitive to small perturbations
of the distribution function, and under what conditions it is guaranteed to be insensi-
tive. Such conditions exist, which can be verified using the following second example.
Construct the perturbed distribution function ω̃(x) for ω(x) given above by placing a
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single (positive) λ̃i randomly in the interval of size 2ζ centered at λi , i = 1, . . . , n,
with δ̃i = δi . (Here we do not specify the position of λ̃1 and λ̃n relative to the cen-
ters of the intervals λ1 and λn ; it can be arbitrary.) Then, in contrast to the results
shown in Fig. 1, the difference between the Gauss–Christoffel quadrature estimates
for f (x) = x−1 seems for all k bounded by the size of the difference between the
approximated integrals |Iω − Iω̃|, independently of the choice of 0 < ζ < 0.1.

We will see that similar phenomena can be observed for continuous and even ana-
lytic distribution functions: Gauss–Christoffel quadrature can be highly sensitive to
some small changes of a given distribution function, and insensitive to others. Next
we describe such situations and relate them to theoretical results in the literature.

3 Literature review

As mentioned above, although the question on sensitivity of Gauss–Christoffel quad-
rature has not, to our knowledge, been addressed in the literature, some related prob-
lems have been thoroughly investigated. In this section we summarize what is known
about the sensitivity of generating the coefficients of the three-term recurrence satis-
fied by polynomials orthogonal with respect to the integral (1) and then computing
the quadrature nodes and weights from the recurrence coefficients. The richness of
the mathematical roots of this field is evidenced in the fact that the same problems
have been described independently in many different ways and analyzed using many
different techniques in literature that has little cross-reference. It would be very useful
to relate in detail all of the existing results, but in this section we give just a brief
overview.

3.1 Sensitivity in computation of the recurrence coefficients

Analytic expressions for the recurrence coefficients are explicitly known for some clas-
sical distribution functions and the corresponding orthogonal polynomials; see, e.g.,
[24, p. 217], [38, p. 203], [53]. In practical applications, though, an analytic knowledge
of the recurrence coefficients is exceptional, and one has to calculate them. Gautschi
[24] presented four techniques. Using our terminology these are:

T1. A modified Chebyshev algorithm.
T2. Discretization of the distribution function.
T3. Computation of the recurrence coefficients for the discrete Riemann–Stieltjes

integral.
T4. Computation of the recurrence coefficients for one distribution function from

known coefficients for another distribution function.

The technique T4 is not generally applicable, restricted to the case in which the
original distribution function is multiplied by a rational nonnegative function [24,
Sect. 2.5], [23, Sect. 2.4]. The problem of changes in orthogonal polynomials with
respect to certain classes of modifications to the distribution function has been studied
in many papers; see, e.g., [33,56], and [23, Sect. 2.4]. For a description of an old gen-
eral result attributed to Markov concerning the dependence of the zeros of orthogonal
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polynomials on the parameter in the distribution function we refer to [55, Sect. 6.12,
pp. 111–112]. Though such results are somewhat related to the problem of sensitiv-
ity of the Gauss–Christoffel quadrature, they are either of restricted applicability or
merely qualitative. They do not lead to a general perturbation theory.

The modified Chebyshev algorithm T1 represents an example of a more general
approach based on knowledge of the recursion coefficients for some classical orthog-
onal polynomials determined by an auxiliary distribution function [24, Sect. 2.2].
Assume that the modified moments of the chosen (auxiliary) orthogonal polynomials
with respect to the original distribution function can be determined accurately. From
these moments and the known recurrence coefficients of the auxiliary polynomials,
the modified Chebyshev algorithm determines the unknown recurrence coefficients
of the desired orthogonal polynomials. The difficulties are the possibly large compu-
tational cost (not important in the context of our paper) and the possible inaccuracy
in the computed results. The last difficulty has been thoroughly studied by Gautschi;
see [15–17,19], and Sect. 2.1 of the book [23]. Subsect. 2.1.3 defines the following
maps:

Kk : the map from the modified moments to the recurrence coefficients;
Gk : the map from the modified moments to the nodes and weights of the computed

quadrature;
Hk : the map from the nodes and weights of the computed quadrature to the recurrence

coefficients.

Then Kk can be represented as a composition of the other two maps,

Kk = Hk ◦ Gk .

The condition numbers attributed to Gk and Kk were studied in [23, Sects. 2.1.4,
2.1.5 and 2.1.6, pp. 59–75]. If monomials are used as the auxiliary polynomials, the
modified moments reduce to ordinary moments and the maps Gk and Kk are notori-
ously ill-conditioned. Even for a good choice of the auxiliary polynomials (such as the
Chebyshev polynomials) and modified moments the situation is not simple. There are
distribution functions for which the condition numbers are small, but there are other
distribution functions for which the condition numbers grow exponentially with the
number of nodes k. Moreover, the assumption that the modified moments are known
accurately is difficult to satisfy; see [38, Sect. 3.2].

The general question of how to choose the auxiliary distribution function was ana-
lyzed by Beckermann and Bourreau in the remarkable paper [1]. They showed, among
other results, that if the original and auxiliary distribution functions have different sup-
ports, i.e., the sets of all points of their increase, [23, p. 3], then the condition number
of Kk grows exponentially with k; see [1, Theorem 11, p. 93]. The authors further con-
jectured on the same page that the condition number of Kk is linked with the condition
numbers of the matrices of modified and mixed moments.

The map Hk is said to be generally well-conditioned in [23, p. 59], though numeri-
cally stable computation of the entries of the Jacobi matrix from the quadrature nodes
and weights is not easy; see [23, Sect. 3.1.1, pp. 154–155, Sect. 3.5, pp. 253–254
and Notes to Sect. 1.3, p. 50] with references to [36, Theorem on p. 168], [37,38] and
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[1, Theorem 1 and Corollary 8]. (See also the last two paragraphs of this section, which
explain in detail history of that problem and the fact that the algorithmic construction
of Laurie in [36] also gives the perturbation result.) Further results on the condition
numbers of the map Hk (and also of its inverse H−1

k ) can be found in [1, relation (7),
Sect. 2 and Appendix], see also [14, Sect. 4, pp. 190–193]. (We address the map H−1

k ,
in particular sensitivity of the nodes and weights and their computation from the entries
of the Jacobi matrix, in Sect. 3.2). The approach from [14] is based on a remarkable
result by Nevai on modification of the recurrence coefficients when adding a single
point of increase to the given distribution function; see [43, Sect. 7, Lemma 15, p. 131],
[14, Sect. 3, Lemma 1, p. 187]. For an instructive algebraic description and application
of the same idea we refer to [12,13]. It is interesting that essentially the same problem
of sensitivity of the entries in the Jacobi matrix to small perturbations of the nodes and
weights of the corresponding distribution function (i.e., the eigenvalues and the first
components of the normalized eigenvectors respectively) has recently been studied in
a different way (independently of the results mentioned above) in [11]; see also [42]
and the earlier paper [59]. A related more general problem of sensitivity of the Lanczos
reduction has been thoroughly investigated in [45], see also [4,34].

The maps Kk, Hk and Gk are interesting to study. However, as we will see in
Sect. 5, they do not represent a relevant tool for investigation of sensitivity of Gauss–
Christoffel quadrature. Their detailed discussion has been included here in order to
explain the differences between the sensitivity problems studied previously and the
sensitivity question posed and investigated in this paper.

The techniques T2 and T3 couple into one approach. The basic idea behind the dis-
cretization methods (see [24, Sect. 2.4], [23, Sect. 2.2, p. 90]) is an approximation of the
given distribution function by a suitable discrete distribution function, computation of
the recurrence coefficients for the discrete distribution function, and approximation of
the desired recurrence coefficients by the computed (discrete) ones. Gautschi identified
in [23, p. 90] two important issues which must be considered: the appropriate choice
of discretizations and convergence of the discrete orthogonal polynomials (recurrence
coefficients) to the desired ones. Both issues are tightly related. In the simple case
when the original distribution function is composed of several components for which
the analytic formulas for the orthogonal polynomials (Legendre, Chebyshev, ...) are
known, discretization by a suitable combination of the N -point Gauss-type quadra-
tures (Gauss–Legendre, Gauss–Chebyshev, ...) for a sufficiently large N � k gives
the result. Assuming exact arithmetic, the first N − 1 polynomials orthogonal with
respect to the original distribution function are then also orthogonal with respect to
the discretized distribution function, and the desired recurrence coefficients are deter-
mined accurately; see [24, p. 222]. Practical cases can be much more complicated, and
finding an appropriate discretization is a rather involved procedure [23, Sect. 2.2.4].

There is one additional very important issue not mentioned in [23,24]. Convergence
N → ∞ describes the limiting case. In order to evaluate the accuracy of the methods
based on discretization, one must be able to estimate the discretization error for a finite
N . In other words, one must investigate how fast the discrete orthogonal polynomials
converge to the desired ones, or, in a more complex way, sensitivity of the Gauss–
Christoffel quadrature under small perturbations of the original distribution function.
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It seems that sensitivity is indeed a fundamental issue which cannot be omitted from
consideration. If the Gauss–Christoffel quadrature is sensitive to small perturbations
of the distribution function, then the computation based on the discretization may
in general fail even if the discrete orthogonal polynomials, and, subsequently, the
nodes and weights of the discrete quadrature, are determined accurately. A particular
discretization procedure is not justified without proving that the results of the Gauss–
Christoffel quadrature are insensitive with respect to the perturbation of the original
distribution function represented by its discretization.

Finally, we discuss computation of the recurrence coefficients for the discrete
Riemann–Stieltjes integral. This is an inverse problem: given nodes and weights of
the N -point discrete Gauss–Christoffel quadrature formula, compute the entries of
the corresponding Jacobi matrix.4 In order to find the approximation to the desired
k-point Gauss–Christoffel quadrature, we actually do not need the whole N by N
Jacobi matrix, so we stop when we obtain its k by k left principal submatrix, k � N .
In the classical language of orthogonal polynomials, the problem is solved by the
discrete Stieltjes process [23, Sect. 2.2.3.1, p. 95]. In the language of numerical linear
algebra, the Stieltjes process (implemented with modified Gram–Schmidt orthogonal-
ization and normalization of the orthogonal polynomials) is equivalent to the Lanczos
algorithm (see, e.g., [29, p. 322]), which is numerically unstable. This fact has been
noted in the orthogonal polynomial literature (see, e.g., [19,20], [14, Sect. 2]), and
reorthogonalization has been rejected as too costly [29, p. 325]. When k is small,
however, the cost of reorthogonalization is negligible. Moreover, the analysis of the
Lanczos algorithm behavior in finite precision arithmetic by Paige, Parlett, Scott,
Simon, Greenbaum and others (reviewed, for example, in [40]) is almost unknown
in the literature of orthogonal polynomial community, despite some notable work
[2,3,22,26,28,33] which emphasizes the interplay between the classical polynomial
and vector algebraic formulations. The analysis can supply, at least, very convincing
examples for illustrating and testing numerical instabilities.

In order to overcome the numerical instability of the Lanczos algorithm, Gragg
and Harrod suggested in their beautiful paper [29] a new algorithm based on ideas of
Rutishauser. For an interesting experimental comparison, see [48, Sect. 2]. An alter-
native approach, based on the above mentioned results of Nevai [43], along with an
experimental comparison, can be found in [14]. From numerical results Gragg and
Harrod spotted a curious phenomenon: close nodes and weights can give two very
different k × k Jacobi matrices. They concluded that the problem of reconstructing a
Jacobi matrix from the weights and nodes is ill-conditioned [29, p. 330 and 332]. This
conclusion has been examined by Laurie [36], who pointed out that the negative state-
ment is linked to the use of the max-norm for vectors. He suggested instead measuring
the perturbation of the weights in the componentwise relative sense [36, p. 179], [38,
Sect. 6]. The main part of [36] is devoted to the constructive proof of the following
statement [36, Theorem on p. 168]: given the weights and the N −1 positive differences
between the consecutive nodes, the main diagonal entries of the corresponding Jacobi
matrix (shifted by the smallest node) and the off-diagonal entries can be computed in

4 Note that the inverse problem corresponds in the literature to the map Hk , not to H−1
k .
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9
2 N 2 + O(N ) arithmetic operations, all of which can involve only addition, multipli-
cation and division of positive numbers. Consequently, in finite precision arithmetic
they can be computed to a relative accuracy no worse than 9

2 N 2ε + O(Nε), where ε

denotes machine precision. This result bounds also the conditioning of the problem.
If the weights and the N − 1 positive differences between the consecutive nodes are
perturbed, with the size of the relative perturbations of the individual entries bounded
by some small ε, then such perturbation can cause a relative change of the individual
entries of the shifted main diagonal and of the individual off-diagonal entries of the
Jacobi matrix not larger than 9

2 N 2ε+ O(Nε). The resulting algorithm combines ideas
from earlier works from approximation theory, orthogonal polynomials, and numerical
linear algebra.

3.2 Sensitivity and computing of the quadrature nodes and weights

Computing the quadrature nodes and weights is of great interest on its own. If the
recurrence coefficients are used to construct a symmetric tridiagonal matrix with pos-
itive subdiagonals (Jacobi matrix), then, as mentioned above, the quadrature nodes
are the eigenvalues and the weights are the first components of the normalized eigen-
vectors; see, e.g., [23, Sect. 3.1.1.1, pp. 152–154; Sect. 3.5, pp. 253–254]. In some
special cases such as Gauss–Legendre quadrature, it is useful to consider also different
ways of computing the quadrature nodes and weights; see [54]. It should be noted,
however, that the comparison given in [54] does not refer to the recent developments
in eigensolvers for Jacobi matrices recalled below. In most cases, computing the quad-
rature nodes and weights reduces to computing eigenvalues and the first components
of eigenvectors of Jacobi matrices.

It is well known that two Jacobi matrices that are close to each other also have
close eigenvalues and eigenvectors in the absolute sense, where the closeness is mea-
sured by the absolute values of the differences between the corresponding individual
eigenvalues and the corresponding individual eigenvectors; see, e.g., [27, Chap. 8],
[33, p. 454], [11, p. 104], and [1, relation (7) and Appendix] mentioned above. For
eigenvectors, the proportionality constant depends on the relative gaps between the
eigenvalues of the unperturbed matrix. However, two close Jacobi matrices do not
necessarily have eigenvalues that are close in a relative sense. A small perturbation
of the entries of the Jacobi matrix can cause a large relative change in the eigen-
values and the eigenvector entries; see [8, pp. 71–72] and [39]. It is worth noting that
Kahan has shown that small relative changes in the entries of the Cholesky factors of
a positive definite Jacobi matrix do cause small relative changes in the eigenvalues
of the Jacobi matrix [46, p. 123]; see also [7]. The thesis [8] gives also a comparison of
different numerically stable algorithms for computing eigenvalues and eigenvectors
of Jacobi matrices; see also the survey and comments in [38, Sect. 2], and the recent
work [9,10,30,58]. We can conclude that the computation and perturbation theory of
quadrature nodes and weights from the recurrence coefficients is well understood. The
main difficulty in perturbation analysis and in computation of the Gauss–Christoffel
quadrature lies in generating the recurrence coefficients.
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Given this vast literature and our motivating example from the previous section,
we focus our attention on the sensitivity of the quadrature formulas to changes in the
distribution function.

3.3 Application to motivating examples: when larger support matters

The main difference between the first example at the beginning and the second example
at the end of Sect. 2 consists in whether or not the number of points of increase (i.e.,
the ‘size’ of the support) is changed when ω is perturbed to form ω̃. We will show that
if there is no change in the number of points of increase, then a result by Laurie [36]
explains the observed insensitivity of Gauss-quadrature for small enough perturba-
tions.

Suppose we perturb the (discrete) ω of Sect. 2, resulting in ω̃ with the same num-
ber of points of increase. Then, by Laurie’s result, the corresponding shifted Jacobi
matrices are close to each other in the componentwise relative sense. Using a classi-
cal perturbation result for eigensystems of symmetric matrices, the resulting Gauss–
Christoffel quadrature nodes and weights for ω and ω̃ must also be close to each
other, with individual differences proportional to the perturbation parameter ζ . Con-
sequently, for the (smooth and monotonic) function f (x) = x−1 with ζ sufficiently
small, the difference between the quadrature estimates must be proportional to the
difference between the approximated integrals |Iω − Iω̃|.

There are two limitations of this argument. First, it does not apply to the first moti-
vating example, since Laurie’s result cannot be applied when the number of points of
increase changes. Second, it does not apply to the second motivating example either,
since the value of ζ = 10−8 was chosen too large. It does, however, provide quantita-
tive sensitivity results for smaller ζ , or when ω and ω̃ coincide at all points of increase,
except for, say, λn , which is well separated from λ1, . . . , λn−1. We next prove a result
that does predict the difference in behavior of our two examples.

4 Quadrature differences in terms of approximation error

We present a slight generalization of a result found in the classic textbook of Isaacson
and Keller [32] in Theorem 3 (p. 329) and in the second line of the identity (6) on
p. 334.

The standard approach to Gauss quadrature of the Riemann integral and to Gauss–
Christoffel quadrature of the Riemann–Stieltjes integral is based on Hermite interpo-
lation and is attributed to Markov; see, e.g., [18, p. 82]. Here we take advantage of
results based on Lagrange interpolation. This allows us to retain k free parameters in
the remainder term for the kth order quadrature, which will later prove convenient in
evaluation of the quadrature differences. In our exposition we follow the presentation
of Gauss–Christoffel quadrature given by Lanczos in [35, Chap. VI, Sect. 10], cf.
also [21, Theorem 3.2.1].

Choose k distinct points x1, . . . , xk inside the interval [a, b], and let qk(x) =
(x − x1) . . . (x − xk). Then the Lagrange polynomial interpolating f (x) at the points
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x1, . . . , xk can be written as

Lk(x) =
k∑

j=1

f (x j )
qk(x)

q ′
k(x j )(x − x j )

,

and

f (x) = Lk(x) + qk(x) f [x1, . . . , xk, x],

where f [x1, . . . , xk, x] is the kth divided difference of f with respect to x1, . . . , xk, x ;
see e.g., [32, Sect. 6.1]. We can derive a corresponding interpolatory quadrature
formula

b∫

a

f (x) dω(x) =
k∑

j=1

ϑ j f (x j ) +
b∫

a

qk(x) f [x1, . . . , xk, x] dω(x), (3)

where the last term represents the error and

ϑ j = 1

q ′
k(x j )

b∫

a

qk(x)

(x − x j )
dω(x), j = 1, . . . , k. (4)

Up to now x1, . . . , xk were arbitrary distinct nodes inside [a, b]. The beauty of the
Gauss–Christoffel quadrature is in setting the interpolatory nodes equal to the roots
of the kth orthogonal polynomial corresponding to ω(x). Then we can consider k
additional distinct nodes inside [a, b] which we need not even know and show that the
interpolatory quadrature on k nodes is as accurate as if 2k nodes had been used. This
elegant consequence is summarized in the following theorem.

Theorem 1 Consider a nondecreasing function ω(x) on a finite interval [a, b]. Let
pk(x) = (x − t1) . . . (x − tk) be the kth monic orthogonal polynomial with respect
to the inner product defined by the Riemann–Stieltjes integral on the interval [a, b]
with the distribution function ω(x). Choose k arbitrary distinct points µ1, . . . , µk in
[a, b]. Let

Iω =
b∫

a

f (x) dω(x), (5)

where f ′′ is continuous on [a, b], and let I k
ω be the approximation to Iω obtained from

the k-point Gauss–Christoffel quadrature rule. Then for m = 1, . . . , k, the error of
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this approximation is given by

Ek
ω( f ) ≡ Iω − I k

ω =
b∫

a

pk(x) f [t1, . . . , tk, x] dω(x) (6)

=
b∫

a

pk(x)(x − µ1) . . . (x − µm) f [t1, . . . , tk, µ1, . . . , µm, x] dω(x), (7)

where f [t1, . . . , tk, µ1, . . . , µm, x] is the (k + m)th divided difference of the func-
tion f (x) with respect to the nodes t1, . . . , tk, µ1, . . . , µm, x .

Proof Assume, for the moment, that the nodes µ1, . . . , µk are distinct from the nodes
t1, . . . , tk . If we derive the quadrature rule (3), (4) using t1, . . . , tk , then we have

b∫

a

f (x)dω(x) =
k∑

j=1

ϑ j f (t j ) +
b∫

a

pk(x) f [t1, . . . , tk, x] dω(x),

where the continuity of f ′ guarantees the finiteness of the divided difference as x
varies. If f (x) is a polynomial of degree at most 2k − 1, then f [t1, . . . , tk, x] is a
polynomial in x of degree at most k − 1 and the rule is exact, since the orthogonality
of pk(x) to all such polynomials makes the error term equal to zero. Consequently,
the resulting interpolatory quadrature represents the Gauss–Christoffel quadrature.
If we derive a quadrature rule using the points t j plus the new nodes µi , then for
m = 1, . . . , k,

b∫

a

f (x) dω(x) =
k∑

j=1

ϑ̂ f (t j ) +
m∑

i=1

ξ̂i f (µi )

+
b∫

a

pk(x) (x − µ1) . . . (x − µm) f [t1, . . . , tk, µ1, . . . , µm, x] dω(x).

We observe from (4) that for i = 1, . . . , m the weight ξ̂i of each additional node is
proportional to

b∫

a

pk(x)ri (x) dω(x) = 0,

where ri (x) = (x − µ1) . . . (x − µm)/(x − µi ) is a polynomial of degree at most
k − 1, and therefore the orthogonality of pk(x) to all such polynomials results in a
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zero weight. Consequently, the contribution of the additional nodes µ1, . . . , µm to the
integration formula vanishes, i.e.,

m∑

i=1

ξ̂i f (µi ) = 0.

It follows from uniqueness of the Gauss–Christoffel quadrature rules that ϑ j = ϑ̂ j

and the statement is proved.
If some µi is equal to some t j , then replacing the Lagrange interpolant by the Her-

mite interpolant (cf. [41, p. 175], [32, p. 330]), and using the continuity of f ′′ finishes
the proof in an analogous way. �

For analytic functions f (x) it is possible to express the error of the Gauss–
Christoffel quadrature rule without using derivatives or divided differences. Letting
pk(x) be as above, the function

ρk(z) =
b∫

a

pk(x)

z − x
dω(x)

is analytic in the complex plane outside the interval [a, b]. Suppose that f (z) is ana-
lytic in a simply connected domain containing [a, b] in its interior, and let Γ be a
simple closed positively oriented curve in that domain encircling [a, b]. Then

Ek
ω( f ) = 1

2π
√−1

∫

Γ

Kk(z) f (z) dz, Kk(z) = ρk(z)

pk(z)
; (8)

see [23, Theorem 2.48], [6, p. 303, relation (4.6.18)]. This identity has been applied to
estimate the error and to study its decrease with k for some particular classes of dis-
tribution functions ω(x) [18,23,25], [6, Sect. 4.6]. The kernel Kk(z) depends through
pk(z) and ρk(z) on the given distribution function ω(x). The question of sensitivity of
Ek

ω( f ) with respect to perturbations of the distribution function ω(x) is thus reduced
to the question of sensitivity of Kk(z), where z lies on a properly chosen curve Γ in
the complex plane, with respect to small perturbations of ω(x).

An application of Theorem 1 gives the following important result, an expression
for the difference between the Gauss–Christoffel quadrature approximations.

Theorem 2 Let pk(x) = (x − x1) . . . (x − xk) be the kth orthogonal polynomial with
respect to dω on [a, b], and let p̃k(x) = (x − x̃1) . . . (x − x̃k) be the kth orthogonal
polynomial with respect to dω̃. Denote by p̂s(x) = (x − ξ1) . . . (x − ξs) the least
common multiple of the polynomials pk(x) and p̃k(x). If f ′′ is continuous on [a, b],
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then the difference between the approximation I k
ω to Iω and the approximation I k

ω̃
to

Iω̃, obtained from the k-point Gauss–Christoffel quadrature rule, is bounded as

|I k
ω − I k

ω̃| ≤
∣∣∣∣∣∣

b∫

a

p̂s(x) f [ξ1, . . . , ξs, x] dω(x) −
b∫

a

p̂s(x) f [ξ1, . . . , ξs, x]dω̃(x)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

b∫

a

f (x)dω(x) −
b∫

a

f (x)dω̃(x)

∣∣∣∣∣∣
. (9)

Proof Consider the difference between the two Gauss quadrature approximations:

I k
ω − I k

ω̃ = Iω − Ek
ω − (Iω̃ − Ek

ω̃) = (Ek
ω̃ − Ek

ω) + (Iω − Iω̃). (10)

Let the polynomials pk(x) and p̃k(x) have k − m common zeros, numbered so that
xm+1 = x̃m+1, . . . , xk = x̃k . Let s = k + m and use the last equality in Theorem 1
twice. For Ek

ω set the points t1, . . . , tk in the theorem to be the zeros of pk(x), and
set the points µ1, . . . , µm to be the first m zeros x̃1, . . . , x̃m of p̃k(x). For Ek

ω̃
, set the

points t1, . . . , tk to be the zeros of p̃k(x), and set the points µ1, . . . , µm to be the first
m zeros x1, . . . , xm of pk(x). The statement will immediately follow. �

Note that from (10) the difference between the Gauss–Christoffel quadrature
approximations is of order of the difference between the integrals (or smaller) if
and only if the first term in the bound (9) is of order of the second term or smaller.
Please note that the integrands in the first term in the bound (9) are identical. This
simplifies the situation in comparison with a possible use of the standard quadrature
error formulas known from the literature, from which it seems very difficult to get
insight into the sensitivity phenomenon.

We state an analogous result for the weighted Riemann integral with nonnegative
weight function that is (for simplicity) continuous on the finite interval [a, b]. The
continuity assumption is not essential but simplifies the exposition.

Corollary 1 Let w(x) and w̃(x) be nonnegative and continuous functions on the finite
interval [a, b]; let

ω(x) =
x∫

a

w(t) dt, ω̃(x) =
x∫

a

w̃(t) dt, x ∈ [a, b]

be the corresponding distribution functions. Then the integrals Iω and Iω̃ in (2)

represent the weighted Riemann integrals. Using the notation and assumptions of
Theorem 2,
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|I k
ω − I k

ω̃| ≤
∣∣∣∣∣∣

b∫

a

p̂s(x) f [ξ1, . . . , ξs, x](w(x) − w̃(x)) dx

∣∣∣∣∣∣

+
∣∣∣∣∣∣

b∫

a

f (x)(w(x) − w̃(x)) dx

∣∣∣∣∣∣
. (11)

Proof The statement follows immediately as a special case of Theorem 2. �

If f (x) is analytic, we can get identities which do not contain divided differences.
Using the kernel expression of the error (8),

|I k
ω − I k

ω̃| ≤ 1

2π

∣∣∣∣∣∣

∫

Γ

(Kk(z) − K̃k(z)) f (z)dz

∣∣∣∣∣∣
+ |Iω − Iω̃|

= 1

2π

∣∣∣∣∣∣

∫

Γ

ρk(z) p̃k(z) − ρ̃k(z)pk(z)

pk(z) p̃k(z)
f (z) dz

∣∣∣∣∣∣
+ |Iω − Iω̃| . (12)

5 Discussion and numerical illustrations

The previous section presents simple bounds for the size of the difference |I k
ω − I k

ω̃
|

between the results of the k-point Gauss–Christoffel quadrature which immediately
follow from the identity (10) and the quadrature error formulas. As shown in The-
orem 2, the crucial first term on the right hand side of (10) represents a difference
between two integrals with the same integrand p̂s(x) f [ξ1, . . . , ξs, x] and different
distribution functions ω and ω̃. We will explain why for some distribution functions ω

and nearby ω̃, with f sufficiently smooth and uncorrelated with the difference ω − ω̃,
this term must inevitably become large, while for slightly different nearby distribution
functions the term remains small. We will start with a closer look at our motivating
examples from Sect. 2.

5.1 Discrete distribution functions: motivating example revisited

First, for clarity of exposition, we simplify the motivating examples from Sect. 2: in
both examples keep the first n − 1 points of increase of ω̃(x) equal to λ1, . . . , λn−1,
with the corresponding weights δ1, . . . , δn−1. Thus, in both examples, ω̃(x) differs
from ω(x) only near λn . In the first example, λn is replaced by two points of increase
λ̃n = λn − ζ and λ̃n+1 = λn + ζ , with the (positive) weights δ̃n , respectively δ̃n+1,
δ̃n + δ̃n+1 = δn . In the second example λn is perturbed to λ̃n = λn + ζ with δ̃n = δn .

For f (x) = x−1 we get f [ξ1, . . . , ξs, x] = (−1)s(x ξ1 . . . ξs)
−1, which holds, by

induction, for any s ≤ 2k. Therefore the integrand in the first part of the bound (9) for
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the k-point quadrature simplifies to

gk(x) ≡ p̂s(x) f [ξ1, . . . , ξs, x] = p̂s(x)

x p̂s(0)
= f (x)

p̂s(x)

p̂s(0)
, (13)

where the last term represents a polynomial having value one at zero. Using (7) we
find that

Ek
ω̃ − Ek

ω ≡ hk

where

hk ≡ δ̃n (gk(λ̃n) − gk(λn)) + δ̃n+1 (gk(λ̃n+1) − gk(λn)).

Therefore, using (10) we have

I k
ω − I k

ω̃ = hk + ∆, ∆ = Iω − Iω̃.

In the second example, the second term in hk is nonexistent.
In the first example, Ek

ω̃
− Ek

ω = hk corresponds to the replacement of the single

λn by two nearby points λ̃n and λ̃n+1. With the given distribution functions ω and ω̃

and for some values of k � n, the term hk becomes much larger in magnitude than
|∆|.

For small k, the Gauss–Christoffel quadrature approximation I k
ω̃

does not recognize

λ̃n and λ̃n+1 as two distinct points, and hk is small. For larger k, λn becomes closely
approximated by the largest node from the Gauss–Christoffel quadrature approxima-
tion I k

ω of Iω, and gk(λn) becomes very small. At the same time, λ̃n and λ̃n+1 are
approximated by a single quadrature node from I k

ω̃
, placed in between them. Then

gk(x) has in between λ̃n and λ̃n+1 two roots, with one of them very close to λn .
As k grows, this will soon become not enough to keep hk small, since gk(λ̃n) and
gk(λ̃n+1) will grow in magnitude and are of the same sign, while gk(λn) is small due
to the closeness of the quadrature node for I k

ω to λn . Consequently, the differences
gk(λ̃n) − gk(λn) and gk(λ̃n+1) − gk(λn) will also grow in magnitude and are of the
same sign. Inevitably, for some value of k, I k

ω̃
has to place a second node, so that

both λ̃n and λ̃n+1 are sufficiently closely approximated and the size of the term hk is
kept under control. For that k, then, compared to the quadrature formula for I k

ω, the
quadrature formula for I k

ω̃
has one fewer node in some other part of the interval of

integration. Therefore |I k
ω̃
− I k

ω| will suddenly become large. The missing node appears
in the (k + 1)st step of the Gauss–Christoffel quadrature approximation. Therefore,
from then on, although |I k

ω̃
− I k

ω| may not be small, the difference shifted by one step,

i.e., |I k+1
ω̃

− I k
ω|, is small.

The situation is illustrated in Fig. 3. In the top part the quadrature errors Ek
ω and

Ek
ω̃

are plotted by the solid and dashed line, respectively. They cannot be visually
distinguished until k = 9. Starting from k = 11, the convergence of I k

ω̃
is delayed
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Fig. 3 Sensitivity of the Gauss–Christoffel quadrature for distribution functions with finite points of
increase which differ only near λn , ζ = 10−8. The top graph shows the error of the Gauss–Christoffel
quadrature approximation for f (x) = x−1 corresponding to the original stepwise distribution function ω

(solid line), to its perturbation ω̃ with two points of increase near λn (dashed line), and to its perturbation ω̃

with four points of increase near λn (dash-dotted line). The bottom graph displays the off-diagonal entries
of the corresponding Jacobi matrices

by one step in comparison to I k
ω. Entries of the corresponding Jacobi matrices behave

in an interesting way, which is illustrated by plotting the off-diagonal entries in the
bottom part of the figure, with the solid line corresponding to I k

ω and the dashed line to
I k
ω̃

. Until k = 9 the lines coincide. For k = 10, 11 the corresponding entries separate,
and, starting from k = 12, the dashed line is just delayed (shifted to the right) by one
step.

The dash-dotted lines in both parts of Fig. 3 correspond to an additional exam-
ple where λn is replaced by four close points λ̃n = λn − ζ , λ̃n+1 = λn − ζ/3,
λ̃n+2 = λn + ζ/3, λ̃n+3 = λn + ζ , while the new points share the original weight δn .
The situation is fully analogous. Starting from k = 14 and k = 18, the convergence
of I k

ω̃
is delayed by two and three steps, respectively.

The behavior of gk(x) is illustrated in Fig. 4. For clarity we plot sign(gk(x))

log10(1 +|gk(x)|). The left part plots the behavior in the whole interval of integration
for k = 10. The right part plots the behavior near λn for k = 9, 11, 12. For k = 9 the
line is close to the horizontal axis. For k = 11 we can observe the increasing gradient
of gk(x) (ζ = 10−8), and for k = 12 both λ̃n and λ̃n+1 are closely approximated by
quadrature nodes of I k

ω̃
.

This phenomenon is closely related to the fact that the presence of close eigenvalues
affects the rate of convergence of the conjugate gradient method; see the beautiful
explanation given by van der Sluis and van der Vorst [49,50]. Similarly, it is closely
related to the convergence of the Rayleigh quotient in the power method and to the
so-called ‘misconvergence phenomenon’ in the Lanczos method see [44,47]. In exact
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Fig. 4 The behavior of gk (x), see (13) (for better graphical view we plot sign(gk (x)) log10(1 + |gk (x)|)).
The left part shows the behavior in the whole interval of integration for k = 10. The points of increase λ̃n
and λ̃n+1 are approximated by a single node of I k

ω̃
between them (the node close to 90 is still far away).

The right part displays the behavior near λn for k = 9 (dash-dotted line), k = 11 (dashed line) and k = 12
(solid line). For k = 12 both nodes λ̃n and λ̃n+1 are very closely approximated by the nodes of I k

ω̃

arithmetic in the presence of very close eigenvalues, a Ritz value in the Lanczos and the
CG method initially converges to the cluster as fast as if the cluster were replaced by
a single eigenvalue with the combined weight. Within a few further steps it converges
very fast to one of the eigenvalues, with another Ritz value converging simultaneously
to approximate the rest of the cluster. In the presence of more than two eigenvalues
in a cluster, the story repeats until all eigenvalues in a cluster are approximated by
individual Ritz values.

Now we consider the second modified example, where λn is perturbed to λ̃n =
λn + ζ , δ̃n = δn . Then I k

ω̃
converges to Iω̃ with the same speed as I k

ω to Iω, there
is no delay, and the fact that |Ek

ω − Ek
ω̃
| is small can be proved using the result by

Laurie [36]; see Sect. 3.3.
In the original motivating examples from Sect. 2 the situation is quite analogous,

with the effects described on the simplified examples now taking place (for different
values of k) near λn, λn−1, . . . . A steep increase of |I k

ω − I k
ω̃
| significantly above |∆|

is well pronounced in the presence of well-separated rightmost points λn, λn−1, . . . ,
because they are fast approximated to high accuracy by the quadrature nodes. The
phenomenon is almost independent of the position of the eigenvalues within the indi-
vidual clusters (here 0 < ζ < 0.1 in order to ensure λ̃1 > 0); see a similar statement
in [49, Sect. 6.7, point (d), p. 559]. When λn is well-separated, the phenomenon must
take place even for very small ζ .

The sensitivity of the Gauss–Christoffel quadrature is a consequence of the fact
that ω̃ has more points of increase (here two) close to the single points of increase
of ω. The Gauss–Christoffel quadrature is sensitive because the number of points
{λ̃1, . . . , λ̃m} in the support of ω̃ is larger than the number in the support {λ1, . . . , λn}
of ω. More precisely, ω̃ has more points of increase in the area where the gradient of
gk(x) becomes very large as k increases. The second example, with the same number
of points of increase, shows that moving each point of increase slightly does not cause
sensitivity if the number of points is kept the same.
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5.2 A continuous analog of the motivating example

Consider the analytic function Φ(x; σ) ≡ ∑n
i=1 δiϕ(x; σ, λi ), where 0 < a < λ1 <

· · · < λn < b, δ1, . . . , δn are as above and

ϕ(x; σ, t) ≡
[
1 + e− x−t

σ

]−1
(14)

is the strictly increasing sigmoid function with values between 0 and 1. Define the
distribution function

Ω(x; σ) ≡ c0 Φ(x; σ),

b∫

a

dΩ(x; σ) = 1, (15)

where c0 is the normalization constant. Clearly, Ω(x; σ) approximates the step func-
tion from the motivating example:

lim
σ→0

Ω(x; σ) = ω(x),

for all a ≤ x ≤ b except for x = λi , i = 1, . . . , n, and the value of the parameter σ

determines how closely Ω(x; σ) approximates ω(x).
In order make our computations accurate, we use the following linearization of

Ω(x; σ). Divide the interval [t − 10σ, t + 10σ ] into 2m equal subintervals, with
m = 50. Define ϕ̂(x; σ, t) to be the piecewise linear continuous function that interpo-
lates Ω(x; σ) at the endpoints of the subintervals and is constant on (−∞, t − 10σ ]
and [t + 10σ,∞). Then, using Φ̂(x; σ) ≡ ∑n

i=1 δi ϕ̂(x; σ, λi ), we obtain a linearized
distribution function

Ω̂(x; σ) ≡ c1 Φ̂(x; σ),

b∫

a

dΩ̂(x; σ) = 1, (16)

with c1 the normalization constant.
The Riemann–Stieltjes integral I

Ω̂
(x−1) = ∫ b

a x−1dΩ̂(x; σ) can be computed
analytically. The recurrence coefficients of the orthogonal polynomials were com-
puted by the double-reorthogonalized Lanczos process, with the corresponding inte-
grals computed numerically. Using the partitioning described above and the fact that
Ω̂(x; σ) is linear on each subinterval, we conveniently use on each subinterval the
Gauss–Legendre quadrature of sufficient order, implemented in matlab by Laurie
in the file r_jacobi.m; see [24, Sect. 2.1]. For determining the quadrature nodes
and weights we then use the standard approach implemented in the file gauss.m
by Gautschi [23, pp. 153–154], [24, Sect. 2.4]. We use σ = 10−8 and σ = 10−6,
a = λ1 − 10−5 = 10−1 − 10−5 and b = λn + 10−5 = 100 + 10−5. Results for the
original distribution function Ω̂(x; 10−8) and its perturbation Ω̂(x; 10−6), analogous
to Figs. 1 and 2, are presented in Figs. 5 and 6. We can observe the same phenomena
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Fig. 5 Sensitivity of the Gauss–Christoffel quadrature for the continuous distribution function Ω̂(x; σ).
The top graph shows the error of the Gauss–Christoffel quadrature approximation for f (x) = x−1 corre-
sponding to the original distribution function with σ = 10−8 (dash-dotted line) and to its perturbation with
σ = 10−6 (dashed line). The bottom graph displays the absolute value of difference in the estimates (solid
line) and the difference between the approximated integrals (dots)

as in the motivating example, and the explanation is analogous. Since now the distri-
bution functions are continuous, many quadrature nodes are eventually placed close
to the rightmost λn, λn−1, . . . for both σ = 10−8 and σ = 10−6.

We emphasize that the observed Gauss–Christoffel quadrature sensitivity is a con-
sequence of the fact that the support of Ω̂(x; 10−6), which is the union of intervals
of length 2 × 10−5 around the points λi , is larger than the corresponding support of
Ω̂(x; 10−8). If the supports were different (with the difference of a similar scale as
before) but of the same size, no sensitivity would occur. Indeed, computation confirms
that if Ω̃(x; 10−8) is a perturbation of the original distribution function Ω̂(x; 10−8)

obtained by shifting the individual sigmoids randomly 10−6 to the left or right, with
subsequent normalization, then the quadrature nodes and weights change propor-
tionally to the shifts of the individual sigmoids. The size of the difference between
the Gauss–Christoffel quadrature estimates for f (x) = x−1 and Ω̂(x; 10−8) and
Ω̃(x; 10−8) remains below or close to the size of the difference between the esti-
mated integrals. In short, in agreement with our discussion above, no sensitivity of the
Gauss–Christoffel quadrature appears.

5.3 Discussion: relationship to modified moments

We will explain that the sensitivity of the Gauss–Christoffel quadrature described
above cannot be analyzed by investigation of modified moments. Our point is that the
Gauss–Christoffel quadrature can be highly sensitive to some small changes of the
original distribution function but insensitive to others, and this principal difference
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Fig. 6 Quadrature nodes corresponding to the distribution function Ω̂(x; σ) with σ = 10−8 (circles) and
σ = 10−6 (pluses) in two subintervals close to λn (top) and λ1 (bottom). The horizontal axis is the number
of nodes k in the quadrature

cannot be captured by the conditioning of the map Kk from the modified moments to
the recurrence coefficients studied by Gautschi [23] and Beckermann and Bourreau [1];
see Sect. 3.1. In order to justify our claim, we will use the example with continuous
distribution functions given above.

Using the previous notation, consider the original distribution function Ω0(x) ≡
Ω̂(x; 10−8) and two perturbations Ω1(x) ≡ Ω̂(x; 10−6), Ω2(x) ≡ Ω̃(x; 10−8). We
will now consider Ω1(x) and Ω2(x) two different auxiliary distribution functions
in the sense of the modified Chebyshev algorithm; see Sect. 3.1. We know that the
Gauss–Christoffel quadrature is sensitive to change from Ω0 to Ω1, and insensitive to
change from Ω0 to Ω2. We might intuitively expect that the sensitivity in the first case
would be reflected by the ill-conditioning of the map K(1)

k , which corresponds to the
original distribution function Ω0 and the auxiliary distribution function Ω1, and that
the insensitivity is in the second case would perhaps be accompanied by well-condi-
tioning of the map K(2)

k , which corresponds to the original distribution function Ω0
and the auxiliary distribution function Ω2. But this is not true. The support of Ω0 is
different from the supports of Ω1 and Ω2, and using [1, Theorem 11, p. 93], we find
that both maps K(1)

k and K(2)
k are notoriously ill-conditioned.

In order to illustrate this numerically, we consider the conjecture [1, p. 93] that
there is a link between the condition number of Kk and that of the matrix of mixed
moments of the polynomials orthogonal with respect to the original and auxiliary
distribution functions (where the mixed moments are computed using the original dis-
tribution function; see [1, the matrix of transmission coefficients Tn(σ, s) on p. 93].
The mixed moments appear in the modified Chebyshev algorithm as intermediate
quantities; see [23, p. 76, relation (2.1.101)]). With a reference to the habilitation thesis
of Beckermann, it is argued that the condition number G Mk of the matrix of modified
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Fig. 7 Condition numbers of the matrix of the modified moments (G Mk , solid line) and of the matrix of
mixed moments (M Mk , dashed line). The left graph corresponds to the distribution functions Ω0 and Ω1,
and the right graph to the distribution functions Ω0 and Ω2

moments and the condition number M Mk of the matrix of mixed moments grow
exponentially if the supports of the original and the auxiliary distribution functions do
not coincide. This is illustrated in Fig. 7. Here G Mk is plotted by the solid line, M Mk

by the dashed line. The left part corresponds to the distribution functions Ω0 and Ω1,
the right part to Ω0 and Ω2. We can see the condition numbers G Mk and M Mk are
growing essentially exponentially with k in both cases. (The staircase character of the
plots is yet to be analyzed.) Using the conjecture in [1, p. 93], the fast growth of M Mk

can be linked with the ill-conditioning of the maps K(1)
k and K(2)

k .
In conclusion, the Gauss–Christoffel quadrature for a given distribution function

can be insensitive to some perturbations despite the corresponding large M Mk and the
corresponding ill-conditioning of the map Kk .

5.4 Analytic distribution functions with different support

The phenomena described above can also be observed with analytic distribution func-
tions. We present experiments with distribution function Ω(x; σ); see (15). The recur-
rence coefficients of the corresponding orthogonal polynomials are again computed
by the double reorthogonalized Lanczos process, where for the numerical computation
of the required integrals we use the matlab adaptive Lobatto quadrature quadl. The
quadrature nodes and weights are then determined as above using the code gauss.m.
We set a = 0.1 and b = 100.2. In order to reduce numerical errors below a noticeable
level we take λ1 = 0.3, λn = 100, n = 4, γ = 0.55, and consider the original distri-
bution function Ω(x; 0.04) and its perturbation Ω(x; 0.08). Figure 8 shows results
of the Gauss–Christoffel quadrature estimates for k = 1, . . . , 10, f (x) = x−1 (top)
and f (x) = 1 + sin(x) (bottom). The sensitivity of the Gauss–Christoffel quadrature
is here less pronounced than before. Still it is observable.

5.5 Analytic distribution functions with the same support

For slightly perturbed analytic functions with the same support the difference between
the Gauss quadrature approximations |I k

ω̃
− I k

ω| is typically of the order |Iω̃ − Iω| . For
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Fig. 8 Sensitivity of the Gauss–Christoffel quadrature for the analytic distribution function Ω(x; σ). The
figure shows the absolute value of the difference in the quadrature estimates (solid line) and the differ-
ence between the approximated integrals (dots) for f (x) = x−1 (top) and f (x) = 1 + sin(x) (bottom),
corresponding to the original distribution function with σ = 0.04 and to its perturbation with σ = 0.08

small values of k, the errors of the corresponding estimates are much larger than the
difference between them. Eventually the estimates must separate because they aim at
approximating different integrals. The value k for which the two estimates separate is
essentially determined by the difference between the approximated integrals. The roots
of the corresponding orthogonal polynomials are typically very stable. We performed
experiments, e.g., for the weight function w(x) = √

x − x2 for the shifted Chebyshev
polynomials of the second kind, for the highly oscillatory weight function w(x) =
1 + cos(10πx), and for the Jacobi weight functions w(x) = (1 − x)α(1 + x)β with
various values of the exponents and various perturbations.

We observed two characteristics in these experiments. First, the rate of decrease
of the quadrature error was exponential, which can be explained using the Cauchy
integrating kernels; see (8). Second, when perturbation of the distribution function
preserves its support (here the whole interval), the quadrature is not sensitive. For an
interesting example where the preservation of the support is linked with the analysis
of the conditioning of the map Kk we refer to [1, Example 15, p. 96].

6 Conclusions

Literature about Gauss–Christoffel quadrature and about its computational aspects is
extensive. This paper raises the following points which seem, however, new:

1. Gauss–Christoffel quadrature for a small number of quadrature nodes can be highly
sensitive to small changes in the distribution function. In particular, the difference
between the corresponding quadrature approximations (using the same number

123



172 D. P. O’Leary et al.

of quadrature nodes) can be many orders of magnitude larger than the difference
between the integrals being approximated.

2. This sensitivity in Gauss–Christoffel quadrature can be observed for discontinuous,
continuous, and even analytic distribution functions, and for analytic integrands
uncorrelated with changes in the distribution functions and with no singularity
close to the interval of integration.

3. The sensitivity of the Gauss–Christoffel quadrature illustrated in this paper is related
to the difference in the size of the support of the original and of the perturbed
distribution functions. For a discrete distribution function, the size is the number
of points of increase, and for a continuous distribution function it is the length
(measure) of the union of intervals containing points at which the distribution
function increases. In general, different supports of the same size do not exhibit
sensitivity in quadrature results.

4. The sensitivity of Gauss–Christoffel quadrature cannot be explained using existing
analysis based on modified moments. In our examples, if the support of the original
distribution function differs in size from the support of the auxiliary (perturbed) dis-
tribution function, then the matrices of both modified and mixed moments become
highly ill-conditioned. The same is true if the supports are different but of the same
size. But only in the case of different size of the supports are the recurrence coeffi-
cients (i.e., the entries of the Jacobi matrix) and the Gauss–Christoffel quadrature
estimates highly sensitive to the perturbation.

Many open questions remain. We give several examples of sensitivity of the
Gauss–Christoffel quadrature. It would certainly be of great interest to describe the
classes of problems for which the Gauss–Christoffel quadrature is sensitive to small
perturbations of the distribution function, and determine which of them are of prac-
tical importance. Application of these results to theory of the conjugate gradient and
Lanczos methods in finite precision arithmetic will be considered in our future work.
Another highly relevant question is how to measure differences between distribution
functions.
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ON ERROR ESTIMATION IN THE CONJUGATE GRADIENT METHOD AND
WHY IT WORKS IN FINITE PRECISION COMPUTATIONS ∗

ZDENĚK STRAKOŠ† AND PETR TICHÝ∗

Abstract. In their paper published in 1952, Hestenes and Stiefel considered the conjugate gradient (CG) method
an iterative method which terminates in at most n steps if no rounding errors are encountered [24, p. 410]. They also
proved identities for the A-norm and the Euclidean norm of the error which could justify the stopping criteria [24,
Theorems 6:1 and 6:3, p. 416]. The idea of estimating errors in iterative methods, and in the CG method in particular,
was independently (of these results) promoted by Golub; the problem was linked to Gauss quadrature and to its
modifications [7], [8]. A comprehensive summary of this approach was given in [15], [16]. During the last decade
several papers developed error bounds algebraically without using Gauss quadrature. However, we have not found
any reference to the corresponding results in [24]. All the existing bounds assume exact arithmetic. Still they seem to
be in a striking agreement with finite precision numerical experiments, though in finite precision computations they
estimate quantities which can be orders of magnitude different from their exact precision counterparts! For the lower
bounds obtained from Gauss quadrature formulas this nontrivial phenomenon was explained, with some limitations,
in [17].

In our paper we show that the lower bound for the A-norm of the error based on Gauss quadrature ([15],
[17], [16]) is mathematically equivalent to the original formula of Hestenes and Stiefel [24]. We will compare
existing bounds and we will demonstrate necessity of a proper rounding error analysis: we present an example of
the well-known bound which can fail in finite precision arithmetic. We will analyse the simplest bound based on
[24, Theorem 6:1], and prove that it is numerically stable. Though we concentrate mostly on the lower bound for the
A-norm of the error, we describe also an estimate for the Euclidean norm of the error based on [24, Theorem 6:3].
Our results are illustrated by numerical experiments.

Key words. conjugate gradient method, Gauss quadrature, evaluation of convergence, error bounds, finite
precision arithmetic, rounding errors, loss of orthogonality.
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1. Introduction. Consider a symmetric positive definite matrix A ∈ Rn×n and a right-
hand side vector b ∈ Rn (for simplicity of notation we will assume A, b real; generalization
to complex data will be obvious). This paper investigates numerical estimation of errors in
iterative methods for solving linear systems

Ax = b.(1.1)

In particular, we focus on the conjugate gradient method (CG) of Hestenes and Stiefel [24]
and on the lower estimates of the A-norm (also called the energy norm) of the error, which
has important meaning in physics and quantum chemistry, and plays a fundamental role in
evaluating convergence [1], [2].

Starting with the initial approximation x0, the conjugate gradient approximations are
determined by the condition

xj ∈ x0 + Kj(A, r0)

‖x− xj‖A = min
u∈x0+Kj(A,r0)

‖x− u‖A,(1.2)

i.e. they minimize the A-norm of the error

‖x− xj‖A =
(
(x− xj), A(x− xj)

) 1
2
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over all methods generating approximations in the manifold x0 + Kj(A, r0). Here

Kj(A, r0) = span{r0, Ar0, . . . Aj−1r0}

is the j-th Krylov subspace generated by A with the initial residual r0, r0 = b − Ax0, and
x is the solution of (1.1). The standard implementation of the CG method was given in [24,
(3:1a)-(3:1f)]:

Given x0, r0 = b−Ax0, p0 = r0, and for j = 1, 2, . . . , let

γj−1 = (rj−1, rj−1)/(pj−1, Apj−1),

xj = xj−1 + γj−1 pj−1,(1.3)

rj = rj−1 − γj−1Apj−1,

δj = (rj , rj)/(rj−1, rj−1),

pj = rj + δj pj−1.

The residual vectors {r0, r1, . . . , rj−1} form an orthogonal basis and the direction vectors
{p0, p1, . . . , pj−1} an A-orthogonal basis of the j-th Krylov subspace Kj(A, r0).

In [24] Hestenes and Stiefel considered CG as an iterative procedure. They presented
relations [24, (6:1)-(6:3) and (6:5), Theorems 6:1 and 6:3] as justifications of a possible stop-
ping criterion for the algorithm. In our notation these relations become

‖x− xj−1‖2
A − ‖x− xj‖2

A = γj−1‖rj−1‖2,(1.4)

‖x− xj‖2
A − ‖x− xk‖2

A =

k−1∑

i=j

γi‖ri‖2, 0 ≤ j < k ≤ n,(1.5)

xj = x0 +

j−1∑

l=0

γlpl = x0 +

j−1∑

l=0

‖x− xl‖2
A − ‖x− xj‖2

A

‖rl‖2
rl,(1.6)

‖x− xj−1‖2 − ‖x− xj‖2 =
‖x− xj−1‖2

A + ‖x− xj‖2
A

µ(pj−1)
,(1.7)

µ(pj−1) =
(pj−1, Apj−1)

‖pj−1‖2
.

Please note that (1.5) represents an identity describing the decrease of the A-norm of the
error in terms of quantities available in the algorithm, while (1.7) describes decrease of the
Euclidean norm of the error in terms of the A-norm of the error in the given steps.

Hestenes and Stiefel did not give any particular stopping criterion. They emphasized,
however, that while the A-norm of the error and the Euclidean norm of the error had to
decrease monotonically at each step, the residual norm oscillated and might even increase in
each but the last step. An example of this behaviour was used in [23].

The paper [24] is frequently referenced, but some of its results has not been paid much
attention. Residual norms have been (and still are) commonly used for evaluating conver-
gence of CG. The possibility of using (1.4)–(1.7) for constructing a stopping criterion has not
been, to our knowledge, considered.

An interest in estimating error norms in the CG method reappeared with works of Golub
and his collaborators. Using some older results [7], Dahlquist, Golub and Nash [8] related
error bounds to Gauss quadrature (and to its modifications). The approach presented in that
paper became a basis for later developments. It is interesting to note that the relationship
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of the CG method to the Riemann-Stieltjes integral and Gauss quadrature was described in
detail in [24, Section 14], but without any link to error estimation. The work of Golub and
his collaborators was independent of [24].

The paper [8] brought also into attention an important issue of rounding errors. The au-
thors noted that in order to guarantee the numerical stability of the computed Gauss quadra-
ture nodes and weights, the computed basis vectors had to be reorthogonalized. That means
that the authors of that paper were from the very beginning aware of the fact that rounding
errors might play a significant role in the application of their bounds to practical computa-
tions. In the numerical experiments used in [8] the effect of rounding errors were, however,
not noticeable. This can be explained using the results by Paige ([33], [34], [35] and [36]).
Due to the distribution of eigenvalues of the matrix used in [8] Ritz values do not converge
to the eigenvalues until the last few steps. Before this convergence takes place there is no
significant loss of orthogonality and the effects of rounding errors are not visible.

Error bounds in iterative methods were intensively studied or used in many later papers
and in several books, see, e.g. [9], [10], [12], [15], [17], [16], [11], [21], [28], [29], [30], [4],
[6]. Except for [17], effects of rounding errors were not analysed in these publications.

Frommer and Weinberg [13] pointed out the problem of applying exact precision for-
mulas to finite precision computations, and proposed to use interval arithmetic for computing
verified error bounds. As stated in [13, p. 201], this approach had serious practical limitations.
Axelsson and Kaporin [3] considered preconditioned conjugate gradients and presented (1.5)
independently of [24]. Their derivation used (global) mutual A-orthogonality among the di-
rection vectors pj , j = 0, 1, . . . , n−1. They noticed that the numerical values found from the
resulting estimate were identical to those obtained from Gauss quadrature, but did not prove
this coincidence. They also noticed the potential difficulty due to rounding errors. They pre-
sented an observation that loss of orthogonality did not destroy applicability of their estimate.
Calvetti et al. [5] presented several bounds and estimates for the A-norm of the error, and
addressed a problem of cancellation in their computations [5, relation (46)].

In our paper we briefly recall some error estimates published after (and independently of)
(1.4)-(1.7) in [24]. For simplicity of our exposition we will concentrate mostly on theA-norm
of the error ‖x−xj‖A. We will show that the simplest possible estimate for ‖x−xj‖A, which
follows from the relation (1.4) published in the original paper [24], is mathematically (in
exact arithmetic) equivalent to the corresponding bounds developed later. In finite precision
arithmetic, rounding errors in the whole computation, not only in the computation of the
convergence bounds, must be taken into account. We emphasize that rounding error analysis
of formulas for computation of the convergence bounds represents in almost all cases a simple
and unimportant part of the problem. Almost all published convergence bounds (including
those given in [5]) can be computed accurately (i.e. computation of the bounds using given
formulas is not significantly affected by rounding errors). But this does not prove that these
bounds give anything reasonable when they are applied to finite precision CG computations.
We will see an example of the accurately computed bound which gives no useful information
about the convergence of CG in finite precision arithmetic in Section 6.

An example of rounding error analysis for the bounds based on Gauss quadrature was
presented in [17]. The results from [17] rely on the work by Paige and Greenbaum ([36],
[19] and [22]). Though [17] gives a strong qualitative justification of the bounds in finite
precision arithmetic, this justification is applicable only until ‖x − xj‖A reaches the square
root of the machine precision. Moreover, quantitative expressions for the rounding error terms
are very complicated. They contain factors which are not tightly estimated (see [19], [22]).
Here we complement the analysis from [17] by substantially stronger results. We prove that
the simplest possible lower bound for ‖x − xj‖A based on (1.4) works also for numerically
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computed quantities till ‖x− xj‖A reaches its ultimate attainable accuracy.
The paper is organized as follows. In Section 2 we briefly describe relations between

the CG and Lanczos methods. Using the orthogonality of the residuals, these algorithms
are related to sequences of orthogonal polynomials, where the inner product is defined by
a Riemann-Stieltjes integral with some particular distribution function ω(λ). The value of
the j-th Gauss quadrature approximation to this Riemann-Stieltjes integral for the function
1/λ is the complement to the error in the j-th iteration of the CG method measured by
‖x − xj‖2

A/‖r0‖2. In Section 3 we reformulate the result of the Gauss quadrature using
quantities that are at our disposal during the CG iterations. In Section 4 we use the identities
from Section 3 for estimation of the A-norm of the error in the CG method, and we compare
the main existing bounds. Section 5 describes delay of convergence due to rounding errors.
Section 6 explains why applying exact precision convergence estimates to finite precision CG
computations represents a serious problem which must be properly addressed. Though exact
precision CG and finite precision CG can dramatically differ, some exact precision bounds
seem to be in good agreement with the finite precision computations. Sections 7–10 explain
this paradox. The individual terms in the identities which the convergence estimates are based
on can be strongly affected by rounding errors. The identities as a whole, however, hold true
(with small perturbations) also in finite precision arithmetic. Numerical experiments are pre-
sented in Section 11.

When it will be helpful we will use the word “ideally” (or “mathematically”) to refer to
a result that would hold using exact arithmetic, and “computationally” or “numerically” to a
result of a finite precision computation.

2. Method of conjugate gradients and Gauss quadrature. For A and r0 the Lanczos
method [27] generates ideally a sequence of orthonormal vectors v1, v2, . . . via the recurrence

Given v1 = r0/‖r0‖, β1 ≡ 0, and for j = 1, 2, . . . , let

αj = (Avj − βjvj−1, vj),

wj = Avj − αjvj − βjvj−1,(2.1)

βj+1 = ‖wj‖,
vj+1 = wj/βj+1.

Denoting by Vj = [v1, . . . , vj ] the n by j matrix having the Lanczos vectors {v1, . . . , vj} as
its columns, and by Tj the symmetric tridiagonal matrix with positive subdiagonal

Tj =




α1 β2

β2 α2
. . .

. . .
. . . βj

βj αj




(2.2)

the formulas (2.1) are written in the matrix form

AVj = VjTj + βj+1vj+1e
T
j ,(2.3)

where ej is the j-th column of the n by n identity matrix. Comparing (1.3) with (2.1) gives

vj+1 = (−1)j
rj

‖rj‖
,(2.4)
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and also relations between the recurrence coefficients:

αj =
1

γj−1
+
δj−1

γj−2
, δ0 ≡ 0, γ−1 ≡ 1,

βj+1 =

√
δj

γj−1
.(2.5)

Finally, using the change of variables

xj = x0 + Vj yj ,(2.6)

and the orthogonality relation between rj and the basis {v1, v2, . . . , vj} of Kj(A, r0), we see
that

0 = V Tj rj = V Tj (b−Axj) = V Tj (r0 −AVj yj)

= e1‖r0‖ − V Tj AVj yj = e1‖r0‖ − Tj yj .

Ideally, the CG approximate solution xj can therefore be determined by solving

Tj yj = e1‖r0‖ ,(2.7)

with subsequent using of (2.6).
Orthogonality of the CG residuals creates the elegance of the CG method which is repre-

sented by its link to the world of classical orthogonal polynomials. Using (1.3), the j-th error
resp. residual can be written as a polynomial in the matrix A applied to the initial error resp.
residual,

x− xj = ϕj(A) (x− x0), rj = ϕj(A) r0, ϕj ∈ Πj ,(2.8)

where Πj denotes the class of polynomials of degree at most j having the property ϕ(0) = 1
(that is, the constant term equal to one). Consider the eigendecomposition of the symmetric
matrix A in the form

A = UΛUT , UUT = UTU = I,(2.9)

where Λ = diag(λ1, . . . , λn) and U = [u1, . . . , un] is the matrix having the normalized
eigenvectors of A as its columns. Substituting (2.9) and (2.8) into (1.2) gives

‖x− xj‖A = ‖ϕj(A)(x − x0)‖A = min
ϕ∈Πj

‖ϕ(A)(x − x0)‖A = min
ϕ∈Πj

‖ϕ(A)r0‖A−1

= min
ϕ∈Πj

{
n∑

i=1

(r0, ui)
2

λi
ϕ2(λi)

}1/2

.(2.10)

Consequently, for A symmetric positive definite the rate of convergence of CG is determined
by the distribution of eigenvalues ofA and by the size of the components of r0 in the direction
of the individual eigenvectors.

Similarly to (2.8), vj+1 is linked with some monic polynomial ψj ,

vj+1 = ψj(A) v1 · 1

β2β3 . . . βj+1
.(2.11)
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Using the orthogonality of vj+1 to v1, . . . , vj , the polynomial ψj is determined by the mini-
mizing condition

‖ψj(A)v1‖ = min
ψ∈Mj

‖ψ(A)v1‖ = min
ψ∈Mj

{
n∑

i=1

(v1, ui)
2 ψ2(λi)

}1/2

,(2.12)

where Mj denotes the class of monic polynomials of degree j.

We will explain what we consider the essence of the CG and Lanczos methods.
Whenever the CG or the Lanczos method (defined by (1.3) resp. by (2.1)) is considered,

there is a sequence 1, ψ1, ψ2, . . . of the monic orthogonal polynomials determined by (2.12).
These polynomials are orthogonal with respect to the discrete inner product

(f, g) =
n∑

i=1

ωif(λi)g(λi) ,(2.13)

where the weights ωi are determined as

ωi = (v1, ui)
2,

n∑

i=1

ωi = 1 ,(2.14)

(v1 = r0/‖r0‖). For simplicity of notation we assume that all the eigenvalues of A are
distinct and increasingly ordered (an extension to the case of multiple eigenvalues will be
obvious). Let ζ, ξ be such that ζ ≤ λ1 < λ2 < . . . < λn ≤ ξ. Consider the distribution
function ω(λ) with the finite points of increase λ1, λ2, . . . , λn,

ω(λ) = 0 for λ < λ1 ,

ω(λ) =
i∑
l=1

ωl for λi ≤ λ < λi+1 ,

ω(λ) = 1 for λn ≤ λ ,

(2.15)

see Fig. 2.1, and the corresponding Riemann-Stieltjes integral

∫ ξ

ζ

f(λ) dω(λ) =

n∑

i=1

ωif(λi) .(2.16)

Then (2.12) can be rewritten as

ψj = arg min
ψ∈Mj

{∫ ξ

ζ

ψ2(λ) dω(λ)

}
, j = 0, 1, 2, . . . , n .(2.17)

The j steps of the CG resp. the Lanczos method starting with ‖r0‖v1 resp. v1 determine
a symmetric tridiagonal matrix (with a positive subdiagonal) Tj (2.2). Consider, analogously
to (2.9), the eigendecomposition of Tj in the form

Tj = SjΘjS
T
j , STj Sj = SjS

T
j = I,(2.18)

Θj = diag(θ(j)

1 , . . . , θ(j)

j ), Sj = [s(j)

1 , . . . , s(j)

j ]. Please note that we can look at Tj also as
determined by the CG or the Lanczos method applied to the j-dimensional problem Tjyj =
e1‖r0‖ resp. Tj with initial residual e1‖r0‖ resp. starting vector e1. Clearly, we can construct
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...

0

1

ω1

ω2

ω3

ω4

ωn

ζ λ1 λ2 λ3
. . . . . . λn ξ

FIG. 2.1. Distribution function ω(λ)

Riemann-Stieltjes integral for this j-dimensional problem similarly as above. Let ζ ≤ θ(j)

1 <
θ(j)

2 < . . . < θ(j)

j ≤ ξ be the eigenvalues of Tj (Ritz values, they must be distinct, see,
e.g. [38, Chapter 7]). Let

ω(j)

i = (e1, s
(j)

i )2,

j∑

i=1

ω(j)

i = 1(2.19)

be the weights determined by the squared size of the components of e1 in the direction of Tj’s
eigenvectors, and

ω(j)(λ) = 0 for λ < θ(j)

1 ,

ω(j)(λ) =
i∑
l=1

ω(j)

l for θ(j)

i ≤ λ < θ(j)

i+1,

ω(j)(λ) = 1 for θ(j)

j ≤ λ .

Then the first j polynomials from the set {1, ψ1, . . . , ψn} determined by (2.17) are also deter-
mined by the condition based on the Riemann-Stieltjes integral with the distribution function
ω(j)(λ)

ψl = arg min
ψ∈Ml

{∫ ξ

ζ

ψ2(λ) dω(j)(λ)

}
, l = 0, 1, . . . , j ,(2.20)

(we can look at the subsequence {1, ψ1, . . . , ψj} as determined by the CG or the Lanczos
method applied to the j-dimensional problem described above). The integral

∫ ξ

ζ

f(λ) dω(j)(λ) =

j∑

i=1

ω(j)

i f(θ(j)

i )(2.21)

is the well-known j-th Gauss quadrature approximation of the integral (2.16), see, e.g., [14].
Thus, the CG and Lanczos methods determine the sequence of distribution functions
ω(1)(λ), ω(2)(λ), . . . , ω(j)(λ), . . . approximating in an optimal way (in the sense of Gauss
quadrature, i.e. ω(l)(λ) ensures that for any polynomial of degree less than of equal to 2l− 1
the value of the original integral (2.16) is approximated by (2.21) exactly) the original distri-
bution function ω(λ), cf. [26], [46, Chapter XV], [45].
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All this is well-known. Gauss quadrature represents a classical textbook material and the
connection of CG to Gauss quadrature was pointed out in the original paper [24]. This con-
nection is, however, a key to understanding both mathematical properties and finite precision
behaviour of the CG method.

Given A and r0, (2.16) and its Gauss quadrature approximations (2.21) are for j =
1, 2, . . . , n uniquely determined (remember we assumed that the eigenvalues of A are posi-
tive and distinct). Conversely, the distribution function ω(j)(λ) uniquely determines the sym-
metric tridiagonal matrix Tj , and, through (2.7) and (2.6), the CG approximation xj . With
f(λ) = λ−1 we have from (2.10)

‖x− x0‖2
A = ‖r0‖2

n∑

i=1

ωi
λi

= ‖r0‖2

∫ ξ

ζ

λ−1 dω(λ) ,(2.22)

and, using (2.3) with j = n,

‖x− x0‖2
A = (r0, A

−1r0) = ‖r0‖2(e1, T
−1
n e1) ≡ ‖r0‖2 (T−1

n )11 .

Consequently,

∫ ξ

ζ

λ−1 dω(λ) = (T−1
n )11 .(2.23)

Repeating the same considerations using the CG method for Tj with the initial residual
‖r0‖e1, or the Lanczos method for Tj with e1

∫ ξ

ζ

λ−1 dω(j)(λ) = (T−1
j )11 .(2.24)

Finally, applying the j-point Gauss quadrature to (2.16) gives

∫ ξ

ζ

f(λ) dω(λ) =

∫ ξ

ζ

f(λ) dω(j)(λ) +Rj(f),(2.25)

where Rj(f) stands for the (truncation) error in the Gauss quadrature. In the next section we
present several different ways of expressing (2.25) with f(λ) = λ−1.

3. Basic Identities. Multiplying the identity (2.25) by ‖r0‖2 gives

‖r0‖2

∫ ξ

ζ

f(λ) dω(λ) = ‖r0‖2

∫ ξ

ζ

f(λ) dω(j)(λ) + ‖r0‖2Rj(f).(3.1)

Using (2.22), (2.23) and (2.24), (3.1) can for f(λ) = λ−1 be written as

‖x− x0‖2
A = ‖r0‖2(T−1

n )11 = ‖r0‖2(T−1
j )11 + ‖r0‖2Rj(λ

−1) .

In [17, pp. 253-254] it was proved that for f(λ) = λ−1 the truncation error in the Gauss
quadrature is equal to

Rj(λ
−1) =

‖x− xj‖2
A

‖r0‖2
,
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which gives

‖x− x0‖2
A = ‖r0‖2(T−1

j )11 + ‖x− xj‖2
A .(3.2)

Summarizing, the value of the j-th Gauss quadrature approximation to the integral (2.23) is
the complement of the error in the j-th CG iteration measured by ‖x− xj‖2

A/‖r0‖2,

‖x− x0‖2
A

‖r0‖2
= j-point Gauss quadrature +

‖x− xj‖2
A

‖r0‖2
.(3.3)

This relation was developed in [8] in the context of moments; it was a subject of extensive
work motivated by estimation of the error norms in CG in the papers [12], [15] and [17].
Work in this direction continued and led to the papers [16], [28], [30], [5].

An interesting form of (3.2) was noticed by Warnick in [47]. In the papers mentioned
above the values of ‖x− x0‖2

A/‖r0‖2 = (T−1
n )11 and (T−1

j )11 were approximated from the
actual Gauss quadrature calculations (or from the related recurrence relations). Using (2.7)
and (2.6), the identities

‖r0‖2(T−1
j )11 = ‖r0‖ eT1 T−1

j e1‖r0‖
= ‖r0‖ vT1 Vj T−1

j e1‖r0‖ = (‖r0‖v1)T
(
VjT

−1
j e1‖r0‖

)

= rT0 (xj − x0)

show that (T−1
j )11 is given by a simple inner product. Indeed,

‖x− x0‖2
A = rT0 (xj − x0) + ‖x− xj‖2

A .(3.4)

This remarkable identity was pointed out to us by Saylor [41], [40]. Please note that deriva-
tion of the identity (3.4) from the Gauss quadrature-based (3.2) uses the orthogonality relation
vT1 Vj = e1. In finite precision computations this orthogonality relation does not hold. Con-
sequently, (3.4) does not hold in finite precision arithmetic. We will return to this point in
Section 6.

A mathematically equivalent identity can be derived by simple algebraic manipulations
without using Gauss quadrature,

(x− x0)
TA(x− x0) = (x− xj + xj − x0)

TA(x − x0)

= (x− xj)
TA(x − x0) + (xj − x0)

TA(x− x0)

= (x− xj)
TA(x − xj + xj − x0) + (xj − x0)

T r0

= ‖x− xj‖2
A + (x− xj)

TA(xj − x0) + rT0 (xj − x0)

= ‖x− xj‖2
A + rTj (xj − x0) + rT0 (xj − x0),

hence

‖x− x0‖2
A = rTj (xj − x0) + rT0 (xj − x0) + ‖x− xj‖2

A.(3.5)

The right-hand side of (3.5) contains, in comparison with (3.4), the additional term rTj (xj −
x0). This term is in exact arithmetic equal to zero, but it has an important correction effect in
finite precision computations (see Section 6).

Relations (3.2), (3.4) and (3.5) represent various mathematically equivalent forms of
(3.1). While in (3.2) the j-point Gauss quadrature is evaluated as (T−1

j )11, in (3.4) and (3.5)
this quantity is computed using inner products of the vectors that are at our disposal during
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the iteration process. But, as mentioned in Introduction, there is much simpler identity (1.5)
mathematically equivalent to (3.1). It is very surprising that, though (1.5) is present in the
Hestenes and Stiefel paper [24, Theorem 6.1, relation (6:2), p. 416], this identity has (at least
to our knowledge) never been related to Gauss quadrature. Its derivation is very simple. Using
(1.3)

‖x− xi‖2
A − ‖x− xi+1‖2

A = ‖x− xi+1 + xi+1 − xi‖2
A − ‖x− xi+1‖2

A

= ‖xi+1 − xi‖2
A + 2(x− xi+1)

TA(xi+1 − xi)

= γ2
i p

T
i Api + 2rTi+1(xi+1 − xi)

= γi‖ri‖2 .(3.6)

Consequently, for 0 ≤ l < j ≤ n,

‖x− xl‖2
A − ‖x− xj‖2

A =

j−1∑

i=l

(
‖x− xi‖2

A − ‖x− xi+1‖2
A

)
=

j−1∑

i=l

γi‖ri‖2,(3.7)

and (3.1) can be written in the form

‖x− x0‖2
A =

j−1∑

i=0

γi‖ri‖2 + ‖x− xj‖2
A.(3.8)

The numbers γi‖ri‖2 are trivially computable; both γi and ‖ri‖2 are available at every iter-
ation step. Please note that in the derivation of (3.7) we used the local orthogonality among
the consecutive residuals and direction vectors only. We avoided using mutual orthogonality
among the vectors with generally different indices. This fact will be very important in the
rounding error analysis of the finite precision counterparts of (3.7) in Sections 7–10.

4. Estimating the A-norm of the error. Using ‖x − x0‖2
A = ‖r0‖2(T−1

n )11, (3.2) is
written in the form

‖x− xj‖2
A = ‖r0‖2

[
(T−1
n )11 − (T−1

j )11
]
.

As suggested in [17, pp. 28–29], the unknown value (T−1
n )11 can be replaced, at a price of

m− j extra steps, by a computable value (T−1
m )11 for somem > j. The paper [17], however,

did not properly use this idea and did not give a proper formula for computing the difference
(T−1
m )11 − (T−1

j )11 without cancellation, which limited the applicability of the proposed
result. Golub and Meurant cleverly resolved this trouble in [16] and proposed an algorithm
for estimating the A-norm of the error in the CG method called CGQL. This section will
briefly summarize several important estimates.

Consider, in general, (3.1) for j and j + d, where d is some positive integer. The idea is
simply to eliminate the unknown term

∫ ξ
ζ f(λ) dω(λ) by subtracting the identities for j and

j + d which results in

‖r0‖2Rj(f) = ‖r0‖2

( ∫ ξ

ζ

f(λ) dω(j+d)(λ) −
∫ ξ

ζ

f(λ) dω(j)(λ)

)
+‖r0‖2Rj+d(f).

In particular, using (3.2), (3.4), (3.5), and (3.8) we obtain the mathematically equivalent iden-
tities

‖x− xj‖2
A = ‖r0‖2 [(T−1

j+d)11 − (T−1
j )11] + ‖x− xj+d‖2

A ,(4.1)

‖x− xj‖2
A = rT0 (xj+d − xj) + ‖x− xj+d‖2

A ,(4.2)

‖x− xj‖2
A = rT0 (xj+d − xj) − rTj (xj − x0) + rTj+d(xj+d − x0)(4.3)

+ ‖x− xj+d‖2
A ,
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66 Zdeněk Strakoš and Petr Tichý

and

‖x− xj‖2
A =

j+d−1∑

i=j

γi‖ri‖2 + ‖x− xj+d‖2
A .(4.4)

Now recall that theA-norm of the error is in the CG method strictly decreasing. If d is chosen
such that

‖x− xj‖2
A � ‖x− xj+d‖2

A ,(4.5)

then neglecting ‖x − xj+d‖2
A on the right-hand sides of (4.1), (4.2), (4.3) and (4.4) gives

lower bounds (all mathematically equal) for the squared A-norm of the error in the j-th step.
Under the assumption (4.5) these bounds are reasonably tight (their inaccuracy is given by
‖x− xj+d‖2

A). We denote them

ηj,d = ‖r0‖2 [(T−1
j+d)11 − (T−1

j )11],(4.6)

where the difference (T−1
j+d)11 − (T−1

j )11 is computed by the algorithm CGQL from [16],

µj,d = rT0 (xj+d − xj),(4.7)

which refers to the original bound due to Warnick,

ϑj,d = rT0 (xj+d − xj) − rTj (xj − x0) + rTj+d(xj+d − x0),(4.8)

which is the previous bound modified by the correction terms and

νj,d =

j+d−1∑

i=j

γi‖ri‖2.(4.9)

Clearly, the last bound, which is a direct consequence of [24, Theorem 6:1], see (1.5), is much
simpler than the others.

Mathematically (in exact arithmetic)

ηj,d = µj,d = ϑj,d = νj,d .(4.10)

In finite precision computations (4.10) does not hold in general, and the different bounds
may give substantially different results. Does any of the identities (4.1)–(4.4) have any rele-
vance for the quantities computed in finite precision arithmetic? The work described in this
subsection and the papers published on this subject would be of little practical use without
answering this question.

5. Delay of convergence. For more than 20 years the effects of rounding errors to the
Lanczos and CG methods seemed devastating. Orthogonality among the computed vectors
v1, v2, . . . was usually lost very quickly, with a subsequent loss of linear independence. Con-
sequently, the finite termination property was lost. Still, despite a total loss of orthogonality
among the vectors in the Lanczos sequence v1, v2, . . . , and despite a possible regular appear-
ance of Lanczos vectors which were linearly dependent on the vectors computed in preceding
iterations, the Lanczos and the CG methods produced reasonable results.

A fundamental work which brought light into this darkness was done by Paige. He
proved that loss of orthogonality among the computed Lanczos vectors v1, v2, . . . was pos-
sible only in the directions of the converged Ritz vectors z(j)

l ≡ Vjs
(j)

l . For more details
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see [33], [34], [35], [36], the review paper [44, Section 3.1] and the works quoted there (in
particular [38], [39], [32] and [45]). Little was known about rounding errors in the Krylov
subspace methods before the Ph.D. thesis of Paige [33], and almost all results (with the ex-
ception of works on ultimate attainable accuracy) published on the subject after this thesis
and the papers [34], [35], [36] were based on them.

Another step, which can compete in originality with that of Paige, was made by Green-
baum in [19]. If CG is used to solve a linear symmetric positive definite system Ax = b on a
computer with machine precision ε, then [19] shows that theA-norms of the errors ‖x−xl‖A,
l = 1, 2, . . . , j are very close to the A-norms of the errors ‖x − xl‖A, l = 1, 2, . . . , j
determined by the exact CG applied to some particular symmetric positive definite system
A(j)x(j) = b(j) (see [19, Theorem 3, pp. 26-27]). This system and the initial approxima-
tion x0(j) depend on the iteration step j. The matrix A(j) is larger than the matrix A. Its
eigenvalues must lie in tiny intervals about the eigenvalues of A, and there must be at least
one eigenvalue of A(j) close to each eigenvalue of A (the last result was proved in [43]).
Moreover, for each eigenvalue λi of A, i = 1, . . . , n (similarly to Section 2 we assume,
with no loss of generality, that the eigenvalues of A are distinct), the weight ωi = (v1, ui)

2

closely approximates the sum of weights corresponding to the eigenvalues of A(j) clustered
around λi (see [19, relation (8.21) on p. 60]).

The quantitative formulations of the relationships betweenA, b, x0 andA(j), b(j), x0(j)
contains some terms related in various complicated ways to machine precision ε (see [19],
[43] and [17, Theorems 5.1–5.3 and the related discussion on pp. 257–260]). The actual size
of the terms given in the quoted papers documents much more difficulties of handling accu-
rately peculiar technical problems of rounding error analysis than it says about the accuracy of
the described relationships. The fundamental concept to which the (very often weak) round-
ing error bounds lead should be read: the first j steps of a finite precision CG computation
forAx = b can be viewed as the first j steps of the exact CG computation for some particular
A(j)x(j) = b(j). This relationship was developed and proved theoretically. Numerical ex-
periments show that its tightness is much better than the technically complicated theoretical
calculations in [19] would suggest. We will not continue with describing the results of the
subsequent work [22]. We do not need it here. Moreover, a rigorous theoretical description
of the model from [22] in the language of Riemann-Stieltjes integral and Gauss quadrature
still needs some clarification. We hope to return to that subject elsewhere.

As a consequence of the loss of orthogonality caused by rounding errors, convergence
of the CG method is delayed. In order to illustrate this important point numerically, we
plot in Fig. 5.1 results of the CG method (1.3) for the matrix A = QΛQT , where Q is the
orthogonal matrix obtained from the Matlab QR-decomposition of the randomly generated
matrix (computed by the Matlab command randn(n)), and Λ = diag(λ1, . . . , λn) is a
diagonal matrix with the eigenvalues

λi = λ1 +
i− 1

n− 1
(λn − λ1) ρ

n−i, i = 2, . . . , n− 1,(5.1)

see [43]. We have used n = 48, λ1 = 0.1, λn = 1000, ρ = 0.9, x = (1, . . . , 1)T , b = Ax,
and x0 = (0, . . . , 0)T . We have simulated the exact arithmetic values by double reorthogo-
nalization of the residual vectors (see [22]). The quantities obtained from the CG implemen-
tation with the double reorthogonalized residuals will be denoted by (E). Fig. 5.1 shows that
when the double reorthogonalization is applied, the correspondingA-norm of the error (dash-
dotted line) can be very different from theA-norm of the error of the ordinary finite precision
(FP) CG implementation (solid line). Without reorthogonalization, the orthogonality among
the (FP) Lanczos vectors, measured by the Frobenius norm ‖I − V T

j Vj‖F (dotted line), is
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FIG. 5.1. The A-norm of the error for the CG implementation with the double reorthogonalized residuals (E)
(dashed-dotted line) is compared to the A-norm of the error of the ordinary finite precision CG implementation (FP)
(solid line). The corresponding loss of orthogonality among the normalized residuals is plotted by the dots resp. the
dotted line.

lost after a few iterations. With double reorthogonalization the orthogonality is kept close
to machine precision (dots). Experiments were performed using Matlab 5.1 on a personal
computer with machine precision ε ∼ 10−16.

We see that the delay of convergence due to loss of orthogonality can be very substan-
tial. Consider now application of the estimates (4.6)–(4.9) to finite precision computations.
In derivation of all these estimates we assumed exact arithmetic. Consequently, in these
derivations we did not count for any loss of orthogonality and delay of convergence. For
the example presented above, the bounds can therefore be expected to give good results for
the double reorthogonalized CG (dash-dotted convergence curve). Should they give anything
reasonable also for the ordinary (FP) CG implementation (solid convergence curve)? If yes,
then why? The following section explains that this question is of fundamental importance.

6. Examples. Indeed, without a proper rounding error analysis of the identities (4.1)–
(4.4) there is no justification that the estimates derived assuming exact arithmetic will work
in finite precision arithmetic. For example, when the significant loss of orthogonality occurs,
the bound µj,d given by (4.7) does not work!

This fact is demonstrated in Fig. 6.1 which presents experimental results for the problem
described in the previous section (see Fig. 5.1). It plots the computed estimate |µj,d|1/2
(dashed line) and demonstrates the importance of the correction term

cj,d = −rTj (xj − x0) + rTj+d(xj+d − x0),(6.1)

( |cj,d|1/2 is plotted by dots). Fig. 6.1 shows clearly that when the global orthogonality (mea-
sured by ‖I − V Tj Vj‖F and plotted by a dotted line) grows greater than ‖x − xj‖A (solid
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FIG. 6.1. Error estimate µ1/2

j,d can fail. The computed estimate |µj,d|1/2 (dashed line) for the A-norm of

the error (solid line) gives useful information about convergence only until the loss of orthogonality (dotted line)
crosses the convergence curve. After that point µj,d can even become negative, and must be modified by adding the
correction term cj,d (|cj,d|1/2 is plotted by dots). We used d = 4.

line), the bound µj,d1/2, which is based on global orthogonality, ceases to give any useful
information about convergence (µj,d may even become negative, therefore we plot the sec-
ond root of its absolute value). Adding the correction term cj,d to µj,d gives ϑj,d, see (4.8),
which gives estimates comparable to ηj,d and νj,d (see Section 11). In this experiment we
used d = 4.

It is important to understand that the additional rounding errors in computing ηj,d µj,d,
ϑj,d and νj,d from the given formulas (the algorithm CGQL and (4.7)–(4.9)) do not affect
significantly the values of the computed bounds and do not represent a problem. The problem
is in the fact, that when the orthogonality is significantly lost, the input quantities used in the
algorithm CGQL and in the formulas (4.7)–(4.9) are significantly different from their exact
precision counterparts. These quantities affected by the loss of orthogonality are plugged into
the formulas which assume, in their derivation, exact orthogonality.

In order to stress the previous point and to underline the necessity of rounding error
analysis of the identities (4.7)–(4.9), we present the following analogous example. In the
Lanczos method the eigenvalues θ(j)

1 < θ(j)

2 < . . . < θ(j)

j of Tj (Ritz values) are considered
approximations to the eigenvalues of the matrix A (see Section 2). Let θ(j)

l , z(j)

l = Vjs
(j)

l

(where s(j)

l is the normalized eigenvector of Tj corresponding to θ(j)

l ) represents an approxi-
mate eigenpair of A. In exact arithmetic we have the following bound for the distance of θ(j)

l

to the nearest eigenvalue of A

min
i

|λi − θ(j)

l | ≤ ‖Az(j)

l − θ(j)

l z(j)

l ‖
‖z(j)

l ‖ = ‖Az(j)

l − θ(j)

l z
(j)

l ‖,(6.2)



ETNA
Kent State University 
etna@mcs.kent.edu

70 Zdeněk Strakoš and Petr Tichý

where ‖z(j)

l ‖ = 1 due to the orthonormality of the Lanczos vectors v1, . . . , vj . Using (2.3),
‖Az(j)

l − θ(j)

l z(j)

l ‖ = βj+1(ej , s
(j)

l ), which gives

min
i

|λi − θ(j)

l | ≤ βj+1(ej , s
(j)

l ) ≡ δlj ,(6.3)

see, e.g., [38], [36]. Consequently, in exact arithmetic, if δlj is small, then θ(j)

l must be close
to some λi. In finite precision arithmetic loss of orthogonality has, among the others, a very
unpleasant effect: we cannot guarantee, in general, that z(j)

l , which is a linear combination of
v1, . . . , vj has a nonvanishing norm. We can still compute δlj from βj+1 and Tj ; the effect of
rounding errors in this additional computation is negligible. We can therefore say, similarly
to the analogous statements published about computation of the convergence estimates in the
CG method, that δlj is in the presence of rounding errors computed “accurately”. Does δlj
computed in finite precision arithmetic tell anything about convergence of θ(j)

l to some λi?
Yes, it does! But this affirmative answer is based neither on the exact precision formulas
(6.2) and (6.3), nor on the fact that δlj is computed “accurately”. It is based on an ingenious
analysis due to Paige, who have shown that the orthogonality can be lost in the directions of
the well approximated eigenvectors only. For the complicated details of this difficult result
we refer to [33], [37] and to the summary given in [44, Theorem 2]. We see that even in finite
precision computations small δlj guarantees that θ(j)

l approximates some λi to high accuracy.
It is very clear, however, that this conclusion is the result of the rounding error analysis of
the Lanczos method given by Paige, and no similar statement could be made without this
analysis.

In the following three sections we present rounding error analysis of the bound νj,d given
by (4.4) and (4.9). We concentrate on νj,d because it is the simplest of all the others. If νj,d
is proved numerically stable, then there is a small reason for using the other bounds ηj,d or
ϑj,d in practical computations.

7. Finite precision CG computations. In the analysis we assume the standard model
of floating point arithmetic with machine precision ε, see, e.g. [25, (2.4)],

fl[a ◦ b] = (a ◦ b)(1 + δ), |δ| ≤ ε,(7.1)

where a and b stands for floating-point numbers and the symbol ◦ stands for the operations
addition, subtraction, multiplication and division. We assume that this model holds also for
the square root operation. Under this model, we have for operations involving vectors v, w, a
scalar α and the matrix A the following standard results [18], see also [20], [35]

‖α v − fl[α v]‖ ≤ ε ‖α v‖,(7.2)

‖v + w − fl[v + w]‖ ≤ ε (‖v‖ + ‖w‖),(7.3)

|(v, w) − fl[(v, w)]| ≤ ε n (1 +O(ε)) ‖v‖ ‖w‖,(7.4)

‖Av − fl[Av]‖ ≤ ε c ‖A‖‖v‖.(7.5)

When A is a matrix with at most h nonzeros in any row and if the matrix-vector product is
computed in the standard way, c = hn1/2. In the following analysis we count only for the
terms linear in the machine precision epsilon ε and express the higher order terms as O(ε2).
By O(const) where const is different from ε2 we denote const multiplied by a bounded
positive term of an insignificant size which is independent of the const and of any other
variables present in the bounds.

Numerically, the CG iterates satisfy

xj+1 = xj + γjpj + εzxj ,(7.6)
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rj+1 = rj − γjApj + εzrj ,(7.7)

pj+1 = rj+1 + δj+1pj + εzpj ,(7.8)

where εzxj , εzrj and εzpj account for the local roundoff (r0 = b − Ax0 − εf0, ε‖f0‖ ≤
ε{‖b‖+ ‖Ax0‖+ c‖A‖‖x0‖}+O(ε2)). The local roundoff can be bounded according to the
standard results (7.2)–(7.5) in the following way

ε ‖zxj ‖ ≤ ε {‖xj‖ + 2 ‖γjpj‖} +O(ε2) ≤ ε {3‖xj‖ + 2‖xj+1‖} +O(ε2),(7.9)

ε ‖zrj‖ ≤ ε {‖rj‖ + 2 ‖γjApj‖ + c ‖A‖‖γjpj‖} +O(ε2),(7.10)

ε ‖zpj ‖ ≤ ε {‖rj+1‖ + 2 ‖δj+1pj‖} +O(ε2) ≤ ε {3‖rj+1‖ + 2‖pj+1‖} +O(ε2).(7.11)

Similarly, the computed coefficients γj and δj satisfy

γj =
‖rj‖2

pTj Apj
+ εζγj , δj =

‖rj‖2

‖rj−1‖2
+ εζδj .(7.12)

Assuming nε � 1, the local roundoff εζδj is bounded, according to (7.1) and (7.4), by

ε|ζδj | ≤ ε
‖rj‖2

‖rj−1‖2
O(n) +O(ε2).(7.13)

Using (7.2)–(7.5) and ‖A‖‖pj‖2/(pj , Apj) ≤ κ(A),

fl[(pj , Apj)] = (pj , Apj) + ε ‖Apj‖‖pj‖O(n) + ε ‖A‖‖pj‖2O(c) +O(ε2)

= (pj , Apj)
(
1 + ε κ(A)O(n + c)

)
+O(ε2).

Assuming ε(n+ c)κ(A) � 1, the local roundoff εζγj is bounded by

ε|ζγj | ≤ ε κ(A)
‖rj‖2

(pj , Apj)
O(n+ c) +O(ε2).(7.14)

It is well-known that in finite precision arithmetic the true residual b−Axj differs from
the recursively updated residual vector rj ,

rj = b−Axj − εfj .(7.15)

This topic was studied in [42] and [20]. The results can be written in the following form

‖εfj‖ ≤ ε ‖A‖ (‖x‖ + max
0≤i≤j

‖xi‖)O(jc),(7.16)

‖rj‖ = ‖b−Axj‖ (1 + εFj),(7.17)

where εFj is bounded by

|εFj | =
|‖rj‖ − ‖b−Axj‖|

‖b−Axj‖
≤ ‖rj − (b−Axj)‖

‖b−Axj‖
=

ε‖fj‖
‖b−Axj‖

.(7.18)

Rounding errors affect results of CG computations in two main ways: they delay con-
vergence (see Section 5) and limit the ultimate attainable accuracy. Here we are primarily
interested in estimating the convergence rate. We therefore assume that the final accuracy
level has not been reached yet and εfj is, in comparison to the size of the true and itera-
tive residuals, small. In the subsequent text we will relate the numerical inaccuracies to the
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A-norm of the error ‖x − xj‖A. The following inequalities derived from (7.18) will prove
useful,

λ
1/2
1 ‖x− xj‖A (1 + ε Fj) ≤ ‖rj‖ ≤ λ1/2

n ‖x− xj‖A (1 + ε Fj).(7.19)

The monotonicity of the A-norm and of the Euclidean norm of the error is in CG preserved
(with small additional inaccuracy) also in finite precision computations (see [19], [22]). Using
this fact we get for j ≥ i

ε
‖rj‖
‖ri‖

≤ ε
λ

1/2
n

λ
1/2
1

· ‖x− xj‖A
‖x− xi‖A

· (1 + ε Fj)

(1 + ε Fi)
≤ ε κ(A)1/2 +O(ε2).(7.20)

This bound will be used later.

8. Finite precision analysis – basic identity. The bounds (4.6)–(4.9) are mathemati-
cally equivalent. We will concentrate on the simplest one given by νj,d (4.9) and prove that it
gives (up to a small term) correct estimates also in finite precision computations. In particular,
we prove that the ideal (exact precision) identity (4.4) changes numerically to

‖x− xj‖2
A = νj,d + ‖x− xj+d‖2

A + ν̃j,d,(8.1)

where ν̃j,d is as small as it can be (the analysis here will lead to much stronger results than
the analysis of the finite precision counterpart of (4.1) given in [17]). Please note that the
difference between (4.4) and (8.1) is not trivial. The ideal and numerical counterparts of each
individual term in these identities may be orders of magnitude different! Due to the facts that
rounding errors in computing νj,d numerically from the quantities γi, ri are negligible and
that ν̃j,d will be related to ε ‖x− xj‖A, (8.1) will justify the estimate νj,d in finite precision
computations.

From the identity for the numerically computed approximate solution

‖x− xj‖2
A = ‖x− xj+1 + xj+1 − xj‖2

A

= ‖x− xj+1‖2
A + 2 (x− xj+1)

TA(xj+1 − xj) + ‖xj+1 − xj‖2
A,

we obtain easily

‖x− xj‖2
A − ‖x− xj+1‖2

A = ‖xj+1 − xj‖2
A + 2 (x− xj+1)

TA(xj+1 − xj).(8.2)

Please note that (8.2) represents an identity for the computed quantities. In order to get the
desired form leading to (8.1), we will develop the right hand side of (8.2). In this derivation
we will rely on local properties of the finite precision CG recurrences (7.6)–(7.8) and (7.12).

Using (7.6), the first term on the right hand side of (8.2) can be written as

‖xj+1 − xj‖2
A = (γjpj + ε zxj )

TA(γjpj + ε zxj )

= γ2
j p

T
j Apj + 2ε γjp

T
j Az

x
j +O(ε2)

= γ2
j p

T
j Apj + 2ε (xj+1 − xj)

TAzxj +O(ε2).(8.3)

Similarly, the second term on the right hand side of (8.2) transforms, using (7.15), to the form

2 (x− xj+1)
TA(xj+1 − xj) = 2 (rj+1 + ε fj+1)

T (xj+1 − xj)

= 2 rTj+1(xj+1 − xj) + 2ε fTj+1(xj+1 − xj).(8.4)
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Combining (8.2), (8.3) and (8.4),

‖x− xj‖2
A − ‖x− xj+1‖2

A = γ2
j p

T
j Apj + 2 rTj+1(xj+1 − xj)

+ 2ε (fj+1 +Azxj )T (xj+1 − xj) +O(ε2).(8.5)

Substituting for γj from (7.12), the first term in (8.5) can be written as

γ2
j p

T
j Apj = γj‖rj‖2 + ε γj p

T
j Apj ζ

γ
j = γj‖rj‖2 + ε γj‖rj‖2

{
ζγj
pTj Apj

‖rj‖2

}
.

Consequently, the difference between the squared A-norms of the error in the consecutive
steps can be written in the form convenient for the further analysis

‖x− xj‖2
A − ‖x− xj+1‖2

A = γj‖rj‖2 + ε γj‖rj‖2

{
ζγj
pTj Apj

‖rj‖2

}
(8.6)

+ 2 rTj+1(xj+1 − xj)

+ 2ε (fj+1 +Azxj )
T (xj+1 − xj) +O(ε2).

The goal of the following analysis is to show that until ‖x − xj‖A reaches its ultimate
attainable accuracy level, the terms on the right hand side of (8.6) are, except for γj‖rj‖2,
insignificant. Bounding the second term will not represent a problem. The norm of the dif-
ference xj+1 − xj = (x − xj) − (x − xj+1) is bounded by 2‖x − xj‖A/λ1/2

1 . Therefore
the size of the fourth term is proportional to ε ‖x − xj‖A. The third term is related to the
line-search principle. Ideally (in exact arithmetic), the (j + 1)-th residual is orthogonal to
the difference between the (j + 1)-th and j-th approximation (which is a multiple of the j-th
direction vector). This is equivalent to the line-search: ideally the (j + 1)-th CG approxima-
tion minimizes the A-norm of the error along the line determined by the j-th approximation
and the j-th direction vector. Here the term rTj+1(xj+1 − xj), with rj+1, xj and xj+1 com-
puted numerically, examines how closely the line-search holds in finite precision arithmetic.
In fact, bounding the local orthogonality rTj+1(xj+1 − xj) represents the technically most
difficult part of the remaining analysis.

9. Local orthogonality in the Hestenes and Stiefel implementation. Since the classi-
cal work of Paige it is well-known that in the three-term Lanczos recurrence local orthogo-
nality is preserved close to the machine epsilon (see [35]). We will derive an analogy of this
for the CG algorithm, and state it as an independent result.

The local orthogonality term rTj+1(xj+1 − xj) can be written in the form

rTj+1(xj+1 − xj) = rTj+1(γjpj + ε zxj ) = γjr
T
j+1pj + ε rTj+1z

x
j .(9.1)

Using the bound ‖rj+1‖ ≤ λ
1/2
n ‖x − xj+1‖A(1 + ε Fj+1) ≤ λ

1/2
n ‖x − xj‖A(1 + ε Fj+1),

see (7.19), the size of the second term in (9.1) is proportional to ε ‖x− xj‖A. The main step
consist of showing that the term rTj+1pj is sufficiently small. Multiplying the recurrence (7.7)
for rj+1 by the column vector pTj gives (using (7.8) and (7.12))

pTj rj+1 = pTj rj − γjp
T
j Apj + ε pTj z

r
j

= (rj + δjpj−1 + ε zpj−1)
T rj −

( ‖rj‖2

pTj Apj
+ ε ζγj

)
pTj Apj + ε pTj z

r
j

= δj p
T
j−1rj + ε {rTj zpj−1 − ζγj p

T
j Apj + pTj z

r
j }.(9.2)
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Denoting

Mj ≡ rTj z
p
j−1 − ζγj p

T
j Apj + pTj z

r
j ,(9.3)

the identity (9.2) is

pTj rj+1 = δj p
T
j−1rj + εMj .(9.4)

Recursive application of (9.4) for pTj−1rj , . . . , p
T
1 r2 with pT0 r1 = ‖r0‖2 − γ0 p

T
0 Ap0 +

ε pT0 z
r
0 = ε {−ζγ0 rT0 Ar0 + pT0 z

r
0} ≡ εM0, gives

pTj rj+1 = εMj + ε

j∑

i=1

( j∏

k=i

δk

)
Mi−1.(9.5)

Since

ε

j∏

k=i

δk = ε

j∏

k=i

‖rk‖2

‖rk−1‖2
+O(ε2) = ε

‖rj‖2

‖ri−1‖2
+O(ε2),

we can express (9.5) as

pTj rj+1 = ε ‖rj‖2

j∑

i=0

Mi

‖ri‖2
+O(ε2).(9.6)

Using (9.3),

|Mi|
‖ri‖2

≤ ‖zpi−1‖
‖ri‖

+ |ζγi |p
T
i Api
‖ri‖2

+
‖pi‖‖zri ‖

‖ri‖2
.(9.7)

¿From (7.11) it follows

ε
‖zpi−1‖
‖ri‖

≤ ε

{
3 + 2

‖pi‖
‖ri‖

}
+O(ε2).(9.8)

Using (7.14),

ε |ζγi |p
T
i Api
‖ri‖2

≤ ε κ(A)O(n+ c) +O(ε2).(9.9)

The last part of (9.7) is bounded using (7.10) and (7.12)

ε
‖pi‖‖zri ‖

‖ri‖2
≤ ε

{‖pi‖‖ri‖
‖ri‖2

+ 2 γi
‖pi‖‖Api‖

‖ri‖2
+ c γi

‖pi‖‖A‖‖pi‖
‖ri‖2

}
+O(ε2)

= ε

{‖pi‖
‖ri‖

+ 2
‖pi‖‖Api‖
pTi Api

+ c
‖A‖‖pi‖2

pTi Api

}
+O(ε2)

≤ ε

{‖pi‖
‖ri‖

+ (2 + c)κ(A)

}
+O(ε2),(9.10)

where

ε
‖pi‖
‖ri‖

≤ ε
‖ri‖ + δi‖pi−1‖

‖ri‖
+O(ε2) ≤ ε

{
1 +

‖ri‖
‖ri−1‖

‖pi−1‖
‖ri−1‖

}
+O(ε2).(9.11)
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Recursive application of (9.11) for ‖pi−1‖/‖ri−1‖, ‖pi−2‖/‖ri−2‖, . . ., ‖p1‖/‖r1‖ with
‖p0‖/‖r0‖ = 1 gives

ε
‖pi‖
‖ri‖

≤ ε

{
1 +

‖ri‖
‖ri−1‖

+
‖ri‖

‖ri−2‖
+ . . .+

‖ri‖
‖r0‖

}
+O(ε2).(9.12)

The size of ε ‖ri‖/‖rk‖, i ≥ k is, according to (7.20), less or equal than ε κ(A)1/2 +O(ε2).
Consequently,

ε
‖pi‖
‖ri‖

≤ ε {1 + i κ(A)1/2} +O(ε2).(9.13)

Summarizing (9.8), (9.9), (9.10) and (9.13), the ratio ε |Mi|/‖ri‖2 is bounded as

ε
|Mi|
‖ri‖2

≤ ε κ(A)O(8 + 2c+ n+ 3i) +O(ε2).(9.14)

Combining this result with (9.6) proves the following theorem.

THEOREM 9.1. Using the previous notation, let ε (n + c)κ(A) � 1. Then the lo-
cal orthogonality between the direction vectors and the iteratively computed residuals is in
the finite precision implementation of the conjugate gradient method (7.6)–(7.8) and (7.12)
bounded by

|pTj rj+1| ≤ ε ‖rj‖2κ(A)O((j + 1)(8 + 2c+ n+ 3j)) +O(ε2).(9.15)

10. Final precision analysis – conclusions. We now return to (8.6) and finalize our
discussion. Using (9.1) and (9.6),

‖x− xj‖2
A − ‖x− xj+1‖2

A = γj‖rj‖2(10.1)

+ ε γj‖rj‖2

{
ζγj
pTj Apj

‖rj‖2
+ 2

j∑

i=0

Mi

‖ri‖2

}

+ 2ε {(fj+1 +Azxj )
T (xj+1 − xj) + rTj+1z

x
j }

+O(ε2).

The term

E(1)

j ≡ ε

{
ζγj
pTj Apj

‖rj‖2
+ 2

j∑

i=0

Mi

‖ri‖2

}

is bounded using (7.14) and (9.14),

|E(1)

j | ≤ ε κ(A)O(n+ c+ 2(j + 1)(8 + 2c+ n+ 3j)) +O(ε2).(10.2)

We write the remaining term on the right hand side of (10.1) proportional to ε as

2ε {(fj+1 +Azxj )T (xj+1 − xj) + rTj+1z
x
j } ≡ ‖x− xj‖AE(2)

j ,(10.3)

where

|E(2)

j | = 2ε

∣∣∣∣(fj+1 +Azxj )
T

(
xj+1 − x+ x− xj

‖x− xj‖A

)
+

rTj+1

‖x− xj‖A
zxj

∣∣∣∣

≤ 2ε {2 (‖fj+1‖λ−1/2
1 + ‖A‖1/2‖zxj ‖) + ‖A‖1/2‖zxj ‖}.(10.4)
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With (7.16) and (7.9),

|E(2)

j | ≤ 4ε‖A‖1/2κ(A)1/2(‖x‖ + max
0≤i≤j+1

‖xi‖)O(jc)

+ 5‖A‖1/2ε(3‖xj‖ + 2‖xj+1‖) +O(ε2)

≤ ε‖A‖1/2κ(A)1/2(‖x‖ + max
0≤i≤j+1

‖xi‖)O(4jc+ 25) +O(ε2).(10.5)

Finally, using the fact that the monotonicity of the A-norm and the Euclidean norm of the
error is preserved also in finite precision CG computations (with small additional inaccuracy,
see [19], [22]), we obtain the finite precision analogy of (4.4), which is formulated as a
theorem.

THEOREM 10.1. With the notation defined above, let ε (n+ c)κ(A) � 1. Then the CG
approximate solutions computed in finite precision arithmetic satisfy

‖x− xj‖2
A − ‖x− xj+d‖2

A = νj,d + νj,d E
(1)

j,d + ‖x− xj‖AE(2)

j,d +O(ε2),(10.6)

where

νj,d =

j+d−1∑

i=j

γi‖ri‖2(10.7)

and the terms due to rounding errors are bounded by

|E(1)

j,d| ≤ O(d) max
j≤i≤j+d−1

|E(1)

i |,(10.8)

|E(1)

i | ≤ ε κ(A)O(t(1)(n)) +O(ε2),

|E(2)

j,d| ≤ O(d) max
j≤i≤j+d−1

|E(2)

i |,(10.9)

|E(2)

i | ≤ ε ‖A‖1/2κ(A)1/2(‖x‖ + max
0≤i≤j+1

‖xi‖)O(t(2)(n)) +O(ε2).

O(t(1)(n)) and O(t(2)(n)) represent terms bounded by a small degree polynomial in n inde-
pendent of any other variables.

Please note that the value νj,d is in Theorem 10.1 computed exactly using (10.7). Errors in
computing νj,d numerically (i.e. in computing fl(

∑j+d−1
i=j γi‖ri‖2)) are negligible in com-

parison to νj,d multiplied by the bound for the term |E(1)

i | and need not be considered here.
Theorem 10.1 therefore says that for the numerically computed approximate solutions

‖x− xj‖2
A − ‖x− xj+d‖2

A = fl(νj,d) + ν̃j,d,(10.10)

where the term ν̃j,d “perturbes” the ideal identity (4.4) in the finite precision case. Here ν̃j,d
denotes quantity insignificantly different from ν̃j,d in (8.1). Consequently, the numerically
computed value νj,d can be trusted until it reaches the level of ν̃j,d. Based on the assumption
ε(n+c)κ(A) � 1 and (10.8) we consider |E(1)

i | � 1. Then, assuming (4.5), the numerically
computed value νj,d gives a good estimate for the A-norm of the error ‖x− xj‖2

A until

‖x− xj‖A |E(2)

j,d| � ‖x− xj‖2
A,

which is equivalent to

‖x− xj‖A � |E(2)

j,d|.(10.11)
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FIG. 11.1. Error estimates η1/2

j,d (dots), ϑ1/2

j,d (dashed-line) and ν1/2

j,d (dash-doted line). They essentially

coincide until ‖x − xj‖A (solid line) reaches its ultimate attainable accuracy. The loss of orthogonality is plotted
by the dotted line. We used d = 4.

The value E(2)

j,d represents various terms. Its upper bound is, apart from κ(A)1/2, which
comes into play as an effect of the worst-case rounding error analysis, linearly dependent
on an upper bound for ‖x − x0‖A. The value of E(2)

j,d is (as similar terms or constants in
any other rounding error analysis) not important. What is important is the following possible
interpretation of (10.11): until ‖x−xj‖A reaches a level close to ε‖x−x0‖A, the computed
estimate νj,d must work.

11. Numerical Experiments. We present illustrative experimental results for the sys-
tem Ax = b described in Section 5. We set d = 4.

Fig. 11.1 demonstrates, that the estimates η1/2

j,d (computed by the algorithm CGQL [16],
dotted line), ϑ1/2

j,d (dashed line) and ν1/2

j,d (dash-dotted line) give in the presence of rounding
errors similar results; all the lines essentially coincide until ‖x − xj‖A (solid line) reaches
its ultimate attainable accuracy level. Loss of orthogonality, measured by ‖I − V T

j Vj‖F , is
plotted by the strictly increasing dotted line. We see that the orthogonality of the computed
Lanczos basis is completely lost at j ∼ 22. The term ‖εfj‖ measuring the difference be-
tween the directly and iteratively computed residuals (horizontal dotted line) remains close to
machine precision ε ∼ 10−16 throughout the whole computation.

Fig. 11.2 shows, in addition to the loss of orthogonality (dotted line) and the Euclidean
norm of the error ‖x − xj‖, the bound for the last one derived in the following way from
(1.7). Using the identity

‖x− xj‖2 =

j+d−1∑

i=j

‖pi‖2

(pi, Api)
(‖x− xi‖2

A + ‖x− xi+1‖2
A) + ‖x− xj+d‖2,(11.1)
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FIG. 11.2. Lower bound τ 1/2

j,d (dashed line) for the Euclidean norm of the error (solid line). The bound τ 1/2

j,d

(with d = 4) gives, despite the loss of orthogonality (dotted line), very good approximation to ‖x − xj‖.

and replacing the unknown squares of the A-norms of the errors

‖x− xj‖2
A, ‖x− xj+1‖2

A, . . . , ‖x− xj+d‖2
A

by their estimates

j+2d−1∑

i=j

γi‖ri‖2,

j+2d−1∑

i=j+1

γi‖ri‖2, . . . ,

j+2d−1∑

i=j+d

γi‖ri‖2

gives ideally

‖x− xj‖2 ≥
j+d−1∑

i=j

‖pi‖2

(pi, Api)

(
γi‖ri‖2 + 2

j+2d−1∑

k=i+1

γk‖rk‖2

)
+ ‖x− xj+d‖2.(11.2)

Similarly as above, if d is chosen such that

‖x− xj‖2 � ‖x− xj+d‖2 and ‖x− xj+d‖2
A � ‖x− xj+2d‖2

A,

then

τj,d ≡
j+d−1∑

i=j

‖pi‖2

(pi, Api)

(
γi‖ri‖2 + 2

j+2d−1∑

k=i+1

γk‖rk‖2

)
(11.3)

represents ideally a tight lower bound for the squared Euclidean norm of the CG error
‖x− xj‖2. Please note that evaluating (11.3) requires 2d extra steps.
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In experiments shown in Fig. 11.1 and Fig. 6.1 we used a fixed value d = 4. It would
be interesting to design an adaptive error estimator, which would use some heuristics for
adjusting d according to the desired accuracy of the estimate and the convergence behaviour.
A similar approach can be used for eliminating the disadvantage of 2d extra steps related to
(11.3). We hope to report results of our work on that subject elsewhere.

12. Conclusions. Based on the results presented above we believe that the estimate for
the A-norm of the error ν1/2

j,d should be incorporated into any software realization of the CG
method. It is simple and numerically stable. It is worth to consider the estimate τ 1/2

j,d for the
Euclidean norm of the error, and compare it (including complexity and numerical stability)
with other existing approaches not discussed here (e.g. [6], [31]). The choice of d remains a
subject of further work.

By this paper we wish to pay a tribute to the truly seminal paper of Hestenes and Stiefel
[24] and to the work of Golub who shaped the whole field.
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Abstract.

In practical problems, iterative methods can hardly be used without some accel-
eration of convergence, commonly called preconditioning, which is typically achieved
by incorporation of some (incomplete or modified) direct algorithm as a part of the
iteration. Effectiveness of preconditioned iterative methods increases with possibility
of stopping the iteration when the desired accuracy is reached. This requires, however,
incorporating a proper measure of achieved accuracy as a part of computation.

The goal of this paper is to describe a simple and numerically reliable estimation
of the size of the error in the preconditioned conjugate gradient method. In this way
this paper extends results from [Z. Strakoš and P. Tichý, ETNA, 13 (2002), pp. 56–80]
and communicates them to practical users of the preconditioned conjugate gradient
method.
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1 Introduction.

Discretization of mathematical models of real-world problems often leads to
large and sparse (possibly structured) systems of linear algebraic equations. All
steps of mathematical modeling (mathematical description of reality in the form
of a mathematical model, its discretization and numerical solution of the dis-
cretized problem) are subject to errors (errors of the model, discretization errors
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and computational errors, the last being often composed of two parts – trunca-
tion errors and errors due to roundoff). An output of the solution process must
therefore be confronted with its possible errors through verification and valida-
tion. While verification addresses the question – whether and how accurately the
obtained (approximate) solution conforms to the mathematical model, validation
deals with the more general question – to which extent the whole modeling pro-
cess represents the modeled reality (for a recent discussion of these fundamental
topics we refer to [7]). It is desirable that the errors of the model, discretiza-
tion errors and computational errors are in some balance. They do not need to
be of the same order; the discretization and computational errors should not
significantly contribute to the total error and affect negatively the validation
process [7].

When the linear algebraic systems arising from mathematical modeling are
very large (of orders of hundreds of thousands or millions of unknowns), precon-
ditioned iterative methods are taking ground over the purely direct methods.
Iterative methods can in very large scale computations exploit a fundamental
advantage – they can increase effectiveness of the whole solution process by
stopping the iteration when the desired accuracy (as compared to the discretiza-
tion error) is reached (cf. [1, 4]). This requires, however, a cheap and reliable
evaluation of convergence, which is the essential ingredience for choosing proper
stopping criteria.

In this paper we consider a system of linear algebraic equations

(1.1) Ax = b

where A is a symmetric positive definite n by n matrix and b is n-dimensional
vector (for simplicity of notation we consider A, b real; all results presented here
can trivially be extended to the complex case). For such systems the precondi-
tioned conjugate gradient method [22, 26, 34, 40] represents in most large scale
cases a good choice. A goal of this paper is to summarize and discuss evaluation
of convergence in the preconditioned conjugate gradient method. In particular,
we will focus on estimating the A-norm of the error.

Estimating the A-norm of the error in the conjugate gradient method was sub-
ject of many papers, reports and subsections in the books. History and various
aspects of estimating the A-norm of the error in the unpreconditioned conju-
gate gradient method were thoroughly described in [38]. The formulas presented
in [38] were published (in some form) previously, e.g. in [22, 12] and [6]. The
original contribution of [38] consists, to our opinion, in providing theoretical
justification for practical use of the error estimates and in putting different es-
timates in the proper context. Our present paper extends the results from [38]
to the preconditioned conjugate gradient method. A need for such paper can
be seen from [6, Section 6] or [1, Section 3], which thoroughly and extensively
examine estimating error norms in the preconditioned conjugate gradients. Both
papers [6, 1] present interesting original results and offer new insight into the
error estimation in the preconditioned conjugate gradients. They do not con-
sider, however, an influence of rounding errors. All derivations in [6, Section 6]
or [1, Section 3] assume exact arithmetic. Consequently, they unrealistically as-
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sume preserving orthogonality, and the results are based on exploiting the finite
termination property, i.e., on getting the exact solution in a finite number of
steps (which does not exceed the dimension of the problem). These assump-
tions are clearly drastically violated in most practical computations. In order to
be widely used, practical error estimators need a proper justification including
a thorough analysis of rounding error effects (for a related discussion, see [38]
and also [16]).

Section 2 summarizes fundamentals of the conjugate gradient method and
briefly recalls several possible ways of convergence evaluation. Section 3 presents
a simple estimate for the A-norm of the error in the preconditioned conjugate gra-
dient method. Section 4 deals with numerical stability of the proposed estimate
and Section 5 contains numerical experiments which demonstrate its effectivity
and possible drawbacks. The paper ends with concluding remarks.

2 Fundamentals of convergence evaluation.

The conjugate gradient method (CG) [22] belongs to the class of the so-called
Krylov subspace methods. Starting with an initial approximation x0, it con-
structs the subsequent approximations xj , j = 1, 2, . . . to the solution x on the
linear manifolds

(2.1) xj ∈ x0 + Kj(A, r0)

where
Kj(A, r0) = span

{
r0, Ar0, . . . , A

j−1r0

}

represents the jth Krylov subspace, r0 = b − Ax0. CG determines its approx-
imations by orthogonal projections, i.e., the residual rj = b − Axj of the jth
approximate solution is orthogonal to the jth Krylov subspace Kj(A, r0). This
means that xj = x0+yj can be obtained from the solution yj of the j-dimensional
problem

(2.2) Pj{r0 − Ay} = 0 ,

where Pj stands for the orthogonal projection onto Kj(A, r0), and y ∈ Kj(A, r0)
(the operator A is in (2.2) restricted to Kj(A, r0)). It is well known [22] that,
until xj converges to the exact solution x (which must in the absence of roundoff
happen in at most n steps), xj is uniquely determined by (2.2).

In practical problems we hope that the acceptable approximate solution is
attained for j much smaller than the dimension of the problem n. Thus, CG
represents a typical model-reduction approach, in which the original problem
(represented by the large discretized model) is reduced (here by restriction and
orthogonal projection onto the Krylov subspace) to the problem of much smaller
dimension. The resulting reduced problem determines the approximate solution.
Quality of the approximate solution depends on the amount of significant infor-
mation about the original problem passed to the reduced problem.

The condition (2.2) is equivalent to the minimization of the A-norm of the
error over the manifold (2.1). The jth CG approximation is therefore uniquely
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determined by the minimizing condition

(2.3) ‖x − xj‖A = min
u∈x0+Kj(A,r0)

‖x − u‖A ,

where

(2.4) ‖x − u‖A = (x − u, A(x − u))
1
2 .

The A-norm of the error on the algebraic level (2.4) typically has a counterpart
in the original real-world problem. In some applications it can be interpreted
as the discretized measure of energy which is to be minimized see, e.g. [1, 4].
Then CG with stopping criterion based on the A-norm of the error consistently
reduces large discretized models to small ones. In other applications (such as in
image processing) the Euclidean norm of the error ‖x − xj‖ plays an important
role. In this paper we focus in particular on estimating the A-norm of the error.

Hestenes and Stiefel [22] considered the A-norm of the error a possible can-
didate for measuring the “goodness” of xj as an estimate of x. They showed
that though it was impossible to compute the A-norm of the jth error without
knowing the solution x, it was possible to estimate it. Later, and independently
of [22], the idea of estimating errors in CG was promoted by Golub in relation
to the problem of moments, Gauss quadrature and its modifications [10, 11].
A comprehensive summary of this approach was given in the papers coauthored
with Meurant [14, 15].

In [38] it was shown that the lower bound for the A-norm of the error based on
the Gauss quadrature is mathematically equivalent to the lower bound derived
from the identity given by Hestenes and Stiefel in [22]. The estimate by Hestenes
and Stiefel can be computed at a negligible cost of several floating point oper-
ations per iteration. Until the A-norm of the error reaches its ultimate level of
accuracy, this estimate is numerically stable.

In [32, 3], backward error perturbation theory (see e.g. [30, 35, 2]) was used
to derive a family of stopping criteria for iterative methods. In particular, given
xj , the relative norms ‖∆A‖/‖A‖ = ‖∆b‖/‖b‖ of the smallest perturbations ∆A
and ∆b such that the approximate solution xj represents the exact solution of
the perturbed system

(A + ∆A)xj = b + ∆b

can be computed by the normwise backward error

(2.5)
‖rj‖

‖A‖‖xj‖ + ‖b‖ .

This approach can be generalized in order to quantify levels of confidence in
A and b, see [32, 3]. Normwise backward error is, as a base for stopping criteria,
frequently recommended in the numerical analysis literature, see, e.g. [8, 23],
and it is used and popularized by numerical analysts [29, 13]. Despite this effort,
evaluating convergence is in most of scientific computations still based on the
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relative residual norm

(2.6)
‖rj‖
‖r0‖

.

With x0 = 0, it measures the relative norm ‖∆b‖/‖b‖ of the smallest perturba-
tion ∆b in the right-hand side b only (A is considered unperturbed) such that
xj is the exact solution of the perturbed system Axj = b +∆b. For x0 �= 0 (2.6)
strongly depends on the initial approximation x0 and can give a misleading in-
formation about convergence, see, e.g. [33]. For some additional information see
also [5, 20].

We do not argue that the relative residual norm can not be useful. In some cases
it is a proper quantity to be checked. Sometimes it is a part of more complex
convergence considerations, e.g. in solving nonlinear systems or in numerical
optimization. We do argue, however, that in many other cases, and in particular
in numerical solving of partial differential equations, the relative residual norm
is often uncritically used as the only measure of convergence.

Mathematically (ignoring effects of rounding errors), extension of the ap-
proaches mentioned above to preconditioned methods does not represent a prob-
lem, see, e.g., [29, 13]. Extension of the Gauss quadrature-based formulas for
estimating the A-norm of the error in CG (algorithm CGQL [15]) to the precon-
ditioned conjugate gradient method (PCG) was published in [27, 28] (algorithm
PCGQL). In the following section we deal with the extension of error estimates
based on the Hestenes and Stiefel formula [22, 38].

3 PCG error estimates.

In the standard view of preconditioning, the CG method is thought of as being
applied to a “preconditioned” system

Âx̂ = b̂,(3.1)

Â = L−1AL−T , b̂ = L−1b,(3.2)

where L represents a proper nonsingular (lower triangular) matrix, giving

Algorithm 1. CG for Âx̂ = b̂

given x̂0, r̂0 = b̂ − Âx̂0,
for j = 0, 1, . . .

γj =
(r̂j , r̂j)

(p̂j , Âp̂j)

x̂j+1 = x̂j + γ̂j p̂j

r̂j+1 = r̂j − γ̂j Âp̂j

δ̂j+1 =
(r̂j+1, r̂j+1)

(r̂j , r̂j)

p̂j+1 = r̂j+1 + δ̂j+1 p̂j

end for.
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Defining

γj ≡ γ̂j , δj ≡ δ̂j ,(3.3)

xj ≡ L−T x̂j , rj ≡ L r̂j , pj ≡ L−T p̂j , sj ≡ L−T L−1rj ≡ M−1rj ,

(here xj and rj represent the approximate solution and residual for the original
problem Ax = b), we obtain the standard version of the PCG method

Algorithm 2. PCG for Ax = b

given x0, r0 = b − Ax0, s0 = M−1r0, p0 = s0,
for j = 0, 1, . . .

γj =
(rj , sj)

(pj , Apj)

xj+1 = xj + γj pj

rj+1 = rj − γj Apj

sj+1 = M−1rj+1

δj+1 =
(rj+1, sj+1)

(rj , sj)

pj+1 = sj+1 + δj+1 pj

end for.

The preconditioner

(3.4) M = LLT

is chosen so that the linear system with the matrix M is easy to solve, while the
matrix L−1AL−T should ensure fast convergence of CG. The last goal is fulfilled,
e.g., when L−1AL−T is well conditioned (approximates the identity matrix) or
has properly clustered eigenvalues. Here we emphasize that location as well as
diameter of the clusters are important; improperly located clusters of very small
diameter do not necessarily ensure fast convergence, see [21, 37]. Location of the
clusters is sometimes omitted from consideration, and this leads to inaccurate
or even false statements, which can be found in widespread literature.

3.1 Estimating the A-norm of the error.

In PCG, the A-norm of the error can be estimated similarly as in ordinary
CG. For a given d, the approximate solutions x̂j of the system (3.1) satisfy

(3.5) ‖x̂ − x̂j‖2
Â

=

j+d−1∑

i=j

γ̂i‖r̂i‖2 + ‖x̂ − x̂j+d‖2
Â
,

see [38, (4.4)]. Using (3.3),

‖r̂j‖2 = rT
j L−T L−1rj = rT

j M−1rj = (rj , sj) ,

and

‖x̂ − x̂j‖2
Â

= (LT x − LT xj)
T L−1AL−T (LT x − LT xj) = ‖x − xj‖2

A.
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The identity (3.5) can therefore be written in the form

(3.6) ‖x − xj‖2
A =

j+d−1∑

i=j

γi (ri, si) + ‖x − xj+d‖2
A.

Assuming a reasonable decrease of the A-norm of the error in the steps j + 1
through j + d, the square root of the quantity

(3.7) νj,d ≡
j+d−1∑

i=j

γi (ri, si)

gives a tight lower bound for the A-norm of the jth error of PCG applied to
the system Ax = b. Please notice that (similarly as in the ordinary CG) the
quantities γi and (ri, si) are at our disposal during the PCG iterations. For
earlier publications of these identities please see [39, 1].

3.2 Estimating the relative A-norm of the error.

Consider PCG applied to linear algebraic systems arising from a finite element
discretization of self-adjoint elliptic partial differential equations. Then it is nat-
ural to use the stopping criterion that compares the relative A-norm of the error

(3.8)
‖x − xj‖A

‖x‖A

with the discretization error, see [1].
In [1], however, the A-norm of the jth error is estimated using (3.7), while the

estimate of the A-norm of the solution ‖x‖A is based on the formula

(3.9) ‖x‖2
A = rT

0 xj + bT x0 + ‖x − xj‖2
A

which gives the lower bound

(3.10) ‖x‖2
A ≥ ξ̃j ≡ rT

0 xj + bT x0 .

Estimating the A-norm of the solution using the value ξ̃1/2

j has, besides com-
puting an unnecessary scalar product rT

0 xj , a possible disadvantage. Derivation
of the identity (3.9) assumes preserving of global orthogonality during the PCG
computations, cf. [1, p. 9]. In particular, it can be shown that in finite precision
arithmetic it holds (up to some small inaccuracy)

(3.11) ‖x‖2
A ≈ rT

0 xj + bT x0 + rT
j (xj − x0) + ‖x − xj‖2

A.

In exact arithmetic, the term rT
j (xj − x0) is equal to zero. In finite precision

arithmetic, however, its size can be close to ‖rj‖ ‖xj − x0‖. Consequently, the

estimate ξ̃1/2

j can for large rT
j (xj − x0) + ‖x − xj‖2

A (in comparison to ‖x‖2
A)

provide misleading information about the size of ‖x‖A.
A mathematically equivalent identity to (3.9) that overcomes previous diffi-

culties can be obtained in the following way. Subtracting
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‖x − x0‖2
A = ν0,j+d + ‖x − xj+d‖2

A,

‖x − x0‖2
A = ‖x‖2

A − 2bT x0 + ‖x0‖2
A = ‖x‖2

A − bT x0 − rT
0 x0,(3.12)

the identity

‖x‖2
A = ν0,j+d + bT x0 + rT

0 x0 + ‖x − xj+d‖2
A(3.13)

gives the corresponding lower bound

(3.14) ‖x‖2
A ≥ ξj+d ≡ ν0,j+d + bT x0 + rT

0 x0 .

With d = 0, the identities (3.13) and (3.9), as well as the estimates ξj and ξ̃j

are mathematically equivalent. However, the evaluation of ξj is cheaper than the

evaluation of ξ̃j and, more substantially, (3.13) holds with a small inaccuracy
also in finite precision PCG computations independently on the loss of global
orthogonality, cf. Section 4.

Replacing the squared A-norm of the solution ‖x‖2
A by the lower bound ξj+d

and the squared jth A-norm of the error ‖x − xj‖2
A by the lower bound νj,d, we

obtain the estimate �j,d for the squared relative A-norm of the error

(3.15) �j,d ≡ νj,d

ξj+d
.

It should be noted that an improper choice of x0 can give ξj+d ≤ 0 which makes
the estimate �j,d in such case useless. We will, however, explain that ξj+d ≤ 0
means a meaningless choice of x0. First, a nonzero x0 should not be used in
an application of the CG method (and of any other Krylov subspace method)
unless there is a good reason for using it. In CG, the very natural condition

(3.16) ‖x − x0‖2
A ≤ ‖x‖2

A

should always be imposed. Though we can not compute the individual values
‖x‖2

A, ‖x − x0‖2
A, its difference can easily be checked using (3.12). Second, if

ξj+d ≤ 0, then from (3.14)

(3.17) bT x0 + rT
0 x0 = ‖x‖2

A − ‖x − x0‖2
A < 0

and x0 violates the condition (3.16). In such case, x0 should be discarded or
properly scaled in order to satisfy (3.16). In particular, x0 can be scaled such
that ‖x − αx0‖2

A is minimal using

α =
bT x0

xT
0 Ax0

,

(for another application of the same little trick see [33, p. 1903]). With (3.16)
ξj+d > 0 and, using (3.13),

0 < �j,d =
‖x − xj‖2

A − ‖x − xj+d‖2
A

‖x‖2
A − ‖x − xj+d‖2

A

≤ ‖x − xj‖2
A

‖x‖2
A

,

i.e. �1/2

j,d is a lower bound on the jth relative A-norm of the error. Please note

that �1/2

j,d can be close to the relative A-norm of the error even when ν1/2

j,d is far

from ‖x − xj‖A.
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3.3 Estimating the M -norm of the error.

In our paper [38] we described an estimate of the Euclidean norm of the error

in CG. For CG applied to Âx̂ = b̂, Algorithm 1, the estimate is based on the
identity

‖x̂ − x̂j‖2 =

j+d−1∑

i=j

‖p̂i‖2

(p̂i, Âp̂i)

(
‖x̂ − x̂i‖2

Â
+ ‖x̂ − x̂i+1‖2

Â

)
(3.18)

+ ‖x̂ − x̂j+d‖2.

Using (3.3), (3.18) can be rewritten as

‖x − xj‖2
M =

j+d−1∑

i=j

‖pi‖2
M

(pi, Api)

(
‖x − xi‖2

A + ‖x − xi+1‖2
A

)
(3.19)

+ ‖x − xj+d‖2
M

where xj represents the PCG approximate solution for the original problem
Ax = b. Replacing the unknown ‖x − xi‖2

A for i = j, . . . , j + d by the estimates
νi,2d−i+j (see [38]) we obtain

(3.20) ‖x − xj‖2
M ≥ τj,d + ‖x − xj+d‖2

M

where the square root of the quantity

(3.21) τj,d ≡
j+d−1∑

i=j

‖pi‖2
M

(pi, Api)

(
γi (ri, si) + 2

j+2d−1∑

k=i+1

γk (rk, sk)

)

represents a lower bound for the M -norm of the error.

4 Numerical stability analysis.

In [38] we showed that the Hestenes and Stiefel estimate is numerically stable
(i.e. it is in finite precision CG computations not substantially affected by round-
ing errors) until the A-norm of the error approaches its ultimate level of accuracy.
A similar result can be shown for the estimate (3.7) of the A-norm of the error
in PCG.

PCG computes at each step an additional vector sj+1 as a solution of the
linear system

(4.1) Msj+1 = rj+1 ,

and uses

(4.2) (rj+1, sj+1)

for computation of the coefficients γj+1 and δj+1 needed for determining of the
new direction vector pj+1. This is the difference which must be addressed in
extension of the results from CG [38] to PCG.

From now on xj+1, xj , γj , pj , rj+1, rj , sj+1, δj+1 and pj+1 will represent nu-
merically computed quantities. Numerical stability analysis of the estimate (3.7)
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must answer a question to which extent the identity (3.6) holds for quantities
computed in finite precision arithmetic. Please note that this question is fun-
damentally different from its trivial part examining the error in computing νj,d

from γi and fl[(ri, si)], where fl[·] denotes the result of the operation performed
in finite precision arithmetic, using (3.7). In order to justify the estimate (3.7),
we have to derive the identity for the computed quantities analogous to (3.6)
without using any assumption which does not hold in finite precision computa-
tions. In particular, we can not use any assumption about orthogonality or finite
termination.

The key step considers the exact identity for numerically computed quantities

‖x − xj‖2
A = ‖x − xj+1 + xj+1 − xj‖2

A

= ‖x − xj+1‖2
A + 2(x − xj+1)

T A(xj+1 − xj) + ‖xj − xj+1‖2
A

which gives the desired one-step difference

‖x − xj‖2
A − ‖x − xj+1‖2

A = ‖xj − xj+1‖2
A(4.3)

+ 2(x − xj+1)
T A(xj+1 − xj).

The technically complicated and quite tedious analysis which must follow can
be summarized in several logically simple steps:

• First, the difference xj+1−xj is equal to γjpj perturbed by inaccuracies due
to rounding errors. Consequently, ‖xj+1−xj‖2

A can be expressed as γj(rj , sj)
plus some additional terms depending on machine precision ε characterizing
the finite precision arithmetic. These additional terms are small (this is not
obvious; the proof requires a careful analysis).

• Second, considering the approximation of A(x−xj+1) by the residual vector
rj+1 computed in the (j+1)th iteration, the term 2(x−xj+1)

T A(xj+1 −xj)
can be seen as 2γj(rj+1, pj) plus additional small terms depending on ε
(again, bounding the size of these terms needs nontrivial work).

The whole problem of justification of the estimate (3.7) in finite precision arith-
metic is in this way reduced to proving that local orthogonality between the
computed (j + 1)th residual rj+1 and the computed jth direction vector pj is
in PCG maintained proportionally to machine precision. This represents the
technically most complicated part of the whole analysis.

In following four subsections we present a detailed rounding error analysis of
the identity (3.6). Subsection 4.1 describes the rounding errors arising in PCG
iterates due to finite precision arithmetic. In Subsection 4.2 we develop a finite
precision analogue of the identity (3.6) for d = 1. Subsection 4.3 shows that the
local orthogonality between the vectors rj+1 and pj is preserved, up to a term
proportional to machine precision, in finite precision PCG computation. We
finalize the rounding error analysis in Subsection 4.4.

Readers who wish to skip the details of our rounding error analysis may pro-
ceed immediately to Subsection 4.4 or even to numerical experiments in Sec-
tion 5.
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4.1 Finite precision PCG computations.

In the analysis we assume the standard model of floating point arithmetic with
machine precision ε, see, e.g. [23, (2.4)],

(4.4) fl[a ◦ b] = (a ◦ b)(1 + δ), |δ| ≤ ε,

where a and b stands for floating-point numbers and the symbol ◦ stands for the
operations addition, subtraction, multiplication and division. We assume that
this model holds also for the square root operation. Under this model, we have
for operations involving vectors v, w, a scalar α and the matrix A the following
standard results [17], see also [19], [31]

‖α v − fl[α v]‖ ≤ ε ‖αv‖,(4.5)

‖v + w − fl[v + w]‖ ≤ ε (‖v‖ + ‖w‖),(4.6)

|(v, w) − fl[(v, w)]| ≤ ε n (1 + O(ε)) ‖v‖ ‖w‖,(4.7)

‖Av − fl[Av]‖ ≤ ε c ‖A‖‖v‖.(4.8)

When A is a matrix with at most h nonzeros in any row and if the matrix-
vector product is computed in the standard way, c = hn1/2. In the following
analysis we count only for the terms linear in the machine precision ε and express
the higher order terms as O(ε2). By O(const) where const is different from ε2

we denote const multiplied by a bounded positive term of an insignificant size
which is independent of the const and of any other variables present in the
bounds.

Numerically, the PCG iterates satisfy

xj+1 = xj + γjpj + εzx
j ,(4.9)

rj+1 = rj − γjApj + εzr
j ,(4.10)

pj+1 = sj+1 + δj+1pj + εzp
j ,(4.11)

where εzx
j , εzr

j and εzp
j account for the local roundoff (r0 = b − Ax0 − εf0,

ε‖f0‖ ≤ ε{‖b‖+‖Ax0‖+c‖A‖‖x0‖}+O(ε2)). The local roundoff can be bounded
according to the standard results (4.5)–(4.8) in the following way

ε ‖zx
j ‖ ≤ ε {‖xj‖ + 2 ‖γjpj‖} + O(ε2)

≤ ε {3‖xj‖ + 2‖xj+1‖} + O(ε2),(4.12)

ε ‖zr
j‖ ≤ ε {‖rj‖ + 2 ‖γjApj‖ + c ‖A‖‖γjpj‖} + O(ε2),(4.13)

ε ‖zp
j ‖ ≤ ε {‖sj+1‖ + 2 ‖δj+1pj‖} + O(ε2)

≤ ε {3‖sj+1‖ + 2‖pj+1‖} + O(ε2).(4.14)

Similarly, the computed coefficients γj and δj satisfy

(4.15) γj =
(rj , sj)

(pj , Apj)
+ εζγ

j , δj =
(rj , sj)

(rj−1, sj−1)
+ εζδ

j .

In order to bound the local terms |εζγ
j | and |εζδ

j | we need following two lemmas.
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Lemma 4.1. Consider the standard model of floating point arithmetic with
machine precision ε [23, 38], ε n 	 1. Let L be a nonsingular lower triangular
matrix and M = LLT . Then the numerically computed vector sj+1 is the exact
solution of the perturbed system

(4.16) (M + ∆M) sj+1 = rj+1, ‖∆M‖ ≤ ε n2

1 − ε n
‖M‖.

Proof. To prove (4.16) we use standard results of backward error analysis [23].
Using the Theorem 9.4 [23, p. 175] and the fact that we have exact Cholesky
factorization of the matrix M = LLT we obtain

(M + ∆M) sj+1 = rj+1, |∆M | ≤ ε n

1 − ε n
|L||LT |

where |L| denotes the matrix L with elements in absolute value. As shown in
the proof of the Theorem 10.4 in [23, p. 206],

‖ |L||LT | ‖ ≤ n ‖M‖.

Summarizing,

‖∆M‖ ≤ ‖ |∆M | ‖ ≤ ε n

1 − ε n
‖ |L||LT | ‖ ≤ n

ε n

1 − ε n
‖M‖

which completes the proof.

Remark. The assumption M = LLT is not substantial. The result similar to
(4.16) and the following analysis, will remain valid also if the Cholesky decom-
position of M is computed numerically, see e.g. [17].

Lemma 4.2. Consider the standard model of floating point arithmetic with
machine precision ε [23, 38], let ε n2 κ(M) 	 1. The numerically computed
inner product fl[(rj , sj)] satisfies

fl[(rj , sj)] = (rj , sj) + ε ζrs
j ,

ε|ζrs
j | ≤ ε κ(M)1/2(rj , sj)O(n) + O(ε2) ,(4.17)

where κ(M) denotes the condition number of the matrix M . Moreover, (rj , sj)
is bounded from below by

(4.18) (rj , sj) ≥ ‖rj‖ ‖sj‖
κ(M)1/2

O(1) .

Proof. Using (4.7), ε|ζrs
j | can be bounded as

ε|ζrs
j | ≤ ε n ‖rj‖ ‖sj‖ + O(ε2).(4.19)

To prove (4.17), we have to relate ‖rj‖ ‖sj‖ to (rj , sj). From (4.16) it follows

‖rj‖ ‖sj‖ ≤ ‖rj‖
∥∥(M + ∆M)−1rj

∥∥
= ‖rj‖

∥∥(I + M−1∆M)−1M−1rj

∥∥
≤ ‖rj‖

∥∥M−1rj

∥∥ ‖(I + M−1∆M)−1‖ .(4.20)
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Assuming ε n2 κ(M) 	 1, it holds ‖M−1∆M‖ 	 1 and the matrix inverse
(I +M−1∆M)−1 can be approximated by two terms of the Neumann expansion.
Then, (4.20) changes to

‖rj‖ ‖sj‖ ≤ ‖rj‖
∥∥M−1rj

∥∥ CM ( 1 + O(‖M−1∆M‖2)) ,(4.21)

where
CM ≡ ‖ I − M−1∆M ‖

is a constant close to one. It remains to bound the product ‖rj‖ ‖M−1rj‖.
A simple manipulation gives

‖rj‖
∥∥M−1rj

∥∥ =
‖rj‖

∥∥M−1/2M−1/2rj

∥∥
(
M−1/2rj , M−1/2rj

) (
rj , M

−1rj

)

≤ ‖M−1/2‖ ‖rj‖∥∥M−1/2rj

∥∥ (rj , M
−1rj).(4.22)

Using Msj + ∆Msj = rj we get
(
rj , M

−1rj

)
= (rj , sj) +

(
rj , M

−1∆Msj

)

= (rj , sj) +
(
M−1/2rj , M

−1/2∆Msj

)

and ‖rj‖ ‖M−1rj‖ can be bounded by

‖rj‖
∥∥M−1rj

∥∥ ≤ ‖M−1/2‖ ‖rj‖∥∥M−1/2rj

∥∥ (rj , sj)

+
‖M−1/2‖ ‖rj‖∥∥M−1/2rj

∥∥
(
M−1/2rj , M

−1/2∆Msj

)

≤ κ(M)1/2(rj , sj) +
ε n2

1 − ε n
κ(M) ‖rj‖ ‖sj‖ .(4.23)

From (4.21) and (4.23) it follows

‖rj‖ ‖sj‖ ≤ ε κ(M)1/2(rj , sj)CM

+
ε n2

1 − ε n
κ(M) ‖rj‖ ‖sj‖ CM + O(‖M−1∆M‖2) .(4.24)

Defining

DM ≡ CM

(
1 − ε n2

1 − ε n
κ(M)CM

)−1

,

(4.24) can be written in the form

‖rj‖ ‖sj‖ ≤ κ(M)1/2(rj , sj)DM + O(‖M−1∆M‖2) .(4.25)

Since ε n2 κ(M) 	 1 and CM is close to one, the definition of DM implies that
DM is close to one also. The term O(‖M−1∆M‖2) is under our assumption
unimportant and will not be further explicitly considered. Finally, (4.25) gives

‖rj‖ ‖sj‖ ≤ κ(M)1/2(rj , sj)O(1) ,(4.26)
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where O(1) stands for a number close to one. (4.17) follows immediately from
(4.26) and (4.19). Dividing (4.26) by κ(M)1/2 gives (4.18), which finishes the
proof.

Assuming ε n2 κ(M) 	 1, the local term εζδ
j is bounded, according to (4.4),

(4.7) and (4.17), by

(4.27) ε
∣∣ζδ

j

∣∣ ≤ ε
(rj , sj)

(rj−1, sj−1)
κ(M)1/2 O(n) + O(ε2).

Using (4.5)–(4.8) and ‖A‖‖pj‖2/(pj , Apj) ≤ κ(A),

fl[(pj , Apj)] = (pj , Apj) + ε ‖Apj‖‖pj‖O(n) + ε ‖A‖‖pj‖2O(c) + O(ε2)

= (pj , Apj)
(
1 + ε κ(A)O(n + c)

)
+ O(ε2).

Assuming ε(n + c)κ(A) 	 1, the local roundoff εζγ
j is bounded by

(4.28) ε
∣∣ζγ

j

∣∣ ≤ ε (κ(A) + κ(M)1/2)
(rj , sj)

(pj , Apj)
O(n + c) + O(ε2).

It is well known that in finite precision arithmetic the true residual b − Axj

differs from the recursively updated residual vector rj ,

(4.29) rj = b − Axj − εfj.

This topic was studied in [36] and [19]. The results can be written in the following
form

‖εfj‖ ≤ ε ‖A‖ (‖x‖ + max
0≤i≤j

‖xi‖)O(jc),(4.30)

‖rj‖ = ‖b − Axj‖ (1 + εFj),(4.31)

where εFj is bounded by

(4.32) |εFj | =
|‖rj‖ − ‖b − Axj‖|

‖b − Axj‖
≤ ‖rj − (b − Axj)‖

‖b − Axj‖
=

ε‖fj‖
‖b − Axj‖

.

Rounding errors affect results of PCG computations in two main ways: they
delay convergence and limit the ultimate attainable accuracy. Here we are pri-
marily interested in estimating the convergence rate. We therefore assume that
the final accuracy level has not been reached yet and εfj is, in comparison to
the size of the true and iterative residuals, small. In the subsequent text we will
relate the numerical inaccuracies to the A-norm of the error ‖x − xj‖A. The
following inequalities derived from (4.32) will prove useful,

(4.33) λ
1/2
1 ‖x − xj‖A (1 + ε Fj) ≤ ‖rj‖ ≤ λ1/2

n ‖x − xj‖A (1 + ε Fj).

Similarly as in the ordinary CG (see [18], [21]) we can argue that the monotonic-
ity of the A-norm is in PCG preserved (with small additional inaccuracy) also
in finite precision computations. Using this fact we get for j ≥ i

(4.34) ε
‖rj‖
‖ri‖

≤ ε
λ

1/2
n

λ
1/2
1

· ‖x − xj‖A

‖x − xi‖A
· (1 + ε Fj)

(1 + ε Fi)
≤ ε κ(A)

1/2
+ O(ε2).

This bound will be used later.
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4.2 Finite precision analysis – basic identity.

We show that the ideal (exact precision) identity (3.6) changes numerically to

(4.35) ‖x − xj‖2
A = νj,d + ‖x − xj+d‖2

A + ν̃j,d

where ν̃j,d is as small as it can be. We once more emphasize that the difference
between (3.6) and (4.35) is not trivial. The ideal and numerical counterparts of
each individual term in these identities may be orders of magnitude different! Due
to the facts that rounding errors in computing νj,d numerically from the quan-
tities γi and fl[(ri, si)] are negligible and that ν̃j,d will be related to ε ‖x − xj‖A,
(4.35) will justify the estimate νj,d in finite precision computations.

In order to get the desired form leading to (4.35), we will develop the right
hand side of (4.3). In this derivation we will rely on local properties (4.9)–(4.11)
and (4.15)–(4.16) of the finite precision PCG recurrences.

Using (4.9), the first term on the right hand side of (4.3) can be written as

‖xj+1 − xj‖2
A = (γjpj + ε zx

j )T A(γjpj + ε zx
j )

= γ2
j (pj , Apj) + 2ε γj(pj , Azx

j ) + O(ε2)

= γj (pj , Apj) + 2ε (xj+1 − xj)
T Azx

j + O(ε2).(4.36)

Similarly, the second term on the right hand side of (4.3) transforms, using
(4.29), to the form

2 (x − xj+1)
T A(xj+1 − xj) = 2 (rj+1 + ε fj+1)

T (xj+1 − xj)

= 2 rT
j+1(xj+1 − xj) + 2ε fT

j+1(xj+1 − xj).(4.37)

Combining (4.3), (4.36) and (4.37),

‖x − xj‖2
A − ‖x − xj+1‖2

A = γ2
j (pj , Apj) + 2 rT

j+1(xj+1 − xj)(4.38)

+ 2ε (fj+1 + Azx
j )T (xj+1 − xj) + O(ε2).

Substituting for γj from (4.15), the first term in (4.38) can be written as

γ2
j (pj , Apj) = γj(rj , sj) + ε γj (pj , Apj) ζγ

j

= γj(rj , sj) + ε γj(rj , sj)

{
ζγ
j

(pj , Apj)

(rj , sj)

}
.

Consequently, the difference between the squared A-norms of the error in the
consecutive steps can be written in the form convenient for the further analysis

‖x − xj‖2
A − ‖x − xj+1‖2

A = γj(rj , sj) + ε γj(rj , sj)

{
ζγ
j

(pj , Apj)

(rj , sj)

}
(4.39)

+ 2 rT
j+1(xj+1 − xj) + 2ε (fj+1 + Azx

j )T (xj+1 − xj) + O(ε2).

The goal of the following analysis is to show that until ‖x − xj‖A reaches its
ultimate attainable accuracy level, the terms on the right hand side of (4.39)
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are, except for γj(rj , sj) insignificant. Bounding the second term will not repre-
sent a problem. The norm of the difference xj+1 − xj = (x − xj) − (x − xj+1)
is bounded by 2‖x − xj‖A/λ1/2

1 , and therefore the size of the fourth term is
proportional to ε ‖x − xj‖A. The third term is related to the line-search prin-
ciple. Ideally (in exact arithmetic), the (j + 1)-th residual r̂j+1 is orthogonal to
the difference between the (j + 1)-th and j-th approximation x̂j+1 − x̂j (which
is a multiple of the j-th direction vector p̂j). This is equivalent to the line-
search: ideally, in terms of the transformed quantities used in Algorithm 2, the
(j +1)-th PCG approximation minimizes the A-norm of the error along the line
determined by the j-th approximation and the j-th direction vector. Here the
term rT

j+1(xj+1 − xj), with rj+1, xj and xj+1 computed numerically, examines
how closely the line-search holds in finite precision arithmetic. In fact, bounding
the local orthogonality rT

j+1(xj+1 − xj) represents the technically most difficult
part of the remaining analysis.

4.3 Local orthogonality.

Since the classical work of Paige it is well known that in the three-term Lanczos
recurrence local orthogonality is preserved close to the machine epsilon (see [31]).
We will derive an analogue of this for the PCG algorithm, and state it as an
independent result.

The local orthogonality term rT
j+1(xj+1 − xj) can be written in the form

(4.40) rT
j+1(xj+1 − xj) = rT

j+1(γjpj + ε zx
j ) = γj(rj+1, pj) + ε (rj+1, z

x
j ).

Using the bound

‖rj+1‖ ≤ λ1/2
n ‖x − xj+1‖A(1 + ε Fj+1) ≤ λ1/2

n ‖x − xj‖A(1 + ε Fj+1) ,

see (4.33), the size of the second term in (4.40) is proportional to ε ‖x − xj‖A.
The main step consist of showing that the term (rj+1, pj) is sufficiently small.
Scalar multiplying the recurrence (4.10) for rj+1 by the vector pj gives (using
(4.11) and (4.15))

(pj , rj+1) = (pj , rj) − γj(pj , Apj) + ε (pj , z
r
j )

= (sj + δjpj−1 + ε zp
j−1)

T rj

−
(

(rj , sj)

(pj , Apj)
+ ε ζγ

j

)
(pj , Apj) + ε (pj, z

r
j )

= δj (pj−1, rj) + ε
{
(rj , z

p
j−1) − ζγ

j (pj , Apj) + (pj , z
r
j )

}
.(4.41)

Denoting

(4.42) Gj ≡ (rj , z
p
j−1) − ζγ

j (pj , Apj) + (pj , z
r
j ),

the identity (4.41) is

(4.43) (pj , rj+1) = δj (pj−1, rj) + ε Gj .
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Recursive application of (4.43) for (pj−1, rj), . . . , (p1, r2) with (p0, r1) = (p0, r0)−
γ0 (p0, Ap0) + ε (p0, z

r
0) = ε

{
− ζγ

0 (s0, As0) + (s0, z
r
0)

}
≡ ε G0, gives

(4.44) (pj , rj+1) = ε Gj + ε

j∑

i=1

( j∏

k=i

δk

)
Gi−1.

Since

ε

j∏

k=i

δk = ε

j∏

k=i

(rk, sk)

(rk−1, sk−1)
+ O(ε2) = ε

(rj , sj)

(ri−1, si−1)
+ O(ε2),

we can express (4.44) as

(4.45) (pj , rj+1) = ε (rj , sj)

j∑

i=0

Gi

(ri, si)
+ O(ε2).

Using (4.42),

(4.46)
|Gi|

(ri, si)
≤ ‖ri‖‖zp

i−1‖
(ri, si)

+ |ζγ
i | (pi, Api)

(ri, si)
+

‖pi‖‖zr
i ‖

(ri, si)
.

When bounding the first and the last terms on the right hand side of (4.46), we
will use the inequality (4.18) proved in Lemma 4.2. From (4.14) it follows

(4.47) ε
‖ri‖‖zp

i−1‖
(ri, si)

≤ ε κ(M)1/2

{
3 + 2

‖pi‖
‖si‖

}
O(1) + O(ε2).

Using (4.28),

(4.48) ε |ζγ
i | (pi, Api)

(ri, si)
≤ ε (κ(A) + κ(M)1/2)O(n + c) + O(ε2).

The last part of (4.46) is bounded using (4.13) and (4.18)

ε
‖pi‖‖zr

i ‖
(ri, si)

≤ ε

{
κ(M)1/2 ‖pi‖‖ri‖

‖si‖‖ri‖
O(1)

}

+ ε

{
2 γi

‖pi‖‖Api‖
(ri, si)

+ c γi
‖pi‖‖A‖‖pi‖

(ri, si)

}
+ O(ε2)

= ε

{
κ(M)1/2 ‖pi‖

‖si‖
O(1)

}

+ ε

{
2

‖pi‖‖Api‖
(pi, Api)

+ c
‖A‖‖pi‖2

(pi, Api)

}
+ O(ε2)

≤ ε

{
κ(M)1/2 ‖pi‖

‖si‖
O(1) + (2 + c)κ(A)

}
+ O(ε2),(4.49)

where

ε
‖pi‖
‖si‖

≤ ε
‖si‖ + δi‖pi−1‖

‖si‖
+ O(ε2)

≤ ε

{
1 + δi

‖si−1‖
‖si‖

‖pi−1‖
‖si−1‖

}
+ O(ε2).(4.50)
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Recursive application of (4.50) for ‖pi−1‖/‖si−1‖, ‖pi−2‖/‖si−2‖, . . . , ‖p1‖/‖s1‖
with ‖p0‖/‖s0‖ = 1 gives

ε
‖pi‖
‖si‖

≤ ε

{
1 +

(si, ri)

(si−1, ri−1)

‖si−1‖
‖si‖

+ · · · +
(si, ri)

(s0, r0)

‖s0‖
‖si‖

}
+ O(ε2)

≤ ε

{
1 +

‖ri‖‖si−1‖
(si−1, ri−1)

+ · · · + ‖ri‖‖s0‖
(s0, r0)

}
+ O(ε2)

≤ ε

{
1 + κ(M)1/2 ‖ri‖

‖ri−1‖
+ · · · + κ(M)1/2 ‖ri‖

‖r0‖

}
O(1) + O(ε2).

The size of ε ‖ri‖/‖rk‖, i ≥ k is, according to (4.34), less or equal than the value

ε κ(A)1/2 + O(ε2). Consequently,

ε
‖pi‖
‖si‖

≤ ε {1 + i κ(A)1/2κ(M)1/2} O(1) + O(ε2).(4.51)

Denote
κ(A, M) ≡ max(κ(A), κ(M)κ(A)1/2).

Summarizing (4.47), (4.48), (4.49) and (4.51), the ratio ε |Gi|/(ri, si) is bounded
as

ε
|Gi|

(ri, si)
≤ ε κ(A, M)O(8 + 3c + 2n + 3i) + O(ε2).(4.52)

Combining this result with (4.45) proves the following theorem.

Theorem 4.3. Let ε (n + c)κ(A) 	 1, ε n2 κ(M) 	 1. Then the local or-
thogonality between the direction vectors and the iteratively computed residuals
is in the finite precision implementation of the preconditioned conjugate gradient
method (4.9)–(4.11) and (4.15)–(4.16) bounded by

(4.53) |(pj , rj+1)| ≤ ε (rj , sj)κ(A, M)O((j + 1)(8 + 3c + 2n + 3j)) + O(ε2)

where
κ(A, M) ≡ max (κ(A), κ(M)κ(A)1/2) .

4.4 Finite precision analysis – conclusions.

We now return to (4.39) and finalize our discussion. Using (4.40) and (4.45),

‖x − xj‖2
A − ‖x − xj+1‖2

A = γj(rj , sj)(4.54)

+ ε γj(rj , sj)

{
ζγ
j

(pj , Apj)

(rj , sj)
+ 2

j∑

i=0

Gi

(rj , sj)

}

+ 2ε
{
(fj+1 + Azx

j )T (xj+1 − xj) + (rj+1, z
x
j )

}
+ O(ε2).

The term

E(1)

j ≡ ε

{
ζγ
j

(pj , Apj)

(rj , sj)
+ 2

j∑

i=0

Gi

(rj , sj)

}
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is bounded using (4.28) and (4.52),

|E(1)

j | ≤ εκ(A, M)O
(
2n + 2c + 2(j + 1)(8 + 3c + 2n + 3j)

)
+ O(ε2).(4.55)

We write the remaining term on the right hand side of (4.54) proportional to ε

2ε
{
(fj+1 + Azx

j )T (xj+1 − xj) + (rj+1, z
x
j )

}
≡ ‖x − xj‖A E(2)

j(4.56)

where

|E(2)

j | = 2ε

∣∣∣∣(fj+1 + Azx
j )T

(
xj+1 − x + x − xj

‖x − xj‖A

)
+

(rj+1, z
x
j )

‖x − xj‖A

∣∣∣∣

≤ 2ε
{
2 (‖fj+1‖λ

−1/2
1 + ‖A‖1/2‖zx

j ‖) + ‖A‖1/2‖zx
j ‖

}
.(4.57)

With (4.30) and (4.12),

|E(2)

j | ≤ 4ε‖A‖1/2κ(A)1/2(‖x‖ + max
0≤i≤j+1

‖xi‖)O(jc)

+ 5‖A‖1/2ε(3‖xj‖ + 2‖xj+1‖) + O(ε2)

≤ ε‖A‖1/2κ(A)1/2(‖x‖ + max
0≤i≤j+1

‖xi‖)O(4jc + 25) + O(ε2).(4.58)

Finally, using the fact that the monotonicity of the A-norm is with small addi-
tional inaccuracy preserved also in finite precision PCG computations (see also
the discussion following (4.33)), we obtain the finite precision analogue of (3.6),
which is formulated as a theorem.

Theorem 4.4. Let ε (n+c)κ(A) 	 1, ε n2 κ(M) 	 1. Then the PCG approx-
imate solutions computed in finite precision arithmetic satisfy

‖x − xj‖2
A − ‖x − xj+d‖2

A = νj,d + νj,d E(1)

j,d + ‖x − xj‖A E(2)

j,d + O(ε2),(4.59)

where

(4.60) νj,d =

j+d−1∑

i=j

γi (ri, si).

The terms due to rounding errors are bounded by

|E(1)

j,d| ≤ ε κ(A, M) p(1)(n, d) + O(ε2),(4.61)

|E(2)

j,d| ≤ ε ‖A‖1/2κ(A)1/2 (‖x‖ + max
0≤i≤j+1

‖xi‖) p(2)(n, d) + O(ε2),

where
κ(A, M) ≡ max (κ(A), κ(M)κ(A)1/2),

p(1)(n, d) and p(2)(n, d) represent small degree polynomials in n and d independent
of any other variables.

Based on the assumptions we consider |E(1)

j,d| 	 1. Then, assuming that the
A-norm of the error reasonably decreases, the numerically computed value νj,d
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gives a good estimate for the A-norm of the error ‖x − xj‖2
A until

‖x − xj‖A |E(2)

j,d| 	 ‖x − xj‖2
A,

which is equivalent to

(4.62) ‖x − xj‖A 
 |E(2)

j,d|.

The quantity E(2)

j,d represents various terms. Its upper bound is, apart from
κ(A)1/2, which comes into play as an effect of the worst-case rounding error
analysis, linearly dependent on an upper bound for ‖x − x0‖A. The value of
E(2)

j,d is (similar to terms or constants in any other rounding error analysis) not
important. What is important is the following possible interpretation of (4.62):
until ‖x − xj‖A reaches a level close to ε‖x − x0‖A, the computed estimate ν1/2

j,d

must work.
Please note that νj,d represents here the exact value determined from the

computed inputs γi, ri and si. In fact, we should consider the computed value
fl[νj,d]. Additional rounding errors in evaluating the formula (4.60) are, however,
negligible in comparison to the other rounding error terms in (4.59), and need
not be considered here.

5 Numerical experiments.

We test our theoretical results on three linear systems with a symmetric posi-
tive definite matrix A. The first two systems (by R. Kouhia) arise from cylindrical
shell modeling. The matrices are large and sparse, and PCG represents a natural
choice for solving the systems in practical computations. The third system (by
P. Benner) appears in large-scale control problems. PCG is not used for practi-
cal solution of the last (rather small) system. We use it here for illustration of
how the estimate of the A-norm of the error works for this type of problem. We
describe the problems in more detail.

The system s3dkt3m2. The collection Cylshell (by R. Kouhia) from the elec-
tronic library Matrix Market [25] contains matrices that represent low order
finite element discretization of a shell element test, the pinched cylinder. An
illustration of the mesh for this problem provided by R. Kouhia is given below.
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In our experiments we use the matrix s3dkt3m2 of the order n = 90449. The
matrix has nnz(A) = 1921955 nonzero elements, and the condition number
κ(A) = 3.62e+11. Only the last element of the right-hand side vector b is
nonzero, which corresponds to the given physical problem (for more details
see [24] and the references in [24]). The preconditioner was determined by in-
complete Cholesky decomposition with no fill-in.

The system tube. The second system is given at the R. Kouhia’s homepage
http://www.hut.fi/~kouhia/ (the system tube1-2). The tube is a cylindrical
shell with the constant wall thickness, loaded with an axial stress distribution at
both ends. The mesh is refined at the center, and it is almost uniform towards
the ends.

The order of the matrix A is n = 21498, nnz(A) = 894490. The factor L of
the preconditioner M is determined by the incomplete Cholesky decomposition
with the drop tolerance 1e–5, nnz(L) = 4384369.

The system stahl. We consider the problem of optimal cooling of steel profile,
that arises, e.g. in a rolling mill when different steps in the production pro-
cess require different temperatures of the raw material. The problem is modeled
using a boundary control (given by the temperature of the cooling fluid) for
a heat-diffusion process described by the linearized heat equations. This leads
to the Lyapunov equations that are solved by the ADI iterations. For more de-
tail about this problem see [9]. We test the proposed estimates on the system
from the initial step of the ADI iteration. The matrix is of the order n = 5177,
κ(A) = 1.56e+05, nnz(A) = 35241. The system is preconditioned by incomplete
Cholesky decomposition with no fill-in.

In all experiments we use the initial approximation x0 = 0. We do not tune
the preconditioner for the best performance; our aim is to demonstrate the be-
haviour of the estimate of the A-norm of the error in practical computations.
The substitutes for the exact solutions x used in the figures are for each system
computed in two steps: 1. We apply PCG to the system and iterate until ultimate
level of accuracy is reached (the norm of true and recursive residuals start to
differ). 2. We apply PCG to the system for the second time, with the initial ap-
proximation given by the approximate solution computed in the first step. In this
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way, we obtain approximate solutions that represent for our purpose sufficiently
accurate approximations to the exact solutions x. Our numerical experiments
showed that even for the first step the obtained residual norms were comparable
with that ones obtained by the direct Cholesky decomposition solver. After the
second step the residual norms further decreased, but less than by a factor of 10.

In experiments with the system s3dkt3m2 we use a Fortran program CG6
provided us by M. Tůma. The other two systems are solved using our implemen-
tation of PCG in Matlab 6.5; we use the Matlab-function cholinc to determine
the incomplete Cholesky decomposition of the matrix A. All experiments were
performed on a AMD Athlon XP 2100+ personal computer with machine pre-
cision ε ∼ 10−16.

5.1 Estimates for the A-norm of the error.

In the first numerical experiment we test the estimate ν1/2

j,d of the A-norm of the

error and the estimate �1/2

j,d of the relative A-norm of the error in PCG applied to
the three systems described above. The results are presented in the figures Fig-
ure 5.1 (s3dkt3m2), Figure 5.2 (tube) and Figure 5.3 (stahl). All three figures
consist of two parts. The left part includes various convergence characteristics:
the A-norm of the error ‖x − xj‖A (dashed line), its estimate ν1/2

j,d for some par-
ticular value of the parameter d (bold solid line), the residual norm ‖b − Axj‖
(dash-dotted line) and the normwise backward error ‖b−Axj‖/(‖A‖ ‖xj‖+‖b‖)
(dotted line). In the right part of the figure we plot the relative A-norm of the
error ‖x − xj‖A/‖x‖A (dashed line) and its estimates �1/2

j,d for different values
of d (solid lines). The bold line corresponds to the same value of d as the bold
line in the left part of the figure.
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Figure 5.1: The system s3dkt3m2. In an extremal case of very slow PCG convergence
the estimate ν1/2

j,d can significantly underestimate the actual A-norm of the error (left

part). The estimate �1/2

j,d of the relative A-norm of the error (right part) is in general
much tighter than the estimate of the A-norm of the error.

Figure 5.1 (s3dkt3m2), left part. We start with the most difficult situation
when the A-norm of the error (dashed line) almost stagnates for many steps
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(here up to the iteration ∼ 2400). Then the estimate ν1/2

j,d (bold solid line) can
give a poor information about the actual A-norm of the error. The values of
‖x−xj‖A and ν1/2

j,d , can significantly differ even for a considerably large value of
the parameter d (here d = 200). Please notice that the situation just described
is not frequent in practical computations. It corresponds to an extremely slow
convergence of PCG, i.e. to the case of very difficult problem which is hard to
precondition. We have chosen such problem on purpose to show the possible
drawback of the proposed error estimator. We emphasize that this situation rep-
resents an extremal case. Typical situation is demonstrated below on Figure 5.2
(tube) and Figure 5.3 (stahl). As soon as the convergence takes place (around
the iteration 2400), we get a tight lower bound for the A-norm of the error.

In CG, we often observe a close correlation between the behaviour of the
residual norm and the estimate ν1/2

j,d for small values of d. This is a consequence
of the fact that in ordinary CG the coefficients γj usually oscillate around some
value and, apart from this oscillations, the behaviour of ‖rj‖ determines the
behaviour of ν1/2

j,d . Similar phenomenon appears also in the PCG iterations. Here

νj,d and (rj , M
−1rj) (the squared M−1-norm of the residual rj) are correlated

for small values of d. The M−1-norm of the residual rj frequently behaves in
practical computation similarly as a constant multiple of the Euclidean norm
of the residual. Then the correlation between ‖rj‖ and ν1/2

j,d is observed also
in the PCG iterations. For larger values of d, however, there is, in general, no
correlation between the behaviour of ‖rj‖ and ν1/2

j,d . In the left part of Figure 5.1
(where d = 200) we clearly see periods of decrease of ‖rj‖ with simultaneous
increase of ν1/2

j,d , and vice versa.
By the dotted line we plot the normwise backward error. After the convergence

becomes steady, the values of ‖xj‖ typically stabilize. The residual norm and the
normwise backward error are then in a strong correlation. Until then, however,
both characteristics can behave differently. This fact is demonstrated by the
convergence curves in the first 500 iterations; the backward error decreases while
the residual norm stagnates.

Figure 5.1 (s3dkt3m2), right part. In the right part of the Figure 5.1 we plot
the relative A-norm of the error (3.8) (dashed line) and its estimate �1/2

j,d for
d = 1, d = 10, d = 80 (solid lines) and d = 200 (bold solid line). The estimate
�1/2

j,1 , and sometimes even �1/2

j,10, �1/2

j,80 and �1/2

j,200, are not tight when the A-norm

of the error almost stagnates. In the other cases �1/2

j,1 as well as the bounds for
the larger d are close to the considered convergence curve. By the bold solid line
we plot the estimate for d = 200. In comparison to the left part of the Figure 5.1,
the estimate of the relative A-norm of the error gives better results (it is closer
to the approximated curve) than the estimate of the absolute A-norm of the
error.

Figure 5.2 (tube), left part. When the A-norm of the error (dashed line) de-
creases rapidly (iterations 350− 400), we can not visually distinguish this quan-
tity from its estimate ν1/2

j,d (bold solid line). On the other hand, when the conver-
gence is slow (iterations 1−350), the difference between the actual A-norm of the
error and its estimate is observable but insignificant. The normwise backward



812 Z. STRAKOŠ AND P. TICHÝ
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Figure 5.2: The system tube. Even a slow decrease of the A-norm of the error is
sufficient for obtaining a satisfactory value of the estimate ν1/2

j,d of the A-norm of the
error. The erratic behaviour for d = 1 is caused by the oscillations of the coefficients
γj (right part). By increasing the value of d, the curves are more smooth and closer to
the relative A-norm of the error.

error (dotted line) behaves similarly, apart from the difference in magnitude, as
the residual norm (dash dotted line).

Figure 5.2 (tube), right part. The right part of the Figure 5.2 contains the
curve of the relative A-norm of the error (dashed line) and its estimates for
d = 1, d = 4 (solid lines) and d = 20 (bold solid line). For d = 1, the curve of the
estimate is erratic. The irregularity of the curve is due to the oscillations of the
coefficients γj . The estimate �1/2

j,1 does not differ from the actual relative A-norm
of the error for more than a single order of magnitude, although the convergence
is in iterations 1–350 slow. Increasing d provides a very good estimate throughout
the whole computation.
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Figure 5.3: The system stahl. The estimates for the absolute and relative A-norm of
the error are tight throughout the whole computation.

Figure 5.3 (stahl), left part. The preconditioning by incomplete Cholesky
decomposition represents here a very good choice; the convergence of the A-norm
of the error (dashed line) is fast during the whole computation and the estimate
(bold solid line) for the parameter d = 20 describes very well the convergence
curve.
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Figure 5.3 (stahl), right part. The estimates of the relative A-norm of the
error give a satisfactory information about the convergence also for small values
of d (d = 1, d = 4).
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Figure 5.4: The system s3dkt3m2. The relative A-norm of the error (dashed line), the
estimate of the relative A-norm of the error with d = 100 (solid line) and the curves
reconstructed at iterations 1000 (dots), 1700 (x-marks), 2200 (pentagrams) and 2500
(stars).

5.2 Reconstruction of the convergence curve.

Up to now we estimated the A-norm of the error at the iteration step j at
the price of running d extra steps, and we considered d to be fixed. The simple
form of the estimate νj,d, see (3.6), (3.7) enables at the given iteration step j
updating of the estimates of the A-norm of the error at the steps j−d, j−2d, . . .
at a negligible cost. Indeed, assuming, for simplicity of exposition, that j is
a multiple of the chosen d (j mod d = 0), the identity (3.6) gives

(5.1) ‖x − xj−id‖2
A =

i∑

l=0

νj−ld,d + ‖x − xj+d‖2
A, i = 0, 1, . . . .

In this way,

(5.2) ν1/2

j−id,(i+1)d =

(
i∑

l=0

νj−ld,d

)1/2

approximates ‖x−xj−id‖A with the inaccuracy at most ‖x−xj+d‖A. In practical
computations we can simply store the values of ν0,d, νd,d, ν2d,d, . . . , νj−d,d, and
with the additional d steps update the estimates for the A-norm of the error in
the steps 0, d, 2d, . . . , j − d to

ν1/2

0,j+d, ν1/2

d,j , ν1/2

2d,j−d, . . . , ν1/2

j−d,2d .
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Dividing by ν1/2

0,j+d we get the corresponding values of the estimates �1/2

d,j , �1/2

2d,j,

. . . , �1/2

j−d,2d for the relative A-norm of the error. We illustrate this “reconstruc-
tion” of the convergence curve in Figure 5.4, computed for the problem s3dkt3m2

with d = 100, where we plot the relative A-norm of the error (dashed line), its
estimate �1/2

j,d (solid line) and the updated estimates of the relative A-norm of the
error computed for j = 1000 (dots), j = 1700 (x-marks), j = 2200 (pentagrams)
and j = 2500 (stars). Please notice that when ‖x − xj‖A almost stagnates, the
updated estimates can significantly differ from the original ones represented by
the solid line.

We point out that in this paper we deal with evaluation of convergence, and
we left heuristics for proper stopping criteria to further investigation. The prob-
lem s3dkt3m2 illustrates that the last question is not trivial. Though, e.g., the
computed estimates (even those updated at the iteration j = 2200) significantly
decrease in the iterations 1800–2000, the actual value of the A-norm of the er-
ror still almost stagnates. We emphasize that neither the residual norm nor the
normwise backward error reliably indicate the convergence of the A-norm of the
error (cf. Figure 5.1, iterations 1800–2000).
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Figure 5.5: The system tube. The norms of the errors show similar behaviour. For
d = 4, the estimates of ‖x − xj‖M and of ‖x − xj‖A behave erratically, similarly to
the residual norm (left part). For d = 40, the estimates are smoother and closer to the
approximated curves (right part).

5.3 Comparison of the convergence characteristics.

In Figure 5.5 we plot various convergence characteristics and error estimates
for the system tube. We have used d = 4 (left part) and d = 40 (right part). The
M -norm of the error ‖x − xj‖M (dash-dotted line), the Euclidean norm of the
error ‖x − xj‖ (bold solid line) and the A-norm of the error ‖x − xj‖A (dashed
line) show, except for a few initial iterations, similar behaviour. The estimates
both of ‖x − xj‖M and ‖x − xj‖A are plotted by the solid lines (no confusion
is possible; the line that is always under the dashed curve is the estimate of
the A-norm of the error). The A-norm of the error is estimated more accurately
than the M -norm of the error; while the estimate ν1/2

j,d differs for no more that

one order of magnitude from ‖x − xj‖A, τ 1/2

j,d differs often for about two orders
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of magnitude. The behaviour of both estimates is similar, but the peaks on the
line representing τ 1/2

j,d are higher than the peaks on the line representing ν1/2

j,d . For
d = 4 both estimates behave erratically, similarly to the residual norm (dotted
line). By increasing the value of d, the estimates are smoother and closer to the
approximated curves (see right part). The estimate of the M -norm of the error
is in our example more sensitive to a slow decrease of error norms.

6 Conclusions.

We propose to incorporate the estimate for the A-norm of the error ν1/2

j,d

(see (3.7)) and the estimate for the relative A-norm of the error �1/2

j,d (see (3.15))
into software realizations of the PCG method. They are simple and numerically
stable, and can complement with a great benefit the quantities commonly used
for evaluating convergence. The estimates are tight if the A-norm of the error
reasonably decreases. With a good preconditioner ensuring fast convergence we
get an authentic information about convergence in terms of the A-norm of the
error. Similarly, the estimate τ 1/2

j,d (see (3.21)) for the M -norm of the error should
be used whenever appropriate.

The proposed estimates can be combined with the standard quantities, such
as residual norm or normwise backward error, for constructing a proper stopping
criteria. The last topic as well as the (variable) choice of the parameter d in the
estimates still needs further work.
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ON EFFICIENT NUMERICAL APPROXIMATION OF THE
BILINEAR FORM c∗A−1b†

ZDENĚK STRAKOŠ‡ AND PETR TICHÝ§

Abstract. Let A ∈ CN×N be a nonsingular complex matrix and b and c be complex vectors
of length N . The goal of this paper is to investigate approaches for efficient approximations of the
bilinear form c∗A−1b. Equivalently, we wish to approximate the scalar value c∗x, where x solves
the linear system Ax = b. Here the matrix A can be very large or its elements can be too costly
to compute so that A is not explicitly available and it is used only in the form of the matrix-
vector product. Therefore a direct method is not an option. For A Hermitian positive definite,
b∗A−1b can be efficiently approximated as a by-product of the conjugate-gradient iterations, which
is mathematically equivalent to the matching moment approximations computed via the Gauss–
Christoffel quadrature. In this paper we propose a new method using the biconjugate gradient
iterations which is applicable to the general complex case. The proposed approach will be compared
with existing ones using analytic arguments and numerical experiments.

Key words. bilinear forms, scattering amplitude, method of moments, Krylov subspace meth-
ods, conjugate gradient method, biconjugate gradient method, Lanczos algorithm, Arnoldi algorithm,
Gauss–Christoffel quadrature, model reduction
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1. Introduction. Given a nonsingular square matrix A ∈ CN×N and vectors
b and c of compatible dimensions, many applications require approximation of the
quantity

c∗A−1b .(1.1)

They arise in signal processing under the name scattering amplitude, as well as in nu-
clear physics, quantum mechanics, and computational fluid dynamics; see [44, 20] and
the references therein. In numerical linear algebra they arise naturally in computing
error bounds for iterative methods, in solving inverse problems, in least and total least
squares problems, etc.; see [19]. This paper presents an approach for approximating
c∗A−1b that is designed to be computationally efficient. For context, we also briefly
summarize existing techniques for approximating c∗A−1b, notably in the special cases
when A, b, and c are real or when A is Hermitian positive definite (HPD).

Given the solution x of the linear algebraic system Ax = b, (1.1) can be reformu-
lated as

c∗A−1b = c∗x .
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In most applications, c∗A−1b need not be computed to a high accuracy; an approxi-
mation correct to very few digits of accuracy is sufficient. Therefore the direct solution
of Ax = b is inefficient even for problems of moderate size. If A is sufficiently large or
the elements of A are too costly to compute, then the direct solution is not possible.
A strategy used by several authors is to generate a sequence {xk} of approximate
solutions to Ax = b using a Krylov subspace method and to approximate c∗A−1b by
c∗xn for sufficiently large n. However, even when A is HPD, this approximation may
require a large number of iterations as a result of rounding errors affecting xn; see
[52, 53]. A variety of approaches for approximating c∗A−1b have been developed based
on quadrature and moments; see, for example, [17]. The extensive literature about
connections between moments, iterative methods, and model reduction is too large
to summarize here; we mention, as five examples among hundreds, [24, 13, 4, 2, 11].
The same is true for related literature in the area of physical chemistry and solid state
physics computations; for reviews of early papers see [23, 40, 45]. The mathematical
roots can be found in the work on orthogonal polynomials and continued fractions by
Chebyshev [7]1 and Stieltjes [49].2

The ideas in this paper for the general complex case (which also includes the real
nonsymmetric case) are based on non-Hermitian generalizations of Vorobyev moment
problems [55] (to be defined in section 2). Algorithmically, this paper extends the
results presented in [52, 53] from the HPD case and the conjugate gradient (CG)
method to the general complex case and the biconjugate gradient (BiCG) method.

2. Matching moments in Krylov subspace methods and the Vorobyev
moment problem. To motivate our approach, sections 2.1–2.2 summarize some of
the well-known connections between two Krylov subspace methods, model reduction,
and moments. In Krylov subspace methods it might be convenient to consider nonzero
initial approximations x0 and y0 to the solutions of Ax = b and A∗y = c, respectively.
That is equivalent to applications of the same methods, with the zero initial ap-
proximations, to Ax = b respectively to A∗y = c, where b = b − Ax0 respectively
c = c−A∗y0 are the initial residuals and x = x− x0, y = y− y0 are unknown. Using

c∗A−1b = c∗x0 + y∗
0b + c∗A−1b ,

c∗A−1b can always be approximated via c∗A−1b using zero initial approximations of
x, y. Throughout this paper we will therefore consider, with no loss of generality,
zero initial approximations.

2.1. Lanczos algorithm as model reduction. Let A ∈ CN×N be a nonsin-
gular matrix, and let the vectors v1 and w1 of length N satisfy ‖v1‖ = 1, w∗

1v1 = 1.
The nth step of the non-Hermitian Lanczos algorithm applied to A with the starting
vectors v1 and w1 is associated with the following relations:

AVn = VnTn + δn+1vn+1e
T
n ,

A∗Wn = WnT
∗
n + β∗

n+1wn+1e
T
n ,(2.1)

where W ∗
nVn = I, Tn = W ∗

nAVn, ‖vn+1‖ = 1, w∗
n+1vn+1 = 1, and the main diago-

nal, the first subdiagonal, and the first superdiagonal of Tn are given by γ1, . . . , γn,

1This article was reprinted in Oeuvres I, Vol. 11, Chelsea, New York, 1962, pp. 203–230.
2This article was reprinted in Oeuvres II (P. Noordhoff, Groningen, 1918), pp. 402–566. The

English translation Investigations on continued fractions is in Thomas Jan Stieltjes, Collected Papers,
Vol. II (Springer-Verlag, Berlin, 1993), pp. 609–745.
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δ2, . . . , δn, and β2, . . . , βn, respectively, where δ� > 0, β� �= 0, � = 2, . . . , n; see, e.g.,
[41, section 7.1]. Here it is assumed that the algorithm does not break down in steps 1
through n. The columns of Vn form a basis of Kn(A, v1),

Kn(A, v1) ≡ span{v1, Av1, . . . , An−1v1} = span{v1, . . . , vn} ,

while the columns of Wn form a basis of Kn(A∗, w1). Under the given assumption on
existence of steps 1 through n, the non-Hermitian Lanczos algorithm represents the
reduction of the original model which consists of the matrix A and two vectors v1 and
w1 to the reduced model which consists of the matrix Tn and two identical vectors e1
and e1. The reduced model matches the first 2n moments:

w∗
1A

kv1 = eT
1 T

k
ne1 , k = 0, 1, . . . , 2n− 1 .(2.2)

Relation (2.2) can be derived from the Vorobyev moment problem, which is to deter-
mine a linear operator An on Kn(A, v1) such that

Aj
nv1 = Ajv1, j = 1, . . . , n− 1, and An

nv1 = VnW
∗
nA

nv1 .(2.3)

Defining An as the restriction of A to Kn(A, v1) projected orthogonally to Kn(A∗, w1)
(which represents an oblique projection to Kn(A, v1)),

An = VnW
∗
nAVnW

∗
n ,(2.4)

it follows from the relation Tn = W ∗
nAVn that

An = VnTnW
∗
n(2.5)

and

w∗
1A

kv1 = w∗
1A

k
nv1 = eT

1 T
k
ne1 , k = 0, 1, . . . , 2n− 1 ;(2.6)

see [51]. The matching moment property (2.2) of the non-Hermitian Lanczos algo-
rithm will be linked with the new numerical approximation of the bilinear form (1.1)
proposed in section 3.1.

If A is Hermitian and w1 = v1, the non-Hermitian Lanczos algorithm reduces to
the Hermitian Lanczos algorithm that is associated with the relation

AVn = VnTn + δn+1vn+1e
T
n ,

where Tn is the Jacobi matrix, and V ∗
n Vn = I. In this case, the linear operator An

is the restriction of A to Kn(A, v1) projected orthogonally to Kn(A, v1). For more
details see [55, Chapter III, sections 2–4], with the summary given in [51].

2.2. Arnoldi algorithm as model reduction. The model reduction repre-
sented by the Lanczos algorithm matches the first 2n moments (2.2). In the non-
Hermitian case, the matrix Tn in (2.2) is determined by oblique projections. This
may affect in a negative way conveying information from the original to the reduced
model. We therefore need to compare the new numerical approximation proposed in
section 3.1 with the model reduction determined by orthogonal projections. This in
the non-Hermitian case leads to long recurrences and the Arnoldi algorithm.

Let A ∈ CN×N be a nonsingular matrix, let v1 and u1 be vectors of length N ,
and let ‖v1‖ = ‖u1‖ = 1. The nth step of the Arnoldi algorithm applied to A with v1
is associated with the relation

AVn = VnHn + hn+1,nvn+1e
T
n ,(2.7)
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where V ∗
n Vn = In, Hn = V ∗

nAVn, V ∗
n vn+1 = 0, and Hn is the upper Hessenberg

matrix with positive entries on the first subdiagonal; see, e.g., [41, section 6.3]. The
matching moment property of the Arnoldi algorithm can be expressed in the form

u∗
1A

kv1 = u∗
1VnH

k
ne1 = t∗nH

k
ne1 , k = 0, . . . , n− 1 ,(2.8)

where u1 ≡ Vntn + u⊥
1 = Vn(V ∗

n u1) + u⊥
1 , and u⊥

1 is the component of u1 orthogonal
to Kn(A, v1). With u1 = v1 we can add one more moment. To derive (2.8), we
invoke the Vorobyev moment problem linked with the Arnoldi algorithm, which is to
determine a linear operator on Kn(A, v1) such that

Aj
nv1 = Ajv1, j = 1, . . . , n− 1, and An

nv1 = VnV
∗
nA

nv1.(2.9)

Defining An as the restriction of A to Kn(A, v1) projected orthogonally to Kn(A, v1),

An = VnV
∗
nAVnV

∗
n ,(2.10)

it follows from the relation Hn = V ∗
nAVn that

An = VnHnV
∗
n(2.11)

and

u∗
1A

kv1 = u∗
1A

k
nv1 = t∗nH

k
ne1 , k = 0, 1, . . . , n− 1 .(2.12)

Since A is non-Hermitian, the matching moment property cannot in general be ex-
tended beyond n moments; see [51].

3. Numerical approximation of the bilinear form c∗A−1b. The relation-
ship of CG to the Gauss–Christoffel quadrature, continued fractions, and moments was
pointed out in the founding paper by Hestenes and Stiefel [29, sections 14–18]; see also
[55, Chapter III, section 2, pp. 53 and 59] and the summary in [34, pp. 483–484 and
p. 493]. In the framework of the Vorobyev moment problem, CG, and the Hermitian
Lanczos algorithm, the non-Hermitian Lanczos algorithm and the Arnoldi algorithm
look for a reduced order operator An (see (2.5) and (2.11)), with the property of
matching the maximal number of moments; see (2.6) and (2.12). An approximation
of the bilinear form c∗A−1b can then be expressed as

c∗A−1
n b ,(3.1)

where A−1
n is the matrix representation of the inverse of the reduced order operator

An which is restricted onto Kn(A, b); see, e.g., [30, p. 79]. As an example,

A−1
n = VnT

−1
n W ∗

n(3.2)

holds for the non-Hermitian Lanczos algorithm (see (2.5)). Considering the starting
vectors v1 = b/‖b‖ and w1 = c‖b‖/c∗b, we get

c∗A−1
n b =

c∗b
‖b‖w

∗
1VnT

−1
n Wnv1‖b‖ = (c∗b) eT

1 T
−1
n e1 .(3.3)

To our knowledge, the formula eT
1 T

−1
n e1 was used for the symmetric positive definite

case for the first time by Golub and coworkers [8, 15, 9]; for a survey see, e.g., [19], [34,
section 3.3], [16, part V, with the commentary given by Gautschi]. In this section we
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propose new ways of computing c∗A−1
n b using the BiCG-related methods and relate

them to existing approaches.
Our results presented below can be derived without using (3.3) and even without

mentioning the Vorobyev moment problem. In order to get an insight into the problem
of approximating the bilinear form c∗A−1b (see, e.g., the brief discussion of the Arnoldi
algorithm and BiCG in the last section of this paper), this link is, in our opinion,
important, similarly as the link with the Gauss–Christoffel quadrature is important
for understanding the behavior of the Lanczos algorithm and CG; see, e.g., [29, 25],
[21, section 5 on rounding error analysis].

3.1. Approximation based on the BiCG method. The BiCG method [33,
10] (see Algorithm 1) solves simultaneously the primal and dual systems of linear
algebraic equations Ax = b and A∗y = c; see [50, 20]. BiCG computes sequences of
approximations {xn} and {yn} such that xn ∈ Kn(A, b) and yn ∈ Kn(A∗, c), while

rn ≡ b−Axn ⊥ Kn(A∗, c), sn ≡ c−A∗yn ⊥ Kn(A, b) .(3.4)

Algorithm 1. Biconjugate Gradient (BiCG) Method

input A, A∗, b, c, x0 = 0, y0 = 0
r0 = p0 = b , s0 = q0 = c
for n = 0, 1, . . .

αn =
s∗

nrn

q∗
nApn

xn+1 = xn + αnpn , yn+1 = yn + α∗
nqn

rn+1 = rn − αnApn , sn+1 = sn − α∗
nA

∗qn
ηn+1 =

s∗
n+1rn+1

s∗
nrn

pn+1 = rn+1 + ηn+1pn , qn+1 = sn+1 + η∗
n+1qn

end

Assuming that there is no breakdown in the first n steps, the sequences of ap-
proximate solutions in the BiCG method have the form

xn = Vnfn and yn = Wngn(3.5)

for some vectors fn and gn. Relation (3.2), which gives an expression for A−1
n , suggests

using c∗A−1
n b as an approximation of c∗A−1b; see (3.3). We now show how this

approximation computed from the iterates of the non-Hermitian Lanczos algorithm
(described in section 2.1), with starting vectors v1 = b/‖b‖, w1 = c‖b‖/c∗b, is related
to the BiCG method. In order to derive a formula for c∗A−1

n b, we invoke two kinds
of global biorthogonality conditions associated with the BiCG method:

W ∗
nrn = 0 and V ∗

n sn = 0,(3.6)

W ∗
nb = ‖b‖W ∗

nv1 = ‖b‖e1.(3.7)

The conditions (3.6) lead to linear systems ‖b‖e1 = Tnfn and (v∗
1c) e1 = T ∗

ngn

for the unknown coordinates fn and gn. Consequently, xn = ‖b‖VnT
−1
n e1, yn =

(v∗
1c)Wn(T ∗

n)−1e1. Then, using the global orthogonality relations (3.7), we have

c∗A−1
n b = c∗VnT

−1
n W ∗

nb = c∗xn .(3.8)

Analogously, the dual quantity is given by

b∗(A−1
n )∗c = b∗Wn(T ∗

n)−1V ∗
n c = b∗yn.(3.9)
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The last term in (3.8) gives the well-known scattering amplitude approximation to
c∗x; see [56, 44, 43]. Please note also that from (3.8)

c∗A−1
n b = c∗b (T−1

n )1,1(3.10)

(see (3.3)), where the value (T−1
n )1,1 can be easily computed at a negligible additional

cost using the algorithm in [17, p. 135]. It is worth pointing out that evaluation of
(3.10) does not require explicit computation of xn.

The global biorthogonality conditions (3.6) and (3.7) needed for the derivation of
(3.8) and (3.9) are in general not satisfied in finite precision computations. Due to
rounding errors, computing sufficiently accurate approximations using (3.8) (or (3.9))
may require a large number of iterations that are (as shown below) not necessary.
Therefore we present a new mathematically equivalent approximation which will be
derived using only local biorthogonality. Using the expressions for sj+1, rj+1 and pj

in Algorithm 1, we have for j = 0, . . . , n− 1

s∗
jA

−1rj − s∗
j+1A

−1rj+1

= (sj+1 + α∗
jA

∗qj)
∗A−1(rj+1 + αjApj) − s∗

j+1A
−1rj+1

= α2
jq

∗
jApj + αjs

∗
j+1pj + αjq

∗
j rj+1

= αjs
∗
jrj + αj(s

∗
j+1pj + q∗

j rj+1) = αjs
∗
jrj .(3.11)

For the last equality we used the local biorthogonality between the residuals and the
search directions of the primal and dual problem

s∗
j+1pj = 0 and q∗

j rj+1 = 0 .(3.12)

Consequently, using

c∗A−1b− s∗
nA

−1rn =

n−1∑

j=0

(
s∗

jA
−1rj − s∗

j+1A
−1rj+1

)
,

we finally obtain

c∗A−1b =

n−1∑

j=0

αjs
∗
jrj + s∗

nA
−1rn .(3.13)

Relation (3.13) is significant because it provides an exact expression for c∗A−1b, the
first term of which is a summation involving the (available) inner product of the BiCG
primal and dual residuals. As well, (3.13) generalizes the result from the HPD case,
in which b∗A−1b and rnA

−1rn equal, respectively, the squared A-norms of the errors
at steps 0 and n; see [52].

If the primal and dual residuals in the BiCG method become small, the second
term s∗

nA
−1rn on the right-hand side of (3.13) will also become small. This suggests

approximating c∗A−1b by the following quantity:

ξB

n ≡
n−1∑

j=0

αjs
∗
jrj ,(3.14)

where the superscript “B” means “BiCG.” Although, as we show later, ξB
n is equal

to c∗xn using exact arithmetic, the summation form of ξB
n in (3.14) is crucial for

computational purposes.
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Summarizing, c∗A−1b can be approximated using (3.8), (3.10) and by the new
ξB
n defined in (3.14). It remains to prove that these estimates are mathematically (in

exact arithmetic) equivalent. A short algebraic manipulation gives

c∗A−1b− c∗xn = c∗A−1rn

= c∗A−1rn − y∗
nrn + y∗

nrn

= s∗
nA

−1rn + y∗
nrn .(3.15)

Using the global biorthogonality condition (3.6) and yn = Wngn (see (3.5)), we get
y∗

nrn = 0 and, consequently,

c∗A−1b = c∗xn + s∗
nA

−1rn .(3.16)

Comparing (3.13), (3.16), (3.8), and (3.10), we obtain the (exact arithmetic) equiva-
lence

ξB

n =

n−1∑

j=0

αjs
∗
jrj = c∗xn = c∗b (T−1

n )1,1 .(3.17)

Although ξB
n was derived by simple algebraic manipulations without using (3.1), the

equivalence (3.17) shows its connection to matching moment model reduction. This
connection is, in our opinion, significant for understanding the proposed estimate ξB

n

representing a numerically efficient way of computing (3.1). It is worth pointing out
that analogously to the HPD case (see [52]) in finite precision computations (3.17)
does not hold, and, as demonstrated below, the individual (mathematically equivalent)
approximations can behave very differently.

Saylor and Smolarski [44] introduced formally orthogonal polynomials and com-
plex Gauss quadrature as a tool for approximating the quantity c∗A−1b (for an earlier
introduction of the Gauss quadratures associated with the non-Hermitian Lanczos
algorithm see, e.g., [12]). The paper [44] presents an approximation to c∗A−1b math-
ematically equivalent to c∗xn. Its derivation assumes that the matrix A is diagonal-
izable (which is restrictive). Moreover, the result is computationally less convenient
than the new ξB

n defined by (3.14). Therefore we will not consider the approximation
from [44] in further detail.

Apart from the existence of the BiCG iterations in steps 1 through n, ξB
n does not

require any further assumptions. It can be computed with negligible additional cost
from the quantities αj and s∗

jrj available during the BiCG run. Please note that in
order to compute ξB

n the approximate solutions xn and yn need not be formed.

3.2. Estimating c∗A−1b using hybrid BiCG methods. Each step of BiCG
requires a matrix-vector product with A and a matrix-vector product with A∗. The
idea of Sonneveld [48] was to avoid the multiplication with A∗. The resulting conjugate
gradient squared (CGS) algorithm uses two multiplications with A per iteration and
it computes approximate solutions only to the primal system. In order to smooth out
possible oscillations and to obtain faster convergence, Sonneveld’s idea was further
developed by Van der Vorst, Gutknecht, their coworkers, and other authors to hybrid
BiCG methods like BiCG stabilized (BiCGStab) [54]; see also [27, 47], [3, Chapter 5].

Denoting by rn the residual corresponding to the approximate solution xn com-
puted by a hybrid BiCG method, we get

c∗A−1b = c∗x = c∗xn + c∗(x− xn) = c∗xn + c∗A−1rn.(3.18)
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It is natural to ask whether the inner product c∗xn provides a better approximation
to c∗A−1b than the BiCG-based c∗xn. To answer this question, we write the residual
vector rn in the form

rn = ψn(A) rn ,

where rn is the BiCG residual and ψn is a polynomial of degree n such that ψn(0) = 1,
i.e., ψn(z) = 1 + zϕn−1(z), where ϕn−1 is a polynomial of degree n − 1. The choice
of ψn determines the particular hybrid BiCG method. From

b−Axn = rn = ψn(A)rn = rn +Aϕn−1(A)rn = b−Axn +Aϕn−1(A)rn

we get

xn = xn − ϕn−1(A)rn.

Since ϕn−1(A)∗c ∈ Kn(A∗, c) and rn ⊥ Kn(A∗, c), we finally get

c∗xn = c∗xn − (ϕn−1(A)∗c)∗rn = c∗xn .(3.19)

In other words, although xn can be a better (or worse) approximation to x than the
BiCG approximation xn, both provide the mathematically identical approximations
to c∗A−1b.

The BiCG coefficients αj are available in hybrid BiCG methods. The BiCG
residuals rj and sj are not available, but the inner products s∗

jrj can be computed

as s∗
jrj = s∗

0ψ̃j(A)rj ≡ τj , provided that the leading coefficients in ψ̃j and in the
polynomial defining sj are equal. Then

ξB

n =
n−1∑

j=0

αjτj .(3.20)

Alternatively, we can compute τj using the explicitly available coefficients ηj as

τ0 ≡ c∗b, τj ≡ ηjτj−1 =

j−1∏

k=0

s∗
k+1rk+1

s∗
krk

= s∗
jrj , j = 1, . . . , n− 1 .(3.21)

Although ξB
n computed via (3.20) using hybrid BiCG methods is mathematically the

same as ξB
n computed via (3.14) using BiCG, results of their numerical evaluation may

differ substantially; see section 7.

3.3. Estimating c∗A−1b via the Arnoldi algorithm. As with the non-
Hermitian Lanczos algorithm and the related BiCG, estimating c∗A−1b via the Arnoldi
algorithm uses (3.1), where An arises from the associated Vorobyev moment problem;
see section 2.2. Taking u1 = c and v1 = b/‖b‖ and using (2.11), the approxima-
tion (3.1) is in the Arnoldi algorithm given by

c∗A−1
n b = ‖b‖ t∗nH−1

n e1 ,

where tn ≡ V ∗
n c. We therefore denote

ξA

n ≡ ‖b‖ t∗nH−1
n e1 ,(3.22)
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where the superscript “A” means “Arnoldi.” Note that the same formula can be
obtained using the quadrature rules in [5, pp. 776–777].

The significance of ξA
n (in comparison with ξB

n) is in the fact that An associated
with the Arnoldi algorithm is based on orthogonal projections; see section 2.2. More-
over, although the Arnoldi algorithm matches fewer moments than the non-Hermitian
Lanczos algorithm, it is worth noting that Hn in (3.22) contains n(n + 1)/2 + n− 1
generally nonzero elements, while Tn in (3.17) contains only 3n− 2 generally nonzero
elements. The upper Hessenberg matrix Hn may contain more information about the
original model represented by A, b, and c than the tridiagonal matrix Tn. Since

xn = A−1
n b = ‖b‖VnH

−1
n e1(3.23)

represents the approximate solution of Ax = b in the full orthogonalization method
(FOM) (see [41, pp. 159–160]), we can write

ξA

n = c∗xn ,(3.24)

where xn is computed by FOM.
In the HPD case and CG the approximate solution xn is computed using short

recurrences. In finite precision arithmetic computations, short recurrences typically
lead to a fast loss of orthogonality due to rounding errors and, consequently, to de-
lay of convergence. Similar behavior can be expected with non-Hermitian Lanczos,
BiCG, and hybrid BiCG methods due to loss of biorthogonality. Since the Arnoldi
algorithm uses long recurrences, the orthogonality among the computed basis vectors
is lost in finite precision arithmetic computations only gradually (details of rounding
error analysis can be found in [36] and in the earlier literature referenced therein).
Therefore, unlike in BiCG or in the hybrid BiCG methods (see (3.8) and (3.19)),
in FOM the formula (3.24) can be used in practical computations without delay of
convergence due to rounding errors.

4. Transformation to the Hermitian positive definite case. Numerical
approximations of the bilinear form c∗A−1b presented in section 3 used non-Hermitian
Krylov subspace methods applied to the nonsingular complex matrix A. Here we write
the bilinear form as

c∗A−1b = c∗A∗(AA∗)−1b = c∗(A∗A)−1A∗b ,(4.1)

which suggests deriving its approximation by defining c̃ = Ac and approximating
c̃∗(AA∗)−1b. A second possibility is to approximate c∗(A∗A)−1b̃, where b̃ = A∗b. In
either case, the problem of interest is to approximate u∗B−1v, where B is HPD; see
also [17, section 3.2]. For simplicity we consider only the second choice.

4.1. Using the polarization identity. If B is real, symmetric, and positive
definite, it was suggested in [17, pp. 16 and p. 33] and [21, p. 242] that a polar-
ization identity can be used to approximate u∗B−1v, where u �= v. On a complex
Hilbert space with the inner product 〈·, ·〉, conjugate linear in the second variable, the
polarization identity takes the form (see, e.g., [32], [57, p. 23])

2〈v, u〉 = (‖v + u‖2 − ‖v − u‖2 + i‖v + iu‖2 − i‖v − iu‖2)/2

= ‖v + u‖2 − (1 + i)(‖v‖2 + ‖u‖2) + i‖v + iu‖2 .(4.2)

Defining 〈v, u〉 ≡ u∗B−1v, the term ‖u‖2 in (4.2) is given by u∗B−1u. With v = A∗b
and B = A∗A, it follows that v∗B−1v = b∗b. The remaining three terms that need to



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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be approximated are

(v + u)∗B−1(v + u) , (v + iu)∗B−1(v + iu), and u∗B−1u,(4.3)

all of which have the form w∗B−1w with the HPD matrix B. Then BiCG reduces to
the standard CG, with (3.13) giving

w∗B−1w = ξCG

n + r∗
nB

−1rn , ξCG

n ≡
n−1∑

j=0

αj‖rj‖2 ;(4.4)

see [52, relation (3.8)]. Since B = A∗A, the quantities αj , ‖rj‖2 and thus ξCG
n can con-

veniently be computed without forming the matrix B using the algorithms CGNR; see
[29, section 10], where “NR” comes from normal equation residual [22, section 10.4].
As an alternative one can consider the HPD analogy of (3.10) with b = c = w and Tn

resulting from the n steps of the Hermitian Lanczos algorithm applied to the matrix
B = A∗A with the starting vector b. This gives

w∗B−1w = ‖b‖∗(T−1
n )1,1 + r∗

nB
−1rn,(4.5)

where rn is as in (4.4). Numerically this can be efficiently computed via the algo-
rithm LSQR proposed by Paige and Saunders [38, 37] which uses the Golub–Kahan
bidiagonalization [14] and computes the Cholesky factor of Tn.

The approximation error r∗
nB

−1rn in (4.4)–(4.5) is equal to the squared energy
norm of the error in CG, and therefore it is monotonically decreasing with n. This
represents a significant difference in comparison with (3.13), where the error term
s∗

nA
−1rn typically oscillates. There are methods for computing the upper and lower

bounds for w∗B−1w; see [17, 21, 18, 6]. Consequently, using (4.2), one can com-
pute (assuming exact arithmetic) upper and lower bounds for the real and imaginary
parts of the bilinear form c∗A−1b. Moreover, (4.4) holds, up to a small error, also
for quantities computed in finite precision arithmetic; see [52]. (It is worth point-
ing out that ξCG

n computed in finite precision arithmetic can be much larger than its
exact arithmetic counterpart computed at the same step.) The price of transform-
ing the non-Hermitian problem to the Hermitian one using the polarization identity
(4.2) is, however, substantial. Approximation of three terms (4.3) requires three CG
computations with the same matrix B and different initial vectors, with a total of
six matrix-vector multiplications (three with A and three with A∗) per one iteration
step. In our experiments, the approach using the polarization identity (4.2) was not
competitive with ξB

n.

4.2. Using the normal equations. Another way to approximate the bilinear
form c∗A−1b is to apply CGNR to A∗Ax = A∗b. The bilinear form can then be
approximated by c∗xn, where xn is the nth iterate of CGNR. Unlike in section 4.1,
here only two matrix-vector products (one with A and one with A∗) are needed at
each iteration. As with (3.8) in section 3.1, in finite precision arithmetic comput-
ing a sufficiently accurate approximation using c∗xn may be delayed due to loss of
orthogonality caused by rounding errors.

Rewriting the bilinear form using c∗(A∗A)−1A∗b as in (4.1), one can also consider
BiCG applied to B = A∗A with two different initial vectors u = A∗b and v = c; for an
analogous approach using the non-Hermitian Lanczos algorithm see [17, sections 3.2
and 4.2]. BiCG applied to a system with the matrix B and two different initial vectors
needs four matrix-vector multiplications (two with A and two with A∗) per iteration.
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4.3. The GLSQR approach. Saunders, Simon, and Yip suggested in [42] the
so-called generalized LSQR (GLSQR) method which is applied to a matrix and two
starting vectors. It can be seen as the block-Lanczos algorithm applied to the matrix
A∗A with the starting block [c, A∗b]; see also [39]. The GLSQR method solves simul-
taneously the primal and dual systems (similarly to BiCG in Algorithm 1). The nth
step is associated with the following relations:

AVn = UnTn + ζn+1un+1e
T
n ,

A∗Un = VnT
∗
n + θn+1vn+1e

T
n ,

where u1 = b/‖b‖, v1 = c/‖c‖; Vn = [v1, . . . , vn] and Un = [u1, . . . , un] are orthonor-
mal matrices, V ∗

n vn+1 = 0, U∗
nun+1 = 0, Tn is tridiagonal, and ζn+1 and θn+1 are the

normalization coefficients. Using GLSQR and applying the block Gauss quadrature
rule from [17, sections 3.3 and 4.3], Golub, Stoll, and Wathen derived the following
approximation to c∗A−1b:

ξG

n = ‖b‖ ‖c‖ eT
1 T

−1
n e1,(4.6)

where the superscript “G” means GLSQR; see [20, section 3.3]. The GLSQR approach
requires two matrix-vector multiplications (one by A and one by A∗) per iteration.

5. Preconditioning. Let PL and PR be nonsingular matrices such that the
systems of linear algebraic equations with the matrices PL and PR are easily solvable.
Clearly

c∗A−1b = (P−∗
R c)∗(P−1

L AP−1
R )−1(P−1

L b) = c∗A−1b,

where A ≡ P−1
L AP−1

R , c ≡ P−∗
R c, and b ≡ P−1

L b. The approximation techniques
described above can be applied to the preconditioned problem c∗A−1b. Precondi-
tioning should lead to faster convergence. As a side effect, fast convergence can help
prevent significant delays due to rounding errors; see the illustrations in section 7. It
is obvious that A−1 need not be formed explicitly.

6. Comments on numerical stability issues. A thorough numerical stabil-
ity analysis of the approaches for approximating the bilinear form c∗A−1b which are
presented in this paper is yet to be done. Here we concentrate on supporting argu-
ments for the claim that the new estimate ξB

n (see (3.14)) should be preferred to the
mathematically equivalent (and commonly used) scattering amplitude estimate c∗xn;
see (3.8).

Using A−1rn = x − xn, we rewrite for clarity of exposition the formulas which
express the errors of the computed approximation (see (3.13)–(3.16)):

c∗A−1b = ξB

n + s∗
n(x− xn) , ξB

n =

n−1∑

j=0

αjs
∗
jrj ,(6.1)

c∗A−1b = c∗xn + c∗(x− xn)(6.2)

= c∗xn + s∗
n(x− xn) + y∗

n(b −Axn) .(6.3)

Mathematically (in exact arithmetic),

y∗
n(b−Axn) = y∗

nrn = g∗
nWnrn = 0(6.4)
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due to the global biorthogonality condition (3.6). Therefore

s∗
n(x− xn) = c∗(x− xn) .(6.5)

In computations using finite precision arithmetic the global biorthogonality (3.6) is in
general lost, and, subsequently, (6.5) does not hold. Let the quantities computed using
finite precision arithmetic be denoted by “ ˆ ”. Supposing that the BiCG residual ŝn

for the dual problem A∗y = c is small, we may expect

|ŝ∗
n(x− x̂n)| 	 |c∗(x− x̂n)| .(6.6)

This corresponds to ξ̂B
n much closer to c∗A−1b than c∗x̂n. In other words, in finite

precision arithmetic computations, the term ŷ∗
n(b−Ax̂n) as well as a possible difference

between the true and iteratively computed residuals must be taken into account (for
the symmetric positive definite analogy see [52, section 6]). Provided that the finite
precision analogies of (6.1) and (6.3) hold up to a small inaccuracy, the term ŷ∗

n(b −
Ax̂n) would explain the numerical behavior of the estimate c∗x̂n.

Analogously to (3.15) one can easily derive for the computed approximations x̂n

and ŷn

c∗A−1b = c∗x̂n + (c−A∗ŷn)∗(x− x̂n) + ŷ∗
n(b−Ax̂n).

Therefore (6.3) holds, up to small inaccuracy, also for results of finite precision compu-
tations until the true residual b−Aŷn does not differ significantly from the iteratively
computed residual ŝn. For more details on the difference between the true and the
iteratively computed residuals see the analysis in [47, 26].

Concerning the finite precision analogy of (6.1), the situation is much more com-
plicated. Consider first A ∈ RN×N symmetric positive definite and c = b ∈ RN . Then
BiCG reduces to CG, rn = sn, and (6.1) can be rewritten as

bTA−1b = ξCG

n + rT
nA

−1rn , ξCG

n =
n−1∑

j=0

αj ‖rj‖2 ,(6.7)

or, considering that rT
nA

−1rn = (x− xn)TA(x − xn), bTA−1b = xTAx,

‖x‖2
A = ξCG

n + ‖x− xn‖2
A ,(6.8)

where the A-norm of a vector z is defined by ‖z‖A ≡ (z∗Az)1/2. It was proved in [52]
that (6.8) holds also for the results of finite precision arithmetic computations up to
a term proportional to ε‖x‖A‖x − x̂n‖A; here ε denotes machine precision unit (we
omit some tedious details). Consequently, until ‖x − x̂n‖A = (r̂T

nA
−1r̂n)1/2 becomes

close to ε‖x‖A, the computed ξ̂CG
n approximates bTA−1b = ‖x‖2

A with the error of
the approximation being close to r̂T

nA
−1r̂n = ‖x− x̂n‖2

A; see [52, Theorem 10.1]. This
result is proved in several steps with two main ingredients. First, it is proved that
the iteratively computed residual r̂j (see Algorithm 1 with A = A∗ and s0 = r0 = b)
is sufficiently close to the residual b − Ax̂n computed directly from the approximate
solution x̂n. Second, it is proved that the local orthogonality between the residuals
and the search vectors p̂T

j r̂j+1 is preserved proportionally to machine precision ε; see
[52, section 9].

For BiCG one can hardly expect results of the same strength. In particular, a
close preservation of the local biorthogonality conditions (3.12) cannot be proved due



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON EFFICIENT NUMERICAL APPROXIMATION OF c∗A−1b 577

to the possible occurrence of the so-called breakdowns, when q̂jAp̂j or ŝ∗
j r̂j becomes

zero. Note that the breakdowns are not caused by rounding errors; they can occur in
exact arithmetic.

Using the technique from [52, 53], one can express the inner product q̂∗
j r̂j+1 of

the quantities computed in finite precision arithmetic using Algorithm 1 as

q̂∗
j r̂j+1 =

ŝ∗
j r̂j

ŝ∗
j−1r̂j−1

q̂∗
j−1r̂j + ε ϑj ,

and the size of ϑj can be bounded by the norms of the computed vectors, the norm
of A, and the size of the coefficient α̂j . By induction we obtain, after some algebraic
manipulations (cf. [52, p. 74] or [53, p. 805]),

q̂∗
nr̂n+1 = ε ŝ∗

nr̂n

n∑

j=0

ϑj

ŝ∗
j r̂j

+ O(ε2) .(6.9)

Now we can clarify the differences between the CG case and the BiCG case.
In the CG case, ŝj = r̂j and ŝ∗

j r̂j = ‖r̂j‖2. As shown in [52], the size of ϑj is

bounded by κ(A) ‖r̂j‖2. In summary, the local biorthogonality is bounded by a multi-
ple of ε ‖r̂j‖2 κ(A); see [52, relations (9.14) and (9.15)]. In the BiCG case, q̂∗

jAp̂j and
ŝ∗

j r̂j can become zero due to breakdowns. In practice, the exact breakdowns are very
rare, but near breakdowns can cause the corresponding terms in the sum (6.9) to be
large. If near breakdowns appear in BiCG, then preserving the local biorthogonality
condition (3.12) up to a small inaccuracy cannot be guaranteed in finite precision
arithmetic computations. Therefore we were not able to prove that (6.1) holds, up
to a small inaccuracy, also in finite precision arithmetic computations. Nevertheless,
for ξB

n, there is no need of preserving the global orthogonality conditions (3.6)–(3.7),
and, in particular, of y∗

nrn = 0, as in the scattering amplitude approximations. This
represents a strong numerical argument in favor of the proposed estimate ξB

n.

7. Application and numerical experiments. We will illustrate the behavior
of various approaches for approximation of the bilinear form c∗A−1b in several exam-
ples of different origins. In this section we omit for simplicity the “ ˆ ” notation for
the computed quantities.

7.1. Test problems. This paper was practically motivated by the problem of
diffraction of light on periodic structures and the RCWA method for its solution; see
the monograph [35] and the references therein. Application of the RCWA method
can lead to the system of linear algebraic equations, which for the simplest standard
two-dimensional model problem has the form (see [28, section 3.5])

Ax ≡

⎡
⎢⎢⎢⎣

−I I ei
√

C� 0

YI

√
C −

√
Cei

√
C� 0

0 ei
√

C� I −I
0

√
Cei

√
C� −

√
C −YII

⎤
⎥⎥⎥⎦ x = b ,(7.1)

where YI, YII are (2M + 1) × (2M + 1) complex diagonal matrices, C is a (2M +
1) × (2M + 1) complex Toeplitz plus diagonal matrix, � is a given real and positive
parameter, and M is the discretization parameter representing the number of Fourier
modes used for approximation of the electric and magnetic fields as well as the material
properties. The block structure of (7.1) corresponds to the geometric structure of
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the physical problem with one slab, where the individual block rows represent the
boundary conditions for the electric and magnetic fields on the interface between the
slab and the superstrate and the slab and the substrate. For the geometric structure
with S slabs the overall number of interfaces is S + 1, which gives 2(S + 1) block
equations (for (7.1), 2(1 + 1) = 4). In three-dimensional problems the size of the
individual blocks is proportional to the square of the number of Fourier modes.

In real RCWA applications the blocks of the matrix A cannot be formed by
evaluating the matrix functions. Considering time constraints given by technological
restrictions, that would be too slow. Moreover, one does not need the whole solution
of the linear algebraic system. For (7.1) one typically needs only the dominant (M +
1)st component (here eM+1 denotes the vector of the compatible dimension with the
(M + 1)st element equal to one and all other elements equal to zero):

e∗
M+1A

−1b ;(7.2)

see [28, section 3.5, relation (3.45)]. Therefore the problem seems to be well suited
for an iterative approximation of the bilinear form (1.1) with c = eM+1. In our
experiments we use M = 20, S = 1 and M = 20, S = 20, leading to the resulting
RCWA-motivated matrices:

• TE2001 (RCWA, 20 Fourier modes and 1 slab): the matrix A ∈ C164×164 is
complex nonsymmetric, κ(A) ≈ 112, starting vectors b and c arise from the
problem formulation;

• TE2020 (RCWA, 20 Fourier modes and 20 slabs): the matrix A ∈ C1722×1722

is complex nonsymmetric, κ(A) ≈ 2.9e + 03, starting vectors b and c arise
from the problem formulation.

In addition, we use in our illustrations four publicly available matrices from different
sources:

• young1c (ACOUST, HB Collection): the matrix A ∈ C841×841 is complex
symmetric, κ(A) ≈ 415;

• orsirr1 (OILGEN, HB Collection): the matrix A ∈ R1030×1030 is real non-
symmetric, κ(A) ≈ 7.7e+ 04;

• pde2961 (MATPDE, NEP Collection): the matrix A ∈ R2961×2961 is real
nonsymmetric, κ(A) ≈ 642.5;

• af23560 (AIRFOI, NEP Collection): the matrix A ∈ R23560×23560 is real
nonsymmetric, the condition number estimate computed via the MATLAB
command condest(A) gives κ(A) ≈ 3.5e+ 05.

Except for TE2001 and TE2020 we choose b and c normalized random vectors.

7.2. An overview of compared methods and their implementations. In
this paper we presented three approaches for approximating the bilinear form c∗A−1b:
the non-Hermitian Lanczos approach, the Arnoldi approach, and the approach based
on transformation to the HPD case. In our numerical experiments we use the standard
versions of BiCG [10], CGS [48], BiCGStab(4) [47], modified Gram–Schmidt Arnoldi
[41], and GLSQR [20]. For illustration of the behavior of BiCG in exact precision
arithmetic we run in some experiments BiCGreo with the rebiorthogonalized basis
vectors at each step (at step n, rn is reorthogonalized against the previously com-
puted s0, s1, . . . , sn−1, and sn is reorthogonalized against the previously computed
r0, r1, . . . , rn−1). We use a special version of the BiCGStab [54] algorithm with the
technique suggested in [46] (we choose the free parameter Ω = 0.7) to improve the
accuracy of the computed BiCG coefficients. We compare the approximations ξB

n (see
(3.14) and (3.20)) and c∗xn computed via BiCG, BiCGreo, and the hybrid BiCG
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Fig. 7.1. Comparison of the errors |ς −ξB
n | (bold solid line) and |ς −c∗xn| (bold dashed line) for

the mathematically equivalent approximations computed via BiCG. Both approximations are close
to each other until the size of |y∗

nrn| (dash-dotted line) is negligible in comparison to the size of
|c∗xn|. To simulate the behavior of ξB

n in exact arithmetic, we also plot |ς − ξB
n (reo)| with ξB

n (reo)
computed via BiCGreo (solid line).

methods, ξA
n (see (3.22)) computed via the Arnoldi algorithm, and ξG

n (see (4.6)) com-
puted via GLSQR. We do not include in our experiments the approximation (3.10)
computed via the non-Hermitian Lanczos algorithm. It gives results very similar to
those of ξB

n computed via BiCG. We also do not present results for the approximations
introduced in section 4.1. In our set of problems they do not seem to be competitive
with other approximations; see the comment in section 7.5.

Denote for simplicity of further presentation

ς(A, b, c) ≡ ς = c∗A−1b .

The value ς used for determining the approximation error in all subsequent experi-
ments was computed using the MATLAB command c′(A\b).

7.3. Comparison of the approximations ξB

n and c∗xn. In Figure 7.1 we
compare the error |ς − ξB

n| of the new approximation ξB
n (see (3.14)) (bold solid line)

with the error |ς − c∗xn| of the scattering amplitude approximation c∗xn (see (3.8)),
where xn is computed by Algorithm 1 (dashed line). In order to illustrate the effects of
rounding errors to the BiCG algorithm we also plot |ς−ξB

n (reo)| for ξB
n (reo) computed

via BiCGreo. The comparison is complemented by the upper bound ‖x − xn‖ ≥
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Fig. 7.2. Inaccuracy in (6.1), (6.2), and (6.3) for the quantities computed in finite precision
arithmetic. For each equation we plot the absolute value of the difference of the terms on the left-
and right-hand sides.

|c∗(x − xn)| (here ‖c‖ = 1) and by the value |y∗
nrn| (dash-dotted line) which in

finite precision arithmetic computations determines the difference between ξB
n and

c∗xn; see (6.1) and (6.3). The dashed line coincides in all figures with the bold
solid line until the bold solid line is crossed by the dash-dotted line. It is interesting
that for the matrix pde2961 the approximations ξB

n (reo) and ξB
n almost coincide

except for the fact that ξB
n (reo) exhibits larger maximal attainable accuracy (that can

be attributed to additional accumulation of roundoff due to rebiorthogonalization).
All our experiments confirm that the newly proposed approximation ξB

n should be
preferred to computation of the scattering amplitude c∗xn.

Figure 7.2 shows the inaccuracy of (6.1), (6.2), and (6.3) for the quantities com-
puted in finite precision arithmetic as well as the loss of global biorthogonality in
BiCG. While (6.1) and (6.3) are for all experiments using the matrices TE2001,
pde2961, orsirr1, and young1c satisfied up to the inaccuracy remarkably close to
machine precision, (6.2) is considerably violated due to the loss of biorthogonality.

7.4. BiCG and hybrid BiCG methods in approximation of c∗A−1b. As
explained in section 3.2, ξB

n can be computed using hybrid BiCG methods. It is,
however, well known that computing the BiCG coefficients accurately may represent
a problem in hybrid BiCG methods. As stated in [46, p. 220], “In order to maintain
the convergence properties of the BiCG component in hybrid BiCG methods, it is
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Fig. 7.3. Comparison of errors |ς − ξB
k/2

| for the approximation ξB
k/2

computed via BiCG

(bold solid line), BiCGStab (dashed line), and CGS (dotted line) and the error |ς − ξB
k/8

| of the

approximation ξB
k/8

computed via BiCGStab(4) (squares). The approximations obtained using the

hybrid BiCG methods are often significantly more affected by rounding errors than ξB
k/2

computed

via BiCG. Here k denotes the number of matrix-vector multiplications. For BiCG, BiCGStab, and
CGS we have k = 2n (two matrix-vector multiplications per iteration). The value |ς −ξB

k/2
| is plotted

every second value of k. For BiCGStab(4) the value |ς − ξB
k/8

| is plotted every eight values of k.

necessary to select polynomial methods for the hybrid part that permit to compute
the BiCG coefficients as accurately as possible.” The difficulty in using hybrid BiCG
methods for approximating the bilinear form c∗A−1b is illustrated in Figure 7.3 for
BiCGStab, CGS, and BiCGStab(4). On the x-axis is the number of matrix-vector
multiplications, which we denote by k. In all our computations we observed that
for the hybrid BiCG methods the computed value ξB

n (see (3.20)) was always very
close to the computed scattering amplitude c∗xn. This suggests that in hybrid BiCG
methods both quantities are affected by rounding errors in a similar way. We observe
that none of the hybrid BiCG methods performs in approximating the bilinear form
c∗A−1b better than ξB

n computed via BiCG. On the contrary, in most cases they
perform significantly worse. Techniques suggested in [46] applied to BiCGStab did
not lead to a substantial improvement of the computed BiCGStab approximations.

In order to get an insight into this observation, we plot (as an example) in the
upper part of Figure 7.4 the norm of the error ‖x − xn‖ (where x is determined via
the MATLAB command A\b). Note that the approximations to the solution x lie
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Fig. 7.4. Euclidean norm of the error of the approximation to the solution of Ax = b computed
via BiCG and various hybrid BiCG methods. While BiCG seems to be a winner in approximating
the bilinear form c∗A−1b (see Figure 7.3), hybrid BiCG methods are often more efficient in solving
the system Ax = b.

for various methods in Krylov subspaces of various dimensions. In particular, the
BiCG approximation xn lies in Kn(A, b), the CGS and BiCGStab approximations
xn lie in K2n(A, b), and the BiCGStab(4) approximation xn lies in K8n(A, b). For
the matrix TE2001, BiCG outperforms the other methods even in computing the
approximate solution to Ax = b, while for the matrix pde2961 it performs much
worse than the hybrid BiCG methods, with BiCGStab(4) the winner. For orsirr1

and young1c, there is no clear winner (a more detailed comparison of BiCG and
hybrid BiCG methods as linear algebraic solvers is out of the scope of this paper).
Despite the fact that ‖x − xn‖ is for pde2961 worst for the BiCG algorithm, the
behavior of |s∗

n(x − xn)| still causes ξB
n to behave even in this case about as well as

the approximations computed via the hybrid BiCG methods.
In conclusion, in our experiments (this paper gives a small sample of them) the

ξB
n computed via BiCG was not outperformed by the approximations computed via

the hybrid BiCG methods. In most examples ξB
n computed via BiCG performed

significantly better.

7.5. Transformation to the Hermitian positive definite case. From the
approaches described in section 4, GLSQR performed in our experiments best both in
terms of iteration count and in the number of matrix-vector multiplications. However,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON EFFICIENT NUMERICAL APPROXIMATION OF c∗A−1b 583

20 40 60 80 100 120 140 160 180 200
10

−15

10
−10

10
−5

10
0

iteration number

TE2001

 

 

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
A | Arnoldi

| ς − ξ
n
G | GLSQR

50 100 150 200
10

−15

10
−10

10
−5

10
0

iteration number

pde2961

 

 

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
A | Arnoldi

| ς − ξ
n
G | GLSQR

100 200 300 400 500 600
10

−15

10
−10

10
−5

10
0

iteration number

orsirr1

 

 

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
A | Arnoldi

| ς − ξ
n
G | GLSQR

50 100 150 200 250 300 350
10

−15

10
−10

10
−5

10
0

iteration number

young1c

 

 

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
A | Arnoldi

| ς − ξ
n
G | GLSQR

Fig. 7.5. Comparison of errors for different approaches: |ς−ξB
n | (bold solid line) from section 3.1

with ξB
n computed via BiCG, |ς − ξB

n(reo)| (solid line) with ξB
n(reo) computed via BiCGreo, |ς −

ξA
n | (dash-dotted line) with ξA

n computed via the modified Gram–Schmidt Arnoldi algorithm from
section 3.3, and |ς − ξG

n | (dots) with ξG
n computed via GLSQR from section 4.3.

even GLSQR was in most cases rather slow, as documented below. This observation
cannot be explained by an effect of ill-conditioning of the matrix A∗A (in most of our
experiments we used matrices with a moderate condition number). Results of further
investigation of this topic will be reported elsewhere.

7.6. Comparison of approaches using different Krylov subspace meth-
ods. Figure 7.5 compares |ς − ξB

n| with ξB
n (see (3.14)) from section 3.1 computed

via BiCG (bold solid line), |ς − ξB
n (reo)| with ξB

n (reo) computed via BiCGreo (solid
line), the error |ς−ξA

n | with ξA
n (see (3.24)) computed via the modified Gram–Schmidt

Arnoldi algorithm from section 3.3 (dash-dotted line), and the error |ς − ξG
n | of the

GLSQR approximation ξG
n (see (4.6)) from section 4.3 (dotted line).

We observe that the methods behave differently for different problems. Among the
methods using short recurrences, the newly proposed approximation ξB

n wins except
for TE2001, where ξG

n performs slightly better (ξB
n (reo) is not considered a practical

alternative). For other problems GLSQR approximation ξG
n performs rather poorly

(please notice the “double lines” for the problems pde2961 and young1c). The approx-
imation ξA

n computed via the modified Gram–Schmidt Arnoldi algorithm converges
faster than the approximations based on short recurrences (except for young1c) but
slower than ξB

n (reo). We emphasize that the cost of the Arnoldi iteration increases
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Fig. 7.6. Comparison of errors for various approaches with preconditioning. The errors of
approximation computed via BiCG (bold solid line), BiCGStab (dashed line), and BiCGreo (solid
line) are for some problems very close to each other.

with the iteration number n. The Arnoldi algorithm matches n moments, while the
BiCG method matches 2n moments; see sections 2.1, 2.2, and 3.1. Since the Arnoldi
algorithm uses orthogonal projections while the BiCG method uses oblique projec-
tions, the smaller number of matched moments alone does not explain the observed
behavior. The cost of computations cannot be evaluated using matrix-vector products
due to the fact that the other costs for methods based on short recurrences (BiCG
and GLSQR) and long recurrences (the Arnoldi algorithm) differ significantly. In
practical applications, the cost should be measured by computer time. In any case,
our experiments suggest that the newly proposed ξB

n is highly competitive.

7.7. Preconditioning. In practice, iterative methods cannot be used without
efficient preconditioning. In Figure 7.6 we illustrate results of computations for the
same approaches as in Figure 7.5 except for GLSQR, which was skipped due to non-
competitive performance. (This does not mean, however, that GLSQR is in general
noncompetitive. We were unable to make it work for our problems; the matter needs
further investigation.) For TE2020 we used a special preconditioning tailored to the
problem; for af23560 and young1c we used the incomplete Cholesky preconditioning
with the drop tolerances 5×10−2 and 10−2, respectively (they were found experimen-
tally as good compromises between performance and fill-in). For the problem orsirr1

we used the incomplete Cholesky preconditioning with zero fill-in. We can observe
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that all approaches based on short recurrences, except for the scattering amplitude
approximation c∗xn computed via BiCG, are comparable (except for young1c they
are very close to or almost coincide with ξB

n). They clearly outperform ξA
n in terms

of iterations. If the number of iterations is small, the comparison on a real-world
problem with a significant cost of the matrix-vector multiplication might, however,
be more in favor of ξA

n computed via the Arnoldi algorithm. It is worth pointing
out that due to long recurrences ξA

n can safely be computed via FOM using c∗xn;
see (3.24).

8. Concluding remarks. This paper proposes the new approximation ξB
n for

the bilinear form c∗A−1b and compares it to the existing approaches. We have linked
the presented approximations to the matching moment properties of the Krylov sub-
space methods. While the maximal number of moments matched at step n of the
Hermitian and non-Hermitian Lanczos algorithm and BiCG is 2n, the Arnoldi al-
gorithm matches at step n only n moments. Matching 2n moments using oblique
projections, however, does not necessarily mean an advantage over using the Arnoldi
algorithm with orthogonal projections (at the price of computing long recurrences)
and matching n moments only. In practice, the cost evaluation must take into ac-
count specifics of the given application problem which determine, e.g., the cost of the
matrix-vector products in relation to the cost of the iteration updates. Therefore the
choice of an optimal approach (including a choice of stopping criteria) is application-
dependent. Nevertheless, the newly proposed approximation ξB

n (see (3.14)) is, in our
opinion, highly competitive and can be considered a good reference standard for any
other possible approach. The approximation error can be estimated using techniques
based on computing d additional iterations analogously to CG [52, section 4]; see
also [34, section 5.3] and, in the context of constructing stopping criteria in numer-
ical solution of PDEs, e.g., [1, 31]. The approximation ξB

n clearly outperforms the
mathematically equivalent scattering amplitude approximation c∗xn. Scattering am-
plitude approximations computed via short recurrences rely upon preserving global
biorthogonality among the computed vectors. Their convergence is delayed due to
rounding errors much more than convergence of the approximation ξB

n, and therefore
they should not be used in practical computations.
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Abstract. When solving a linear algebraic system �����
	 with GMRES, the relative residual norm at each

step is bounded from above by the so-called ideal GMRES approximation. This worst-case bound is sharp (i.e. it
is attainable by the relative GMRES residual norm) in case of a normal matrix � , but it need not characterize the
worst-case GMRES behavior if � is nonnormal. Characterizing the tightness of this bound for nonnormal matrices �
represents an important and largely open problem in the convergence analysis of Krylov subspace methods. In this
paper we address this problem in case � is a single Jordan block. We study the relation between ideal and worst-case
GMRES as well as the problem of estimating the ideal GMRES approximation. Furthermore, we prove new results
about the radii of the polynomial numerical hulls of Jordan blocks. Using these, we discuss the closeness of the
lower bound on the ideal GMRES approximation that is derived from the radius of the polynomial numerical hull.
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1. Introduction. Let a nonsingular matrix
����������

and a vector � �����
be given.

Suppose that we apply the GMRES method [14] with initial guess ������� (chosen here for
convenience and without loss of generality) to the linear system

� ����� . Then this method
computes a sequence of iterates � �"!#��$%!'&(&'& , so that the ) th residual *,+.-/�10 � �2+ satisfies3 *,+ 3 �547698:";=<"> 3@?BA �DC � 3 &(1.1)

Here E2+ denotes the set of (complex) polynomials of degree at most ) and with value one at
the origin, and

3GF�3
denotes the Euclidean norm. The residual * + is uniquely determined by

the minimization condition (1.1) and satisfies the equivalent orthogonality condition*H+ � ��I �KJ + A � !L� C ! *H+.M �NJ + A � !O� C &(1.2)

Here
J + A � !L� C -QP#RTS%8 U,�,! � �,!'&(&(& � +HVW� �HX is the ) th Krylov subspace generated by

�
and � ,

and M means orthogonality with respect to the Euclidean inner product. Without loss of
generality we will consider that � is a unit norm vector, i.e.

3 � 3 �ZY .
A common approach for investigating the GMRES convergence behavior is to bound

(1.1) independently of � , and thus to study the algorithm’s worst-case behavior. In particular,
for each iteration step ) one may analyze the worst-case GMRES approximation[ + A �DC - 4\S"]^`_"^`a � 476b8:,;=< > 3c?dA �eC@f 3 &(1.3)

The quantity
[ + A �DC is attainable by the GMRES residual norm in the following sense: For a

given matrix
�

and every GMRES step ) , there exists a unit norm initial vector � , for which
the resulting ) th GMRES residual norm is equal to

[ + A �DC . It should be noted, however, that�
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for a given nonnormal matrix
�

and integer ) the quantity
[ + A �eC typically is very hard to

compute. In fact, we are unaware of any efficient algorithm for performing this computation.
Using the submultiplicativity of the Euclidean norm (or by changing the order of maxi-

mization and minimization in (1.3)), we can easily find the following upper bound on (1.3),[ + A �DC
g 47698:";=< > 3@?BA �DC 3 -ih + A �DC &(1.4)

The quantity h + A �DC , called the ) th ideal GMRES approximation, has been introduced by
Greenbaum and Trefethen [7]. They argue that it is important to investigate this quantity to
improve the understanding of GMRES (and matrix iterations in general) particularly in the
nonnormal case, since the ideal GMRES approximation “disentangles the matrix essence of
the [GMRES] process from the distracting effects of the initial vector”, see [7, p. 362].

Before continuing this line of thought we have to stress a subtle point: In case
�Q�kj ���l�

it is customary (and we will follow this custom) to assume that � �mj��
, and to consider the

approximation problem (1.3) only for
fn�kjo�

. In this (real) case, the values
[ + A �eC and ho+ A �DC

are both attained by real polynomials
? � EW+ . For the worst-case GMRES approximation[ + A �eC this fact is obvious, while for the ideal GMRES approximation h1+ A �DC this has been

shown in [10, Theorem 3.1].
After the 1994 paper [7], several studies have been devoted to the problem of charac-

terizing the relation between
[ + A �DC and ho+ A �DC , and in particular the tightness of the in-

equality (1.4). The best known result is that (1.4) is an equality, i.e.
[ + A �DC �pho+ A �eC for

all )rqs� , whenever
�

is normal [6, 11]. In addition, (1.4) is an equality for arbitrary
�

and)\�QY [6, 11], for triangular Toeplitz matrices when the right hand side of (1.4) equals one [3],
and also when the matrix

? t >#uv A �eC
that solves the ideal GMRES approximation problem (1.4)

has a simple maximal singular value [6, Lemma 2.4]. On the other hand, some examples
of nonnormal matrices have been constructed, for which (1.4) is a sharp inequality [3, 17].
Despite the existence of these counterexamples, it is still an open question whether (1.4) is an
equality (or at least tight inequality) for larger classes of nonnormal matrices.

Another open problem in the context of (1.4) is how to determine or estimate the value
of the ideal GMRES approximation h1+ A �eC in general. A possible approach that is still under
development is to associate the matrix

�
with some set in the complex plane and to relate

the norm of the matrix polynomial to the maximum norm of the polynomial on this set. An
appropriate set, designed to give useful information about the norm of functions of a matrix

�
,

is the polynomial numerical hull of degree ) ,w + A �DC -xUHy �k�{z 3@?BA �eC 3 q}| ?dA y C | for all
? ��~ +�X�!(1.5)

introduced by Nevanlinna [13, p. 41]. Here
~ + denotes the set of (complex) polynomials of

degree at most ) . Based on the definition (1.5) it is not hard to see that these sets provide a
lower bound on the ideal GMRES approximation [4],476b8:,;=< > 4\S"]�';%��>,�9�W� | ?BA y C | g ho+ A �DC &(1.6)

Moreover,
w + A �eC allows us to identify when ideal GMRES fails to converge [3, 4],ho+ A �DC ��Y �7� � � w + A �eC &(1.7)

While polynomial numerical hulls appear to be a valuable tool, their determination or com-
putation represents a difficult open problem even for simple classes of nonnormal matrices.

In summary, the investigation of worst-case and ideal GMRES as well as the polynomial
numerical hulls for nonnormal matrices is at its very beginning. We believe that in this situ-
ation it is helpful to study relatively simple nonnormal matrices, for which explicit solutions
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of some of the open problems can be derived. Continuing the work started in [2] and [5], we
here consider

�
being an ����� Jordan block ��� with eigenvalue � �r� .

When experimenting with the MATLAB software SDPT3 [18] and some Jordan blocks � �
of small size ( ���}�%� , say), we observed numerically that

[ + A � � C �{ho+ A � � C for � g ) g � .
This led us to conjecture that[ + A ��� C ��h + A ��� C for all � !#� and � g ) g � .

At first sight, proving this conjecture looks not too difficult; after all, one just has to deal
with a single Jordan block. However, it turns out that the approximation problems behind the
quantities

[ + A �DC and ho+ A �eC as well as the exact determination of
w + A �DC are highly nontriv-

ial even in case
� �Q� � . When trying to prove our conjecture we found that numerous cases

need to be distinguished, and in the end we were unable to prove all of them. Nevertheless,
we believe that the work presented here has been worthwhile. In particular, it uncovered a
previously unknown structure behind the worst-case and ideal GMRES approximation prob-
lems in case

� ����� , it extended the recent results of [2, 5] on the polynomial numerical
hulls of Jordan blocks, and it led to new results about the bound (1.6).

Since the presentation below is rather technical, we give a detailed overview of the sec-
tions and the corresponding results in this paper:� In section 2 we summarize known results on worst-case and ideal GMRES as well

as the polynomial numerical hull.� In section 3 we show that
[ + A � � C �Zho+ A � � C for � g )��s�d�%� and whenever | �d| is

outside a small interval on the positive real line.� In section 4 we study the structure of the polynomials that solve the ideal GMRES
approximation problem, i.e. the polynomials for which the value h�+ A � � C is attained.
This allows us to show that h�+ A � � C � [ + A � � C for all � in case ) divides � . More-
over, we establish a relationship between the radii of polynomial numerical hulls
of � � .� In section 5 we analyze the quantities

[ � VW� A ��� C and h � V � A ��� C . This allows us to
show that h � V2+ A ��� C � [ � VW+ A ��� C whenever | �d|lq/Y and ) divides � .� Finally, in section 6 we apply results of the previous sections to analyze the close-
ness of the bound (1.6) on the ) th ideal GMRES approximation. We are unaware
that any theoretical results in this direction have been obtained previously.

2. Notation and theoretical background. The following result collects a number of
basic results concerning the quantities

[ + A �DC and ho+ A �DC . These results are either easy to
verify, or they have been published in [10, Theorem 3.1] or [3, Proposition 2.1].

LEMMA 2.1. Let
�����o�����

be a matrix with minimal polynomial degree � A �DC . Then
the following hold:

1.
[ + A �eC and h + A �DC are both nonincreasing in ) .

2.
[ � A �eC �/hd� A �eC �QY .

3. ��� [ + A �DC�g h + A �eC for Y g ) g � A �eC 0�Y .
4. If

�
is nonsingular, then

[ + A �DC �sh + A �eC �s� for all )�q�� A �eC .
5. If

�
is singular, then

[ + A �DC �/h + A �eC �ZY for all )�q
� .

The previous theorem shows that to investigate the relation between worst-case and ideal
GMRES, one only has to consider nonsingular matrices

�
and positive integers )���� A �eC . In

this case ho+ A �DCD� � , and the polynomial that solves the ideal GMRES approximation prob-
lem (1.4) is uniquely determined [7, Theorem 2]. This gives rise to the following definition.
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DEFINITION 2.2. For a nonsingular matrix
�Z�������l�

, and a positive integer )���� A �DC ,
the uniquely determined polynomial

? t >#uv � E + that satisfies3@? t > uv A �DC 3 �sho+ A �DC �¡476b8:";=< > 3c?dA �DC 3 !
is called the ) th ideal GMRES polynomial of

�
, and the matrix

?�t > uv A �eC
is called the ) th ideal

GMRES residual matrix of
�

.
The matrix

�
is called ideal of degree ) , when h1+ A �eC � [ + A �eC , and

�
is called ideal, whenho+ A �eC � [ + A �DC for )\�QY=!(&'&(&¢!O� A �DC 0
Y .

We point out that if
�

is ideal of some degree ) , then this does not necessarily imply
that

�
is ideal of any other degree. In fact, it would be interesting to characterize necessary

and sufficient conditions on
�

that allow one to conclude from idealness of some degree to
idealness of other degrees.

In general it is an open problem which properties of
�

are necessary and sufficient for
�

to be ideal. Below we summarize the most important results for our context. Proofs of all of
these statements can be found in [6, 11].

LEMMA 2.3. Any nonsingular matrix
�Z�r�������

is ideal of degree )\��Y . Moreover:
1. If

�
is normal, then

�
is ideal.

2. If
?Wt > uv A �eC

has a simple maximal singular value, then
�

is ideal of degree ) .
Let us discuss the condition in the second item. If

�
is a normal matrix with (distinct)

eigenvalues �W�"!'&(&(&(!O�¤£ �9�W� , then the ideal GMRES approximation problem is a (scalar) min-
max problem on the set of the eigenvalues,ho+ A �eC �¥476b8:,;=< > 3c?dA �eC 3 �¦476b8:";=< > 4\S%]�H§ | ?BA ��¨ C |©&
It is well known that the corresponding min-max polynomial of degree ) attains its maximum
value on at least )\IZY of the eigenvalues, see, e.g., [1, Chapter 3, ª 4]. Hence in this case
the multiplicity of the maximal singular value of

?�t >#uv A �DC
is at least ).IsY . Since any normal

matrix is ideal, we see that the condition in the second item is not necessary.
This fact has already been noted, and explained by a similar argument, by Greenbaum

and Trefethen [7]. Based on some numerical observations, they consider the case in which?2t > uv A �DC
for a nonnormal matrix

�
has a simple maximal singular value the “generic case”,

see [7, p. 366]. However, we believe that the situation of
?�t > uv A �DC

having a multiple maximal
singular value can be quite frequent also for nonnormal

�
. For a clear example see Fig. 4.1

below, which shows that for the �%���K�=� Jordan block ��� with ���QY , only 9 out of 19 matrices?2t > uv A ��� C have a simple maximal singular value.
We denote the maximal singular value of a matrix « by ¬2G®°¯ A « C , and we define the

linear space± A « C -P#RTS=8WU f�z=f is a right singular vector of « corresponding to ¬2G®°¯ A « C X�&
We use such spaces in the next result, which gives a further characterization of the case[ + A �eC �¡ho+ A �DC . This result can be found in a more general form in [3, Lemma 2.16], but
we formulate and prove it here independently of [3].

LEMMA 2.4. Suppose that a nonsingular matrix
�

and a positive integer )���� A �DC are
given. Then

[ + A �eC �Zho+ A �eC if and only if there exist a polynomial ² � EW+ and a unit norm
vector � � ± A ² A �eC C , such that ² A �DC �NM �NJ + A � !O� C &(2.1)

If such ² and � exist, then ²³� ? t >#uv .
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Proof. If
[ + A �eC ��h + A �DC , then there exist a unit norm vector � and a polynomial ² � E +

satisfying (2.1), cf. (1.2), such that
3c?Wt > uv A �DC 3 � 3 ² A �DC � 3 . Since

3c?2t > uv A �DC � 3 g 3c?2t >#uv A �DC 3
and

3 ² A �DC � 3 is minimal, 3c? t >#uv A �eC � 3 � 3@? t >#uv A �eC 3 � 3 ² A �eC � 3 &(2.2)

But this means that � � ± A©?Wt >#uv A �DC C
. Moreover, since Y g ) g � A �eC 0}Y , we know that[ + A �eC�� � by Lemma 2.1, and thus the ) th GMRES polynomial is unique, cf. [7, Theo-

rem 2]. Therefore
?Wt >#uv ��² , and hence � � ± A ² A �DC#C .

Now assume that there exist a polynomial ² � EW+ and a unit norm vector � such that (2.1)
holds and � � ± A ² A �DC C . Then3 ² A �eC 3 � 3 ² A �eC � 3 ��476b8:";=< > 3c?dA �DC � 3 g 3@? t >#uv A �eC 3 &(2.3)

Since
?Wt >#uv is the ideal GMRES polynomial,

3 ² A �DC 3 � 3@? t > uv A �DC 3
is impossible, and therefore

equality holds in (2.3). But then
[ + A �eC ��ho+ A �DC , and from uniqueness of

? t >#uv it follows that²´� ?2t > uv .
In [3], the ) -dimensional generalized field of values of

�
,

µ A U � ¨ X +¨ a � C - ¶· ¸³¹º f � �Nf&&&f � � + f
»¼ z%f � f �ZY¤½ ¾¿ !

is used to characterize when worst-case or ideal GMRES do not converge.

THEOREM 2.5. For a nonsingular matrix
�Z�r�������

the following hold:
1.

[ + A �eC �ZY if and only if � � µ A U � ¨ X +¨ a � C .
2. ho+ A �eC �QY if and only if � �kÀ(Á ] A µ A U � ¨ X +¨ a � C C , the convex hull of

µ A U � ¨ X +¨ a � C .
Note that when

���Âjo���l�
is real, one can take the real ) -dimensional generalized field

of values
�

defined over
f���jo�

,
f�Ã f �QY .

The ) -dimensional generalized field of values of any triangular Toeplitz matrix Ä ��������
is a convex set [3], and, therefore,[ + A Ä C ��Y �7� h + A Ä C �ZY=!(2.4)

i.e. Ä is ideal of degree ) in case of stagnation. However, it is in general still an open problem,
originally posed in [3, p. 722], whether Ä is ideal of degree ) when ideal GMRES converges,
i.e. when h + A Ä C �{Y .

In this paper we concentrate on an ����� Jordan block

� � � ¹ÅÅÅº � Y& & & & & && & & Y�
»(ÆÆÆ¼ -Ç�TÈ � I�É � &(2.5)

Apart from the identity matrix È � and the shift É � , we will use the backward identity È�Ê� and
the diagonal matrix ÈlË� defined by

È Ê� - ¹º Y& & &Y
»¼ �Ìj ���l� !5È Ë� -iÍ�6bS=Î A Y=!'0³Y=!(&'&(&°! A 0³Y C � VW� C &(2.6)
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As explained above, the singular case ( �Ï�Q� ) is uninteresting, so we only consider the
nonsingular case, i.e. �mÐ��� . Each � �k� can be written as ����| �d| Ñ%Ò©Ó , and it holds that� � �ÔÑ Ò©Ó¤Õ ��Ö � Ö Õ´× ! Õ -sÍl6bS=Î A Ñ Ò©Ó !#Ñ Ò $ Ó !'&(&'&¢!#Ñ Ò � Ó C &(2.7)

Since ��� is unitarily similar to �¤Ö � Ö , and the values of the approximation problems we deal
with are unitarily invariant, it suffices to consider real and positive � . All results can be
easily extended to all � ���

using the unitary similarity transformation defined by (2.7).
Since � A ��� C ��� , we will consider )\�ZY�!(&(&'&(!#��0
Y , so that �7� [ + A ��� C�g h + A ��� C , and the
corresponding ideal GMRES polynomials are well defined in the sense of Definition 2.2.

As mentioned in the Introduction, the polynomial numerical hull (1.5) appears to be
useful in the analysis of ideal GMRES. As shown in [2], for each )���Y=!'&(&'&¢! �k0�Y , w + A � � C
is a circle around the eigenvalue � with some radius Ø�+HÙ � , where�7�/Ø � VW�°Ù � � F(F'F �/Ø �°Ù � �{Y=!
and Ø +,Ù � is independent of the eigenvalue � . In particular, the authors of [2] concentrate on
determining the radii Ø=�°Ù � and Ø � V �LÙ � . Since

w � A � � C is equal to the field of values of � � , it
holds that Ø=�°Ù � � À¢Ú P�Û <�%Ü �=Ý !(2.8)

cf. [2, p. 235]. The problem of determining Ø � V �LÙ � is equivalent to a classical problem in
complex approximation theory, closely related to the Carathéodory-Fejér interpolation prob-
lem. Using this connection it is shown in [2, p. 238], that Ø � V �LÙ � is a solution of a certain
nonlinear problem and can be bounded byYG0{Þ ßOà � $ � �� g Ø � VW�°Ù � g YG0{Þ ßOà � $ � �� I�Þ ß#à � Þ ßOà � $ � �á�� &(2.9)

Continuing this work, Greenbaum [5, p. 88] combines (1.6), (2.4) and results of [2] to prove
that for )\�ZY�!(&'&(&¢!#��0�Y ,Ø ++,Ù � � VW+ g ho+ A � � C
g � V2+ for �rq{Ø%+HÙ � !(2.10) [ + A � � C �Ôho+ A � � C �âY �7� � g Ø%+HÙ � &(2.11)

The upper bound on h + A ��� C in (2.10) can be replaced by Y if � g Y . The lower bound in
(2.10) is a special case of the general lower bound (1.6) on the ideal GMRES approximation
based on the polynomial numerical hull. The closeness of this lower bound is examined in
section 6 below.

We point out that the lower bound on Ø � V �LÙ � in (2.9) approaches Y as ��ãxä . Hence
the equivalence (2.11) implies that for each � with �Z�Ô| �B|³�iY , there exists a positive
integer ���å� � such that for the ���Ï� Jordan block � � ,

[ � VW� A � � C ��h � VW� A � � C �Y . In
other words, both worst-case and ideal GMRES stagnate completely for each Jordan block� � corresponding to an eigenvalue � inside the unit circle, provided that � � is sufficiently
large. The more interesting cases are therefore the Jordan blocks � � with | �d|lq{Y .

3. Worst-case and ideal GMRES for )æ���d�%� . In this section we show that if | �d| is
outside a small interval around one, then ��� is ideal of degree ) for Y g )Z��d�%� . We
start with a general characterization of the radius Ø +HÙ � of the polynomial numerical hull of
degree ) of ��� .

LEMMA 3.1. A positive real number Ø satisfies Ø g Ø=+HÙ � , if and only if there exists a real
unit norm vector � such that � Ã Éeç� �G� A 0´Ø C ç=! èé�ZY=!'&(&'&¢!O)2&(3.1)
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Proof. A positive real number Ø satisfies Ø g Ø�+HÙ � , if and only if an �³�G� Jordan block �lê
satisfies

[ + A ��ê C �sho+ A ��ê C �QY , cf. (2.11). This is equivalent with the existence of a real unit
norm vector � such that�GMZ��ê J + A ��ê"!L� C � J + A É � !(��ê(� C � J + A É � !¢Øo�oIæÉ � � C &(3.2)

But the orthogonality of � to the space
J + A É � !(Ø��oI�É � � C means that�Z�Ç� Ã A ØBÉeç V �� �oI�Éeç� � C !Çèé�QY�!(&'&(&¢!L)2!

which can be written in the equivalent form (3.1).

THEOREM 3.2. An �m�r� Jordan block � � with � � � is ideal of degree ) with the ) th
ideal GMRES polynomial given by ² A y C � A YG0ë� VW� y C +(3.3)

if and only if Y g )����d�=� and �pqÇØ VW�+HÙ � V2+ &
Proof. Since ² A � � C � A 0³Y C + � VW+ É +� !

each ì � ± A ² A ��� C C has to be of the formìs� A �T!(&'&(&¢!O�l!O� � !(&'&(&¢!L� � VW+ C Ã !(3.4)

and hence ² A � � C ì{� A 0³Y C + � VW+ A �'�"!'&(&(&(!O� � VW+�!#�T!(&(&'&¢!#� C Ã &
Using Lemma 2.4 and the previous observation, � � is ideal of degree ) and ² is both the
worst-case and ideal GMRES polynomial if and only if there exists a unit norm vector ì of
the form (3.4) such that² A � � C ì{MZ� � J + A � � !#ì C � J + A É � !L�lì
I�É � ì C !(3.5)

i.e. �Gì Ã A É ç VW�� C Ã É +� ì
Iæì Ã A É ç� C Ã É +� ì{�/�l! è���Y=!'&(&(&(!O)2&(3.6)

Since ì has the special form (3.4), it holds that ì Ã A É ç� C Ã É +� ìí�î� Ã É +HV ç� V2+ �,! where �Â-A �(�"!(&'&(&(!L� � VW+ CcÃ . Then, (3.6) is equivalent to� V � � Ã É +HV ç� VW+ �oI�� Ã É +HV ç Ü �� VW+ ���/�l! è���Y=!'&(&(&(!O)2&(3.7)

Writing the equations (3.7) in the reverse order (for è��/)2!(&'&(&(!'Y ), we obtain� VW� � Ã É ç VW�� VW+ �oI�� Ã É ç� VW+ �G���l! è��QY=!'&(&(&'!O)2!(3.8)

or, equivalently, � Ã É ç� VW+ �G� A 0K� V � C ç=! èé�QY�!(&(&'&¢!O)W&(3.9)
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Clearly, if )rqs�d�=� , then É +� V2+ is the zero matrix. In this case at least one of the conditions
in (3.9) takes the form �æ� A 0K� C + , and the system (3.9) does not have a solution for any
positive � . On the other hand, for Y g )��
�d�=� , the system (3.9) has a solution if and only if� VW� g Ø"+HÙ � V2+ , cf. Lemma 3.1, which completes the proof.

We summarize what we have seen so far in the following corollary.

COROLLARY 3.3. For an �m�k� Jordan block � � with eigenvalue � ���
, and Y g )Â��d�%� the following hold:

1. If | �d| g Ø%+HÙ � , then � � is ideal of degree ) with
[ + A � � C ��ho+ A � � C �ZY .

2. If | �d|lq/Ø VW�+HÙ � VW+ , then � � is ideal of degree ) with
[ + A � � C �/ho+ A � � C �{� VW+ .

The first item already was shown in (2.11), the second follows from Theorem 3.2. In
summary, for Y g )��{�d�=� and | �d| q}� , we completely understand the situation except for
the cases Ø"+HÙ � �ï| �B|é�ÇØ VW�+HÙ � VW+ &(3.10)

The lower bound in (3.10) is bounded from below by Y"�%� , and it approaches 1 for �mãxä ,
while the upper bound in (3.10) is bounded from above by 2.

4. Structure of the ideal GMRES residual matrices for a Jordan block. In this sec-
tion we analyze the special structure of the ideal GMRES residual matrices for a Jordan block,
which we originally discovered numerically when experimenting with the semidefinite pro-
gramming package SDPT3 [18]. Since the development below is quite technical, we start
with a high-level description of a simple example.

Consider the ð��Âð Jordan block � � with �Ï�ñY . As shown below, its second, third and
fourth ideal GMRES residual matrices are upper triangular Toeplitz matrices of the form¹ÅÅÅÅÅº

òxóâòòâóôòòôóôòòôóâòòâóò

» ÆÆÆÆÆ¼
õ ö°÷ ø?2túù uv A � � C

!
¹ÅÅÅÅÅº
òâóâóxòòâóxóûòòxóâó òòûóûóòûóò

» ÆÆÆÆÆ¼
õ ö°÷ ø?Wtúü uv A � � C

!
¹ÅÅÅÅÅº
òôóâòôóôòòâóôòôóâòòôóôòâóòôóâòòâóò

» ÆÆÆÆÆ¼
õ ö¢÷ ø?Wt ý uv A � � C

!

where “ � ” stands for a nonzero entry and “ þ ” represents a zero entry. It is easy to see that
there exist permutation matrices ÿ $ , ÿ�� and ÿ�� that transform

?Wtúù uv A � � C , ?2t ü uv A � � C and
?Wt ý uv A � � C

into block diagonal matrices with upper triangular Toeplitz blocks,¹ÅÅÅÅÅº
òâòòôòò òôòòâòò

»(ÆÆÆÆÆ¼
õ ö°÷ øÿ Ã$ ?2t ù uv A � � C ÿ $

!
¹ÅÅÅÅÅº
òôòò òâòò òâòò

»(ÆÆÆÆÆ¼
õ ö¢÷ øÿ Ã� ?2t ü uv A � � C ÿ��

!
¹ÅÅÅÅÅº
òôòâòòâòò òâòxòòxòò

»(ÆÆÆÆÆ¼
õ ö°÷ øÿ Ã� ?2t ý uv A � � C ÿ��

&

Since the transformation
? t >#uv A ��� C ãîÿ Ã+ ?2t > uv A ��� C ÿ�+ is orthogonal, and all diagonal blocks ofÿ Ã+ ?Wt >#uv A ��� C ÿB+ are equal, the ideal GMRES approximation

3@?�t >#uv A ��� C 3 equals the norm of any
diagonal block of ÿ Ã+ ?2t > uv A ��� C ÿ�+ .
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These observations are the key to analyzing the ) th and
A �m0�) C th ideal GMRES ap-

proximations for � � and, more generally, for any Jordan block �l� , when ) divides � . The
following lemma formalizes the just described orthogonal transformation and shows the con-
nection between the singular value decompositions of

?�t > uv A � � C and of a diagonal block ofÿ Ã+ ? t > uv A � � C ÿB+ .
LEMMA 4.1. Let � and ) be positive integers, � � ) , and let � be their greatest common

divisor. Define �5- �d�"� and
� � )��"� . Consider the � ��� upper triangular Toeplitz

matrix « ,

«¦- �	
ç a � � ç Éeç ! and let «�� Õ�
� Ã(4.1)

be its singular value decomposition. Then the singular value decomposition of the ���ë�
matrix � , �x- �	

ç a � � ç Éeç £� is given by �Q� A Õ�� È £ C A 
�� È £ C A ��� È £ C Ã &(4.2)

Proof. Define the ����� matrix ÿ by ÿZ-�� È  � Ñ"�"!(&'&(&(!OÈ  � Ñ £�� ! thenÿ Ã �³ÿQ�/È £ � «��/È £ � A Õ�
�� Ã C � A È £ ��Õ C A È £ ��
 C A È £ ��� C Ã !
and hence ����ÿ A È £ ��Õ C A È £ ��
 C A È £ ��� C Ã ÿ Ã��� ÿ A È £ ��Õ C ÿ Ã � � ÿ A È £ ��
 C ÿ Ã � � ÿ A È £ ��� C ÿ Ã � Ã� A Õ�� È £ C A 
�� È £ C A ��� È £ C Ã &
In the last equation we have used [8, Corollary 4.3.10].

As outlined above, our strategy is as follows: Having an ideal GMRES residual matrix �
of the special form (4.2), we can find a permutation matrix ÿ such that ÿ Ã �³ÿ �È � «
(where È and « have the appropriate sizes), and then investigate the norm and properties
of � through the norm and properties of the block « .

THEOREM 4.2. Let � and ) be positive integers, � � ) , and let � be their greatest
common divisor. Let � � � and define �p-��d�%� ,

� -s)��"� ,� � -{�TÈ � I�É � ! ���é-�� È  IæÉ  ! �r-{� £ &
Suppose that the

�
th ideal GMRES polynomial

?�t  uv of ��� is of the form? t! uv A y C � �	
ç a �#" ç A �k0�y C ç%&(4.3)

If � � is ideal of degree
�
, then ��� is ideal of degree ) , and[ � A ��� C �/h � A �$� C � [ + A � � C �sh�+ A � � C &

Moreover, the ) th ideal GMRES polynomial
? t >#uv of � � is given by? t > uv A y C � �	
ç a �#" ç A ��0ëy C ç £ &(4.4)
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Proof. Given the
�
th ideal GMRES polynomial

? t! uv � E � of � � as in (4.3), we define the
polynomial

² A y C - �	
ç a � " ç A ��0�y C ç £ � E¤+�&(4.5)

Our goal is to show that this polynomial ² , which is equal to
?�t > uv in (4.4), is the ) th ideal GM-

RES polynomial of ��� . We will show this by constructing a unit norm vector � � ± A ² A ��� C C ,
such that the condition (2.1) is satisfied.

From ? t! uv A � � C � �	
ç a �#" ç A 0NÉN C ç=! ² A ��� C � �	

ç a �#" ç A 0NÉ � C ç £ !(4.6)

we see that the matrices
? t  uv A ��� C and ² A � � C have a similar structure as the matrices « and � ,

respectively, in Lemma 4.1 (up to the sign in case � is even).
By assumption,

[ � A ��� C �/h � A �$� C�� � , and hence by Lemma 2.4 there exists a unit norm
vector ì � ± A ?Wt  uv A ��� C#C , such that? t  uv A � � C ì Mx� � J � A � � ! ì C &(4.7)

Define 
 � �kj  �  ,
fn�kj  , and « �rj  �  by
 � - % ���2!È�Ë ����È�Ë ! f -&% ìæ! if � is odd,È�Ë ì.! if � is even,(4.8)

«â- ? t  uv A 
 � C &(4.9)

Then it easily follows that « f M 
 � J � A 
 � ! f�C !(4.10)

and
f¡� ± A « C . Since « is a Toeplitz matrix, the matrix È Ê « is symmetric, and hence

unitarily diagonalizable, È Ê «�� �(')� Ã . Therefore, there exists a diagonal matrix *È�Ë having
entries Y and 0³Y on its diagonal, such that«¦� A È Ê � *È Ë C A *È Ë ' C � Ã
is the singular value decomposition of « . If y � ± A « C is a right singular vector, then the
corresponding left singular vector is given either by È Ê y or by 0NÈ Ê y . Since

f�� ± A « C , we
can decompose this vector as

f � f,+ I f.-
. Here

f/+
resp.

f.-
are the orthogonal projections

of
f

onto the space spanned by right singular vectors y � ± A « C with the corresponding left
singular vector equal to È Ê y resp. 0NÈ Ê y .

Denoting by 0 the maximal singular value of
? t! uv A �$� C ,« f ��0BÈ Ê A f + 0 f - C ! and 0´- 3@? t  uv A � � C 3 � 3 « 3 � 3 ² A ��� C 3 !(4.11)

where we have applied Lemma 4.1 to obtain the last equality.
Since

fk� ± A « C , Lemma 4.1 implies that
f � Ñ ç � ± A ² A ��� C#C , where Ñ ç denotes the è th

standard basis vector for èé�QY�!(&'&(&¢!O� . Now define Ñ%�é-��9Y=!(0K��!(&'&(&¢! A 0K� C £ V � � Ã , and

��-21 £	
ç a � A 0K� C ç VW� f � Ñ ç �31 A f � Ñ"� C !(4.12)
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where 1 is chosen so that
3 � 3 �ZY . Clearly, � � ± A ² A ��� C#C , and � can be decomposed as�G�/� + I�� - ! � + -41 A f + � Ñ � C ! � - -51 A f - � Ñ � C !

with ² A ��� C � + ��0"È Ê� � + , ² A ��� C � - �Z060"È Ê� � - . Hence, using the first expression in (4.11),² A � � C �G�51W² A � � C A � + I
� - C �4170"È Ê� A � + 0ë� - C�5170"È Ê� A A f + 0 f - C � Ñ � C ��180 A A È Ê A f + 0 f - C C � A È Ê£ Ñ � C#C�51 A A « f�C � A È Ê£ Ñ � C C &(4.13)

We next show that ² A � � C �
Mô� ç� �,! è���Y=!(&'&(&¢!L)2!(4.14)

i.e. that ² is a GMRES polynomial for ��� and the initial vector � . Since

span U=� � �,!'&(&'&¢!¢� +� �HXs� span U,É �� � � �,!'&(&(&(!#É +HV �� � � �HX�!(4.15)

the relation (4.14) holds if and only if² A � � C ��MÔÉeç� � � �,!ïèé���T!(&(&'&¢!O)é0�Y=&(4.16)

Let us decompose the index è asèé��9H�eI;:°! 9K�s�T!(&'&(&¢!=<20
Y�! :1���T!(&(&'&¢!#� 0
Y�&(4.17)

An elementary computation shows that� � ���>1.� � A f � Ñ � C �?1 A#A 
 � f�C � Ñ £ C &
Multiplication of � � � from the left by É ç� shifts all entries of � � � upwards by è positions.
Using (4.17), É ç� ����� can be written asÉeç� � � �k�@1eÉBA £� A#A 
 � f�C � Ñ £ V.C C �51 A A ÉDA 
 � f�C � Ñ £ V.C C &(4.18)

Now from (4.13) and (4.18) we obtainA ² A � � C � C Ã A É´ç� � � � C �51 $ A#A « f�C � A È Ê£ Ñ � C#C Ã A#A ÉBA 
 � f�C � Ñ £ VEC C�>1 $ � A « f�C Ã ÉBA 
 � f � � Ñ Ã � È Ê£ Ñ £ V.C � &
Similar as in (4.15), É A 
 � fm� 
 � J � A 
 �2! f�C for 9��ñ�l!'&(&'&¢!F<d0/Y . Since « f is orthogonal
to 
 � J � A 
 � ! f�C , cf. (4.10), it holds that

A « f�C Ã É A 
 � f ��� for 9n���l!'&(&(&(!F<d0/Y . In other
words, we just proved (4.14).

Summarizing, ² is the ) th GMRES polynomial for the matrix ��� and the initial vector� � ± A ² A ��� C C . Using Lemma 2.4, it holds that
[ + A ��� C �h + A ��� C and, therefore, ² is the) th ideal GMRES polynomial of ��� . Moreover, Lemma 4.1 implies that the ideal GMRES

residual matrices
? t  uv A ��� C and

?2t > uv A � � C have the same norm and thus
[ � A ��� C �Ìh � A ��� C �[ + A � � C �/ho+ A � � C .

Note that the integers
�

and � defined in Theorem 4.2 are relatively prime. The assertion
of this theorem is quite tricky, so some explanation is appropriate. Suppose we know that an� �G� Jordan block �$� is ideal of degree

�
, where

�
and � are relatively prime. Then by

Theorem 4.2, an ���é� Jordan block � � is ideal of degree ) , where �r-s�H� , )é-/� � , ��-5� £ ,
and � is any positive integer. Therefore, to prove that any Jordan block is ideal, it would be
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FIG. 4.1. Multiplicity of the maximal singular value of I t > uv�JLKNMFO for the P�QSRBP�Q Jordan block KNM and T.�U�VXWXWYWXVYUXZ
.

sufficient to show that any Jordan block is ideal of degree ) whenever ) and the size of the
Jordan block are relatively prime; all the other cases are then covered by Theorem 4.2. In
other words, Theorem 4.2 reduces the question of idealness of Jordan blocks to block sizes �
and steps ) , where ) and � are relatively prime.

EXAMPLE 1. Consider the �%�7�Â�=� Jordan block �l� . In Fig 4.1 we plot the multiplicity
of the maximal singular value of

? t > uv A ��� C for )Â�ÌY=!(&'&(&¢!'Y\[ . Apparently, the multiplicity is
equal to the greatest common divisor of � and ) . In particular, at steps ) such that ) and � are
relatively prime, the maximal singular value of

? t > uv A ��� C is simple. (The same phenomenon
can be observed numerically also for other choices of � .) By the second item in Lemma 2.3,� � is ideal of degree ) in the steps where ) and � are relatively prime. Then Theorem 4.2
implies that � � is ideal.

Theorem 4.2 also allows us to prove the following result about the radii of the polynomial
numerical hulls of Jordan blocks.

THEOREM 4.3. Let � and ) be positive integers, � � ) , and let � be their greatest
common divisor. Define �ï-p�d�%� ,

� - )��"� . Then the radius Ø=+,Ù � of the ) th polynomial
numerical hull of an �ë��� Jordan block satisfiesØ"+,Ù � �xØ �X] £� Ù  &(4.19)

Proof. Let � � � and consider Jordan blocks� � -/��È � I�É � ! ���é-�� È  I�É  ! ��-/� £ &
We prove the following equivalence� g Ø � Ù  ^�7� [ � A ��� C �/h � A ��� C �QY _�7� [ + A � � C �/h�+ A � � C ��Y `�é� � g Ø"+HÙ � &
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The equivalences a and b follow from (2.11), so we only have to prove the equivalence c .
From Theorem 4.2,[ � A �$� C ��h � A ��� C �ZY � � [ + A � � C �/ho+ A � � C ��Y=&
On the other hand, suppose that

[ + A ��� C �}h + A ��� C �¡Y . Consider the polynomial
? t! uv of the

form (4.3). Then, similarly as in the proof of Theorem 4.2, the polynomial ² defined by (4.5)
satisfies ² � E + and

3 ² A ��� C 3 � 3@?2t! uv A � � C 3 , cf. (4.11). Now if h + A � � C � 3c?2t  uv A � � C 3 ��Y ,
then

3 ² A ��� C 3 � Ym� h + A ��� C , which contradicts the optimality property of the ) th ideal
GMRES polynomial

?Wt > uv of � � . Therefore h�+ A �$� C �ñY , which implies that
[ + A ��� C �åY , cf.

(2.4), and thus c must hold.
Consequently, for each � � � , � £ g Ø � Ù  �7� � g Ø"+HÙ � , which implies (4.19).

COROLLARY 4.4. Consider an ���Ï� Jordan block � � with � � � . Let )��å� be a
positive integer dividing � . Then

[ + A � � C ��ho+ A � � C , and if �rq/Ø%+HÙ � , then� V2+ À¢Ú P Û <� ]L+ Ü ��Ý g h + A ��� C
g � V2+ &(4.20)

The ) th ideal GMRES polynomial
? t > uv of � � is of the form? t > uv A y C � " ��I " � A �\0ëy C + !(4.21)

where " � and " � are the coefficients of the first ideal GMRES polynomial (4.3) of the
� + � � +

Jordan block � � > . Moreover, it holds that

Ø +HÙ � �}Ø �X]L+�LÙ � ]O+ �ed À¢Ú P Û <� ]O+ Ü ��ÝEf �F]L+ &(4.22)

Proof. All results follow from Theorem 4.2 and Theorem 4.3. If ) divides � , then����) is their greatest common divisor, and � �å�d�%) ,
� � Y . For

� � Y , the assumption[ � A �$� C �sh � A ��� C�� � in Theorem 4.2 is satisfied and therefore
[ + A � � C �sho+ A � � C . In (4.22)

we used Theorem 4.3 and the explicit form of the radius Ø �LÙ � ]O+ , cf. (2.8). The bound
A
4.20

C
is just the bound (2.10), where for Ø=+HÙ � we substituted its exact value on the right hand side
of (4.22).

If ) divides � , then
? t > uv A y C �ïY for � g Ø � Ù + and

?Wt >#uv A y C � " � I " � A �m0/y C + for� � Ø � Ù + . For ��qZØ VW�+HÙ � V2+ we know that " �´�{� and " � �Z� VW+ , cf. Theorem 3.2. Moreover,
since

[ + A ��� C �ph + A ��� C , it follows from (2.11) and Theorem 3.2 that " ��Ð�p� and " � Ð�Ì�
whenever Ø +HÙ � ���{� Ø VW�+HÙ � VW+ . Then, from the form of the ) th ideal GMRES polynomial
(4.21) it is easy to see that the ) roots of

? t >#uv are uniformly distributed on the circle around �
with radius | " �,� " � | �F]O+ .EXAMPLE 2. Consider an ���Ï� Jordan block � � with � � � , � even and )æ�Ì�d�=� .
This gives �æ� �d�=� , � � � , � � Y , and �}�� � ]#$ in Theorem 4.2. Since for the ���m�
Jordan block �$� ,

[ � A ��� C �ph�� A ��� C�� � , Theorem 4.2 implies that
[ � A �$� C �h�� A ��� C �[ � ]O$ A � � C �/h � ]O$ A � � C . Theorem 4.3 shows thatØ � ]#$(Ù � �ZØHgih >�LÙ $ �{� - ù hkj &(4.23)

Moreover, by a direct computation of the first ideal GMRES approximation for the �k�æ�
Jordan block �$� with �Â�/� � ]O$ , we obtain that for �kq�� V¤$l] � ,

" �D� �m � � I�Y ! " � � Y� � ]O$ m � � 0�Ym � � IsY ! h � ]O$ A ��� C � m � � ]O$m � � I�Y &(4.24)
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Using (2.10) and the fact that Ø ++HÙ � q/Ø +� ]O$(Ù � �{� - ù > hnj q�� V � for ) g �d�%� , we get the boundY� � V2+ g h + A ��� C�g � VW+ ! ) g �d�=��&(4.25)

5. The next-to-last worst-case and ideal GMRES approximations. In this section
we consider the

A ��0
Y C st worst-case and ideal GMRES approximations for an ����� Jordan
block � � with � � � . Our main result, stated in Theorem 5.5 below, is that

[ � V � A � � C �h � VW� A � � C for �åq Y . We also give an explicit expression for h � V � A � � C in terms of the
eigenvalue � . The proof of this result will make use of three technical lemmas. To simplify
the notation, we define the vectorÑ t j u� - È Ë� �9Y=!L� !'&(&(&(!O� � VW� � Ã
and the Hankel matrix

o A f �"!'&(&(&(! f � C - ¹ÅÅÅº
f � f $ &'&(& f �f $ & & &&&& & & &f �

» ÆÆÆ¼ &(5.1)

The first lemma is a slight reformulation of [12, Corollary 2.2].

LEMMA 5.1. Consider the linear algebraic system � � �Q�î� , with an ���m� Jordan
block � � , and a right hand side vector �´�@� �H�,!(&'&(&¢!L� � � Ã such that � � Ð�¡� . If � � �¡� , then
the

A ��0�Y C st GMRES residual * � V � is uniquely determined by the linear system3 * � VW� 3 V¤$ o A �(�"!(&(&'&(!L� � C * � V ���ÔÑ t j u� &(5.2)

LEMMA 5.2. Let � � � be given and let � �rjo� be the unit norm vector�
- A 0³Y C � VW� 3qpT3 VW� È Ê� p !(5.3)

where
p ��� p � !(&(&'&(! p � � Ã has the componentsp ¨ Ü � �Ç� j - gù V2¨ A 0³Y C ¨m ¨sr �Ntt8u ! t��s�l!'&(&(&(! �k0
Y�&(5.4)

Then the
A � 0ÏY C st GMRES residual * � VW� for the �n��� Jordan block ��� and the initial vector� is given by * � VW�K� 3qpT3 V � p , and hence

3 * � V � 3 � 3�pT3 V2$ � Y� � VW�wv � V �	 ¨ a � A m � C V2$#¨ r �Ntt7u $�x VW� &(5.5)

Proof. Since the last component of �G� A 0³Y C#� V � 3qpT3 VW� � p � !'&(&'&(! p � � Ã is nonzero, Lemma 5.1
implies that the

A ��0�Y C st GMRES residual for � � and � satisfiesA 0³Y C � VW�3�pT313 * � VW� 3 $zyo * � V � �iÑ t j u� !(5.6)
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where yo � o ALp � !(&(&'&(! p � C . Using the definition (5.4), the numbers
p ¨ Ü � satisfy for è���l!'&(&(&(! ��0
Y ,ç	 ¨ a � p ¨ Ü � p ç V¤¨ Ü �K� A 0³Y C çm ç � � V ç VW� ç	 ¨ a � r �{tt u r � A è.0|t Cè.0|t u � A 0³Y C çH� � V ç VW� &

In the last equality we use the fact that the sum of the products of the given binomial coeffi-
cients is equal to

m ç , see e.g. [15, p. 44]. The � previous equations can be written in matrix
form as yo p � A 0³Y C � VW� Ñ t j u� &(5.7)

A comparison of (5.7) and (5.6) shows that
p � 3 * � VW� 3 V2$ * � VW� 3�pT3 V � and, therefore,

3qpT3 V¤$ �3 * � VW� 3 . Finally, * � VW�é� pG3qpT3�3 * � VW� 3 $ � pG3qpT3 V � . A straightforward computation shows
that

3 * � VW� 3 is given by (5.5).
REMARK 5.3. It is not hard to check that

p ¨ Ü � defined in (5.4) can be computed by the
recurrence p �G�{� j - gù ! p ¨ Ü �N��0 p ¨ � VW� �{t�0�Y�Nt ! to�ZY=!'&(&'&¢! �k0�Y=&(5.8)

LEMMA 5.4. Let � � � be given and let
p + -QÈ�Ë� p , where the vector

p
is defined as in

Lemma 5.2. Then there exists an uniquely determined Hankel matrix *o such thatp + �}*o p + &(5.9)

If ��q�Y , the matrix *o is primitive and has only one eigenvalue of maximum modulus. This
eigenvalue is equal to Y , and

p +
is the corresponding eigenvector.

Proof. First note that since the entries of
p

alternate in sign and
p � � � , all components

of
p + �~� p +� !'&(&'&¢! p +� � Ã are positive. We are now going to construct the Hankel matrix *o of

the form *o � o A�� � !'&(&(&(! � � C .
The � th equation in

p + � *o p + is
� � p +� � p +� , i.e.

� �ë� p +� � p +� . Therefore,
� � is

well-defined and positive. Considering the equations �r0sY=!'&(&(&(!(Y it is clear that the entries� $=!(&'&(&(! � � of *o are uniquely determined.
To show the remaining part of the lemma, we will first prove by induction that for �rq}Y ,*o is nonnegative with

� ¨ � � , tK� Y=!'&(&'&¢! � . We already know that
� � � � . Now suppose

that
� � � �l!'&(&(&(! � ç � � for some è�q{Y . The

A ��0�è C th equation in
p + ��*o p + is of the formp +� V ç � � ç Ü � p +� I ç Ü �	 ¨ a $ � ç V¤¨ Ü $ p +¨ � � ç Ü � p +� I ç	 ¨ a � � ç V¤¨ Ü � p +¨ Ü � &

Using the definitions of
p +¨ Ü � and

p ¨ Ü � , cf. (5.4) and (5.8), it holds thatp +¨ Ü � �s� VW� r p +¨ 0 p +¨�{t u
and, therefore, p +� V ç � � ç Ü � p +� I�� VW� ç	 ¨ a � � ç V¤¨ Ü � p +¨ 0ë� VW� ç	 ¨ a � � ç V¤¨ Ü � p +¨�{t

� � ç Ü � p +� I�� VW� p +� V ç Ü � 0m� V � ç	 ¨ a � � ç V2¨ Ü � p +¨�{t &
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Finally, � ç Ü �N� ALp +� C VW�(� p +� V ç 0m� V � p +� V ç Ü � I v � V � ç	 ¨ a � � ç V¤¨ Ü � p +¨�{t x8� &(5.10)

The term in the square brackets is positive according to the induction hypothesis. Moreover,
since the sequence

p +� ! p +$ !'&(&(& is decreasing for �ëq�Y , it holds that
p +� V ç � � V � p +� V ç Ü � , i.e.� ç Ü � � � .

Summarizing, *o is nonnegative and
p +�� � is an eigenvector of *o corresponding to the

eigenvalue Y . Therefore, Y must be an eigenvalue of maximum modulus [9, Corollary 8.1.30.].
Moreover, since *o $ � � , *o is primitive, cf. [9, Theorem 8.5.2.], and there exists only one
eigenvalue of maximum modulus.

Now we can state and prove the main result of this section.

THEOREM 5.5. Consider an �
�Ï� Jordan block ��� with ��qpY . Then the unit norm
vector � defined in (5.3)–(5.4) solves the worst-case GMRES approximation problem (1.3) for��� and )\����0
Y , and it holds that[ � VW� A � � C �ih � VW� A � � C � Y� � VW�|v � V �	 ¨ a � A m � C V¤$O¨ r �{tt u $lx V � &(5.11)

Proof. Consider the
A ��0QY C st GMRES residual * � VW� for � � and the initial vector �

defined in (5.3)–(5.4), and denote by
? � V � the corresponding GMRES polynomial, i.e.* � VW��� ? � VW� A � � C �,&(5.12)

Using (5.5),
3 * � V � 3 is equal to the rightmost expression in (5.11). To prove the assertion

it suffices to show that � is a maximal right singular vector of the matrix
? � VW� A � � C , cf.

Lemma 2.4. Since
? � V � A � � C is an upper triangular Toeplitz matrix, the matrix

? � VW� A � � C È Ê� ,
where È Ê� is defined in (2.6), is symmetric, and hence unitarily diagonalizable. Denote its
eigendecomposition by

? � VW� A � � C È Ê� � Õ���Õ Ã , where � is a nonsingular real diagonal ma-
trix, and Õ Ã Õ � Õ.Õ Ã �/È � . Given � , there exists a (uniquely determined) diagonal matrix*È Ë� having entries Y or 0³Y on its diagonal such that 
 - � *È Ë� is a real diagonal matrix with
positive diagonal entries. Then? � VW� A � � C � Õ A � *È Ë� C A *È Ë� Õ Ã È Ê� C � Õw
 A *È Ë� Õ Ã È Ê� C !(5.13)

and the rightmost expression is the singular value decomposition of
? � VW� A ��� C .

Substituting (5.3), (5.5) and (5.13) into (5.12), we obtainp � A 0³Y C � V � 3qpT3 $ Õ�
 *È Ë� Õ Ã p &(5.14)

Similarly as in Lemma 5.4, denote
p + -sÈ Ë� p � � . Multiplying both sides of

A
5.14

C
from the

left by È�Ë� we receivep + � *o p + ! *o - A 0³Y C � V � 3qpT3 $ A È Ë� Õ C 
 *È Ë� A È Ë� Õ C Ã(5.15) � A 0³Y C � V � 3qpT3 $ A È Ë� ? � VW� A � � C È Ê� È Ë� C &
Since

? � VW� A ��� C is an upper triangular Toeplitz matrix, the expression (5.15) shows that *o
is a Hankel matrix. Considering the eigenvalue decomposition *o ��� ' � Ã it is easy to see
that �Z�/È Ë� Õ ! ' � A 0³Y C � V � 3�pT3 $ 
 *È Ë� &(5.16)



ETNA
Kent State University 
etna@mcs.kent.edu

WORST-CASE AND IDEAL GMRES FOR A JORDAN BLOCK 469

0.8 0.82 0.84 0.86 0.88 0.9
0.9

0.92

0.94

0.96

0.98

1

 

 

λ
*
(n)

rhs of (5.11)
 
 

Φ
n−1

(Jλ)

FIG. 5.1. The right hand side of (5.11) and �,�N� M�J�K��NO plotted as a function of � .

Therefore, the modulus of any eigenvalue of *o is a
3�pT3 $ -multiple of some singular value

of
? � V � A � � C . Consequently,

p +
in (5.15) is an eigenvector corresponding to the eigenvalue

of maximum modulus of *o if and only if � is a right singular vector corresponding to the
maximal singular value of

? � V � A ��� C . By Lemma 5.4, *o has only one eigenvalue of maximum
modulus, and

p +
is the corresponding eigenvector. Hence � is the maximal right singular

vector of
? � VW� A ��� C .

In the previous theorem we use the assumption �QqíY . It is natural to ask about the
relation between worst-case and ideal GMRES for Ø � V �LÙ � �/�Ï�QY , and whether for such �
the right hand side of (5.11) still characterizes

[ � V � A � � C and h � VW� A � � C . While our numerical
experiments predict that

[ � VW� A � � C �/h � VW� A � � C also for Ø � VW�°Ù � ���r�/Y , for each integer �
there seems to exist a � t j uv , Ø � VW�°Ù � ��� t j uv �åY , such that h � VW� A � � C is larger than the right
hand side of (5.11) whenever ����� t j uv . In other words, the right hand side of (5.11) does
not characterize

[ � VW� A � � C and h � VW� A � � C for all ��q/Ø � V �LÙ � . This situation is demonstrated
in Fig. 5.1, which shows a numerical experiment with ����Y'� , giving Ø � V �LÙ �;� �l& � . The
dashed line shows the right hand side of (5.11), and the solid line shows the ideal GMRES
approximation h � VW� A � � C , both as a function of � .

In the following corollary we combine results of Theorem 4.2, Theorem 4.3 and Theo-
rem 5.5.

COROLLARY 5.6. Consider an �k�7� Jordan block � � with �Âq/Y . If )n��� is a positive
integer dividing � , then

[ � V2+ A � � C �Ôh � V2+ A � � C � Y� � VW+��� � ]L+HVW�	 ¨ a � � V¤$L+°¨ m V¤$O¨ r �{tt8u $l�� V � &(5.17)

and Ø � VW+HÙ � �}Ø �X]L+� ]L+HVW�°Ù � ]L+ &(5.18)

Proof. The parameters in Theorem 4.2 and Theorem 4.3 are given by ���Z) , � �{�d�=) ,� ���0�Y and ����� + . Applying Theorem 5.5 to the �í��� Jordan block �$� we see that
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is satisfied. Therefore, ho VW� A � � C � h � VW+ A ��� C � [ � V2+ A ��� C . The value of h� V � A � � C
(and also of h � V2+ A � � C ) is given by (5.11), where � and � have to be replaced by � and � + ,
respectively.

For example, if � q m
is even and )��ï� , then � �Ô�d�=� and (5.18) means thatØ � V¤$(Ù � �âØ �X]O$ VW�°Ù  . Using a completely different and highly nontrivial proof technique

based on complex analysis, the same result has been obtained in [2, p. 241]. Tight bounds
on Ø  VW�°Ù  are given by (2.9). Note that for � even and )��¡�d�%� , it can be easily checked
that the rightmost expression in (5.17) agrees with the rightmost expression in (4.24).

6. Polynomial numerical hulls and the ideal GMRES convergence. In [4, Section 3],
some numerical examples with nonnormal matrices

�
of (small) size � are given, for whichh � VW� A �DC
g2� 47698:";=< j - g 47S%]�';%� j - g �9�W� | ?dA y C |©!

where
�

is a moderate size constant. It is not shown, however, whether the constant depends
on � , or how close the bound (1.6) may be for a general nonnormal matrix

�
. As we are

unaware of any such results in the literature, we here study this question using our above
results for an ���æ� Jordan block � � . We concentrate on the case ���ÔY . We need the
following lemma, which can be proven by a straightforward computation; see also [16].

LEMMA 6.1. The singular value decomposition of the �k�7� Jordan block �T� is given by���G� Õ�
� Ã , where� �ôU f ¨ ç X �¨áÙ ç a � ! f ¨ ç � $� $ �%Ü � P#698 Û $#¨áVW�$ �%Ü � è�E Ý !(6.1) Õ �ôU\�2¨ ç X �¨áÙ ç a � ! �¤¨ ç � $� $ �%Ü � P 6b8 Û $#¨$ �%Ü � è�E Ý !(6.2) 
 �ÇÍ�6bS=Î A ¬ ¨ C ! ¬ ¨ �Ç� À(Ú P Û ¨ <$ �%Ü �=Ý !�tB�QY�!(&'&(&¢!#�o&(6.3)

THEOREM 6.2. Consider the �r�n� Jordan block �T� , and let )���� be a positive integer
dividing � . Then the ideal GMRES approximations h1+ A ��� C and h � V2+ A ��� C are bounded byÀ(Ú P�Û <$ � ]L+ Ý g h�+ A ��� Cæg À¢Ú P�Û <$ � ]L+ Ü � Ý !(6.4) � Y�I �$� Ú Î A �d�%) Cn� V � g h � V2+ A ��� C�g � Y�I �� � Ú Î A �d�%) Cn� VW� &(6.5)

Proof. We first prove (6.4). In the notation of Theorem 4.2, �¥-î�d�=) and
� �ÔY .

Denote by � the �î��� Jordan block with the eigenvalue one. Since
[ � A � C ��ho� A � Ce� � ,

Theorem 4.2 implies that ho+ A ��� C �sh�� A � C . It therefore suffices to bound
3c? t g uv A � C 3 .

The upper bound in (6.4) follows from3@? t g uv A � C 3 g 3 È.0 Y� � 3 � Y� 3 � 3 � À¢Ú P�Û <$  Ü � Ý !
where

3 � 3 �s¬2� A � C is known, cf. Lemma 6.1. For � �rj
, define the polynomial?.�BA y C -�YG0z�1yT&
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The norm of
? � A � C is the square root of the maximal eigenvalue of

?���A � C Ã ?��BA � C � ¹ÅÅÅº 1 � 0S  �0S  � ¡�� & & && & & & & & 0S  �0S  � ¡ �
» ÆÆÆ¼ !

where
¡ � -5� $ I A YG0G� C $ ,   � - A YG0G� C � , 1 � - A YG0z� C $ . Next, define the �¡�¢� matrixÄ � Ù /-�£F¤O6 Í�6bS=Î A 0S  � ! ¡ � !'0S  � C & Denote the characteristic polynomials of

? � A � CcÃ ? � A � C andÄ � Ù  by ¥ � Ù  A y C -sÍ/¦§£ A y�È¢n0 ? � A � C Ã ? � A � C C and ¨ � Ù  A y C -sÍ,¦q£ A y�È(�0eÄ � Ù � C , respectively.
It is not hard to see that ¥ � Ù  A y C ��¨ � Ù  A y C I�� $ ¨ � Ù  V � A y C &
Using results of classical polynomial theory, the roots of the polynomials ¨ � Ù  and ¨ � Ù  VW�
interlace. Therefore, the maximal root of ¥ � Ù  (equal to

3c? � A � C 3 $ ) must lay between the
maximal roots of ¨ � Ù  and ¨ � Ù  VW� (between the maximal eigenvalues of Ä � Ù  and Ä � Ù  V � ).
It is well known that the eigenvalues of Ä � Ù  V � are given by� t!© u� Ù  VW� � ¡ � 0ë�N  � À¢Ú P�ª ç <�« !ïè���Y=!'&(&'&¢!X��0�Y=&
Considering these eigenvalues as a function of � , and taking derivatives with respect to � ,
shows that the minimum is obtained for �m��Y,�%� . Therefore,3@? � A � C 3 $ q 47S%]ç � t © ugù Ù  V � � Y� I Y� À(Ú Pª <¬« � À(Ú P $ ª <$ ¬« &
Taking square roots, we obtain the lower bound in (6.4).

We next prove (6.5). Using (5.17), the value of h � V2+ A ��� C is given by

h � VW+ A � � C � v  VW�	 ¨ a �( ¨ Ü � x VW� !  ¨ Ü � - Ym $#¨�r �{tt7u $ &(6.6)

We first prove that for è\q�� it holds thatYm A è.0
Y C g  ç g Y�'è &(6.7)

For è\�Q� ,  $´� �� and (6.7) holds. Suppose that (6.7) is satisfied for some è�q/� . We show
that this inequality holds also for èeIsY . For  ç Ü � we obtain

 ç Ü �N� r YG0 Y�'è�u $  ç g Y�(è r YG0 Y�(è�u $ è´I�Yè´I�Y� Y� A èeI�Y C r YG0 ®m è $ I Ym è � u g Y� A è´I�Y C &
Similarly,

 ç Ü � q Ym A è.0
Y C r YG0 Y�(è�u $ m èm è � Ym è r Y�I Ym è $ I Ym è $ A è.0�Y C u q Ym è !
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and (6.7) holds. Now, we can find upper and lower bounds on h � V2+ A ��� C , V �	 ¨ a �( ¨ Ü � �QY�I 	
ç a $  ç g Y�I Y� 	

ç a $ Yè g Y�I Y�(¯ � � V � �����QY�I Y� � Ú Î A � C ! V �	 ¨ a �( ¨ Ü � �QY�I 	
ç a $  ç q}Y�I Ym 	

ç a $ Yè³0�Y q/Y�I Ym ¯ � � V � �����QY�I Ym � Ú Î A � C &
Using these inequalities and (6.6) we obtain (6.5).

For simplicity, let us assume that � is even. The bounds (6.4) and (6.5) predict that the
convergence of ideal GMRES for � � has two phases:ho+ A ��� Cw°ÔÀ¢Ú P Û <$ � ]L+ Ü � Ý ! for ) g �d�=��!�) divides �o!(6.8) h � VW+ A � � Cw° �©Y�I � Ú Î A �d�%) C � V � ! for ��0ë) � �d�%��!o) divides �o&(6.9)

The convergence bound based on the polynomial numerical hull, i.e. (1.6), which is the lower
bound in (2.10) in case of a Jordan block, is h + A � � C qZØ ++HÙ � . For ) dividing � we know Ø +HÙ �
explicitly, and this lower bound can be evaluated, cf. (4.20). For other ) one can use the
explicit value of Ø � ]O$(Ù � resp. the lower bound on Ø � VW�°Ù � , cf. (4.25) resp. [5, p. 88], givingY� g � V¤$L+q] � g ho+ A ��� C ! for )\�QY=!(&'&(&'! �d�%�l!(6.10) d`Y�0{Þ ßOà � $ � �� f + g ho+ A ��� C ! for )\���d�%�NIsY=!(&'&(&¢!#��0�Y=&(6.11)

Comparing (6.10) and (6.8) shows that the lower bound in (6.10) is a tight approximation
of the actual ideal GMRES approximations. Hence the polynomial numerical hull of ���
gives good information about the first phase of the ideal GMRES convergence. However,
the information is less reliable in the second phase. In particular, consider the ideal GMRES
approximation for ��0�Y . Then (6.9) shows thath � VW� A ��� Cw° �©Y�I � Ú Î�� � VW� !
while the lower bound (6.11) yieldsd YG0{Þ ßOà � $ � �� f � VW� g h � VW� A � � C &
A real analysis exercise shows that� 6b4�H±(² �%�wd Y�0 Þ ßOà � $ � �� f � V � �ôY�&
Hence for large � and )�� ��0¡Y , the value on the right hand side of the lower bound
(6.11) is of order ³ A Y,�"� C , while the actual ideal GMRES approximation h � VW� A � � C is of
order ³ A Y,� � Ú Î A � C#C . Note that since� 6b4�H±(² $ �Þ ßOà � � � d YG0{Þ ßOà � $ � �� I�Þ ß#à � Þ ßOà � $ � � �� f � VW� �ôY�!
an approximation of h � VW� A ��� C based on the upper bound on Ø � VW�°Ù � , cf. (2.9), also would fail
to predict the correct order of magnitude of the ideal GMRES approximation.

As shown by this example, the bound (1.6) on the ) th ideal GMRES approximation for a
general nonnormal matrix

�
based on the polynomial numerical hull of

�
of degree ) , cannot

be expected to be tight for all ) .
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7. Concluding remarks. Motivated by the (in general) open question of how to char-
acterize the convergence of the GMRES method in the nonnormal case, we have studied the
behavior of worst-case and ideal GMRES for an �s�m� Jordan block � � with eigenvalue� �r� . We conjecture that any such � � is ideal. We have shown in this paper that � � is ideal
of degree ) if any of the following conditions is satisfied:

1. | �B| g Ø"+,Ù � ,
2. ) divides � ,
3. )n�
�d�%� and | �B|�q{Ø VW�+HÙ � V2+ ,
4. )nq
�d�%� , ��0m) divides � and | �B|�q}Y .

Apart from studying the idealness of � � , we have extended the results of [2, 5] by proving new
results about the radii of the polynomial numerical hulls of Jordan blocks. Using these, we
discussed the closeness of (1.6), i.e. the lower bound on ideal GMRES based on polynomial
numerical hull.
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