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Commentary 
 

This habilitation thesis is a selection of works related to the problem of coopera-

tive path finding (CPF)
1,2,3

 that I have written since 2009 until the present time. I 

started to work on the CPF problem (that is also known as multi-robot path plan-

ning
4
 – MRPP, multi-agent path finding

5
 – MAPF, or pebble motion on a graph - 

PMG) right after finishing my doctoral dissertation. CPF represented a fresh prob-

lem at that time for me, very different from my previous research (which was 

focused on application of constraint programming techniques in domain indepen-

dent planning), which together gave me strong impetus to achieve new results. 

CPF was also a fresh problem to artificial intelligence community at that time to 

certain extent, which constituted highly competitive situation. This situation mo-

tivated me to establish an internationally recognized research in the topic. 

1. A Combinatorial Approach to Cooperative Path Finding 

The problem of CPF takes place in a certain environment where mobile agents are 

deployed
6
. Each agent starts at a given initial position and it is assigned a goal 

position where it needs to relocate. The task in CPF is to find a spatial temporal 

path for each agent so that agents can relocate to their goals cooperatively by fol-

 
1
 Silver, D.: Cooperative Pathfinding. Proceedings of the 1st Artificial Intelligence and 

Interactive Digital Entertainment Conference (AIIDE 2005), pp. 117-122, AAAI Press, 

2005. 

2
 Yu, J., LaValle, S. M.: Fast, near-optimal computation for multi-robot path planning on 

graphs. The 27th AAAI Conference on Artificial Intelligence (AAAI 2013), Bellevue, 

WA, USA, late breaking track, AAAI Press, 2013. 

3
 Wang, K. C., Botea, A.: MAPP: a Scalable Multi-Agent Path Planning Algorithm with 

Tractability and Completeness Guarantees. Journal of Artificial Intelligence Research 

(JAIR), Volume 42, pp. 55-90, AAAI Press, 2011. 

4
 Ryan, M. R. K. Exploiting Subgraph Structure in Multi-Robot Path Planning. Journal of 

Artificial Intelligence Research (JAIR), Volume 31, pp. 497-542, AAAI Press, 2008. 

5
 Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search for 

op-timal multi-agent pathfinding. Artificial Intelligence, Volume 195, pp. 470-495, El-

sevier, 2013. 

6
 Wang, K. C., Botea, A.: Scalable Multi-Agent Pathfinding on Grid Maps with Tracta-

bility and Completeness Guarantees. Proceedings of the 19th European Conference on 

Artificial Intelligence (ECAI 2010), pp. 977-978, Frontiers in Artificial Intelligence and 

Applications, Volume 215, IOS Press, 2010. 
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lowing these paths. Cooperation among agents means that agents must not collide 

with each other and with obstacles while relocating towards their goals. The 

strong cooperative aspect implies the need to consider all the agents together dur-

ing path planning and it represents also the major challenge in the problem. 

 It is assumed, in the version of the problem we studied, that paths are con-

structed centrally and full observability of the environment and positions of all the 

agents are granted to the centralized planning mechanism
1
. Agents themselves 

make no decisions - they merely execute the centrally created plan. A simple in-

stance of the CPF problem where agents need to pass collaboratively through the 

narrow corridor is shown in Figure 1. 

 

 
Figure 1. An example of cooperative path-finding problem (CPF). Three agents 𝑎1, 𝑎2, and 𝑎3 need 

to relocate from their initial positions through a narrow corridor represented by obstacles to their 

goal positions. A process of relocation of agents is illustrated – agents are ordered before entering 

the corridor to pass through smoothly. 

 

 An abstraction in which the environment, where agents are moving, is mod-

eled as an undirected graph is usually adopted
2
. The graph abstraction allows hig-

 
1
 Wang, K. C. Bridging the Gap between Centralised and Decentralised Multi-Agent 

Pathfinding. Proceedings of the 14th Annual AAAI/SIGART Doctoral Consortium 

(AAAI-DC 2009), pp. 23-24, AAAI Press, 2009. 

2
 Ryan, M. R. K. Graph Decomposition for Efficient Multi-Robot Path Planning. Proceed-

ings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 

2003-2008, IJCAI Conference, 2007. 

a1 

a2 

a3 

a1 a2 a3 

a1 

a2 

a3 

Initial situation   

Goal   



Commentary  5 

 

 

hlighting the discrete combinatorial nature of the problem. Vertices of the graph 

represent locations and edges represent passable regions between pairs of loca-

tions. Agents are modeled as discrete items placed in vertices of the graph. Space 

occupancy by agents is modeled by a constraint that at most one agent is placed in 

each vertex. 

 

 
Figure 2. Cooperative path-finding in an abstract space of undirected graph. Environment where 

agents are deployed is modeled as an undirected graph with vertices representing locations and 

edges representing passable regions. The graph theoretical abstraction of the problem highlights 

combinatorial aspects of the problem. 

 

 An agent can move into neighboring vertex in a single time step assuming that 

the target vertex is vacant or being vacated and no other agent is trying to enter 

the same target vertex simultaneously. At least one vertex must be vacant to allow 

agents to move. Note that various schemes of agent movements exist; sometimes 

rotations of agents along cycles are allowed with no need to have a vacant vertex 

inside the cycle
1
. Also note that it is a challenging issue how to sample the real 

environment in order to build a graph abstraction which correctly reflects the im-

 
1
 Yu, J., LaValle, S. M. Structure and Intractability of Optimal Multi-Robot Path Planning 

on Graphs. Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 

2013), AAAI Press, 2013. 
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portant properties of the original environment
1
 - this issue was however out of 

scope of the presented research. A simple graph abstraction for the CPF problem 

from Figure 1 is shown in Figure 2. 

 Although the graph theoretical abstraction brings a significant simplification to 

CPF as lot of details are filtered out, the problem remains computationally diffi-

cult. It is known that if a solution of the makespan (the time or the number of 

steps needed to execute the solution) that is as small as possible, then the problem 

is NP-hard
2,3

. Due to existence of algorithms capable of generating makespan sub-

optimal solutions of the polynomial size with respect to the size of the input
4,5

, the 

decision variant of the problem, in which we ask whether a solution of a given 

makespan exists, is NP-complete. 

 There are many practical motivations for CPF ranging from unit navigation in 

computer games
6
 to item relocation in automated storage (well known KIVA ro-

bots
7
 represent a successful commercial application of CPF). Interesting motiva-

tions can be also found in traffic where problems like vessel avoidance at sea are 

of great practical importance
8
. An analogical challenge appears in the air where 

 
1
 Čáp, M., Novák, P., Vokřínek, J., Pěchouček, M. Multi-agent RRT: sampling-based 

cooperative pathfinding. International conference on Autonomous Agents and Multi-

Agent Systems (AAMAS 2013), pp. 1263-1264, IFAAMAS, 2013. 

2
 Ratner, D., Warmuth, M. K.: Finding a Shortest Solution for the N × N Extension of the 

15-PUZZLE Is Intractable. Proceedings of the 5th National Conference on Artificial Intel-

ligence (AAAI 1986), pp. 168-172, Morgan Kaufmann, 1986. 

3
 Surynek, P. On the Complexity of Optimal Parallel Cooperative Path-Finding. Funda-

menta Informaticae, Volume 137, Number 4, pp. 517-548, IOS Press, 2015. 

4
 Wilson, R. M.: Graph Puzzles, Homotopy, and the Alternating Group. Journal of Com-

binatorial Theory, Ser. B 16, pp. 86-96, Elsevier, 1974. 

5
 Surynek, P.: Solving Abstract Cooperative Path-Finding in Densely Populated Envi-

ronments. Computational Intelligence (COIN), Volume 30, Issue 2, pp. 402-450, Wiley, 

2014. 

6
 Sturtevant, N. R. Benchmarks for Grid-Based Pathfinding. IEEE Transactions on Com-

putational Intelligence and AI in Games, Volume 4(2), pp. 144-148,  IEEE Press, 2012. 

7
 KIVA Systems. Official web site. http://www.kivasystems.com/, 2015 [accessed in April 

2015]. 

8
 Kim, D., Hirayama, K., Park, G.-K. Collision Avoidance in Multiple-Ship Situations by 

Distributed Local Search. Journal of Advanced Computational Intelligence and Intelligent 

Informatics (JACIII), Volume 18(5), pp. 839-848, Fujipress, 2014. 

http://www.kivasystems.com/
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availability of air-drones implies a need for developing cooperative air-traffic 

control mechanisms
1
. 

2. Overview of Selected Contributions to Cooperative Path Finding 

Following works by the author of this thesis are included for presentation. The 

selection of works was mostly guided by the leading role of the author in their 

creation and by relevance to the topic of CPF. Five of the selected works were 

published in impact factor journals and two in proceedings of leading artificial 

intelligence conferences. Two more works have not yet been published and were 

included into the appendix to provide more complex figure about the recent re-

search of the author in CPF. 

 

Impact factor journal articles: 

(i) Pavel Surynek: Solving Abstract Cooperative Path-Finding in Densely 

Populated Environments. Computational Intelligence (COIN), Volume 

30, Issue 2, pp. 402-450, Wiley, 2014. 

(ii) Pavel Surynek: On the Complexity of Optimal Parallel Cooperative 

Path-Finding. Fundamenta Informaticae, Volume 137, Number 4, pp. 

517-548, IOS Press, 2015. 

(iii) Pavel Surynek, Petra Surynková, Miloš Chromý: The Impact of a Bi-

connected Graph Decomposition on Solving Cooperative Path-finding 

Problems. Fundamenta Informaticae, Volume 135 (3), pp. 295-308, IOS 

Press, 2014. 

(iv) Pavel Surynek: Redundancy Elimination in Highly Parallel Solutions of 

Motion Coordination Problems. International Journal on Artificial Intel-

ligence Tools (IJAIT), Volume 22, Number 05 (19 pages), World Scien-

tific, 2013, ISSN 0218-2130. 

(v) Pavel Surynek: Pre-processing in Boolean Satisfiability Using Bounded 

(2,k)-Consistency on Regions with Locally Difficult Constraint Setup. In-

ternational Journal on Artificial Intelligence Tools (IJAIT), Volume 23, 

Number 01 (29 pages), World Scientific, 2014, ISSN 0218-2130. 

 

 
1
 Michael, N., Fink, J., Kumar, V. Cooperative manipulation and transportation with 

aerial robots. Autonomous Robots, Volume 30 (1), pp. 73-86, Springer, 2011. 
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Articles in proceedings of leading conferences: 

(vi) Pavel Surynek: Reduced Time-Expansion Graphs for Solving Coopera-

tive Path Finding Sub-optimally. Proceedings of the 24rd International 

Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, 

Argentina, IJCAI/AAAI Press, 2015. 

(vii) Pavel Surynek. An Alternative Eager Encoding of the All-Different 

Constraint over Bit-Vectors. Proceedings of the 20th European Confe-

rence on Artificial Intelligence (ECAI 2012), pp. 927-928, Montpellier, 

France, IOS Press, 2012, ISBN 978-1-61499-097-0. 

 

Articles concerning recent research: 

(viii) Pavel Surynek, Petr Michalík: An Improved Sub-optimal Algorithm for 

Solving (N
2
-1)-Puzzle and Applications in Cooperative Path-Finding, 

2015. 

(ix) Pavel Surynek: Time Expansion Propositional Encodings for Makespan 

Optimal Solving of Cooperative Path Finding Problem, 2015. 

 

Article (i) 

The first presented article (i) is devoted to a detailed design and analysis of poly-

nomial time sub-optimal algorithms for solving CPF over bi-connected graphs
1
 - 

algorithms are called BIBOX and BIBOX-. Both algorithms have been initially 

published in workshop and conference proceedings
2,3,4

. The original article
5
 refer-

 
1
 Westbrook, J., Tarjan, R. E. Maintaining bridge-connected and biconnected components 

on-line. Algorithmica, Volume 7, Number 5&6, pp. 433–464, Springer, 1992. 

2
 Surynek, P.: Domain-Dependent View of Multiple Robots Path Planning. Proceedings of 

the 4th European Starting AI Researcher Symposium (STAIRS 2008), Patras, Greece, pp. 

175-186, IOS Press, 2008 

3
 Surynek, P.: Finding Plans for Rearranging Robots in θ-like Environments. Proceedings 

of the 27th Workshop of the UK Planning and Scheduling Special Interest Group 

(PlanSIG 2008), Edinburgh, United Kingdom, pp. 128-129, Heriot-Watt University, 2008. 

4
 Surynek, P.: An Application of Pebble Motion on Graphs to Abstract Multi-robot Path 

Planning. Proceedings of the 21st International Conference on Tools with Artificial Intel-

ligence (ICTAI 2009), Newark, NJ, USA, pp. 151-158, IEEE Press, 2009. 

5
 Surynek, P.: A Novel Approach to Path Planning for Multiple Robots in Bi-connected 

Graphs. Proceedings of the 2009 IEEE International Conference on Robotics and Auto-

mation (ICRA 2009), Kobe, Japan, pp. 3613-3619, IEEE Press, 2009. 
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ring about the BIBOX algorithm is so far the most cited work of the author. One of 

the most valuable citations is an in-depth reference about the BIBOX algorithm 

within a tutorial
1
 presented to general audience at AAAI 2013. 

 The BIBOX algorithm takes an input bi-connected graph other than the cycle 

and constructs its decomposition into ears
2
 (it holds that any bi-connected can be 

constructed by incremental adding of ears to a currently constructed graph while a 

cycle is taken as the initial graph). The algorithm then proceeds according to the 

ear decomposition by arranging agents to their goal positions in the last ear of the 

ear decomposition (the ordering of ears is determined by their position in the con-

struction sequence – the initial cycle is considered as first). Agents are arranged 

into the ear in the stack like manner, that is, agents are pushed into the ear by 

rotating it after the next agent arrives to the entrance of the ear. The final push 

operation (the final rotation) shifts agents to their respective goal positions within 

the ear. 

 After the placement of agents in the ear is finished, the ear can be ruled out 

from further consideration, that is, the task of agent placing reduces to a smaller 

bi-connected graph where the same process is applied inductively until the initial 

cycle of the ear decomposition is reached. A special process is used to arrange 

agents into the initial cycle of the decomposition. Placing agents into regular ears 

of the ear decomposition requires only one unoccupied vertex while two unoccu-

pied vertices are required to arrange agents into the initial cycle to be able to gen-

erate all the permutations of agents in the cycle by swaps. 

 The algorithm runs in 𝒪  𝑉 3  for given input graph 𝐺 = (𝑉, 𝐸) and the size 

of generated solution (that is, the number of moves) is 𝒪  𝑉 3  as well. 

 The BIBOX- algorithm improves the solving process of BIBOX over the initial 

cycle and requires only one unoccupied vertex to be able to arrange agents there. 

The algorithm uses a pattern database, which contains solutions of sub-problems 

representing swaps of pairs and rotations of triples of agents. If the instance is 

solvable, the resulting solution can be composed of solutions to these sub-

problems stored in the pattern database. 

 Solutions generated by BIBOX and BIBOX- consist of order of magnitude 

fewer moves than solutions generated by at that time existing comparable algo-

 
1
 ter Mors, A.: Moving Agents in a Graph. The Tutorial Forum of the Twenty-Seventh 

AAAI Conference on Artificial Intelligence (AAAI-2013), 2013. 

2
 Tarjan, R. E.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on 

Computing, Volume 1 (2), pp. 146-160, Society for Industrial and Applied Mathematics, 
1972. 
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rithm
1
 albeit the theoretical asymptotic size of solutions is the same. Search-based 

algorithms for CPF share a common drawback that they do not scale up for larger 

number of agents while BIBOX algorithms do not care about the number of agents 

in the environment at all (multiple unoccupied vertices can be utilized by taking 

the nearest unoccupied vertex to the location where it is needed). Another impor-

tant advantage of BIBOX algorithms is that they do not rely on necessity to undo 

some of generated movements as it is in the case later algorithms such as PUSH-

AND-SWAP
2
 and PUSH-AND-ROTATE

3
. This property enabled to reuse the core 

idea of the BIBOX algorithm in the design of a new algorithm for solving CPF in 

unidirectional environments, namely over strongly bi-connected directed graphs
4
 

- the algorithm is called diBOX
5
. 

 As noticed in [6], works on BIBOX algorithms are first that put in relation the 

algebraic approach to pebble motion on graphs and cooperative path finding. Un-

til that time, only search-based algorithms without completeness guarantees appli-

cable for few agents only were considered for CPF. 

 

 
1
 Kornhauser, D., Miller, G. L., and Spirakis, P. G.: Coordinating Pebble Motion on 

Graphs, the Diameter of Permutation Groups, and Applications. Proceedings of the 25th 

Annual Symposium on Foundations of Computer Science (FOCS 1984), pp. 241-250, 

IEEE Press, 1984. 

2
  Luna, R., Berkis, K., E. Push-and-Swap: Fast Cooperative Path-Finding with Com-

pleteness Guarantees. Proceedings of the 22nd International Joint Conference on Artifi-

cial Intelligence (IJCAI 2011), pp. 294-300, IJCAI/AAAI Press, 2011. 

3
 de Wilde, B., ter Mors, A. W., Witteveen, C.: Push and Rotate: a Complete Multi-agent 

Pathfinding Algorithm. Journal of Artificial Intelligence Research (JAIR), Volume 51, pp. 

443-492, AAAI Press, 2014. 

4
 Wu, Z., Grumbach, S.: Feasibility of motion planning on acyclic and strongly connected 

directed graphs. Discrete Applied Mathematics, Volume 158(9), pp. 1017 – 1028,  

Elsevier, 2010. 

5
 Botea, A., Surynek, P.: Multi-Agent Path Finding on Biconnected Directed Graphs. 

Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), Austin, 

TX, USA, pp. 2024-2030, AAAI Press, 2015. 

6
 Röger, G., Helmert, M.: Non-Optimal Multi-Agent Pathfinding is Solved (Since 1984). 

Proceedings of the Fifth Annual Symposium on Combinatorial Search (SoCS 2012), 

AAAI Press, 2012. 
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Article (ii) 

The second presented article (ii) concentrates on complexity issues of the problem 

of finding makespan optimal solution of the version of CPF where movements of 

agents into vertices being simultaneously vacated are allowed. Only the leading 

agent of the chain of moving agents needs to move into unoccupied vertex while 

other agents follow it (agents move like a train). Makespan is the number of time 

steps necessary to execute the CPF solution while parallel moves are possible 

(note that makespan optimal solution does not need to be optimal in terms of the 

total number of moves). It has been shown that finding makespan optimal solution 

is NP-hard and the decision version of the problem is NP-complete (a question 

whether there is a solution of the given makespan). 

 A reduction of propositional satisfiability (SAT)
1,2

 to makespan optimal CPF 

solving is used to show NP-hardness in the presented work. Membership of the 

problem into NP class is justified by previous algorithms generating sub-optimal 

solutions of polynomial size (such as BIBOX and related). 

 A CPF instance, in which passing through certain vertices by agents simulates 

assigning of truth-values to propositional variables of the input propositional for-

mula in conjunctive normal form (CNF – which is a conjunction of clauses where 

a clause is a disjunction of literals, and a literal is either a propositional variable 

or its negation), is constructed. Several techniques were developed to force agents 

to move in desired way in makespan optimal solutions. A so-called vertex locking 

technique is used to allow entering a selected vertex at selected time steps only. 

Vertices in the target CPF instance correspond to occurrences of literals of in the 

input formula. Thus, in order to simulate truth-value assignments correctly in case 

when literal corresponding to a single propositional variable has multiple occur-

rences, propositional consistency needs to be preserved. That is, a group of agents 

needs to pass either a set of vertices corresponding to positive literals of the given 

variable or a set of vertices corresponding to negative literals. A special tech-

nique, that forces a group of agents to move together (separation between positive 

and negative literals is not allowed), has been developed. 

 An interesting property of the reduction of SAT to CPF is that the resulting 

CPF instance is sparsely occupied by agents (the portion of unoccupied vertices is 

 
1
 Cook, S. A.: The Complexity of Theorem Proving Procedures. Proceedings of the 3rd 

Annual ACM Symposium on Theory of Computing (STOC 1971), pp. 151-158, ACM 

Press, 1971. 

2
 Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS Press, 

2009. 
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proportionally larger than the number of agents). This means that difficult in-

stances of CPF are not only those densely occupied by agents as reduction of hard 

SAT instances
1
 may lead to sparsely occupied CPF instance. 

 

Article (iii) 

The important parameter of the BIBOX algorithm is the decomposition of the input 

bi-connected graph into sequence of ears. Although the theoretical asymptotic 

estimation of the size of solution and the runtime is independent of the ear de-

composition, the practical size of solution and runtime may differ. 

 The runtime of the BIBOX algorithm for several common ear decompositions is 

evaluated theoretically and experimentally in the presented article (note that pre-

sented results apply for the size of solutions with minor modifications only). Ear 

decompositions such as that with ears of constant size, linearly increasing size, or 

quadratic size were evaluated. 

 The outcome of theoretical and experimental evaluation is that ear decomposi-

tion with ears of constant size results in fastest runtime of the BIBOX algorithm. 

 This article has implications for the new diBOX for which works in almost the 

same way as BIBOX. It is expectable that short ears (constant size) should be pre-

ferred in ear decomposition for the diBOX algorithm. However, detailed experi-

mental evaluation need to be done to confirm this claim. Another question that 

arises in connection with this article is how to find ear decompositions of required 

properties
2
. 

 

Article (iv) 

This article focuses on improving existing sub-optimal of CPF solutions by elimi-

nating certain redundancies from them. The important prerequisite of this article 

was supervising of a software project of author’s student
3
 who developed soft-

 
1
 Hoos, H. H., Stützle, T.:  SATLib: An Online Resource for Research on SAT. Proceed-

ings of Theory and Applications of Satisfiability Testing, 4th International Conference 

(SAT 2000), pp.283-292, IOS Press, 2000, http://www.satlib.org, [May 2015]. 

2
 Szigeti, Z.: On Optimal Ear-Decompositions of Graphs. Integer Programming and 

Combinatorial Optimization, 7th International IPCO Conference (IPCO 1999), pp. 415-

428, 1999. 

3
 Koupý, P.: GraphRec - a visualization tool for entity movement on graph. Student 

project web page, 2011, http://www.koupy.net/graphrec.php, [accessed May 2015]. 

http://www.satlib.org/
http://www.koupy.net/graphrec.php
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ware for visualizing solutions of CPFs – the software tool is called GRAPHREC
1,2

. 

GRAPHREC enables to draw the input graph modeling the environment of CPF in 

plane automatically. Movements of agents are subsequently animated over the 

drawn graph. Various graphical tools were implemented in order to make the 

visual analysis of the solution as comfortable as possible. 

 Several inefficiencies were observed in solutions generated by BIBOX algo-

rithms using GRAPHREC especially in cases with multiple unoccupied vertices. 

These inefficiencies were formalized and simple algorithms (polynomial time) for 

their elimination were suggested in this article. 

 Simply detectable inefficiencies concerns single agent and has a local nature
3
. 

For example, a sequence of moves of a single agent is called redundant if the 

agent starts and finishes the sequence of moves at the same vertex in the graph 

without interfering with other agents. In such a case, the sequence of redundant 

moves can be eliminated from the solution and a new solution that contains fewer 

moves and that may be even shorter in terms of makespan is obtained. 

 Attempts to extend the notion of inefficiency or redundancy of movements 

from single agent to multiple agents led to idea to replace entire sub-solutions of 

the input solution where all the agents are considered together with sub-solution 

of shorter makespan. It has been suggested to replace a sub-solution of original 

makespan sub-optimal solution with makespan optimal sub-solution. It was ex-

pected that sub-solution to be replaced is short, hence although it is NP-hard to 

find makespan optimal solution of CPF, it should be practically feasible in 

small/easy CPF instances at least. 

 
1
 Surynek, P., Koupý, P.: Improving Solutions of Problems of Motion on Graphs by Re-

dundancy Elimination. Proceedings of the ECAI 2010 Workshop on Spatio-Temporal 

Dynamics (ECAI STeDy 2010), Lisbon, Portugal, pp. 37-42, SFB/TR 8 Reports, Univer-

sität Bremen, Germany, 2010. 

2
 Surynek, P., Koupý , P.: Vizualizace jako prostředek k získání znalostí o kvalitě řešení 

problémů pohybu po grafu (Visualization as a tool for acquiring knowledge about the 

quality of solutions of problems of motion on graphs). Proceedings of the Conference 

Znalosti 2010, Faculty of Management, VŠE Prague, Jindřichův Hradec, Czech Republic, 

pp. 129-141, Nakladatelství Oeconomica Jindřichův Hradec, 2010, in Czech. 

3
 Surynek, P.: Redundancy Elimination in Highly Parallel Solutions of Motion Coordina-

tion Problems. Proceedings of the 23rd IEEE International Conference on Tools with 

Artificial Intelligence (ICTAI 2011), Boca Raton, FL, USA, pp. 701-708, IEEE Press, 

2011. 
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 The makespan optimal replacement sub-solution is searched by reducing the 

problem to propositional satisfiability
1
 (SAT). Reductions of CPF to SAT 

represent a broad topic itself to which one of the following presented articles is 

devoted. The interesting aspect here is how to choose sub-solutions to be re-

placed. The approach presented in the article is an anytime algorithm called 

COBOPT (it can be terminated anytime as the algorithm has a valid solution at 

hand anytime) that gradually increases the length of considered sub-solutions, 

which may eventually lead to optimization of the entire sub-optimal solution if 

sufficient time is provided. 

 

Article (v) 

SAT instances (propositional formulae), which are result of reductions of in-

stances of a certain problem share common properties that, if well utilized, can 

help the SAT solver to solve them. This observation independently started re-

search of the author in special consistencies in SAT that can simplify the instance 

with respect to practical solving effort
2,3

. Although this was initially a research 

independent of research in CPF, it turned out that it has great applicability in CPF 

solving as one of the major research directions in CPF solving followed by the 

author became its reductions to SAT. 

 The consistency described in the article views SAT as a constraint satisfaction 

problem
4
 (CSP) which is a step towards final interpreting the formula as a graph 

where vertices are represented by literals and edges are represented by conflicts 

between literals (that is, a pair of literals in conflict cannot take the value 𝑇𝑅𝑈𝐸 

simultaneously). A clique in this conflict graph means that at most one literal 

involved in the clique can be selected to be assigned 𝑇𝑅𝑈𝐸. In its very basic va-

 
1
 Kautz, H., Selman, B. Unifying SAT-based and Graph-based Planning. Proceedings of 

the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 318-

325, Morgan Kaufmann, 1999. 

2
 Surynek, P.: An Adaptation of Path Consistency for Boolean Satisfiability: a Theoretical 

View of the Concept. Proceedings of the Annual ERCIM Workshop on Constraint Solving 

and Constraint Logic Programming, 2010 (CSCLP 2010), Berlin, Germany, pp. 16-30, 

Fraunhofer FIRST, 2010. 

3
 Surynek, P.: Between Path-Consistency and Higher Order Consistencies in Boolean 

Satisfiability. Proceedings of the Annual ERCIM Workshop on Constraint Solving and 

Constraint Logic Programming, 2011 (CSCLP 2011), York, United Kingdom, pp. 120-

134, University of York, 2011. 

4
 Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, 2003. 



Commentary  15 

 

 

riant, the suggested (2, 𝑘)-consistency can be used to detect that we cannot select 

enough literals to achieve certain goal. This reasoning can be easily illustrated on 

the well known pigeon hole principle
1,2

 (𝑛 pigeos need to placed into 𝑛 − 1 holes 

so that no two pigeons appear in the same hole) which when interpreted using 

graphs of conflicts results in several cliques. As it is known that from each clique 

at most one literal can be selected, it can be easily concluded that there is simply 

not enough cliques in the graph to satisfy the input instance. 

 The new consistency not only determines that the input instance is unsolvable 

but also rules out values and pairs of values (literals) that cannot appear in any 

solution. To further increase chance of the consistency to make non-trivial infe-

rences, it concentrates on regions of the instance (conflict graph) which has simi-

lar statistical patterns as the model of pigeon hole principle. 

 The (2, 𝑘)-consistency has been implemented as a SAT preprocessing tool 

called PREPROCESSSIGMA. Experimental evaluation indicated that the new pre-

processing tool has been especially successful on instances modeling integer fac-

torization problem
3
 where it outperformed comparable preprocessing tools such 

as LIVER, NIVER
4
, and HYPRE

5
. 
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Article (vi) 

This article deals with makespan suboptimal CPF solving via reducing it to SAT. 

A so-called reduced time expansion graph, which is a directed graph derived from 

the input CPF instance, is suggested in the article. The core property of reduced 

time expansion graph is that a set of vertex disjoint directed paths connecting 

certain vertices exists if and only if the given CPF has a (makespan suboptimal) 

solution. The question of existence of vertex disjoint paths in reduced time expan-

sion graph is modeled as satisfiability of a propositional formula and for its ans-

wering a SAT solver
1
 is used. 

 Reduced time expansion graph is based on time expansion of the input graph 

modeling the environment – that is, the environment graph is copied multiple 

times and consecutive copies in the sequence of copies – called layers – are inter-

connected by directed edges (copies of the same vertex are connected by directed 

edges). The trajectory of an agent unambiguously corresponds to a path starting in 

the initial position within the first layer and terminates in the goal vertex within 

the final layer. The path may visit multiple vertices within the single layer. 

 The advantage of reduced time expansion graph is that only few layers are 

needed if the interaction among agents is limited and hence the resulting proposi-

tional formula is small. In the extreme case when agents are completely isolated, 

the existence of vertex disjoint paths is granted even for single layer of the origi-

nal graph as it is sufficient to interconnect initial positions and goals by vertex 

disjoint paths in the graph modeling the environment (the prerequisite is that ini-

tial positions and goals are disjoint). Small propositional formulae derived from 

the CPF instances improve scalability and speed of the solving process. 

 It has been observed that reduced time expansion graph need few time expan-

sions only (typically one or two) if the difference between the initial and goal 

arrangement of agents is small. This observation was behind the idea to place 

agents to their goal positions one by one – that is, a CPF where the next agent is 

relocated towards its goal is solved using reduced time expansion graph in each 

step (the process is complete as other agents including those already placed can 

move freely though they need to return to their positions). Thus, instead of solv-

ing one complex CPF instance via SAT a series of very simple instances are 

solved in which SAT solvers particularly excel. The solving process is called 

UniAGENT. Interestingly the overall makespan is not compromised even though 
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agents are placed one by one, since the movement of the next agent is mostly 

independent on movements of previous agents and can be performed in parallel. 

 The experimental evaluation indicates that solving CPF makespan sub-

optimally via SAT represents a significant relaxation with respect to makespan 

optimal SAT-based solving
1,2

. The relaxation enables to solve larger instances in 

terms of the number of agents and size of the graph and represents a good trade-

off between quality of makespan of generated solutions and speed of solving – the 

UniAGENT technique generates solutions of shorter makespan than rule based 

polynomial time algorithms like BIBOX but it is much faster than SAT-based and 

other makespan optimal methods. 

 

Article (vii) 

This article is also motivated by SAT-based solving of CPF. It turned out that 

modeling of a so-called ALLDIFFERENT constraint
3
 in SAT is especially important 

when CPF is reduced to a propositional formula. The ALLDIFFERENT constraint 

requires that each variable from a set of involved finite domain variables takes a 

different value. An efficient filtering algorithm is supplied with the constraint in 

constraint programming paradigm, which makes it an important modeling con-

struct. 

 The importance of the ALLDIFFERENT constraint for CPF is that it naturally 

expresses requirements such as that each agent occupies its own vertex; in other 

words positions of agents are all different, which can be nicely expressed by the 

ALLDIFFERENT constraint over variables representing agent’s positions. 

 The assumption is that finite domain variables are translated to bit vectors 

(vectors of propositional variables) using binary encoding. At the time of writing 

this article, the commonly used model was to express inequalities between all 

pairs of bit vectors, which required quadratic number of inequalities. The newly 

proposed encoding uses completely different approach – it enforces strict linear 
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ordering over a permutation of the set of input bit vectors that models pair wise 

difference as well (strictly linearly ordered numbers are all different). The imme-

diate benefit is that new encoding requires only linear number of inequalities be-

tween bit vectors. The experimental evaluation also shown that the novel encod-

ing is more efficient in terms of runtime especially in hard setups of the constraint 

(it cannot be straightforwardly checked that there is enough or too few values in 

domains of variables to satisfy the constraint or declare it unsatisfiable). 

 

Article (viii) 

A technique that improves algorithms for CPF solving that place agents to their 

goals one by one is presented in this article. The idea is quite simple; when an 

agent is relocated towards its goal the next agent to be placed nearby is opportu-

nistically taken on the way and two (or more) agents are relocated together to-

wards their goal – relocated agents form a so-called SNAKE. The effect of the 

SNAKE-based relocation of agents is that it consumes fewer moves than if agents 

are relocated separately towards their goals. 

 In order to show its general applicability, the SNAKE technique has been inte-

grated into the algorithm of Parberry
1
 and into the already presented BIBOX algo-

rithm. The prerequisite of using the SNAKE technique is that the target algorithm 

needs to be open for modification and it places agents in some ordered manner so 

that newly placed agents are placed near those already placed. 

 The algorithm of Parberry solves sub-optimally a special case of CPF known 

as (𝑁2 − 1)-puzzle
2
, which is in fact CPF over 4-connected square grid of size 

𝑁 × 𝑁 with single unoccupied vertex. The algorithm proceeds in placing agents to 

their goal positions row by row in the grid and runs in polynomial time (the algo-

rithm is designed for on-line solving of the puzzle), in which it is similar to the 

BIBOX algorithm. 

 The SNAKE improvement within the algorithm of Parberry concerns entire 

relocation of a given agent towards its goal while in the case of BIBOX algorithm 

the technique is used to relocate agents only towards the entrance of the ear con-

taining the goal vertex and the movement towards the goal inside the ear is done 
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in without SNAKE improvement in the standard way. Snakes of length two were 

used in both algorithms. Using the SNAKE technique with more than two agents 

turned out to be impractical as the third agent significantly increases the number 

of possibilities how to form a snake of length three (this observation was also 

confirmed by an experimental evaluation). 

 The conducted experimental evaluation indicates that SNAKE-based improve-

ment leads to reduction of the total number of moves in solutions by approximate-

ly 8% in case of the algorithm of Parberry and to 30% - 80% reduction in case of 

the BIBOX algorithm depending on the input instance. Larger improvements of 

solutions in case of the BIBOX algorithm were achieved in instances with multiple 

unoccupied vertices and also in graphs whose ear decomposition contains longer 

ears. 

 

Article (ix) 

A great part of author’s recent research has been devoted to makespan optimal 

solving of CPF via reducing it to propositional satisfiability; multiple conference 

articles regarding this problem were published
1,2,3,4,5

. The presented article 

represents summary of results achieved and published in the topic so far. Optimal-

ity with respect to the makespan is practically important measure as it corresponds 

 
1
 Surynek, P.: On Propositional Encodings of Cooperative Path-finding. Proceedings of 

the 24th International Conference on Tools with Artificial Intelligence (ICTAI 2012), pp. 

524-531, Athens, Greece, IEEE Press, 2012. 

2
 Surynek, P.: Mutex Reasoning in Cooperative Path Finding Modeled as Propositional 

Satisfiability. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS 2013), pp. 4326-4331, Tokyo, Japan, IEEE Press, 2013. 

3
 Surynek, P.: Compact Representations of Cooperative Path-Finding as SAT Based on 

Matchings in Bipartite Graphs. Proceedings of the 26th International Conference on Tools 

with Artificial Intelligence (ICTAI 2014), pp. 875-882, Limassol, Cyprus, IEEE Press, 

2014. 

4
 Surynek, P.: A Simple Approach to Solving Cooperative Path-Finding as Propositional 

Satisfiability Works Well. Proceedings of the 13th Pacific Rim International Conference 

on Artificial Intelligence (PRICAI 2014), Gold Coast, Australia, pp. 827-833, Lecture 

Notes in Computer Science, Volume 8862, Springer, 2014. 

5
 Surynek, P.: Simple Direct Propositional Encoding of Cooperative Path Finding Simpli-

fied Yet More. Proceedings of the 13th Mexican International Conference on Artificial 

Intelligence (MICAI 2014), Part II, Tuxtla Gutiérrez, Mexico, pp. 410-425, Lecture Notes 

in Computer Science, Volume 8857, Springer, 2014. 



Commentary  20 

 

 

to the total execution time of the solution – this measure is preferred in many 

scenarios such as evacuation, transportation scheduling, unit relocation in mili-

tary operations and so on. 

 The common feature of all the techniques for makespan optimal CPF solving 

is that they are based on a structure of a so-called time expansion graph that is 

derived from the input graph modeling the environment. Unlike reduced time 

expansion graph, the time expansion graph is always expanded up to the given 

time step – that is, there are as many copies of the original environment graph 

called layers as is the given time step bound. Each layer of the expansion graph 

captures arrangement of agents at the given time step. Edges interconnect consec-

utive layers and correspond to original edges (that is, if an original edge connects 

𝑢 and 𝑣 in the environment graph, then there are two directed edges connecting 𝑢 

in the 𝑖-th layer with 𝑣 in the (𝑖 + 1)-th layer and 𝑣 in the 𝑖-th layer with 𝑢 in the 

(𝑖 + 1)-th layer); there are no edges between vertices within the single layer. 

 The core property of the time expansion graph is that a solution of the given 

makespan exists if and only if there exists a set of non-overlapping vertex disjoint 

paths connecting vertices representing initial positions of agents in the first layer 

with vertices representing goals in the final layer in the time expansion graph 

whose number of layers equals to the given makespan. Non-overlapping vertex 

disjoint paths are those where the set of source vertices at a given layer is disjoint 

with the set of target vertices at the next layer. It holds that the solution of CPF 

unambiguously corresponds to the set of non-overlapping vertex disjoint paths. 

 The search for disjoint paths in the time expansion graph is modeled in SAT – 

various propositional encodings were suggested; they are called: INVERSE, ALL-

DIFFERENT, MATCHING, DIRECT, and SIMPLIFIED encodings. The detailed de-

scription of all the encodings is given in the article. Let us note that former three 

encodings use binary encoding of finite domain variables while the latter two 

encode variables directly; that is, there is a separate propositional variable for 

each element in the finite variable’s domain. An interesting feature is imple-

mented in the MATCHING encoding where the existence of vertex disjoint paths is 

checked by a non-overlapping flow in the first stage (the flow corresponds to 

using anonymous agents). If the flow does not exist then there is no chance that 

there are non-overlapping vertex disjoint paths with distinguishable agents. The 

advantage of this approach is that checking possible existence of paths with ano-

nymous flow first is cheaper than with distinguishable agents. 



Commentary  21 

 

 

 The experimental evaluation indicates that SAT-based makespan optimal CPF 

solving significantly outperforms alternative A*-based search methods
1
 in envi-

ronments with limited free space and many agents. In such cases, independence 

detection heuristics used in A*-based search methods cannot detect any indepen-

dence due to frequent interactions among agents. If only SAT-based methods are 

compared with each other then encodings that use direct encoding for finite do-

main variables – that is, DIRECT and SIMPLIFIED encodings – outperform encod-

ings based on binary encoding of finite domain variables. 

 There are multiple optimal CPF solving methods with respect to the total cost 

of the solution
2,3

 (that is, the total number of moves). It is planned to adapt these 

techniques for generating makespan optimal solutions and compare them with the 

SAT-based approach. 

3. On-going Challenges in CPF and Multi-Robot Planning 

There are still many unsolved issues in cooperative path finding and related areas. 

Except the direct continuation of presented works, there are overlaps of CPF into 

more general problems with potential great practical applicability. 

 We recently started research on a so-called adversarial cooperative path find-

ing
4,5

 (ACPF) which adds an opponent out of our control. Two or more teams of 

agents compete in reaching given goals in ACPF. The team whose agents reach 

goals as first is the winner. It is obvious that ACPF adds important adversarial 

dimension to path finding – the planning system not only need to reach goals by 

its agents but it also need to thwart effort of the adversary. Operations like block-
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ing of the adversarial team or occupying its goal vertices need to be taken into 

account. Hence, tool and concepts of game theory seem to be useful to address 

problems with adversarial behavior in CPF. 

 This research is obviously very topical as it has great potential in planning of 

movements of ground military forces and other security operations. At the same, 

the high theoretical complexity of the problem (the problem has been shown to be 

PSPACE-hard) represents a challenge and encourages to developing practical 

solving algorithms. 

 CPF can be regarded as a domain dependent planning problem from the pers-

pective of automated planning
1
. Among major features of this domain-dependent 

problem belongs its great homogeneity – it contains multiple agents, which are all 

the same with same abilities. This homogeneity enables to bring reasoning about 

the problem into abstract mathematical space of graphs where its combinatorial 

properties are more accessible. It is an important research question if similar ab-

stract space reasoning can be applied in other domains than is CPF – particularly 

in the domain of cooperative multi-robot planning
2
 with multiple robots of the 

same type. It is expected that multi-robot cooperation motivated by transportation 

and construction problems
3
 represent a great room for future research. Also be-

cause of the fact, that contemporary research in multi-robot planning is focused 

on cooperation between relatively few heterogeneous robots
4
. 

 The first major research issue in cooperative multi-robot planning is finding 

appropriate reformulations of planning tasks in abstract mathematical spaces to 

obtain non-trivial simplifications to reveal combinatorial character of these prob-

lems. The eventual success in designing efficient multi-robot cooperation involv-

ing large number of robots may have significant practical impact. It may bring a 

new level of productivity in construction and maintenance operations in scales 

and areas that are currently unreachable or inaccessible by conventional means. 
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Abstract. The problem of cooperative path-finding is addressed in this work. A 

set of agents moving in a certain environment is given. Each agent needs to reach 

a given goal location. The task is to find spatial temporal paths for agents such 

that they eventually reach their goals by following these paths without colliding 

with each other. An abstraction where the environment is modeled as an undi-

rected graph is adopted – vertices represent locations and edges represent passa-

ble regions. Agents are modeled as elements placed in the vertices while at most 

one agent can be located in a vertex at a time. At least one vertex remains unoc-

cupied to allow agents to move. An agent can move into unoccupied neighboring 

vertex or into a vertex being currently vacated if a certain additional condition is 

satisfied. Two novel scalable algorithms for solving cooperative path-finding in 

bi-connected graphs are presented.  Both algorithms target environments that are 

densely populated by agents. A theoretical and experimental evaluation shows 

that suggested algorithms represent a viable alternative to search based techniques 

as well as to techniques exploiting permutation groups on the studied class of the 

problem. 

Keywords: cooperative path-finding, multi-robot path-planning, motion coordina-

tion, (N
2
-1)-puzzle, N×N-puzzle,15-puzzle, sliding puzzle, domain dependent 

planning, makespan optimization, BIBOX, BIBOX-. 

 

1. Introduction 

A problem of cooperative path-finding– CPF (also known from literature as mul-

ti-agent or multi-robot path-planning) [15, 16, 18, 31] is addressed in this work. 

mailto:pavel.surynek@mff.cuni.cz
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The task is to find spatial-temporal paths for movable agents, which can be either 

mobile robots or some other movable objects, so that they eventually reach given 

goals without colliding with each other by following these paths. The agents are 

moving in a certain physical or a virtual environment, which is abstracted as an 

undirected graph with agents placed in its vertices. Edges of the graph represent 

passable regions in the environment. The main source of the complexity of the 

problem arises from the possibility of interactions of agents with the environment 

and in major part from interactions among agents themselves. The agents need to 

avoid obstacles in the environment, which is embodied directly in the graph by 

absence of edges (or vertices), and they must not collide with each other, which is 

modeled by the constraint that at most one agent is located in a vertex at a time. 

 CPF is motivated by many real-life tasks ranging from navigation of a group 

of mobile robots, rearranging of containers in storage (see Figure 1), or ship 

avoidance to computer generated imagery where motion of multiple characters 

needs to be planned. All these tasks can be modeled as a CPF at a certain level of 

abstraction. Actually, the top-level abstraction generally adopted in the CPF ap-

proach to these tasks uncovers challenges that must be inevitably faced if some-

one tries to solve these tasks – such as the question if some arrangement of agents 

can be reached from another one under the given physical constraints. 

 The centralized approach is adopted throughout this work. That is, all the 

agents and the whole environment are fully observable to the centralized planning 

mechanism. The individual agents make no decisions by themselves; they merely 

execute plans found by the centralized planner. This is an approach adopted also 

in all the relevant related works. 

This work is specifically targeted on the case of CPF with environments 

densely populated by agents. Such a case is challenging from several points of 

view. As there is limited unoccupied space in the environment, agents cannot 

move freely towards their goals and are forced to cooperate intensively with each 

other. 

At the same time, it is interesting to study the possibility of parallel move-

ments of multiple agents at once, which may reduce the total execution time of 

the plan significantly. To study parallelism in CPF a variant of CPF called paral-

lel CPF (pCPF) is defined. The pCPF variant additionally enables an agent to 

enter a vertex that which is simultaneously vacated by another agent if certain 

additional conditions are satisfied. The intended effect of the relaxed requirement 

on movements is to allow a chain of agents to move at once where only the lead-

ing agent needs to enter a currently unoccupied vertex and other agents follow it. 

Allowing such higher movement parallelism is a more realistic model in certain 

scenarios – especially in the case where unoccupied space is shrinking towards 

zero. 
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1.1. Related Works 

One of the recent successful approaches to CPF was to search for a spatial-

temporal path for each agent separately from other agents. If agents are consi-

dered separately, an approach is usually called decoupled [18, 19]. These tech-

niques are build around the A* algorithm [14] in most cases which is used to 

search for a shortest path from the current location of an agent to its goal while 

spatial temporal paths of other already scheduled agents are considered. The posi-

tive aspect of the decoupled approach is that it often finds plans that are near to 

the optimum with respect to the makespan (the total time or the number of steps 

necessary to execute the plan) as short paths for agents are preferred during the 

search. On the other hand, these methods are extremely sensitive to prioritizing 

agents as it can easily happen that the already scheduled agents block paths for 

not yet scheduled ones. This is one of the major drawback of the WHCA* algo-

rithm [18] which is intrinsically incomplete due to this phenomenon (up to 100 

agents in the environment are reported; approximately 10% of the environment is 

occupied). The incompleteness is getting more prominent on cases with the in-

creasing density of agents (see Section 4). 

In [19], authors present a complete and optimal algorithm for CPF, which uses 

sophisticated heuristics to reduce the search space by detecting that sometimes no 

cooperation is necessary among agents. The trouble with incompleteness has been 

thus overcome in this approach. However, this method seems to be targeted on 

relatively sparsely populated environments where actually agents can travel most 

of the trajectory towards their goals without interacting with other agents (results 

for the occupancy of environment less than 10% are reported; up to 60 agents are 

reported to move in environments containing approximately 800 vertices). 

 Several techniques for CPF are trying to exploit structural properties of the 

problem to increase the performance. For instance, graph structures are heavily 

exploited in [15, 16].  The undirected graph modeling the environment is first 

decomposed into sub-graphs of some interesting structure such as cliques and 

others over which various known patterns of rearranging agents can be used. The 

search for the final plan is then performed over an abstract map whose nodes are 

represented by the sub-graphs of the original graph (experiments with up to 20 

agents in the environments consisting of hundreds of vertices are reported). 

Another way to exploit structural properties of the problem is to observe local 

juxtapositions in the current arrangement of agents. This approach was adopted by 

authors in [29, 30, 31, 32]. If some important juxtaposition of agents is detected 

then known rearrangement process is applied to advance the situation towards an 

arrangement where agents are closer to their goals. These techniques turned out to 

be successful on environments containing many agents but also providing lot of 

unoccupied space (hundreds of agents moving in environment consisting of thou-

sands of vertices are reported). 
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Cooperative path-finding has been also addressed from different perspective 

than as a task of finding a route from the initial location to the goal. A concept of 

so-called direction maps is introduced in [6, 7] to enable coherent movements of 

multiple agents in various complex patterns that often arise in computer enter-

tainment (such as agents patrolling around some location in an RTS game and so 

on). 

 A rich source of related works for CPF is represented by works on motion 

planning over graphs [8, 10, 12, 13, 35]. The term of pebble motion on graph 

(PMG) used in these work denotes the same concept as CPF in fact. Particularly, 

important results were achieved for a special case of PMG known as (𝑁2 − 1)-

puzzle or 𝑁 × 𝑁-puzzle [11, 12, 13], which consists of a 4-connected grid of size 

𝑁 × 𝑁 with just one vertex unoccupied. Many algebraic and complexity results 

are known for (𝑁2 − 1)-puzzle and for PMG generally (some of them will be 

discussed and used later). It is for instance known that finding the makespan op-

timal solution to the (𝑁2 − 1)-puzzle is an 𝑁𝑃-hard problem [12, 13]. 

Regarding general PMG, algorithms proving its membership into the 𝑃 class 

are given in [8, 35] with asymptotic time complexities and lengths of generated 

solutions of 𝒪( 𝑉 3) and 𝒪( 𝑉 5) respectively (𝐺 = (𝑉, 𝐸) is a graph modeling 

the environment). The former one – which will be denoted as MIT
1
 algorithm in 

this work – represents an algebraic approach to CPF exploiting permutation 

groups. This algorithm is complete and is capable of solving CPF instances irres-

pectively of the density of population of agents (just one unoccupied vertex is 

sufficient in the case with bi-connected graph [34] to solve all the solvable in-

stances). The algorithm regards the arrangement of agents as a permutation and 

the desired goal permutation is composed of elementary permutations over triples 

of agents. The drawback of the MIT algorithm is that it was not designed for 

tical use and hence generated solutions have typically long makespan from the 

pragmatic point of view despite the very good theoretical upper bound of 

𝒪( 𝑉 3). 

1.2. Contribution, Motivation, and Organization 

The main contribution of this work is a presentation of two scalable makespan 

sub-optimal algorithms BIBOX and BIBOX-θ that are designed for solving CPF 

on bi-connected graphs. From the pragmatic point of view, presented algorithms 

are primarily targeted on cases with environment densely populated by agents 

(that is, with limited unoccupied space). 
 
1
 This working name for the algorithm was chosen by us and it was inspired by the fact 

that the principal author was affiliated with Massachusetts Institute of Technology (MIT) 

at the time publishing the article [8]. Authors themselves did not use any name for their 

algorithm. 
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Although the targeted case of CPF is special, it has a great practical impor-

tance since many real-life environments can be abstracted as 2D/3D grids which 

are typically bi-connected. Techniques for tackling CPF in highly occupied space 

are worthwhile in cases when the space is a scarce resource. Consider for example 

storage where piles of stored items can be automatically reconfigured – Figure 1. 

Such kind of automation can save lot of space since without such automation the 

storage must be larger to make all the piles accessible. Occupying large space 

with buildings have considerable negative environmental and economic impacts 

(occupied land was in many cases arable 

and its occupation is difficult to revert if it 

is possible at all). 

Both suggested algorithms have poly-

nomial time complexity. They were con-

sidered as an alternative to the MIT algo-

rithm. A consideration as an alternative to 

search based algorithms when the makes-

pan optimal solution is not needed and 

speed of solving is preferred is also viable. 

Notice that there is a growing interest 

in developing algorithms of such category 

– the very recent contribution represented 

by the PUSH-AND-SWAP algorithm [9] 

shares lots of aspects with our work (com-

plexity issues and the way of rearranging 

agents). 

Some of the results presented in this 

work can be also found in some form in 

conference proceedings [20, 21, 22, 23]. 

This work is accompanied with a technical 

report [27] where some additional details 

such as formal proofs of all the proposi-

tions can be found. 

The organization of the work is as fol-

lows: formal definitions of PMG and 

pCPF are given first in Section 2. Some 

basic properties of these problems are 

discussed subsequently. New algorithms 

BIBOX and BIBOX-θ are presented in the 

main section - Section 3. The final section 

– Section 4 – is devoted to an extensive 

experimental evaluation of both new algo-
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Figure 1. Illustration of modeling the 

environment in a real scenario by undi-

rected graph. The scenario consists of a 

small automated storage with movable 

piles of stored items (labeled 𝐴 to 𝐻 and 𝑎 

to ℎ). Each pile can be moved left/right/ 

forward/backward. Items in piles are 

accessible from the passage – to access 

piles 𝐸-𝐻 or 𝑒-ℎ the storage needs to be 

rearranged. The environment is modeled 

as grid of size 4 × 5 which is a bi-

connected graph. 
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rithms. A competitive comparison against WHCA* and MIT is presented. Finally, 

some concluding remarks are given and future prospects are discussed. 

2.  Pebble Motion on a Graph (PMG) and Parallel 
Cooperative Path-Finding (pCPF) 

Consider an environment in which a group of mobile agents is moving. The 

agents are all identical (that is, they are all of the same size and have the same 

moving abilities). Each agent starts at a given initial position and it needs to reach 

a given goal position. The problem being addressed here consists of finding a 

spatial-temporal path for each agent so that it eventually reaches its goal by fol-

lowing this path. The agents must not collide with each other and they must avoid 

obstacles in the environment along the whole process of relocation according to 

constructed paths. 

The environment with obstacles within that the agents are moving is modeled 

as an undirected graph. The vertices of this graph represent positions in the envi-

ronment and the edges model passable regions from one position to another. At 

each time step, all the agents are located in some vertices while at most one agent 

is allowed per vertex. Some vertices may be vacant – precisely, at least one vertex 

should be vacant to allow agents to move. 

 If the agent is placed in a vertex at a given time step then the result of a mo-

tion is the situation where the agent is placed in the neighboring vertex at the fol-

lowing time step. The agent is allowed to enter the neighboring vertex supposing 

it is unoccupied or being vacated by another agent in a certain case while no other 

agent is trying to enter the same target vertex (precise definition of conditions that 

the movement must satisfy will follow). 

We distinguish two variants of motion problems here, which differ in condi-

tions on movements. Agents in the first one are called pebbles and the related 

problem is called pebble motion on a graph. Briefly said, it is required that the 

target vertex of the movement must be vacant. The second variant is called paral-

lel cooperative path-finding. Movable agents in this variant are called agents and 

the condition on movements is relaxed so that it additionally allows movements 

into vertices that are currently vacated by another agent in a case when agents are 

moving in a chain style (like a train). 

2.1. Formal Definitions of Cooperative Path Planning Problems 

The first definition below is for the problem of pebble motion on a graph– PMG 

[8] which is also known as cooperative path-planning/finding – CPF [18,19, 29] 

or multi-robot/agent path-planning/finding – MRPP [15, 16, 20, 23]. All these 

terms from the literature denote the same concept in fact. The special variant of 

pebble motion on a graph is represented by (𝑁2 − 1)-puzzle (which is also 

known as the 𝑁 × 𝑁-puzzle) [12, 13]. 
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Definition 1 (pebble motion on a graph – PMG). Let 𝐺 = (𝑉, 𝐸) be an undi-

rected graph and let 𝑃 = {𝑝 1 , 𝑝 2 , … , 𝑝 𝜇 } where 𝜇 <  𝑉  be a set of pebbles. The 

initial arrangement and the goal arrangement of pebbles in 𝐺 are defined by two 

uniquely invertible functions 𝑆𝑃
0: 𝑃 ⟶ 𝑉 (that is 𝑆𝑃

0(𝑝) ≠ 𝑆𝑃
0(𝑞) for every 

𝑝, 𝑞 ∈ 𝑃 with 𝑝 ≠ 𝑞) and 𝑆𝑃
+: 𝑃 ⟶ 𝑉 respectively. A problem of pebble motion 

on a graph (PMG) is the task to find a number 𝜉 and a sequence of pebble ar-

rangements 𝒮𝑃 = [𝑆𝑃
0, 𝑆𝑃

1 , … , 𝑆𝑃
𝜉

] such that the following conditions hold (the se-

quence represents arrangements of pebbles at each time step – the time step is 

indicated by the upper index): 

(i) 𝑆𝑃
𝑘 : 𝑃 ⟶ 𝑉 is a uniquely invertible function for every 𝑘 = 1,2, … , 𝜉; 

(ii) 𝑆𝑃
𝜉

= 𝑆𝑃
+ (that is, all the pebbles eventually reach their destination 

vertices); 

(iii) either 𝑆𝑃
𝑘 𝑝 = 𝑆𝑃

𝑘+1 𝑝  or {𝑆𝑃
𝑘 𝑝 , 𝑆𝑃

𝑘+1 𝑝 } ∈ 𝐸 for every 𝑝 ∈ 𝑃 

and 𝑘 = 1,2, … , 𝜉 − 1 (that is, a pebble either stays in a vertex or 

moves along an edge); 

(iv) if 𝑆𝑃
𝑘 𝑝 ≠ 𝑆𝑃

𝑘+1 𝑝  (that is, the pebble 𝑝 moves between time steps 𝑘 

and 𝑘 + 1) then  𝑆𝑃
𝑘 𝑞 ≠ 𝑆𝑃

𝑘+1 𝑝  ∀𝑞 ∈ 𝑃 with 𝑞 ≠ 𝑝 must hold for 

every  𝑝 ∈ 𝑃 and 𝑘 = 1,2, … , 𝜉 − 1 (that is, a pebble can move into a 

currently unoccupied vertex only). 

The instance of PMG is formally a quadruple Π = (𝐺, 𝑃, 𝑆𝑃
0, 𝑆𝑃

+). A solution to 

the instance Π will be denoted as 𝒮𝑃 Π = [𝑆𝑃
0 , 𝑆𝑃

1 , … , 𝑆𝑃
𝜉

]. □ 

 

 

 
 

Figure 2. Example of instance of PMG and pCPF. Both instances are illustrated on the same graph 

with the same initial and goal arrangements. The task is to move pebbles/agents from their initial 

positions specified by 𝑆𝑃
0/𝑆𝐴

0 to the goal positions specified by 𝑆𝑃
+/𝑆𝐴

+. A solution of the makespan 6 

(𝜉 = 6) is shown for the PMG instance and a solution of the makespan 4 (𝜁 = 4) is shown for the 

pCPF instance. Notice the differences in parallelism between both solutions. 
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When speaking about a move at a time step 𝑘, it is referred to the time step of 

commencing the move (the move is performed instantaneously between time 

steps 𝑘 and 𝑘 + 1). 

The second variant of motion problem on a graph adopted in this work relaxes 

the condition that the target vertex of a pebble/agent must be vacated in the pre-

vious time step. Thus, the motion of an agent entering the target vertex, that is 

simultaneously vacated by another agent and no other agent is trying to enter the 

same target vertex, is allowed in a certain case. However, there must be some 

leading agent initiating such a chain of moves by moving into a currently unoccu-

pied vertex which no other agent is entering at the same time step (that is, agents 

can move “like a chain” with the leading agent moving into an unoccupied vertex 

in the front). The problem is formalized in the following definition – it is called 

parallel cooperative path-finding –  pCPF since the different style of moving 

basically enables higher parallelism. The same concept is sometimes also referred 

as multi-robot path-planning in the literature [22, 24, 26, 27]. 

 

Definition 2 (parallel cooperative path-finding – pCPF). Again, let 𝐺 = (𝑉, 𝐸) 

be an undirected graph. A set of agents 𝐴 = {𝑎 1 , 𝑎 2 , … , 𝑎 𝜈 } where 𝜈 <  𝑉  is giv-

en instead of the set of pebbles. Similarly, the graph models the environment 

where the agents are moving. The initial arrangement and the goal arrangement 

of agents are defined by two uniquely invertible functions 𝑆𝐴
0: 𝐴 ⟶ 𝑉 (that is 

𝑆𝐴
0(𝑎) ≠ 𝑆𝐴

0(𝑏) for every 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ≠ 𝑏) and 𝑆𝐴
+: 𝐴 ⟶ 𝑉 respectively. A 

problem of parallel cooperative path-finding (pCPF) is then the task to find a 

number 𝜁 and a sequence of agent arrangements 𝒮𝐴 = [𝑆𝐴
0, 𝑆𝐴

1 , … , 𝑆𝐴
𝜁

] for that the 

following conditions hold: 

(i) 𝑆𝐴
𝑘 : 𝐴 ⟶ 𝑉 is a valid arrangement for every 𝑘 = 1,2, … , 𝜁 (that is, un-

iquely invertible); 

(ii) 𝑆𝐴
𝜁

= 𝑆𝐴
+ (that is, all the agents eventually reach their destinations); 

(iii) either 𝑆𝐴
𝑘 𝑎 = 𝑆𝐴

𝑘+1 𝑎  or {𝑆𝐴
𝑘 𝑎 , 𝑆𝐴

𝑘+1 𝑎 } ∈ 𝐸 for every 𝑎 ∈ 𝐴 

and 𝑘 = 1,2, … , 𝜁 − 1 (that is, an agent either stays in a vertex or 

moves into the neighboring vertex); 

(iv) if 𝑆𝐴
𝑘 𝑎 ≠ 𝑆𝐴

𝑘+1 𝑎  (that is, the agent 𝑎 moves between time steps 𝑘 

and 𝑘 + 1) then there must exist a sequence of distinct agents 

[𝑎 = 𝑏0 , 𝑏1 , … , 𝑏𝜆] with 𝜆 ∈ ℕ0 such that 𝑆𝐴
𝑘 𝑐 ≠ 𝑆𝐴

𝑘+1 𝑏𝜆  ∀𝑐 ∈ 𝐴 

with 𝑐 ≠ 𝑏𝜆  (𝑏𝜆  moves to a vertex that is unoccupied at time step 𝑘; 

𝑏𝜆  is a leading agent of the chain of agents which the sequence is part 

of) and 𝑆𝐴
𝑘+1 𝑏𝑖 = 𝑆𝐴

𝑘 𝑏𝑖+1  for 𝑖 = 0,1, … , 𝜆 − 1 (agents 𝑎 =

𝑏0 , 𝑏1 , … , 𝑏𝜆−1  follows the leader like a chain; they move all at once 

between time steps 𝑘 and 𝑘 + 1). 

The instance of pCPF is formally a quadruple Σ = (𝐺, 𝐴, 𝑆𝐴
0, 𝑆𝐴

+). A solution 

to the instance Σ will be denoted as 𝒮𝐴 Σ = [𝑆𝐴
0 , 𝑆𝐴

1, … , 𝑆𝐴
𝜁

]. □ 
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Notice in point (iv) that if the agent 𝑎 moves into an unoccupied vertex then 

the required sequence of distinct agents consists of 𝑎 itself (𝜆 = 0) and the latter 

condition in point (iv) is empty. Notice also that the condition on unique inverti-

bility implies that no two agents can simultaneously enter the same target vertex. 

The numbers 𝜉 and 𝜁 represent the makespan of solutions. The makespan 

needs to be distinguished from the size of solution, which is the total number of 

moves performed by pebbles/agents. Example instances of both problems and 

their solutions are illustrated in Figure 2. 

2.2. Known Properties of Motion Problems and Related Questions 

Notice that a solution of PMG as well as a solution of pCPF allows a pebble/agent 

to stay in a vertex for more than a single time step. It is also possible that a peb-

ble/agent visits the same vertex several times within the solution. Hence, the se-

quence of moves for a single pebble/agent does not necessarily form a simple path 

in the given graph. 

 Notice further that both problems intrinsically allow parallel movements of 

pebbles/agents. That is, more than one pebble/agent can perform a move in a sin-

gle time step. However, pCPF allows higher motion parallelism due to its weaker 

requirements on agent movements (see Figure 2). More than one unoccupied ver-

tex is necessary to obtain parallelism in PMG while only one unoccupied vertex is 

sufficient to obtain parallelism within a solution of pCPF (consider for example 

agents moving around a cycle). The following straightforward proposition puts 

into relation solutions of instances of PMG and pCPF with the same set of agents 

and their arrangements over the same graph. 

 

Proposition 1 (problem correspondence). Let Π = (𝐺, 𝑃, 𝑆𝑃
0 , 𝑆𝑃

+) be an instance 

of PMG and let 𝒮𝑃 Π = [𝑆𝑃
0, 𝑆𝑃

1 , … , 𝑆𝑃
𝜉

] be its solution. Then 𝒮𝐴 Σ = 𝒮𝑃 Π  is a 

solution to an instance of pCPF Σ = (𝐺, 𝑃, 𝑆𝑃
0 , 𝑆𝑃

+).  

 

To prove the proposition it is sufficient to observe that the condition (iv) in the 

definition of pCPF is a relaxation of the corresponding condition in the definition 

of PMG. 

There is a variety of modifications of the defined problems. A natural addi-

tional requirement is to produce solutions with the makespan as short as possible 

(that is, the numbers 𝜉 or 𝜁 are required to be as small as possible). Unfortunately, 

this requirement makes both PMG and pCPF intractable. It was shown in [12, 13] 

that the optimization variant of a special case of PMG is 𝑁𝑃-hard [3] – this spe-

cial case is generally known as 𝑁 × 𝑁-puzzle or (𝑁 − 1)-puzzle. It consists of a 

graph that can be embedded in the plane as a square 4-connected grid with a sin-

gle unoccupied vertex. Thus, the optimization variant of general PMG is 𝑁𝑃-hard 

as well. 
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Here we work with restrictions of both types of problems on bi-connected 

graphs [34]. Hence, it is a reasonable question what is the complexity of these 

classes. Since the grid graph forming the mentioned 𝑁 × 𝑁-puzzle is bi-

connected, the immediate answer is that the optimization variant of PMG with a 

bi-connected graph is 𝑁𝑃-hard as well. 

Nevertheless, it is not possible to make any similar simple statement about the 

complexity of the optimization variant of pCPF. The situation here is complicated 

by the inherent parallelism, which can affect the makespan in some unforeseen 

way. Constructions used for the 𝑁 × 𝑁 puzzle in [12, 13] thus no longer work. 

Using different technique it has been recently shown by the author that the opti-

mization variant of pCPF is NP-hard too [24, 26]. 

Observe further that reported 𝑁𝑃-hard case of PMG have a single unoccupied 

vertex. This fact may raise the question how the situation is changed when there 

are more than one unoccupied vertices as they may simplify the situation. Unfor-

tunately, it is not the case. PMG with the fixed number of unoccupied vertices is 

still 𝑁𝑃-hard since multiple copies of the 𝑁 × 𝑁 puzzle from [12, 13] can be used 

to add as many unoccupied vertices as needed. Without providing further details, 

the instance of pCPF used in the reduction to prove the NP-hardness of the prob-

lem in [24] had many unoccupied vertices and its graph was connected (even bi-

connected). Altogether, a mere allowance of many unoccupied vertices with no 

additional structural conditions does not simplify the problem. 

Without the requirement on the optimality of the makespan, the situation is 

much easier; PMG is in the P class as it was shown in [8, 35]. Due to Proposition 

1, pCPF is in the P class as well. Thus, it seems that PMG and pCPF have been 

already resolved. However, constructions proving the membership of PMG into 

the P class used in [8, 35] generate solutions that are too long for practical use 

[21, 22, 23]. As the makespan of the solution is of great importance in practice, 

this fact makes these methods unsuitable when some real life motion problem is 

abstracted as an instance of PMG. Thus, alternative solving methods has been 

developed [20, 21, 22, 23] and they are revised in this work. 

3. Sub-optimal Solving Algorithms 

The basic idea of presented sub-optimal algorithms is to exploit structural proper-

ties offered by the concept of bi-connectivity. It is known that bi-connected graphs 

can be inductively constructed as a union of a sequence of rings or handles while 

at every stage of this construction the intermediate graph is bi-connected [33, 34].  

After arranging agents into the last handle we do not need to care about it an-

ymore and consequently the task reduces to a task of the same type but on a 

smaller bi-connected graph. Fortunately, bi-connected graphs have another inter-

esting property; every two vertices are connected by at least two vertex disjoint 

paths, which allow quite complex rearranging of agents. For example, an individ-
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ual agent can move relatively freely. One path is traversed by the agent and alter-

native paths are used to keep unoccupied vertex always in front of the agent. In 

addition, handles of the decomposition evokes the possibility that agents within 

them can be rotated, which is actually used in proposed algorithms. Notice that all 

the mentioned styles of movements are friendly to the parallelism as defined in 

pCPF – for example, agents in a handle can be rotated within a single time step. 

However, there are many technical difficulties that need to be addressed to make 

the above ideas workable. 

3.1. BIBOX: A Novel Algorithm for Pebble Motion on a Bi-connected Graph 

The first algorithm presented here called BIBOX was originally proposed in [20]. 

The input instance should consist of a non-trivial bi-connected graph (that is, bi-

connected graph not isomorphic to a cycle) with exactly two unoccupied vertices. 

As the algorithm produces solution consisting of single move per time step it does 

not matter if PMG or pCPF is given on the input – in the following text pCPF will 

be always considered. A method how to increase parallelism in the resulting solu-

tion to take the advantage of the definition of pCPF will be discussed in Section 

3.1.4. 

 The algorithm proceeds inductively according to the known property of bi-

connected graphs that they can be built from a cycle by addition of a sequence of 

handles. Adding a handle means either to insert a new edge into the graph or to 

connect endpoints of a path consisting of new vertices somewhere into the graph. 

The important property is that currently built graph is bi-connected at every stage 

of the construction. 

The process of building a graph by adding handles can be reverted as well. 

That is, the graph can be deconstructed until a cycle remains by removing handles 

from it. If it is somehow possible to arrange agents whose goal positions are in the 

handle to be removed before it is actually removed, we have a good starting point 

for a new solving algorithm because after removal of a handle the problem just 

reduced to the smaller graph. To obtain a new algorithm it remains to show how 

agents can be arranged into the handle and how to deal with the cycle that remains 

at the end of the process. 

  The process of removing of handles is presented here just for intuition. They 

actually do not need to be removed during the solving process. It is sufficient not 

to consider and use a handle after all the agents are properly arranged to their goal 

positions within that. 

The intuition for arranging agents in the cycle that eventually remains is to re-

gard their ordering as a permutation. The goal arrangement of agents in the cycle 

can be also regarded as a permutation. Thus, we need to change ordering of agents 

to form another permutation. If it is possible to exchange a pair of agents with 

respect to their current ordering, then every permutation of agents can be ob-
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tained. It will be shown how to utilize two unoccupied vertices to enable ex-

changes of agents in the remaining cycle. 

It is possible to build a bi-connected graph in multiple different ways by add-

ing handles. Hence, the algorithm as well as the produced solution is sensitive to 

the selection and ordering of handles used in the solving process. 

3.1.1. Graph-theoretical Preliminaries 

The BIBOX algorithm is built around the notion of bi-connectivity and around 

graph theoretical properties of bi-connected graphs [33]. Let us recall the notion 

of bi-connectivity and related properties briefly. 

 

Definition 3 (connected graph).  An undirected graph 𝐺 = (𝑉, 𝐸) is connected if 

 𝑉 ≥ 2 and for any two vertices 𝑢, 𝑣 ∈ 𝑉 such that 𝑢 ≠ 𝑣 there is an undirected 

path connecting 𝑢 and 𝑣. □ 

 

Definition 4 (bi-connected graph, non-trivial).  An undirected graph 𝐺 = (𝑉, 𝐸) 

is bi-connected if  𝑉 ≥ 3 and the graph 𝐺′ = (𝑉′, 𝐸′), where 𝑉 ′ = 𝑉 ∖ {𝑣} and 

𝐸′ = {{𝑢, 𝑤}|𝑢, 𝑤 ∈ 𝑉 ∧ 𝑢 ≠ 𝑣 ∧ 𝑤 ≠ 𝑣}, is connected for every 𝑣 ∈ 𝑉. A bi-

connected graph not isomorphic to a cycle will be called non-trivial bi-connected 

graph. □ 

 

Observe that, if a graph is bi-

connected, then every two distinct ver-

tices are connected by at least two ver-

tex disjoint paths (equivalently, there is 

a cycle containing both vertices; only 

internal vertices of paths are considered 

when speaking about vertex disjoint 

paths -  vertex disjoint paths can inter-

sect in their start points and endpoints). 

An example of bi-connected graph is 

shown in Figure 3. 

Bi-connected graphs have an important property, which is exploited within the 

algorithm. Each bi-connected graph can be constructed starting from a cycle by an 

operation of adding a handle [28, 33, 34]. Consider a graph 𝐺 = (𝑉, 𝐸); the new 

handle with respect to 𝐺 is a sequence 𝐻 = [𝑢, 𝑤1 , 𝑤2 , … , 𝑤ℎ , 𝑣] where ℎ ∈ ℕ0, 

𝑢, 𝑣 ∈ 𝑉 (called connection vertices) and 𝑤𝑖 ∉ 𝑉 for 𝑖 = 1,2, … , ℎ (𝑤𝑖  are fresh 

vertices). The result of the addition of the handle 𝐻 to the graph 𝐺 is a new graph 

𝐺 ′ = (𝑉 ′ , 𝐸′) where 𝑉 ′ = 𝑉 ∪ {𝑤1 , 𝑤2 , … , 𝑤ℎ } and either 𝐸′ = 𝐸 ∪ {{𝑢, 𝑣}} in the 

case of ℎ = 0 or 𝐸′ = 𝐸 ∪ {{𝑢, 𝑤1},  𝑤1, 𝑤2 , … ,  𝑤ℎ−1 , 𝑤ℎ , {𝑤ℎ , 𝑣}} in the case 

of ℎ > 0. Let the sequence of handles together with the initial cycle be called a 

𝑪𝟎  

𝑯𝟏 

𝑯𝟐 

𝑯𝟑 

𝐺 = (𝑉, 𝐸) 

Figure 3. Example of bi-connected graph. A 

handle decomposition is illustrated. 
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handle decomposition of the given bi-connected graph. Again, see Figure 3 for 

illustrative example. 

 

Lemma 1 (handle decomposition) [28, 33, 34]. Any bi-connected 𝐺 = (𝑉, 𝐸) 

graph can be obtained from a cycle by a sequence of operations of adding a han-

dle. Moreover, the corresponding handle decomposition of the graph 𝐺 can be 

found in the worst-case time of 𝒪( 𝑉 +  𝐸 ) and the worst-case space of 

𝒪( 𝑉 +  𝐸 ).  

 

The important property of the construction of a bi-connected graph according 

to its handle decomposition is that the currently constructed graph is bi-connected 

at every stage of the construction. This property is substantially exploited in the 

design of the BIBOX algorithm. 

The algorithm is presented below using a pseudo-code as Algorithm 1 and Al-

gorithm 2 (algorithms are illustrated with pictures for easier understanding). The 

algorithm starts with the last handle of the handle decomposition and proceeds to 

the initial cycle. Agents, that goal positions are within the last handle, are moved 

to their goal positions within this handle. After that, the instance reduces to a 

smaller bi-connected graph. That is, the last handle is not considered any more 

since its agents do not need to move any more. This process is repeated until the 

initial cycle of the decomposition remains where a different technique is used. 

 Let Σ = (𝐺 =  𝑉, 𝐸 , 𝐴, 𝑆𝐴
0, 𝑆𝐴

+) be an instance of pCPF. The handle decompo-

sition of the graph 𝐺 is formally a sequence 𝒟 = [𝐶0 , 𝐻1, 𝐻2 , … , 𝐻𝑑 ] with 𝑑 ∈ ℕ, 

where 𝐶0 is the initial cycle and 𝐻𝑐  is a handle for 𝑐 = 1,2, … , 𝑑. The order of 

handle additions in construction of 𝐺 corresponds to their positions in the se-

quence (that is, 𝐻1 is added to 𝐶0 first; and 𝐻𝑑  is added as the last). A handle 

𝐻𝑐 = [𝑢𝑐 , 𝑤1
𝑐 , 𝑤2

𝑐 , … , 𝑤ℎ𝑐

𝑐 , 𝑣𝑐] for  𝑐 ∈ {1,2, … , 𝑑} is assigned a cycle 𝐶(𝐻𝑐). The 

cycle 𝐶(𝐻𝑐) consists of the sequence vertices on a path connecting 𝑣𝑐  and 𝑢𝑐  in a 

graph before the addition of 𝐻𝑐  followed by vertices 𝑤1
𝑐 , 𝑤2

𝑐 , … , 𝑤ℎ𝑐

𝑐 . Specially, it 

is defined that 𝐶 𝐶0 = 𝐶0. 

The following lemma justifies two properties exploited by the algorithm. It 

justifies that it is possible to keep handy two unoccupied vertices in the not yet 

solved part of the graph since one unoccupied vertex is needed to solve handles 

and two unoccupied vertices are needed to solve the initial cycle. The lemma en-

sures that the original goal arrangement can be transformed to an arrangement 

where unoccupied vertices are located in the initial cycle. Thanks to this property 

it never happens that an unoccupied vertex become locked in some already solved 

handle. Details of the transformation are discussed later. 

 

Lemma 2 (existence of two vertex disjoint paths). Let 𝐺 = (𝑉, 𝐸) be a bi-

connected graph and let 𝑢1 , 𝑢2 ∈ 𝑉 and 𝑣1 , 𝑣2 ∈ 𝑉, where 𝑢1 , 𝑢2 , 𝑣1 , 𝑣2 are pair-
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wise distinct, be two pairs of vertices. Then either the first or the second of the 

following claims holds: 

(a) There exist two vertex disjoint paths 𝜑  and 𝜒 such that they connect 𝑢1 

with 𝑣1 and 𝑢2 with 𝑣2 in 𝐺 respectively. 

(b) There exist two vertex disjoint paths 𝜑  and 𝜒 such that they connect 𝑢1 

with 𝑣2 and 𝑢2 with 𝑣1 in 𝐺 respectively.  

 

Notice that the lemma states that individual vertices in the input pair of vertic-

es are indifferent with respect to connecting by vertex disjoint paths. As the proof 

of the lemma is rather technical, we refer the reader to [27] where the detailed 

proof can be found. The idea of proof is that the given 4-tuple of vertices 

𝑢1 , 𝑢2 , 𝑣1 , 𝑣2 is assigned a 4-tuple of non-negative integers such that each number 

refers to a handle of the decomposition or the initial cycle where the correspond-

ing vertex is located. Then the proof proceeds inductively according to the lexico-

graphic ordering of these 4-tuples of numbers. For a selected pair of vertices par-

tial connection paths are constructed towards handles with lower numbers (a cer-

tain case analysis in the worst-case time of 𝒪(1) has to be done). Then it holds 

from the induction hypothesis that remaining parts of connection paths should 

exist since they connect 4-tuple of vertices with lower 4-tuple of assigned num-

bers. 

3.1.2. Pseudo-code of the BIBOX Algorithm 

Several basic operations are introduced to express the BIBOX algorithm in an 

easier way. These operations are formally described using pseudo-code as Algo-

rithm 1. In addition to functions 𝑆𝐴
0 and 𝑆𝐴

+ there will be a function 𝑆𝐴: 𝐴 ⟶ 𝑉 to 

represent the current arrangement of agents in 𝐺 and functions Φ𝐴
0: 𝑉 ⟶ 𝐴 ∪ {⊥}, 

Φ𝐴
+: 𝑉 ⟶ 𝐴 ∪ {⊥}, and Φ𝐴: 𝑉 ⟶ 𝐴 ∪ {⊥} which are generalized inverses of 𝑆𝐴

0, 

𝑆𝐴
+, and 𝑆𝐴 respectively; the symbol ⊥ is used to represent an unoccupied vertex 

(that is,  ∀𝑎 ∈ 𝑃  Φ𝐴(𝑆𝐴 𝑎 ) = 𝑎 and Φ𝐴 𝑣 =⊥ if  ∀𝑎 ∈ 𝐴  𝑆𝐴 𝑎 ≠ 𝑣). Each 

undirected cycle appearing in the handle decomposition of the input graph is as-

signed a fixed orientation. Let 𝐶 be an undirected cycle (a set of vertices of the 

cycle), then the orientation of 𝐶 is expressed by functions 𝑛𝑒𝑥𝑡↻ and 𝑝𝑟𝑒𝑣↻ 

where 𝑛𝑒𝑥𝑡↻(𝐶, 𝑣) for 𝑣 ∈ 𝐶 is a vertex following 𝑣 (with respect to the positive 

orientation) and 𝑝𝑟𝑒𝑣↻(𝐶, 𝑣) is a vertex preceding 𝑣 (with respect to the positive 

orientation). The orientation of a cycle given by 𝑛𝑒𝑥𝑡↻ and 𝑝𝑟𝑒𝑣↻ is observed 

also whenever vertices of the cycle are explicitly enumerated in the code. 

Each vertex of the input graph is either locked or unlocked. Auxiliary opera-

tions Lock (𝑋) and Unlock(𝑋) locks or unlocks a set of vertices 𝑋 ⊆ 𝑉. The state 

of a vertex is used to determine whether an agent can move into it. Typically, an 

agent is not allowed to enter a locked vertex (see the pseudo-code for details). 
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It is assumed that it holds that  𝐴 = |𝑉| − 2 (that is, there are exactly two un-

occupied vertices in the graph 𝐺). It is required by the main phase of the algo-

rithm that the two unoccupied vertices are located in the first two vertices of the 

initial cycle within the goal arrangement. This requirement is treated by a function 

Transform-Goal and a procedure Finish-Solution. The function Transform-Goal 

determines two vertex disjoint paths from unoccupied vertices in the goal ar-

rangement to the first two vertices in the initial cycle of the handle decomposition. 

Existence of these paths is ensured by Lemma 2. The goal arrangement is trans-

formed so that finally unoccupied vertices are located in the initial cycle. This is 

done by shifting agents within the goal arrangement along the two found paths. 

After the modified instance is solved, the function Finish-Solution moves unoc-

cupied vertices back to their goal locations in the original unmodified goal ar-

rangement. The final placement of unoccupied vertices is done by shifting agents 

along the same two paths but in the opposite direction. 

It is assumed that the input bi-connected graph 𝐺 is non-trivial for further sim-

plifying the pseudo-code; that is, it is not isomorphic to a cycle. The case when 

the graph is isomorphic to a cycle can be treated easily in a separate branch of the 

execution. 

Several upper level primitives are exploited by the BIBOX algorithm. It is 

possible to make any vertex unoccupied in a connected graph (especially in a bi-

connected one) – implemented by procedure Make-Unoccupied. Let 𝑣 be a vertex 

to be made unoccupied. A path 𝜙 connecting 𝑣 and some of the unoccupied ver-

tices avoiding the locked vertices is found. Then agents along the path 𝜙 are 

shifted towards the currently unoccupied vertex. 

An operation of moving an agent into an unoccupied vertex is implemented by 

a procedure Move-Agent-Unoccupied – the meaning is that the unoccupied space 

and the agent are swapped. The procedure also updates functions 𝑆𝐴 and Φ𝐴 to 

reflect the new arrangement of agents and constructs the next arrangement 𝑆𝐴
𝜁
 for 

the output solution sequence. 

 

 
Algorithm 1. Basic agent movement operations. These operations are used as building blocks for 

the BIBOX algorithm. 

 

procedure Make-Unoccupied 𝑣  

/* Makes a vertex 𝑣 unoccupied while locked 

vertices remain untouched. 

Parameters:  𝑣 - a vertex to be made unoccupied. */ 

1: let 𝑢 ∈ 𝑉 such that Φ𝐴 𝑢 =⊥ and 𝑢 is not locked 

2: let 𝜙 = [𝑢 = 𝑤1 , 𝑤2 , … , 𝑤𝑗 = 𝑣] be a (shortest) path 

3:  connecting 𝑢 and 𝑣 in 𝐺 not containing locked vertices 

4: for 𝑖 = 1,2, … , 𝑗 − 1 do 

5:  Move-Agent-Unoccupied(𝑤𝑖+1, 𝑤𝑖) 

 
Vertex 𝑤 is locked; 𝑢 is 
unoccupied; pebbles are 
shifted along cycle 𝐶(𝐻1) to 
make 𝑣 unoccupied. 

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 𝒗 

𝐻1
 

 

𝐻2
 

𝒖 

𝐻1
 

 

𝒘 

𝐻1
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procedure Move-Agent 𝑎, 𝑣  

/* Moves an agent𝑎 into a vertex 𝑣 

avoiding locked vertices. 

Parameters:  𝑎 – an agent to move, 

𝑣 - a target vertex.*/ 

/* complexity issues impose special selection of  𝜑 */ 

1: let 𝜑 = [𝑆𝐴(𝑎) = 𝑤1
𝜑

, 𝑤2
𝜑

, … , 𝑤𝑗𝜑

𝜑
= 𝑣] be a path 

2:  connecting 𝑆𝐴(𝑎) and 𝑣 in 𝐺 not containing 

3:  locked vertices  

4: for 𝑖 = 1,2, … , 𝑗𝜑 − 1 do 

5:  Lock ({𝑤𝑖
𝜑

}) 

6:  Make-Unoccupied(𝑤𝑖+1
𝜑

) 

7:  Unlock({𝑤𝑖
𝜑

}) 

8:  Move-Agent-Unoccupied(𝑤𝑖
𝜑

, 𝑤𝑖+1
𝜑

) 

 

procedure Rotate-Cycle+ 𝐶, 𝑤  

/* Rotates agents in a cycle 𝐶 in the positive direction. 

Parameters:  𝐶 - a cycle to rotate 

𝑤 - unoccupied vertex, 𝑤 ∈ 𝐶. */ 

1: for 𝑖 = 1,2, … ,  𝐶  do 

2:  Move-Agent-Unoccupied(𝑝𝑟𝑒𝑣↻(𝐶, 𝑤), 𝑤)  

3:  𝑤 ← 𝑝𝑟𝑒𝑣↻(𝐶, 𝑤) 
 

 

 

procedure Rotate-Cycle− 𝐶, 𝑤  

/* Rotates agents in the cycle 𝐶 in the negative direction. 

Parameters:  𝐶 - a cycle to rotate, 𝑤 ∈ 𝐶. */ 

1: let 𝑤 ∈ 𝐶 such that Φ𝐴 𝑤 =⊥ and 𝑤 is not locked 

2: for 𝑖 = 1,2, … ,  𝐶  do 

3:  Move-Agent-Unoccupied(𝑛𝑒𝑥𝑡↻(𝐶, 𝑤), 𝑤)  

4:  𝑤 ← 𝑛𝑒𝑥𝑡↻(𝐶, 𝑤) 

 

procedure Move-Agent-Unoccupied(𝑢, 𝑣) 

 /* Swaps agent and the unoccupied space; vertex 𝑣 is 

supposed to be unoccupied; 𝑢 contains an agent. 

Parameters:  𝑢, 𝑣 – vertices between which agent 

is moved. */ 

1: 𝑆𝑃(Φ𝑃 𝑢 ) ← 𝑣 

2: Φ𝑃 𝑣 ← Φ𝑃 𝑢  

3: Φ𝑃 𝑢 ←⊥ 

4: 𝑆𝑃
𝜉

← 𝑆𝑃 

5: 𝜉 ← 𝜉 + 1 

 

Agent 𝑎 is moved to 𝑣 
through cycles 𝐶(𝐻2), 𝐶0, 
and 𝐶(𝐻1). 

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒗 

𝐻1
 

 

𝒂 

𝐻1
 

 

𝐻2
 

Vertex 𝑤 is unoccupied; 
𝐶(𝐻2) is rotated in the 
positive direction. 

𝐻1
 

𝐶 =  𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒘 

𝐻1
 

 

𝒘+
 

𝐻1
 

 

𝐻2
 

𝐶 

𝑤+ = 𝑛𝑒𝑥𝑡↻ 𝐶, 𝑣  
𝑤− = 𝑝𝑟𝑒𝑣↻ 𝐶, 𝑣  

𝐻1
 

 

 

𝒘−
 

𝐻1
 

 

Vertex 𝑤 is unoccupied; 
𝐶(𝐻2) is rotated in the 
negative direction. 

𝐻1
 

𝐶 =  𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒘 

𝐻1
 

 

𝒘+
 

𝐻1
 

 

𝐻2
 

𝐶 

𝑤+ = 𝑛𝑒𝑥𝑡↻ 𝐶, 𝑣  
𝑤− = 𝑝𝑟𝑒𝑣↻ 𝐶, 𝑣  

𝐻1
 

 

 

𝒘−
 

𝐻1
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Figure 4. An illustration of moving an agent in bi-connected graph. The task is to move an agent 𝑎 

from the initial position to a vertex 𝑣. A paths 𝜑 connecting the initial position of the agent 𝑎 with 𝑣 

is found (the path is distinguished by color). It is then traversed by the agent 𝑎 while the unoccupied 

vertex is restored in front of 𝑎 after every edge traversal. This is possible thanks to bi-connectivity 

of the graph – a path connecting unoccupied vertex and the target vertex avoiding the vertex con-

taining 𝑎 must always exist. The symbol _ stands for an anonymous agent. 

 

The next important process is moving an agent into a given target vertex. It is 

implemented by a procedure Move-Agent. Let an agent 𝑎 be moved to a vertex 𝑣. 

A path 𝜑 is found such that it connects vertices 𝑆𝐴(𝑎) (which is a vertex currently 

occupied by 𝑎) and 𝑣. 

 

 
 

Figure 5. An illustration of rotation of agents along a cycle. An orientation of the cycle is deter-

mined by functions 𝑛𝑒𝑥𝑡↻ and 𝑝𝑟𝑒𝑣↻. There is a single unoccupied vertex in the cycle to enable the 

rotation. 

 

Edges of 𝜑 are then traversed by an agent 𝑎. A vertex on 𝜑 just in front of 𝑎 

with respect to the direction of the movement is made unoccupied every time 𝑎 

needs to traverse an edge of 𝜑. The agent 𝑎 should not move during relocation of 

the unoccupied vertex therefore it is locked before the relocation of the unoccu-

pied vertex starts. Thus, a path along that the unoccupied vertex is moved must 
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− 

− 
− 

𝒘𝟐
𝝋 

𝒘𝟑
𝝋 

𝒘𝟒
𝝋 

𝒘𝟓
𝝋 

𝒘𝟔
𝝋 𝒘𝟏

𝝋 

𝒘𝟕
𝝋

= 𝒗 
 

𝒂 

− 

− 

− 

− 

− 

− 
− 

− 

− 
− 

− 

− 
− 

𝒘𝟐
𝝋 

𝒘𝟑
𝝋 

𝒘𝟒
𝝋 𝒘𝟓

𝝋 

𝒘𝟔
𝝋 

𝒗 

− − 

− 

− 

− 
− 

− − 

− 

− 

− 

− 

− 

𝒗
 

− − 

− 

− 

− 
− 

− − 

− 

− 

− 

− 

− 

Initial 

arrangement 

Goal 

arrangement 

𝒂 

𝒂 

𝝋 

𝝋 

𝒘𝟏
𝝋 
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avoid the vertex containing 𝑎. Such a path always exists due to the bi-connectivity 

of the graph in which the relocation of the agent 𝑎 takes place (see Figure 4 for 

illustration). 

The last basic operation is a rotation of agents along a cycle (see Figure 5). 

This operation is implemented by procedures Rotate-Cycle
+ 

and Rotate-Cycle
−
. 

The former rotates agents in the positive direction and the latter rotates agents in 

the negative direction. It supposed that at least one vertex in the given input cycle 

is unoccupied and it is given as the parameter. The input unoccupied vertex 

enables the rotation; it remains on its place after the rotation is finished.  

 

 

Algorithm 2. The BIBOX algorithm. The pseudo-code is built around operations from Algorithm 1. 

It solves a given agent motion problem on a non-trivial bi-connected graph with exactly two unoc-

cupied vertices. The algorithm proceeds inductively according to the handle decomposition of the 

graph of the input instance. The two unoccupied vertices are necessary for arranging agents within 

the initial cycle of the handle decomposition. 

 

function BIBOX-Solve(𝐺 =  𝑉, 𝐸 , 𝑃, 𝑆𝐴
0 , 𝑆𝐴

+) : pair 

/* Top level function of the BIBOX algorithm; solves 

a given problem of agent motion on a graph. 

Parameters: 𝐺 - a graph modeling the environment, 

𝐴- a set of agents, 

𝑆𝐴
0 - a initial arrangement of agents, 

𝑆𝐴
+- a goal arrangement of agents. */ 

1: let 𝒟 =  𝐶0, 𝐻1, 𝐻2, … , 𝐻𝑑   be a handle decomposition of 𝐺 

2: (𝑆𝐴
+, 𝜑, 𝜒) ← Transform-Goal(𝐺, 𝑃, 𝑆𝐴

+) 

3: 𝑆𝐴 ← 𝑆𝐴
0 

4: 𝜉 ← 1 

5: for 𝑐 = 𝑑, 𝑑 − 1, … ,1do 

6:  if  𝐻𝑐  > 2 then 

7:   Solve-Regular-Handle(𝑐) 

8: Solve-Original-Cycle 

9: Finish-Solution(𝜑, 𝜒) 

10: return(𝜉, [𝑆𝐴
0 , 𝑆𝐴

1 , … , 𝑆𝐴
𝜁

]) 

 

procedure Solve-Regular-Handle(𝑐) 

/* Places agents which destinations are within a 

handle 𝐻𝑐; agents placed in the handle 𝐻𝑐  are finally 

locked so they cannot move any more. 

Parameters:  𝑐 – the index of a handle */ 

1: let [𝑢𝑗 , 𝑤1
𝑗
, 𝑤2

𝑗
, … , 𝑤ℎ𝑐

𝑗
, 𝑣𝑗 ] = 𝐻𝑗  ∀𝑗 ∈ {1,2, … , 𝑑} 

 /* Both unoccupied vertices must be located 

outside the currently solved handle. */ 

2: let 𝑤, 𝑧 ∈ 𝑉 ∖  (𝐻𝑗
𝑑
𝑗=𝑐 ∖ {𝑢𝑗 , 𝑣𝑗 }) such that 𝑤 ≠ 𝑧 

3: Make-Unoccupied(𝑤) 

4: Lock  𝑤   

5: Make-Unoccupied(𝑧) 

6: Unlock  𝑤   

7: for 𝑖 = ℎ𝑐 , ℎ𝑐 − 1, … ,1do 

𝒟 = [𝐶0 ,𝐻1 , 𝐻2] 
Handle decomposition 

𝐻1
 

𝐻2
 

𝐻1
 

 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝑮 = (𝑉, 𝐸) 
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8:  Lock(𝐻𝑐 ∖  𝑢𝑐 , 𝑣𝑐 ) 

  /* An agent to be placed is outside the handle 𝐻𝑐 . */ 

9:  if 𝑆𝑃(Φ𝐴
+(𝑤𝑖

𝑐)) ∉ (𝐻𝑐 ∖  𝑢𝑐 , 𝑣𝑐 ) then 

10:   Move-Agent(Φ𝐴
+ 𝑤𝑖

𝑐 , 𝑢𝑐) 

11:   Lock({𝑢𝑐}) 

12:   Make-Unoccupied(𝑣𝑐) 

13:   Unlock(𝐻𝑐) 

14:   Rotate-Cycle+(𝐶(𝐻𝑐), 𝑣𝑐) 

/* An agent to be placed is inside the handle 𝐻𝑐 . */ 

15:  else 

16:   Make-Unoccupied(𝑢𝑐) 

17:   Unlock(𝐻𝑐) 

18:   𝜌 ← 0 

19:   while 𝑆𝑃(Φ
𝐴
+ 𝑤𝑖

𝑐 ) ≠ 𝑣𝑐  do 

20:    Rotate-Cycle+(𝐶(𝐻𝑐), 𝑢𝑐) 

21:    𝜌 ← 𝜌 + 1 

22:   Lock(𝐻𝑐 ∖  𝑢𝑐 , 𝑣𝑐 ) 

23:   let 𝑦 ∈ 𝑉 ∖ ( (𝐻𝑗 ∖ {𝑢𝑗 , 𝑣𝑗 }) ∪𝑑
𝑗=𝑐+1 𝐶(𝐻𝑐)) 

24:   Move-Agent(Φ
𝐴
+ 𝑤𝑖

𝑐 , 𝑦) 

25:   Lock ({𝑦}) 

26:   Make-Unoccupied(𝑢𝑐) 

27:   Unlock(𝐻𝑐) 

28:   while 𝜌 > 0 do 

29:    Rotate-Cycle(𝐶(𝐻𝑐), 𝑢𝑐) 

30:    𝜌 ← 𝜌 − 1 

31:   Unlock( 𝑦 ) 

32:   Lock(𝐻𝑐 ∖  𝑢𝑐 , 𝑣𝑐 ) 

33:   Move-Agent(Φ
𝐴
+(𝑤𝑖

𝑐), 𝑢𝑐) 

34:   Lock ({𝑢𝑐}) 

35:   Make-Unoccupied 𝑣𝑐  

36:   Unlock(𝐻𝑐) 

37:   Rotate-Cycle+(𝐶(𝐻𝑐), 𝑣𝑐) 

38: Lock(𝐻𝑐 ∖  𝑢𝑐 , 𝑣𝑐 ) 

 

procedure Solve-Original-Cycle 

/* Places agents which destinations are within the 

initial cycle; it is assumed that unoccupied vertices 

of the goal arrangement of agents are located within 

the initial cycle. */ 

1: let 𝑢 ∈ 𝐶0 and 𝑣 ∈ 𝑉 ∖ 𝐶0 such that  𝑢, 𝑣 ∈ 𝐸 

2:  let [𝑤1
0 , 𝑤2

0 , … , 𝑤𝑙
0] = 𝐶 0  

 /* According to the assumption on the goal arrangement 

it holds that Φ𝐴
+ 𝑤1

0 =⊥ and Φ𝐴
+ 𝑤2

0 =⊥. */ 

3:  for 𝑖 = 3,4, … , 𝑙 do 

4:  Make-Unoccupied(𝑤1
0) 

5:  Lock({𝑤1
0}) 

6:  Make-Unoccupied(𝑤2
0) 

7:  Unlock({𝑤1
0}) 

8:  if Φ𝐴
+(𝑤𝑖

0) ≠ Φ𝐴(𝑤𝑖
0) then 

9:   Exchange-Agents (Φ𝐴
+(𝑤𝑖

0), Φ𝐴(𝑤𝑖
0), 𝑢, 𝑣) 

10: Make-Unoccupied(𝑤1
0) 

11: Lock({𝑤1
0}) 

Agent 𝑎 = ΦA
+(𝑤𝑖

𝑐) is 
outside 𝐻𝑐 ; move 𝑎 to 𝑢𝑐 . 

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒗𝒄 

𝐻1
 

 

𝒖𝒄 

𝐻1
 

 

𝒂 

𝐻1
 

 

𝐻𝑐 = 𝐻2
 

Bi-connected  
remainder 

𝑮′  

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒗𝒄 

𝐻1
 

 

𝒖𝒄 

𝐻1
 

 

𝒂 

𝐻1
 

 

𝐻𝑐 = 𝐻2
 

Bi-connected  
remainder 

𝒚 

𝐻1
 

 

𝑮′  

Agent 𝑎 = ΦA
+ 𝑤𝑖

𝑐  is out-
side 𝐶(𝐻𝑐); 𝐶(𝐻𝑐) rotated 
back; move 𝑎 into 𝑢𝑐 . 

Agent  𝑎 = ΦA
+(𝑤𝑖

𝑐) in 𝑢𝑐 ; 
rotate 𝐶(𝐻𝑐) once forward. 

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒗𝒄 

𝐻1
 

 

𝒖𝒄 

𝐻1
 

 

𝒂 

𝐻1
 

 

𝐻𝑐 = 𝐻2
 

Bi-connected  
remainder 

𝑮′  

Vertices 𝑤1
0 and 𝑤2

0 are 
made unoccupied. 

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒘𝟏
𝟎 

𝐻1
 

 

𝐻2
 

𝒘𝟐
𝟎 

𝐻1
 

 

𝒘𝟑
𝟎 

𝐻1
 

 𝒘𝟒
𝟎 

𝐻1
 

 
𝒘𝟓

𝟎 

𝐻1
 

 
𝒘𝟔

𝟎 

𝐻1
 

 
𝒘𝟕

𝟎 

𝐻1
 

 

Agent 𝑎 = ΦA
+(𝑤𝑖

𝑐) is inside 
𝐻𝑐 ; move 𝑎 outside 𝐶(𝐻𝑐). 

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒗𝒄 

𝐻1
 

 

𝒖𝒄 

𝐻1
 

 

𝒂 

𝐻1
 

 

𝐻𝑐 = 𝐻2
 

Bi-connected  
remainder 

𝒚 

𝐻1
 

 

𝑮′  
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12: Make-Unoccupied(𝑤2
0) 

13: Unlock({𝑤1
0}) 

 

procedure Exchange-Agents 𝑎, 𝑏, 𝑢, 𝑣  

/* Exchanges a pair of agents within the initial 

cycle of the handle decomposition. 

Parameters:  𝑎, 𝑏 - a pair of agents to be exchanged, 

𝑢, 𝑣 - a pair of neighboring vertices where 

𝑣 is used as a storage space. */ 

1: 𝑐 ← Φ𝐴 𝑣  
2: Make-Unoccupied 𝑢  

3: Move-Agent-Unoccupied 𝑣, 𝑢  

4: while 𝑆𝐴 𝑎 ≠ 𝑢 do 

5:  Rotate-Cycle+ 𝐶0, 𝑣  

6: Move-Agent-Unoccupied 𝑢, 𝑣  

7: Lock  𝑢   
8: Make-Unoccupied 𝑛𝑒𝑥𝑡↻(𝐶0, 𝑢)  

9: 𝜌 ← 0 

10: while 𝑆𝑃 𝑏 ≠ 𝑛𝑒𝑥𝑡↻(𝐶0, 𝑢) do 

11:  Rotate-Cycle+(𝐶0, 𝑢) 

12:  𝜌 ← 𝜌 + 1 

13: Make-Unoccupied(𝑝𝑟𝑒𝑣↻ 𝐶0, 𝑢 ) 

14: Move-Agent-Unoccupied(𝑣, 𝑢) 

15: Move-Agent-Unoccupied(𝑢, 𝑝𝑟𝑒𝑣↻ 𝐶0, 𝑢 ) 

16: Move-Agent-Unoccupied(𝑛𝑒𝑥𝑡↻ 𝐶0, 𝑢 , 𝑢) 

17: Move-Agent-Unoccupied(𝑢, 𝑣) 

18: while 𝜌 > 0 do 

19:  Rotate-Cycle(𝐶0, 𝑢) 

20:  𝜌 ← 𝜌 − 1 

21: Move-Agent-Unoccupied(𝑣, 𝑢) 

22: while 𝑆𝐴 𝑐 ≠ 𝑢 do 

23:  Rotate-Cycle+(𝐶0, 𝑣) 

24: Move-Agent-Unoccupied(𝑢, 𝑣) 

25: Unlock({𝑢}) 

 

 

The process of placing agents according to the given goal arrangement is for-

mally described as Algorithm 2. Agents, which goal positions are within the cur-

rently solved handle, are placed in a stack like manner. This process is carried out 

by a procedure Solve-Regular-Handle (iteration through the handle is at lines 7-

37). Let 𝐻𝑐 = [𝑢𝑐 , 𝑤1
𝑐 , 𝑤2

𝑐 , … , 𝑤ℎ𝑐

𝑐 , 𝑣𝑐] for 𝑐 ∈ {1,2, … , 𝑑} be a current handle. 

Suppose that an agent which goal position is in 𝑤𝑖
𝑐  for 𝑖 ∈ {1,2, … , ℎ𝑐}, that is an 

agent Φ𝐴
+(𝑤𝑖

𝑐), is processed in the current iteration. Inductively suppose that 

agents Φ𝐴
+(𝑤ℎ𝑐

𝑐 ),Φ𝐴
+(𝑤ℎ𝑐−1

𝑐 ), …,Φ𝐴
+(𝑤𝑖+1

𝑐 ) are located in vertices 𝑤ℎ𝑐−𝑖−1
𝑐 , 

𝑤ℎ𝑐−𝑖−2
𝑐 ,…, 𝑤1

𝑐  respectively. An analogical situation for the next agent Φ𝐴
+(𝑤𝑖+1

𝑐 ) 

must be produced at the end of the iteration. 

The agent Φ𝐴
+(𝑤𝑖

𝑐) is moved to the vertex 𝑢𝑐  and then the cycle 𝐶(𝐻𝑐) is posi-

tively rotated once which causes the agent Φ𝐴
+(𝑤𝑖

𝑐) to move to 𝑤1
𝑐  and agents 

Move 𝑎 into 𝑣; rotate 𝐶0 
forward such that 𝑏 ap-
pears in 𝑢+. 

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒗 

𝐻1
 

 𝒖 

𝐻1
 

 
𝒂 

𝐻1
 

 

𝐻2
 

𝑢− = 𝑝𝑟𝑒𝑣↻(𝐶0, 𝑢) 
𝑢+ = 𝑛𝑒𝑥𝑡↻(𝐶0, 𝑢) 

 

𝒃 

𝐻1
 

 

𝒖−
 

𝐻1
 

 
𝒖+

 

𝐻1
 

 

Exchange 𝑎 and 𝑏 (𝑎 ap-
pears in 𝑢−). 

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒗 

𝐻1
 

 𝒖 

𝐻1
 

 

𝒂 

𝐻1
 

 

𝐻2
 

𝑢− = 𝑝𝑟𝑒𝑣↻(𝐶0, 𝑢) 
𝑢+ = 𝑛𝑒𝑥𝑡↻(𝐶0, 𝑢) 

 

𝒃 

𝐻1
 

 

𝒖−
 

𝐻1
 

 
𝒖+

 

𝐻1
 

 

Rotate 𝐶0 back; move 𝑏 
from 𝑣 to 𝑢. 

𝐻1
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝒗 

𝐻1
 

 𝒖
 

𝐻1
 

 𝒂
 

𝐻1
 

 

𝐻2
 

𝑢− = 𝑝𝑟𝑒𝑣↻(𝐶0, 𝑢) 

𝑢+ = 𝑛𝑒𝑥𝑡↻(𝐶0, 𝑢) 

 

𝒃 

𝐻1
 

 𝒖−
 

𝐻1
 

 
𝒖+

 

𝐻1
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Φ𝐴
+(𝑤ℎ𝑐

𝑐 ),Φ𝐴
+(𝑤ℎ𝑐−1

𝑐 ),…,Φ𝐴
+(𝑤𝑖+1

𝑐 ) stacks in the cycle so that they are located in 

𝑤ℎ𝑐−𝑖
𝑐 , 𝑤ℎ𝑐−𝑖−1

𝑐 , …, 𝑤2
𝑐 . We have just described one iteration of stacking agents 

into the handle 𝐻𝑐 . However, the process has some difficulties. At least, two ma-

jor cases must be distinguished. In both cases, the first step is that internal vertices 

of the handle 𝐻𝑐  are locked (line 8 of Solve-Regular-Handle). 

If the agent Φ𝐴
+(𝑤𝑖

𝑐) is not located in the internal vertices of the handle 𝐻𝑐  

(line 9-14 of Solve-Regular-Handle) it is just moved to 𝑢𝑐 . This is possible since 

an invariant holds that both unoccupied vertices are located outside the internal 

vertices of the handle and the graph without the internal vertices of the handle is 

connected. This holds at the beginning, since both unoccupied vertices are expli-

citly moved outside the handle 𝐻𝑐  (lines 2-6 of Solve-Regular-Handle) and it is 

preserved through all the iterations. Observe that these movements do not affect 

agents already stacked in the handle. The agent Φ𝐴
+(𝑤ℎ𝑐

𝑐 ) is fixed in 𝑢𝑐  by locking 

𝑢𝑐  and then an unoccupied vertex is relocated to 𝑣𝑐  which makes the rotation of 

the cycle 𝐶(𝐻𝑐) possible. The positive rotation of 𝐶(𝐻𝑐) then finishes the itera-

tion. 

If the agent Φ𝐴
+(𝑤𝑖

𝑐) is already located in some of the internal vertices of the 

handle 𝐻𝑐  (lines 15-37 of Solve-Regular-Handle), the above process is reused but 

it must be preceded by relocating Φ𝐴
+(𝑤ℎ𝑐

𝑐 ) outside the handle. The vertex 𝑢𝑐  is 

made unoccupied and the cycle 𝐶(𝐻𝑐) is positively rotated until the agent 

Φ𝐴
+(𝑤𝑖

𝑐) gets outside the internal vertices of 𝐻𝑐 ; that is, Φ𝐴
+(𝑤𝑖

𝑐) appears in 𝑣𝑐 . 

Notice, that this series of rotations preserves the order of the already stacked 

agents. To restore the situation however, the cycle must be rotated back the same 

number of times. A vertex 𝑦 outside the already finished part of the graph (that is 

outside 𝐶(𝐻𝑐) and outside 𝐻𝑗  for 𝑗 > 𝑐) is selected; the agent Φ𝐴
+(𝑤𝑖

𝑐) is moved 

into 𝑦 and it is fixed there by locking. 

The vertex 𝑢𝑐  is made unoccupied again since the preceding process may 

move some agent into it (this is possible since 𝑤 alone cannot rule out the exis-

tence of a path from an unoccupied vertex to 𝑢𝑐  in the bi-connected graph; there 

is always an alternative path). The cycle is rotated back so that inductively sup-

posed placement of Φ𝐴
+(𝑤ℎ𝑐

𝑐 ),Φ𝐴
+(𝑤ℎ𝑐−1

𝑐 ),…,Φ𝐴
+(𝑤𝑖+1

𝑐 ) is restored. The situation 

is now the same as in the previous case with Φ𝐴
+(𝑤𝑖

𝑐) outside the handle. 

After the last iteration within the handle 𝐻𝑐  it holds that the agents 

Φ𝐴
+(𝑤ℎ𝑐

𝑐 ),Φ𝐴
+(𝑤ℎ𝑐−1

𝑐 ),…, Φ𝐴
+(𝑤1

𝑐) are located in vertices 𝑤ℎ𝑐

𝑐 ,𝑤ℎ𝑐−1
𝑐 ,…,𝑤1

𝑐  re-

spectively. Moreover it holds that unoccupied vertices are both outside the inter-

nal vertices of 𝐻𝑐 . Thus, the solving process can continue with the next handle in 

the same way while the already solved handles remain unaffected by the subse-

quent steps. Notice, that only one unoccupied vertex is sufficient for stacking 

agents into handles. See Figure 6 for detailed illustration. 
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Figure 6. A process of stacking an agent into a handle. Agents 𝑎1, 𝑎2, 𝑎3, and 𝑎4 are to be stacked 

into 𝐻𝑐  (that is, S𝐴
+(𝑎1) = 𝑤1

𝑐 , S𝐴
+(𝑎2) = 𝑤2

𝑐 , S𝐴
+(𝑎3) = 𝑤3

𝑐 , and S𝐴
+(𝑎4) = 𝑤4

𝑐); handles 𝐻𝑐+1 and 

𝐻𝑐+2 are already solved (that is, S𝐴
+ 𝑏1 = 𝑤1

𝑐+1,…, S𝐴
+ 𝑏5 = 𝑤5

𝑐+1, and S𝐴
+ 𝑔1 = 𝑤1

𝑐+2,…, 

S𝐴
+ 𝑔4 = 𝑤4

𝑐+1). Observe that the agent 𝑎2 is originally outside the handle while the agent 𝑎1 is 

inside. Stage (i) shows situation after agents 𝑎3 and 𝑎4 were stacked into the handle 𝐻𝑐 . Then vacant 

vertex is relocated to the connection vertex 𝑣𝑐 ; using empty 𝑣𝑐  𝐻𝑐  is rotated such that 𝑎1 appears in 

the second connection vertex 𝑢𝑐  (stages (ii), (iii), and (iv)). The handle 𝐻𝑐  then needs to be rotated 

back but before 𝑎1 must be moved outside the cycle associated with  𝐻𝑐  (stage (v)). Finally, the 

agent 𝑎1 is moved to the first connection vertex 𝑢𝑐  and 𝐻𝑐  is rotated once so that 𝑎1 appears in the 

first internal vertex of 𝐻𝑐 . The symbol _ stands for an anonymous agent. 
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The initial cycle 𝐶0 of the handle decomposition must be treated in a different 

way. Here, the second unoccupied vertex is utilized. An arrangement of agents 

within 𝐶0 can be regarded as a permutation. The task is to obtain the right permu-

tation corresponding to the goal arrangement. This can be achieved by exchanging 

several pairs of agents. More precisely, if an agent residing in a vertex of 𝐶0 dif-

fers from an agent that should reside in this vertex in the goal arrangement, this 

pair of agents is exchanged. The process is implemented by a procedure Solve-

Original-Cycle and by an auxiliary procedure Exchange-Agents for exchanging a 

pair of agents. 

The procedure Exchange-Agents expects that first two vertices of the initial 

cycle are unoccupied in the current arrangement. However, the function generally 

does not preserve this property. Hence, the vacancy of the first two vertices of the 

initial cycle must be repeatedly restored (lines 4-7 and 10-13 of Solve-Original-

Cycle). The process of exchanging a pair of agents 𝑎 and 𝑏 itself exploits a pair of 

vertices 𝑢 and 𝑣 where these two vertices are connected by an edge and it holds 

that 𝑢 ∈ 𝐶0 ∧ 𝑣 ∉ 𝐶0. The vertex 𝑣 is used as an auxiliary storage place. 

The need of two unoccupied vertices is imposed by the fact that an agent from 

𝐶0 to be stored in 𝑣 must be rotated into 𝑢 first. During this process, some vertex 

of the cycle must be unoccupied to make the rotation possible and the vertex 𝑣 

must be unoccupied as well to make storing possible. 

When exchanging the pair of agents 𝑎 and 𝑏 it is necessary to preserve order-

ing of the other vertices. First, an agent occupying the vertex 𝑣 is moved into the 

cycle 𝐶0 in order to make 𝑣 vacant (lines 1-3 of Exchange-Agents). Then the cycle 

is rotated until the agent 𝑎 appears in 𝑢 (since there was an agent in 𝑢 at the be-

ginning of the rotation, there is always some agent in 𝑢 after all the rotations) and 

the agent 𝑎 is stored in 𝑣 (lines 4-6 of Exchange-Agents). Next, the cycle 𝐶0 is 

rotated positively so that 𝑏 appears in 𝑛𝑒𝑥𝑡↻(𝐶0, 𝑢) (the next vertex to 𝑢 with 

respect to the positive orientation) while the number of rotations is recorded (lines 

10-12 of Exchange-Agents). 

Next, agents 𝑎 and 𝑏 are exchanged so that ordering of 𝑎 in the cycle 𝐶0 is the 

same as of 𝑏 before the exchange (lines 13-17 of Exchange-Agents). Then, the 

cycle is rotated in the negative direction recorded number of times so that the 

place within the cycle where 𝑎 was originally ordered appears in 𝑢; thus 𝑏 is or-

dered here (lines 18-20 of Exchange-Agents). Finally, the agent that has been 

located in 𝑣 before the exchange of agents 𝑎 and 𝑏, is put back into 𝑣 (lines 22-25 

of Exchange-Agents). 

3.1.3. Summary of Theoretical Properties and Real-life Extensions 

As the proof of soundness and completeness of the BIBOX algorithm are mainly 

technical, we refer the reader to the appendix where detailed proofs can be found. 

Regarding the proof of soundness it is necessary to verify that the following step 
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of the algorithm is always defined particularly at non-deterministic steps where 

existence of some object – vertex or path – is required (this concerns for example 

existence of paths at lines 1-3 of Move-Agent). Some special care needs to be 

devoted to verifying that its existence is ensured in the unlocked part of the graph. 

It can be shown that the worst-case time complexity of the BIBOX algorithm is 

𝒪  𝑉 3  with respect to the input graph 𝐺 =  𝑉, 𝐸 . Again, the detailed proof can 

be found in the appendix. It needs to be observed that at most |𝐴| agents need to 

be placed in regular handles. Each agent placement in the handle requires 𝒪(|𝑉|) 

rotations of the handle and the constant number of relocations of agents (Move-

Agent). It is not difficult to observe that single rotation by one position requires 

𝒪( 𝑉 ) steps hence we have 𝒪( 𝑉 2) steps per handle rotations. For each reloca-

tion of an agent, two vertex disjoint paths need to be found which can be done in 

worst-case time of 𝒪( 𝑉 ). Then agent needs to traverse the path. In the worst-

case, 𝒪( 𝑉 ) edges need to be traversed. An unoccupied vertex needs to be moved 

in front of the agent per each edge traversal. This has to be done carefully – for 

example, we cannot afford to search for a path to the front of the agent in the orig-

inal graph, as it is too much time consuming. Fortunately, the relocation of the 

unoccupied vertex can be carried out in 𝒪  𝑉   steps using the knowledge of the 

handle decomposition. In total, we have time of 𝒪 |𝐴| 𝑉 2  for placing agents 

into regular handles. 

Regarding the initial cycle, it is needed to observe that at most  𝐴 2 exchanges 

of pairs of agents are needed while the single exchange consumes 𝒪( 𝑉 ) steps. 

Altogether, the worst-case time complexity is 𝒪  𝑉 3 . Exactly the same calcula-

tion can be done for determining the total number of moves which is also 

𝒪  𝑉 3 . As the total number of moves is the upper bound for the makespan, the 

makespan of generated solution is 𝒪  𝑉 3  as well. 

The natural question is how to apply the BIBOX algorithm if there are more 

than two unoccupied vertices in the input instance (that is,  𝐴 <  𝑉 − 2). It is 

easy to adapt the algorithm to utilize additional unoccupied vertices when it is 

suitable and to ignore them if they are to cause unnecessary movement. The utiliz-

ing additional unoccupied vertices is done through replacement of the non-

deterministic selection of an unlocked unoccupied vertex (such as that at line 1 of 

Make-Unoccupied) by the selection of the nearest one (this is also done in the real 

implementation). On the other hand, if for example rotation of a handle is to be 

done due to unoccupied position in the handle, which is redundant in fact, then 

such a movement is automatically ignored. More details about this adaptation of 

the algorithm for sparse environments are given in [27]. 

Some further optimizations should be used in the real-life implementation to 

reduce the makespan of the produced solution. Here, various assumption are ex-

plicitly enforced in order to make the pseudo-code simpler (for example, the pre-

condition of having first two vertices of the initial cycle of the handle decomposi-
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tion unoccupied before a pair of vertices is exchanged within the cycle - lines 4-6 

of Solve-Original-Cycle). This approach should be avoided and lazier approach 

should be adopted in the real-life implementation (in the case of exchanging 

agents, locations of unoccupied vertices should be detected implicitly in subse-

quent steps by more sophisticated branching of the code). These kind of more 

complex branching of the algorithm is used in the experimental implementation. 

 The real-life implementation of procedures Solve-Regular-Handle and Solve-

Original-Cycle should also use more opportunistic selection of vertices to store 

agents (vertex 𝑦 - line 23 of Solve-Regular-Handle and vertices 𝑢, 𝑣 - line 1 of  

Solve-Original-Cycle). The nearest vertex to the target agent should be always 

used. Moreover, selection of these vertices within the procedure Solve-Original-

Cycle should be done not only at the beginning, but also in every iteration of the 

main loop. 

3.1.4. Making Solution Parallel 

A simple post-processing step needs to be done to obtain parallel solution of 

pCPF. Suppose to have a solution of Σ – denoted as 𝑆𝐴
≺ Σ  – as a sequence of 

moves; that is, 𝑆𝐴
≺ Σ = [𝑎1: 𝑢1 → 𝑣1; 𝑎2: 𝑢2 → 𝑣2; … ; 𝑎𝜁 : 𝑢𝜁 → 𝑣𝜁 ] with 𝑎𝑖 ∈ 𝐴 

and 𝑢𝑖 , 𝑣𝑖 ∈ 𝑉 meaning that an agent 𝑎𝑖  moves from 𝑢𝑖  to 𝑣𝑖  at time step 𝑖. Ac-

tually, such a sequential solution is produced by the BIBOX algorithm. Now, we 

need to distinguish which pairs of moves can be executed in parallel and which 

must be executed one by one sequentially. Following two definitions captures this 

intuition. 

 

Definition 5 (concurrent moves). A move 𝑎𝑘 : 𝑢𝑘 → 𝑣𝑘 ; 𝑘 ∈  1,2, … , 𝜁  is con-

current with a move 𝑎ℎ : 𝑢ℎ → 𝑣ℎ ; ℎ ∈  1,2, … , 𝜁  with ℎ < 𝑘 if 𝑎ℎ ≠ 𝑎𝑘 ,  

𝑢ℎ = 𝑣𝑘 ∧ 𝑣ℎ ≠ 𝑢𝑘 , and there is no other move 𝑟ℏ: 𝑢ℏ → 𝑣ℏ in 𝒮𝐴
≺ Σ  with 

ℎ < ℏ < 𝑘 such that  𝑢ℏ, 𝑣ℏ ∩ {𝑢ℎ , 𝑣ℎ , 𝑢𝑘 , 𝑣𝑘} ≠ ∅. Concurrent move are de-

noted as 𝑟ℎ : 𝑢ℎ → 𝑣ℎ ≼ 𝑟𝑘 : 𝑢𝑘 → 𝑣𝑘 . □ 

 

The definition captures the fact that although the moves are interfering they 

can be executed at the same time. The relation of concurrence is anti-reflexive due 

to the requirement on different agents involved and anti-symmetric due to the 

ordering of moves within the sequential solution. 

 

Definition 6 (dependent moves). A move 𝑎𝑘 : 𝑢𝑘 → 𝑣𝑘 ;  𝑘 ∈  1,2, … , 𝜁  is depen-

dent on a move 𝑎ℎ : 𝑢ℎ → 𝑣ℎ ; ℎ ∈  1,2, … , 𝜁  with ℎ < 𝑘 if  𝑢ℎ , 𝑣ℎ  ∩ {𝑢𝑘 , 𝑣𝑘} ≠

∅, either 𝑎ℎ = 𝑎𝑘  or 𝑢ℎ ≠ 𝑣𝑘 ∨ 𝑣ℎ = 𝑢𝑘 , and there is no other move 𝑎ℏ: 𝑢ℏ → 𝑣ℏ 

in 𝒮𝐴
≺ Σ  such that ℎ < ℏ < 𝑘 such that  𝑢ℏ, 𝑣ℏ ∩ {𝑢ℎ , 𝑣ℎ , 𝑢𝑘 , 𝑣𝑘} ≠ ∅. The nota-

tion of dependence is 𝑎ℎ : 𝑢ℎ → 𝑣ℎ ≺ 𝑟𝑘 : 𝑢𝑘 → 𝑣𝑘 . □ 
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The relation of dependence of moves is reflexive and anti-symmetric due to 

the ordering of moves within the sequential solution. It puts into relation moves 

that must be executed sequentially as they either concern the same agent or they 

interfere spatially through shared vertices. Notice that the definition of depen-

dence is complementary to the definition of concurrence. 

It is not difficult to show that every function 𝑡:  𝒮𝑅
≺ Σ ⟶ {1,2, … , 𝜁} that sa-

tisfies conditions that 𝑡(𝑎ℎ : 𝑢ℎ → 𝑣ℎ) < 𝑡(𝑎𝑘 : 𝑢𝑘 → 𝑣𝑘) whenever 𝑎ℎ : 𝑢ℎ →

𝑣ℎ ≺ 𝑎𝑘 : 𝑢𝑘 → 𝑣𝑘  and 𝑡(𝑎ℎ : 𝑢ℎ → 𝑣ℎ) ≤ 𝑡(𝑎𝑘 : 𝑢𝑘 → 𝑣𝑘) whenever 𝑎ℎ : 𝑢ℎ →

𝑣ℎ ≼ 𝑎𝑘 : 𝑢𝑘 → 𝑣𝑘  correctly assigns execution time steps to moves with respect to 

the definition of pCPF. Particular time-step assignment function 𝑡 can be found by 

the critical path method [14] for instance. Schedule obtained from the critical 

path method is optimal in certain sense – details are discussed in [27]. 

3.2.  BIBOX-: An Algorithm for a Bi-connected Graphs 

 Exploiting Optimal Macros 

The drawback of the BIBOX algorithm is that it requires at least two unoccupied 

vertices. Observe that the second unoccupied vertex is necessary only in the last 

stage where agents are placed into the initial cycle. Thus, if there is only one un-

occupied vertex, the BIBOX algorithm would be able to place almost all the 

agents except those whose goal positions are within the initial cycle. 

It is possible to apply the MIT algorithm [8] to finish placement of agents in 

the initial cycle. The MIT algorithm is capable of solving instances on all the non-

trivial bi-connected graphs with just one unoccupied vertex (the instance with just 

one unoccupied vertex may be unsolvable; indeed, the MIT algorithm can detect 

such a case). Thus if we combine both algorithms, the combined algorithm can 

proceed as BIBOX for placing agents into all the internal vertices of handles and it 

can proceed as MIT over the remaining initial cycle and the first handle. Unfortu-

nately, the process how MIT places agents generates excessively long sequences 

of moves (see experiments in Section 4). 

Despite above facts the idea of using alternative solving process for the initial 

cycle is still promising. Since the initial cycle and the first handle constitute a 

structurally simple graph (these graphs are called -like graphs in the following 

text), it is feasible to try to solve selected instances of pCPF over these graphs 

makespan optimally. The good candidate instances for optimal solving are those 

from which an overall solution of any instance over the graph can be composed. 

Moreover, the optimal solutions to selected instances can be pre-computed and 

stored in the database for future use. Since solutions from that the overall solution 

is composed are optimal, it is reasonable to expect that the makespan of the result-

ing solution will be short as well. Nevertheless, this is a conjecture that should be 

proven. 
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3.2.1. Algebraic Foundation of the Algorithm 

The bi-connected graph, whose handle decomposition consists of an initial cycle 

and a single handle, represents structurally the simplest bi-connected graphs over 

that the non-trivial rearrangement of agents is possible supposed there is a single 

unoccupied vertex (the structurally simpler bi-connected graph is a cycle where 

only rotations of agents are possible). These graphs will be referred to as -like 

graphs. 

 

Definition 7 (-like graph). Let 𝑋 = [𝑥 1 , 𝑥 2 , … , 𝑥 𝛼 ], 𝐵 = [𝑦 1 , 𝑦 2 , … , 𝑦 𝛽 ], and 

𝑍 = [𝑧 1 , 𝑧 2 , … , 𝑧 𝛾 ] be three sequences of vertices satisfying that 𝛼 ≥ 1 ∧ 𝛽 ≥ 2 ∧

𝛾 ≥ 1. An undirected graph 𝜃 𝑋, 𝑌, 𝑍 = (𝑉𝜃 , 𝐸𝜃) for such three sets is con-

structed as follows: 𝑉𝜃 = 𝑋 ∪ 𝑌 ∪ 𝑍 and 𝐸𝜃 = { 𝑥 1, 𝑥 2 ,  𝑥 2, 𝑥 3 , …,  𝑥 𝛼−1 , 𝑥 𝛼  ; 
{𝑦 1 , 𝑦 2}, {𝑦 2 , 𝑦 3}, …, {𝑦 𝛽−1, 𝑦 𝛽 };  𝑧 1, 𝑧 2 ,  𝑧 2 , 𝑧 3 , …, {𝑧 𝛾−1 , 𝑧 𝛾 }; {𝑥 1 , 𝑦 1}, {𝑦 𝛽 , 𝑧 𝛾 }, 

{𝑦 1 , 𝑧 1}, {𝑥 𝛼 , 𝑦 𝛽 }}. An undirected graph 𝐺 = (𝑉, 𝐸) is called a -like graph if 

there exist three sets of vertices 𝑋, 𝑌, and 𝑍 as above such that 𝐺 is isomorphic to 

𝜃 𝑋, 𝑌, 𝑍 . □ 

 

The notation of the set union is 

used over sequences in the definition 

of the set of vertices 𝑉𝜃 . This is an 

abbreviation for the union of ranges of 

individual sequences. Notice that 

𝜃 𝑋, 𝑌, 𝑍  itself is a -like graph and 

𝜃 𝑋, 𝑌, 𝑍  may be identical to 𝐺 if sets 

𝑋, 𝑌, and 𝑍 consist of vertices of 𝐺. 

Hence, no distinction is made between 

𝐺 and 𝜃 𝑋, 𝑌, 𝑍  in the following text 

and the notation 𝜃 𝑋, 𝑌, 𝑍  is used exclusively. An example of -like graph is 

shown in Figure 7. 

There are 𝒪( 𝑉 2) non-isomorphic -like graphs over a set of vertices 𝑉 (con-

sider the set 𝑉 linearly ordered and partitioned over sub-sets 𝑋, 𝑌, and 𝑍, where 

these sub-sets form continuous sub-sequences within the ordered 𝑉; there is 

𝒪( 𝑉 2) possibilities to place separation points among 𝑋, 𝑌, and 𝑍). However, the 

number of all the possible instances of CPF with a single unoccupied vertex on a 

fixed -like graph 𝜃 = (𝑉𝜃 , 𝐸𝜃 ) is  𝑉𝜃  ! since the difference between the initial 

and the goal arrangement can be regarded as a permutation of  𝑉𝜃   elements. 

Hence, it is not feasible to pre-compute and to store optimal solutions to all the 

instances of the problem on a fixed -like graph. The number of selected in-

stances should be bounded polynomially to make their pre-computation and stor-

𝑿 = [𝑥 1 , 𝑥 2 , 𝑥 3]  
𝒀 = [𝑦 1, 𝑦 2, 𝑦 3]  
𝒁 = [𝑧 1, 𝑧 2]  

Figure 7. An example of -like graph. -like 

graphs are bi-connected graphs consisting of a 

cycle and one handle. 

𝒙 𝟏 𝒚 𝟏 

𝒚 𝟐 

𝒚 𝟑 

𝒙 𝟐 

𝒙𝟑 

𝒛 𝟏 

𝒛 𝟐 𝜽(𝑋, 𝑌, 𝑍) 
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ing feasible. At the same time, it should be possible to compose solution to any 

instance over the -like graph from the solutions to selected instances. 

Without loss of generality, assume that the unoccupied vertex within the initial 

and the goal arrangement of an instance over 𝜃 = (𝑉𝜃 , 𝐸𝜃) is always 𝑦 1 (the un-

occupied vertex can be simply relocated to any vertex). The algebraic structure of 

such instances over 𝜃 is isomorphic to the group of all the permutations of 

 𝑉𝜃  − 1 elements which is called a symmetric group on  𝑉𝜃  − 1 elements and it 

is denoted 𝑆𝑦𝑚( 𝑉𝜃  − 1) [2, 17]. 

A transposition is a permutation, which exchanges a pair of elements and 

keeps other elements fixed. It is well known that 𝑆𝑦𝑚( 𝑉𝜃  − 1) can be generated 

by the set of transpositions. A permutation is called odd if it can be composed of 

an odd number of transpositions. A permutation is called even if it can be com-

posed of an even number of transpositions. A permutation is either odd or even 

but not both. In fact, if a permutation is assigned a sign by a sgn function which is 

+1 if the permutation is even and −1 if the permutation is odd, then sgn 

represents a group homomorphism between 𝑆𝑦𝑚( 𝑉𝜃  − 1) and the group 

( −1, +1 ,∗, +1, −) where multiplication ∗ corresponds to the product of two 

permutations, neutral element +1 corresponds to the identical permutation and 

unary minus – corresponds to the inverse permutation. 

Another simple fact, that can be derived from above statements, is that the set 

of all an even permutations on the same set of elements forms a proper sub-group 

of 𝑆𝑦𝑚( 𝑉𝜃  − 1); it is called an alternating group on  𝑉𝜃  − 1 elements and it is 

denoted as 𝐴𝑙𝑡( 𝑉𝜃  − 1). 

A rotation along a 3-cycle is a permutation that rotates given three elements 

and keeps other fixed. It is easy to compose any even permutation from rotations 

along 3-cycles on the same set of elements [8]. As rotation along a 3-cycle itself it 

is an even permutation it can never generate an odd permutation. 

The number of distinct transpositions over 𝑛 elements is 𝒪(𝑛2) and the num-

ber of distinct rotations along 3-cycles over 𝑛 elements is 𝒪(𝑛3). This is poly-

nomial hence, optimal solutions of corresponding instances seem to be good can-

didates for storing into the database. Moreover, if the corresponding instances are 

solvable, then they satisfy the property that a solution to any (in the case of trans-

positions) or almost any (in the case of 3-cycle rotations) instance on the same 

graph can be composed of them. 

Suppose to have a -like graph 𝜃(𝑋, 𝑌, 𝑍) = (𝑉𝜃 , 𝐸𝜃) with 𝑋 = [𝑥 1 , 𝑥 2 , … , 𝑥 𝛼 ], 
𝑌 = [𝑦 1 , 𝑦 2 , … , 𝑦 𝛽 ], and 𝑍 = [𝑧 1 , 𝑧 2 , … , 𝑧 𝛾 ] and a set of agents 

𝐴 = {𝑎1 , 𝑎2 , … , 𝑎 𝑉𝜃  −1} for the following three definitions. 

 

Definition 8 (even and odd case). Let 𝑆𝐴
0 be an initial arrangement of agents such 

that 𝑆𝐴
0(𝑎) ≠ 𝑦 1 ∀𝑎 ∈ 𝐴 (that is, 𝑦 1 is initially unoccupied) and let 𝑆𝐴

+ be a goal 

arrangement of agents such that 𝑆𝐴
+(𝑎) ≠ 𝑦 1 ∀𝑎 ∈ 𝐴 (that is, 𝑦 1 is finally unoccu-
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pied). If 𝑆𝐴
+ forms an even permutation with respect to 𝑆𝐴

0, then an instance of 

pCPF Σ = (𝜃 = (𝑉𝜃 , 𝐸𝜃 ), 𝐴, 𝑆𝐴
0, 𝑆𝐴

+) is called an even case. If 𝑆𝐴
+ forms an odd 

permutation with respect to 𝑆𝐴
0, then the instance Σ is called an odd case. □ 

 

Definition 9 (transposition case). Let 𝑆𝐴
0 be an initial arrangement such that 

𝑆𝐴
0(𝑎) ≠ 𝑦 1 ∀𝑎 ∈ 𝐴 (that is, 𝑦 1 is initially unoccupied) and let 𝑆𝐴

+ be a goal ar-

rangement such that there exist 𝑏1 , 𝑏2 ∈ 𝐴 with 𝑏1 ≠ 𝑏2 for which it holds that 

𝑆𝐴
+ 𝑏1 = 𝑆𝐴

0 𝑏2  ∧ 𝑆𝐴
+ 𝑏2 = 𝑆𝐴

0 𝑏1  ∧  ∀𝑎 ∈ 𝑃  𝑎 ≠ 𝑏1 ∧ 𝑎 ≠ 𝑏2 ⇒ 𝑆𝐴
+ 𝑎 =

𝑆𝐴
0(𝑎) (agents 𝑏1 and 𝑏2 are to be exchanged while locations of other agents are 

kept; consequently 𝑦 1 is finally unoccupied). Then an instance of pCPF Σ = (𝜃 =

(𝑉𝜃 , 𝐸𝜃 ), 𝐴, 𝑆𝐴
0, 𝑆𝐴

+) is called a transposition case with respect to 𝑏1 and 𝑏2. □ 
 

 
 

Figure 8. An example of transposition and 3-cycle rotation cases a -like graph. The transposition 

case is shown for vertices 𝑏1 = 𝑧 1 and 𝑏2 = 𝑦 3. The 3-cycle rotation case is shown for vertices 

𝑐1 = 𝑥 1 , 𝑐2 = 𝑦 2, and 𝑐3 = 𝑥 3. A solution to any instance over -like graph with one vertex unoc-

cupied can be composed of solutions to transposition and 3-cycle rotation cases. 

 

Definition 10 (3-cycle rotation case). Let 𝑆𝐴
0 be an initial arrangement such that 

𝑆𝐴
0(𝑎) ≠ 𝑦 1 ∀𝑎 ∈ 𝐴 (𝑦 1 is initially unoccupied). Let 𝑆𝐴

+ be a goal arrangement 

such that there exist pair wise distinct 𝑐1 , 𝑐2 , 𝑐3 ∈ 𝐴 and it holds that 𝑆𝐴
+ 𝑐1 =

𝑆𝐴
0 𝑐2  ∧ 𝑆𝐴

+ 𝑐2 = 𝑆𝐴
0 𝑐3  ∧ 𝑆𝐴

+ 𝑐3 = 𝑆𝐴
0 𝑐1  ∧  ∀𝑎 ∈ 𝐴  𝑎 ≠ 𝑐1 ∧ 𝑎 ≠ 𝑐2 ∧

𝑎 ≠ 𝑐3 ⇒ 𝑆𝐴
+ 𝑎 = 𝑆𝐴

0(𝑎) (agents 𝑐1, 𝑐2, and 𝑐3 are to be rotated while positions 

of other agents are kept; 𝑦 1 is finally unoccupied). Then an instance of pCPF 

Σ = (𝜃 = (𝑉𝜃 , 𝐸𝜃), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) is called a 3-cycle rotation case with respect to 

𝑐1, 𝑐2, and 𝑐3. □ 

 

See Figure 8 for illustrations of transposition case and 3-cycle rotation case. 

Notice, that both cases would be worthless if they are not solvable. Fortunately, 

several positive results regarding solvability of these cases are shown in [8]. Fol-

lowing propositions and corollaries recall some of them (without proofs). 

 

𝒙 𝟏 
𝒚 𝟏 

𝒚 𝟐 

𝒚 𝟑 

𝒙 𝟐 

𝒙 𝟑 

𝒛 𝟏 

𝒛 𝟐 

𝜽(𝑋, 𝑌, 𝑍) 
 

𝑺𝑨
𝟎  

𝑺𝑨
+~ 

 𝑎1
 

 𝑎2
 

 𝑎3
 

 𝑎4
 

 𝑎5
 

 𝑎6
 

 𝑎7
 

𝒄𝟏 = 𝒙 𝟏 
𝒚 𝟏 

𝒄𝟐 = 𝒚 𝟐 

𝒚 𝟑 

𝒙 𝟐 

𝒄𝟑 = 𝒙 𝟑 

𝒛 𝟏 

𝒛 𝟐 
 𝑎1

 
 𝑎2

 

 𝑎3
 

 𝑎4
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 𝑎7
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+′  

𝒙 𝟏 
𝒚 𝟏 

𝒚 𝟐 
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𝒙 𝟐 

𝒙 𝟑 

𝒃𝟏 = 𝒛 𝟏 

𝒛𝟐 

 𝑎1
 

 𝑎2
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 𝑎6
 

 𝑎7
 

Transposition case Σ′ = (𝜃(𝑋, 𝑌, 𝑍), 𝐴, 𝑆𝐴
0, 𝑆𝐴

+′) 
 

3-cycle rotation case Σ~ = (𝜃(𝑋, 𝑌, 𝑍), 𝐴, 𝑆𝐴
0, 𝑆𝐴

+~) 
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Proposition 2 (solvability of an odd case) [8]. An odd case of pCPF Σ =

(𝜃(𝑋, 𝑌, 𝑍), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) with  𝑋 ≠ 2 ∨  𝑌 ≠ 3 ∨  𝑍 ≠ 2 is solvable if and only if 

𝜃 contains a cycle of an odd length.  

 

Let the -like graph 𝜃(𝑋, 𝑌, 𝑍) with  𝑋 = 2 ∧  𝑌 = 3 ∧  𝑍 = 2 be denoted as 

𝜃(2,3,2). It represents a special case where some instances over it are solvable 

and some are unsolvable. The case of 𝜃(2,3,2) will be treated separately. 

Since the transposition is an odd permutation, the following corollary is a di-

rect consequence of the above proposition. 

 

Corollary 1 (solvability of transposition case) [8]. A transposition case Σ =

(𝜃(𝑋, 𝑌, 𝑍), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) with 𝜃(𝑋, 𝑌, 𝑍) non-isomorphic to 𝜃(2,3,2) is solvable if 

and only if 𝜃(𝑋, 𝑌, 𝑍) contains a cycle of an odd length.  

 

Proposition 3 (solvability of an even case) [8]. An even case 

Σ = (𝜃(𝑋, 𝑌, 𝑍), 𝐴, 𝑆𝐴
0, 𝑆𝐴

+) with 𝜃(𝑋, 𝑌, 𝑍) non-isomorphic to 𝜃(2,3,2) is always 

solvable.  

 

Analogically, since rotation along 3-cycle is an even permutation, the follow-

ing corollary is a direct consequence of the above proposition. 

 

Corollary 2 (solvability of 3-cycle rotation case) [8]. A 3-cycle rotation case 

Σ = (𝜃(𝑋, 𝑌, 𝑍), 𝐴, 𝑆𝐴
0, 𝑆𝐴

+) with 𝜃(𝑋, 𝑌, 𝑍) non-isomorphic to 𝜃(2,3,2)  is always 

solvable.  

  

Similar results hold not only for -like graphs, but also for the more general 

class of non-trivial bi-connected graphs non-isomorphic to 𝜃(2,3,2) [8]. The 

important properties directly exploited by the algorithm are that if the input graph 

does not contain a cycle of an odd length and the initial and the goal arrangement 

of agents form an odd permutation then the instance is unsolvable. Similarly, if 

the input and the goal arrangements form an even permutation (and the input 

graph is non-isomorphic to 𝜃(2,3,2)) then the instance is always solvable (ob-

serve that, this is the corollary of the BIBOX algorithm and Proposition 3). 

The following propositions are important with respect to the length of the 

overall solution composed of the optimal solutions to the transposition cases and 

3-cycle rotation cases. Propositions appeared in [2, 8, 17] but most likely they are 

just a general knowledge. 

Proposition 4 (solving an odd case). A solution to any odd case on a -like graph 

𝜃 = (𝑉𝜃 , 𝐸𝜃) can be composed of at most  𝑉𝜃  − 2 solutions to transposition cases 

on the same graph.  
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Similarly, a solution of an even case can be composed of at most  𝑉𝜃  − 2 so-

lutions to transposition cases as well. 

 

Proposition 5 (solving an even case). A solution to any even case on a -like 

graph 𝜃 = (𝑉𝜃 , 𝐸𝜃) can be composed of at most  𝑉𝜃  − 2 solutions to 3-cycle 

rotation cases on the same graph.  

 

 Proofs are shown within the pseudo-code of the BIBOX- algorithm. The 

above facts justify that transposition and 3-cycle rotation cases are suitable for 

optimal solving. The corresponding optimal solutions are hence good building 

blocks for solutions to general instances over -like graphs. It is out of scope of 

this work to give any detailed description of how to compute optimal solutions of 

instances over -like graphs. Applications of several variants of iterative deepen-

ing search for this task were studied in [21]. 

The case of -like graph 𝜃(2,3,2) represents a situation where there is no sim-

ple characterization of solvable instances. Since it is a small graph, it is feasible to 

pre-compute and to store optimal solutions to all the solvable instances over it. 

The solving process of the new algorithm over the initial cycle and the first 

handle is based on the knowledge of how to solve instances over -like graphs. In 

this context, it is necessary to guarantee that insolvability of an sub-instance over 

𝜃(2,3,2) does not contradict solvability of the instance as the whole if the initial 

cycle and the first handle unluckily become isomorphic to 𝜃(2,3,2). The follow-

ing lemma states that this contradictory case can be always avoided. This crucial 

treatment ensures the upcoming algorithm to proceed correctly. The proof the 

lemma enumerates all the possible cases and for its length is omitted here (in can 

be found [27]). 

 

Lemma 3 (avoiding 𝜃(2,3,2)). If a non-trivial bi-connected graph 𝐺 is non-

isomorphic to 𝜃(2,3,2) then it subsumes a -like sub-graph 𝜃(𝑋, 𝑌, 𝑍) non-

isomorphic to 𝜃(2,3,2). Moreover, if 𝐺 contains an odd cycle then it subsumes 

𝜃(𝑋, 𝑌, 𝑍) non-isomorphic to 𝜃(2,3,2) that additionally satisfies that 2 ∤  𝑋 +  𝑌  

(that is, sets 𝑋 and 𝑌 together form an odd cycle). Having a -like sub-graph satis-

fying above conditions, there exists a handle decomposition of 

𝒟 =  𝐶0, 𝐻1 , 𝐻2 , … , 𝐻𝑑   of 𝐺 such that 𝜃 𝑋, 𝑌, 𝑍 = 𝐶0 ∘ 𝐻1. (𝐶0 ∘ 𝐻1 denotes the 

sub-graph of 𝐺 constructed by addition of the handle 𝐻1 to the initial cycle 𝐶0).  

3.2.2. Pseudo-code of the BIBOX- Algorithm 

The new algorithm is called BIBOX- according to the concept of -like graph. 

Let Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) be an input pCPF instance on a bi-connected 

graph with a single unoccupied vertex. If 𝐺 is non-isomorphic to 𝜃(2,3,2) and it 

subsumes a cycle of an odd length then a handle decomposition 𝒟 =



Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments  55 

 𝐶0 , 𝐻1, 𝐻2, … , 𝐻𝑑   of 𝐺 such that 𝐶0 is of an odd length and 𝐶0 ∘ 𝐻1 is non-

isomorphic to 𝜃(2,3,2) is computed. Lemma 3 guarantees that this is possible. If 

𝐺 is isomorphic to 𝜃(2,3,2) then 𝐶0 ∘ 𝐻1 corresponds to 𝐺. If 𝐺 does not contain 

an odd cycle then some arbitrary handle decomposition 𝒟 is computed. 

As in the case of BIBOX algorithm, the main phase of the algorithm requires 

that the finally unoccupied vertex is located in the initial cycle 𝐶0. Thus, a func-

tion Transform-Goal is applied to modify the goal arrangement 𝑆𝐴
+ by shifting 

goal locations of agents along a path 𝜑 to relocate the unoccupied vertex into 𝐶0. 

The modified instance is then solved by the process implemented by the BIBOX- 

algorithm. The solution is finished by calling a function Finish-Solution which 

shifts agents back along the path 𝜑. 

 The BIBOX-  algorithm proceeds according to the handle decomposition 𝒟 

from the last handle 𝐻𝑑  to the second handle 𝐻2. The process of placement of 

agents within the individual handles of the handle decomposition is the same as in 

the case of the BIBOX algorithm. The problem of reaching the goal arrangement 

of agents within the first handle 𝐻1 and the initial cycle 𝐶0 is solved as an instance 

over -like graph formed by 𝐶0 and 𝐻1. It is supposed that the optimal solutions 

to all the solvable transposition and 3-cycle rotation cases over -like graphs of 

the size up to the certain limit are pre-computed and stored in the database. Next, 

it is supposed that the optimal solutions to all the instances over the -like graph 

𝜃(2,3,2) are pre-computed into the database as well. A solution to an instance 

over the -like graph is composed of the corresponding optimal solutions stored 

in the database. If the required record is not stored in the database (which may 

happen when the size of the -like graph is greater than the limit) an alternative 

solving process must be used. For example, the solving process implemented by 

the MIT algorithm can be employed in such a case. 

The pseudo-code of the BIBOX- algorithm is listed as Algorithm 3. It reuses 

primitives, functions, and procedures introduced within the context of BIBOX. For 

simplicity, it is supposed that all the required optimal solutions are stored in the 

database (so there is no treatment when the size of the -like graph exceeds the 

limit). 

The database with optimal solutions to selected instances over -like graphs is 

represented by three tables: 𝑡𝑎𝑏𝑙𝑒𝑇
𝜃

, 𝑡𝑎𝑏𝑙𝑒3
𝜃 , and 𝑡𝑎𝑏𝑙𝑒232

𝜃 . Optimal solutions to 

transposition cases over a particular -like graph 𝜃 are stored in the table 𝑡𝑎𝑏𝑙𝑒𝑇
𝜃  

– records are addressed by a pair of vertices in which agents are transposed. Simi-

larly, the optimal solutions to 3-cycle rotation cases are stored in the table 𝑡𝑎𝑏𝑙𝑒3
𝜃  

– records are addressed by a triple of vertices in which agents are rotated. Finally, 

the table 𝑡𝑎𝑏𝑙𝑒232
𝜃  contains optimal solutions to all the solvable instances over the 

-like graph 𝜃(2,3,2) - records are addressed by permutations determined by the 

difference between the initial and the goal arrangement of agents (a function dif-

ference is used for calculating this differencing permutation). 
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Algorithm 3. The BIBOX- algorithm. The algorithm solves a given pCPF on a non-trivial bi-

connected graph with exactly one unoccupied vertex. It employs a pattern database containing op-

timal solutions to sub-problems over the initial cycle and the first handle. Functions and procedures 

from Algorithm 1 and Algorithm 2 are reused here. 

 

function BIBOX--Solve(𝐺 =  𝑉, 𝐸 , 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) : pair 

/* Top level function of the BIBOX-𝜃 algorithm; solves 

a given instance of pCPF with a single unoccupied vertex. 

Parameters: 𝐺 - a graph modeling the environment, 

𝐴 - a set of agents, 

𝑆𝐴
0 - an initial arrangement of agents, 

𝑆𝐴
+ - a goal arrangement of agents. */ 

1: if 𝐺 contains a cycle of an odd length then 

2:  let 𝒟 =  𝐶0, 𝐻1, 𝐻2, … , 𝐻𝑑  be a handle decomposition of 𝐺 

3:   such that 𝐶0 is of an odd length and 𝐶0 ∘ 𝐻1 is 

4:   a -like sub-graph non-isomorphic to 𝜃(2,3,2) if possible 

/* if this is not possible then 𝐺 is isomorphic to 𝜃(2,3,2) */ 

5: else 

6:  let 𝒟 =  𝐶0, 𝐻1, 𝐻2, … , 𝐻𝑑  be a handle decomposition of 𝐺 

  /* 𝐶0 ∘ 𝐻1 is always non-isomorphic to 𝜃(2,3,2) */ 

7: (𝑆𝑃
+, 𝜑) ← Transform-Goal(𝐺, 𝐴, 𝑆𝐴

+, 𝐶0) 

8: 𝜉 ← 1 

9: 𝑆𝐴 ← 𝑆𝐴
0 

 

10: for 𝑐 = 𝑑, 𝑑 − 1, … ,2 do 

11:  if  𝐻𝑐  > 2 then 

12:   Solve-Regular-Handle(𝑐) 

13: let [𝑢1 , 𝑤1
1 , 𝑤2

1 , … , 𝑤ℎ1

1 , 𝑣1] = 𝐻1 

14: Lock (𝑉) 

15: Unlock(𝐶0 ∪ 𝐻1) 

16: Make-Unoccupied(𝑢1) 

17: let 𝜋, 𝜏 be two vertex disjoint paths connecting 

18:  𝑢1 and 𝑣1 in 𝐶0 

19:  𝜋 ← 𝜋 ∖ {𝑢1 , 𝑣1} 

20:  𝜏 ← 𝜏 ∖ {𝑢1 , 𝑣1} 

21: -BOX-Solve(𝜃 𝜋, 𝐻1, 𝜏 , 𝐶0 ∪ 𝐻1, 𝑆𝑃 , 𝑆𝑃
+) 

22: Finish-Solution(𝜑) 

23: return (𝜉, [𝑆𝐴
0 , 𝑆𝐴

1 , … , 𝑆𝐴
𝜉

]) 

 

procedure -BOX-Solve(𝜃 𝑋, 𝑌, 𝑍 , 𝑉+, 𝑆𝜃
0 , 𝑆𝜃

+) 

/* Solves a sub-problem over a given -like subgraph; a set of 

goal vertices into which agents must be placed is specified. 

Parameters:  𝜃 𝑋, 𝑌, 𝑍  - a -like subgraph modeling the sub-problem 

    𝑉+ - a set of goal vertices 

    𝑆𝜃
0 - an initial arrangement of agents 

    𝑆𝜃
+ - a goal arrangement of agents 

(only 𝑆𝜃
+|𝑉+ is considered) */ 

1: let  𝑉𝜃 , 𝐸𝜃 = 𝜃 𝑋, 𝑌, 𝑍  

2: let {𝜍1 , 𝜍2, … , 𝜍 𝑉+ −1} = {𝜍|𝑆𝜃
0(𝜍) ∈ 𝑉+} 

 

 

Handle decomposition 

𝓓 = [𝐶0 , 𝐻1, 𝐻2]  

 𝐻1
 

 𝐻2
 

 𝐻1
 

 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝑮 = (𝑉, 𝐸) 

A -like graph 𝜃(𝜋, 𝐻1 , 𝜏)  

matched over 𝐶0 and 𝐻1. 

 𝑯𝟏
 

 𝐶(𝐻2) 

 𝐶(𝐻1) 

𝐶0
 

𝝅 

𝝉 

 𝐻2
 

 𝜽(𝜋, 𝐻1, 𝜏) 

𝒖𝟏 

𝒗𝟏 
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3: if  𝑋 = 2 ∧  𝑌 = 3 ∧  𝑍 = 2 then 

4:   𝜔 ← 𝑡𝑎𝑏𝑙𝑒232
𝜃 [difference(𝑆𝜃

0 , 𝑆𝜃
+)] 

5:  if 𝜔 = 𝑁𝐼𝐿 then fail /* the instance is unsolvable */ 

6:  Apply-Macro(𝜔, 𝑆𝜃)  

7: else 

8:  𝑆𝜃 ← 𝑆𝜃
0 

9:  if 𝐺𝜃  contains a cycle of an odd length then 

10:   for 𝑖 = 1,2, … , |𝑉+| − 2 do 

11:    if 𝑆𝜃(𝜍𝑖) ≠ 𝑆𝜃
+(𝜍𝑖) then 

12:     𝑆𝜃 ← Apply-Macro(𝑡𝑎𝑏𝑙𝑒𝑇
𝜃  𝑆𝜃 𝜍𝑖 , 𝑆𝜃

+ 𝜍𝑖  , 𝑆𝜃)  

/*𝐺𝜃  does not contain any odd cycle */ 

13:  else 

14:   if 𝑆𝜃
+ constitutes an odd permutation w.r.t. 𝑆𝜃  then 

15:    fail /* the instance is unsolvable */ 

/* 𝑆𝜃
+ constitutes an even permutation w.r.t. 𝑆𝜃  */ 

16:   else 

17:    for 𝑖 = 1,2, … , |𝑉+| − 3 do 

18:     if 𝑆𝜃(𝜍𝑖) ≠ 𝑆𝜃
+(𝜍𝑖) then 

19:        let 𝑣 ∉ {𝑆𝜃 𝜍𝑖 , 𝑆𝜃
+ 𝜍1 , 𝑆𝜃

+ 𝜍2 , … , 𝑆𝜃
+ 𝜍𝑖 } 

20:        𝑆𝜃 ← Apply-Macro(𝑡𝑎𝑏𝑙𝑒3
𝜃  𝑆𝜃 𝜍𝑖 , 𝑆𝜃

+ 𝜍𝑖 , 𝑣 , 𝑆𝜃)  

 

function Apply-Macro 𝜔, 𝑆𝜃 : assignment 

/* Applies a given sub-solution on a global arrangement 𝑆𝐴 

and on an arrangement over -like subgraph. 

Parameters:  𝜔  - a solution of a sub-problem 

𝑆𝜃  - arrangement over -like subgraph */ 

1: let [ 𝑢1, 𝑣1 ,  𝑢2 , 𝑣2 , … , (𝑢𝑘 , 𝑣𝑘)] = 𝜔 

2: for 𝑖 = 1,2, … , 𝑘 do 

3:  Move-Agent-Unoccupied(𝑢𝑖 , 𝑣𝑖)  

4:  𝑆𝜃(Φ𝑃(𝑢𝑖)) ← 𝑣𝑖  

5:  return 𝑆𝜃  

 

 

The main framework of the algorithm as it was described above is represented 

by the function BIBOX--Solve which gets a pCPF instance on a non-trivial bi-

connected graph Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) with just a single unoccupied vertex 

as a parameter and returns the length of the solution and the solution itself. The 

difference from the original BIBOX algorithm is that the handle decomposition is 

computed with a special care (lines 1-6) and the final solving process (lines 13-

21) over the -like graph formed by 𝐶0 and 𝐻1 exploits the solution database. The 

middle section of the whole solving process (lines 10-12), when agents are placed 

into handles, is the same as in the case of the BIBOX algorithm. To mitigate the 

need of care about the location of an unoccupied vertex, the first connection ver-

tex of the handle 𝐻1 is vacated (lines 14-16) – this vertex correspond to the vertex 

𝑦 1 from the definition of the -like graph. Recall, that the transposition, the 3-

cycle rotation, and the case of 𝜃(2,3,2) suppose the unoccupied vertex to be right 

there. 

𝜽 𝑋, 𝑌, 𝑍 = 𝜽(2,3,2) 
 

 𝑋 
 𝑍 

 𝑌 
 

Transposition case over  

𝜽(𝑋, 𝑌, 𝑍) 

 𝑺𝜽 𝝈𝒊 
 

 𝑋 
 

 𝑌 
 

 𝑍 
 

 𝑺𝜽
+ 𝝈𝒊 

 

3-cycle rotation case over  

𝜽(𝑋, 𝑌, 𝑍) 

 𝑺𝜽 𝝈𝒊 
  𝑋 

 

 𝑌 
 

 𝑍 
 

 𝑺𝜽
+ 𝝈𝒊 

 

 𝒗 
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An auxiliary function Apply-Macro is used to apply a record 𝜔 from the solu-

tion database (the optimal solution for a sub-instance is called a macro in this 

context) on the current arrangement of agents 𝑆𝜃  in a given -like graph as well as 

on the global current arrangement represented by 𝑆𝐴 and Φ𝐴. The optimal solution 

has the form of a sequence of moves where the move is an ordered pair of vertices 

of 𝐺 - the first vertex contains an agent to be moved; the second vertex is unoccu-

pied at the time step of execution of the move and represents the target vertex. 

The execution of the macro over the current arrangement is carried out by Move-

Agent-Unoccupied; the function also constructs the next step in construction of 

the output solution. 

The very novel part in comparison with the BIBOX algorithm is the process of 

reaching the goal arrangement over a -like graph. This is represented by a func-

tion -BOX-Solve. The function gets as parameters the -like graph itself as 

𝜃 𝑋, 𝑌, 𝑍 , an initial and a goal arrangement of agents as 𝑆𝜃
0 and 𝑆𝜃

+ respectively, 

and a set of goal vertices as 𝑉+ which is a sub-set of vertices of 𝜃. 

If 𝜃 is isomorphic to 𝜃(2,3,2) (lines 3-6) then the goal arrangement is reached 

at once using a record from the database. It may happen that the required record is 

not found in the database (line 5). In such a case, the algorithm terminates with 

the answer that the given instance is unsolvable. A special function difference is 

used in this execution branch. The function calculates a permutation from two 

arrangements of agents. The interpretation of a permutation calculated by the 

difference function is that it transforms an arrangement given as the first argument 

to an arrangement given as the second argument. 

If 𝜃 is non-isomorphic to 𝜃(2,3,2) and it contains an odd cycle (lines 7-12) 

then all the goal arrangements are reachable. The goal arrangement is reached by 

composing several transposition cases. This is done by traversing the set of agents 

that should be placed. If the current location of an agent given by 𝑆𝜃  differs from 

its goal location given by 𝑆𝜃
+, then agents at these two locations are exchanged 

using a solution for the transposition case from the database of solutions. 

If 𝜃 is non-isomorphic to 𝜃(2,3,2) and all the subsumed cycles are of an even 

length (lines 14-20) then the treatment of unsolvable cases must be done. If the 

goal arrangement 𝑆𝜃
+ forms an odd permutation with respect to the initial ar-

rangement 𝑆𝜃  then the given instance is unsolvable (lines 14-15). The algorithm 

terminates with the negative answer in such a case. If this is not the case (that is, 

𝑆𝜃
+ forms an even permutation with respect to 𝑆𝜃 ) then the goal arrangement is 

reached using 3-cycle rotations (lines 17-20). 

This is done almost in the same way as in the case of transposition cases in 

fact. Again, agents that should be relocated are traversed. The relocation of an 

agent 𝜍𝑖  to its goal location 𝑆𝜃
+(𝜍𝑖) from 𝑆𝜃 𝜍𝑖  is done by a rotation along a 3-

cycle formed by 𝑆𝜃 𝜍𝑖 , 𝑆𝜃
+(𝜍𝑖), and 𝑣, where 𝑣 is a vertex different from 𝑆𝜃 𝜍𝑖 , 

𝑆𝜃
+(𝜍𝑖), and also different from all the goal vertices of all the already placed 
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agents. Notice, that it is sufficient to traverse all the agents except last two. They 

must be inevitably placed to their goal vertices after the last 3-cycle rotation since 

otherwise the goal arrangement 𝑆𝜃
+ forms an odd permutation with respect to 𝑆𝜃  

which has been ruled out at the beginning of this branch. 

3.2.3. Summary of Theoretical Properties and Extensions of the 

 BIBOX- Algorithm 

The detailed theoretical analysis of soundness and completeness of the BIBOX- 

algorithm can be found in [27]. The crucial ingredient for the correctness of the 

algorithm is represented by Lemma 3. 

 The worst-case time complexity of the algorithm is 𝒪( 𝑉 4) [27] with respect 

to the input instance Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+). The makespan is also 𝒪  𝑉 4  

[27]. This result can be obtained from the fact that the length of optimal solutions 

of special cases is bounded by ( 𝑉 3) [8]. As 𝒪( 𝑉 ) optimal solutions of special 

cases are necessary, the upper bound of 𝒪  𝑉 4  is obtained. 

 If the size of the database containing optimal solutions is not accounted, the 

space required by the algorithm is of 𝒪( 𝑉 +  𝐸 ) in the worst-case. The space 

required by the part of the database where optimal solutions to 𝜃(2,3,2) are stored 

is 𝒪(1) (the size of 𝑡𝑎𝑏𝑙𝑒232
𝜃 ) and the space required by the part of the database 

where solutions to transposition and 3-cycle rotation cases over a -like graph 

𝜃 𝑋, 𝑌, 𝑍 = (𝑉𝜃 , 𝐸𝜃) are stored is 𝒪(|𝑉𝜃 |5) (the size of 𝑡𝑎𝑏𝑙𝑒𝑇
𝜃 ) and 𝒪(|𝑉𝜃 |6) 

(the size of 𝑡𝑎𝑏𝑙𝑒3
𝜃 ) respectively. 

 Practically, it is better to use slightly adapted special cases. Observe that spe-

cial cases as described above preserve all the agents except the affected pair or 

triple at their original positions. This is not necessary in fact, since only agents 

that already reached their goal positions need to be preserved. Preserving other 

agents just imposes additional constraints on the solution and may prolong it un-

necessarily. The no less important fact is that it is easier to find a less constrained 

optimal solution. The modified special cases, where relocation of agents that have 

not yet reached their goal positions are neglected, are called a weak transposition 

case and a weak 3-cycle rotation case respectively. The detailed description of 

weak special cases is given in [27]. 

4. Experimental Evaluation 

As algorithms BIBOX and BIBOX- were primarily developed as an alternative to 

the MIT algorithm [8], the experimental evaluation will be primarily aimed on the 

competitive comparison of BIBOX and BIBOX-  with MIT. Nonetheless, we also 

provide comparison with the WHCA* algorithm [18] to obtain more complete 

image. 
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All the tested algorithms were implemented in C++. The implementation of 

algorithms BIBOX and BIBOX-  follows the presented pseudo-code. Several 

optimizations mentioned in Section 3.1.3 were adopted in the implementation of 

BIBOX and BIBOX-  algorithms as well. 

 The database of optimal solutions used by the BIBOX-  algorithm has been 

generated on-line (on demand) by a variant of IDA* algorithm enhanced with 

learning [21]. Details of this algorithm are out of scope of this study. Pseudo-code 

and experimental analysis can be found in [21]. Notice, that it is a time consuming 

task to find an optimal solution to a pCPF instance even on a small -like graph. 

Therefore, the timeout of 8.0 seconds was used after that the solving process 

switched to the MIT style. The database with optimal solutions should be pre-

computed off-line in the real-life applications. 

 The MIT has been re-implemented according to [8]. The algorithm is designed 

for general graphs, however the major technique concerns bi-connected partitions. 

Briefly said, the algorithm finds a configuration of vertices in the input graph on 

that a 3-cycle rotation is possible. At the same time, it is ensured that every triple 

of agents can be relocated to this configuration and back to their original loca-

tions. By composing these three basic operations – relocation to the 3-cycle rota-

tion configuration, 3-cycle rotation there, and relocation back to original locations 

– we are actually able to make 3-rotation of every triple of agents. This conse-

quently means that agents can be relocated according to every even permutation 

by the outlined process (see also Proposition 5). If additionally there is an odd 

cycle in the input graph, all the permutations are possible. 

Similar optimization techniques as in the case of the BIBOX algorithm have 

been used. When an unoccupied vertex was necessary, the nearest unoccupied 

vertex was found and relocated to the location where needed. More details about 

the re-implementation of the MIT algorithm can be found in [23]. 

The WHCA* algorithm was also re-implemented by ourselves. It searches for 

a path for each agent individually while spatial-temporal positions occupied by 

the already scheduled agents are avoided. This algorithm is inherently incomplete 

since some agents may block another agent and prevent it from moving; thus, 

only few of tested setups were solvable by this algorithm. 

 In order to allow reproducibility of all the presented results the source code 

and supporting data is provided at the web site: http://ktiml.mff.cuni.cz/~surynek/ 

research/j-multirobot-2010. Additional experimental results and raw experimental 

data are provided as well. 

 Experimental evaluation has been performed on two computers. The first 

computer has been used to generate experimental results regarding runtime - run-

http://ktiml.mff.cuni.cz/~surynek/%20research/j-multirobot-2010
http://ktiml.mff.cuni.cz/~surynek/%20research/j-multirobot-2010
http://ktiml.mff.cuni.cz/~surynek/%20research/j-multirobot-2010
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time configuration
 1

; the second computer has been used to generate all the re-

maining results - default configuration
2
. 

4.1. Makespan Comparison 

The first series of experiments is devoted to comparison of the makespan of solu-

tions generated by tested algorithms. All the tested algorithms were used to gen-

erate a sequential solution of a given instance, which has been parallelized subse-

quently by the critical path method. The result was a parallel solution complying 

with the definition of the solution of pCPF. A set of testing instances of pCPF 

consists of instances on randomly generated bi-connected graphs and of instances 

on grids. 

A randomly generated bi-connected graph 

has been generated according to its handle de-

composition. First, a cycle of random length 

from uniform distribution where certain mini-

mum and maximum lengths were given has been 

generated. Then a sequence of handles of ran-

dom lengths from uniform distribution (again the 

minimum and the maximum length of handles 

was given) has been added. Each handle has 

been connected to randomly selected connection 

vertices in the currently constructed graph. The 

addition of handles has terminated when the 

required size of the graph has been reached. An 

instance on a randomly generated graph itself 

further consists of random initial arrangement and goal arrangement of agents 

over the graph where at least the given number of vertices remains unoccupied. 

The handle decomposition used by solving algorithms was exactly that one used 

for generating the graph. 

The situation with instances over the grid is similar. The square 4-connected 

grid graph of a given size has been generated together with a random initial and a 

goal arrangement of agents. Again, a given number of vertices remain unoccu-

pied. First, an initial cycle with 4 vertices was constructed (placed on the left up-

per corner of the grid); then handles were added to fill in the grid successively 

according to its rows and columns. The first row and the first column were added 

at the beginning (handles with 2 internal vertices). Then rows of the grid were 
 
1 Runtime configuration: 2x AMD Opteron 1600 MHz, 1GB RAM, Mandriva Linux 10.1, 32-bit edition, gcc 

version 3.4.3, compilation with –O3 optimization level. 

 
2 Default configuration: 4x AMD Opteron 1800 MHz, 5GB RAM, Mandriva Linux 2009.1, 64-bit edition, gcc 

version 4.3.2, compilation with –O3 optimization level. 

𝑮 = (𝑉, 𝐸) as a grid 𝟓 × 𝟓 

Figure 9. An illustration of handle 

decomposition of a grid graph. The 

ordering of the addition of individ-

ual handles is depicted by numbers 

in vertices. Three types of han-

dles/cycles are used. 
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constructed by adding handles from the left to the right and from the top to the 

bottom (handles with 1 internal vertex). See Figure 9 for the ordering of addition 

of vertices in the construction of the grid. 

 

 

 
 

Figure 10. Makespan comparison of solutions to instances over random bi-connected graphs. Four 

algorithms are compared: the standard BIBOX, a variant of BIBOX where the last phase when agents 

are placed into the -like graph is solved by MIT – BIBOX/MIT, the MIT algorithm, and WHCA* 

with the window size of 16. Solutions were parallelized using the presented parallelism-increasing 

scheme [27] (critical-path method). Four setups of random bi-connected graphs are shown – random 

lengths handles have uniform distribution of the range: 0. .4, 0. .8, 0. .16, and 0. .32 respectively. 

The makespan tends to decrease for the increasing number of unoccupied vertices. WHCA* was 

able to solve only several sparsely populated instances. 

 

Results shown in Figure 10 and Figure 11 are targeted on the comparison of 

the makespan. Results in Figure 10 show makespans of solutions of instances 

over randomly generated bi-connected graphs. Graphs of size up to 344 vertices 

were used (the graph had been grown by addition of handles until the size of 256 

vertices had been reached). Four graphs, which differ in the average length of the 

initial cycle and handles of the handle decomposition, were used. Lengths of the 

initial cycle and handles have the uniform distribution of the range: 0. .4, 0. .8, 

0. .16, and 0. .32. The length of the handle is equal to the number of its internal 
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vertices.  Figure 11 is devoted to structurally regular graphs – grid graphs of the 

size 8 × 8, 16 × 16, and 32 × 32 were used. 

Four algorithms were compared: the standard BIBOX, a variant of BIBOX 

where the last phase when agents are placed into the θ-like graph was solved by 

MIT – BIBOX/MIT, the MIT algorithm, and WHCA* with the window size of 16. 

Random initial and goal arrangements are obtained as a random permutation of 

agents in the vertices of the graph. The random permutation is generated from 

identical one by applying quadratic number of transpositions. This process gene-

rates random arrangements of the appropriate quality (of randomness) for the use 

in the test. 

 

 

 
 

Figure 11. Makespan comparison of solutions of instances over square grids. Four algorithms are 

compared: the standard BIBOX, BIBOX/MIT, MIT, and WHCA*(16) on three grids: 8 × 8, 16 × 16, 

and 32 × 32. 

 

It can be observed that the BIBOX algorithm generates solutions of the makes-

pan approximately 10 times to 100 times smaller than that of solutions generated 

by the MIT algorithm. In the setup with random bi-connected graphs, the differ-

ence between BIBOX and MIT is becoming smaller as the size of handles increas-

es. In the setup with the grid graph, the BIBOX algorithm generates solutions that 
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have approximately 10 times smaller makespan than that of the MIT algorithm. A 

steep decline of the makespan can be observed when the portion of unoccupied 

vertices reaches approximately 95%. This is some kind of a phase transition when 

agents are becoming arranged sparsely enough over the graph so that there are 

almost no interactions between them (that is, they do not need to avoid each oth-

er). 

 

 
 

Figure 12. An evaluation of the benefit of the use of weak special cases instead of the standard 

ones. Four variants of the BIBOX- algorithm are compared: BIBOX-/T (the standard transposition 

case is used preferably), BIBOX-/3(the standard 3-cycle rotation case is used preferably), BIBOX-

/T|weak (the weak transposition case is used preferably), and BIBOX-/3|weak (the weak 3-cycle 

rotation case is used preferably). The difference of the makespan of solution produced by these 

algorithms from those produced by the BIBOX algorithm is shown (values below zero indicate that 

the tested algorithm was better than BIBOX). Four random bi-connected graphs with the increasing 

number of unoccupied vertices are used; they have handles of lengths with uniform distribution of 

ranges: 0. .2, 0. .3, 0. .4, and 0. .5 respecitvely. To make the difference visible, results for individual 

algorithms are sorted in descending order. 

 

This phase transition seems to depend on the average size of handles – for the 

smaller size of handles the ratio of the number of agents to the number of vertices 

characterizing this phase transition tends to be higher. The WHCA* algorithm 
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generates better solutions than BIBOX in most cases (the ratio between the ma-

kespan of BIBOX and WHCA* is from 0.5 to 3.0). However, WHCA* manages to 

do so only on sparsely occupied environments (number of unoccupied vertices 

more than 90%). As WHCA* generates near optimal solutions with respect to the 

makespan we also have certain indication how far from the optimum solutions 

generated by BIBOX algorithms are. Let us note, that the most difficult instance 

from our test suite took WHCA* approximately 2.0 seconds on the runtime confi-

guration (80 agents in the 32 × 32 grid). 

The BIBOX/MIT algorithm exhibits performance influenced by the size of the 

initial -like graph. The larger is the graph the worse is the performance of the 

BIBOX/MIT algorithm. This behavior can be observed from the results shown in 

Figure 10 and Figure 11 using the fact that the longer handles induce larger initial 

-like graph. Grid graphs represent the extreme case – almost all the handles are 

of the size 1. Both algorithms – BIBOX as well as BIBOX/MIT – generate solu-

tions of the very similar makespan (the only difference is observable in the case of 

grid 8 × 8 with low occupation where BIBOX/MIT is marginally better). 

Regarding the makespan, the BIBOX style solving process represents the better 

alternative than MIT when at least two unoccupied vertices are provided. 

An interesting question is whether the use of optimal solutions to weak cases 

instead of standard ones does really help. Results reported in Figure 12 are de-

voted to this question. A comparison of the BIBOX algorithm with the variants of 

the BIBOX- algorithm is shown. 

Four variants of the BIBOX- algorithm are compared: BIBOX-/T (the stan-

dard transposition case is used preferably), BIBOX-/3 (the standard 3-cycle rota-

tion case is used preferably), BIBOX-/T|weak (the weak transposition case is 

used preferably), and BIBOX-/3|weak (the weak 3-cycle rotation case is used 

preferably). Notice, that the variant presented in the pseudo-code as Algorithm 3 

prefers standard transposition cases. If the transposition case is not possible to 

apply, the corresponding 3-cycle rotation case is used instead (which is always 

possible). Other variants implement the preference in the analogical way. 

The comparison in Figure 12 shows difference of the makespan of solution 

generated by mentioned three variants of BIBOX- from the makespan of the cor-

responding solution generated by the standard BIBOX (negative values of the 

difference indicate that BIBOX generated solution with the greater makespan). 

Four random bi-connected graphs were used for the experiment; the number of 

vertices was up to 259 (again, the graph had been grown by addition of handles 

until the size of 256 vertices had been reached). The length of the initial cycle and 

handles has been selected randomly with the uniform distribution of ranges: 0. .2, 

0. .3, 0. .4, and 0. .5, respectively. The relatively small ranges are used in order to 

be able to calculate all the optimal solutions of the special cases in the timeout of 

8.0. The size of the -like graph, on that special cases appear, directly corres-
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ponds to the length of the initial cycle and handles of the handle decomposition. 

Makespans have been collected for instances with 2 to  𝑉 − 1 unoccupied vertic-

es for each graph 𝐺 = (𝑉, 𝐸). To make differences among performances of tested 

algorithms clearly visible, the difference in makespans has been sorted in the des-

cending order. The difference in makespan tends to be greater for instances with 

few unoccupied vertices (hence, it is expected that these makespans are sorted to 

the left or to the right margin in each plot). 

Results shown in Figure 12 can be interpreted as that solutions with the smal-

lest makespan are produced by BIBOX-/T|weak closely followed by BIBOX-

/3|weak. Hence, it is possible to conclude that the use of optimal solutions to 

weak special cases is beneficial. Moreover, a solution to a weak special is easier 

to generate since it is less constrained than the solution of the corresponding stan-

dard case. 

Since values of the makespan differences deviate from the uniform distribution 

around 0 marginally, it is also possible to conclude that variants of BIBOX- does 

not improve the makespan significantly in comparison with BIBOX on instances 

with at least two unoccupied vertices. Thus, the use of BIBOX- is substantiated 

only for instances with just a single unoccupied vertex (where the BIBOX algo-

rithm is not applicable). 

4.2. Parallelism Evaluation 

The exact meaning of the term parallelism is the value obtained as the ratio of the 

total number of moves divided by the makespan. The result is the average number 

of moves performed at each time step. High parallelism is typically desirable 

since it implies the smaller makespan. 

In the experiments, we observed how the average parallelism changes while 

the number of unoccupied vertices is increasing. The same set of setups as in the 

case of makespan evaluation was used. Results regarding bi-connected graphs are 

shown in Figure 13 results regarding grids are shown in Figure 14. The paral-

lelism-increasing algorithm [27] was used to post-process the solutions. In case of 

WHCA* the initial solution was already parallel but in the sense of PMG; we 

parallelized it further according to pCPF (which however made almost no change 

as in instances solvable by WHCA* agents were rather isolated). 

On random bi-connected graphs, the parallelism of solutions slightly increases 

as the number of unoccupied vertices reaches approximately 50% occupancy. 

This behavior is yet more expressed on the grid graphs. The increase of the paral-

lelism is steeper in this case. When the number of unoccupied vertices is higher 

than some threshold a different behavior can be observed. The fewer agents are in 

the graph the lower is the parallelism. It can be also observed that parallelism 

correlates with the average length of handles of the handle decomposition – this is 

caused by the fact that all the agents in the handle are moving at once. Another 
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characteristic, which the parallelism correlates with, is the diameter [33] of the 

graph. This correlation can be observed on tests with grid graphs in Figure 14. 

The reason for this correlation is the fact that all the agents along a path connect-

ing two vertices in the graph moves at once when the unoccupied vertex is relo-

cated. The average length of such paths correlates with the diameter of the graph. 

 

   

   
 

Figure 13. Average parallelism of solutions generated by tested algorithms for instances over 

random bi-connected graphs. BIBOX, BIBOX/MIT, MIT, and WHCA* are compared. Four random 

bi-connected graphs were used – random lengths of initial cycle and handles of the handle decom-

position have uniform distribution of the range: 0. .4, 0. .8, 0. .16, and 0. .32. The average paral-

lelism is the total number of moves divided by the makespan. 

 

Regarding the MIT algorithm, it can be observed that the parallelism of its so-

lutions decreases almost linearly with the increasing number of unoccupied ver-

tices. Without providing further details, the explanation of this behavior is that all 

the phases of the algorithm are rather homogenous. Thus, as occurrence of agents 

is getting linearly sparser the parallelism decreases almost linearly. Recall, that 

the BIBOX algorithm behaves differently. All the movements take place in the 

unfinished part of the graph only, which is relatively getting smaller as the BIBOX 

algorithm proceeds. 
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Generally, it can be concluded from Figure 13 and Figure 14 that solutions 

generated by the BIBOX and BIBOX/MIT algorithms allow higher parallelism 

than that of MIT. Consequently, it can be observed together from Figure 10, Fig-

ure 11, Figure 13, and Figure 14 that the total number of moves, which solutions 

generated by BIBOX and BIBOX/MIT consist of, are still order of magnitude 

smaller than that of MIT. Thus, the performance of the BIBOX algorithms is not 

caused by the higher parallelism but also by the smaller size of the generated se-

quential solutions. 

 

   

  
 

Figure 14. Average parallelism comparison of solutions of instances over square grids. BIBOX, 

BIBOX/MIT, MIT, and WHCA* are compared on three grids: 8 × 8, 16 × 16, and 32 × 32. 

  

Results regarding WHCA* indicate that typically all the agents move. The ex-

planation is that the no-op (that is, an agent does not move) is chosen only if it is 

necessary to avoid another agent, which is relatively rare situation. Otherwise a 

move through that an agent can approach its goal is chosen. On random bi-

connected graphs WHCA* tends to reach higher parallelism than the other tested 

algorithms. On grid it seems that no simple statement can be done. 
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The development of the number of movements per time step called step paral-

lelism is shown in Figure 15. This experiment was done with the BIBOX algo-

rithm only on a random bi-connected graph where lengths of the initial cycle and 

handles were randomly selected with the uniform distribution with of the range 

0. .4. There were exactly two unoccupied vertices in the input graph. 

Peaks in Figure 15 correspond to parallel movements along long paths. The 

density and height of peaks is getting slightly smaller as the algorithm proceeds. 

This is caused by the fact that the part of the graph affected by movements is get-

ting smaller. Other values correspond to various rotations along cycles are done 

intensively by the algorithm. The absolute number of parallel movements corres-

ponding to these rotations does not change as the algorithm proceeds (the average 

size of a cycle in the unfinished part of the graph is still the same since the graph 

was generated uniformly). 

 

 
 

Figure 15. Step parallelism development of in a solution generated by BIBOX. The random bi-

connected graph was generated with the length of the initial cycle and handles having uniform dis-

tribution of the range 0. .4. There were exactly two unoccupied vertices. The development of the 

step parallelism (number of moves per time step) over time is shown. 

4.3. Scalability Evaluation 
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all runtime necessary to produce the parallel solution while the number of unoc-

cupied vertices was fixed to 2 and the size of the graph was varying. The overall 

time is the time necessary to produce a sequential solution plus the time needed to 
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computed off-line (the shorter resulting solution needs to be produced than in the 

case of BIBOX-/T and BIBOX-/3). However, they are significantly faster if the 

optimal solutions need to be computed on-line (on demand) [21, 22] as the optim-

al solution to weak special case is easier to find than the optimal solution to the 

standard special case. 

 

 

 
 
 

Figure 16. A comparison of the scalability of tested algorithms with respect to the makespan. Five 

algorithms were compared: BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT. 

Approximately 250 pCPF instances over various random bi-connected graphs containing 16 to 256 

vertices were used. The range of the uniform distribution of lengths of handles in the random gener-

ation was: 0. .2, …, 0. .16. Algorithms are sorted from left/top to right/bottom according to the 

increasing performance (MIT – worst; BIBOX - best). Each sub-plot shows the relative comparison 

of two algorithms. 

 

Tests targeted on scalability used the different setup of instances of pCPF than 

previous tests. Now, approximately 250 instances on bi-connected graphs with 

the size varying from 16 to 256 vertices were generated. Random lengths of the 

initial cycle and handles of the handle decomposition were selected randomly 

from uniform distribution with ranges: 0. .2,…, 0. .16. Such selection guarantees 
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that graphs with short handles as well as graphs with long handles are included. 

There were exactly two unoccupied vertices in all the tested instances. 

Scalability evaluation for the makespan is shown in Figure 16. The makespan 

for the increasing number of vertices is shown. Experiments in Figure 17 used the 

same setup (the same set of instances); the difference from Figure 16 is just that 

the runtime is shown. In both figures, algorithms are compared pair-wise from the 

worst performing to the best performing pair (the pair of algorithms that are clos-

est to each other according to the given characteristic is compared). 

 

 

 
 

 

Figure 17. A comparison of the scalability of tested algorithms with respect to the runtime. BIBOX, 

BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT were compared. The setup of instances 

is the same as for the experiment from Figure 16. Algorithms are sorted from left/top to right/bottom 

according to the increasing performance. The runtime (the total time necessary to produce sequential 

solution plus the time for making it parallel) is shown. The runtime increases for the increasing size 

of the instance (number of vertices). 

 

Results regarding makespan show that the MIT algorithm performs as worst 

while the standard BIBOX algorithm produces the best solutions. BIBOX/MIT, 

BIBOX-/T|weak and BIBOX-/3|weak are somewhere in the middle. The ma-
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kespan of solutions generated by BIBOX-/T|weak and BIBOX-/3|weak some-

times jumps up to the makespan of the corresponding solution generated by BI-

BOX/MIT. This happens if BIBOX-/T|weak or BIBOX-/3|weak do not manage 

to compute optimal solution to the special case in the given timeout of 8.0 

seconds. In such a case BIBOX-/T|weak and BIBOX-/3|weak produces exactly 

the same solution as BIBOX/MIT since they have to switch to the MIT mode of 

generating (sub-optimal) solutions to special cases. 

A quite surprising result is that even though BIBOX-/T|weak and BIBOX-

/3|weak compose the resulting solution over the -like graph consisting of the 

initial cycle and the first handle from the optimal solutions to special cases, it still 

has the worse makespan than the corresponding solution generated using agents 

exchanges by the BIBOX algorithm. Hence, the second unoccupied vertex has the 

significant impact on simplifying the solving process. 

Results regarding the overall runtime of tested algorithms generally show that 

BIBOX-/T|weak and BIBOX-/3|weak are as slow as the given timeout for com-

puting optimal solutions to the special cases. The more interesting situation is 

with MIT, BIBOX/MIT, and BIBOX since they have very similar runtimes. The 

BIBOX/MIT tends to be faster than MIT while there is only marginal difference 

between BIBOX and MIT on larger graphs in favor of BIBOX. Observe that the 

runtime does not exactly correspond to the length of the generated solutions. In 

other words, certain computations used by BIBOX are more time consuming than 

that of MIT (for example BIBOX extensively searched for a path when agent is 

moved). 

5. Conclusion and Future Work 

Two new algorithms – called BIBOX and BIBOX-  – for solving the abstract 

multi-agent cooperative path-finding with special regard on parallelism (so called 

pCPFs) were described in this work. Both algorithms are designed for the case 

when environment is modeled as a bi-connected graph and is densely occupied by 

agents. Several modified variants of the BIBOX- algorithm were described as 

well. 

The precise theoretical foundation and experimental analysis of these algo-

rithms is provided. The theoretical foundation is targeted on correctness of the 

design of algorithms. The experimental analysis is primarily targeted on compari-

son with the MIT algorithm that employs permutation group theory and is capable 

of solving pCPF instances characterized by the small unoccupied space. To pro-

vide the complete image with respect to the related works in cooperative path-

finding the comparison with the WHCA* algorithm, which is one of the most 

commonly used benchmark algorithm for CPF, is given as well. 

 Although the MIT algorithm has promising theoretical properties it has been 

outperformed by BIBOX in terms of the makespan by the order of one to two 
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magnitudes. Although the asymptotic estimation for the makespan is the same for 

both BIBOX and MIT, the multiplication factor in the estimation in the case of 

BIBOX is smaller. Regarding the runtime, BIBOX algorithm is slightly faster than 

MIT, which itself is relatively fast (instances with graphs of hundreds of vertices 

occupied by hundreds of agents are solved within seconds on today’s commodity 

hardware). 

The minor drawback of the BIBOX algorithm is that it is not able to solve in-

stances of pCPF with just a single unoccupied vertex. This issue has been ad-

dressed in this work by proposing modified algorithm called BIBOX- and its 

variants called BIBOX/MIT, BIBOX-/T, BIBOX-/3, BIBOX-/T|weak, and BI-

BOX-/3|weak. They use a different approach to solve the situation on the simple 

bi-connected graphs consisting of one cycle and one handle connected to it – 

called -like graphs. Except the first mentioned algorithm, all the other algorithms 

use the database with optimal solutions to special instances over these -like 

graphs – called special cases – of which solutions to all the instances over -like 

graphs can be composed. 

Regarding the makespan, all the alternative algorithms outperform MIT. If the 

database of optimal solutions is available in advance, then BIBOX- algorithms 

almost match the performance of MIT in terms of runtime. If the required optimal 

solutions to special cases are not available, they need to be computed on-line 

which is difficult. It can cause a significant slowdown of the algorithm. 

Notice, that the performance of both presented algorithms depends on the han-

dle decomposition of the input graph. An interesting question is how to optimize 

handle decomposition in order to improve makespan or runtime. Is it better to use 

a small number of large handles or a large number of small handles? This ques-

tion is out of the scope of this work and it is left for future work. 

A considerable drawback of presented algorithms is their limitation on bi-

connected graph. Notice, that search-based techniques like WHCA* are not li-

mited to any special class of graphs. Hence, extension of presented algorithms to 

the general case is of interest. One of the possible approaches is to decompose a 

given general graph into the tree of bi-connected components [33, 34]. Any of the 

presented algorithms for bi-connected case can be used over the individual bi-

connected components. However, agents need first to be relocated to the target bi-

connected components. It may happen that an agent needs to go to the neighbor-

ing bi-connected component different from that where it is currently located. If 

the bridge connecting these components is longer than the number of unoccupied 

vertices then the relocation of the agent will not be possible. Hence, there will be 

relatively many unsolvable instances in the general case. 

Regarding future work, it is also interesting to resolve the question whether 

optimal solutions of pCPF can be approximated by a (pseudo-) polynomial time 

algorithm. If an approximation algorithm with (pseudo-) polynomial time com-
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plexity is available, it is possible to estimate how far the current solution is from 

the optimal one even for large and densely occupied instances (currently we have 

only intuition for sparsely populated instances thanks to experiments with 

WHCA*). Some study of this kind of approximation algorithms for the special 

case of (𝑁2 − 1)-puzzle has been done in [11, 12, 13]. 

Another interesting topic for future work is to study how solutions generated 

by presented algorithm can be improved. A first view work has been already done 

in [25]. It is based on identifying and eliminating redundancies from solutions. 

The performed experiments showed that it is a promising technique. 
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Appendix 

Lemma 4 (soundness of Move-Agent). If an original location of an agent 𝑎, a 

goal location 𝑣, and an unoccupied vertex are all located in the same unlocked bi-

connected component of the graph 𝐺, then the procedure Move-Agent correctly 

moves the agent 𝑎 from its original location to 𝑣.  

 

http://iti.mff.cuni.cz/series/index.html
http://iti.mff.cuni.cz/series/index.html
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Proof. Recall how the procedure Move-Agent works. First, a path 𝜑 =
[𝑤1

𝜑
, 𝑤2

𝜑
, … , 𝑤𝑗𝜑

𝜑
] connecting 𝑆𝐴(𝑎) and 𝑣 that is contained in the same bi-

connected component is found. The path 𝜑 is then traversed while the agent 𝑎 is 

moved along its edges. 

The proof of soundness will proceed as mathematical induction according to 

the number of edges of 𝜑 already traversed. In all the steps, the agent 𝑎 and the 

unoccupied vertex should be located in the bi-connected component containing 𝜑. 

Initially, this condition holds. Consider that an agent 𝑎 is located in 𝑤𝑖
𝜑

 for 

𝑖 ∈ {1,2, … , 𝑗𝜑} and need to be moved to 𝑤𝑖+1
𝜑

. The vertex 𝑤𝑖
𝜑

 is locked and 𝑤𝑖+1
𝜑

 

is made unoccupied. To make 𝑤𝑖+1
𝜑

 unoccupied an unlocked path connecting the 

original location of the unoccupied vertex and 𝑤𝑖+1
𝜑

 must exist in the bi-connected 

component. Since it is supposed that 𝑤𝑖
𝜑

, 𝑤𝑖+1
𝜑

, and the unoccupied vertex are all 

in the same bi-connected component the alternative path connecting 𝑤𝑖+1
𝜑

 and the 

unoccupied vertex in this bi-connected component avoiding 𝑤𝑖
𝜑

 must exist (since 

otherwise removal of 𝑤𝑖
𝜑

 would make the bi-connected component disconnected 

which is a contradiction). This path is used to transfer the unoccupied vertex to 

𝑤𝑖+1
𝜑

. Having 𝑤𝑖+1
𝜑

 unoccupied the vertex 𝑤𝑖
𝜑

 is unlocked and 𝑎 is moved to 𝑤𝑖+1
𝜑

 

along the edge {𝑤𝑖
𝜑

, 𝑤𝑖+1}. After this step, the required condition holds again (a 

supporting illustration is shown in Figure 4).  

 

Lemma 5 (soundness of Exchange-Agents). If the arrangement of agents within 

the cycle 𝐶0 is regarded as a permutation, then the output arrangement produced 

by the procedure Exchange-Agents corresponds to a permutation where the input 

agents 𝑎 and 𝑏 are transposed with respect to the permutation corresponding to 

the input arrangement.  

 

Proof. It is needed to check whether the orderings of agents between 𝑎 and 𝑏 and 

between 𝑏 and 𝑎 (with respect to the positive orientation of the cycle) remain 

unchanged while 𝑎 and 𝑏 are transposed. This is done using detailed case analysis 

of what happens. Let 𝐶0 = [𝑤1
0 , 𝑤2

0, … , 𝑤𝑙
0], then there are 𝑙 − 2 agents located in 

𝐶0 at the moment before the cycle is rotated positively (situation at line 9 of Ex-

change-Agents - see stage (i) in Figure 18). The agent 𝑎 is already stored in 𝑣 and 

the two unoccupied vertices are 𝑢 and 𝑛𝑒𝑥𝑡↻ 𝐶0, 𝑢 . Let agents occupying vertic-

es of the cycle in the interval between Φ𝐴(𝑏) and 𝑢 with respect to the positive 

orientation (excluding boundaries) are denoted 𝑏1, 𝑏2,…, 𝑏𝑘  respectively; let 

agents occupying vertices of the cycle in the interval between 𝑛𝑒𝑥𝑡↻ 𝐶0, 𝑢  and 

Φ𝐴(𝑏) with respect to the positive orientation (again excluding boundaries) are 

denoted as 𝑎1, 𝑎2,…, 𝑎𝑙−𝑘−3. The series of 𝜌 positive rotation of 𝐶0 follows to 

move the agent 𝑏 into 𝑛𝑒𝑥𝑡↻ 𝐶0, 𝑢  (see stage (ii) in Figure 18). Now, all the 

agents 𝑏1, 𝑏2,…, 𝑏𝑘 , 𝑎1, 𝑎2,…, 𝑎𝑙−𝑘−3, and 𝑏 are 𝜌 steps forward with respect to 
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their location before the series of rotations. Then the second unoccupied vertex 

(other than 𝑢) is moved in the positive direction towards 𝑝𝑟𝑒𝑣↻ 𝐶0, 𝑢  (recall, 

that the movement in the negative direction is not possible, since 𝑢 is locked at 

the moment - see stage (iii) in Figure 18). Next, agents are exchanged: that is, 𝑏 is 

moved to 𝑣 and 𝑎 is moved to 𝑝𝑟𝑒𝑣↻ 𝐶0, 𝑢  (see stage (iv) in Figure 18 and lines 

14-17 of Exchange-Agents). At this step, agents 𝑏1, 𝑏2,…, 𝑏𝑘  are 𝜌 steps forward 

with respect to their location before the series of rotations; agent 𝑎1, 𝑎2,…, 

𝑎𝑙−𝑘−3 are 𝜌 − 1 forwards with respect to their location before the series of rota-

tions (the difference is caused by the fact that unoccupied vertex went through 

agents 𝑎1, 𝑎2,…, 𝑎𝑙−𝑘−3 but not through agents 𝑏1, 𝑏2,…, 𝑏𝑘). Finally, the agent 

𝑎 is 𝜌 − 1 steps forward with respect to the location of 𝑏 before the series of rota-

tions. 

The series of 𝜌 rotation in the negative direction places agents 𝑏1, 𝑏2,…, 𝑏𝑘  to 

their original positions; agents 𝑎1, 𝑎2,…, 𝑎𝑙−𝑘−3 are placed 1 step backward with 

respect to their original position before rotations, and 𝑎 is 1 step backward with 

respect to the original position of 𝑏 before the series of rotations (see stage (v) in 

Figure 18). This inconsistency however, is caused by a different location of the 

second unoccupied vertex which now between 𝑎 and 𝑏1 with respect to the posi-

tive orientation of the cycle (this was not the case in the original arrangement 

before rotations). 

To see that the transposition of 𝑎 and 𝑏 has been really obtained, the move-

ment of the second unoccupied vertex into 𝑛𝑒𝑥𝑡↻ 𝐶0, 𝑢  in the negative direction 

can be done. This moves agents 𝑎1, 𝑎2,…, 𝑎𝑙−𝑘−3 to their original positions be-

fore rotations and the agent 𝑎 to the original position of 𝑏 (see stage (vi) in Figure 

18). As this is a step used only for purposes of the proof, the algorithm actually 

does not perform it.  

 

Proposition 6 (BIBOX - soundness and completeness). The BIBOX algorithm 

always terminates and produces a solution of a given input instance of pCPF 

Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+).  

 

Proof. To verify soundness and completeness of the BIBOX algorithm it is neces-

sary to check preconditions of each operation performed in the course of its ex-

ecution. This is a trivial task in almost all the cases except the case of searching 

for a path satisfying certain conditions. This issue concerns the search for vertex 

disjoint paths 𝜑 and 𝜒  within the main function BIBOX-Solve at line 2 and the 

search for a path connecting a given pair of vertices avoiding the locked ones. 

The existence of vertex disjoint paths 𝜑 and 𝜒 has been already treated by 

Lemma 2. Thus, it remains to verify that a required unlocked path always exists. 
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Figure 18. The progression of the exchange of a pair of agents within an initial cycle of the handle 

decomposition. Agents 𝑎 and 𝑏 in a cycle consisting of 12 vertices are exchanged while the ordering 

of other agents within the cycle is preserved. The figure illustrates the progression of the procedure 

Exchange-Agents from line 7 to 20. 

 

A path containing unlocked vertices is constructed within the procedure Make-

Unoccupied (lines 2-3) which is called by Solve-Regular-Handle (lines 3, 5, 12, 

16, 26, and 35),  Solve-Original-Cycle (lines 4, 6, 10, and 12), and Exchange-

Agents (lines 2, 8, and 13). A pair of vertex disjoint paths containing unlocked 

vertices constructed within the procedure Move-Agent (lines 1-5) which is called 

by Solve-Regular-Handle (lines 10, 24, and 33). All these cases must be ex-

amined. 

There will be the following invariant within Solve-Regular-Handle – at the be-

ginning of every iteration of the loop at line 7, an unoccupied vertex must be lo-

cated in the not yet solved part of the graph. More precisely, let the bi-connected 
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subgraph without the internal vertices of the already solved handles be denoted as 

𝐺~ and let 𝐺~ without the internal vertices of 𝐻𝑐 , where 𝐻𝑐  is the currently solved 

handle by Solve-Regular-Handle, be denoted as 𝐺 ′  (see Figure 6). Then an unoc-

cupied vertex is needed to be located in  𝐺 ′  every time the loop at line 7 starts. 

The assumption holds at the beginning and it is needed to check if it holds after 

every iteration of the loop. Furthermore, an invariant that both unoccupied vertic-

es are located in 𝐺~ at the start of Solve-Regular-Handle will be also checked. 

Again, this invariant holds at the beginning. 

Vertices 𝑤 and 𝑧 which are used as parameters of the call of Make-

Unoccupied at lines 3 and 5 respectively of Solve-Regular-Handle are both in 𝐺 ′ . 

Since 𝐺~ is completely unlocked at lines 3 of Solve-Regular-Handle and it is 

assumed that an unoccupied vertex is located in 𝐺~, an unlocked path connecting 

𝑤 and an unoccupied vertex must exist. The construction of a path within the call 

at line 5 of Solve-Regular-Handle must additionally take into account that 𝑤 is 

locked. As the subgraph 𝐺~ is bi-connected, it remains connected even if 𝑤 is 

removed and hence the path exists. 

At line 12 of Solve-Regular-Handle, a connection vertex 𝑣𝑐  of the currently 

solved handle 𝐻𝑐  is being made unoccupied while internal vertices of 𝐻𝑐  and the 

second connection vertex 𝑢𝑐  are locked. According to above invariants and the 

fact that the call of Move-Agent at line 10 does not invalidate them, as it is pre-

vented from using internal vertices of 𝐻𝑐  by locking them at line 8, an unoccupied 

vertex is now located in 𝐺 ′  (except 𝑢𝑐). The graph 𝐺 ′  is bi-connected and without 

𝑢𝑐 , which is locked just before, it is all unlocked and still connected. Hence the 

required path exists. 

The call of Make-Unoccupied at line 16 of Solve-Regular-Handle has the con-

nection vertex 𝑢𝑐  of the currently solved handle 𝐻𝑐  as a parameter. The subgraph 

𝐺 ′  is now unlocked and according to invariants an unoccupied vertex is located in 

𝐺 ′ . Since 𝐺 ′  is connected, there exists an unlocked path connecting 𝑢𝑐  and the 

unoccupied vertex. 

At line 26 of Solve-Regular-Handle, the connection vertex 𝑢𝑐  of the handle 𝐻𝑐  

is made unoccupied. The situation is that a vertex 𝑦, which is in 𝐺 ′  and outside 

the cycle associated with the current handle 𝐻𝑐 , is locked while the rest of 𝐺 ′  is 

unlocked. Again, the unlocked part of the graph corresponds to a bi-connected 

subgraph 𝐺 ′  from which one vertex was removed. Thus, the unlocked part of the 

graph constitutes a connected component. An unoccupied is also located in the 

unlocked part. This holds from the invariants and from the fact that movements at 

lines 20 and 24 cannot relocate it outside 𝐺 ′  as Rotate-Cycle
+
 does not relocate 

the input unoccupied vertex and Move-Agent cannot go outside the unlocked part 

which is exactly 𝐺 ′  at the moment due to locking of internal vertices of 𝐻𝑐  at line 

22. Hence, there exists an unlocked path connecting the unoccupied vertex and 

𝑢𝑐 . 
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At line 35 of Solve-Regular-Handle the task is to make unoccupied a connec-

tion vertex 𝑣𝑐  of the handle 𝐻𝑐 . The situation is again very similar; the unlocked 

part of the graph is constituted by 𝐺 ′  without  𝑢𝑐 . Thus, unlocked vertices consti-

tute a connected subgraph. The unoccupied vertex must be located in the un-

locked part as it was located in 𝑢𝑐  after the execution of line 26 and subsequent 

movements cannot relocate it outside 𝐺 ′  (Rotate-Cycle
−
 at line 29 does not relo-

cate the input unoccupied vertex and Move-Agent at line 33 remains in the un-

locked part). Thus, there exists an unlocked path connecting the unoccupied ver-

tex and 𝑣𝑐 . 

An unoccupied vertex is located in 𝐺 ′  at the end of the iteration of the loop 

starting at line 7 since it is 𝑣𝑐  in both major execution branches (notice that calls 

of Rotate-Cycle
+
 at line 14 and 37 respectively preserve positions the unoccupied 

vertex 𝑣𝑐). Thus, the first invariant holds. Since it is assumed that goal positions 

of unoccupied vertices are within the initial cycle, no unoccupied vertex can be 

stored in 𝐻𝑐 . Hence, both unoccupied vertices are in 𝐺 ′  at the end of the execution 

of the loop (that is, they are within 𝐺~ with respect to the processing of next han-

dle). 

The soundness of the procedure Solve-Original-Cycle is partially implied by 

the soundness of the procedure Exchange-Agents which is treated by Lemma 5. 

The basic assumption of Solve-Original-Cycle is that both unoccupied vertices are 

located in the original cycle 𝐶0 of the handle decomposition; all the vertices of the 

graph except 𝐶0 are locked. The assumption directly corresponds to the second 

invariant preserved along the calls of Solve-Regular-Handle within the loop at 

lines 5-7 of BIBOX-Solve. 

At line 4 of Solve-Original-Cycle a vertex 𝑤1
0 (the first vertex of the cycle with 

respect to the positive orientation) is being made unoccupied. An unlocked path in 

the cycle from any of its vertices to 𝑤1
0 exists, hence making 𝑤1

0 unoccupied is 

possible. The situation at line 6 of Solve-Original-Cycle is little bit different; now 

the vertex 𝑤1
0 is locked and a vertex 𝑤2

0 (the second vertex of 𝐶0 with respect to 

the positive orientation) is being made unoccupied. Thus, an unlocked path con-

necting the second unoccupied vertex with 𝑤2
0 is searched. Such path exists since 

removing 𝑤1
0 from the cycle does not disconnect it. The situation at lines 10 and 

12 of Solve-Original-Cycle is analogical. 

The soundness of the procedure Move-Agent itself is treated separately by 

Lemma 4. However, preconditions of the Lemma 4 need to be checked – that is, 

whether all the calls of Move-Agent moves an agent within the single unlocked bi-

connected component and whether the unoccupied vertex is located in the same 

unlocked bi-connected component as well. 

The situation before the call of Move-Agent at line 10 of Solve-Regular-

Handle is that 𝐺 ′  is unlocked while the rest of the graph is locked. An unoccupied 

vertex is located in 𝐺 ′  which is ensured by the invariant. The task is to move an 



Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments  82 

agent Φ𝐴
+ 𝑤𝑖

𝑐 , which is known to be located in 𝐺 ′  (this is, treated by the execu-

tion branch at line 9), to the connection vertex 𝑢𝑐  of the handle 𝐻𝑐 . As the unoc-

cupied vertex and both the agent Φ𝐴
+ 𝑤𝑖

𝑐  and 𝑢𝑐  are located in 𝐺 ′  constituting a 

bi-connected component, preconditions of Lemma 4 are satisfied. 

The call of Move-Agent at line 24 of Solve-Regular-Handle moves the agent 

Φ𝐴
+ 𝑤𝑖

𝑐  to a vertex 𝑦 which is located in 𝐺 ′  and outside the cycle associated with 

the handle 𝐻𝑐  at the same time. Again, 𝐺 ′  is unlocked while the rest of the graph 

is locked. The agent Φ𝐴
+ 𝑤𝑖

𝑐  is known to be located in the connection vertex 𝑣𝑐  

of 𝐻𝑐  and one of the unoccupied vertices is the second connection vertex 𝑢𝑐 . 

Thus, the unlocked vertices constitutes a bi-connected component where the agent 

Φ𝐴
+ 𝑤𝑖

𝑐 , the vertex 𝑦, and the unoccupied vertex are located. Hence, precondi-

tions of Lemma 4 are satisfied. 

Finally, the task of the call of Move-Agent at line 33 of Solve-Regular-Handle 

is to move an agent Φ𝐴
+(𝑤𝑖

𝑐) to a connection vertex 𝑢𝑐  of the current handle 𝐻𝑐  

which is assumed to be unoccupied at the moment. It is known that the agent 

Φ𝐴
+(𝑤𝑖

𝑐) is located in 𝑦 from the previous case. 𝐺 ′  is again unlocked while the rest 

of the graph is locked. Thus, the agent Φ𝐴
+(𝑤𝑖

𝑐) and the unoccupied vertex 𝑢𝑐  are 

both located in 𝐺 ′   which is a bi-connected component. Thus, preconditions of 

Lemma 4 are satisfied again. 

At this point, it is possible to conclude that all the steps of the algorithm are 

correctly defined. Since the number of successfully placed agents strictly increas-

es as the algorithm proceeds, the algorithm always terminates and produces a 

solution to the input instance.  

  

Proposition 7 (BIBOX – worst-case time complexity). The worst-case time 

complexity of the BIBOX algorithm is 𝒪( 𝑉 3) with respect to an input pCPF 

instance Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0, 𝑆𝐴

+).  

 

Proof. The construction of a handle decomposition (line 1 of BIBOX-Solve) takes 

𝒪( 𝑉 +  𝐸 ) steps (Lemma 1). The same estimation holds for transforming the 

goal arrangement of agents (line 2 of BIBOX-Solve) and augmenting the final 

solution (line 9 of BIBOX-Solve) according to a pair of vertex disjoint paths 𝜑 and 

𝜒. 

 There are at most  𝑉  agents (since  𝐴 <  𝑉 ) to be placed within handles of a 

handle decomposition 𝒟 = [𝐶0, 𝐻1 , 𝐻2 , … , 𝐻𝑑 ]. Placing an agent 𝑎 within 𝐻𝑐  with 

𝑐 ∈ {1,2, … , 𝑑} requires at most  𝐻𝑐   rotations of the cycle 𝐶(𝐻𝑐) in the positive 

direction (procedure Rotate-Cycle
+
) in the case when 𝑎 is needed to be moved 

outside 𝐻𝑐 . Then, at most  𝐻𝑐   rotations of 𝐶(𝐻𝑐) in the negative direction (pro-

cedure Rotate-Cycle
−
) are necessary to put agents in 𝐻𝑐  back to their original 

positions; and finally, one rotation of 𝐶(𝐻𝑐) in the positive direction is necessary 

to get the agent 𝑎 to its position within 𝐻𝑐 . Altogether at most 2 𝐻𝑐  + 1 rotations 
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of 𝐶(𝐻𝑐) are necessary. One rotation of the cycle 𝐶(𝐻𝑐) requires at most  𝐶(𝐻𝑐)  

steps. If the agent 𝑎 does not need to be moved outside 𝐻𝑐  only one positive rota-

tion of 𝐶(𝐻𝑐) is needed. Thus, all the rotations needed to place the agent 𝑎 con-

sume at most  𝐶(𝐻𝑐) ∙ (2 𝐻𝑐  + 1) steps. 

It is also necessary to move the agent 𝑎 (procedure Move-Agent) during the 

placement operation. There are up to 2 calls of Move-Agent per agent placement 

within the handle 𝐻𝑐 . A more careful analysis must be done here since the agent 𝑎 

must be moved along a path of the length up to  𝑉  while non-trivial amount of 

work needs to be done per each edge traversal. 

A vertex in front of the current location of 𝑎 needs to be made unoccupied 

every time an edge is traversed by 𝑎. Thus a path connecting the unoccupied ver-

tex and the location in front of 𝑎 must be found while the vertex containing 𝑎 

should be avoided by the path. Agents are then shifted along the found path. The 

path should be searched in the graph constituted by the initial cycle and handles of 

the handle decomposition that contains at least one internal vertex. Such a graph 

contains only linear number of edges with respect to the number of vertices and 

thus the search for the path can be completed in 𝒪( 𝑉 ) steps. The subsequent 

shifting of agents consumes at most  𝑉  steps. Hence, the single traversal of an 

edge by the agent 𝑎 requires 𝒪( 𝑉 ) steps. Altogether, 𝒪( 𝑉 2) + 𝒪( 𝑉 +  𝐸 ) 

steps are required by operations for moving of agents. 

There are also up to 5 calls of the operation for making some vertex unoccu-

pied (procedure Make-Unoccupied) per agent placement. The operation for mak-

ing some vertex unoccupied requires 𝒪( 𝑉 +  𝐸 ) steps; this is accounted to the 

search for a shortest path connecting the original and the goal location. Shifting 

agents itself along the found path is less consuming; it requires at most  𝑉  steps. 

Thus, at most 5 𝑉 + 𝒪( 𝑉 +  𝐸 ) steps are consumed by making vertices unoccu-

pied in course of placing 𝑎. 

In total, at most  2 𝐻𝑐 + 1 ∙  𝐶 𝐻𝑐  + 2 𝑉 2 + 5 𝑉 +  𝒪( 𝑉 +  𝐸 ) steps 

are necessary to place 𝑎 into 𝐻𝑐 . Since  𝐻𝑐  ≤  𝐶(𝐻𝑐) ≤  𝑉 , the total number of 

steps is at most  2 𝑉 + 1 ∙  𝑉 + 2 𝑉 2 + 5 𝑉 +  𝒪( 𝑉 +  𝐸 ) which is 

𝒪( 𝑉 2). 

The remaining operations consume the constant time. Since there are at most 

 𝑉  agents, the whole process of placing agents into handles takes 𝒪( 𝑉 3) steps. 

 It remains to analyze the time required by placing agents within the original 

cycle 𝐶0. Each agent 𝑎 requires 2 operations of making a vertex unoccupied (the 

first and the second vertex 𝐶0 are made unoccupied – lines 4 and 6 of Solve-

Original-Cycle) and at most one operation of exchanging agents. Since the initial 

and the goal position of both mentioned relocations of the unoccupied vertex are 

located in 𝐶0, the operation requires only  𝐶0  steps in the worst-case. The opera-

tion of exchanging agents requires at most 2 𝐶0  rotations in the positive direction 

(lines 5 and 11 of Exchange-Agents) and at most  𝐶0  rotations in the negative 
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direction (line 19 of Exchange-Agents). Next, there are 3 calls of the operation for 

making some vertex unoccupied (call of the procedure Make-Unoccupied at lines 

2, 8, and 13). Observe that the unoccupied vertex and the target vertex of the relo-

cation are located in 𝐶0 in all the cases. Thus, each of these operations requires at 

most  𝐶0  steps. Altogether, 3 𝐶0  steps are required for making vertices unoccu-

pied during exchanging a pair of agents. The time consumption of the remaining 

operations performed during a single exchange of agents is constant. 

A single exchange of a pair of agents requires at most 3 𝐶0 
2 + 5 𝐶0   steps in 

total. Placing all the agents into the original cycle hence consumes at most 

 𝐶0 ∙ (3 𝐶0 
2 + 5 𝐶0 ) steps. Since  𝐶0 <  𝑉 , the total number of steps required 

for solving the initial cycle is at most  𝑉 ∙  3 𝑉 2 + 5 𝑉   which is 𝒪( 𝑉 3). 

 It was shown that the worst-case time of 𝒪( 𝑉 3) is necessary to solve regular 

handles as well as the initial cycle thus the worst-case time complexity of the 

BIBOX algorithm is 𝒪( 𝑉 3).  

 

 Using almost the same arguments as in the above proof it is possible to calcu-

late the worst-case makespan of solutions generated by the BIBOX algorithm. 

Notice that the algorithm generates movement of the agent in almost every step 

referred in the time complexity analysis. 

 

Proposition 8 (BIBOX – makespan of the solution). The worst-case makespan 

of the solution produced by the BIBOX algorithm (that is, the number 𝜁) for an 

input instance of pCPF Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) is 𝒪( 𝑉 3).  
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Abstract. A parallel version of the problem of cooperative path-finding (pCPF) is 

introduced in this paper. The task in CPF is to determine a spatio-temporal plan 

for each member of a group of agents. Each agent is given its initial location in 

the environment and its task is to reach the given goal location. Agents must 

avoid obstacles and must not collide with each other. The environment where 

agents are moving is modeled as an undirected graph. Agents are placed in vertic-

es and they move along edges. At most one agent is placed in each vertex and at 

least one vertex remains unoccupied.  

 An agent can move only into a currently unoccupied vertex in the standard 

version of CPF. In the parallel version, an agent can move also into the vertex be-

ing currently vacated by another agent supposed this movement is not cyclic. 

 The optimal pCPF where the task is to find a solution of the makespan as small 

as possible is particularly studied. The main contribution of this paper is the proof 

of the NP-completeness of the decision version of the optimal pCPF. The reduc-

tion of propositional satisfiability (SAT) to the problem is used in the proof. 

Keywords: cooperative path-finding (CPF), parallelism, multi-agent, sliding puz-

zle, (N
2
-1)-puzzle, N×N-puzzle, 15-puzzle, domain dependent planning, com-

plexity, NP-completeness 

1. Introduction and Motivation 

This paper addresses a problem of cooperative path-finding (CPF) [17, 18, 22] 

and its parallel version. Consider a group of mobile agents that are moving in 

mailto:pavel.surynek@mff.cuni.cz
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some environment (for example in the 2-dimensional plane with obstacles). Each 

agent of the group is given an initial and a goal location. The question of interest 

is to determine a sequence of moves for each agent such that all the agents reach 

their goal locations supposing they started from the given initial ones by follow-

ing this sequence. Physical limitations must be observed: agents must not collide 

with each other and they must avoid obstacles. 

The CPF problem is motivated by many practical tasks. Various problems of 

navigating a group of mobile agents can be formulated as CPF. However, the 

primary motivations for the problem are tasks of relocating certain entities (auto-

nomous or centrally controlled) within an 

environment with a limited free space. 

Hence, the problem is not restricted to the 

case where agents are actually represented 

by mobile agents. Such real-life examples 

include rearranging of stored items in au-

tomated storages (an agent is represented 

by a movable pile with stored items – see 

Figure 1) or coordination of vehicles in 

dense traffic (agent = vehicle). Moreover, 

the reasoning about rearrange-

ment/coordination tasks should not be li-

mited to physical entities only. An agent 

may be represented by a virtual entity or 

by a piece of commodity as well. Thus, 

many tasks such as planning of data trans-

fer between communication nodes with 

limited storage capacity (agent = data 

packet), commodity transportation in the 

commodity transportation network (agent 

= certain amount of commodity), or even 

the motion planning of large groups of 

virtual agents in the computer-generated 

imagery can be expressed as an instance of 

CPF. 

A parallel version of CPF (pCPF) is 

suggested in this paper and its computa-

tional complexity is studied. The standard 

CPF is usually formulated on an undirected 

graph that models the environment. Vertic-

es of the graph represent locations and 

edges represent passable regions. Agents 
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Figure 1. Illustration of modeling the 

environment in a real scenario by undi-

rected graph. The scenario consists of a 

small automated storage with movable 

piles of stored items (labeled 𝐴 to 𝐻 and 𝑎 

to ℎ). Each pile can be moved left/right/ 

forward/backward. Items in piles are 

accessible from the passage – to access 

piles 𝐸-𝐻 or 𝑒-ℎ the storage needs to be 

rearranged. The environment is modeled 

as grid of size 4 × 5 which is a bi-

connected graph. 
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are placed in vertices of the graph and they are allowed to move into a neighbor-

ing vertex if it is currently unoccupied. The parallel version of CPF is more re-

laxed – an agent also allowed entering a vertex that is simultaneously vacated by 

another agent supposed that agents do not perform a cyclic movement (cyclic 

movement includes rotation around a cycle but also swapping a pair of agents 

along single edge). In other words, an agent entering an unoccupied vertex, which 

leads this simultaneous movement, must exist. 

An abstract instance for a given specific real-life cooperative path-finding situ-

ation can be modeled in a variety of ways. For instance, it is necessary to sample 

locations in the original environment in order to make the abstract instance as 

precise as needed. Nevertheless, these issues are out of scope of this work. 

The main contribution of this paper is the proof of NP-completeness of the op-

timal pCPF. This result has been already previewed in the short conference paper 

[26]. However, the proof did not fit into the short paper. Here the proof is pre-

sented in all the details with rigorous treatment and illustrations. 

In the context of CPF, works on problems of motion planning over graphs 

must be mentioned [13, 14, 15, 16, 37] since they are closely related. Namely, so-

called pebble motion on graphs (PMG) of which the most widely known repre-

sentative is the 15-puzzle [13, 15, 16, 37] represent the standard (non-parallel) 

CPF in fact. Many theoretical results are known for PMG – it is known that the 

problem can be solved in a polynomial time (in 𝒪( 𝑉 3) for 𝐺 = (𝑉, 𝐸) modeling 

the environment) with solution consisting of polynomial number of moves (again 

𝒪( 𝑉 3) moves) [13, 37]. Moreover, it is known that the decision version of the 

optimal PMG (that is, a yes/no question if a solution of given length/makespan 

exists) is NP-complete [15, 16]. This result has been shown for a generalized va-

riant of the 15-puzzle that is also known as (𝑁2 − 1)-puzzle. Hence, a natural 

question if the situation changes in the case of pCPF arises. This paper gives the 

answer. 

The organization of the paper is as follows: the formal definition of PMG is 

recalled and the definition of pCPF is given in Section 2 (87). Some basic proper-

ties of both problems and their correspondence are discussed in this section as 

well. Section 3 (92) represents the core of the paper - several techniques for poly-

nomial transformation of propositional satisfiability to pCPF are described here. 

The last section - Section 4 (116) - is devoted to related works and conclusion. 

2. Pebble Motion on a Graph and Cooperative Path-finding 

Problems of pebble motion on a graph (PMG) and parallel cooperative path-

finding (pCPF) are formally defined in this section. As it was mentioned, non-

parallel CPF and PMG are used to denote the same concept by many authors [13, 
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20, 37]. The PMG/CPF problem has been already studied in the literature and 

many theoretical results are known for this problem. The parallel version of CPF 

represents a relaxation of PMG/CPF with respect to the dynamicity of move-

ments.  

Consider an environment in which a group of mobile agents is moving. The 

agents are all identical (that is, they are all of the same size and have the same 

moving abilities). Each agent starts at a given initial location and it needs to reach 

a given goal location. Both problems consist in finding a spatial-temporal path for 

each agent so that it can reach its goal by following this path. Agents must not 

collide with each other and they must avoid obstacles in the environment. 

An abstraction common in the literature related to PMG/CPF is adopted re-

garding the model of the environment [18, 20]. The environment with obstacles in 

which the agents are moving is modeled as an undirected graph. Vertices of this 

graph represent locations in the environment and the edges model a passable way 

from one location to the neighboring location. The time is discrete – each agent is 

located in a vertex at each time step. A motion of an agent is an instantaneous 

event. If the agent is placed in a vertex at a given time step then the result of the 

motion is the situation where the agent is placed in the neighboring vertex at the 

following time step. 

2.1. Formal Definitions of Motion Problems 

A notion of pebble motion on a graph – PMG (also called a pebble motion puzzle, 

sliding box puzzle; special variants are known as the 15-puzzle and (𝑁2 − 1)-

puzzle) [13, 16, 37] and the related problem of cooperative path-finding – CPF 

(also known as multi-agent path-finding) [20, 25, 32] are described in the follow-

ing definition. 

 

Definition 1 (pebble motion on a graph– PMG). Let 𝐺 = (𝑉, 𝐸) be an undi-

rected graph and let 𝑃 = {𝑝 1 , 𝑝 2 , … , 𝑝 𝜇 } where 𝜇 <  𝑉  be a set of pebbles. The 

initial arrangement and the goal arrangement of pebbles in 𝐺 are defined by two 

uniquely invertible functions 𝑆𝑃
0:𝑃 ⟶ 𝑉 (that is 𝑆𝑃

0(𝑝) ≠ 𝑆𝑃
0(𝑞) for every 

𝑝, 𝑞 ∈ 𝑃 with 𝑝 ≠ 𝑞) and 𝑆𝑃
+: 𝑃 ⟶ 𝑉 respectively. A problem of pebble motion 

on a graph (PMG) is the task to find a number 𝜉 and a sequence of pebble ar-

rangements 𝒮𝑃 = [𝑆𝑃
0, 𝑆𝑃

1 , … , 𝑆𝑃
𝜉

] such that the following conditions hold (the se-

quence represents arrangements of pebbles at each time step – the time step is 

indicated by the upper index): 

(i) 𝑆𝑃
𝑘 : 𝑃 ⟶ 𝑉 is a uniquely invertible function for every 𝑘 = 1,2, … , 𝜉; 

(ii) 𝑆𝑃
𝜉

= 𝑆𝑃
+ (that is, all the pebbles eventually reach their destination vertic-

es); 
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(iii) either 𝑆𝑃
𝑘 𝑝 = 𝑆𝑃

𝑘+1 𝑝  or {𝑆𝑃
𝑘 𝑝 , 𝑆𝑃

𝑘+1 𝑝 } ∈ 𝐸 for every 𝑝 ∈ 𝑃 and 

𝑘 = 1,2, … , 𝜉 − 1 (that is, a pebble either stays in a vertex or moves 

along an edge); 

(iv) if 𝑆𝑃
𝑘 𝑝 ≠ 𝑆𝑃

𝑘+1 𝑝  (that is, the pebble 𝑝 moves between time steps 𝑘 

and 𝑘 + 1) then  𝑆𝑃
𝑘 𝑞 ≠ 𝑆𝑃

𝑘+1 𝑝  ∀𝑞 ∈ 𝑃 with 𝑞 ≠ 𝑝 must hold for 

every  𝑝 ∈ 𝑃 and 𝑘 = 1,2, … , 𝜉 − 1 (that is, a pebble can move into a 

currently unoccupied vertex only). 

The instance of PMG is formally a quadruple Π = (𝐺, 𝑃, 𝑆𝑃
0, 𝑆𝑃

+). A solution to 

the instance Π will be denoted as 𝒮𝑃 Π = [𝑆𝑃
0 , 𝑆𝑃

1 , … , 𝑆𝑃
𝜉

]. □ 

 

 
 

Figure 2. An illustration of problems of pebble motion on a graph (PMG) and parallel cooperative 

path-finding (pCPF). Both problems are illustrated on the same graph with the same initial and goal 

locations. The task is to move pebbles/agents from their initial locations specified by 𝑆𝑃
0/𝑆𝐴

0 to the 

goal locations specified by 𝑆𝑃
+/𝑆𝐴

+. A solution of makespan 6 (𝜉 = 6) is shown for PMG and a 

solution of makespan 4 (𝜁 = 4) is shown for pCPF. Notice the differences in parallelism between 

both solutions – pCPF allows a higher number of moves to be performed in parallel. 

 

The notation with a stripe above the symbol is used to distinguish a constant 

from a variable (for example, 𝑝 ∈ 𝑃 is a variable while 𝑝 2 is a constant; some-

times a constant parameterized by a variable or by an expression will be used – 

for example 𝑝 𝑖  denotes a constant parameterized by an index 𝑖 ∈ ℕ; the paramete-

rization by an expression will be clear from the context). 

When speaking about a move at time step 𝑘, it is referred to the time step of 

commencing the move (the move is performed between time steps 𝑘 and 𝑘 + 1). 

A parallel version of CPF is a relaxation of PMG/CPF. The requirement that 

the target vertex of a pebble/agent must be vacated in the previous time step is 

relaxed. Thus, the move of an agent entering the target vertex, that is simulta-

neously vacated by another agent and no other agent is trying to enter the same 

target vertex, is allowed in parallel version of CPF. However, there must be some 

leading agent initiating such a chain of moves by moving into an unoccupied ver-

𝑺𝑷
𝟎 = 𝑺𝑨

𝟎  

𝜉 = 6 
 

Solution of the problem of pebble motion 

on a graph (PMG) 𝚷 with 𝑷 = {𝟏 , 𝟐 , 𝟑 } 

𝑺𝑷
𝟎

  

𝒗 𝟏  
𝒗 𝟐  
𝒗 𝟑  

1   

2   

3   

 

Solution of the problem of parallel coopera-

tive path-finding (pCPF)  𝚺 with 𝑨 = {𝟏 , 𝟐 , 𝟑 } 

𝚺 = (𝐺, 𝑅, 𝑆𝐴
0, 𝑆𝐴

+) 

𝚷 = (𝐺, 𝑃, 𝑆𝑃
0, 𝑆𝑃

+)  𝑺𝑷
+ = 𝑺𝑨

+ 

𝒗 𝟏 

𝒗 𝟐 

𝒗 𝟑 

𝒗 𝟒 

𝒗 𝟓 

𝒗 𝟔 

𝒗 𝟕 

𝒗 𝟖 

𝒗 𝟗 

𝟏  

𝟐  

𝟑  

𝒗 𝟏 

𝒗 𝟐 

𝒗 𝟑 

𝒗 𝟒 

𝒗 𝟓 

𝒗 𝟔 

𝒗 𝟕 

𝒗 𝟖 

𝒗 𝟗 

𝟏  

𝟐  

𝟑  

𝜁 = 4 𝑷  

 
𝑺𝑷

𝟏
  

𝑣 4  
𝑣 2  

𝑣 3  

𝑺𝑷
𝟐

  

𝑣 7  
𝑣 1  

𝑣 3  

𝑺𝑷
𝟑

  

𝑣 8  
𝑣 4  
𝑣 2  

𝑺𝑷
𝟒

  

𝑣 9  
𝑣 7  

𝑣 1  

𝑺𝑷
𝟓

  

𝑣 9  
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𝑣 4  

𝑺𝑷
𝟔 = 𝑺𝑷

+
  

𝒗 𝟗  
𝒗 𝟖  
𝒗 𝟕  
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2   

3   
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𝒗 𝟑  

𝑺𝑨
𝟏

  

𝑣 4  
𝑣 1  

𝑣 2  

𝑺𝑨
𝟐

  

𝑣 7  
𝑣 4  

𝑣 1  

𝑺𝑨
𝟑

  

𝑣 8  
𝑣 7  

𝑣 4  

𝑺𝑨
𝟒 = 𝑺𝑨

+
  

𝒗 𝟗  

𝒗 𝟖  

𝒗 𝟕  
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tex (that is, agents can move like a train with the leading agent in front) that is not 

entered by another agent at the same time step. These requirements rule out rota-

tion of agents around a cycle with no vacant position as well as swapping a pair of 

agents along an edge. The problem is formalized in the following definition. 

 

Definition 2 (parallel cooperative path-finding – pCPF). Again, let 𝐺 = (𝑉, 𝐸) 

be an undirected graph. A set of agents 𝐴 = {𝑎 1 , 𝑎 2 , … , 𝑎 𝜈 } where 𝜈 <  𝑉  is giv-

en instead of the set of pebbles. Similarly, the graph models the environment 

where the agents are moving. The initial arrangement and the goal arrangement 

of agents are defined by two uniquely invertible functions 𝑆𝐴
0:𝐴 ⟶ 𝑉 (that is, 

𝑆𝐴
0(𝑎) ≠ 𝑆𝐴

0(𝑏) for every 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ≠ 𝑏) and 𝑆𝐴
+:𝐴 ⟶ 𝑉 respectively. A 

problem of parallel cooperative path-finding (pCPF) is then the task to find a 

number 𝜁 and a sequence of agent arrangements 𝒮𝐴 = [𝑆𝐴
0, 𝑆𝐴

1 , … , 𝑆𝐴
𝜁

] for that the 

following conditions hold: 

(i) 𝑆𝐴
𝑘 : 𝐴 ⟶ 𝑉 is a valid arrangement for every 𝑘 = 1,2, … , 𝜁 (that is, uni-

quely invertible); 

(ii) 𝑆𝐴
𝜁

= 𝑆𝐴
+ (that is, all the agents eventually reach their destinations); 

(iii) either 𝑆𝐴
𝑘 𝑎 = 𝑆𝐴

𝑘+1 𝑎  or {𝑆𝐴
𝑘 𝑎 , 𝑆𝐴

𝑘+1 𝑎 } ∈ 𝐸 for every 𝑎 ∈ 𝐴 and 

𝑘 = 1,2, … , 𝜁 − 1 (that is, an agent either stays in a vertex or moves into 

the neighboring vertex); 

(iv) if 𝑆𝐴
𝑘 𝑎 ≠ 𝑆𝐴

𝑘+1 𝑎  (that is, the agent 𝑎 moves between time steps 𝑘 and 

𝑘 + 1) then there must exist a sequence of distinct agents [𝑎 =

𝑏0 , 𝑏1 , … , 𝑏𝜆] with 𝜆 ∈ ℕ0 such that 𝑆𝐴
𝑘 𝑐 ≠ 𝑆𝐴

𝑘+1 𝑏𝜆  ∀𝑐 ∈ 𝐴 with 

𝑐 ≠ 𝑏𝜆  (𝑏𝜆  moves to a vertex that is unoccupied at time step 𝑘; 𝑏𝜆  is a 

leading agent of the chain of agents which the sequence is part of) and 

𝑆𝐴
𝑘+1 𝑏𝑖 = 𝑆𝐴

𝑘 𝑏𝑖+1  for 𝑖 = 0,1, … , 𝜆 − 1 (agents 𝑎 = 𝑏0 , 𝑏1 , … , 𝑏𝜆−1  

follows the leader like a chain; they move all at once between time steps 

𝑘 and 𝑘 + 1). 

The instance of pCPF is formally a quadruple Σ = (𝐺, 𝐴, 𝑆𝐴
0, 𝑆𝐴

+). A solution 

to the instance Σ will be denoted as 𝒮𝐴 Σ = [𝑆𝐴
0 , 𝑆𝐴

1, … , 𝑆𝐴
𝜁

]. □ 

 

The only conceptual difference between definitions of PMG/CPF and pCPF is 

in the point (iv). The rest of differences is attributable to different names of func-

tions representing arrangements of agents. 

The numbers 𝜉 and 𝜁 are called the makespan of the solution of PMG/CPF 

and pCPF respectively. The makespan needs to be distinguished from the size of 

the solution, which is the total number of moves performed by pebbles/agents. 

The makespan is typically less than the size of the solution. In case of the 

PMG/CPF with just a single unoccupied vertex, the makespan and the size of the 

solution are the same. 
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Examples of instances of PMG/CPF and pCPF and their solutions are shown 

in Figure 2. 

2.2. Known Properties of Motion Problems and Related Questions 

Notice that a solution of an instance of PMG/CPF as well as a solution of an in-

stance of pCPF allows a pebble/agent to stay in a vertex for more than a single 

time step. It is also possible that a pebble/agent visits the same vertex several 

times within the solution. Hence, a sequence of moves for a single pebble/agent 

does not necessarily form a simple path in the given input graph (if the trajectory 

of the agent is needed to be modeled by a simple path one may need to consider a 

time expanded graph with a copy of the input graph for every time step; a path in 

the time expanded graph is always simple as it connects vertices in consecutive 

time steps only). 

 Notice further that both problems intrinsically allow parallel movements of 

pebbles/agents. That is, more than one pebble/agent can perform a move at a sin-

gle time step. However, pCPF allows higher parallelism due to its weaker re-

quirements on movements (the target vertex is required to be unoccupied only for 

the leading agent in the current time step – see Figure 2). More than one unoccu-

pied vertex is necessary to obtain parallelism in PMG/CPF. On the other hand, it 

is sufficient to have a single unoccupied vertex to obtain parallelism in pCPF 

(consider for example agents moving around a cycle with one vacant position). 

There is an easy to prove correspondence between solutions of PMG/CPF and 

pCPF summarized in the following proposition. It states that the solution of the 

instance of PMG/CPF can be used as a solution to the corresponding instance of 

the pCPF, which has the same graph, same set of agents, and the same initial and 

goal arrangements. 

 

Proposition 1 (problem correspondence). Let Π = (𝐺, 𝑃, 𝑆𝑃
0 , 𝑆𝑃

+) be an instance 

of PMG/CPF and let 𝒮𝑃 Π = [𝑆𝑃
0 , 𝑆𝑃

1 , … , 𝑆𝑃
𝜉

] be its solution. Then 𝒮𝐴 Σ =

𝒮𝑃 Π  is a solution of an instance pCPF Σ = (𝐺, 𝑃, 𝑆𝑃
0, 𝑆𝑃

+) (that is, the instance of 

pCPF on the same graph has the set of agents represented by the set of pebbles 

and the initial/goal locations of agents are the same those of pebbles).  

 

There is a variety of modifications of PMG/CPF and pCPF. A natural addi-

tional requirement is to produce solutions with the shortest possible makespan 

(that is, the numbers 𝜉 or 𝜁 respectively are required to be as small as possible). 

Unfortunately, this requirement makes the problem of PMG/CPF intractable. It 

was shown in [15, 16] that producing a makespan optimal solution to a special 

case of PMG/CPF known as 𝑁 × 𝑁-puzzle (or (𝑁2 − 1)-puzzle) which takes 

place on 4-connected grid of size 𝑁 × 𝑁 with one vacant position is 𝑵𝑷-hard. 
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Hence, PMG/CPF on general graph with arbitrary set of pebbles/agents is 

𝑁𝑃-hard as well. 

However, it is not simply possible to make any similar statement about the 

complexity of the optimal pCPF based on the above facts. The situation here is 

complicated by the inherent parallelism, which may affect the makespan in an 

unforeseen way. Proof constructions used for the 𝑁 × 𝑁-puzzle in [15, 16] thus 

no longer apply for pCPF. 

Observe further that difficult cases of the problem of PMG/CPF have a single 

unoccupied vertex. This fact may raise a question how the situation is changed 

when there are more than one unoccupied vertices. The intuition prompts that 

more unoccupied vertices may simplify the problem. Unfortunately, it is not the 

case. PMG/CPF on a general graph with the fixed number of unoccupied vertices 

is still 𝑁𝑃-hard since multiple copies of the 𝑁 × 𝑁-puzzle from [15, 16] can be 

used to add as many unoccupied vertices as needed (notice that the resulting 

graph may be disconnected). 

Without the requirement on the optimality of makespan of solutions the situ-

ation is much easier; PMG/CPF is in the P class as it is shown in [13, 37]. Due to 

Proposition 1 pCPF is also in the P class. It has been also shown in [13] that a 

solution of the size of 𝒪( 𝑉 3) can be generated for any solvable PMG/CPF in-

stance Π = (𝐺 = (𝑉, 𝐸), 𝑃, 𝑆𝑃
0 , 𝑆𝑃

+). Hence, it provides a polynomial upper bound 

on the size of the content of the oracle to guess the solution in the non-

deterministic model. Thus, it is possible to conclude that decision version of op-

timal PMG/CPF is an NP-complete problem. By the decision version here, it is 

meant the yes/no question whether there is a solution of Π of the makespan small-

er than the given bound. 

It seems that PMG/CPF and pCPF problems have been already resolved except 

the case of the complexity of the optimal pCPF. However, there is another issue 

worth studying. Constructions proving the membership of the problem of 

PMG/CPF into the P class used in [13, 37] generate solutions that are too long for 

practical use. As the makespan of the solution is of great importance in practice, 

this property makes these methods unsuitable when dealing with some real life 

motion problem abstracted as PMG/CPF or pCPF [23, 24, 25]. Hence, alternative 

solving methods that generate shorter though sub-optimal solutions are also of 

interest [22, 23, 24, 25, 28]. 

3. The Intractability of the Optimal Cooperative Path-Finding 

The main result is shown in this section is that the optimal pCPF is intractable. 

Namely, it is shown to be NP-hard and corresponding decision version to be NP-

complete. The proof technique was partially inspired by Even’s et al. [6] proof of 
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NP-completeness of two-commodity integral flow problem [1]. Similarly as in [6] 

we reduce propositional satisfiability (SAT) [1, 8, 12] to optimal pCPF to show 

its NP-hardness. The reduction is quite complex and requires thorough technical 

preparation which is elaborated in following sections. On the other hand, showing 

membership of optimal pCPF to NP is relatively easy. 

3.1. Overview of Reduction of SAT to Optimal pCPF 

As the reduction of SAT to optimal pCPF is technically complicated, a brief over-

view is provided now to improve readability of the technical description. 

 The top-level idea of the reduction is that movement of agents will simulate 

valuation of the given propositional formula. Thus, we need to construct an in-

stance of pCPF for the given propositional formula so that there will be two op-

tions of going through a certain location in the graph that correspond to every 

propositional variable. If agents go through one of these two options the corres-

ponding propositional variable should be valuated accordingly to either 𝑇𝑅𝑈𝐸 or 

𝐹𝐴𝐿𝑆𝐸. The question is how to construct the pCPF instance where movements of 

agents in any optimal solution simulate valuation of the formula. Two fundamen-

tal properties are implicitly present when propositional formula is valuated. Both 

of them need to be simulated explicitly when the formula is reduced to an instance 

of pCPF. 

 The first property is so called propositional consistency, which means that all 

the positive and all the negative occurrences of the same variable in the input 

formula have the same propositional value respectively. The second property is 

the fact that all the clauses of the propositional formula in CNF [12] need to be 

satisfied in order to satisfy the entire formula. This characteristic will be called 

clause satisfaction. 

 The following section is devoted to techniques for controlling movements of 

agents over the graph in optimal solutions of pCPF. A so-called vertex locking 

mechanism is developed to force agents to move or not to move into some vertic-

es of the graph. Movements of agents need to be controlled to allow the simula-

tion of propositional consistency and clause satisfaction in pCPF eventually, 

which is elaborated in subsequent sections. A mechanism of so-called conjugation 

is developed to keep a group of moving agents together in order to simulate prop-

ositional consistency properly – the group must not be divided between positive 

and negative optional pass ways, which simulates that all the occurrences of a 

given variable are assigned the same truth-value. All the movement controlling 

techniques are finally put together to simulate finding satisfying valuation of the 

given propositional formula by finding makespan optimal solution to the con-

structed instance of pCPF. 
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 If the reader is not interested in technical details of vertex locking, it is possi-

ble to skip directly to Section 3.3 (105). 

3.2.  Vertex Locking Techniques for Controlling Movements of Agents 

A technique to prevent agents from entering a given vertex at a given set of time 

steps will be shown in this section. This is a crucial skill used later to force agents 

to move in a required way in optimal solutions in order to simulate satisfying of 

the propositional formula properly. To allow easier understanding of suggested 

concepts, the explanation follows the scheme where a simple vertex locking tech-

nique is gradually augmented to obtain eventually a technique that will be actually 

used in the reduction. 

 The vertex locking technique can be applied on an arbitrary instance of pCPF. 

The result of the application of the technique on the instance is that agents cannot 

enter a selected vertex at selected time steps in any optimal solution (the shortest 

possible makespan of the solution is required). The augmentation of the problem 

consists in adding new vertices, edges, and agents into the instance. The selection 

of time steps at which the vertex will not be allowed for entry by the original 

agents is modeled by an appropriate setting of the initial and goal locations of the 

newly added agents. The whole construction is formalized in the following lemma 

and its proof. 

 

Lemma 1 (vertex locking augmentation). Assume the following preconditions: 

(a) Let Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0, 𝑆𝐴

+) be an instance of pCPF and let 𝑣 ∈ 𝑉 with 

𝑆𝐴
0(𝑎) ≠ 𝑣 ∀𝑎 ∈ 𝐴 be a so called locked vertex. 

(b) Next, let 𝑇 = {𝑡1, 𝑡2 , … , 𝑡𝑛} where 𝑡𝑖 ∈ ℕ0 (natural numbers including 0) 

for 𝑖 = 1,2, … , 𝑛 and 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛  be a set of so called lock time 

steps. 

Then there exists an instance of pCPF Σ′ = (𝐺′ = (𝑉′, 𝐸′), 𝐴′, 𝑆𝐴′
0 , 𝑆𝐴′

+ ) such 

that Σ′ |𝑉 =  Σ and it never happens that an agent 𝑎 ∈ 𝐴 enters the vertex 𝑣 at any 

time step 𝑡 ∈ 𝑇 in any optimal solution 𝒮𝐴′
∗  Σ′  (entering the vertex 𝑣 at the time 

step 𝑡 means that an agent is located in 𝑣 at time step 𝑡).  

 

The notation Σ′ |𝑉  stands for a restriction of the pCPF problem on the set of 

vertices 𝑉. That is, if Σ′ = (𝐺′ = (𝑉′, 𝐸′), 𝐴′, 𝑆𝐴′
0 , 𝑆𝐴′

+ ) and 𝑉 ⊆ 𝑉′, then Σ′ |𝑉 =

(𝐺 ′ |𝑉 , 𝐴′ |𝑉 , 𝑆𝐴′ |𝑉

0 , 𝑆𝐴′ |𝑉

+ ) where 𝐺 ′ |𝑉 = (𝑉, 𝐸′ ∩   𝑢, 𝑣  𝑢, 𝑣 ∈ 𝑉 ), 𝐴′ |𝑉 = {𝑎 ∈

𝐴′|𝑆𝐴′
0 (𝑎) ∈ 𝑉 ∧ 𝑆𝐴′

+ (𝑎) ∈ 𝑉}, 𝑆𝐴′
0 |𝑉 : 𝐴′ |𝑉 ⟶ 𝑉 with 𝑆𝐴′

0 |𝑉 𝑎 = 𝑆𝐴′
0  𝑎  ∀𝑎 ∈

𝐴′ |𝑉 , and 𝑆𝐴′
+ |𝑉: 𝐴′ |𝑉 ⟶ 𝑉 with 𝑆𝐴′

+ |𝑉 𝑎 = 𝑆𝐴′
+ 𝑎  ∀𝑎 ∈ 𝐴′ |𝑉 . In other words, 

each component of the description of the instance is naturally restricted on the 

smaller set of vertices. The lemma states that the augmented instance Σ′  after 

restriction on the original set of vertices is the same as original instance Σ. 
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Proof.  Let 𝜁∗ be the makespan of any optimal solution of pCPF instance Σ (no-

tice, that the number 𝜁∗ is difficult to compute as it is shown later; but assume we 

know it for now). 

An augmentation of the graph 𝐺 = (𝑉, 𝐸) will be shown first. The set of ver-

tices 𝑉 is extended with a set of new vertices 

𝑉𝑋 = {𝑢 𝑡𝑛 , 𝑢 𝑡𝑛−1, … , 𝑢 1 , 𝑤 1 , 𝑤 2 , … , 𝑤 𝜆} where 𝜆 = 𝜁∗ + 𝑡𝑛 − 𝑡1. The new vertices 

are connected around the locked vertex 𝑣 in the following way. A set of edges 

𝐸𝑋 = {{𝑢 𝑡𝑛 , 𝑢 𝑡𝑛−1}, {𝑢 𝑡𝑛−1 , 𝑢 𝑡𝑛−2}, , … ,  𝑢 2 , 𝑢 1 ,  𝑢 1, 𝑣 ,  𝑣, 𝑤 1 , {𝑤 1, 𝑤 2}, 

{𝑤 2 , 𝑤 3}, …,  𝑤 𝜆−1 , 𝑤 𝜆 } is added to the graph with the extended set of vertices. 

Thus, the augmented graph is 𝐺′ = (𝑉 ′ = 𝑉 ∪ 𝑉𝑋 , 𝐸′ = 𝐸 ∪ 𝐸𝑋). 

 

 
 

Figure 3. An illustration of vertex locking augmentation in an instance of pCPF problem. Assume 

we want to prevent agents 𝑎 1,  𝑎 2, and 𝑎 3 from entering vertex 𝑣 3 at time steps 1 and 3 in any op-

timal solution. The original instance Σ with a set of agents 𝐴 = {𝑎 1, 𝑎 2, 𝑎 3} is shown in the upper 

part of the figure. The makespan of any optimal solution of Σ is ζ∗ = 2. The augmented instance Σ′ 

is in the lower part of the figure. New vertices 𝑢 3, 𝑢 2, 𝑢 1, 𝑤 1, 𝑤 2, 𝑤 3, and 𝑤 4 and new agents 𝑏 1 and 

𝑏 2 were added. The makespan of any optimal solution of the augmented problem is 𝜆 + 𝑡1 = 𝜁∗ +
𝑡𝑛 − 𝑡1 + 𝑡1 = 𝜁∗ + 𝑡𝑛 = 2 + 3 = 5 and it newer happens that any of the original agents 𝑎 1,  𝑎 2, 

and 𝑎 3 enters 𝑣 3 at time step 1 or 3 in any optimal solution (𝑣 3 is occupied by 𝑏 1  at time step 1 and 

by 𝑏 2 at time step 3). 

 

The idea behind the construction of the augmented graph is that new agents 

are initially placed in new vertices 𝑢 𝑡  for 𝑡 ∈ 𝑇 with 𝑡 ≥ 1 or a new agent is 

placed in 𝑣 if 0 ∈ 𝑇. Then the newly added agents are forced to move straight 
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𝒗 𝟐 

𝒗 𝟑 

𝒗 𝟒 

𝒗 𝟓 

𝒗 𝟔 

𝒗 𝟕 

 𝒂 𝟏
  𝒂 𝟐

 

 𝒂 𝟑
 

 𝒂 𝟐
  𝒂 𝟏

 

 𝒂 𝟑
 

𝚺′ = (𝐺 ′ , 𝐴′ , 𝑆𝐴′
0 , 𝑆𝐴′

+ ) 𝑺𝑨′
𝟎  𝑺𝑨′

+  

𝒗 𝟏 

𝒗 𝟐 

𝒗 𝟑 

𝒗 𝟒 

𝒗 𝟓 

𝒗 𝟔 

𝒗 𝟕 

𝒗 𝟑 

𝒗 𝟒 

𝒗 𝟓 

𝒗 𝟏 

𝒗 𝟐 

𝒗 𝟔 

𝒗 𝟕 

𝒖 𝟑 𝒖 𝟐 𝒖 𝟏 

𝒃 𝟏 𝒃 𝟐 𝒃 𝟐 𝒃 𝟏 
𝒖 𝟑 𝒖 𝟐 𝒖 𝟏 𝒘 𝟏 𝒘 𝟐 𝒘 𝟑 𝒘 𝟒 𝒘 𝟏 𝒘 𝟐 𝒘 𝟑 𝒘 𝟒 

 𝒂 𝟏
 

 𝒂 𝟐
 

 𝒂 𝟑
 

 𝒂 𝟐
  𝒂 𝟏

 

 𝒂 𝟑
 

v v 

v v 
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ahead into the vertices 𝑤 1 , 𝑤 2 , … , 𝑤 𝜆  through the vertex 𝑣. Making agents to 

move in this way is imposed by the condition on the optimality of the solution. 

Otherwise, that is if agents do not move in suggested described way, they cannot 

manage to reach their destinations on time. The motion of new agents through the 

vertex 𝑣 makes an obstruction in this vertex exactly at selected time steps given 

by lock time steps 𝑇. 

The formal description of the above idea follows. The set of agents is ex-

tended with a set of new agents 𝐴𝑋 = {𝑏 1 , 𝑏 2 , … , 𝑏 𝑛}; that is, 𝐴′ = 𝐴 ∪ 𝐴𝑋 . The 

initial and goal arrangements of new agents are spread around the locked vertex 𝑣 

in the newly added vertices: 𝑆𝐴′
0 (𝑏 𝑖) = 𝑢 𝑡𝑖  if 𝑡𝑖 ≠ 0 and 𝑆𝐴′

0 (𝑏 𝑖) = 𝑣 if 𝑡𝑖 = 0 for 

𝑖 = 1,2, … , 𝑛; 𝑆𝐴′
+ (𝑏 𝑖) = 𝑤 𝜆+𝑡1−𝑡𝑖  if 𝜆 + 𝑡1 − 𝑡𝑖 ≥ 1 and 𝑆𝐴′

+ (𝑏 𝑖) = 𝑣 if 𝜆 + 𝑡1 −

𝑡𝑖 = 0  for 𝑖 = 1,2, … , 𝑛. For the original agents, the initial and the goal arrange-

ments remain the same; that is, 𝑆𝐴′
0  𝑎 = 𝑆𝐴

0 𝑎  and 𝑆𝐴′
+ 𝑎 = 𝑆𝐴

+ 𝑎  ∀𝑎 ∈ 𝐴. 

At this point, it is necessary to show that it never happens that an agent 𝑎 ∈ 𝐴 

enters the vertex 𝑣 at any time step 𝑡 ∈ 𝑇 within the optimal solution 𝒮𝐴′
∗  Σ′ . Any 

optimal solution of the pCPF instance Σ′  has the makespan of 𝜆 + 𝑡1. Moreover, 

any solution 𝒮𝐴′
∗  Σ′ = [𝑆𝐴′

0 , 𝑆𝐴′
1 , … , 𝑆

𝐴′
𝜆+𝑡1 ] of the optimal makespan of the in-

stance Σ′, must satisfy that 𝑆𝐴′
0  𝑏 𝑖 = 𝑢 𝑡𝑖 , 𝑆𝐴′

1 (𝑏 𝑖) = 𝑢 𝑡𝑖−1, 𝑆𝐴′
2 (𝑏 𝑖) = 𝑢 𝑡𝑖−2, …, 

𝑆
𝐴′
𝑡𝑖−1

(𝑏 𝑖) = 𝑢 1, 𝑆
𝐴′
𝑡𝑖 (𝑏 𝑖) = 𝑣, 𝑆

𝐴′
𝑡𝑖+1

(𝑏 𝑖) = 𝑤 1, 𝑆
𝐴′
𝑡𝑖+2

(𝑏 𝑖) = 𝑤 2,…, 𝑆
𝐴′
𝜆+𝑡1 (𝑏 𝑖) =

𝑤 𝜆+𝑡1−𝑡𝑖 = 𝑆𝐴′
+ (𝑏 𝑖) for 𝑖 = 1,2, … , 𝑛. This is ensured by the fact that the shortest 

path from 𝑆𝐴′
0 (𝑏 𝑖) to 𝑆𝐴′

+ (𝑏 𝑖) in 𝐺′ has the length 𝜆 + 𝑡1 and it consists of vertices 

[𝑢 𝑡𝑖 , 𝑢 𝑡𝑖−1, 𝑢 𝑡𝑖−2, … , 𝑢 1 , 𝑣, 𝑤 1 , 𝑤 2 , …, 𝑤 𝜆+𝑡1−𝑡𝑖 ]. Hence, no shorter solution in 

terms of the makespan exists. 

However, it remains to show that the original agents from 𝐴 manage to reach 

their destinations within the makespan of 𝜆 + 𝑡1. This claim follows from the 

equality 𝜆 = 𝜁∗ + 𝑡𝑛 − 𝑡1, that is at least for 𝜁∗ time steps the vertex 𝑣 is not ob-

structed by any motion of newly added agents supposing they are moving straight 

towards their destinations. In any optimal solution of the original instance it is 

sufficient to enter 𝑣 at most 𝜁∗ times (notice that none of the original agents need 

to occupy 𝑣 at the beginning). Thus, any optimal solution of the original instance 

can be simulated in the augmented instance while moves of the original agents are 

stopped at time steps when 𝑣 is obstructed. Hence, the makespan of any optimal 

solution of  Σ′  is exactly 𝜆 + 𝑡1. 

It has been shown that the vertex 𝑣 is obstructed at every time step 𝑡 ∈ 𝑇 in 

any optimal solution. Hence no original agent can enter 𝑣 at any time step 𝑡 ∈

𝑇.  

 

The situation from Lemma 1 is illustrated in Figure 3. Notice, that it is not dif-

ficult to extend the construction from the proof of Lemma 1 on multiple vertices 

that will be locked at selected time steps (different sets of time steps for locking 



On the Complexity of the Optimal Parallel Cooperative Path-finding  97 

can be used for different vertices). Another useful property of the augmented 

problem is summarized in the following corollary. 

 

Corollary 1 (makespan preserving vertex locking). Assume preconditions (a) 

and (b) together with the following preconditions: 

(c) There exists a solution 𝒮𝐴 Σ  of the instance Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0, 𝑆𝐴

+) 

of the makespan 𝜁 where 𝑡𝑛 ≤ 𝜁. 

(d) Let 𝑣 ∈ 𝑉 be a locked vertex entered by an agent within 𝒮𝐴 Σ  at time 

steps 𝑌 = {𝑦1 , 𝑦2 , … , 𝑦𝑚 } where 𝑦𝑖 ∈ ℕ0 for 𝑖 = 1,2, … , 𝑛 and 𝑦1 < 𝑦2 <

⋯ < 𝑦𝑚  and it holds that 𝑌 ∩ 𝑇 = ∅. 

Then there exists an instance Σ′ = (𝐺′ = (𝑉′, 𝐸′), 𝐴′, 𝑆𝐴′
0 , 𝑆𝐴′

+ ) such that 

Σ′ |𝑉 =  Σ and it never happens that an agent 𝑎 ∈ 𝐴 enters the vertex 𝑣 at any 

time step 𝑡 ∈ 𝑇 within any optimal solution 𝒮𝐴′
∗  Σ′ ; moreover the makespan of 

any optimal solution of Σ′ is again 𝜁.  

 

Proof. The construction of Σ′ is almost the same as in the proof of Lemma 1 only 

the parameter 𝜆 is now set to 𝜁 − 𝑡1. Then, the makespan of 𝜁 of any optimal so-

lution of Σ′ is ensured by the construction. 

The makespan is at least 𝜁 since the newly added agents must go along the 

newly added path towards its end which cannot be carried out in smaller makes-

pan. On the other hand, there exists a solution of the makespan 𝜁 of the aug-

mented instance Σ′. The vertex 𝑣 needs to be occupied only at time steps 

𝑡1 , 𝑡2 , … , 𝑡𝑛  by the newly added agents that do not interfere with time steps at 

which the vertex 𝑣 is entered within the solution 𝒮𝐴 Σ  by the original agents (this 

is due to 𝑌 ∩ 𝑇 = ∅). Altogether, the makespan of any optimal solution of aug-

mented instance Σ′ is 𝜁.  

 

Lemma 1 as well as Corollary 1 can be generalized for locking a given number 

of vertices of a selected subset of vertices 𝑊 ⊆ 𝑉 at a selected set of time steps 𝑇. 

Nevertheless, only a special variant of this generalization, where just one vertex 

of 𝑊 is to be locked at selected time steps, will be actually used in further reason-

ing. To be more precise, at least one vertex in 𝑊 is required not to be occupied by 

an agent from the original set of agents at any time step 𝑡 ∈ 𝑇. It can be regarded 

as a kind of disjunctive locking where the set considered in disjunction is 𝑊. An 

analogous extension to Corollary 1 that preserves makespan additionally assumes 

the existence of a solution of the original instance where at least one vertex of 𝑊 

is unoccupied at any time step 𝑡 ∈ 𝑇. These statements, which are merely a tech-

nical extension of Lemma 1 and Corollary 1, are formalized as Lemma 2 and 

Corollary 2. 
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Lemma 2 (set locking augmentation). Let the following preconditions hold: 

(aa) Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) is an instance of pCPF and 𝑊 ⊆ 𝑉 with 

𝑆𝐴
0(𝑎) ∉ 𝑊 ∀𝑎 ∈ 𝐴 be a so called set of locked vertices. 

(bb) Next, let 𝑇 = {𝑡1 , 𝑡2 , … , 𝑡𝑛} where 𝑡𝑖 ∈ ℕ0 (natural numbers including 

0) for 𝑖 = 1,2, … , 𝑛 and 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛  be a set of lock time steps. 

Then there exists an instance of the problem of pCPF Σ′ = (𝐺′ =

(𝑉′, 𝐸′), 𝐴′, 𝑆𝐴′
0 , 𝑆𝐴′

+) such that Σ′ |𝑉 =  Σ and it never happens that all the vertices 

of the set 𝑊 are occupied by agents from the set 𝐴 at any time step 𝑡 ∈ 𝑇 within 

any optimal solution 𝒮𝐴′ Σ′  (that is, at least one vertex from 𝑊 is not occupied 

by an agent from 𝐴 at any time step 𝑡 ∈ 𝑇).  

 

 
 

Figure 4. An illustration of the vertex set locking augmentation in an instance of a pCPF problem. 

Assume we want at least one vertex of the set 𝑊 = {𝑣 3, 𝑣 4 , 𝑣 5} not to be occupied by any of the 

original agents 𝑎 1, 𝑎 2, and 𝑎 3 at time steps 1 and 3 in any optimal solution. The original instance Σ 

with the set of agents 𝐴 = {𝑎 1 , 𝑎 2 , 𝑎 3} is taken from Figure 3. The augmentation is made by adding 

a new path consisting of vertices 𝑢 3, 𝑢 2, 𝑢 1, 𝑤 1, 𝑤 2, 𝑤 3, and 𝑤 4 around the set 𝑊 and by adding 

new agents 𝑏 1 and 𝑏 2. The makespan of any optimal solution of the augmented instance Σ′ is 

λ + 1 = 𝑡𝑛 + 𝜁∗ = 3 + 2 = 5. At least one vertex of 𝑊 is occupied by 𝑏 1 at time step 1 and by 𝑏 2 at 

time step 3 in any optimal solution. Hence, it never happens that all the vertices of 𝑊 are occupied 

by agents 𝑎 1 , 𝑎 2, and 𝑎 3 at time step 1 or 3 within optimal solution. 

 

Proof. The instance Σ is augmented in a way that a new agent is forced to visit 

exactly one vertex of the set 𝑊 at each time step 𝑡 ∈ 𝑇. The technique is almost 

the same as in the case of Lemma 1. A path of new vertices is added around the 

set of locked vertices. The path branches into all the vertices of 𝑊 at both connec-

tion points. Formally, the augmentation is as follows. 

Let 𝜁∗ be the makespan of any optimal solution of Σ. The set of vertices 𝑉 is 

extended with a set of new vertices 𝑉𝑋 = {𝑢 𝑡𝑛 , 𝑢 𝑡𝑛−1, … , 𝑢 1, 𝑤 1 , 𝑤 2 , … , 𝑤 𝜆} where 

𝑨 = {1,2,3} 
𝑻 = {1,3} 
𝑾 = {𝑣 3 , 𝑣 4, 𝑣 5} 

𝜻∗ = 2 
𝝀 = 3 + 2 − min{1,3} = 4 

𝑨′ =  𝑎 1, 𝑎 2 , 𝑎 3 ∪ {𝑏 1, 𝑏 2}  

𝚺′ = (𝐺′, 𝐴′, 𝑆𝐴′
0 , 𝑆𝐴′

+) 𝑺𝑨′
𝟎  

𝒗 𝟑 

W 

𝒗 𝟒 

𝒗 𝟓 

𝒗 𝟔 

𝒗 𝟕 

𝒗 𝟏 

𝒗 𝟐 

𝒖 𝟏 𝒖 𝟐 𝒖 𝟑 

𝒃 𝟐 
𝒘 𝟏 𝒘 𝟐 𝒘 𝟑 𝒘 𝟒 

𝒃 𝟏 

 𝒂 𝟏
 

 𝒂 𝟑
 

 𝒂 𝟐
 

𝑺𝑨′
+  

𝒗 𝟑 

W 

𝒗 𝟒 

𝒗 𝟓 

𝒗 𝟔 

𝒗 𝟕 

𝒗 𝟏 

𝒗 𝟐 

𝒖 𝟏 𝒖 𝟐 𝒖 𝟑 𝒘 𝟏 𝒘 𝟐 𝒘 𝟑 𝒘 𝟒 

𝒃 𝟏 𝒃 𝟐 

 𝒂 𝟐
  𝒂 𝟏

 

 𝒂 𝟑
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𝜆 = 𝜁∗ + 𝑡𝑛 − 𝑡1. A set of edges 𝐸𝑋 = {{𝑢 𝑡𝑛 , 𝑢 𝑡𝑛−1}, {𝑢 𝑡𝑛−1, 𝑢 𝑡𝑛−2}, …,  𝑢 2 , 𝑢 1 , 

{𝑤 1, 𝑤 2}, {𝑤 2, 𝑤 3}, …,  𝑤 𝜆−1 , 𝑤 𝜆 } ∪ {{𝑢 1, 𝑤} |𝑤 ∈ 𝑊} ∪ {{𝑤, 𝑤 1}|𝑤 ∈ 𝑊} is 

added to the graph with the extended set of vertices. Thus, the augmented graph is 

𝐺′ = (𝑉 ′ = 𝑉 ∪ 𝑉𝑋 , 𝐸′ = 𝐸 ∪ 𝐸𝑋). 

The set of agents is extended with a set of new agents 𝐴𝑋 = {𝑏 1 , 𝑏 2, … , 𝑏 𝑛}; 

that is, 𝐴′ = 𝐴 ∪ 𝐴𝑋 . The initial and goal arrangements of new agents are spread 

around the set of locked vertices in the newly added vertices as follows: 

𝑆𝐴′
0  𝑏 𝑖 = 𝑢 𝑡𝑖  if 𝑡𝑖 ≠ 0 and 𝑆𝐴′

0  𝑏 𝑖 = 𝑤 for some 𝑤 ∈ 𝑊  if 𝑡𝑖 = 0 for 𝑖 =

1,2, … , 𝑛; 𝑆𝐴′
+ 𝑏 𝑖 = 𝑤 𝜆+𝑡1−𝑡𝑖  if 𝜆 + 𝑡1 − 𝑡𝑖 ≥ 1 and 𝑆𝐴′

+ 𝑏 𝑖 = 𝑤 for some 

𝑤 ∈ 𝑊 if 𝜆 + 𝑡1 − 𝑡𝑖 = 0 for 𝑖 = 1,2, … , 𝑛. For the original agents, the initial and 

the goal arrangements remain the same; that is, 𝑆𝐴′
0  𝑎 = 𝑆𝐴

0 𝑎  and 𝑆𝐴′
+ 𝑎 =

𝑆𝐴
+ 𝑎  ∀𝑎 ∈ 𝐴. 

The makespan of any optimal solution of Σ′ is at least 𝜆 + 𝑡1 since the short-

est path from 𝑆𝐴′
0  𝑏 𝑖  to 𝑆𝐴′

+ 𝑏 𝑖  in 𝐺′ has the length of 𝜆 + 𝑡1 for any 𝑖 =

1,2, … , 𝑛. On the other hand, since 𝜆 = 𝜁∗ + 𝑡𝑛 − 𝑡1, no vertex of 𝑊 is occupied 

by any new agent at least for 𝜁∗ time steps supposing the new agents are moving 

straight towards their destinations. Together with the fact that in any optimal solu-

tion of the original instance Σ it is sufficient to occupy 𝑊 for at most 𝜁∗ time 

steps, the makespan of any optimal solution of  Σ′  is exactly 𝜆 + 𝑡1.  

 

The construction of the augmentation from the proof of the above lemma is 

shown in Figure 4. Observe, that the construction can be easily extended for lock-

ing multiple sets of locked vertices while for each locked set different lock time 

steps may be used. 

 

Corollary 2 (makespan preserving set locking). Assume that preconditions (aa) 

and (bb) hold; in addition assume that the following preconditions hold as well: 

(cc) There exists a solution 𝒮𝐴 Σ  of the instance Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) 

of the makespan 𝜁 where 𝑡𝑛 ≤ 𝜁. 

(dd) There is at least one unoccupied vertex in the selected set 𝑊 ⊆ 𝑉 at all 

the time steps within 𝒮𝐴 Σ  except time steps 𝑌 = {𝑦1 , 𝑦2 , … , 𝑦𝑚 } with 

𝑦𝑖 ∈ ℕ0 for 𝑖 = 1,2, … , 𝑛 and 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑚  and it holds that 

𝑌 ∩ 𝑇 = ∅. 

Then there exists an instance Σ′ = (𝐺′ = (𝑉′, 𝐸′), 𝐴′, 𝑆𝐴′
0 , 𝑆𝐴′

+) such that 

Σ′ |𝑉 =  Σ and it never happens that all the vertices of 𝑊 are occupied by the 

original agents from the set 𝐴 at any time step 𝑡 ∈ 𝑇 within any optimal solution 

𝒮𝐴′
∗  Σ′ ; moreover the makespan of any optimal solution of Σ′ is again 𝜁.  

 

Proof. The construction of Σ′ is almost the same as in the proof of Corollary 1. 

The difference is that the parameter 𝜆 is now set to 𝜁 − 𝑡1. The construction then 

ensures that the makespan of any optimal solution of Σ′ is 𝜁. 
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The makespan of any optimal solution is at least 𝜁 since the newly added 

agents must go to the end of the newly added path. On the other hand, all the ver-

tices of the set 𝑊 need to be occupied by the original agents within the solution 

𝒮𝐴 Σ  only at time steps 𝑦1 , 𝑦2 , … , 𝑦𝑚  that do not interfere with time steps 

𝑡1 , 𝑡2 , … , 𝑡𝑛  (since 𝑌 ∩ 𝑇 = ∅) at which the newly added agents need to occupy at 

least one vertex of 𝑊 (supposing they are going directly to their destinations 

along the newly added path). Hence, there exists a solution of the makespan 𝜁 of 

the augmented instance Σ′. Altogether, any optimal solution of Σ′ has the makes-

pan 𝜁.  

 

Observe that original agents are allowed to enter newly added vertices in all 

the above augmentations. This may help the original agents to reach their destina-

tions faster (the newly added vertices may be used as additional “parking place” 

for agents). This behavior of agents is undesirable in the planned reduction where 

it is needed to isolate vertex locking mechanism from the original instance. 

Hence, a slight adaptation of the vertex locking technique must be used. 

Some additional notations are needed to express the requirement on not using 

the newly added vertices by the original agents formally. Let 𝒮𝐴′
∗ (Σ′) =

[𝑆𝐴′
0 , 𝑆𝐴′

1 , … , 𝑆
𝐴′
𝜁

] be an optimal solution of the pCPF instance Σ′  over the graph 

𝐺 ′ = (𝑉 ′ , 𝐸′) and let 𝑉 ⊆ 𝑉′. Then the restriction of the solution 𝒮𝐴′
∗ (Σ′) on the 

set of vertices 𝑉 is denoted as 𝒮𝐴′
∗ (Σ′)|𝑉 = [𝑆𝐴′

0 |𝑉 , 𝑆𝐴′
1 |𝑉 , … , 𝑆

𝐴′
𝜁

|𝑉], where 

𝑆𝐴′
𝑖 |𝑉: 𝐴′|𝑉 ⟶ 𝑉 with 𝑆𝐴′

𝑖 |𝑉 𝑎 = 𝑆𝐴′
𝑖  𝑎  ∀𝑎 ∈ 𝐴′ |𝑉  for 𝑖 = 0,1, … , 𝜁. Next, let 

𝑆𝑜𝑙∗ Σ′ = {𝒮𝐴′
∗ (Σ′)|𝒮𝐴′

∗ (Σ′) is an optimal solution of Σ′ }, then 𝑆𝑜𝑙∗ Σ′ |𝑉 =

{𝒮𝐴′
∗ (Σ′)|𝑉|  𝒮𝐴′

∗ (Σ′) ∈ 𝑆𝑜𝑙∗(Σ′)}, and let 𝑆𝑜𝑙 Σ = {𝒮𝐴(Σ)| 𝒮𝐴(Σ) is a solution 

(not necessarily optimal) of Σ}. An augmentation Σ′  of the instance Σ where added 

vertices are never used can be expressed by the condition 𝑆𝑜𝑙∗ Σ′ |𝑉 ⊆ 𝑆𝑜𝑙 Σ . 

 

Proposition 2 (two-stage vertex locking). Assume preconditions (a) and (b). Then 

there exists an instance of pCPF Σ~ = (𝐺~ = (𝑉~, 𝐸~), 𝐴~, 𝑆𝐴~
0 , 𝑆𝐴~

+ ) such that 

Σ~|𝑉 =  Σ where it never happens that an agent 𝑎 ∈ 𝐴 enters 𝑣 at any time step 

𝑡 ∈ 𝑇 within any optimal solution 𝒮𝐴~ Σ~  and 𝑆𝑜𝑙∗ Σ~ |𝑉 ⊆ 𝑆𝑜𝑙 Σ  (that is, 

original agents cannot use any added vertex in any optimal solution).  
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Figure 5. An illustration of two-stage vertex locking in an instance of the pCPF problem. Assume 

we want agents 𝑎 1, 𝑎 2, and 𝑎 3 prevent from entering vertex 𝑣 3 at time steps 1 and 3. Additionally 

no vertex added by the augmentation can be entered by the original agents 𝑎 1, 𝑎 2, and 𝑎 3. These 

requirements are ensured by two stage locking. First, 𝑣 3 is locked at time steps 1 and 3 using a path 

of new vertices 𝑢 3, 𝑢 2, 𝑢 1, 𝑤 1, 𝑤 2, 𝑤 3, and 𝑤 4 (this stage corresponds to Figure 3). Then 𝑢 1 and 𝑤 1 

are locked at time steps 𝑇𝑢 1 = {1,3,4,5} and 𝑇𝑤 1 = {1,3,5} respectively by the same technique. The 

makespan of any optimal solution of Σ~ is 5 (the same as of Σ′ ). 

 

Notice, that Proposition 2 (100) is almost the same as Lemma 1 except the ad-

ditionally required condition 𝑆𝑜𝑙∗ Σ~ |𝑉 ⊆ 𝑆𝑜𝑙 Σ . 

 

Proof. The basic construction from the proof of Lemma 1 will be adopted; then 

some further augmentations will be made by successive applications of Corollary 

1 to enforce the condition that 𝑆𝑜𝑙∗ Σ~ |𝑉 ⊆ 𝑆𝑜𝑙 Σ . 

Let 𝜁∗ denote be the makespan of optimal solutions of Σ. In the first stage, the 

graph  𝐺 is extended exactly as in the previous case. That is, the set of vertices 

𝑉𝑋 = {𝑢 𝑡𝑛 , 𝑢 𝑡𝑛−1, … , 𝑢 1 , 𝑤 1 , 𝑤 2 , … , 𝑤 𝜆} where 𝜆 = 𝜁∗ + 𝑡𝑛 − 𝑡1 and the set of 
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{𝑤 2 , 𝑤 3}, …,  𝑤 𝜆−1 , 𝑤 𝜆 } are added to the graph; that is 𝐺 ′ = (𝑉 ′ = 𝑉 ∪ 𝑉𝑋 , 𝐸′ =

𝐸 ∪ 𝐸𝑋). The set of agents is extended with 𝐴𝑋 = {𝑏 1, 𝑏 2 , … , 𝑏 𝑛}; that is, 𝐴′ =

𝐴 ∪ 𝐴𝑋  and the initial and goal arrangements of new agents are set as follows: 

𝑆𝐴′
0 (𝑏 𝑖) = 𝑢 𝑡𝑖  if 𝑡𝑖 ≠ 0 and 𝑆𝐴′

0 (𝑏 𝑖) = 𝑣 if 𝑡𝑖 = 0 for 𝑖 = 1,2, … , 𝑛; 𝑆𝐴′
+ (𝑏 𝑖) =

𝑤 𝜆+𝑡1−𝑡𝑖   if 𝜆 + 𝑡1 − 𝑡𝑖 ≥ 1 and 𝑆𝐴′
+ (𝑏 𝑖) = 𝑣 if  𝜆 + 𝑡1 − 𝑡𝑖 = 0 for 𝑖 = 1,2, … , 𝑛. 

As it has been shown, this construction suffices for satisfying almost all the re-

quirements except 𝑆𝑜𝑙∗ Σ′ |𝑉 ⊆ 𝑆𝑜𝑙 Σ . 

Now, it is necessary to prevent agents of 𝐴 from entering any of the added ver-

tices 𝑉𝑋 . Observe that it is sufficient to lock vertices 𝑢 1 and 𝑤 1 to fulfill this re-

quirement since the newly added vertices form a path around 𝑣 and this is the 

only vertex through which the path is connected to the original graph (neighbor-

ing vertices of 𝑣 are 𝑢 1 and 𝑤 1). Vertices 𝑢 1 and 𝑤 1 need to be locked for all the 

time steps except time steps at which agents from the set 𝐴𝑋  go through them in 

an optimal solution – this will be the second stage locking. More precisely, the 

vertex 𝑢 1 needs to be locked at time steps from the set 𝑇𝑢 1 =  1,2, … , 𝜆 + 𝑡1 ∖

( 𝑡1 , 𝑡2 , … , 𝑡𝑛 − 1) (where  𝑡1 , 𝑡2 , … , 𝑡𝑛 − 1 = {𝑡1 − 1, 𝑡2 − 1, … , 𝑡𝑛 − 1}) and 

the vertex 𝑤 1 needs to be locked at time steps from the set 𝑇𝑤 1 =  1,2, … , 𝜆 +

𝑡1 ∖ ( 𝑡1 , 𝑡2 , … , 𝑡𝑛 + 1). Notice, that max 𝑇𝑢 1 ≤ 𝜆 + 𝑡1 as well as 

max 𝑇𝑤 1 ≤ 𝜆 + 𝑡1. Moreover, the construction of sets  𝑇𝑢 1  and 𝑇𝑤 1  ensures that 

vertices 𝑢 1 and 𝑤 1 respectively will be locked at time steps at which they are not 

entered within some solution (which is known to be an optimal solution). Hence, 

Corollary 1 applies for Σ′ , the locked vertex 𝑢 1, and the set of lock time steps 

𝑇𝑢 1 ; that is, optimal makespan is preserved. In other words, the vertex locking is 

synchronized with the vertex locking from the first stage. Then Corollary 1 is 

applied once more for the resulting instance, the locked vertex 𝑤 1, and the set of 

lock time steps 𝑇𝑤 1 . Let Σ~ = (𝐺~ = (𝑉~, 𝐸~), 𝐴~, 𝑆𝐴~
0 , 𝑆𝐴~

+ ) denote the final 

instance, then 𝑆𝑜𝑙∗ Σ~ |𝑉 ⊆ 𝑆𝑜𝑙 Σ .  

 

The construction from Proposition 2 is illustrated in Figure 5. It is a further 

augmentation of the instance from Figure 3 in fact. 

The important property is that the size of all the augmented instances of the 

problem is 𝒪 max(𝜁∗, 𝑡𝑛 +  𝑉 +  𝐸 ) where 𝜁∗ is the optimal makespan (that 

is, asymptotically as many as max(𝜁∗, 𝑡𝑛 ) vertices and agents are added). Conse-

quently, if an augmented instance is needed to be kept small (with respect to 

 𝑉 +  𝐸 ), the numbers 𝜁∗ and 𝑡𝑛  must be small as well. 

 

Corollary 3 (makespan preserving two-stage vertex locking). Assume precondi-

tions (a), (b), (c), and (d). Then there exists an instance Σ~ = (𝐺~ =

(𝑉~, 𝐸~), 𝐴~, 𝑆𝐴~
0 , 𝑆𝐴~

+ ) such that Σ~|𝑉 =  Σ and it never happens that an agent 

𝑎 ∈ 𝐴 enters the locked vertex 𝑣 at any time step 𝑡 ∈ 𝑇 within any optimal solu-

tion 𝒮𝐴~
∗  Σ~  and 𝑆𝑜𝑙∗ Σ~ |𝑉 ⊆ 𝑆𝑜𝑙 Σ  (that is, original agents cannot use any 
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added vertex in any optimal solution); moreover the makespan of any optimal 

solution of Σ~ is again 𝜁.  

 

Proof. The construction from the proof of Proposition 2 can be adopted with a 

minor change. In the first stage of the construction of Σ~ where the construction 

from the proof of Lemma 1 has been applied, Corollary 1 is applied instead. This 

ensures that the intermediate instance after the first stage locking preserves the 

makespan of 𝜁. The rest of the proof can be applied without any change.  

 

Again it is not difficult to generalize the construction for locking a subset of 

certain size of a selected set of vertices at given time steps where the original 

agents can move only in the original vertices. These merely technical extensions 

of Proposition 2 and Corollary 3 are listed as Proposition 3 and Corollary 4. 

 

Proposition 3 (two-stage set locking). Assume that preconditions (aa) and (bb) 

hold. Then there exists an instance of the problem of pCPF Σ~ = (𝐺~ =

(𝑉~, 𝐸~), 𝐴~, 𝑆𝐴~
0 , 𝑆𝐴~

+ ) such that Σ~|𝑉 =  Σ where it never happens that all the 

vertices of 𝑊 are occupied by the original agents from 𝐴 at any time step 𝑡 ∈ 𝑇 

within any optimal solution 𝒮𝐴~
∗  Σ~  and 𝑆𝑜𝑙∗ Σ~ |𝑉 ⊆ 𝑆𝑜𝑙∗ Σ  (that is, original 

agents cannot use any added vertex in any optimal solution).  

 

Proof. The proof will partially adopt the basic idea of the construction from the 

proof of Proposition 2. The vertex set locking will be done in two stages by a 

successive applications of Corollary 1 to enforce the condition 𝑆𝑜𝑙∗ Σ~ |𝑉 ⊆

𝑆𝑜𝑙∗ Σ . 

Let 𝜁∗ be the makespan of optimal solutions of the pCPF instance Σ. The first 

stage of the augmentation will be done as in the case of Proposition 2. A set of 

vertices 𝑉𝑋 = {𝑢 𝑡𝑛 , 𝑢 𝑡𝑛−1, … , 𝑢 1, 𝑤 1, 𝑤 2 , … , 𝑤 𝜆} where 𝜆 = 𝜁∗ + 𝑡𝑛 − 𝑡1 and a set 

of edges 𝐸𝑋 = {{𝑢 𝑡𝑛 , 𝑢 𝑡𝑛−1}, {𝑢 𝑡𝑛−1 , 𝑢 𝑡𝑛−2}, … ,  𝑢 2, 𝑢 1 , {𝑤 1, 𝑤 2}, {𝑤 2, 𝑤 3}, …, 

 𝑤 𝜆−1 , 𝑤 𝜆 } ∪ {{𝑢 1 , 𝑤} |𝑤 ∈ 𝑊} ∪ {{𝑤, 𝑤 1}|𝑤 ∈ 𝑊} are added to the graph; that 

is 𝐺 ′ = (𝑉 ′ = 𝑉 ∪ 𝑉𝑋 , 𝐸′ = 𝐸 ∪ 𝐸𝑋). The set of agents is extended with a set of 

new agents 𝐴𝑋 = {𝑏 1, 𝑏 2 , … , 𝑏 𝑛}; that is, 𝐴′ = 𝐴 ∪ 𝐴𝑋  and the initial and goal 

arrangements of new agents are set as follows: 𝑆𝐴′
0 (𝑏 𝑖) = 𝑢 𝑡𝑖  if 𝑡𝑖 ≠ 0 and 

𝑆𝐴′
0 (𝑏 𝑖) = 𝑤 for some 𝑤 ∈ 𝑊 if 𝑡𝑖 = 0 for 𝑖 = 1,2, … , 𝑛; 𝑆𝐴′

+ (𝑏 𝑖) = 𝑤 𝜆+𝑡1−𝑡𝑖  if 

𝜆 + 𝑡1 − 𝑡𝑖 ≥ 1 and 𝑆𝐴′
+ (𝑏 𝑖) = 𝑤 for some 𝑤 ∈ 𝑊 if 𝜆 + 𝑡1 − 𝑡𝑖 = 0 for 𝑖 =

1,2, … , 𝑛. 

To prevent agents of 𝐴 from entering any of the added vertices 𝑉𝑋  second 

stage vertex locking must be done. It is sufficient to lock vertices 𝑢1 and 𝑤1 since 

these two vertices are the only connection points of the original graph with the 

newly added parts. Vertices 𝑢1 and 𝑤1 need to be locked for all the time steps 

except time steps at which agents of 𝐴𝑋  go through them in an optimal solution. 
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More precisely, the vertex 𝑢 1 needs to be locked for time steps from the set 

𝑇𝑢 1 =  1,2, … , 𝜆 + 𝑡1 ∖ ( 𝑡1 , 𝑡2 , … , 𝑡𝑛 − 1) and the vertex 𝑤 1 needs to be 

locked for time steps from the set 𝑇𝑤 1 =  1,2, … , 𝜆 + 𝑡1 ∖ ( 𝑡1 , 𝑡2 , … , 𝑡𝑛 + 1). 

 

 
 

Figure 6. An illustration of two-stage vertex set locking in an instance of the pCPF problem. At 

least one vertex of the set 𝑊 = {𝑣 3, 𝑣 4 , 𝑣 5} must not be occupied by any of the original agents 𝑎 1, 

𝑎 2, and 𝑎 3 at time steps 1 and 3. Additionally, no vertex added by the augmentation can be entered 

by any of original agents. These requirements are ensured by two stage set locking. First, the set 𝑊 

is locked at time steps 1 and 3 by adding a path of new vertices 𝑢 3, 𝑢 2, 𝑢 1, 𝑤 1, 𝑤 2, 𝑤 3, and 𝑤 4 (this 

stage corresponds to Figure 4). Then 𝑢 1 and 𝑤 1 are locked at time steps 𝑇𝑢 1 = {1,3,4,5} and 

𝑇𝑤 1 = {1,3,5} respectively by vertex locking technique. The makespan of any optimal solution of 

Σ~ is 5 (the same as of Σ′  from Figure 4). 

 

Since max 𝑇𝑢 1 ≤ 𝜆 + 𝑡1 (as well as max 𝑇𝑤 1 ≤ 𝜆 + 𝑡1) and vertex 𝑢 1 is to 

be locked for time steps at which it is not entered within some optimal solution, 

Corollary 1 applies for Σ′ , the locked vertex 𝑢 1, and the set of lock time steps 

𝑇𝑢 1 . That is, optimal makespan is preserved. Again, the vertex locking is syn-
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chronized with the vertex locking from the first stage. Then Corollary 1 is ap-

plied once more on the resulting instance with the locked vertex 𝑤 1 and the set of 

lock time steps 𝑇𝑤 1 . Let Σ~ = (𝐺~ = (𝑉~, 𝐸~), 𝐴~, 𝑆𝐴~
0 , 𝑆𝐴~

+ ) denote the final 

instance, then 𝑆𝑜𝑙∗ Σ~ |𝑉 ⊆ 𝑆𝑜𝑙 Σ .  

 

The construction of the two-stage vertex locking from the above proof is 

shown in Figure 6. As in the case of locking a single vertex, the size of all the 

augmented instances of the problem is 𝒪 max(𝜁∗, 𝑡𝑛 +  𝑉 +  𝐸 ) where 𝜁∗ is 

the optimal makespan of Σ. 

 

Corollary 4 (makespan preserving two-stage set locking). Assume that precondi-

tions (aa), (bb), (cc), and (dd) hold. Then there exists an instance Σ~ = (𝐺~ =

(𝑉~, 𝐸~), 𝐴~, 𝑆𝐴~
0 , 𝑆𝐴~

+ ) such that Σ~|𝑉 =  Σ and it never happens that all the ver-

tices of 𝑊 are occupied by the original agents of 𝐴 at any time step 𝑡 ∈ 𝑇 within 

any optimal solution 𝒮𝐴~
∗  Σ~ ; moreover the makespan of any optimal solution of 

Σ~ is again 𝜁 and and 𝑆𝑜𝑙∗ Σ~ |𝑉 ⊆ 𝑆𝑜𝑙 Σ  (that is, original agents cannot use 

any added vertex in any optimal solution).  

 

Proof. The construction of Σ~ from the proof of Proposition 3 can be adopted 

with a minor change. Instead of using the construction from the proof of Lemma 1 

in the first stage, Corollary 1 is applied instead. This ensures that the intermediate 

instance after the first stage locking preserves the makespan of 𝜁. The rest of the 

proof can be applied without any change.  

3.3.  Conjugation - Moving Agents Together to Simulate 

 Propositional Consistency 

We will simulate valuation of variables of the propositional formula by passing 

certain pass ways in the graph. There will be two pass ways for each variable – 

one representing positive valuation and the other negative valuation. Since we 

need to preserve propositional consistency (positive and negative literals of the 

same propositional variable should have complementary values) a group of 

agents for valuating a given variable must not split between these two pass ways. 

All the agents must pass either the positive branch or the negative branch. Hence, 

we need some technique that keeps a group of agents together even though they 

can choose between two alternative pass ways. A technique that ensures such a 

behavior of agents will be called a conjugation technique. 

 It is possible to look aside from the eventual application of the conjugation 

technique in simulating valuation of the propositional formula. Let us now con-

centrate just on preventing a group of agents from splitting. 
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Let 𝐴 = {𝑐 1, 𝑐 2 , … , 𝑐 𝑛} be a set of agents that are to be conjugated. Formally, 

the conjugation means that there is an instance of the problem of path-finding for 

multiple agents Ξ = (𝐺 = (𝑉, 𝐸), 𝐴′, 𝑆𝐴′
0 , 𝑆𝐴′

+), where 𝑉 = 𝑉0 ∪ 𝑉ℒ ∪ 𝑉ℛ ∪ 𝑉+; 

𝑉0, 𝑉ℒ,𝑉ℛ, 𝑉+ are pair-wise disjoint, |𝑉ℒ| = |𝑉ℛ| =  𝐴 , 𝐴 ⊆ 𝐴′, 𝑆𝐴′
0 (𝐴) ⊆ 𝑉0 

(image of the set by 𝑆𝐴′
0  is defined naturally: 𝑆𝐴′

0  𝐴 = {𝑣| ∃𝑎 ∈ 𝐴 𝑆𝐴′
0  𝑎 = 𝑣}), 

𝑆𝐴′
+ (𝐴) ⊆ 𝑉+, and there exists a time step 𝑡 such that within any optimal solution 

𝒮𝐴′
∗  Ξ = [𝑆𝐴′

0 , 𝑆𝐴′
1 , … , 𝑆𝐴′

𝜁
] either {𝑆𝐴′

𝑡  𝑐 1 , 𝑆𝐴′
𝑡  𝑐 2 , … , 𝑆𝐴′

𝑡  𝑐 𝑛 } ⊆ 𝑉ℒ or {𝑆𝐴′
𝑡  𝑐 1 , 

𝑆𝐴′
𝑡  𝑐 2 , … , 𝑆𝐴′

𝑡  𝑐 𝑛 } ⊆ 𝑉ℛ holds. That is, at time step 𝑡 the whole group of agents 

that are conjugated appears either in 𝑉ℒ or 𝑉ℛ. All the other cases, in which some 

of conjugated agents appear in 𝑉ℒ and some in 𝑉ℛ, cannot appear in any optimal 

solution. 

To rule out trivial cases of Ξ a requirement that {𝒮𝐴′
∗  Ξ | 𝒮𝐴′

∗  Ξ =

[𝑆𝐴′
0 , … , 𝑆

𝐴′
𝜁

] ∧ {𝑆𝐴′
𝑡  𝑐 1 , … , 𝑆𝐴′

𝑡  𝑐 𝑛 } ⊆ 𝑉ℒ} ≠ ∅ and {𝒮𝐴′
∗  Ξ |𝒮𝐴′

∗  Ξ = [𝑆𝐴′
0 , …  

, 𝑆𝐴′
𝜁

] ∧ {𝑆𝐴′
𝑡  𝑐 1 , … , 𝑆𝐴′

𝑡  𝑐 𝑛 } ⊆ 𝑉ℛ} ≠ ∅ should be taken into account. That is, 

agents 𝐴 must go through one of the two alternative pass ways represented by 𝑉ℒ 

and 𝑉ℛ. The task is now to build such an instance of the pCPF problem. 

The main idea of the construction is to order the agents of 𝐴 into the queue that 

starts with an additional agent called a leading agent. There is a branching in the 

graph into 𝑉ℒ and 𝑉ℛ, which are then joined together, and two leading agents 

prepared. The destination for leading agents is temporarily closed by the construc-

tion from Corollary 1. This prevents the leading agents from escaping before 

fulfilling their task. The destination for agents of 𝐴 is accessible from both 

branches of 𝑉ℒ and 𝑉ℛ symmetrically. The leading agents have no other choice 

than to lead the group of agents to their destinations. Finally, the leading agent has 

to go out of the way. 

The crucial observation is that if the group of agents 𝐴 is split between both 

branches, then the leading agents inevitably block each other and obstruction oc-

curs after which there is no chance to reach destinations on time (that is, the solu-

tion cannot be finished to be optimal). Hence, agent must go into one of the 

branches of 𝑉ℒ or 𝑉ℛ together (they must conjugate). Below is the formal de-

scription of the construction. 

The graph 𝐺 = (𝑉, 𝐸) consists of the following sets of vertices: 

  𝑉0 =  𝑣 1
0, 𝑣 2

0 , … , 𝑣 𝑛
0   

(called initial vertices), 

  𝑉ℒ =  𝑣 1
ℒ, 𝑣 2

ℒ, … , 𝑣 𝑛
ℒ   

(called left vertices), 

  𝑉ℛ =  𝑣 𝑛
ℛ, 𝑣 𝑛−1

ℛ , … , 𝑣 1
ℛ   

(called right vertices), 

  𝑉+ = 𝑉ℒ
+ ∪ 𝑉ℛ

+ ∪ 𝑉𝐺
+ ∪ 𝑉𝑌

+  

(called destination vertices), with 
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𝑉ℒ
+ = {𝑣 +

ℒ, 𝑣 −2
ℒ , 𝑣 −1

ℒ , 𝑣 0
ℒ}  

 (called left part of destination vertices) 

𝑉ℛ
+ = {𝑣 +

ℛ, 𝑣 0
ℛ, 𝑣 −1

ℛ , 𝑣 −2
ℛ }  

 (called right part of destination vertices) 

  𝑉𝐺
+ =  𝑣 1

+, 𝑣 2
+, … , 𝑣 𝑛

+   

(called gate part of destination vertices) and 

  𝑉𝑌
+ = {𝑣 1,1

+ , 𝑣 1,2
+ , … , 𝑣 1,𝑛

+ , 𝑣 2,1
+ , 𝑣 2,2

+ , … , 𝑣 2,𝑛
+ , … , … , 𝑣 𝜗 ,1

+ , 𝑣 𝜗 ,2
+ , … , 𝑣 𝜗 ,𝑛

+ } 

(called array part of destination vertices), 

where 𝜗 is a parameter determining the length of a solution; it is required that  

𝜗 ≥ 𝑛 + 4. Notice that 𝑉𝑌
+ is in fact an array of 𝜗 rows of 𝑛 vertices within 𝑉+. In 

total, the set of vertices is 𝑉 = 𝑉0 ∪ 𝑉ℒ ∪ 𝑉ℛ ∪ 𝑉+.  

The edges of the graph are as follows: 

 𝐸0 = { 𝑣 1
0 , 𝑣 1

ℒ ,  𝑣 2
0, 𝑣 2

ℒ , … ,  𝑣 𝑛
0 , 𝑣 𝑛

ℒ } ∪ { 𝑣 1
0 , 𝑣 𝑛

ℛ ,  𝑣 2
0, 𝑣 𝑛−1

ℛ  , … ,  𝑣 𝑛
0, 𝑣 1

ℛ } 

(edges for making a connection between initial vertices and left/right ver-

tices), 

𝐸− = { 𝑣 −2
ℒ , 𝑣 −1

ℒ  ,  𝑣 −1
ℒ , 𝑣 0

ℒ , {𝑣 0
ℒ, 𝑣 1

ℒ}} ∪ { 𝑣 −2
ℛ , 𝑣 −1

ℛ  ,  𝑣 −1
ℛ , 𝑣 0

ℛ , {𝑣 0
ℛ, 𝑣 1

ℛ}}  

(edges for connecting the remaining left/right vertices), 

𝐸+ = { 𝑣 0
ℒ , 𝑣 ℒ

+ ,  𝑣 𝐿
+, 𝑣 1

+ ,  𝑣 1
+, 𝑣 2

+ ,  𝑣 2
+, 𝑣 3

+ , … ,  𝑣 𝑛−1
+ , 𝑣 𝑛

+ ,  𝑣 𝑛
+, 𝑣 ℛ

+ ,  𝑣 ℛ
+, 𝑣 0

ℛ } 

(edges for connecting left/right vertices to the gate part of destination ver-

tices), 

𝐸𝐺
+ = {{𝑣 1

+, 𝑣 1,1
+ }, {𝑣 1

+, 𝑣 1,2
+ }, … , {𝑣 1

+, 𝑣 1,𝑛
+ }}  

(edges for connecting the gate part to the array part of destination vertic-

es), 

𝐸𝑌
+ = {{𝑣 1,1

+ , 𝑣 2,1
+ }, … , {𝑣 1,𝑛

+ , 𝑣 2,𝑛
+ }, … , … , {𝑣 𝜗−1,1

+ , 𝑣 𝜗 ,1
+ }, … , {𝑣 𝜗−1,𝑛

+ , 𝑣 𝜗 ,𝑛
+ }}  

(edges for connecting rows of the array part of destination vertices), 

𝐸×
+ = {{𝑣 𝜗−1,1

+ , 𝑣 𝜗 ,𝑛
+ }, {𝑣 𝜗−1,2

+ , 𝑣 𝜗 ,𝑛−1
+ }, … , {𝑣 𝜗−1,𝑛

+ , 𝑣 𝜗 ,1
+ }}  

(edges for connecting the last row of the array part in the reversed or-

der); 

in total, the set of edges of the graph 𝐺 is 𝐸 = 𝐸0 ∪ 𝐸− ∪ 𝐸+ ∪ 𝐸𝐺
+ ∪ 𝐸𝑌

+ ∪ 𝐸×
+. 

The set of agents is extended with two leading agents 𝑙  ℒ and 𝑙  ℛ (the left and 

the right leading agent); that is, 𝐴′ = 𝐴 ∪ {𝑙  ℒ, 𝑙  ℛ}. The initial arrangement of 

agents is as follows: 𝑆𝐴′
0  𝑐 𝑖 = 𝑣 𝑖

0 for 𝑖 = 1,2, … , 𝑛; 𝑆𝐴′
0 (𝑙  ℒ) = 𝑣 0

ℒ and 𝑆𝐴′
0 (𝑙  ℛ) =

𝑣 0
ℛ. That is, the original agents are placed into the initial vertices while the lead-

ing agents are placed in a way that original agents can join either of them. The 

goal arrangement is: 𝑆𝐴′
+ 𝑐 𝑖 = 𝑣 𝜗 ,𝑖

+  for 𝑖 = 1,2, … , 𝑛; 𝑆𝐴′
+ (𝑙  ℒ) = 𝑣 −2

ℒ  and 

𝑆𝐴′
+ (𝑙  ℛ) = 𝑣 −2

ℛ ; that is, the original agents should finally reach the last row of the 

array part of the destination vertices and the leading agents should go out of the 

way. 

The required conjugation of agents into the left and right vertices at a certain 

time step can be satisfied if the agents move a follows: all the agents 𝑐 1 , 𝑐 2 , … , 𝑐 𝑛  



On the Complexity of the Optimal Parallel Cooperative Path-finding  108 

from the set of vertices 𝑣 1
0 , 𝑣 2

0, … , 𝑣 𝑛
0 move into the set of vertices 𝑣 1

ℒ, 𝑣 2
ℒ, … , 𝑣 𝑛

ℒ if 

the left branch is chosen, or into the set of vertices 𝑣 1
ℛ, 𝑣 2

ℛ, … , 𝑣 𝑛
ℛ if the right 

branch is chosen. 

Without loss of generality, suppose the left branch has been chosen. Then 

agents 𝑐 1 , 𝑐 2 , … , 𝑐 𝑛  together with the leading agent 𝑙  ℒ moves into vertices 

𝑣 1
+, 𝑣 2

+, … , 𝑣 𝑛
+, {𝑣 ℛ

+, 𝑣 0
ℛ}. This is followed by movement of agents 𝑐 1 , 𝑐 2 , … , 𝑐 𝑛  

towards the last row of the array part of the destination vertices where their order 

is eventually reversed (if the right branch has been chosen no reversing is neces-

sary). Leading agents return to their goal locations in 𝑣 −2
ℒ  and 𝑣 −2

ℛ  at the same 

time. The described behavior of agents within the optimal solution is ensured by 

locking appropriate vertices at appropriate time steps. That is, the pCPF instance 

Ξ is further extended with additional agents and vertices used for locking vertices 

as it is shown in the proof of Corollary 1. However, for sake of simplicity the 

description below will be restricted on the original components of the problem Ξ. 

Thus, the optimal solution for the left branch 𝒮ℒ,𝐴′
∗  Ξ = [𝑆ℒ,𝐴′

0 , 𝑆ℒ,𝐴′
1 , … , 𝑆ℒ,𝐴′

𝜁
] 

should satisfy that 𝑆ℒ,𝐴′
0  𝑐 𝑖 = 𝑣 𝑖

0, 𝑆ℒ,𝐴′
1  𝑐 𝑖 = 𝑣 𝑖

ℒ, 𝑆ℒ,𝐴′
2  𝑐 𝑖 = 𝑣 𝑖−1

ℒ , …, 

𝑆ℒ,𝐴′
𝑖  𝑐 𝑖 = 𝑣 1

ℒ, 𝑆ℒ,𝐴′
𝑖+1 𝑐 𝑖 = 𝑣 0

ℒ, 𝑆ℒ,𝐴′
𝑖+2 𝑐 𝑖 = 𝑣 ℒ

+, 𝑆ℒ,𝐴′
𝑖+3(𝑐 𝑖) = 𝑣 1

+, 𝑆ℒ,𝐴′
𝑖+4 𝑐 𝑖 = 𝑣 2

+, 

…, 𝑆ℒ,𝐴′
𝑛+2 𝑐 𝑖 = 𝑣 𝑛−𝑖

+ , 𝑆ℒ,𝐴′
𝑛+3 𝑐 𝑖 = 𝑣 𝑛−𝑖+1

+ , 𝑆ℒ,𝐴′
𝑛+4 𝑐 𝑖 = 𝑣 1,𝑛−𝑖+1

+ , 𝑆ℒ,𝐴′
𝑛+5 𝑐 𝑖 =

𝑣 2,𝑛−𝑖+1
+ , …, 𝑆ℒ,𝐴′

𝑛+𝜗+2 𝑐 𝑖 = 𝑣 𝜗−1,𝑛−𝑖+1
+ , and 𝑆ℒ,𝐴′

𝑛+𝜗+3 𝑐 𝑖 = 𝑣 𝜗 ,𝑖
+ = 𝑆𝐴′

+ 𝑐 𝑖  for 

𝑖 = 1,2, … , 𝑛; 𝑆ℒ,𝐴′
0 (𝑙  ℒ) = 𝑣 0

ℒ, 𝑆ℒ,𝐴′
1 (𝑙  ℒ) ∈ {𝑣 0

ℒ , 𝑣 ℒ
+}, 𝑆ℒ,𝐴′

2 (𝑙  ℒ) ∈ {𝑣 ℒ
+, 𝑣 1

+}, 

𝑆ℒ,𝐴′
3 (𝑙  ℒ) ∈  𝑣 1

+, 𝑣 2
+ , …, 𝑆ℒ,𝐴′

𝑛+1(𝑙  ℒ) ∈  𝑣 𝑛−1
+ , 𝑣 𝑛

+ , 𝑆ℒ,𝐴′
𝑛+2(𝑙  ℒ) ∈  𝑣 𝑛

+, 𝑣 ℛ
+ , 

𝑆ℒ,𝐴′
𝑛+3(𝑙  ℒ) ∈ {𝑣 ℛ

+, 𝑣 0
ℛ} (the left leading agent is going in front of the queue formed 

by the sequence of agents 𝑐 1 , 𝑐 2 , … , 𝑐 𝑛 ), there is no special requirement on 

𝑆ℒ,𝐴′
𝑛+4(𝑙  ℒ), 𝑆ℒ,𝐴′

𝑛+5(𝑙  ℒ), …, 𝑆ℒ,𝐴′
𝑛+𝜗+2(𝑙  ℒ), indeed 𝑆ℒ,𝐴′

𝑛+𝜗+3(𝑙  ℒ) = 𝑣 −2
ℒ = 𝑆𝐴′

+ (𝑙  ℒ). Simi-

larly, there is no special requirement on 𝑆ℒ,𝐴′
𝑖 (𝑙  ℛ) for any 𝑖 = 1,2, … , 𝑛. The op-

timal solution for the right branch 𝒮ℛ,𝐴′
∗  Ξ = [𝑆ℛ,𝐴′

0 , 𝑆ℛ,𝐴′
1 , … , 𝑆ℛ,𝐴′

𝜁
] has almost 

the same form. The only difference is that the final reversal of the agents 

𝑐 1 , 𝑐 2 , … , 𝑐 𝑛  to fit into the last row of the array part of destination vertices is not 

performed. Observe, that the time step at which conjugation occurs is 𝑡 = 1. 

Now, the task is to show that the described behavior is feasible and no other 

behavior can occur within any optimal solution. In other words, any optimal solu-

tion of the problem has either the form of the solution for the left branch or the 

solution for the right branch. 

The first row of the array part of destination vertices, that is, vertices 

𝑣 1,1
+ , 𝑣 1,2

+ , … , 𝑣 1,𝑛
+ , is locked (closed for entering) for all the time steps except the 

time step 𝑛 + 4. At this time step all the agents 𝑐 1 , 𝑐 2 , … , 𝑐 𝑛  are entering the array 

part of the destination vertices. Then they continue towards their goal locations 

and hence vertices 𝑣 1,1
+ , 𝑣 1,2

+ , … , 𝑣 1,𝑛
+  can be locked again for the remaining time 

steps. The vertices 𝑣 −1
ℒ  and 𝑣 −1

ℛ  are locked for all the time steps except the time 
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step 𝑛 + 𝜗 + 2. Similarly, the initial vertices are locked for all the time steps ex-

cept the time step 0. 

 

 
 

Figure 7. A conjugation instance of the pCPF problem. A conjugation instance Ξ𝜗
𝐴  shown in the 

figure is constructed with respect to a set of agents 𝐴 = {𝑐 1, 𝑐 2, 𝑐 3, 𝑐 4} and a parameter 𝜗 = 8. The 

agents are restricted in their movements using vertex locking - namely, the initial vertices 𝑣 1
0, 𝑣 2

0, 

𝑣 3
0, and 𝑣 4

0 can be entered only at time step 0; the vertices 𝑣 1,1
+ , 𝑣 1,2

+ , 𝑣 1,3
+ , and 𝑣 1,4

+  can be entered 

only at time step 8; and the vertices 𝑣 −1
ℒ  and 𝑣 −1

ℛ  can be entered only at time step 14. These condi-

tions enforce that the agents 𝑐 1, 𝑐 2, 𝑐 3, and 𝑐 4 are located either in vertices 𝑣 1
ℒ, 𝑣 2

ℒ, 𝑣 3
ℒ, and 𝑣 4

ℒ or in 

vertices 𝑣 1
ℛ, 𝑣 2

ℛ, 𝑣 3
ℛ, and 𝑣 4

ℛ at time step 1 in any optimal solution of Ξ𝜗
𝐴 . 

 

At the time of opening the first row of the array part of the destination vertices 

(at the time step 𝑛 + 3), all the agents 𝑐 1 , 𝑐 2 , … , 𝑐 𝑛  must reside in the vertices 

𝑣 1
+, 𝑣 2

+, … , 𝑣 𝑛
+ (eventually in the reversed order). Otherwise, they have no chance 

to reach their goal locations at all. Then, the fastest way to reach their goal loca-

tions starting from vertices 𝑣 1
+, 𝑣 2

+, … , 𝑣 𝑛
+ is exact following shortest paths to the 

last row of the array part of destination vertices (all these paths are of the same 

𝚵𝝑
𝑨 = (𝐺 ′ , 𝐴′ , 𝑆𝐴′

0 , 𝑆𝐴′
+ ) 

  
𝑨 = {𝑐 1 , 𝑐 2, 𝑐 3 , 𝑐 4}  

𝑨′ =  𝑐 1 , 𝑐 2, 𝑐 3 , 𝑐 4 ∪ {𝑙  ℒ , 𝑙  ℛ}  
𝝑 = 8  

𝑺𝑨′
𝟎  

allowed at time step 0 
 

allowed at time step 8 
 

allowed at time step 14 

 

𝑺𝑹′
+  

…
 

𝒗 −𝟐
𝓛  

𝒗 −𝟏
𝓛  𝒗 𝟎

𝓛 𝒗 𝟏
𝓛 𝒗 𝟐

𝓛 𝒗 𝟑
𝓛 𝒗 𝟒

𝓛 
𝒗 −𝟐

𝓡  
𝒗 −𝟏

𝓡  𝒗 𝟎
𝓡 𝒗 𝟏

𝓡 
𝒗 𝟐

𝓡 𝒗 𝟑
𝓡 𝒗 𝟒

𝓡 

𝒍 𝓛
 

𝒗 𝟏
+ 𝒗 𝟐

+ 𝒗 𝟑
+ 

𝒗 𝟒
+ 

𝒗 +
𝓛  

𝒗 +
𝓡 

𝒗 𝟏,𝟏
+  𝒗 𝟏,𝟐

+  𝒗 𝟏,𝟑
+  

𝒗 𝟏,𝟒
+  

𝒗 𝟐,𝟏
+  𝒗 𝟐,𝟐

+  𝒗 𝟐,𝟑
+  

𝒗 𝟐,𝟒
+  

𝒗 𝟕,𝟏
+  𝒗 𝟕,𝟐

+  𝒗 𝟕,𝟑
+  

𝒗 𝟕,𝟒
+  

𝒗 𝟖,𝟏
+  𝒗 𝟖,𝟐

+  𝒗 𝟖,𝟑
+  

𝒗 𝟖,𝟒
+  

𝒍 𝓡
 

𝒗 𝟏
𝟎 𝒗 𝟐

𝟎 𝒗 𝟑
𝟎 

𝒗 𝟒
𝟎 

𝒄 𝟏
 𝒄 𝟐

 
𝒄 𝟑

 𝒄 𝟒
 

𝑽𝓡 𝑽𝓛 

…
 

𝒍 𝓛
 

𝒄 𝟏
 𝒄 𝟐

 
𝒄 𝟑

 𝒄 𝟒
 

𝑽𝓡 𝑽𝓛 

𝒍 𝓡
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length). Since 𝜗 ≥ 𝑛 + 4 which is enough time steps for the leading agents to 

reach their destination locations; the motion of agents 𝑐 1 , 𝑐 2 , … , 𝑐 𝑛  within the ar-

ray part of the destination vertices represents the bottleneck. 

It remains to check the behavior of agents before the time step 𝑛 + 3. Since the 

initial vertices are allowed to be occupied only at time step 0, the agents 

𝑐 1 , 𝑐 2 , … , 𝑐 𝑛  must enter the left or the right vertices immediately at the next time 

step. Between time steps 1 and 𝑛 + 3 it is not possible to swap agents in the cur-

rently accessible part of the graph since it consists of a single path. Hence, if the 

agents 𝑐 1 , 𝑐 2 , … , 𝑐𝑛  split between the left and the right vertices, then they cannot 

be arranged into vertices 𝑣 1
+, 𝑣 2

+, … , 𝑣 𝑛
+ in the required order, because they are 

obstructed by the leading agents 𝑙  ℒ and 𝑙  ℛ. 

The just described instance will be called a conjugation instance of the pCPF 

problem. Notice, that the instance is parameterized by a set of agents 𝐴 and an 

integer parameter 𝜗 ≥  𝐴 + 4. An instance of the problem corresponding to the 

given parameters will be denoted as Ξ𝜗
𝐴. Notice further, that the makespan of any 

optimal solution of Ξ𝜗
𝐴 is  𝐴 + 𝜗 + 3 ≥ 2 𝐴 + 7. It is easy to see that the size of 

Ξ𝜗
𝐴 is  3 + 𝜗  𝐴 + 8 which is 𝒪(𝜗 𝐴 ). 

An  example of conjugation instance is shown in Figure 7. Although some 

edges of the conjugation instance intersect, it is just a matter of graph drawing in a 

plane. There is actually no interference between agents traversing edges that inter-

sect (notice further that pCPF may take place in high dimensional spaces that 

cannot be drawn in plane without edge intersection). 

3.4. NP-completeness of pCPF 

All the ingredients are now prepared to prove that a decision version of the optim-

al pCPF is 𝑁𝑃-complete. The membership into 𝑵𝑷 will be checked first. Then a 

polynomial time reduction of a propositional satisfiability instance (SAT) [1] to 

the instance of the decision version of the optimal pCPF will be constructed. 

  

Definition 3 (decision version of pCPF).  A decision version of the optimal 

pCPF is a task to decide for a given instance of pCPF Σ and a number 𝜂 ∈ ℕ0 

whether there exists a solution 𝒮𝐴 Σ  of the makespan at most 𝜂. A notation Σ/𝜂 

will be used for the decision instance. Next, let 𝑝𝐶𝑃𝐹𝑂𝑃𝑇  denote the language of 

positive instances of this problem. □ 

 

It is not that easy to see that 𝑝𝐶𝑃𝐹𝑂𝑃𝑇 ∈ 𝑁𝑃, since no upper bound on the size 

of the solution of 𝑝𝐶𝑃𝐹𝑂𝑃𝑇  has been established so far. Hence, the standard tech-

nique of “guessing and checking” cannot be used immediately. Notice that, deci-

sion variants of several related sliding piece problems [10] such as Sokoban game 

[4] and Rush-hour puzzle [7] are proven to be 𝑃𝑆𝑃𝐴𝐶𝐸-complete [8, 9] but it is 
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not known whether they are in 𝑁𝑃. The reason is that the polynomial upper bound 

on the size of the solution has not been found so far. Fortunately, this is not the 

case of 𝑝𝐶𝑃𝐹𝑂𝑃𝑇 . It is possible to establish the polynomial upper bound on the 

size of the solution of 𝑝𝐶𝑃𝐹𝑂𝑃𝑇  using results shown in [13]. 

 

Lemma 3. 𝑝𝐶𝑃𝐹𝑂𝑃𝑇 ∈ 𝑁𝑃.  

 

Proof. It has been shown in [13] that there exists a solution 𝒮𝑃 Π =

[𝑆𝑃
0 , 𝑆𝑃

1, … , 𝑆𝑃
𝜉

] for any solvable instance of the problem of PMG Π = (𝐺 =

(𝑉, 𝐸), 𝑃, 𝑆𝑃
0 , 𝑆𝑃

+) such that 𝜉 ∈ 𝒪( 𝑉 3) (𝜉 is regarded as a function of Π here). 

Since the solution of an instance of PMG can be used as a solution of the corres-

ponding pCPF instance (Proposition 1) it implies that there exists a solution 

𝒮𝐴 Σ = [𝑆𝐴
0 , 𝑆𝐴

1, … , 𝑆𝐴
𝜁

] for any solvable instance of the problem of pCPF 

Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+) such that 𝜁 ∈ 𝒪( 𝑉 3) (𝜁 is regarded as a function of 

Σ as well). An instance of 𝑝𝐶𝑃𝐹𝑂𝑃𝑇  Σ/𝜂 can be solved on a Turing machine with 

oracle in polynomial time as follows. A solution of the size 𝒪( 𝑉 3) of Σ is gener-

ated first by the oracle. Then, the generated solution is checked whether its ma-

kespan is at most 𝜂 and whether it satisfies Definition 2. This check can be carried 

out in polynomial time with respect to the size of Σ/𝜂.  

 

 Propositional satisfiability is a decision problem where the question is whether 

a given propositional formula has a satisfying valuation or not. As it is usual, 

propositional formulas in conjunctive normal form (CNF) [12] are considered. Let 

𝑆𝐴𝑇 denote the language of satisfiable instances of propositional formulas in CNF 

as it is formalized in the following definition. 

 

Definition 4 (propositional satisfiability - 𝑺𝑨𝑻). A propositional variable is a 

variable that can be assigned either 𝑇𝑅𝑈𝐸 or 𝐹𝐴𝐿𝑆𝐸. A literal is propositional 

variable or its negation. A clause is disjunction of literals; that is,  𝑙𝑖
𝑛
𝑖=1  where 

𝑛 ∈ ℕ0 and 𝑙𝑖  is a literal for 𝑖 = 1,2, … , 𝑛. A propositional formula in CNF is 

conjunction of clauses; that is,  𝐶𝑗
𝑚
𝑗=1  where 𝑚 ∈ ℕ0 and 𝐶𝑗  is a clause for 

𝑖 = 1,2, … , 𝑚. Let 𝑉𝑎𝑟 𝐹  denote the set of propositional variables of CNF for-

mula 𝐹, then valuation of variables of 𝐹 is an assignment 𝑒: 𝑉𝑎𝑟 𝐹 ⟶

{𝐹𝐴𝐿𝑆𝐸, 𝑇𝑅𝑈𝐸}. Valuation of variables is naturally extended from variables to 

literals, clauses, and the complete CNF formula. Propositional satisfiability prob-

lem (SAT) is a decision problem where the question is whether a given formula 𝐹 

in CNF has valuation of its variables so that 𝐹 evaluates to 𝑇𝑅𝑈𝐸 under this valu-

ation. □ 

 

If CNF formula 𝐹 has satisfying valuation, then 𝐹 is said to be satisfiable oth-

erwise it is said to be unsatisfiable (examples of several propositional formulae in 
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CNF are shown in Figure 8). It is well known that 𝑆𝐴𝑇 is 𝑁𝑃-complete. However, 

a slight technical adaptation of propositional satisfiability is necessary to carry out 

the required reduction to pCPF. A restriction on formulas in CNF where positive 

and negative literals of the same variable have the same number of occurrences in 

the formula will be made. Let the language of satisfiable formulas that comply 

with this restriction will be denoted as 𝑆𝐴𝑇= (see Figure 8 again). 

 

Definition 5 (equality propositional satisfiability - 𝑺𝑨𝑻=). Let 𝐹 be a proposi-

tional formula in CNF. Next, let 𝑝𝑜𝑠(𝑥, 𝐹) with 𝑥 ∈ 𝑉𝑎𝑟(𝐹) denote the set of 

positive occurrences of 𝑥 in 𝐹 and similarly let 𝑛𝑒𝑔(𝑥, 𝐹) denote a set of negative 

occurrences of 𝑥 in 𝐹. Equality propositional satisfiability problem (𝑆𝐴𝑇=) is a 

decision problem where the question is whether a given formula 𝐹 in CNF such 

that  𝑝𝑜𝑠 𝑥, 𝐹  = |𝑛𝑒𝑔 𝑥, 𝐹 | for every 𝑥 ∈ 𝑉𝑎𝑟(𝐹) is satisfiable or not. □ 

 

Lemma 4. 𝑆𝐴𝑇= is 𝑁𝑃-complete.  

 

Proof. With respect to the membership into 𝑁𝑃, the restriction makes no change; 

thus 𝑆𝐴𝑇= ∈ 𝑁𝑃. Any instance of 𝑆𝐴𝑇 can be reduced to an instance of 𝑆𝐴𝑇= by 

adding clauses to balance the number of positive and negative literals of the same 

variable. The added clauses should preserve equisatisfiability of the resulting 

formula with the original one. Let 𝐹 is a formula in CNF and let 𝑥 be a variable 

with unbalanced positive and negative occurrences. Without loss of generality let 

 𝑝𝑜𝑠(𝑥, 𝐹) <  𝑛𝑒𝑔(𝑥, 𝐹) . Then a clause ( 𝑥
 𝑛𝑒𝑔 (𝑥 ,𝐹) − 𝑝𝑜𝑠 (𝑥 ,𝐹) 
𝑖=1 ) ∨ 𝑦 ∨ 𝑦 

where 𝑦 is a new variable is added to 𝐹. Now 𝑥 as well as newly added 𝑦 have the 

same number of positive and negative occurrences. Clearly, the resulting formula 

is equisatisfiable with 𝐹 since the newly added clause is always satisfied. The 

described process should be done for all the unbalanced variables. The length of 

the resulting formula is at most twice of 𝐹, thus the reduction can be done in po-

lynomial time.  

 

Theorem 1. 𝑝𝐶𝑃𝐹𝑂𝑃𝑇  is 𝑁𝑃-complete.  

 

Proof. It remains to prove that 𝑝𝐶𝑃𝐹𝑂𝑃𝑇  is 𝑁𝑃-hard. A polynomial time reduction 

of 𝑆𝐴𝑇= to 𝑝𝐶𝑃𝐹𝑂𝑃𝑇  will be used. Let 𝐹= be a formula in CNF, that is, 𝐹= =

 ( 𝑙𝑗
𝑖𝑘𝑖

𝑗 )𝑛
𝑖=1 , where 𝑙𝑗

𝑖  is 𝑗th literal of 𝑖th clause; there are 𝑛 clauses, where 𝑖th 

clause has 𝑘𝑖  literals. 

Assume further that that each variable has the same number of positive and 

negative occurrences in 𝐹=. Let 𝑉𝑎𝑟(𝐹=) denote the set of propositional variables 

of 𝐹=. An instance Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝑆𝐴
0 , 𝑆𝐴

+)/𝜂 of the decision version of the 

optimal pCPF for 𝐹= will be constructed in the following way. Every occurrence 
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of a literal in 𝐹= will be associated with a vertex. Thus, a set of vertices 𝑉𝐹= =

  {𝑙  𝑗
𝑖}

𝑘𝑖
𝑗=1

𝑛
𝑖=1  is constructed (𝑙  𝑗

𝑖  is a symbol while 𝑙𝑗
𝑖  is a variable standing for a 

literal); a vertex 𝑙  𝑗
𝑖  corresponds to an occurrence of a literal 𝑙𝑗

𝑖  in 𝑖th clause as 𝑗th 

disjunct. A conjugation instance of pCPF will be associated with each proposi-

tional variable of 𝐹= while left and right vertices of the conjugation graph will be 

one-to-one matched to vertices from 𝑉𝐹= that correspond to negative and positive 

occurrences of the variable respectively. This is possible since there is the same 

number of positive and negative occurrences of each variable in 𝐹= (conjugation 

graph has the same number of left and right vertices). 

 

 
 

Figure 8. Examples of propositional formulae in CNF. Three formulae 𝐹1, 𝐹2, and 𝐹3 are shown. 𝐹1 

is unsatisfiable while other two are satisfiable. Positive and negative occurrences of literals in for-

mulae are depicted. Notice that the number of positive and negative occurrences of 𝑥2 in 𝐹2 is unba-

lanced; that is, 𝐹2 ∉ 𝑆𝐴𝑇= (satisfiable but syntactically incorrect). The result of rebalancing of 𝐹2 is 

𝐹3 ∈ 𝑆𝐴𝑇= (both satisfiable and syntactically correct). 

 

The idea is to prepare a group of agents of the size  𝑝𝑜𝑠(𝑥, 𝐹=) =
 𝑛𝑒𝑔(𝑥, 𝐹=)  for each Propositional variable 𝑥 ∈ 𝑉𝑎𝑟(𝐹=). This group of agents 

𝑭𝟏 =  𝑥1 ∨ 𝑥2 ∧ 𝑥1 ∧ 𝑥2 

𝑭𝟐 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3) 

𝑭𝟑 =  𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧  𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧  𝑥2 ∨ 𝑥2 ∨ 𝑦1 ∨ 𝑦1  

 

 

unsatisfiable 
 

𝑉𝑎𝑟 𝐹1 = {𝑥1 , 𝑥2}    𝑝𝑜𝑠 𝑥1 , 𝐹1 = {𝐶2}   𝑛𝑒𝑔 𝑥1 , 𝐹1 = {𝐶1} 
        𝑝𝑜𝑠 𝑥2 , 𝐹1 = {𝐶3}   𝑛𝑒𝑔 𝑥2 , 𝐹1 = {𝐶1}  

 

 
 

satisfiable with 𝑒(𝑥1) = 𝑇𝑅𝑈𝐸, 𝑒(𝑥2) = 𝐹𝐴𝐿𝑆𝐸, 𝑒(𝑥3) = 𝑇𝑅𝑈𝐸 
 

𝑉𝑎𝑟 𝐹2 = {𝑥1 , 𝑥2 , 𝑥2}   𝑝𝑜𝑠 𝑥1 , 𝐹2 = {𝐶1}   𝑛𝑒𝑔 𝑥1 , 𝐹2 = {𝐶2} 
           𝑝𝑜𝑠 𝑥2 , 𝐹2 = ∅   𝑛𝑒𝑔 𝑥2 , 𝐹2 = {𝐶1, 𝐶2}  

        𝑝𝑜𝑠 𝑥3 , 𝐹2 = {𝐶1}   𝑛𝑒𝑔 𝑥3 , 𝐹2 = {𝐶2}  
 
 

 
 

satisfiable with 𝑒(𝑥1) = 𝑇𝑅𝑈𝐸, 𝑒(𝑥2) = 𝐹𝐴𝐿𝑆𝐸, 𝑒(𝑥3) = 𝑇𝑅𝑈𝐸, 𝑒(𝑦1) = 𝑇𝑅𝑈𝐸 
 

𝑉𝑎𝑟 𝐹3 = {𝑥1 , 𝑥2 , 𝑥2, 𝑦1}  𝑝𝑜𝑠 𝑥1 , 𝐹3 = {𝐶1}   𝑛𝑒𝑔 𝑥1 , 𝐹3 = {𝐶2} 
         𝑝𝑜𝑠 𝑥2, 𝐹3 = {𝐶3, 𝐶3′}  𝑛𝑒𝑔 𝑥2 , 𝐹3 = {𝐶1, 𝐶2}  

        𝑝𝑜𝑠 𝑥3 , 𝐹3 = {𝐶1}   𝑛𝑒𝑔 𝑥3 , 𝐹3 = {𝐶2}  
        𝑝𝑜𝑠 𝑦1 , 𝐹3 = {𝐶3}   𝑛𝑒𝑔 𝑦1 , 𝐹3 = {𝐶3}  

𝐶1 𝐶2 𝐶3 

𝐶1 𝐶2 

𝐶1 𝐶2 𝐶3 
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will be placed in the initial vertices of the conjugation subgraph corresponding to 

𝑥. The construction of the conjugation subgraph will enforce that all the agents 

must go either into the vertices corresponding to positive literals or into the ver-

tices corresponding to negative literals. If the movement of agents is interpreted in 

the way that literals corresponding to vertices of 𝑉𝐹= visited at time step 1 will be 

assigned the same propositional value, then the conjugation technique assures 

propositional consistency of the assignment. However, this is not enough to 

establish correspondence between an assignment satisfying 𝐹= and a solution of 

Σ/𝜂. It is furthermore necessary to make agents simulate clause satisfaction by 

any solution whose makespan is at most 𝜂.  

This can be done by enforcing agents either to visit at least one literal/vertex of 

each clause of 𝐹= (in the case when visited literals/vertices are assigned the value 

𝑇𝑅𝑈𝐸) or leave at least one literal/vertex of each clause of 𝐹= unoccupied at time 

step 1 (in the case when visited literals/vertices are assigned the value 𝐹𝐴𝐿𝑆𝐸). 

Since the second option can be easily implemented through the vertex set locking 

mechanism (Proposition 3, Corollary 4), the value 𝐹𝐴𝐿𝑆𝐸 will be used for literals 

corresponding to vertices visited at time step 1. 

Nevertheless, some technical details such as the exact specification of 𝜂 need 

to be discussed. The equality between makespans of optimal solutions over the 

individual conjugation instances needs to be established.  

Recall that a conjugation instance Ξ𝜗
𝐴 is characterized by two parameters: 𝐴 – 

the  set conjugated agents and 𝜗 – parameter affecting the makespan of the optim-

al solution of the instance. Let 𝜚 = 𝑚𝑎𝑥𝑥∈𝑉𝑎𝑟 (𝐹=){ 𝑝𝑜𝑠 𝑥, 𝐹=  =  𝑛𝑒𝑔 𝑥, 𝐹=  }. 

For a given 𝑥 ∈ 𝑉𝑎𝑟 𝐹= , the conjugation instance Ξ𝜗(𝑥)
𝐴(𝑥)

 will have the parameters 

𝐴(𝑥) = {𝑐 1
𝑥 , 𝑐 2

𝑥 , …, 𝑐  𝑝𝑜𝑠  𝑥 ,𝐹=  
𝑥 } and 𝜗 𝑥 = 2𝜚 −  𝑝𝑜𝑠 𝑥, 𝐹=  + 4 ≥  𝐴(𝑥) + 4. 

Hence, the makespan of any optimal solution of the conjugation instance Ξ𝜗(𝑥)
𝐴(𝑥)

 is 

 𝐴(𝑥) + 𝜗 𝑥 + 3 = 2𝜚 + 7. 

Matching of left and right vertices of Ξ𝜗(𝑥)
𝐴(𝑥)

 to vertices from 𝑉𝐹= is as follows: 

{𝑣 1
𝑥 ,ℒ , 𝑣 2

𝑥 ,ℒ , … , 𝑣  𝐴(𝑥) 
𝑥 ,ℒ } = {𝑙  𝑗

𝑖|𝑙𝑗
𝑖 = 𝑥; 𝑖 = 1,2, . . 𝑛; 𝑗 = 1,2, … , 𝑘𝑖} and 

{𝑣 1
𝑥 ,ℛ, 𝑣 2

𝑥 ,ℛ , …, 𝑣  𝐴 𝑥  
𝑥 ,ℛ } = {𝑙  𝑗

𝑖|𝑙𝑗
𝑖 = 𝑥; 𝑖 = 1,2, . . 𝑛; 𝑗 = 1,2, … , 𝑘𝑖}. Now, the crucial 

observation has to be made. It holds that 𝐹= is satisfiable if and only if there exists 

a solution of the currently constructed instance of makespan of 2𝜚 + 7 such that 

at time step 1 at least one vertex from the set of vertices corresponding to each 

clause remains unoccupied. 

Let 𝑒: 𝑉𝑎𝑟 𝑥 ⟶ {𝐹𝐴𝐿𝑆𝐸, 𝑇𝑅𝑈𝐸} be a satisfying valuation of 𝐹=. If 𝑒 𝑥 =

𝐹𝐴𝐿𝑆𝐸, then agents 𝑐 1
𝑥 , 𝑐 2

𝑥 , … , 𝑐  𝑝𝑜𝑠  𝑥 ,𝐹=  
𝑥  are placed in 𝑣 1

𝑥 ,ℛ, 𝑣 2
𝑥 ,ℛ, …, 𝑣  𝐴 𝑥  

𝑥 ,ℛ
 at 

time step 1; if 𝑒 𝑥 = 𝑇𝑅𝑈𝐸 then they are placed in 𝑣 1
𝑥 ,ℒ , 𝑣 2

𝑥 ,ℒ , … , 𝑣  𝐴(𝑥) 
𝑥 ,ℒ

 at time 

step 1.  
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Figure 9. A polynomial time reduction of a propositional formula to a decision instance of pCPF. A 

formula 𝐹 is transformed to a formula 𝐹= in which each variable has the same number of positive 

and negative occurrences. Then an instance of the decision version of the problem of pCPF 𝛴/𝜂 is 

constructed. The conjugation technique is used to simulate propositional consistency and the set 

locking technique is used to simulate clause satisfaction (the reduction of one variable using the 

conjugation technique and the reduction of one clause using the set locking technique are shown). 

There exists a solution of Σ of the makespan 𝜂 = 11 if and only if the formula 𝐹 is satisfiable. 
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The placement of agents at time steps other than 1 is straightforward. Since 𝑒 

is the satisfying assignment, at least one vertex from the set of vertices corres-

ponding to each clause remains unoccupied. On the other hand, Corollary 4 can 

be used to augment the instance to enforce the at least one vertex from the set of 

vertices that corresponds to literals of a clause is not occupied by agents from the 

set  𝐴(𝑥)𝑥∈𝑉𝑎𝑟  𝐹=  within any optimal solution while the makespan of 2𝜚 + 7 

remains preserved. That is, Corollary 4 is invoked with 𝑊 = {𝑙  1
𝑖 , 𝑙  2

𝑖 , … , 𝑙  𝑘𝑖

𝑖 } that 

corresponds to satisfying the 𝑖th clause of 𝐹=. Let Σ denote the resulting instance. 

Any solution of the makespan of 2𝜚 + 7 of Σ satisfies conditions at time step 1 

and hence it induces a satisfying assignment of 𝐹=. 

The construction of Σ requires polynomial time in size of 𝐹=; the size of Σ is 

also polynomial (the size of each conjugation subgraph is polynomial in size of 𝐹= 

and the number of conjugation subgraphs is bounded by the size of 𝐹=). Now, if Σ 

has a solution of the makespan 𝜂 = 2𝜚 + 7 then it is ensured that conjugation 

and clause satisfaction has been successfully simulated, thus a satisfying valua-

tion of 𝐹= can be easily derived from this solution. Hence, 𝐹= ∈ 𝑆𝐴𝑇= if and only 

if Σ/𝜂 ∈ 𝑝𝐶𝑃𝐹𝑂𝑃𝑇 . Together with Lemma 3 the claim that 𝑝𝐶𝑃𝐹𝑂𝑃𝑇  is 

𝑁𝑃-complete has been obtained.  

 

The reduction described in the proof is illustrated in Figure 9. The illustration 

shows instantiation of conjugation mechanism over single variable. Connection of 

simulation of clause satisfaction to conjugation mechanism is also shown in Fig-

ure 9. 

4. Related Works and Conclusion 

A parallel version of the cooperative path-finding problem (pCPF) is introduced 

in this paper. The new theoretical result shown in this paper is that the decision 

version of the optimal pCPF is NP-complete. The parameter, which is optimized, 

is the makespan, that is maximum of arrival times to destination over all the 

agents. 

The reduction of propositional satisfiability to pCPF has been used for the 

proof of NP-hardness. Numerous techniques to simulate propositional consistency 

and clause satisfaction within pCPF were developed in this work. These tech-

niques were inspired by works on multi-commodity flows [6]. We assume devel-

oped techniques generic enough to be used in different contexts. Recently vertex 

locking and conjugation techniques were used in the proof of NP-hardness of 

checking the existence of winning strategy in a so called adversarial CPF (ACPF) 

[119]. ACPF is CPF with multiple teams of agents, which compete in reaching 

their goals. 
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The fact that optimal pCPF is NP-complete is a quite negative result. Fortu-

nately, if the requirement on the shortest possible makespan of solutions is re-

laxed, the problem becomes tractable. Namely, it belongs to the P class. Howev-

er, the situation is not that straightforward. Although algorithms developed for 

solving PMG/CPF [13, 37] can be used for solving pCPF, this practice is disad-

vantageous. Despite a promising theoretical makespan of 𝒪( 𝑉 3) of solutions 

generated by these algorithms, the makespan measured empirically is relatively 

high [28] due to a large constant in the estimation. That is why alternative solving 

sub-optimal algorithms for pCPF producing better solutions (so called BIBOX 

algorithms) and solution improving techniques were proposed  [23, 24, 25, 28]. 

Recently there has been considerable development in sub-optimal algorithms for 

CPF represented by works [121]. 

An important related work is represented by articles [30, 31, 32, 33]. The au-

thors study another version of pCPF, which is similar to the version presented in 

this paper. The authors define the tractable class of this problem where graphs are 

restricted on grids and there is a relative abundance of unoccupied vertices. 

Several attempts to solve the standard non-parallel CPF optimally has been 

made. An algorithm based on A* has been presented in [21]. The algorithm is 

suitable for CPF instances with few agents and lot of free space in the graphs. 

Different approach to solving CPF optimally is to translate CPF to SAT, which 

has been suggested in [121]. Interestingly SAT based methods seem to be com-

plementary to A* based as they perform well on densely occupied instances. 

An interesting question for future work is whether it is feasible to find a solu-

tion of a pCPF instance which is constantly worse than the optimum. Currently, it 

is an open question whether such an approximation algorithm exists. The answer 

to this question will consequently provide the estimation of how far from the op-

timum are the solutions generated by algorithms for the non-optimization case of 

the problem. Consequently, the estimation of what is the makespan of the optimal 

solution of large instances would be also available. 

Glossary 

PMG     pebble motion on a graph 

𝐺 = (𝑉, 𝐸)    an undirected graph; 𝑉 denotes a set of vertices; 

      𝐸 denotes set of edges 

𝑃       a set of pebbles 

𝜇       the number of pebbles 

𝑝 𝑖        a pebble 

𝑆𝑃
0:𝑃 ⟶ 𝑉    the initial arrangement of pebbles 

𝑆𝑃
+:𝑃 ⟶ 𝑉    the goal arrangement of pebbles 
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𝑆𝑃
𝑡 :𝑃 ⟶ 𝑉     the arrangement of pebbles at time step 𝑡 

𝜉      the makespan of a solution of PMG and 

      a sequence of pebble arrangements 

𝒮𝑃      a sequence of arrangements of pebbles 

      forming a solution of PMG 

Π = (𝐺, 𝑃, 𝑆𝑃
0 , 𝑆𝑃

+) an instance of PMG 

𝒮𝑃 Π      a solution to the instance of PMG 

CPF     cooperative path-finding 

pCPF     parallel cooperative path-finding 

𝐴       a set of agents 

𝜈       the number of agents 

𝑎 𝑖        an agent 

𝑆𝐴
0:𝐴 ⟶ 𝑉   the initial arrangement of agents 

𝑆𝐴
+:𝐴 ⟶ 𝑉    the goal arrangement of agents 

𝑆𝐴
𝑡 : 𝐴 ⟶ 𝑉    the arrangement of agents at time step 𝑡 

𝜁      the makespan of a solution of pCPF 

𝜁∗       the makespan of an optimal solution of pCPF 

𝒮𝐴       a sequence of arrangements of agents 

      forming a solution of pCPF 

Σ = (𝐺, 𝐴, 𝑆𝐴
0, 𝑆𝐴

+) an instance of pCPF 

𝒮𝐴 Σ      a solution to the instance of pCPF 

𝑆𝑜𝑙 Σ      a set of solutions of a pCPF instance Σ 

𝑆𝑜𝑙∗ Σ      a set of makespan optimal solutions of a pCPF instance Σ 

Ξ𝜗
𝐴      a conjugation instance of pCPF; 𝜗 is the length of a solution 

𝑝𝐶𝑃𝐹𝑂𝑃𝑇   a language consisting of pairs Σ/𝜂 where Σ is a pCPF solvable 

by solution of the makespan at most 𝜂 

𝑆𝐴𝑇  a language consisting of satisfiable propositional 

  formulas in CNF 

𝑆𝐴𝑇=  a subset of 𝑆𝐴𝑇 where each variable has the same number of 

positive and negative occurrences 

𝐹   a propositional formula in CNF 

𝐹=   a propositional formula in CNF where each variable has the 

same number of its positive and negative occurrences 

𝑝𝑜𝑠(𝑥, 𝐹)  a set of positive occurrences of propositional variable 𝑥 in 𝐹 

𝑛𝑒𝑔(𝑥, 𝐹)  a set of negative occurrences of propositional variable 𝑥 in 𝐹 

𝑂|𝑉   the restriction of an object 𝑂 on a set of vertices 𝑉 

𝑉𝑋   newly added vertices 

𝐸𝑋   newly added edges 

𝐴𝑋   newly added agents 
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Abstract. This paper proposes a framework for analyzing algorithms for inductive 

processing of bi-connected graphs. The BIBOX algorithm for solving cooperative 

path-finding problems over bi-connected graphs is submitted for the suggested 

analysis. The algorithm proceeds according to a decomposition of a given bi-

connected graph into handles. After finishing a handle, the handle is ruled out of 

consideration and the processing task is reduced to a task of the same type on a 

smaller graph. The handle decomposition for which the BIBOX algorithm per-

forms best is theoretically identified. The conducted experimental evaluation con-

firms that the suggested theoretical analysis well corresponds to the real situation. 

Keywords: BIBOX algorithm, bi-connected graphs, cooperative path-finding, 

complexity 

1. Introduction and Motivation 

Many graph-processing algorithms proceed inductively. That is, after processing a 

part of the graph, the processing task is reduced to a task of the same type on a 

smaller graph where the finished part is no longer considered. Classical graph 

algorithms for finding minimum spanning trees (Borůvka’s and Jarník’s algo-

rithms [1, 3, 5, 6, 7]) and single source shortest paths (Dijkstra’s algorithm [2]) 

proceed exactly in this manner. In the former case, the induction step typically 
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consumes an edge, while in the latter case, the induction step implies the 

processing of a vertex. 

 We would like to focus on another problem that takes place on a graph, name-

ly the cooperative path-finding problem (CPF) [1, 8, 9, 14] where the task is to 

relocate certain objects (agents) along the edges of a given graph in a non-

colliding way in order to reach the given goal vertices. An algorithm called BI-

BOX for solving CPF on bi-connected graphs was introduced in [10, 11]. It is 

another representative of an induction-based algorithm. The given bi-connected 

graph is processed inductively according to its decomposition into handles (a path 

connected by its two ends to the rest of the graph) by the algorithm. Here, the 

induction step is represented by handle processing. However, the analysis given in 

[11] does not address how the handle decomposition affects the overall perfor-

mance of the algorithm. The objective of this paper is to fill this gap and deter-

mine the impact of the choice of a particular handle decomposition on the perfor-

mance of the BIBOX algorithm. 

 A general framework for analyzing algorithms processing bi-connected graphs 

inductively is proposed. The BIBOX algorithm is subjected to the analysis with 

the view of finding handle decompositions on which the algorithm performs best. 

An experimental evaluation is conducted to verify the theoretical findings. 

2. Background 

Bi-connected graphs arise in many real-life scenarios dealing with navigation 

networks as they capture the important property that at least two alternative (dis-

joint) routes connect any two vertices. In other words, any two vertices lie on a 

cycle. This property can be well utilized in CPF, as it allows for relocations 

around cycles (rotations). 

 

Definition 1 (bi-connected graph). An undirected graph 𝐺 = (𝑉,𝐸) is bi-

connected if  𝑉 ≥ 3 and the graph after deletion of any vertex is connected; that 

is, the graph 𝐺′ = (𝑉′,𝐸′), where 𝑉 ′ = 𝑉 ∖ {𝑣} and 𝐸′ = {{𝑢,𝑤}|𝑢,𝑤 ∈ 𝑉 ∧ 𝑢 ≠

𝑣 ∧ 𝑤 ≠ 𝑣}, is connected for every 𝑣 ∈ 𝑉. □ 

 

Observe that a cycle itself is a bi-connected graph according to the aforemen-

tioned definition. The well known property that is utilized by algorithms for 

processing bi-connected graphs is that any bi-connected graph can be inductively 

build by adding handles [12, 13]. The operation of adding the handle 𝐿 =

[𝑢,𝑤1 ,𝑤2 ,… ,𝑤𝑙 ,𝑣] with 𝑙 ∈ ℕ0, which is a sequence of vertices, to the graph 

𝐺 = (𝑉,𝐸) so that  𝑢,𝑤1 ,𝑤2 ,… ,𝑤𝑙 ,𝑣 ∩ 𝑉 = {𝑢, 𝑣} (that is, the handle consists 
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of already present vertices 𝑢, 𝑣 and fresh vertices 𝑤𝑗  for 𝑗 = 1,2,… , 𝑙) results in a 

new graph 𝐺′ = (𝑉′,𝐸′), where 𝑉 ′ = 𝑉 ∪ {𝑤1,𝑤2 ,… ,𝑤𝑙} and 𝐸′ = 𝐸 ∪ { 𝑢,𝑤1 , 
 𝑤2 ,𝑤3 ,… ,  𝑤𝑙−1 ,𝑤𝑙 , {𝑤𝑙 ,𝑣}}. The size of the handle 𝐿 is defined as 𝑙, that is 

the number of internal vertices. The addition of a handle of size 0 corresponds to 

the addition of an edge. 

 

Proposition 1 (handle decomposition) [12, 13]. Any bi-connected 𝐺 = (𝑉,𝐸) 

graph can be obtained from a cycle using a sequence of handle-adding opera-

tions.  

 

 The sequence of handles together with the initial cycle, from which the given 

bi-connected graph can be constructed, will be called a handle decomposition. 

The handle decomposition for a given bi-connected graph 𝐺 = (𝑉,𝐸) will be 

denoted as 𝐶0 ,𝐿1 ,𝐿2 ,… , 𝐿𝑘 , where 𝐶0 is a cycle (formally a sequence of vertices) 

and 𝐿𝑖  is a handle for 𝑖 = 1,2,… ,𝑘 (for formal definition of sequences of vertices 

see above). 𝐺 can be reconstructed from 𝐶0 ,𝐿1 ,𝐿2 ,… , 𝐿𝑘  as follows: first cycle 𝐶0 

is laid; then the handles 𝐿1 , 𝐿2 ,… , 𝐿𝑘  are added inductively. Consider that we have 

an intermediate graph 𝐺𝑖  (as a result of adding the handles 𝐿1 ,𝐿2 ,… , 𝐿𝑖), the next 

intermediate graph 𝐺𝑖+1 is obtained by adding 𝐿𝑖+1 to 𝐺𝑖  using the handle-adding 

operation. The final intermediate graph 𝐺𝑘  is 𝐺. Notice that 𝑉 = 𝐶0 ∪ 𝐿1 ∪ 𝐿2 ∪

…∪ 𝐿𝑘  and the intermediate graph at any step of the process of reconstruction 

from handles is bi-connected. 

3.  Theoretical Analysis of Induction-based Algorithms and a 
Special Case 

Assume that the algorithm processes handle decomposition handles one by one 

starting with the last one and moving towards the initial cycle. After the 

processing of a handle is finished, the algorithm continues inductively on a small-

er bi-connected graph without the finished handle. Let 𝑡 𝑛,𝑚  be the upper bound 

of the time consumed by the algorithm when processing a handle of size 𝑛 in a bi-

connected graph of size 𝑛 + 𝑚. 

 Particularly in the case of the BIBOX algorithm that solves the cooperative 

path-finding problem it holds that  𝑛,𝑚 = 𝑑1 ∙ 𝑛
3 + 𝑑2 ∙ 𝑛

2𝑚 + 𝑑3 ∙ 𝑛𝑚
2, 

where 𝑑1 ,𝑑2 ,𝑑3 ∈ ℝ. 

 The upper bound of the time needed to process the given bi-connected graph 

𝐺 = (𝑉,𝐸) according to the handle decomposition 𝑉 = 𝐶0 ∪ 𝐿1 ∪ 𝐿2 ∪ …∪ 𝐿𝑘  

can thus be calculated as follows:  

 
 𝑡 |𝐿𝑖|, |𝐶0| +  |𝐿𝑗 |

𝑖−1

𝑗=1
 

𝑘

𝑖=1

 (1) 
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 Obviously, the expression depends on the number of handles in the decompo-

sition as well as on the sizes of the individual handles. Several scenarios with 

different distributions of handle sizes will be evaluated.  

3.1. Varying the Number and the Size of Handles 

The number of handles may vary in multiple different ways. In practice, however, 

cases with sizes of the handle 𝐿𝑖  that can be expressed as 𝒪 1 , 𝒪 𝑖 , 𝒪 𝑖2 , 

𝒪  𝑖 , or 𝒪 2𝑖  can be expected as a result of constructing a handle decomposi-

tion satisfying certain constraints. It is also natural to expect that the size of han-

dles is a growing function with respect to their position in the handle decomposi-

tion (the larger part of the graph allows a larger handle to be present) with which 

the suggested handle sizes comply. 

 Assume that the size of the handle depends linearly on its position within the 

handle decomposition, that is,  𝐿𝑖 = 𝛼𝑖; 𝛼 ∈ ℝ. For the sake of simplicity, the 

calculation will be done asymptotically where sums can be replaced with inte-

grals. Also, the initial cycle is omitted in the analysis because it only adds a con-

stant. Thus, asymptotically, the total number of handles is: 

 

𝑘 =  
2|𝑉|

𝛼
 

which comes from the equation: 

|𝑉| =  𝛼𝑖 𝑑𝑖 = 𝛼
𝑖2

2
 

 The estimation of the time consumed by the algorithm over such a handle de-

composition is: 

 𝑡  𝛼𝑖,𝛼
𝑖2

2
 𝑑𝑖 

 In particular, for the BIBOX algorithm, the following estimation of time can be 

obtained as a simple integration over all the handles as follows: 

 

 𝑑1 ∙  𝛼𝑖 
3 + 𝑑2 ∙  𝛼𝑖 

2  𝛼
𝑖2

2
 + 𝑑3 ∙  𝛼𝑖  𝛼

𝑖2

2
 

2

𝑑𝑖 =

= 𝛼3  
1

4
𝑑1 ∙ 𝑖

4 +
1

10
𝑑2 ∙ 𝑖

5 +
1

24
𝑑3 ∙ 𝑖

6  

 

(4) 

(3) 

(2) 

(5) 
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 If the total number of handles is substituted into (5), the following running 

time of the BIBOX algorithm is obtained: 

 

𝑑1𝛼 ∙  𝑉 
2 +

2

5
𝑑2 𝛼 ∙ |𝑉|2 |𝑉| +

1

3
𝑑3 ∙ |𝑉|3 

 The asymptomatic running time is 𝒪  𝑉 3 , where the most important addend 

is 
1

3
𝑑3 ∙ |𝑉|3. The sum of the remaining addends in the expression will be called a 

residuum. In the case of the BIBOX algorithm with linear sizes of handles, the 

residuum is as follows: 

 

𝑑1𝛼 ∙  𝑉 
2 +

2

5
𝑑2 𝛼 ∙ |𝑉|2 |𝑉| ∈ 𝒪   𝑉 2+

1
2  

  

 Naturally, the smallest possible residuum is desirable for having the shortest 

possible running time of the algorithm. Fortunately, the residuum can be affected 

by the handle decomposition – particularly by handle sizes shown in the above 

calculation. 

 

Proposition 1 (residuum in various handle decompositions). For standard cases 

of handle decompositions, where the size of the handle 𝐿𝑖  is 𝒪 1 , 𝒪  𝑖 , 𝒪 𝑖2 , 

or 𝒪 2𝑖 , respectively, the following estimates of the residuum are obtained: 

 if  𝐿𝑖 = 𝛽; 𝛽 ∈ ℝ   ⇒ 𝒪  𝑉 2  

 if  𝐿𝑖 = 𝜁 𝑖; 𝜁 ∈ ℝ  ⇒ 𝒪(|𝑉|2+
1

3) 

 if  𝐿𝑖  = 𝛾𝑖2; 𝛾 ∈ ℝ  ⇒ 𝒪( 𝑉 2+
2

3) 

 if  𝐿𝑖  = 𝛿2𝑖 ; 𝛿 ∈ ℝ  ⇒ 𝒪( 𝑉 3).  

  

 Since the calculations are analogous to the linear size of the handle, the proof 

is deferred to the Appendix. 

 According to the size of the residuum, it seems that, with respect to reducing 

the runtime, the best handle decomposition is that with a constant handle size 

while the worst one is that with an exponential handle size. 

4. Experimental Evaluation in the Case of Cooperative Path-finding 

It is interesting to explore whether theoretical estimations match the real situation. 

That is, whether a handle decomposition with handles of a constant size really is 

(6) 

(7) 
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the best option for the BIBOX algorithm. To provide a complete picture, the prob-

lem is introduced in the following definition. 

 

Definition 3 (cooperative path-finding) [1, 9]. Let 𝐺 =  𝑉,𝐸  be an undirected 

graph and 𝐴 =  𝑎1 ,𝑎2 ,… ,𝑎𝑛 , where  𝐴 < |𝑉| be a set of agents. The arrange-

ment of agents in the graph reflects the uniquely invertible function 𝛼:𝐴 ⟶ 𝑉 

(there is at most one agent in each vertex). The problem of cooperative path-

finding (CPF) consists in finding a sequence of moves of agents so that the given 

initial arrangement 𝛼0 is transformed to the given goal arrangement 𝛼+. The 

move with an agent is possible along an edge. □ 

 
 

 
 

Figure 1. An example of the cooperative path-finding problem (CPF). Three agents need to be 

rearranged in a 3 × 3 grid. A solution of length 6, where multiple agents move in a single step, is 

shown. 

  

 The inverse arrangement of agents is the mapping 𝛼 :𝑉 ⟶ 𝐴 ∪ {⊥} that pro-

vides information about which agent is located in a given vertex. The special val-

ue ⊥ indicates that the given vertex is empty. 

 A number of variants of the problem need to be considered. In this case, a 

variant with an agent moving into an empty vertex through an edge is concerned 

(a variant where a sequence of agents can move at once like a train is discussed in 

[11]). An example instance and its solution are shown in Figure 1. 

 The BIBOX algorithm, for which the analysis has been designed, solves the 

problem over bi-connected graphs. It arranges agents into handles while the prob-

lem is inductively reduced on a smaller bi-connected graph whenever agents are 

arranged into the handle – agents in such a handle do not move any more. 

 Instead of measuring runtime, the number of generated moves will be eva-

luated. The number of generated moves corresponds exactly to the runtime. The 

reason for using a number of moves instead of runtime is that it is impossible to 

measure runtime as precisely as the number of moves, furthermore, it is less de-

pendent on the implementation. 

𝛼0 
(𝑮,𝑨,𝜶𝟎,𝜶+) 

𝛼+ 

𝒗 𝟏 
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𝒗 𝟐 

𝒗 𝟑 

𝒗 𝟒 

𝒗 𝟓 

𝒗 𝟔 

𝒗 𝟕 

𝒗 𝟖 

𝒗 𝟗 

𝟑 

𝟐 

𝟏 

Solution of the cooperative path-finding 

problem with 𝐴 = {1,2,3} 

𝒗 𝟏 

𝒗 𝟐 

𝒗 𝟑 

  0 

1 
2 
3 

 

step 

𝑣 4 

𝑣 2 

𝑣 3 

  1 
𝑣 7 

𝑣 1 

𝑣 3 

  2 
𝑣 8 

𝑣 4 

𝑣 2 

  3 
𝑣 9 

𝑣 7 

𝑣 1 

  4 
𝑣 9 

𝑣 8 

𝑣 4 

  5 
𝒗 𝟗 
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 Here, the algorithm is recalled using a pseudo-code as Algorithm 1. It employs 

several auxiliary functions to solve subtasks. The pseudo-code of auxiliary func-

tions is given in [11] – at this point, they are only briefly described. 

  

  

Algorithm 1. The BIBOX algorithm. The algorithm solves the cooperative path-finding problem 

(CPF) over bi-connected graphs consisting of a cycle and at least one handle with two unoccupied 

vertices. The algorithm proceeds inductively according to a handle decomposition. The two unoccu-

pied vertices are necessary for arranging agents within the initial cycle; in the rest of the graph only 

one unoccupied vertex is needed. A pseudo-code is built around several higher-level operations: 

 Lock 𝑈       locks all the vertices from set 𝑈; each vertex is either 

        locked or unlocked; an agent must not be moved out of the 

        locked vertex, which is respected by other operations 

 Unlock 𝑈      unlocks all the vertices from set 𝑈 

 Make-Unoccupied(𝑣)   vacates vertex 𝑣 

 Move-Agent(𝑎, 𝑣)   moves agent 𝑎 from its current location to vertex 𝑣 

 Rotate-Cycle+(𝐶)    rotates cycle 𝐶 in the positive direction; a vacant vertex must be 

        present in the cycle 

 Rotate-Cycle−(𝐶)    rotates cycle 𝐶 in the negative direction 

 Transform-Goal(𝐺,𝐴,𝛼+)  transforms goal arrangement 𝛼+ to a new arrangement so   

        that finally unoccupied vertices are located in the initial 

        cycle of the handle decomposition; two disjoint paths along 

        which empty vertices are relocated are returned 

 Finish-Solution(𝜑,𝜒)   transforms the arrangement with two unoccupied vertices in  

        the initial cycle to the original goal arrangement; 𝜑 and 𝜒   

        are two disjoint paths along which empty vertices shifted 

 Solve-Original-Cycle   arranges agents within the initial cycle of the handle    

        decomposition to comply with the transformed goal 

        arrangement; two empty vertices are employed to arrange  

        agents 

 

procedure BIBOX-Solve(𝐺 =  𝑉,𝐸 ,𝐴,𝛼0 ,𝛼+) 

/* Top level function of the BIBOX algorithm; solves 

a given cooperative path-finding problem. 

Parameters: 𝐺  – a graph modeling the environment, 

𝐴  – a set of agents, 

𝛼0  – the initial arrangement of agents, 

𝛼+ – the goal arrangement of agents. */ 

1: let 𝒟 =  𝐶0,𝐿1 , 𝐿2,… , 𝐿𝑘   be a handle decomposition of 𝐺 

2: (𝛼+,𝜑,𝜒) ← Transform-Goal(𝐺,𝐴,𝛼+) 

3: 𝛼 ← 𝛼0 

4: for 𝑐 = 𝑘, 𝑘 − 1,… ,1 do 

5:  if  𝐿𝑐  > 2 then 

6:   Solve-Regular-Handle(𝑐) 

7: Solve-Original-Cycle 

8: Finish-Solution(𝜑,𝜒) 
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procedure Solve-Regular-Handle(𝑐) 

/* Places agents the destinations of which are within  

The handle 𝐿𝑐 ; agents placed in the handle 𝐿𝑐  are finally 

locked to prevent them from moving. 

Parameters:  𝑐 – index of a handle */ 

9: let [𝑢,𝑤1 ,𝑤2,… ,𝑤𝑙 , 𝑣] = 𝐿𝑐   

 /* Both unoccupied vertices must be located 

outside the currently solved handle. */ 

10: let 𝑥, 𝑧 ∈ 𝑉 ∖  (𝐿𝑗
𝑘
𝑐=𝑗 ∖ {𝑢,𝑣}) such that 𝑥 ≠ 𝑧 

11: Make-Unoccupied(𝑥) 

12: Lock  𝑥   
13: Make-Unoccupied(𝑧) 

14: Unlock  𝑥   
15: for 𝑖 = 𝑙, 𝑙 − 1,… ,1 do 

16:  Lock(𝐿𝑐 ∖  𝑢, 𝑣 ) 

  /* The agent to be placed is outside the handle 𝐿𝑐 . */ 

17:  if 𝛼(𝛼 +(𝑤𝑖)) ∉ (𝐿𝑐 ∖  𝑢, 𝑣 ) then 

18:   Move-Agent(𝛼 + 𝑤𝑖 ,𝑢) 

19:   Lock({𝑢}) 

20:   Make-Unoccupied(𝑣) 

21:   Unlock(𝐿𝑐) 

22:   Rotate-Cycle+(𝐶(𝐿𝑐)) 

/* The agent to be placed is inside the handle 𝐿𝑐 . */ 

23:  else 

24:   Make-Unoccupied(𝑢) 

25:   Unlock(𝐿𝑐) 

26:   𝜌 ← 0 

27:   while 𝛼(𝛼 + 𝑤𝑖 ) ≠ 𝑣 do 

28:    Rotate-Cycle+(𝐶(𝐿𝑐)) 

29:    𝜌 ← 𝜌 + 1 

30:   Lock(𝐿𝑐 ∖  𝑢, 𝑣 ) 

31:   let 𝑦 ∈ 𝑉 ∖ ( (𝐿𝑗 ∖ {𝑢, 𝑣}) ∪𝑑
𝑗=𝑐+1 𝐶(𝐿𝑗 )) 

32:   Move-Agent(𝛼 + 𝑤𝑖 , 𝑦) 

33:   Lock ({𝑦}) 

34:   Make-Unoccupied(𝑢) 

35:   Unlock(𝐿𝑐) 

36:   while 𝜌 > 0 do 

37:    Rotate-Cycle(𝐶(𝐿𝑐)) 

38:    𝜌 ← 𝜌 − 1 

39:   Unlock( 𝑦 ) 

40:   Lock(𝐿𝑐 ∖  𝑢, 𝑣 ) 

41:   Move-Agent(𝛼 +(𝑤𝑖),𝑢) 

42:   Lock ({𝑢}) 

43:   Make-Unoccupied 𝑣  
44:   Unlock(𝐿𝑐) 

45:   Rotate-Cycle+(𝐶(𝐿𝑐)) 

46: Lock(𝐿𝑐 ∖  𝑢, 𝑣 ) 
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 The algorithm starts with the construction of a handle decomposition (line 1). 

This step is non-deterministic in the original algorithm and can be replaced with a 

handle decomposition where sizes of handles satisfy certain conditions. It is as-

sumed that a cycle denoted as 𝐶(𝐿𝑖) is associated with each handle; 𝐶(𝐿𝑖) can be 

constructed by adding a path connecting the handle’s connection vertices 𝑢 and 𝑣. 

Thereafter, the goal arrangement of agents is transformed so that the vacant ver-

tices are eventually located in the initial cycle of the decomposition (line 2). In 

fact, the algorithm solves this modified instance. The original instance is solved 

by relocating vacant vertices from the initial cycle to their original goal locations 

(line 8). This instance transformation is carried out using the auxiliary functions 

Transform-Goal, and Finish-Solution that relocate vacant vertices along two ver-

tex disjoint paths. The main loop (lines 4-6) processes a handle from the last one 

towards the initial cycle. Agents are arranged by means of another auxiliary pro-

cedure, Solve-Original-Cycle, in the original cycle (line 7). 

 Individual handles are processed by the Solve-Regular-Handle procedure. It 

arranges agents into a handle in a stack-like manner. First, unoccupied vertices are 

moved out of the processed handle as they will be needed elsewhere (lines 10-14). 

Subsequently, agents, whose goal positions are in the handle, are processed. Two 

cases are distinguished depending on whether the processed agent is located out-

side the handle (lines 17-22) or within the handle (lines 23-45). The case is with 

the agent outside is easier to solve – in this case, the agent is moved to the con-

nection vertex 𝑢 using the Move-Agent auxiliary procedure. The other connection 

vertex 𝑣 is vacated by the Make-Unoccupied procedure. If some vertex is free in 

the cycle 𝐶(𝐿𝑐) then the cycle can be rotated. This is performed once in the posi-

tive direction using the Rotate-Cycle
+
 function. The rotation places the agent into 

the handle. Throughout the agent relocation process, vertex locking is used (func-

tions Lock and Unlock) to fix the agent in a certain vertex while other agents or 

the vacant vertex are relocated. 

 A more difficult situation occurs when the agent is placed inside the handle. In 

such a case, the agent must be rotated out of the handle to the rest of the graph 

(lines 24-29). The number of positive rotations to get the agent out of the handle 

is counted (lines 27-29). The counted number of rotations is used to restore the 

situation with the corresponding number of negative rotations (lines 36 – 38). At 

this point, the situation is the same as in the previous case. Thus, the agent is 

stacked into the handle in the same way. 

 Consider that 𝑛 agents need to be arranged into a handle of size 𝑛, which is 

connected to a bi-connected graph of size 𝑚. Processing a single agent requires 

rotating the handle no more than 2𝑛+1 times – at most 𝑛 rotations are needed to 

get the agent out of the handle if it is originally located inside; at most 𝑛 rotations 



The Impact of a Bi-connected Graph Decomposition on Solving CPF 131 

 
 

 

are needed to rotate the handle back; and one rotation is required to push the agent 

inside the handle. Each rotation requires 𝑛 + 𝑚 steps as, in the worst case, the 

cycle that is rotated can include the whole graph. The time required for the rota-

tions can be thus estimated by 𝑑 ∙ (2𝑛 + 1) ∙ (𝑛 + 𝑚) with some 𝑑 ∈ ℝ. Hence, 

the time needed for the rotations when processing a single handle can be esti-

mated by 𝑑1 ∙ 𝑛
3 + 𝑑2 ∙ 𝑛

2𝑚 𝑑1 ,𝑑2 ∈ ℝ. To finish the estimation, it is needed to 

account for the time needed to relocate the agent towards the handle’s connection 

vertex from inside the graph or between the handle’s connection vertices. Both 

cases can be estimated using 𝑑3 ∙ 𝑚
2 since the agent needs to be moved along a 

path of a length of at most 𝑚, where traversing a single edge requires at most 𝑚 

steps (a destination vertex must be vacated each time the edge is traversed). Alto-

gether, the expression 𝑡 𝑛,𝑚 = 𝑑1 ∙ 𝑛
3 + 𝑑2 ∙ 𝑛

2𝑚 + 𝑑3 ∙ 𝑛𝑚
2, where 

𝑑1 ,𝑑2 ,𝑑3 ∈ ℝ estimates the time needed for processing the handle. The argumen-

tation is based on the fact that performing a move with an agent corresponds to a 

constant time. 

4.1. Measurement of the Number of Moves  

An experimental evaluation has been made to check if the theoretical analysis 

matches the real-life situation. The number of moves generated by the BIBOX 

algorithm with different sizes of handles was measured. All the theoretically stu-

died cases of the size of the handle 𝐿𝑖  𝒪 1 , 𝒪 𝑖 , 𝒪  𝑖 , 𝒪 𝑖
2  and 𝒪 2𝑖  were 

tested. The multiplication factor of 1 was used in all the cases to generate a se-

quence of handles of various sizes; that is, 𝛼,𝛽, 𝛾, 𝛿, 𝜁 = 1. Ten instances of the 

CPF problem were generated for each size of the constructed bi-connected graph. 

Random initial and goal arrangements with exactly two unoccupied vertices were 

generated in each instance. The results are shown in Figure 2. 

 The experimental evaluation clearly matches the derived theoretical results; 

that is, constant size handles produce the lowest number of moves, while handles 

of the exponential size produce the most moves. The relative ordering of the 

number of moves in other handle sizes in the experimental evaluation is the same 

as in the theoretical analysis. It seems that differences in the number of moves in 

the experimental evaluation are even more pronounced than in the theoretical 

analysis. The explanation is that a graph with smaller handles exhibits higher 

connectivity that implies shorter paths along which agents are relocated. 
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Figure 2. Number of moves generated by the BIBOX algorithm. The algorithm was tested on 

bi-connected graphs with the size of the 𝑖-th handle corresponding to the constant,  𝑖, 𝑖, 𝑖2, and 2𝑖  
respectively. The lowest number of moves is obtained for the constant handle size, and the highest 

number for handles, the size of which is exponential. 
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5. Conclusions and Future Work 

A simple but general framework for evaluating induction-based algorithms for 

processing bi-connected graphs has been introduced. It is assumed that algorithms 

process bi-connected graphs according to their decomposition into handles. The 

last handle is processed first, which reduces the processing task on a smaller bi-

connected graph – the graph from which the last handle has been removed. The 

impact of the handle decomposition on the performance of the algorithm was 

studied. 

 A theoretical and experimental evaluation of a particular case of an algorithm 

solving the cooperative path-finding (CPF) problem over bi-connected graphs was 

performed. The theoretical evaluation showed that among several suggested han-

dle decompositions the decomposition with the constant size of handles is the best 

option with respect to the number of moves solving the given CPF instance. The 

performed experimental evaluation confirmed the theoretical assumptions. 

 The described framework identifies the best decomposition among several 

known decompositions. It is worth further exploration whether a general mechan-

ism for determining the best handle decomposition can be found. 
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Appendix 

Proof of Proposition 1: Assume that  𝐿𝑖 = 𝛽; 𝛽 ∈ ℕ; that is  𝐿𝑖  = 𝒪 1 . The 

number of handles, which will be used as a bound in the integration, is: 

𝑘 =
|𝑉|

𝛽
 

which can be obtained from the equation: 

|𝑉| =  𝛽 𝑑𝑖 = 𝛽𝑖 
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 The number of moves generated by the algorithm in such a case can be ob-

tained from the following integration: 

 𝑑1 ∙ 𝛽
3 + 𝑑2 ∙ 𝛽

2 𝛽𝑖 + 𝑑3 ∙ 𝛽 𝛽𝑖 
2𝑑𝑖 = 

= 𝛽3  𝑑1 ∙ 𝑖 +
1

2
𝑑2 ∙ 𝑖

2 +
1

3
𝑑3 ∙ 𝑖

3  

 After substituting 𝑘 into the expression, the following number of moves is 

obtained: 

𝑑1𝛽
2 ∙  𝑉 +

1

2
𝑑2𝛽 ∙  𝑉 

2 +
1

3
𝑑3 ∙ |𝑉|3 

 Hence, the residuum is: 

𝑑1𝛽
2 ∙  𝑉 +

1

2
𝑑2𝛽 ∙  𝑉 

2 ∈ 𝒪( 𝑉 2) 

 

 Assume that  𝐿𝑖 = 𝛾𝑖2; 𝛾 ∈ ℕ; that is  𝐿𝑖 = 𝒪(𝑖2). The number of handles, 

which will be used as a bound in the integration, is: 

𝑘 =  
3|𝑉|

𝛾

3

 

which can be obtained from the equation: 

|𝑉| =  𝛾𝑖2 𝑑𝑖 =
1

3
𝛾𝑖3 

 In such a case, the number of moves generated by the algorithm can be ob-

tained from the following integration: 

 𝑑1 ∙ (𝛾𝑖2)3 + 𝑑2 ∙ (𝛾𝑖2)2  
1

3
𝛾𝑖3 + 𝑑3 ∙ 𝛾𝑖

2  
1

3
𝛾𝑖3 

2

𝑑𝑖 = 

= 𝛾3  
1

7
𝑑1 ∙ 𝑖

7 +
1

24
𝑑2 ∙ 𝑖

8 +
1

81
𝑑3 ∙ 𝑖

8  

 

 

 After substituting 𝑘 into the expression, the following number of moves is 

obtained: 

9 3
3

7
𝑑1  𝛾

3  
2
∙  𝑉 2  𝑉 

3
+

3( 3
3

)2

8
𝑑2 𝛾

3 ∙  𝑉 2(  𝑉 
3

)2 +
1

3
𝑑3 ∙ |𝑉|3 
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 Hence, the residuum is: 

9 3
3

7
𝑑1  𝛾

3  
2
∙  𝑉 2  𝑉 

3
+

3( 3
3

)2

8
𝑑2 𝛾

3 ∙  𝑉 2(  𝑉 
3

)2 ∈ 𝒪( 𝑉 2+
2
3) 

 

 Assume that  𝐿𝑖 = 𝛿2𝑖 ; 𝛿 ∈ ℝ; that is,  𝐿𝑖  = 𝒪(2𝑖). The number of handles, 

which will be used as a bound in the integration, is: 

𝑘 = log2 |𝑉| − log2  
𝛿

ln 2
  

which can be obtained from the equation: 

|𝑉| =  𝛿2𝑖 𝑑𝑖 =
𝛿

ln 2
2𝑖  

 The number of moves generated by the algorithm can be obtained from the 

following integration: 

  𝑑1 +
𝑑2

ln 2
+

𝑑3

ln2 2
 ∙ (𝛿2𝑖)3𝑑𝑖 = 

=
1

3
 
𝑑1

ln 2
+

𝑑2

ln2 2
+

𝑑3

ln3 2
 𝛿3 ∙ 23𝑖 

 After substituting 𝑘 into the expression, the following number of moves is 

obtained: 

1

3
(𝑑1 ln2 2 + 𝑑2 ln 2 + 𝑑3)  ∙ |𝑉|3 

 Hence, the residuum is: 

1

3
(𝑑1 ln2 2 + 𝑑2 ln 2) ∙  𝑉 3 ∈ 𝒪( 𝑉 3) 

 Assume that  𝐿𝑖 = 𝜁 𝑖; 𝜁 ∈ ℝ; that is,  𝐿𝑖  = 𝒪( 𝑖). The number of handles, 

which will be used as a bound in the integration, is: 

𝑘 =  
9

4
 

|𝑉|

𝜁
 

23

 

which can be obtained from the equation: 

 𝑉 =  𝜁  𝑖𝑑𝑖 = 𝜁
2

3
𝑖

3
2  
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 The number of moves generated by the algorithm can be obtained from the 

following integration: 

 𝑑1 ∙ (𝜁 𝑖)3 + 𝑑2 ∙  𝜁 𝑖 
2
 𝜁

2

3
𝑖

3
2 + 𝑑3 ∙  𝜁 𝑖  𝜁

2

3
𝑖

3
2 

2

𝑑𝑖 = 

= 𝜁3  
2

5
𝑑1 ∙ 𝑖

5
2 +

4

21
𝑑2 ∙ 𝑖

7
2 +

1

9
𝑑3 ∙ 𝑖

9
2  

 After substituting 𝑘 into the expression, the following number of moves is 

obtained: 

 
3

2
 

5
3
𝑑1𝜁

4
3 ∙ |𝑉|

5
3 +

4

21
 

3

2
 

7
3
𝑑2𝜁

17
6 ∙ |𝑉|

7
3 +

1

3
𝑑3 ∙ |𝑉|3 

 Hence, the residuum is: 

 
3

2
 

5
3
𝑑1𝜁

4
3 ∙ |𝑉|

5
3 +

4

21
 

3

2
 

7
3
𝑑2𝜁

17
6 ∙ |𝑉|

7
3 ∈ 𝒪(|𝑉|2+

1
3) 
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Abstract. Problems of motion coordination of multiple entities are addressed in 

this paper. These problems are dealt on the abstract level where they can be 

viewed as tasks of constructing a spatial-temporal plan for a set of identical mo-

bile entities. The entities reside in a certain environment where they can move. 

Each entity need to reach a given goal position supposed it is starting from some 

initial position. The most abstract formal representations of coordinated motion 

problems are known as “pebble motion on a graph” and “multi-robot path plan-

ning”. The existent algorithms for pebble motion and multi-robot problems were 

suspected of generating solutions containing redundancies. This hypothesis even-

tually confirmed in this work. We present several techniques for identifying and 

eliminating redundancies from solutions generated by existent algorithms. An ex-

tensive experimental evaluation was performed and it showed that the quality of 

generated solutions can be improved up to the order of magnitude. We also iden-

tify parameters characterizing instances of problems where a significant im-

provement is expectable. 

Keywords: multi-robot path planning; pebble motion on a graph; redundancy eli-

mination; parallel plans; SAT based optimization. 

1.   Introduction, Context, and Motivation 

Problems of coordinated motion of multiple identical entities as they are intro-

duced in [4, 8, 10, 16] (terms “multi-robot path planning” or “cooperative path-

mailto:pavel.surynek@mff.cuni.cz
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finding” are also used to denote the same or similar problem) represent a basic 

abstraction for many real-life and theoretical tasks. The classical task that can be 

abstracted as a problem of coordinated motion takes place in a certain physical 

environment where identical mobile entities are moving (typically represented by 

mobile robots). Each entity is given its initial and goal positions in the environ-

ment between which it should relocate. The task is to construct a spatial-temporal 

plan for all the entities such that they can reach their goal positions following the 

plan while the plan satisfies certain natural constraints. These constraints are con-

stituted by a requirement that the entities must avoid obstacles in the environment 

and must not collide with each other. 

The standard abstraction adopted throughout this work uses an undirected 

graph to model the environment. Vertices of this graph represent positions in the 

environment and edges represent passable regions between two positions. An 

arrangement of entities in the environment is abstracted as a uniquely invertible 

assignment of entities to vertices. At least one vertex remains unoccupied in order 

to make the movement of entities possible – for example moving in a circle where 

each entity follows the preceding entity is not allowed. The time is discrete; it is 

an ordered set of time steps isomorphic to the structure of natural numbers. A way 

in which an arrangement of entities can be transformed into another can slightly 

differ in variants of the problem. The best known abstract formalizations of coor-

dinated motion problems are represented by pebble motion on a graph (PMG) as 

defined in [4] and [16], and multi-robot path planning (MRPP) as defined in [8, 

10, 11] while the latter allows higher parallelism. 

 Abstract problems of coordinated motion of multiple entities on a graph are 

motivated by many real-life problems. The most typical motivating example is 

motion planning of a group of mobile robots that are moving in 2-dimensional 

space. Generally, if there is enough free space in the environment, algorithms 

based on search for shortest paths in a graph with an eventual local repairs if col-

lision occurs can be used [1]. However, if non-trivial amount of space is occupied 

different approaches must be adopted. 

Many well known puzzles can be formulated as coordinated motion on a 

graph. The best known is so called Lloyd’s 15-puzzle and its generalizations as 

described in [6, 7] and [16]. In practice, entities may be represented by various 

mobile or movable objects – for example rearranging containers in some storage 

area can be interpreted as a problem of coordinated motion where entities are 

represented by containers. Exactly this interpretation has been used for planning 

motions of automated straddle carriers in a storage area in Patrick port facility at 

Port Brisbane in Queensland as reported in [8]. Although the approach suggested 

in [8] is applied on few movable entities it clearly demonstrates the usefulness of 
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discussed abstractions. Entities do not necessarily need to be physical objects. 

Virtual spaces of computer simulations and games contain many situations where 

motions of certain entities must be planned. A typical example is a coordination 

of groups of units in real-time strategic computer games (RTS) [14]. 

It is necessary to emphasize that contrary to multi-agent motion planning [3], 

the centralized approach is adopted in this work. This means that the environment 

is fully observable for the central planning mechanism and the individual entities 

merely execute the centrally created plan. 

There exist several relatively efficient methods for solving problems of coor-

dinated motion on a graph. This work is particularly targeted on solving methods 

described in [10, 11]. These methods represent algorithms for the class of prob-

lems where the graph modeling the environment is bi-connected [15] and the 

graph is densely occupied by entities. More precisely, the number of entities 𝜇 is 

comparable to the size of the set of vertices (that is, 𝜇 = Θ( 𝑉 )). Despite the 

good performance of these methods, generated solutions are suspected of contain-

ing certain redundancies. This is a hypothesis whose examination is the main 

contribution of this paper. If it is the case that generated solutions contain redun-

dancies, then a question how they can be removed to improve the solution arises. 

 The task was to analyze solutions of non-trivial size, which turned out to be 

infeasible to be done manually. Moreover, we were searching redundancies of a 

priori unknown nature. Therefore, a software tool GraphRec [5] allowing visual 

analysis of solutions of problems of motion on a graph has been developed and 

employed in this analysis. Several types of redundancies were observed using the 

GraphRec software in generated solutions. The most prominent three of them that 

we manage to formally capture are described in this paper. Methods for auto-

mated discovering and elimination of these three defined types of redundancies 

are suggested and analyzed theoretically as well as experimentally. We also sug-

gest to model the problem of motion on a graph as propositional satisfiability 

(SAT) [1] which allows us to discover very generic redundancies automatically. 

The top level organization of the paper has two parts. The first part explains a 

specific variant of the coordinated motion problem (section 2) and the basic solv-

ing algorithm (section 3); this part mostly recalls existing concepts. The second 

part contains the main contribution of this work; redundancy elimination methods 

are described (section 4), and the benefit of suggested methods is justified in the 

experimental section (section 5). Additionally a SAT based solution improvement 

technique is described in section 6. 
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2.   Pebble Motion on a Graph (PMG) 

In the rest of the paper, we restrict ourselves on the variant of the entity motion 

coordination problem known as pebble motion on a graph (PMG) defined in [7] 

and [16]. The work can be extended on other variants of the problem such as mul-

ti-robot path planning (MRPP) using minor modifications only. 

 The task in pebble motion on a graph is given by an undirected graph with an 

initial and a goal arrangement of pebbles in vertices of the graph. Each vertex 

contains at most one pebble (which represents a movable entity) and at least one 

vertex remains unoccupied. The task is to find a sequence of moves for each peb-

ble such that all the pebbles reach their goal vertices. A pebble can move into a 

neighboring unoccupied vertex while no other pebble is entering the same target 

vertex simultaneously. The following definition formalizes the problem. An illu-

stration of the problem is shown in Fig. 1. 

 

Definition 1 (pebble motion on a graph). Let 𝐺 = (𝑉, 𝐸) be an undirected graph 

and let 𝑃 = {𝑝1 , 𝑝, … , 𝑝𝜇 } be a set of pebbles where 𝜇 <  𝑉 . The initial arrange-

ment of pebbles is defined by an injective function 𝑆𝑃
0: 𝑃 ⟶ 𝑉 (that is 𝑆𝑃

0(𝑝𝑖) ≠
𝑆𝑃

0(𝑝𝑗 ) for 𝑖, 𝑗 = 1,2, … , 𝜇 with 𝑖 ≠ 𝑗); the goal arrangement of pebbles is defined 

by another injective function 𝑆𝑃
+: 𝑃 ⟶ 𝑉. A problem of PMG is the task to find a 

number 𝜉 and a sequence 𝑆𝑃 = [𝑆𝑃
0, 𝑆𝑃

1 , … , 𝑆𝑃
𝜉

] where 𝑆𝑃
𝑘 : 𝑃 ⟶ 𝑉 is an injective 

function for every 𝑘 = 1,2, … , 𝜉. The following constraints must hold for 𝑆𝑃: 

(i) 𝑆𝑅
𝜁

= 𝑆𝑅
+, that is, pebbles eventually reach their destinations. 

(ii) Either 𝑆𝑃
𝑘 𝑝 = 𝑆𝑃

𝑘+1 𝑝  or {𝑆𝑃
𝑘 𝑝 , 𝑆𝑃

𝑘+1 𝑝 } ∈ 𝐸 for every 𝑝 ∈ 𝑃 and 

𝑘 = 1,2, … , 𝜉 − 1. 

(iii) 𝑆𝑃
𝑘 𝑝 ≠ 𝑆𝑃

𝑘+1 𝑝  and  𝑆𝑃
𝑘 𝑞 ≠ 𝑆𝑃

𝑘+1 𝑞  for ∀𝑞 ∈ 𝑃 such that 𝑞 ≠ 𝑝 must 

hold for every  𝑝 ∈ 𝑃 and 𝑘 = 1,2, … , 𝜉 − 1, that is no two pebbles can en-

ter the same target vertex simultaneously. 

The problem described above is formally a quadruple 

Π =  𝐺 =  𝑉, 𝐸 , 𝑃, 𝑆𝑃
0 , 𝑆𝑃

+ . □ 

In practice, the quality of solution matters. The typical measures of the quality 

of solution are its length (the total number of moves) and the makespan (which 

corresponds to the number 𝜉). These numbers are required to be small. Unfortu-

nately, requiring either the length of solution or its makespan to be as small as 

possible makes the problem intractable [7] (the decision variant of the problem is 

NP-complete). On the other hand, if there is no requirement on the quality, the 

question whether there exists a solution is in the P class as it shown in [4] and 

[16]. 
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However, methods showing evidence that the problem belongs to the P class 

described in [4] and [16] generates excessively long solutions that are unsuitable 

for practice when each movement of an entity represented by a pebble has a non-

trivial cost. Therefore, it was necessary to find a compromise between the quality 

of solution and computational effort of its construction. Methods following this 

compromise are described in [10] and [11]. Solutions produced by these methods 

were submitted for analysis into the visualization tool in order to find if and how 

they can be further improved. 

 

 

Fig 1.  An illustration of a PMG problem. The task is to move pebbles from their initial positions 

specified by 𝑆𝑃
0 to the goal positions specified by 𝑆𝑃

+. A solution of length 6 is shown. 

3.   Solving Coordinated Motion Problems 

This section is devoted to a brief recall of algorithms described in [10] and [11]. 

Understanding how these algorithms work will provide us an insight into the 

structure of solutions produced by them. This theoretical insight founded the hy-

pothesis that solutions can be further improved. 

A very important class of pebble motion problems is formed by those whose 

graph is bi-connected which intuitively means that each pair of vertices is con-

nected by two disjoint paths. 

Definition 2 (connectivity, bi-connectivity). An undirected graph 𝐺 =  𝑉, 𝐸  is 

connected if  𝑉 ≥ 2 and for every pair of distinct vertices 𝑢, 𝑣 ∈ 𝑉 there exists a 

path connecting 𝑢 and 𝑣 in 𝐺. An undirected graph 𝐺 =  𝑉, 𝐸  is bi-connected if 

 𝑉 ≥ 3 and for every vertex 𝑢 ∈ 𝑉 the graph 𝐺 ′ = (𝑉 −  𝑢 , 𝐸 ∩ {{𝑣, 𝑤}|𝑣, 𝑤 ∈

𝑉 ∧ 𝑣 ≠ 𝑢 ∧ 𝑤 ≠ 𝑢}) is connected. □ 
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The importance of this class of problems is assessed by the fact that they are 

almost always solvable. Moreover, spatial environments in real tasks are often 

abstracted as two dimensional grids which are bi-connected in most cases. 

If the bi-connected graph contains at least two unoccupied vertices and it is not 

a cycle, then every goal arrangement of pebbles is reachable from every initial 

arrangement [10]. If the graph contains just one unoccupied vertex which can be 

without loss of generality fixed, then any arrangement of pebbles can be regarded 

as a permutation with respect to the initial arrangement. 

A permutation is even if it can be composed of the even number of transposi-

tions; otherwise it is odd. If the goal arrangement represents an even permutation, 

then the problem is always solvable. In case of an odd permutation, the problem is 

solvable if and only if the graph contains a cycle of the odd length [16]. 

An inductive construction of bi-connected graphs by adding handles is a pivotal 

concept in developing solving algorithms. Let 𝐺 =  𝑉, 𝐸  be a graph, a handle 

with respect to 𝐺 is a sequence of vertices 𝐿 = [𝑢, 𝑥1 , 𝑥2 , … , 𝑥𝑙 , 𝑣], where 𝑢, 𝑣 ∈ 𝑉 

and 𝑥𝑖 ∉ 𝑉 for 𝑖 = 1,2, … , 𝑙 (it allowed that 𝑙 = 0). The result of an addition of 

handle 𝐿 to graph 𝐺 is a new graph 𝐺 ′ = (𝑉 ′ , 𝐸′), where 𝑉 ′ = 𝑉 ∪ {𝑥1, 𝑥2 , … , 𝑥𝑙} 

and either 𝐸′ = 𝐸 ∪ {{𝑢, 𝑣}} if 𝑙 = 0 or 𝐸′ = 𝐸 ∪ { 𝑢, 𝑥1 ,  
 𝑥1 , 𝑥2 , … ,  𝑥𝑙−1 , 𝑥𝑙 , {𝑥𝑙 , 𝑣}} if 𝑙 ≥ 1. Every bi-connected graph 𝐺 =  𝑉, 𝐸  can 

be constructed from a cycle by a sequence of handle additions. 

3.1.   The BIBOX-θ Solving Algorithm 

The BIBOX-θ algorithm [11] solves a case of the PMG problem when the graph is 

bi-connected and there is single unoccupied vertex. The algorithm provides a 

good performance for the described class of problems in terms of speed and quali-

ty of generated solutions. This is the main reason why solutions produced by this 

algorithm are studied. 

In the first phase, a handle decomposition is found; that is, a cycle - called ini-

tial cycle - and a sequence of handles is determined. Without loss of generality it 

is required that the unoccupied vertex within the goal arrangement of pebbles is 

located in the initial cycle. The algorithm then proceeds inductively according to 

the handle decomposition from the last handle to the initial cycle with the first 

handle. 

Two properties of bi-connected graphs with at least one unoccupied vertex are 

exploited while pebbles are placed within handles: (a) every vertex can be made 

unoccupied (this is even true for a connected graph), (b) every pebble can be 

moved to an arbitrary vertex. A handle is processed in the following way. An 

orientation of the handle is chosen first – this orientation determines ordering of 
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vertices within the handle. The first and the last vertex of the handle are the con-

nection points to the remainder graph. 

Then pebbles starting with the pebble whose goal position is in the second ver-

tex of the handle are placed into the handle in the stack manner. The current peb-

ble is moved to the last vertex of the handle. 

Two cases are distinguished here. If the pebble is already somewhere in the 

handle it must be moved outside first. If the current pebble is outside the handle, 

then it can be moved into the last vertex of the handle using property (b). 

After placing the pebble into the last vertex of the handle, the handle is rotated 

once in the direction to the first vertex. When all the pebbles within the handle are 

processed the task is to solve the problem of the same type on a smaller graph. 

Nevertheless, the stack manner of placing pebbles cannot be applied for the ini-

tial cycle and the first handle of the decomposition. The algorithm uses a database 

containing pre-calculated optimal solutions for transpositions and rotation of peb-

bles along 3-cycles in graphs consisting of a cycle and a handle. A solution to any 

solvable instance on the initial cycle with the first handle is then composed of 

solutions from such a database.  

3.2.   A Case with More Unoccupied Vertices 

If there are exactly two unoccupied vertices in the graph an alternative more effi-

cient placing of pebbles in the initial cycle and the first handle can be used [10]. If 

there are more than two unoccupied vertices in the graph the approach proposed 

in [11] is to fill all the remaining unoccupied vertices except two with extra peb-

bles. The instance is then solved by the BIBOX-θ algorithm and the solution is 

post-processed by removing movements of extra pebbles out of the solution. 

This approach is however suspected of generating unnecessary movements for 

original pebbles. Notice that original pebbles have to make quite complicated 

movements when an extra pebble is being placed into a handle. All these move-

ments of the original pebbles are redundant in fact since movements of the extra 

pebble will be eventually filtered out. 

4.   Elimination of Redundancies 

Several types of redundancies were discovered using the GraphRec software. A 

formal description of these redundancies and algorithms for their elimination are 

provided in the following sections. When reasoning about redundancies, it is con-

venient to assume solutions to be sequential; that is, a solution has just one 

movement between consecutive time steps. Fortunately, the BIBOX-θ algorithm 
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can produce solutions in this form. A solution of this form can be viewed as a 

sequence of moves. 

The notation 𝑘𝑖 : 𝑢𝑖 → 𝑣𝑖  will denote a move of a pebble 𝑘𝑖  from a vertex 𝑢𝑖  to 

a vertex 𝑣𝑖  commenced at time step 𝑖. The move is called non-trivial if 𝑢𝑖 ≠ 𝑣𝑖 . 

From the formal point of view, the sequential solution is a sequence of non-trivial 

moves Φ =  𝑘𝑖 : 𝑢𝑖 → 𝑣𝑖|𝑖 = 1,2, … , 𝜉 − 1  (consistency with Definition 1 is also 

assumed). 

 

Definition 3 (inverse moves). Two consecutive moves 𝑘𝑖 : 𝑢𝑖 → 𝑣𝑖  and 

𝑘𝑖+1: 𝑢𝑖+1 → 𝑣𝑖+1 with 𝑖 ∈ {1,2, … , 𝜉 − 2} are called inverse if 𝑘𝑖 = 𝑘𝑖+1, 

𝑢𝑖 = 𝑣𝑖+1, and 𝑣𝑖 = 𝑢𝑖+1. □ 

 

Observe that a pair of inverse moves can be left out of the solution without af-

fecting its validity – resulting sequence still solves the problem. However, elimi-

nation of an inverse pair may cause that another pair of inverse moves arises. 

Hence, it is necessary to remove inverse moves from the solution repeatedly until 

there are any. 

 
Algorithm 1. Elimination of inverse moves. 

function Erase-Inverse-Moves (Φ): sequence 

1: do 

2:  𝜂 ← ∅ 

3:  let  𝑘1: 𝑢1 → 𝑣1 , 𝑘2: 𝑢2 → 𝑣2 , … , 𝑘𝜉−1: 𝑢𝜉−1 → 𝑣𝜉−1 = Φ 

4:  for 𝑖 = 1,2, … , 𝜉 − 1 do 

5:   if 𝑘𝑖 : 𝑢𝑖 → 𝑣𝑖  and 𝑘𝑖+1: 𝑢𝑖+1 → 𝑣𝑖+1 are inverse then 

6:    𝜂 ← 𝜂 ∪ {𝑘𝑖 : 𝑢𝑖 → 𝑣𝑖 , 𝑘𝑖+1: 𝑢𝑖+1 → 𝑣𝑖+1} 

7:  Φ ← Φ − 𝜂 

8: while 𝜂 ≠ ∅ 

9: return Φ 
 

 

The process of elimination inverse moves is expressed as Algorithm 1. The 

worst case time complexity of the algorithm is 𝑂  Φ 2 , the space complexity is 

𝑂  Φ  . 

Definition 4 (redundant moves). A sequence of moves [𝑘𝑖𝑗 : 𝑢𝑖𝑗 → 𝑣𝑖𝑗 |𝑗 =

1,2, … , 𝑙], where 𝐼 = [𝑖𝑗 ∈  1,2, … , 𝜉 − 2 |𝑗 = 1,2, … , 𝑙] is a an increasing se-

quence of indices, is called redundant if |{𝑘𝑖𝑗
 𝑗 = 1,2, … , 𝑙 | = 1, 𝑢𝑖1

= 𝑣𝑖𝑙 , and 

for each move 𝑘𝜄 : 𝑢𝜄 → 𝑣𝜄  with 𝑖1 < 𝜄 < 𝑖𝑙 ∧ 𝜄 ∉ 𝐼 it holds that 𝑘𝜄 ≠ 𝑘𝑖1
⇒ 𝑢𝑖1

∉

{𝑢𝜄 , 𝑣𝜄}. □ 

Redundant moves represents generalization of inverse moves (a pair of inverse 

moves form a redundant sequence). It is a sequence of moves, which relocates a 
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pebble into some vertex for the second time while the other pebbles do not enter 

this vertex at any time step between the beginning and the end of the sequence. 

Eliminating a redundant sequence of moves preserves validity of the solution. 

Again, it is necessary to remove redundant sequences repeatedly since its re-

moval may cause that another redundant sequence arises. 

Algorithm 2 formalizes the process of removing redundant moves in the pseu-

do-code. The worst case time complexity is 𝑂  Φ 4 , the space complexity is 

𝑂  Φ  . 

 

Definition 5 (long sequence). Let 𝑆𝑃
𝑡  be a set of vertices occupied by pebbles at 

time step 𝑡. A sequence of moves [𝑘𝑖𝑗 : 𝑢𝑖𝑗 → 𝑣𝑖𝑗 |𝑗 = 1,2, … , 𝑙], where 𝐼 = [𝑖𝑗 ∈

 1,2, … , 𝜉 − 2 |𝑗 = 1,2, … , 𝑙] is an increasing sequence of indices, is called long if 

|{𝑘𝑖𝑗
 𝑗 = 1,2, … , 𝑙 | = 1 and there exists a path 𝐶 = [𝑐1 = 𝑢𝑖1

, 𝑐2 , … , 𝑐𝑛 = 𝑣𝑖𝑙 ] in 

𝐺 such that 𝑛 < 𝑙, 𝐶 ∩ 𝑆𝑃
𝑖1 = ∅, and for all the moves 𝑘𝜄 : 𝑢𝜄 → 𝑣𝜄  with 𝑖1 <

𝜄 < 𝑖𝑙 ∧ 𝜄 ∉ 𝐼 it holds that 𝑘𝜄 ≠ 𝑘𝑖1
⇒  𝑢𝜄 , 𝑣𝜄 ∩ 𝐶 = ∅. □ 

 

Algorithm 2. Elimination of redundant moves. 

function Erase-Redundant-Moves (Φ): sequence 

1: do 

2:  𝜂 ←Find-Redundant-Moves(Φ) 

3:  Φ ← Φ − 𝜂 

4: while 𝜂 ≠ ∅ 

5: return Φ 

 

function Find-Redundant-Moves (Φ): sequence 

6: let  𝑘1: 𝑢1 → 𝑣1 , … , 𝑘𝜉−1: 𝑢𝜉−1 → 𝑣𝜉−1 = Φ 

7: for 𝑖 = 1,2, … , 𝜉 − 2 do {beginning of redundant sequence} 

8: for 𝑗 = 𝜉 − 1, 𝜉 − 2, … , 𝑖 + 1 do 

{end of redundant sequence} 

9:   if 𝑘𝑖 = 𝑘𝑗 ∧ 𝑢𝑖 = 𝑣𝑗  then 

10:    𝜂 ← ∅ {redundant sequence} 

11:    for 𝜏 = 𝑖, 𝑖 + 1, … , 𝑗 do 

12:     if  𝑘𝑖 = 𝑘𝜏  then 𝜂 ← 𝜂 ∪ {𝑘𝜏 : 𝑢𝜏 → 𝑣𝜏} 

13:    if Check-Redundant-Moves(Φ, 𝑖, 𝑗) then return 𝜂 

14: return ∅ 
 

function Check-Redundant-Moves (Φ, 𝑖, 𝑗): boolean 

15: let  𝑘1: 𝑢1 → 𝑣1 , … , 𝑘𝜉−1: 𝑢𝜉−1 → 𝑣𝜉−1 = Φ 

16: for 𝜄 = 𝑖 + 1, 𝑖 + 2, … , 𝑗 − 1 do 

17:  if 𝑘𝜄 ≠ 𝑘𝑖 ∧ 𝑢𝑖 ∈ {𝑢𝜄 , 𝑣𝜄} then return 𝐹𝑎𝑙𝑠𝑒  

18: return 𝑇𝑟𝑢𝑒 
 

 

The concept of long sequence is a generalization of redundant sequence (the 

path 𝐶 is empty in the case of redundant sequence). Intuitively, the long sequence 

can be replaced by a sequence of moves along a shorter path (cutoff path) into 
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which other pebbles do not enter between the beginning and the end of the se-

quence. Replacing a long sequence of moves by a sequence of moves along the 

path 𝐶 again preserves validity of the solution. Again, the replacement of long 

sequences must be performed repeatedly since new long sequences may arise. 

The process of replacement is formally expressed as Algorithm 3. The worst 

case time complexity is 𝑂  Φ 4 +  Φ 3 𝑉 2 ; the space complexity is 𝑂  Φ +
 𝑉 +  𝐸  . 

Redundant moves and long sequences were described manually using the 

GraphRec software. Without the visualization software we would be unable to 

discover them. 

 

Algorithm 3. Replacement of long sequences. 

function Replace-Long-Moves (Φ, 𝐺): sequence 

1: do 

2:  (𝜂, 𝜋) ←FindLongMoves(Φ, 𝐺) 

3:  Φ ← Φ − 𝜂; Φ ← Φ ∪ 𝜋 

4: while  𝜂, 𝜋 ≠ (∅, []) 

5: return Φ 

 

function Find-Long-Moves (Φ, 𝐺): pair 

6: let  𝑘1: 𝑢1 → 𝑣1 , … , 𝑘𝜉−1: 𝑢𝜉−1 → 𝑣𝜉−1 = Φ 

7: for 𝑖 = 1,2, … , 𝜉 − 2 do 

8:  for 𝑗 = 𝜉 − 1, 𝜉 − 2, … , 𝑖 + 1 do 

9:   if 𝑘𝑖 = 𝑘𝑗  then 

10:    𝜂 ← ∅ 

11:    for 𝜏 = 𝑖, 𝑖 + 1, … , 𝑗 do 

12:     if  𝑘𝑖 = 𝑘𝜏  then 𝜂 ← 𝜂 ∪ {𝑘𝜏 : 𝑢𝜏 → 𝑣𝜏} 

13:    𝐶 ←Check-Long-Moves Φ, 𝑖, 𝑗,  𝜂 , 𝐺  

14:    if 𝐶 ≠ [] then 

15:     let  𝑐1 , 𝑐2 , … , 𝑐𝑛  = 𝐶 

16:     𝜋 ←  𝑘𝑖 : 𝑐1 → 𝑐2, … , 𝑘𝑖 : 𝑐𝑛−1 → 𝑐𝑛   
17:      return (𝜂, 𝜋) 

18: return (∅, []) 

 

function Check-Long-Moves (Φ, 𝑖, 𝑗, 𝑙, 𝐺 = (𝑉, 𝐸)): sequence 

19: let  𝑘1: 𝑢1 → 𝑣1 , … , 𝑘𝜉−1: 𝑢𝜉−1 → 𝑣𝜉−1 = Φ 

20: (𝑉′ , 𝐸′) ← 𝐺; 𝑉′ ← 𝑉′ − 𝑆𝑃
𝑖 ; 𝐸′ ← 𝐸′ ∩ {{𝑢, 𝑣}|𝑢, 𝑣 ∈ 𝑉′} 

21: for 𝜄 = 𝑖 + 1, 𝑖 + 2, … , 𝑗 − 1 do 

22:  if 𝑘𝜄 ≠ 𝑘𝑖  then 

23:   𝑉′ ← 𝑉′ − {𝑢𝜄 , 𝑣𝜄}; 𝐸′ ← 𝐸′ ∩ {{𝑢, 𝑣}|𝑢, 𝑣 ∈ 𝑉′} 

24: let 𝐶 be a shortest path between 𝑢𝑖  and 𝑣𝑗  in 𝐺′ = (𝑉′ , 𝐸′) 

25: if 𝐶 is defined and  𝐶 < 𝑙 then return 𝐶 

26: return [] 
 

 

Notice also that the gradual generalization was adopted in the description of re-

dundancies. Although long sequences subsume both less general redundancies, it 
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is not advisable to apply their replacement directly. It is better to apply elimina-

tion of redundancies stepwise from the less general one to more general ones. The 

reason for this practice is the increasing time complexity of redundancy elimina-

tion algorithms. A sequence of moves submitted to the more complex algorithm is 

potentially shortened by eliminating less general redundancies by following this 

practice. 

5.   Experimental Evaluation 

An experimental evaluation was made with above three suggested methods for 

redundancy elimination. 

  

 

 

 

Fig. 2. Sequential length distribution on random bi-connected graphs. A collection of 10 graphs 

consisting of 90 vertices with length of handles ranging uniformly between 2 and 8 were generated 

for each number of unoccupied vertices. Minimum, maximum, average, first quartile, and third 

quartile out of sequential solution lengths of random instances over graphs from the collection are 

shown. The above characteristics of the solution length distribution are shown for original solutions 

as well as for solutions after removal of redundancies by the selected technique. The average im-

provement of solution is shown too in the same chart. It is possible to observe that solution lengths 

are distributed in a relatively narrow zone around the average length (approximately ±10% of the 

average length). The zone tends to narrow yet more for more sophisticated redundancy elimination.  
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 Algorithms 1, 2, and 3 were implemented in C++ and were tested on a set of 

benchmark instances of PMG. Solutions found by the BIBOX-θ [11] algorithm on 

these benchmark instances were submitted to redundancy elimination methods. 

Several characteristics of redundancy elimination were evaluated: the reduction 

of the total number of moves within solutions, parallel makespan, average paral-

lelism, and runtime were measured. The implementation of redundancy elimina-

tion algorithms almost exactly follows the pseudo-code given in the previous 

section. 

 
 

 

 

 
 
 

Fig. 3. Solution length improvement on random bi-connected graph and 88 grid. The total number 

of moves of the original solution and improvement ratio after applying redundancy elimination 

techniques are shown. As the number of unoccupied vertices grows the better improvements can be 

achieved. Up to 5 times smaller solutions can be obtained. 
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It was always the case that solution was processed by the less general redun-

dancy elimination before it was submitted to more general and more sophisticated 

one. This measure ensures that the more time consuming algorithms obtains al-

ready processed solution for which there is a chance to be significantly shorter. 

The complete source code to allow reproducibility of all the experiments pre-

sented in this paper and raw experimental data are provided at the website: 

http://ktiml.mff.cuni.cz/~surynek/research/j-redundancy-2012. 

Two structurally different sets of instances of the problem of PMG were tested. 

The first set of problems consists of randomly generated bi-connected graphs with 

approximately 90 vertices. The initial and the goal arrangement of pebbles were 

generated as a random permutation. The construction of the random bi-connected 

graphs exploits the construction that starts with a cycle followed by a gradual 

addition of handles to the currently constructed graph. Specifically, graphs were 

constructed by adding handles of random length (uniform distribution from inter-

val 2. .8) to the initial cycle of length 7. Tests were done with a collection of 10 

different random bi-connected graphs of the above setup. 

The second set of testing instances consists of a grid of the size 8 × 8 where the 

initial and the goal arrangement of pebbles were again random permutations.  

The series of results presented in Fig. 2 are devoted to an evaluation of the dis-

tribution of the total number of moves within the solution on random bi-connected 

graphs. All the three redundancy elimination methods were evaluated in this test. 

The solution length is shown in the dependence on the number of unoccupied 

vertices which ranged from 4 to 89. The following characteristics calculated out 

of solution lengths for instances over the mentioned collection of 10 graphs are 

shown for each number of unoccupied vertices: maximum, minimum, first quar-

tile, third quartile, and average length. 

It can be observed from results in Fig. 2 that the sequential solution lengths 

tend to be close to the average solution length; more precisely they are in the zone 

of approximately ±10% around the average length from which it can be con-

cluded that the original BIBOX-θ and redundancy elimination techniques have a 

stable behavior. 

To keep the results readable the remaining results are presented for a single bi-

connected graph only – one of those 10 randomly generated bi-connected graphs 

was chosen. 

The reduction of the total number of moves within the solution depending on 

the increasing number of unoccupied vertices is shown in Fig. 3. It can be ob-

served from Fig. 3 together with Fig. 2 that up to 5 times smaller solution can be 

obtained by applying redundancy elimination. The most expensive elimination of 

http://ktiml.mff.cuni.cz/~surynek/research/j-redundancy-2012
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long sequences is beneficial when there is approximately 70% and more unoccu-

pied vertices. 

 

 
 

 
 

 
 

 

Fig. 4. Parallel makespan improvement. Redundancy elimination has even better effect on the 

makespan than on the size of the solution. Removal of redundancies allows more efficient increas-

ing of the parallelism. Up to 10 times shorter solutions can be obtained on bi-connected graphs. 

 

Results regarding the effect of redundancy elimination on parallel makespan are 

shown in Fig. 4. These results correlate well with the total number of moves while 

the improvement is slightly better for the makespan. 

This observation is further quantified in Fig. 5. where the dependence of the 

average parallelism (which is defined as the total number of moves divided by the 

makespan) on the number of unoccupied vertices is shown. It can be observed that 

0

100

200

300

400

500

600

1

1,2

1,4

1,6

1,8

2

2 6 10 14 18 22 26 30 34 38 42

M
ak

es
p

an

Parallel Makespan | random bi-connected

Inverse Redundant

Long Original

0

50

100

150

200

250

300

1

10

44 48 52 56 60 64 68 72 76 80 84 88

M
ak

es
p

an

Parallel Makespan | random bi-connected

Inverse
Redundant
Long
Original

0

50

100

150

200

250

300

350

1

10

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

M
ak

es
p

an

Parallel Makespan | grid 8x8

Inverse

Redundant

Long

Original

Number of unoccupied vertices 

Number of unoccupied 
vertices 

Number of unoccupied 

vertices 



Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems  152 
 

redundancy elimination typically leads to a slight increase in the average paral-

lelism. 

Results regarding runtime on a testing machine are summarized in Fig. 6. Ex-

pectably, the runtime consumed to eliminate long sequences is highest while it is 

still reasonable for an offline post-processing. Eliminating inverse moves and 

redundant sequences is relatively cheap so they can be used as an on-line post-

processing tool. 

 

 

 
 

 
 
 

Fig. 5. Average parallelism (average number of mover per time step). The redundancy elimination 

leads to increasing of the parallelism most significantly when there is 50% to 90% of unoccupied 

vertices in the graph. 

 

The last part of the results presented in Fig. 7 is devoted to an investigation of 

step parallelism – that is, the number of moves performed simultaneously at the 

individual time steps. A single random bi-connected graph used in previous tests 

is presented here as well. There were 60 vertices out of 90 unoccupied. Although 

it is difficult to make any analysis of such results, one aspect is quite apparent 

from presented results – it can be observed that the qualitatively most significant 

change occurs when the elimination of redundant moves is used (this observation 

has been done also on other graphs and setups which are not presented here). On 
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of moves from the solution which is already free of redundant moves is relatively 

little. 

 

 
 

 
 

 
 

 

Fig. 6. Runtime necessary for eliminating redundancies. Eliminating long sequences is computa-

tionally the most costly (test were run on an Pentium 4, 2.4GHz, 512MB RAM, under Mandriva 

Linux 10.1, 32-bit edition). 

 

It is possible to conclude that the solution can be improved by up to the order of 

magnitude in the measured characteristics for both types of tested graphs.  

Removal of redundant sequences represents the best trade-off between detec-

tion cost and solution improvement according to performed experiments. Whereas 

eliminating inverse moves or long sequences feature extreme situations; the for-

mer brings almost no improvement; the latter seems to be computationally too 

costly for an on-line post-processing. 
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An expectable result is that the better improvement of solutions is gained when 

there are more unoccupied vertices in the input graph. Notice that definitions of 

redundancies are based on the mutual non-interfering of motions of pebbles. The 

more unoccupied space is available in the graph the less interference between 

moves of pebbles is possible. 

 

 

 

Fig. 7. Step parallelism on random bi-connected graph. The graph consists of 90 vertices and 60 of 

them are unoccupied. The length of handles was uniformly generated from the range 2. .10 - the 

same setup as in other experiments. Number of moves in the individual time steps is shown. 

6.   SAT Based Solution Improvements: An Overview 

Our novel solution optimization technique called COBOPT employs SAT solving 

technology [1] to optimize the solution with respect to the makespan. The tech-

nique has been suggested in [12]. To be able to use SAT solvers in this way we 

need to obtain some (sub-optimal) solution to the PMG instance first. Let this 

initial solution be called a base solution. In this regard we used the same original 

solution as the base solution as in the case of redundancy elimination methods. 

 The crucial building block for using SAT solving technology is an encoding of 

motion coordination instance as an instance of propositional satisfiability. That is, 

we need to build a propositional formula such that it is satisfiable if and only if a 

solution of a certain makespan to the given motion coordination instance exists. 

Suppose that we are given makespan 𝜉. We model the arrangements of pebbles at 
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every time step 1,2, … , 𝜉 where the arrangement at time step 1 is equal to the ini-

tial state and the arrangement at time step 𝜉 is equal to the goal state. The individ-

ual arrangement consists of vectors of propositional variables for each vertex of 𝐺 

such that it tells us what pebble is located in the given vertex. Constraints to en-

force valid transitions between consecutive time steps are also added. This encod-

ing will be referred to as an inverse encoding in experiments. 

 Having such a propositional formula we are able to solve the given solvable 

PMG problem optimally with respect to the makespan. This is done by asking if a 

solution of some makespan 𝜉 exists, where 𝜉 is selected according to some search 

strategy. This asking strategy may be based for example on binary search – ac-

tually this is a strategy we use. 

Notice that it is not possible to check that there is no solution to the PMG in-

stance using this technique. However, as we use the technique to replace sub-

optimal sub-solutions in the already constructed base solution we always know 

that the instance is solvable. 

  

Algorithm 4. COBOPT: SAT-based PMG solution optimization – basic scheme based on 

binary search.  
 

function COBOPT-Optimize-Motion-Coordination-Plan (G, 𝑠 , 𝑘+): solution 

1:  𝑠 + ← 𝑠  
2: do 

3:  𝑠 − ← 𝑠 + 

4:  let 𝑠 − =  𝑆𝑃
1 , … , 𝑆𝑃

𝑚   
5:   𝑡 ← 0; 𝑠 + ← [] 
6:  while 𝑡 < 𝑚 do 

7:   𝑡+ ← Find-Last-Reachable-Arrangement(G, 𝑆𝑃
𝑡 , 𝑠 −, 𝑘+) 

8:   𝑠 + ← 𝑠 +.Compute-Optimal-Solution(G, 𝑆𝑃
𝑡 , 𝑆𝑃

𝑡+) 

9:   𝑡 ← 𝑡+ 

10: while |𝑠 −| > |𝑠 +| 
11: return 𝑠 + 

 

function Find-Last-Reachable-Arrangement (G, 𝑆𝑃
𝑡 , 𝑠 , 𝑘+): integer 

12: let 𝑠 = [𝑆𝑃
1 , … , 𝑆𝑃

𝑚 ] 
13: 𝑙 ← 𝑡; 𝑢 ← 𝑚 + 1  

14: while 𝑢 − 𝑙 > 1 do 

15: 𝑟 ← (𝑢 + 𝑙)/2 

16:  𝑘 ← min(𝑚 − 𝑡, 𝑘+) 

17:  Ξ ←Encode(𝐺, 𝑆𝑃
𝑡 , 𝑆𝑃

𝑟 , 𝑘) 

18:  if Solve-SAT (Ξ) then 𝑙 ← 𝑟 

19:  else 𝑢 ← 𝑟 

20: return 𝑙 
 

  

After producing a base solution, this is submitted to a SAT based optimization 

process. A maximum bound 𝑘+ for encoding coordination instances is specified. 
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Then sub-sequences in the base solution are replaced with computed optimal sub-

solution. Suppose that we are currently optimizing at time step 𝑡. It is computed 

what is the largest 𝑡+ > 𝑡 such that the time step 𝑡+ can be reached from the time 

step 𝑡 with no more than 𝑘+ steps. Then sub-solution of the base solution from the 

time step 𝑡 to  𝑡+ is replaced by the optimal one obtained from the SAT solver. 

The process then continues with optimization at time step 𝑡+ until the whole base 

solution is processed.  

 

  
 

Fig. 8. Makespan comparison on the 88 grid. Optimal solutions for up to 22 and 30 agents can be 

found by SAT based optimization. Only up to 16 agents can be solved sub-optimally by WHCA*. 

The timeout for SAT based optimization was 3600 seconds. 

 

  
 

Fig. 9. Makespan comparison on the 1616 grid. Optimal solutions for up to 40 agents can be found 

by SAT-based optimization; in the same range WHCA* can find near optimal solution as well. The 

timeout for SAT based optimization was 3600 seconds. 

 

The optimization process can be iterated by taking new solution as the base 

one until a fixed point is reached. The binary search is employed to find 𝑡+ and 

the optimal sub-solution in order to reduce the number of SAT solver invocations 

– see Algorithm 4.  which summarizes basic COBOPT optimization method for-

mally.  

 Notice that separation points in the base solution are selected on the greedy 

basis – optimization always continues on the first not yet processed time step. We 
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also considered optimizing placement of separation point by dynamic program-

ming techniques. This approach generates slightly better base solution decomposi-

tion. However it is at the great expense in overall runtime as many more invoca-

tion of the SAT solver are necessary. 

In the experimental evaluation with SAT based optimization of solutions we al-

so made comparison with the WHCA* algorithm [9] that is known to generate 

solutions that have makespan near to the optimum. WHCA* is however not able 

to tackle instances with environments densely occupied by agents. 

Results showing comparison of the SAT-based optimization with respect to the 

base solution as well as with respect to WHCA* on 4-connected grids are shown 

in Fig. 8 and Fig. 9. The time limit for optimization was set to 3600 seconds. The 

process either found an optimal solution or the time limit was reached. It can be 

observed that SAT based optimization generates better solutions than WHCA*. 

Optimal solutions were obtained in cases with few agents. 

If we compare SAT-based optimization with redundancy elimination methods it 

can be stated that SAT-based optimization is more general. It is able to discover a 

redundancy of a priori unknown type. On the other SAT based optimization is 

more time consuming which makes it suitable for off-line solving of the problem 

only while redundancy eliminations can be used on-line. Lot of improvements in 

the makespan when SAT based optimization is used comes from increasing paral-

lelism – more moves are performed per single time step. It may happen that even 

though makespan of the solution has been improved the number of moves within 

the solution may increase. 

7.   Summary, Conclusions, and Future Work 

This work addressed the quality (makespan) of solutions of problems motion 

coordination. Particularly, solutions generated by the existing algorithm BIBOX-θ 

for the given class of the problem were analyzed with respect to the presence of 

certain type of redundancies. Our hypothesis was that there exist certain types 

redundancies in generated solutions while we were not aware how do they look 

like. 

A special visualization tool GraphRec was used for analyzing solutions pro-

duced by the BIBOX-θ algorithm. This tool allowed automating two tasks that 

cannot be made manually – proper drawing of a graph which a given instance 

consists of and visualizing moves of entities over this graph. The tool eventually 

confirmed that redundancies really exist and it was possible to propose their for-

mal description. 
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Several types of redundancies were defined and methods for their elimination 

were proposed. To justify quality of our proposal an extensive experimental eval-

uation of proposed methods was performed on the number of different problem 

setups. It eventually confirmed that solutions can be improved by up to the order 

of magnitude using the suggested methods. The secondary finding is that the bet-

ter improvement can be gained for problems with higher number of unoccupied 

vertices. 

As a next step in solution improvements we suggest to employ SAT solving 

technology. A propositional formula satisfiable if and only if a given instance of 

motion coordination problem is solvable within the given makespan is con-

structed. Such a formula allows asking what is the makespan optimal replacement 

for a given sub-solution of an existing solution. The solution improvement 

process then repeatedly replaces sub-solutions by optimal ones until time limit is 

reached or the makespan optimal solution is found. 

The SAT based technique generates high quality solutions with respect to the 

makespan however it is very time consuming. Thus it is more suitable for off-line 

improvements of solutions. On the other hand redundancy elimination methods 

are fast enough and can be used on-line. 
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Abstract. A new type of partially global consistency derived from (2, 𝑘)-

consistency called bounded (2, 𝑘)-consistency (B2C-consistency) is presented in 

this paper. It is designed for application in propositional satisfiability (SAT) as a 

building block for a preprocessing tool. Together with the new B2C-consistency a 

special mechanism for selecting regions of the input SAT instance with difficult 

constraint setup was also proposed. This mechanism is used to select suitable dif-

ficult sub-problems whose simplification through consistency can lead to a signif-

icant reduction in the effort needed to solve the instance. A new prototype pre-

processing tool preprocessSIGMA which is based on the proposed techniques 

was implemented. As a proof of new concepts a competitive experimental evalua-

tion on a set of relatively difficult SAT instances was conducted. It showed that 

our prototype preprocessor is competitive with respect to the existent preprocess-

ing tools LiVer, NiVer, HyPre, blocked clause elimination (BCE), and Shat-

ter with saucy 3.0. 

Keywords: SAT; CSP; SAT preprocessing; local consistency; global consistency; 

(2, 𝑘)-consistency; probability; difficult instances; hyper-resolution; blocked 

clause elimination; symmetry 
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1.   Introduction and Motivation 

Recent works dealing with difficult instances of propositional satisfiability (SAT) 

[1, 2, 8, 10, 26] indicate that an intelligent preprocessing focused on the structure 

of an instance can dramatically reduce the effort needed to solve it. Technically, 

the preprocessing task is done by transforming the input instance into another one 

(hopefully simpler), which is subsequently submitted to a general purpose SAT 

solver [8, 13]. It is crucial that the preprocessing step is fast enough relative to the 

runtime of the SAT solver on the preprocessed instance. 

In this work, we further develop ideas from [26] where the input propositional 

formula is interpreted as a graph, in which graph structures – namely complete 

sub-graphs – are identified and, after some calculation involving the number and 

the size of complete sub-graphs, an inference is made. The drawback of the origi-

nal idea from [26] is that it requires the input instance to be relatively well struc-

tured to be able to identify acceptable complete sub-graph decomposition. In this 

paper, we overcome this major drawback using two new techniques. First, a new 

type of consistency derived from (2,𝑘)-consistency [11] called bounded 

(2,𝑘)-consistency with complete graphs (B2C-consistency) is proposed. It uses 

graph interpretation of a sub-problem on which reasoning over its decomposition 

into complete sub-graphs is performed and can therefore be regarded as a partially 

global reasoning mechanism. Second, a new mechanism for selecting a sub-

problem suitable for applying the consistency is proposed. In order to maximize 

the benefit of inferences made through consistency, we proposed to apply it on 

regions of the input instance with a locally difficult constraint setup. It means that 

we are trying to choose such a sub-problem for applying the consistency that, in 

itself, is difficult in a certain sense (focusing on the difficulty proved to be benefi-

cial in [26] but the previous technique required the whole instance to exhibit a 

difficult constraint setup). We were primarily inspired by the difficulty of well 

known problems such as the pigeon/hole principle (P/H principle) or FPGA 

routing [1, 2] and we are trying to select regions of the instance which, in terms of 

certain properties, are similar to these difficult instances. To do this, a characteris-

tic called the expected number of satisfied tuples of values is used so that regions 

that have this characteristic similar to difficult instances are used as sub-problems 

on which B2C-consistency is applied. In this way, we are able to discover sub-

problems with a hidden difficulty and simplify them with the proposed consisten-

cy reasoning, which provides a faster solution of the output instance. 

As a validation of the proposed concepts a prototype SAT preprocessing tool 

preprocessSIGMA [27] based on B2C-consistency and a new sub-problem 

selection technique have been implemented. The performed experimental evalua-
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tion showed that our prototype preprocessing tool is competitive with respect to 

existent prominent preprocessing tools such as LiVer [25], NiVer [25], HyPre 

[5], blocked clause elimination [16, 20] (precosat-465), and Shatter with 

saucy 3.0 [2, 21] which is so far the latest version. 

This work has been iteratively developed and preceding work related to the 

presented one appeared in [26]. The organization of the paper is as follows: basic 

concepts from constraint programming [11] and SAT are introduced in Section 2. 

The concept of B2C-consistency is subsequently developed (Section 3). The fol-

lowing section (Section 4) deals with the question of how to build a preprocessing 

tool exploiting B2C-consistency. Finally (Section 5), an extensive experimental 

evaluation focused on the competitiveness and the investigation of internal prop-

erties of the implemented preprocessor is presented. 

2.    Background from Constraint Programming and 
 Propositional Satisfiability 

Let us start with the basic notation and definitions used in the rest of the paper. 

This section represents the basic background from constraint programming [11] 

and propositional satisfiability [8], which the new concepts rely on. 

Tuples and lists (that is, sequences) consisting of some objects will be denoted 

using brackets (for example [𝑥,𝑦] denotes an ordered pair consisting of two ob-

jects 𝑥 and 𝑦; [] denotes the empty list). 

 

Definition 1 (Constraint Satisfaction Problem) [11]. A constraint satisfaction 

problem (CSP) over a given finite universe 𝔻 is a triple (𝑋,𝐷,𝐶) where 𝑋 is a 

finite set of variables, 𝐶 is a finite set of constraints, and 𝐷:𝑋 ⟶ 2𝔻 is a function 

assigning each variable a finite domain. A constraint 𝑐 ∈ 𝐶 is a construct of the 

form  [𝑥1
𝑐 , 𝑥2

𝑐 ,… , 𝑥𝑎𝑐
𝑐 ],𝑅𝑐  where 𝑎𝑐 ∈ ℕ is the arity of constraint 

𝑐, [𝑥1
𝑐 , 𝑥2

𝑐 ,… , 𝑥𝑎𝑐
𝑐 ] with 𝑥𝑖

𝑐 ∈ 𝑋 for 𝑖 = 1,2,… ,𝑎𝑐  is called a scope of 𝑐, and 

𝑅𝑐 ⊆ 𝐷 𝑥1
𝑐 × 𝐷 𝑥2

𝑐 × …× 𝐷(𝑥𝑎𝑐
𝑐 ) is a relation that enumerates a set of tuples of 

values for which constraint 𝑐 is satisfied. □ 

 

For simplicity, it is sometimes assumed that 𝐷 𝑥 =  𝔻 for every 𝑥 ∈ 𝑋. We 

will use this assumption as well in certain cases. Furthermore, it is assumed that 

we can reorder variables in the scope of a constraint arbitrarily using the above 

notation. For example, if there is a constraint 𝑐 =  [𝑥,𝑦],𝑅𝑐  in 𝐶, we can sup-

pose that there is also an equivalent formulation of 𝑐 as a constraint 𝑒 =
 [𝑦, 𝑥],𝑅𝑒  in 𝐶 where relation 𝑅𝑒  can be obtained from 𝑅𝑐  by swapping its com-

ponents. 
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Definition 2 (Solution of CSP) [11]. An assignment 𝑣:𝑋 ⟶ 𝔻 such that 

𝑣(𝑥) ∈ 𝐷(𝑥) for every 𝑥 ∈ 𝑋 is called a solution of a given CSP (𝑋,𝐷,𝐶) if it is 

defined for every variable in 𝑋 and all the constraints in 𝐶 are satisfied by 𝑣. That 

is, it holds that [𝑣(𝑥1
𝑐), 𝑣(𝑥2

𝑐),… , 𝑣(𝑥𝑎𝑐
𝑐 )] ∈ 𝑅𝑐  for every constraint 𝑐 =

 [𝑥1
𝑐 ,𝑥2

𝑐 ,… , 𝑥𝑎𝑐
𝑐 ],𝑅𝑐 ∈ 𝐶. □ 

 

Regarding constraints, we will sometimes use a formulation that some tuple of 

values is allowed/forbidden by a constraint, which means exactly that the tuple 

belongs or does not belong to the defining relation of the constraint. 

Closely related to CSP is the propositional satisfiability problem (SAT) [8, 

10]. It is introduced in the following two definitions. Note that in CSP we are 

trying to find a valuation of variables such that all the constraints are satisfied 

(that is, the conjunction of all the constraints is satisfied). In SAT the task is simi-

lar. We are trying to find a propositional valuation that satisfies all the clauses of 

the input formula (the formula has typically the form of a conjunction of clauses – 

CNF). 

 

Definition 3 (Propositional Formula) [10]. A propositional formula in the con-

junctive normal form (CNF) over a given set of propositional variables Ω is a 

conjunction:  Γ𝑖
𝑛
𝑖=1  where 𝑛 ∈ ℕ0 and each Γ𝑖  with 𝑖 ∈ {1,2,… , 𝑛} is a clause 

that puts into a disjunction literals over variables from Ω. That is, Γ𝑖 =  𝜓𝑘
𝑖𝛼 𝑖

𝑘=1  

for 𝑖 = 1,2,… ,𝑛 where 𝛼𝑖 ∈ ℕ is the size of the clause and either 𝜓𝑘
𝑖 = 𝛽 or 

𝜓𝑘
𝑖 = 𝛽 for some variable 𝛽 ∈ Ω for every 𝑘 = 1,2,… ,𝛼𝑖 . □ 

 

Definition 4 (Propositional Satisfiability Problem) [10]. A valuation of proposi-

tional variables is an assignment 𝜔:Ω⟶ {𝐹𝐴𝐿𝑆𝐸,𝑇𝑅𝑈𝐸}. The given valuation 

of variables 𝜔 can be naturally extended to a valuation of formulae over Ω de-

noted as 𝜔∗. A propositional satisfiability problem (SAT) with a formula Φ over 

Ω is the task of determining whether there exists a valuation 𝜔 of Ω such that 

𝜔∗ Φ = 𝑇𝑅𝑈𝐸. □ 

 

We are about to work with the concept of consistencies [11] in SAT which is, 

however, the concept from constraint programming used over CSPs. Hence, it is 

convenient to define translation of SAT to CSP so that we are able to work with 

consistencies in SAT through this translation. For this purpose, we chose the so-

called literal encoding [6, 27] which provides such a translation in the natural 

way. 
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Definition 5 (Literal Encoding of SAT) [27]. Let Φ =  Γ𝑖
𝑛
𝑖=1  with  𝜓𝑙

𝑖𝛼 𝑖
𝑙=1  for 

𝑖 = 1,2,… ,𝑛 be a propositional formula in CNF over Ω. A literal encoding of Φ 

is a CSP 𝐸0 Φ = (𝑋Φ
0 ,𝐷Φ

0 ,𝐶Φ
0 ) where 𝑋Φ

0 = {Γ 1, Γ 2 ,… , Γ 𝑛}, 𝐷Φ
0  Γ 𝑖 = {𝜓 𝑙

𝑖|𝑙 =

1,2,… ,𝛼𝑖} for every 𝑖 = 1,2,… ,𝑛; and there are constraints between all the pairs 

of variables as follows:  [𝜓 𝑙
𝑖 ,𝜓 𝑡

𝑗
] where 𝜓 𝑙

𝑖 ∈ 𝐷Φ
0  Γ 𝑖  and 𝜓 𝑡

𝑗
∈ 𝐷Φ

0  Γ 𝑗   is forbid-

den by relation 𝑅𝑐  defining constraint 𝑐 =  [Γ 𝑖 , Γ 𝑗 ],𝑅𝑐  with 𝑖, 𝑗 ∈ {1,2,… ,𝑛}, 

𝑙 ∈ {1,2,… ,𝛼𝑖}, and 𝑡 ∈ {1,2,… ,𝛼𝑗 } if there is 𝛽 ∈ Ω such that either 𝛽 = 𝜓𝑙
𝑖  and 

𝛽 = 𝜓𝑡
𝑗
 or 𝛽 = 𝜓𝑙

𝑖  and 𝛽 = 𝜓𝑡
𝑗
. □ 

 

The stripe above the generic symbols is used to distinguish constant symbols 

(with the stripe) which do not evaluate from variables (without the stripe) which 

do evaluate (down to other constants). Note that literal encoding is a binary CSP; 

that is, all the constraints have arity of at most 2. 

For our purposes, literal encoding is further processed to capture constraints 

imposed by the original formula more explicitly (note that there is an incompati-

bility between complementary literals only at this stage). A new incompatibility is 

introduced as a constraint between every two literals 𝜓𝑙
𝑖  and 𝜓𝑡

𝑗
 with 𝑖, 𝑗 ∈

{1,2,… ,𝑛} such that 𝑖 ≠ 𝑗, 𝑙 ∈ {1,2,… ,𝛼𝑖} and 𝑡 ∈ {1,2,… ,𝛼𝑗 } if the singleton 

unit propagation [12, 26] with the  setting 𝜓𝑙
𝑖 = 𝑇𝑅𝑈𝐸 infers that 𝜓𝑡

𝑗
= 𝐹𝐴𝐿𝑆𝐸 

with respect to Φ (that is, it is set that 𝜓𝑙
𝑖 = 𝑇𝑅𝑈𝐸; all the other variables are left 

unassigned and unit propagation follows). Let this modification of literal encod-

ing be called an explicit literal encoding and it will be denoted as 𝐸1 Φ =

(𝑋Φ
1 ,𝐷Φ

1 ,𝐶Φ
1 ) (the upper index implies that the first stage of inference has been 

made). 

We are now ready to define the so-called (2,𝑘)-consistency [11]. It is a gene-

ralization of 𝑘-consistency [24] which checks whether a value is supported by a 

𝑘-tuple of values from the domains of other variables. Within (2,𝑘)-consistency, 

it is checked whether a pair of consistent values has a supporting 𝑘-tuple of val-

ues. If there is no such supporting 𝑘-tuple of values the value or the pair of values 

respectively can be ruled out from further consideration by an additional con-

straint. 

An auxiliary operation of projection denoted as 𝑇|𝐴⟶𝐵  will be used to trans-

form a tuple 𝑇 into another tuple with respect to patterns 𝐴 and 𝐵. Tuple 𝑇 and 

pattern 𝐴 are of the same size and 𝐵 is contained by 𝐴. The result of the projec-

tion is obtained by matching pattern 𝐴 on 𝑇 followed by selecting components of 

𝑇 associated with their counterparts in 𝐴 that correspond to 𝐵 (for 

stance,  1,2,3 |𝑎 ,𝑏 ,𝑐→𝑐 ,𝑏 = [3,2]). 

 



Preprocessing in Propositional Satisfiability Using Bounded (2,k)-Consistency  165 

 

Definition 6 ((𝟐,𝒌)-Consistency) [11]. Let 𝑘 ∈ ℕ be a natural number,  𝑋,𝐷,𝐶  

be a CSP, and 𝑥0 , 𝑥1 ,… , 𝑥𝑘 ,𝑥𝑘+1 ∈ 𝑋 be a (𝑘 + 2)-tuple of distinct variables. A 

pair of values 𝑑0 ∈ 𝐷(𝑥0) and 𝑑𝑘+1 ∈ 𝐷(𝑥𝑘+1) with  𝑑0 ,𝑑𝑘+1 ∈ 𝑅𝑐  for every 

binary constraint 𝑐 =   𝑥0 ,𝑥𝑘+1 ,𝑅
𝑐  in 𝐶 is called to be (2, 𝑘)-consistent with 

respect to 𝑘-list of variables 𝑥1 ,𝑥2 ,… , 𝑥𝑘  if there exists a 𝑘-tuple of values 

𝑑1 ∈ 𝐷(𝑥1), 𝑑2 ∈ 𝐷(𝑥2),…, 𝑑𝑘 ∈ 𝐷(𝑥𝑘) such that for every constraint 𝑒 =
  𝑧1

𝑒 , 𝑧2
𝑒 ,… , 𝑧𝑎𝑒

𝑒  ,𝑅𝑒  in 𝐶 with {𝑧1
𝑒 , 𝑧2

𝑒 ,…, 𝑧𝑎𝑒
𝑒 } ⊆ {𝑥0, 𝑥1 ,… , 𝑥𝑘+1} it holds that 

 𝑑0 ,𝑑1 ,… ,𝑑𝑘+1 |𝑥0 ,𝑥1 ,…,𝑥𝑘+1⟶𝑧1
𝑒 ,𝑧2

𝑒 ,…,𝑧
𝑎𝑒
𝑒 ∈ 𝑅𝑒 . The pair of values 𝑑0 ∈ 𝐷(𝑥0) and 

𝑑𝑘+1 ∈ 𝐷(𝑥𝑘+1) is called to be (2, 𝑘)-consistent if it is (2, 𝑘)-consistent with 

respect to all the 𝑘-tuples of variables 𝑥1 ,… , 𝑥𝑘 ∈ 𝑋. Finally, CSP  𝑋,𝐷,𝐶  is 

called to be (2,𝑘)-consistent if all the pairs of values from domains of every two 

distinct variables are (2,𝑘)-consistent. □ 

 

It is not difficult to see that checking whether there exists a supporting 𝑘-tuple 

of values with respect to a fixed 𝑘-list of variables of unbounded size 𝑘 is an 

𝑁𝑃-complete problem [22] in both 𝑘-consistency and (2,𝑘)-consistency (for ex-

ample, the graph coloring problem can be reduced to the task of searching for a 

supporting 𝑘-tuple). Hence, unless 𝑃 = 𝑁𝑃, the support cannot be found in poly-

nomial time. 

Another simple observation is that a support with respect to a fixed list of va-

riables can be found in 𝒪(|𝔻|𝑘) by traversing all the involved 𝑘-tuples of values. 

This is also the currently best known upper bound of the time complexity of the 

search for a support within (2,𝑘)-consistency enforcing algorithms [11]. 

Both the discussed higher level consistencies represent powerful techniques 

when 𝑘 is bounded by the number of variables only. After enforcing 𝑘-

consistency/(2,𝑘)-consistency with 𝑘 high enough it is possible to obtain a solu-

tion of a problem in a backtrack-free manner [11]. Without providing more de-

tails, the high enough 𝑘 means that it is at least the width of the constraint graph 

of the given CSP which does not exceed the number of variables [14]. 

3.    Bounded (𝟐,𝒌)-Consistency with Complete Graphs – 
 B2C Consistency 

Our new concept of the so-called bounded (2,𝑘)-consistency with complete 

graphs (B2C-consistency) combines the inference strength of (2,𝑘)-consistency 

with graph-based global reasoning. The global oriented reasoning in SAT which 

is of our interest was first introduced in [26]. Particularly, the idea of exploiting 

global information reflected in complete sub-graphs in a certain graph interpreta-

tion of the problem has been taken from the previous work and further elaborated. 
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However, global reasoning itself turned out to be unilateral and hence not ideally 

suitable for using in SAT preprocessing. Therefore, it is suggested in this work to 

enhance global reasoning with (2,𝑘)-consistency, which is quite universal and is 

supposed to help in cases where global reasoning alone is unsuitable. If both the 

approaches – global and (2,𝑘)-consistency – are applied together a synergic ef-

fect is produced in certain situations. 

Local consistencies such as 𝑘-consistency and related consistencies in SAT 

have been studied in several works [7, 23, 29]. The common approach in these 

works is to encode a given task so that a local consistency of interest is simulated 

by unit propagation [12]. Our approach takes an instance of SAT problem as a list 

of clauses (constraints) and applies the consistency directly without caring about 

the way how the original task has been encoded into the instance. The result is a 

set of forbidden value assignments in the case of B2C-consistency which is subse-

quently submitted to a SAT solver together with the original instance as a list of 

additional clauses. 

The major obstacle with (2,𝑘)-consistency is that it is difficult to enforce be-

cause it is necessary to search for a consistent 𝑘-tuple of values, which means to 

traverse the search space of the size of  𝔻 𝑘  in the worst case (supposed that all 

the variables have an identical domain of 𝔻). Hence, to preserve low computation 

costs of the consistency enforcing algorithm we suggest to bound the consistency 

in some way. It has been chosen to bound the number of steps of the search for a 

consistent 𝑘-tuple by constant Λ. 

B2C-consistency is again defined with respect to a (𝑘 + 2)-tuple of distinct 

variables. Again, it checks whether a given pair of values from domains of two 

distinct variables have a supporting 𝑘-tuple in domains of remaining 𝑘 variables. 

The following sections describe how the new consistency is enforced supposed 

that (𝑘 + 2)-list of variables has been already determined. The process of select-

ing a promising (𝑘 + 2)-tuple is discussed later. 

3.1.   A Graph Derived from SAT – Graph Interpretation 

Let 𝐸1 Φ = (𝑋Φ
1 ,𝐷Φ

1 ,𝐶Φ
1 ) be an explicit literal encoding of a given propositional 

formula Φ. Next, let us have 𝑘 ∈ ℕ and an ordered (𝑘 + 2)-tuple of selected va-

riables 𝐾+
2 = [Γ 𝑖0 , Γ 𝑖1 , Γ 𝑖2 ,… , Γ 𝑖𝑘 , Γ 𝑖𝑘+1

] ⊆ 𝑋Φ
1  with 𝑖0 , 𝑖1 ,… , 𝑖𝑘+1 ∈ {1,2,… ,𝑛} 

where 𝑖휁 ≠ 𝑖𝜉  for 휁, 𝜉 ∈ {0,1,… ,𝑘 + 1} with 휁 ≠ 𝜉. 

It is more convenient to define consistency with respect to an undirected graph 

derived from the constraint network. A target undirected graph will be represented 

by the so-called graph interpretation in the given context. It is defined with re-

spect to 𝐾+
2 as an undirected graph 𝐼(𝐾+

2) = (𝐼𝑉 , 𝐼𝐸) where a set of vertices 𝐼𝑉  
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consists of  {𝜓 𝑙
𝑖휁 |𝑙 = 1,2,… ,𝛼𝑖휁 }𝑘+1

휁=0  and a set of edges 𝐼𝐸 contains edge 

{𝜓 𝑙
𝑖휁 ,𝜓 𝑡

𝑖𝜉
} with 휁, 𝜉 ∈ {0,1,… , 𝑘 + 1} such that 휁 ≠ 𝜉, 𝑙 ∈ {1,2,… ,𝛼𝑖휁 }, and 

𝑡 ∈ {1,2,… ,𝛼𝑖𝜉 } if it holds that [𝜓 𝑙
𝑖휁 ,𝜓 𝑡

𝑖𝜉 ] ∉ 𝑅𝑐  for some constraint 𝑐 =

 [Γ 𝑖휁 , Γ 𝑖𝜉 ],𝑅𝑐  in 𝐶Φ
1  (edges stand for forbidden pairs of values; that is, an edge 

represents a conflict). 

 

 

Figure 1. Graph interpretation. An original input Propositional formula 𝛷 with four clauses is 

shown (upper left). Then a corresponding explicit literal encoding (upper right – that is, a literal 

encoding after singleton unit propagation) – the CSP model consisting of four variables is provided. 

The lower part depicts a graph interpretation over three variables selected in the CSP model. Dotted 

edges represent binary clauses that come from singleton unit propagation. 

 

3.2.   Initial Setup of B2C-Consistency 

We are about to utilize structural information contained in the graph interpreta-

tion. It has been shown in the previous work [26] that useful structural informa-

tion is constituted by the knowledge of complete constraint sub-graphs. Regarding 

Φ =  

Γ1: (   β1 ∨    β2) ∧  

Γ2: (β1 ∨ β2) ∧ 

Γ3: (   β1 ∨ β3)  ∧ 

Γ4: (β1 ∨    β2 ∨ β3)  

Ω = {β1, β2, β3}  

Propositional Formula Φ 

𝑐{1,2} =   Γ 1, Γ 2 ,𝐷Φ
1 (Γ 1) × 𝐷Φ

1 (Γ 2) ∖ {[β 1 ,β 1], [β 2,β 2]}   

𝑐{1,3} =   Γ 1, Γ 3 ,𝐷Φ
1 (Γ 1) × 𝐷Φ

1 (Γ 3) ∖ { β 1,β 3 , [β 2, β 1]}   

𝑐{1,4} =   Γ 1, Γ 4 ,𝐷Φ
1 (Γ 1) × 𝐷Φ

1 (Γ 4) ∖ {[β 1 ,β 1], [β 1, β 2], [β 2, β 3]}   

𝑐{2,3} =   Γ 2, Γ 3 ,𝐷Φ
1 (Γ 2) × 𝐷Φ

1 (Γ 3) ∖ { β 1 , β 1 , [β 2 ,β 3]}   

𝑐{2,4} =   Γ 2, Γ 4 ,𝐷Φ
1 (Γ 2) × 𝐷Φ

1 (Γ 4) ∖ {[β 1, β 3], [β 2,β 1], [β 2, β 2]}   

𝑐{3,4} =   Γ 3, Γ 4 ,𝐷Φ
1 (Γ 3) × 𝐷Φ

1 (Γ 4) ∖ { β 1 , β 1 , [β 1, β 2]}   

 

 

 

Explicit Literal Encoding 𝐸1 Φ   

𝐸1 Φ = (𝑋Φ
1 ,𝐷Φ

1 ,𝐶Φ
1 ) 𝑋Φ

1 = {Γ 1, Γ 2 , Γ 3, Γ 4}  

𝐷Φ
1  Γ 1 = {β 1, β 2}   𝐷Φ

1  Γ 2 = {β 1 ,β 2}  

𝐷Φ
1  Γ 3 = {β 1,β 3}  𝐷Φ

1  Γ 4 = {β 1 , β 2, β 3} 

𝐶Φ
1 = {𝑐 1,2 , 𝑐 1,3 , 𝑐 1,4 , 𝑐 2,3 , 𝑐 2,4 , 𝑐 3,4 }  

 

Graph Interpretation 𝐼(𝐾+
2) 

𝐾+
2 = [Γ 1, Γ 2, Γ 4]      𝐼(𝐾+

2) = (𝐼𝑉 , 𝐼𝐸)  

𝐼𝑉 =  𝜓 1
1,𝜓 2

1 ,𝜓 1
2,𝜓 2

2,𝜓 1
3,𝜓 2

3,𝜓 3
3   

𝐼𝐸 =  

{{𝜓 1
1 ,𝜓 1

2}, {𝜓 1
1,𝜓 1

4}, {𝜓 1
1 ,𝜓 2

4},  

{𝜓 2
1 ,𝜓 2

2}, {𝜓 2
1,𝜓 3

4},  

{𝜓 1
2,𝜓 3

4},  

{𝜓 2
2,𝜓 1

4},{𝜓 2
2,𝜓 2

4},{𝜓 2
2,𝜓 3

4}}  

Γ 1 Γ 2 Γ 4 

β 1 

β 2 

β 1 

β 2 

β 1 

β 2 

β 3 

𝜓 1
1 

𝜓 2
1 

𝜓 1
2 

𝜓 2
2 

𝜓 1
4 

𝜓 2
4 

𝜓 3
4 



Preprocessing in Propositional Satisfiability Using Bounded (2,k)-Consistency  168 

 

the given context, we can observe that at most one literal can be satisfied in a 

complete sub-graph in the graph interpretation of a literal encoding of a SAT in-

stance. If a large enough complete sub-graph is detected in the graph interpreta-

tion, its knowledge can be used for an efficient search space pruning or a strong 

global inference. The exact process of doing so will be explained in detail in the 

following text. 

A decomposition into complete sub-graphs of a given graph interpretation  

𝐼(𝐾+
2) = (𝐼𝑉 , 𝐼𝐸) is constructed first. It is a task of finding number 𝛿 ∈ ℕ and sets 

𝐼𝑉
1, 𝐼𝑉

2,…, 𝐼𝑉
𝛿 ⊆ 𝐼𝑉  called decomposition sets that satisfy the following conditions: 

(i)  𝐼𝑉
𝑖𝛿

𝑖=1 = 𝐼𝑉; that is, all the vertices are covered by the decomposi-

tion; 

(ii) 𝐼𝑉
𝑖 ⊈ 𝐼𝑉

𝑗
 for any two 𝑖, 𝑗 ∈ {1,2,… , 𝛿} such that 𝑖 ≠ 𝑗; that is, the de-

composition is not allowed to contain redundancies; 

(iii) 𝐼𝑉
𝑖  induces a complete sub-graph over edges from 𝐼𝐸 for every 

𝑖 ∈ {1,2,… , 𝛿}; 

(iv) ∀𝑢, 𝑣 ∈ 𝐼𝑉  with {𝑢, 𝑣} ∈ 𝐼𝐸 there exists 𝑖 ∈ {1,2,… , 𝛿} such that 

{𝑢, 𝑣} ⊆ 𝐼𝑉
𝑖 ; that is, all the edges are covered by complete sub-graphs. 

Observe that if no further objective is imposed on the decomposition into 

complete sub-graphs, it can be easily constructed by setting 𝛿 = |𝐼𝐸| and putting 

endpoints of each edge into its own decomposition vertex set. On the other hand, 

the construction of decomposition with respect to any reasonable objective (such 

as maximizing the size of complete sub-graphs or minimizing number 𝛿) is a dif-

ficult task [15, 22]. 

In our approach we try to obtain large complete sub-graphs. However, this re-

quirement is not that strict so we have settled for a greedy approach for the con-

struction of decomposition. The greedy algorithm used in our work is shown us-

ing a pseudo-code as Algorithm 1 (deg(𝑉,𝐸)(𝑣) denotes the number of edges from 

𝐸 adjacent to ∈ 𝑉). 

The algorithm always prefers a vertex with the highest degree with respect to 

the remaining set of edges. Such a vertex is included into the constructed com-

plete graph and the task is reduced to its neighborhood. This is repeated until the 

neighborhood of the currently constructed complete sub-graph is empty (a neigh-

borhood of a complete sub-graph is a set of vertices that are connected to all of 

the vertices of the sub-graph). Once the complete sub-graph is finished its edges 

are removed from the original graph and the process continues until there are no 

edges. 

The construction of a decomposition as shown in Algorithm 1 heuristically 

prefers a construction of a large complete sub-graph at the beginning. This strate-



Preprocessing in Propositional Satisfiability Using Bounded (2,k)-Consistency  169 

 

gy proved to produce decompositions of acceptable quality for sub-sequent usage 

within the B2C-consistency enforcing algorithm. 

 

Proposition 1 (Greedy Time/Space Complexity). A greedy algorithm for the 

decomposition of a graph interpretation 𝐼(𝐾+
2) = (𝐼𝑉 , 𝐼𝐸) into complete sub-

graphs can be implemented to have the worst case time complexity of 

𝒪( 𝐼𝐸  𝐼𝑉 
2). The corresponding worst case space complexity is of 𝒪( 𝐼𝑉 +

 𝐼𝐸 ). ■ 

 

Commentary: Observe that there may be up to  𝐼𝐸  complete sub-graphs in the 

decomposition (each edge constitutes a decomposition set). All the edges of the 

input graph interpretation may be investigated within the construction of an indi-

vidual complete sub-graph which adds  𝐼𝐸  steps (which is 𝒪( 𝐼𝑉 
2). Adding a 

vertex with the maximum degree into a complete sub-graph consumes  𝐼𝑉  steps 

while it may be repeated up to  𝐼𝑉  times. Altogether, we have  𝐼𝑉 
2 steps for one 

complete sub-graph. 

Regarding the space complexity it can be argued that several copies of the in-

put graph need to be stored, which makes 𝒪( 𝐼𝑉 +  𝐼𝐸 ) if the neighborhood of a 

vertex is represented using linked lists. ■ 
 

 
Algorithm 1. Greedy algorithm for decomposing a graph interpretation into complete sub-graphs. 

The output decomposition is returned as a sequence of decomposition sets of vertices where each of 

them induces a complete sub-graph. 

 function Decompose-Graph-Interpretation(𝐼(𝐾+
2) = (𝐼𝑉 , 𝐼𝐸)): sequence 

  /* Parameters:  𝐼(𝐾+
2)  - a graph interpretation for decomposing */ 

 1: 𝛿 ← 1 

 2: while 𝐼𝐸 ≠ ∅ do 

 3:   𝐼𝑉
𝛿 ← ∅ 

 4:   𝑇𝑉 ,𝑇𝐸 ←  𝐼𝑉 , 𝐼𝐸  /* an auxiliary graph for gradual dismantling */ 

 5:  while 𝑇𝑉 ≠ 𝐼𝑉
𝛿  do 

 6:    let 𝑣𝑚𝑎𝑥 ∈ 𝑇𝑉 ∖ 𝐼𝑉
𝛿  be a vertex such that deg 𝑇𝑉 ,𝑇𝐸 (𝑣𝑚𝑎𝑥 ) = 

 7:     max{deg 𝑇𝑉 ,𝑇𝐸 
 𝑣 |𝑣 ∈ 𝑇𝑉\𝐼𝑉

𝛿} 

 8:    𝐼𝑉
𝛿 ← 𝐼𝑉

𝛿 ∪ {𝑣𝑚𝑎𝑥 } 

 9:   𝑇𝑉 ← 𝑇𝑉 ∖ {𝑢|{𝑣𝑚𝑎𝑥 ,𝑢} ∉ 𝑇𝐸}) 

 10:   𝑇𝐸 ← 𝑇𝐸 ∩  
𝑇𝑉
2
  

 11:  𝐼𝐸 ← 𝐼𝐸 ∖  
𝐼𝑉
𝛿

2
  

 12:  𝐼𝑉 ← 𝐼𝑉 ∖ {𝑣 ∈ 𝐼𝑉| deg 𝐼𝑉 ,𝐼𝐸 
 𝑣 = 0} 

 12:  𝛿 ← 𝛿 + 1 

 13: return [𝐼𝑉
1 , 𝐼𝑉

2 ,… , 𝐼𝑉
𝛿 ] 
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There are some more properties of the decomposition into complete sub-

graphs. Note that decomposition sets intersect vertices corresponding to a domain 

of a single variable at most once. This is due to the fact that there are no edges 

between vertices corresponding to a single domain and due to condition (iii). On 

the other hand, a single vertex may be included in several decomposition sets. 

3.3.   B2C-Consistency Enforcing Algorithm 

B2C-consistency will be defined algorithmically as this is the most natural way to 

do that. Suppose that a decomposition into complete sub-graphs of a given graph 

interpretation has already been constructed. The basic idea is to enforce bounded 

(2,𝑘)-consistency using only Λ steps in the search for a supporting 𝑘-tuple. This 

search will be accompanied by a special pruning which will use the decomposi-

tion into complete sub-graphs to obtain more global reasoning. 
 

 

Figure 2. Pigeon hole (P/H) principle – graph interpretation with complete sub-graphs. The stan-

dard propositional model of the P/H principle 𝛷 for 𝑝 = 3 and ℎ = 2 is shown in the left part. A 

graph interpretation over the explicit literal encoding of 𝛷 with selected variables 𝛤 7, 𝛤 8, and 𝛤 9 is 

shown in the right part together with its decomposition into complete sub-graphs (notice that the 

decomposition shown here can be found by the presented greedy algorithm – Algorithm 1). 

 It is supposed that the search is done in a some systematic way by extending a 

partial selection of a supporting tuple of values. Regardless of the exact process of 

the search for the support, we can assume that some values/vertices are selected 

Φ =  

 

Γ1: (β11 ∨ β12) ∧  

Γ2: (β11 ∨ β13) ∧  

Γ3: (β12 ∨ β13) ∧  

Γ4: (β21 ∨ β22) ∧  

Γ5: (β21 ∨ β23) ∧  

Γ6: (β22 ∨ β23) ∧  

 

Γ7: (   β11 ∨     β21) ∧  

Γ8: (   β12 ∨     β22) ∧  

Γ9: (   β13 ∨     β23)  

Ω = {β11 , β12 , β13 ,β21 , β22 , β23}  

Propositional Model Φ of P/H = 3/2 

P 

P 

P 

H 

H 

Graph Interpretation 𝐼(𝐾+
2) 

𝐾+
2 = [Γ 7, Γ 8, Γ 9]  

𝐼(𝐾+
2) = (𝐼𝑉 , 𝐼𝐸)  

 

Decomposition into 

complete sub-graphs 𝐼𝑉
1  and 𝐼𝑉

2 

β 11 

β 21  

Γ 7 Γ 8 Γ 9 

β 12 

β 22  

β 13 

β 23  

𝑰𝑽
𝟏  

𝑰𝑽
𝟐  

no two pigeons 

in the same hole 

every pigeon 

in some hole 
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into the partial supporting tuple at every step of the process. The selection auto-

matically rules out several other values/vertices – more precisely, values/vertices 

that are present together with the selected ones in some complete sub-graph are 

ruled out (this is due to the condition that no more than one literal can be selected 

in a complete sub-graph). 
 

 
Algorithm 2. Search for a supporting 𝑘-tuple of values within B2C-consistency. It is supposed that 

a decomposition into complete sub-graphs 𝒥 of a given graph interpretation 𝐼(𝐾+
2) with respect to a 

(𝑘 + 2)-list of variables 𝐾+
2 has already been calculated. 

 function Check-B2C-Consistency(𝜓 𝑡0

𝑖0 ,𝜓 𝑡𝑘+1

𝑖𝑘+1 , 𝐼(𝐾+
2) =  𝐼𝑉 , 𝐼𝐸 ,𝒥,Λ): propositional 

  /* Parameters: 𝜓 𝑡0

𝑖0 ,𝜓 𝑡𝑘+1

𝑖𝑘+1  - a pair of values for consistency checking 

      𝐼(𝐾+
2)  - a graph interpretation for decomposing, 

      𝒥    - a decomposition of 𝐼(𝐾+
2) into 

           complete sub-graphs, 

       Λ    - the number of allowed search steps. */ 

 1:  (𝜔,Λ) ← Search-B2C-Support(𝜓 𝑡0

𝑖0 ,𝜓 𝑡𝑘+1

𝑖𝑘+1 ,∅, 𝐼(𝐾+
2) =  𝐼𝑉 , 𝐼𝐸 ,𝒥,Λ) 

 2: return 𝜔 
 

 function Search-B2C-Support(𝜓 𝑡0

𝑖0 ,𝜓 𝑡𝑘+1

𝑖𝑘+1 ,𝑆, 𝐼(𝐾+
2) =  𝐼𝑉 , 𝐼𝐸 ,𝒥,Λ): pair 

  /* Parameters: 𝑆  - a set of already selected supports. */ 

 1: if  𝑆 = 𝑘 then return (𝑇𝑅𝑈𝐸,Λ) 

 2: let [𝜓 𝑡1

𝑖1 ,𝜓 𝑡2

𝑖2 ,… ,𝜓 𝑡𝑙
𝑖𝑙] = 𝑆 

 3: for each 𝜓 𝑡𝑙+1

𝑖𝑙+1 ∈ 𝐷(Γ 𝑖𝑙+1
) do 

 4:  if Λ ≤ 0 then return (𝑇𝑅𝑈𝐸,Λ) /* all the steps were consumed */ 

 5:  𝛼 ← 𝑇𝑅𝑈𝐸 

 6:  for each 𝐼𝑉 ∈ 𝒥 do /* check of constraints */ 

 7:   if  𝐼𝑉 ∩ ( [𝜓 𝑡0

𝑖0 ].𝑆. [𝜓 𝑡𝑙+1

𝑖𝑙+1 ,𝜓 𝑡𝑘+1

𝑖𝑘+1 ]) > 1 then 𝛼 ← 𝐹𝐴𝐿𝑆𝐸 

 8:  let ℒ = {𝐼𝑉 ∈ 𝒥|𝐼𝑉 ∩ ( 𝑆. [𝜓 𝑡𝑙+1

𝑖𝑙+1 ]) = ∅} 

 9:  if  ℒ +  𝑆 < 𝑘 then 𝛼 ← 𝐹𝐴𝐿𝑆𝐸 /* global check */ 

 10:  if 𝛼 then 

 11:   if 𝑙 + 1 < 𝑘 then /* some supports still remain to be found */ 

 12:    (𝜔,Λ) ← Search-B2C-Support(𝜓 𝑡0

𝑖0 ,𝜓 𝑡𝑘+1

𝑖𝑘+1 ,𝑆. [𝜓 𝑡𝑙+1

𝑖𝑙+1 ], 

 13:               𝐼 𝐾+
2 ,𝒥,Λ) 

 14:    if 𝜔 then return (𝑇𝑅𝑈𝐸,Λ) 
 15:   else /* all the supports have been found */ 

 16:    return (𝑇𝑅𝑈𝐸,Λ) 

 17:  Λ ← Λ − 1 

 18: return (𝐹𝐴𝐿𝑆𝐸,Λ) 

 

 

Nevertheless, the main innovative reasoning mechanism uses the decomposi-

tion in a different way. At every point of the process there are still some candidate 

values/vertices for selection into the final supporting 𝑘-tuple. Each one is in-

cluded in some decomposition sets from which no value/vertex has been selected 

yet. Let ℒ be a set of such not yet used decomposition sets and let 𝑆 be a set of 

already selected vertices. As only one value/vertex can be selected from each 
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complete sub-graph we can make the following pruning: if it happens that 

 ℒ +  𝑆 < 𝑘, the search in the current branch of the support search tree can be 

terminated as it is not possible to extend the partial selection so that it will finally 

consist of 𝑘 elements. This kind of reasoning is especially useful for problems 

with non-local properties such as the P/H principle or FPGA Switch-Box routing 

[1]. For illustration see Figure 2 (if β 11 and β 23 have been already selected, then 

ℒ = ∅, 𝑘 = 1, and 𝑆 = {β 11, β 23} and hence we can conclude that β 11 and β 23 

are inconsistent). 

The process of B2C-consistency enfording for a pair of values and a fixed list 

of variables 𝐾+
2 = [Γ 𝑖0 , Γ 𝑖1 ,Γ 𝑖2 ,… , Γ 𝑖𝑘 , Γ 𝑖𝑘+1

] is shown as Algorithm 2. The algo-

rithm searches for a supporting 𝑘-tuple of values for a given pair of values 

𝜓 𝑡0

𝑖0 ∈ 𝐷(Γ 𝑖0 ) and 𝜓 𝑡𝑘+1

𝑖𝑘+1 ∈ 𝐷(Γ 𝑖𝑘+1
) in domains of Γ 𝑖1 , Γ 𝑖2 ,… , Γ 𝑖𝑘 . The search is 

done through a systematic extension of the current partial selection of supporting 

values/vertices. This functionality is implemented using recursive calls, which 

simulates chronological backtracking search. 

The algorithm for enforcing B2C-consistency for a pair of values should be 

regarded as an incomplete proof of non-existence of a support. That is, if the algo-

rithm finds the given pair of values to be inconsistent then there is actually no 

support for them (that is, it managed to prove that there is no support using Λ 

search steps and other techniques; 𝐹𝐴𝐿𝑆𝐸 is returned by Check-B2C-Consistency 

in this case). However, if it does not find the given pair of values to be inconsis-

tent, one of the following cases might happen: a supporting 𝑘-tuple of values was 

found or the algorithm ran out of the allowed number of search steps Λ (𝑇𝑅𝑈𝐸 is 

returned in this case). 

 

Proposition 2 (B2C Time/Space Complexity). If Λ = ∞ then the algorithm for 

enforcing B2C-consistency with a decomposition into complete sub-graphs 𝒥 of a 

graph interpretation 𝐼(𝐾+
2) =  𝐼𝑉 , 𝐼𝐸  of a (𝑘 + 2)-list of variables 𝐾+

2 can be im-

plemented to have the worst case time complexity of 𝒪(𝑘 𝒥  𝔻 k); otherwise, the 

worst case time complexity is 𝒪( 𝒥 Λ). The corresponding worst case space com-

plexity is 𝒪( 𝐼𝑉 +  𝐼𝐸 ). ■ 

 

Commentary: It is not difficult to observe that the algorithm needs to go through 

all the  𝔻 𝑘  𝑘-tuples in the worst case if the number of the allowed search steps Λ 

is unbounded. Checking a 𝑘-tuple may consume up to 𝑘 𝒥  constraint checks 

(namely checks against complete sub-graphs). If Λ is bounded then obviously at 

most Λ steps are done while each step consumes up to  𝒥  constraint checks. 
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As all the data elements are accessed sequentially no extra data structures are 

needed. Hence, we need to store graph interpretation and its decomposition into 

complete sub-graphs, which we already know to be of 𝒪( 𝐼𝑉 +  𝐼𝐸 ). The space 

needed to store the resulting 𝑘-tuple is again of 𝒪( 𝐼𝑉 +  𝐼𝐸 ). ■ 

 

Here it depends on our perception of 𝑘. It is natural to perceive it as a part of 

the input and hence the complexity of search for a support is exponential with 

unbounded Λ. Therefore, the time consumption represents the main bottleneck of 

the method. However, having the global reasoning based on complete sub-graphs, 

still much can be done in Λ steps while Λ is bounded. 

4.   Building a SAT Preprocessing Tool 

We intended to use B2C-consistency as a basis for a SAT preprocessing tool. As 

we have seen, it may not be simply used for that task in its raw form due to its 

time complexity. A good compromise between the computational effort and 

strength of the inference has to be found. This section describes how a list of va-

riables should be chosen and how to set particular parameters of B2C-consistency 

to make it suitable for the intended preprocessing tool. 

4.1.   Selection of 𝒌-tuples of CSP Variables 

As it is computationally infeasible to achieve B2C-consistency with respect to all 

the 𝑘-tuples of variables and pairs of values in their domains in a non-trivially 

large SAT instance, some selection of promising subsets of variables on which the 

consistency will be applied has to be done. The selection is considered to be 

promising if there is a chance that the consistency rules out some pair of values 

(that is, the ruled out pair of values cannot be a part of any solution). At the same 

time, the information captured in the fact that a given pair of values is incompati-

ble should be valuable for a SAT solver in a certain sense. This requirement is 

imposed by the intention to use B2C-consistency as a preprocessing tool. Hence, 

the information should not be easily derivable by the SAT solver itself since in-

forming the SAT solver about the inconsistency between a pair of trivially incom-

patible values is not helpful. 

Our approach is to select 𝑘-tuples of variables induced by a region of the in-

stance with difficult constraint setup that however can be tackled by the consis-

tency. Such a setup provides a chance to extract valuable information by B2C-

consistency. The well known SAT model of the pigeon hole principle (P/H prin-

ciple) – more precisely its explicit literal encoding – is a representative of such a 
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setup which is well known for resisting from being handled by SAT solvers [1]. 

All the instances of the P/H principle are unsatisfiable. Having a suitable graph 

interpretation for the P/H principle as it is shown in Figure 2 (that is, clauses 

modeling that each pigeon is placed in some hole are selected as a (𝑘 + 2)-tuple 

of CSP variables for the graph interpretation) we are able to calculate various 

useful probabilistic characteristics. 

Let 𝑝 be the number of pigeons and let ℎ be the number of holes where it 

holds that ℎ = 𝑝 − 1. A constraint tightness 𝜌 in a binary CSP will be defined as 

the ratio of the number of allowed pairs of values to the number of all the possible 

pairs of values. Particularly in the case of the P/H principle it holds that 𝜌 =
 
𝑝
2 ℎ

 
𝑝
2 ℎ

2
= 1

ℎ
 in the graph interpretation as described above. 

 

Table 1. Probabilistic characteristics of the graph interpretation in the P/H principle. 

Configuration:  
pigeons (𝑝) 

× 

holes 

(ℎ = 𝑝 − 1) 

Constraint 

tightness 𝝆 

 𝑝
2
 ℎ

 𝑝
2
 ℎ2

=
1

ℎ
 

Probability of 

satisfiability 

of a random 

𝑝-tuple 𝝈 

(1 −
1

ℎ
) 

ℎ+1
2   

Expected number 

of satisfied 

𝑝-tuples 휀 

ℎℎ+1(1 −
1

ℎ
) 

ℎ+1
2   

 

 

3 × 2 0.5 0.125 1 

4 × 3 0.333333 0.087791 7.111111 

5 × 4 0.25 0.056314 57.66504 

6 × 5 0.2 0.035184 549.7558 

7 × 6 0.166667 0.021737 6084.888 

8 × 7 0.142857 0.01335 76961.62 

 

Another interesting characteristic is the probability of a randomly selected as-

signment of values to 𝑝 variables 𝜎 calculated from the constraint tightness. It is a 

reasonable assumption that the satisfaction of individual pairs of values within the 

assignment is independent of each other. Then it holds for the probability of satis-

faction of a random 𝑝-tuple of values that 𝜎 = (1 − 𝜌) 
𝑝
2  which is (1 − 1

ℎ
)
 ℎ+1 ℎ

2  

in the case of the P/H principle. 

Finally, we will investigate the expected number of satisfied 𝑝-tuples of values 

휀, which will be defined as the total number of possible 𝑝-tuples multiplied by 𝜌. 

It holds that 휀 = ℎ𝑝𝜎 = ℎℎ+1(1 − 1

ℎ
)
 ℎ+1 ℎ

2  in the case of the P/H principle. Sever-

al examples of probabilistic characteristics are shown in Table 1. The limit beha-

0
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0
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Constraint density 
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#Holes (h) 



Preprocessing in Propositional Satisfiability Using Bounded (2,k)-Consistency  175 

 

vior of the above characteristics with ℎ → ∞ is summarized in the following easy-

to-prove proposition. 

 

Proposition 3 (Limit P/H Characteristics). The probability of satisfiability of a 

random p-tuple of values ρ in a graph interpretation of the P/H principle con-

verges to 0 for h → ∞; that is, limℎ→∞(1 − 1

ℎ
) 

ℎ+1
2  = 0. The expected number of 

satisfied p-tuples of values ε in the P/H principle is 𝒪(𝑒(ℎ+1)(−
1

2
+ln ℎ)) which is 

𝒪   
ℎ

 𝑒
 

(ℎ+1)
  and blows up to +∞ for ℎ → ∞; that is, limℎ→∞ ℎℎ+1(1 −

1

ℎ
)
 ℎ+1

2  
= +∞. ■ 

 

We will generalize the P/H principle so that there will be strictly less holes 

than pigeons but not necessarily one fewer. The generalized P/H principle is unsa-

tisfiable as well. A sample of probabilistic characteristics of the model of the ge-

neralized P/H principle is shown in Table 2. 
 

Table 2. Expected number of satisfied tuples of values in the generalized P/H principle. 

 

Expected number of satisfied 

𝑝-tuples 휀 = ℎ𝑝(1 − 1

ℎ
) 

𝑝
2  

 

Number of holes ℎ 

Number of 

pigeons 𝑝 3 4 5 

2 6.0 12.0 20.0 

3 8.0 27.0 64.0 

4 7.111 45.563 163.84 

5 4.213 57.665 335.544 

6 1.664 54.737 549.756 

7 0.438 38.968 720.576 

  

Our aim is to select (𝑘 + 2)-tuples of CSP variables for B2C-consistency in 

the explicit literal encoding 𝐸1 Φ = (𝑋Φ
1 ,𝐷Φ

1 ,𝐶Φ
1 ) which has similar probabilis-

tic characteristics that are exhibited by the model of the (generalized) P/H prin-

ciple. This selection is supposed to ensure the required properties – that is, a simi-

2
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8
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1

10000000
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Expected SAT p-tuples 

#Holes (h) 

#Pigeons (p) 

p  <2..16>  

h  <3..7> 

1st quartile = 5.107 

median = 20.806 

3rd quartile = 113.92 
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lar level of difficulty as the P/H principle and the similar constraint setup. The 

following incremental mechanism for selecting the next variable based on esti-

mating probabilistic characteristics from the currently selected variables will be 

used. 

The requirement which is specified as a part of the input together with 𝑘 is the 

interval for the expected number of satisfied (𝑘 + 2)-tuples of values. Let 휀𝐿 and 

휀𝑈  be the lower and upper bound for this interval respectively. The first CSP vari-

able into the (𝑘 + 2)-tuple is supposed to be selected using some specific process 

(randomly or systematically; actually a systematic process is used within the ex-

perimental implementation). Other CSP variables are selected incrementally; sup-

pose that 𝐾+
2 = [Γ 𝑖0 , Γ 𝑖1 , Γ 𝑖2 ,… , Γ 𝑖𝜅 ] is a tuple of the already selected CSP variables 

(if 𝜅 = 𝑘 then the process is finished). Let Γ 𝑖𝜅+1
 be a candidate CSP variable. 

 

 

Algorithm 3. Process of selecting a suitable (𝑘 + 2)-tuple of CSP variables. Variables are heuristically selected 

to prefer the resulting expected number of satisfied (𝑘 + 2)-tuples of values in the interval of  휀𝐿 , 휀𝑈  or near this 

interval from below or above. 

 function Select-CSP-Variables(𝑘, Γ 𝑖0 ,𝐸1 Φ =  𝑋Φ
1 ,𝐷Φ

1 ,𝐶Φ
1  , 휀𝐿 , 휀𝑈): tuple 

 /* Parameters: 𝑘   - size of the tuple of CSP variables, 

     Γ 𝑖0  - the first CSP variable, 

     𝐸1 Φ   - explicit literal encoding, 

     휀𝐿, 휀𝑈   - lower and upper bounds for the expected number of 

          satisfied (𝑘 + 2)-tuples of values. */ 

 1: for κ = 0,1,… , 𝑘 do 

 2:  for each Γ 𝑖𝜅+1
∈ 𝑋Φ

1  do 

 3:   let 𝜌(Γ 𝑖𝜅+1
) is the constraint tightness in  [Γ 𝑖0 ,Γ 𝑖1 ,Γ 𝑖2 ,… , Γ 𝑖𝜅+1

] 

 4:   휀(Γ 𝑖𝜅+1
) ←     𝐷(Γ 𝑖𝑙) 

𝜅+1
𝑙=0

𝜅+1
 

𝑘+2

 1 − 𝜌(Γ 𝑖𝜅+1
) 

 𝑘+2
2  

 

   /* the following let form assigns ⊥ if undefined */ 

 5:  let Γ α ∈ 𝑋Φ
1  such that 휀(Γ 𝛼) ≤ 휀𝐿 ∧ (∀Γ 𝑙 ∈ 𝑋Φ

1 )휀(Γ 𝛼) ≥ 휀(Γ 𝑙) 

 6:  let Γ 𝛽 ∈ 𝑋Φ
1  such that 휀(Γ 𝛽) ≥ 휀𝑈  ∧ (∀Γ 𝑙 ∈ 𝑋Φ

1 )휀(Γ 𝛽) ≤ 휀(Γ 𝑙) 

 7:  let Γ 𝜇 ∈ 𝑋Φ
1  such that 휀𝐿 ≤ 휀(Γ 𝜇) ≤ 휀𝑈  

 8:  if Γ 𝜇 ≠⊥ then 

 9:    𝑖𝜅 ← 𝜇 
 10:  else 

 11:   if Γ 𝛼 =⊥ then 

 12:     𝑖𝜅 ← 𝛽 

 13:   else 

 14:    if  휀(Γ 𝛼) − 휀𝐿 <   휀(Γ β) − 휀𝑈  then 

 15:      𝑖𝜅 ← 𝛼 
 16:    else 

 17:      𝑖𝜅 ← 𝛽 

 18:return [Γ 𝑖0 ,Γ 𝑖1 ,Γ 𝑖2 ,… , Γ 𝑖𝜅 ] 

 

The expected number of the satisfied (𝑘 + 2)-tuples with Γ 𝑖𝜅+1
 denoted as 

휀(Γ 𝑖𝜅+1
) is estimated as follows: let 𝜌(Γ 𝑖𝜅+1

) be the constraint tightness among 
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variables from the set  𝐾+
2 ∪ {Γ 𝑖𝜅+1

} (already selected variables together with the 

new candidate) then 휀(Γ 𝑖𝜅+1
) =     𝐷(Γ 𝑖𝑙) 

𝜅+1
𝑙=0

𝜅+1
 

𝑘+2

 1 − 𝜌(Γ 𝑖𝜅+1
) 

 𝑘+2
2  

. That 

is, the product of sizes of domains of the final (𝑘 + 2)-tuple is estimated as 

(𝑘 + 2)th power of the geometric mean of sizes of the domain of already selected 

variables. The constraint tightness is supposed to be preserved for the final 

(𝑘 + 2)-tuple. If 휀𝐿 ≤ 휀(Γ 𝑖𝜅+1
) ≤ 휀𝑈  then Γ 𝑖𝜅+1

 may be used as the next CSP vari-

able for the (𝑘 + 2)-tuple. If there are multiple variables satisfying this condition 

any of them may be selected (in the implementation that one with 휀 closest to 
휀𝐿+휀𝑈

2
 is selected). The whole process of selection of CSP variables for B2C-

consistency is formalized as Algorithm 3. 

 

Proposition 4 (Selection Time/Space Complexity). The algorithm for selecting 

CSP variables can be implemented to have the worst case time complexity of 

𝒪(𝑘2 𝑋𝛷
1   𝔻 2). A space of 𝒪(𝑘 +  𝑋𝛷

1  ) is needed in addition to the space neces-

sary for storing CSP 𝐸1 Φ . ■ 

 

Commentary: Each new CSP variable is selected for the resulting tuple out of at 

most  𝑋𝛷
1   CSP variables for which estimation of the expected number of satisfied 

(𝑘 + 2)-tuples must be calculated. Calculating this estimation with respect to a 

single variable consumes 𝒪(𝑘 𝔻 2) steps as it is necessary to calculate constraint 

tightness relatively to all the already selected variables. A new variable is in-

cluded exactly 𝑘 times. 

Additional space is needed for storing probabilistic characteristics for CSP va-

riables, which consumes the space of 𝒪( 𝑋𝛷
1  ). A space of 𝒪(𝑘) is needed to store 

the resulting tuple of CSP variables. ■ 

 

It is infeasible in large SAT instances to compute and to store constraint tight-

ness between all the pairs of variables on the current commodity hardware be-

cause there are too many such pairs (notice that there may be more than 1.0E + 6 

clauses in large SAT instances which makes more than  1.0E+6
2

 ≈ 1.0E + 12 

pairs of variables; that would require approximately several terabytes of memory). 

Hence, it is necessary to compute constraint tightness on demand. 

4.2.   SAT Preprocessing with B2C-Consistency 

An experimental SAT preprocessing tool based on B2C-consistency called pre-

processSIGMA [27] was implemented in C++ in order to conduct an experi-

mental evaluation and to provide proof of the concept. To achieve the best infe-
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rence strength of preprocessing, (𝑘 + 2)-tuples are selected according to the 

theory in the previous section so that the expected number of satisfied tuples of 

values belongs into the interval typical for the model of the generalized P/H prin-

ciple. We select 𝑘 uniformly from the interval  2. .10  as it experimentally proved 

to be computationally manageable in reasonable time. 

In typical SAT instances arity of clauses ranges from 2 to 10 [18] while the 

most common are small clauses with arities 3, 4, and 5 – domain sizes in the cor-

responding literal encoding are exactly the same. The expected number of satis-

fied tuples of values for a setup of the P/H principle with corresponding 𝑝 ∈
 2. .10  and ℎ ∈  3. .5  belongs into the interval  0.001,755.579  while the 1

st
 

quartile, median, and 3
rd

 quartile are equal to 5.107, 20.806, 113.92, respective-

ly. Taking into account that we are preferring the non-existence of satisfied tuple 

of values, it is advisable to select the preferred interval for the expected number of 

satisfied tuples of values  휀𝐿 , 휀𝑈  with 휀𝐿 low below the median and slightly be-

low the 1
st
 quartile and 휀𝑈  slightly above the median. A preliminary experimental 

evaluation with SAT instances containing mainly small clauses showed that the 

best setting is  휀𝐿 , 휀𝑈 =  3.0,32.0  which well correlates with the above probabil-

istic estimations. The use of different bounds resulted in deriving less valuable 

forbidden pairs of values in the preprocessing step (that is, explicit forbidding of 

such pairs by adding new clauses had a limited positive effect). 

As the computation of B2C-consistency is a time consuming operation it is 

done only for a certain number of tuples of variables. More precisely, small for-

mulae with less than or equal to 2048 variables are allowed 16 times the number 

variables B2C-consistency checks. Large formulae (that is, those with more than 

2048 variables) are allowed 4 times square root of the number of variables 

B2C-consistency checks (currently, there is no smooth transition between these 

two rates as it was not necessary to be implemented for experimental evaluation). 

In both cases, the number of steps of the search for a consistent 𝑘-tuple was 

bounded by the constant Λ = 4096. This setup of Λ was manually tailored during 

the development of the method. 

We are aware that the presence of several parameters in the method may be 

problematic since the user is required to set them. However, in our analysis we 

provide some ideas for their setting and, most importantly, the parameters can be 

regarded as an opportunity for further optimization by methods for automated 

parameter tuning (programming by optimization) [17]. 
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5.   Experimental Evaluation 

The experimental evaluation of our prototype SAT preprocessor preprocess-

SIGMA focused on discovering the benefit of B2C-consistency in the context of 

other existent preprocessing techniques and on the evaluation of internal proper-

ties of the experimental implementation. It also should provide a justification for 

the theory we have discussed earlier. 

5.1.   Basic Competitive Experimental Evaluation 

The experimental implementation of B2C-consistency within our prototype tool 

preprocessSIGMA has been competitively evaluated with respect to the most 

prominent existing tools for SAT preprocessing. Particularly, the following pre-

processing tools have been evaluated: LiVer [25], NiVer [25], HyPre [5], 

Shatter with Saucy version 3.0 [2, 21] (here abbreviated as saucy-3), and 

the technique of blocked clause elimination [16, 20] (here abbreviated as BCE) 

implemented within precosat-465 [20] (here abbreviated as BCE). As the 

reference SAT solver MiniSAT version 2.2 [13] with an built-in SatElite 

preprocessing step has been used. 

LiVer and NiVer use resolution-based variable elimination for preprocess-

ing; LiVer allows a bounded increase in the total number of literals in the result-

ing formula while NiVer does not allow any increase in this number. The Hy-

Pre preprocessing tool is based on binary hyper-resolution and equivalence rea-

soning. Shatter represents a tool most akin to our preprocessSIGMA as it 

employs a certain kind of global reasoning as well. Symmetries in the input for-

mula are detected and symmetry-breaking clauses are added by Shatter into 

the output formula. To detect symmetries, the graph isomorphism problem [28] 

needs to be solved during the preprocessing process which is done by the Saucy 

module. The performance of the Saucy module is crucial in Shatter. 

The experimental evaluation was done with a set of 344 difficult SAT in-

stances (mixture of satisfiable and unsatisfiable) taken from the Satisfiability Li-

brary (SATLib – only structured instances have been taken) [18] and from the 

crafted category of the SAT Competitions 2002/2003 and 2007/2009 (all the prob-

lems from the crafted category of a size up to 600kB have been taken). The com-

plete set of instances used in the experimental evaluation can be found at the web-

site: http://ktiml.mff.cuni.cz/~surynek/research/j-preprocess-2011. This website 

also contains experimental data in the raw form and the complete source code in 

C++ necessary to reproduce all the presented experiments. 

 
 

http://ktiml.mff.cuni.cz/~surynek/research/j-preprocess-2011
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Table 3. Listing of results for a fraction of the set of testing instances used in our experimental 

evaluation. The number of conflicts MiniSAT 2.2 encountered on the original instances and on 

those preprocessed by HyPre, LiVer, NiVer, saucy-3, and our preprocessSIGMA are 

shown. The best performing preprocessors on each instance are marked in bold (the timeout for both 

preprocessing and MiniSAT was set to 256 seconds). Observe the large differences among individ-

ual preprocessors. 

Conflicts Variables Clauses 
C/V 

Ratio 
Original HyPre BCE LiVer NiVer saucy-3 sigma SAT/UNSAT 

bart12.shuffled  180 820 4.555 105 212 105 118 118 603 105 SAT 

bart14.shuffled  195 905 4.641 104 402 104 100 100 102 104 SAT 

bart16.shuffled  210 990 4.714 103 106 103 103 103 215 103 SAT 

bart20.shuffled  270 1476 5.466 121 127 206 103 103 160 121 SAT 

ca004.shuffled  80 168 2.1 43 29 48 32 29 42 43 UNSAT 

ca008.shuffled  130 370 2.846 145 117 175 102 150 151 145 UNSAT 

ca016.shuffled  272 780 2.867 449 293 465 416 326 357 433 UNSAT 

ca032.shuffled  558 1606 2.878 943 752 1103 739 657 901 790 UNSAT 

difp_19_99_arr_rcr  1201 6563 5.464 209417 141649 343814 58305 304092 209417 92754 SAT 

difp_19_99_wal_rcr  1775 10446 5.885 134284 31031 92343 108681 158235 N/A 15245 SAT 

difp_21_1_arr_rcr  1453 7967 5.483 191884 63546 126655 538426 427292 191884 45453 SAT 

difp_21_99_arr_rcr  1453 7967 5.483 190663 97408 66191 249983 350142 190663 35704 SAT 

dp04u03.shuffled  1017 2411 2.370 70 26 77 72 63 N/A 61 UNSAT 

dp05s05.shuffled  1885 4818 2.555 90 138 80 116 100 N/A 46 SAT 

ezfact32_6.shuffled  769 4777 6.211 422 33088 169 32957 32957 422 209 SAT 

ezfact32_7.shuffled  769 4777 6.211 5744 29574 173 46659 46659 5744 836 SAT 

ezfact32_9.shuffled  769 4777 6.211 1181 47191 218 64056 64056 1181 160 SAT 

ezfact32_10.shuffled  769 4777 6.211 1990 1988 406 22500 22500 1990 448 SAT 

fpga10_11_uns_rcr  220 1122 5.1 4935017 8315862 4935017 4866421 4866421 548002 2 UNSAT 

fpga10_12_uns_rcr  240 1344 5.6 7209341 7219129 7140410 7183640 7218248 645603 1 UNSAT 

fpga10_13_uns_rcr  260 1586 6.1 6466487 6511919 5963904 6497147 6497268 264637 1 UNSAT 

fpga10_15_uns_rcr  300 2130 7.1 5390760 5401469 5361172 5387934 5405715 91837 1 UNSAT 

fpga10_8_sat  120 448 3.733 201 163 201 201 201 65 201 SAT 

fpga10_9_sat  135 549 4.066 202 168 202 202 202 100 202 SAT 

fpga12_11_sat  198 968 4.888 200 405 200 200 200 54 200 SAT 

fpga12_12_sat  216 1128 5.222 208 102 208 208 208 36 208 SAT 

homer06.shuffled  180 830 4.611 272019 209811 272019 258487 258487 39341 1 UNSAT 

homer10.shuffled  360 3460 9.611 641132 502279 641132 464639 464639 144 2 UNSAT 

homer16.shuffled  264 1476 5.590 6525641 6527180 6484372 6766937 6682636 3195152 3 UNSAT 

homer20.shuffled  440 4220 9.590 3230156 3249156 3043099 3265756 3207038 87585 2 UNSAT 

lisa19_0_a.shuffled  1201 6563 5.464 235824 117828 209804 381242 108878 235824 15534 SAT 

lisa19_1_a.shuffled  1201 6563 5.464 445563 439709 688143 208567 528589 445563 320076 SAT 

lisa21_1_a.shuffled  1453 7967 5.483 328846 121498 67873 4841 309122 328846 93629 SAT 

med11.shuffled  341 5556 16.293 41 197 102 101 101 41 41 SAT 

med17.shuffled  782 18616 23.805 106 151 4599 808 808 106 106 SAT 

qg1-7.shuffled  686 6816 9.935 49 115 44 67 67 242 49 SAT 

term1_gr_2pin_w3.shuffled  746 3517 4.714 52 69 27 21 124 52 9 UNSAT 

term1_gr_rcs_w3.shuffled  606 2518 4.155 7 7 7 7 7 11 1 UNSAT 
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Figure 3. Competitive comparison of preprocessing tools (conflicts). The number of conflicts that 

occurred when solving the original and preprocessed SAT instances by MiniSAT 2.2 are shown 

(instances are sorted for each preprocessor to get increasing sequences – easier instances tend to be 

on the left while hard instances tend to be on the right). Our preprocessSIGMA is compared with 

HyPre, LiVer, NiVer, BCE, and saucy-3 on a set of SAT instances from SATLib and SAT 

Competitions 2003/2004 and 2007/2009. It can be observed that HyPre, LiVer, NiVer, and BCE 

have only marginal effect (upper part) compared to preprocessSIGMA and saucy-3 (lower 

part) which both deliver significant improvements. If timeout was reached the instance was ex-

cluded from the figure. 

Several characteristics were measured during the evaluation process. The most 

informative characteristic is the number of conflicts that occurred during the 

process of solving. The conflicts can be regarded as a dead-end in the backtrack-

ing-based search process. The number of conflicts has been measured for the orig-

inal instances and for instances processed by individual SAT preprocessors from 

our test suite. The number of conflicts corresponds well with the overall runtime. 
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The CPU time
*
 has been measured as well to obtain the complete picture of per-

formance of all the SAT preprocessors. 
 

 

 

 

Figure 4. Improvement ratio in the number of conflicts gained by the application of preprocessor. 

The ordering of instances per preprocessor is the same as in Figure 3. It can be observed that NiVer 

and LiVer cause worsening in a significant number of instances. HyPre is particularly successful 

on easier instances. The best improvement can be achieved by saucy-3 and preprocessSIGMA 

while saucy-3 has an advantage in large instances and preprocessSIGMA dominates in easier 

instances. 

A small fraction of the set of instances (38 out of 344)  used in the experimen-

tal evaluation together with their characteristics and results regarding the number 

 
* All the tests were run on a machine with Intel Xeon 2.0GHz CPU, 12 GB of RAM, under Ubuntu Linux ver-

sion 8.04, Kernel 2.6.24-19 SMP. 
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of conflicts after preprocessing is shown in Table 3. In all the tests presented in 

this paper, preprocessing and solving by MiniSAT was run for at most 256 

seconds of CPU time; that is, the total runtime per instance is limited to 512 

seconds of CPU time. 
 

 

 

Figure 5. Competitive comparison of preprocessing tools according to runtime†. The runtime of 

preprocessing plus the runtime of solving preprocessed instances are shown. Instances are sorted 

according to the increasing runtime (each preprocessor has its own sorting of instances). The advan-

tage of preprocessSIGMA and saucy-3 is slightly reduced as they both require longer runtime 

for preprocessing than other preprocessors. However, they are still dominant on medium hard to 

very hard instances. On easier instances saucy-3 prevails over preprocessSIGMA but the 

difference is narrowing towards harder instances where saucy-3 often did not finish in the given 

timeout and preprocessSIGMA became better option. 

 
† Notice there are more instances in runtime figures. This is due to the fact that instances where preprocessing 

did not finish are included in runtime figures but they are not included in figures regarding conflicts. 
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The full competitive comparison of the number of conflicts that MiniSAT en-

countered when solving the original instances and preprocessed ones is shown in 

Figure 3. 

There are large improvements and large differences among individual SAT 

preprocessors observable in Table 3 and Figure 3. Hence, preprocessing seems to 

be a powerful tool and the choice of the right preprocessor is a crucial decision 

point with an important performance impact. 

The evaluation implies that preprocessors solely relying on simplification 

through local inferences such as resolution, hyper-resolution, and blocked clause 

elimination – that is HyPre, LiVer, Niver, and BCE – deliver almost no im-

provement on the evaluated set of difficult SAT instances (even worsening in a 

significant number of instances appeared). These results indicate that preprocess-

ing employing local inference rules only is unable to discover and exploit a higher 

level structure encoded in the instance. 

On the other hand, saucy-3 as well as preprocessSIGMA, which both 

employ global reasoning, deliver significant improvements in terms of the number 

of conflicts on preprocessed instances. Hence, global reasoning seems to be bene-

ficial in instances encoding a certain kind of a high level structure. 
 

   
 

 

Figure 6. Additional results regarding runtime – runtime without preprocessing/aggregated im-

provement. 

Left: If merely the SAT solving runtime is accounted then preprocessSIGMA delivers better 

performance in easier to moderately difficult instances than saucy-3. In difficult instances the 

performances of preprocessSIGMA and saucy-3 are matched. 

Right: The improvement of the overall solving time over the whole evaluated set of instances. Only 

preprocessors based on global reasoning – saucy-3 and preprocessSIGMA – deliver consider-

able improvement. Approximately 20% of the original runtime is saved in the case of prepro-

cessSIGMA. 
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In instances of easy to medium difficulty, preprocessSIGMA delivers a 

better positive effect in preprocessing than saucy-3 – up to 100 times less con-

flicts are encountered in instances preprocessed with preprocessSIGMA than 

in the original ones. The difference between preprocessSIGMA and saucy-

3 diminishes in instances of top difficulty (saucy-3 becomes marginally better 

in several instances). 

The results, however, should not be interpreted as that preprocessing by reso-

lution/hyper-resolution is useless. In simpler instances it is typically more benefi-

cial [4] if we take into account a tradeoff between the benefit and computational 

costs. Moreover, we need to consider that the version of MiniSAT we used has 

its own built-in preprocessor SatElite. The results may thus show that simple 

resolution-based preprocessing is not enough to outperform the benefit of the use 

of SatElite (although this claim may require further investigation). 

An experimental evaluation regarding the runtime is shown in Figure 5 and 

Figure 6. It can be observed that if merely solving runtime is measured, then the 

picture is almost the same is in the case of conflicts – preprocessSIGMA and 

saucy-3 clearly outperforms the others (BCE, HyPre, LiVer, and Niver). 

The situation changes if the time for preprocessing is accounted (that is, total run-

time = preprocessing runtime + solving runtime is taken into account). Here 

preprocessSIGMA starts lagging behind all others in easier instances due to its 

long runtime. 

A similar phenomenon but not that profound can be observed for saucy-3, 

which loses against BCE, HyPre, LiVer, and NiVer in easier instances. The 

situation changes in more difficult instances where saucy-3 and prepro-

cessSIGMA perform better than others. Even preprocessSIGMA matches 

saucy-3 on yet more difficult instances. 

If the total runtime for the whole testing suite is considered, we get an interest-

ing comparison: both saucy-3 and preprocessSIGMA save up to 20% of 

the total runtime compared to the situation without preprocessing while the other 

tools (BCE, HyPre, LiVer, and Niver) provide no or marginal improvement 

only. 

Note that the match in overall runtime with saucy-3 in more difficult in-

stances has been achieved despite the not well optimized implementation of 

preprocessSIGMA (this is also the reason why we need to limit the size of the 

tested instances). Regarding the preprocessing time with preprocessSIGMA 

there is a great potential for further improvement. 
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5.2.   B2C-Consistency on Integer Factorization 

An especially good performance was exhibited by our preprocessing tool based 

on B2C-consistency in instances encoding integer factorization problem [3] (sa-

tisfiable instances). The first observation made in these instances is that 

B2C-consistency is able to make many inferences of inconsistent pairs of values 

that can be ruled out in the preprocessed instance afterwards. 

 An additional experimental evaluation showed that the more inconsistent pairs 

of values are inferred, the greater the reduction of the number of conflicts (as well 

as runtime) can be achieved on the resulting instance. However, this property 

contradicts the requirement of bounding the number of B2C-consistency checks 

which is needed to be low to preserve reasonable time consumption (if we want to 

infer as many inconsistent pairs of values as possible we should perform as many 

consistency checks as possible). Hence, there is still room for improvement on 

integer factorization problems using fine tuning of the parameters of B2C-

consistency such as the allowed number of constraint checks. 

The competitive results regarding the integer factorization problem are shown 

in Figure 7. Clearly, preprocessSIGMA is the best for almost all the instances 

in terms of the number of conflicts it can save. Surprisingly, saucy-3 did not 

finish preprocessing for approximately half of the instances in the given timeout 

of 256 seconds. Regarding relative improvement, it rarely happens that the tested 

preprocessors cause worsening (only LiVer and NiVer exhibited this behavior 

marginally). 

If we look at the overall runtime, saucy-3 loses due to its frequent depleting 

the timeout. Another observation is that accounting preprocessing time does not 

change the picture of relative performance so much as the solving time for the 

instances is quite long compared to the preprocessing time. 

The cumulative runtime improvement achieved by preprocessSIGMA on 

integer factorization instances is 27.84% compared to 19.13% on the complete 

set of testing instances. 

A surprising result has been obtained for saucy-3 which was unexpectedly out-

performed by all the local inference based preprocessors BCE, HyPre, LiVer, 

and NiVer. 
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Figure 7. Competitive evaluation in an instance encoding the integer factorization problem. 

Upper left: The absolute number of conflicts that MiniSAT 2.2 has encountered in instances 

encoding integer factorization [3] after preprocessing by tested SAT preprocessors is shown. Clear-

ly, preprocessSIGMA provides the best performance while saucy-3 surprisingly lost to all the 

preprocessors. BCE seems to be a good option on integer factorization although it delivers mediocre 

performance on other instances from the tested set. 

Upper right: Improvement ratio in terms of the number of conflicts is shown. Instances are sorted 

in the same order as in the previous figure. 

Lower left: Runtime measurement also includes instances where saucy-3 did not finish in the 

given timeout of 256.0 seconds which is approximately half of the instances encoding integer facto-

rization. 

Lower right: The aggregated improvement achieved by preprocessSIGMA in the overall run-

time is 100.00 − 72.16 = 27.84% on integer factorization. The second best BCE lost by a signifi-

cant margin of almost 20% to the winner. 
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5.3.   Experimental Evaluation of the Variables Selection Process 

The last part of the experiments was devoted to an evaluation of the selection of 

variables for consistency checks. This evaluation is important in order to verify 

whether all the internal processes of B2C-consistency worked as expected. This 

aspect concerns mainly the selection of a list of variables for the consistency 

check. 

The expected number of satisfied tuples of values over the variables selected 

by Algorithm 3 with the setup of  휀𝐿 , 휀𝑈 =  3.0,32.0  over all the consistency 

checks on the tested instances has the following probabilistic characteristics – 

minimum, first quartile, median, third quartile, maximum equal to 2.131, 14.899, 

27.562, 130.149, and 1,141,710.567 respectively (in this test only instances 

from SATLib were used). A more detailed insight into the distribution of the ex-

pected number of satisfied tuples of values over selected variables is provided in a 

partial histogram shown in Figure 8. 
 

 

 
 

Figure 8. Partial histogram of the expected number of satisfied tuples (휀). The histogram characte-

rizes the selection of variables made by Algorithm 3 over all the testing SAT instances and all the 

B2C-Consistency checks. Only the part up to the 3rd quartile is shown. It can be observed that most 

of the selections of tuples of variables have the expected number of satisfied tuples of values within 

the interval  휀𝐿 , 휀𝑈 =  3.0,32.0  as it was required. 
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5.4.   Summary of Experimental Evaluation 

If we summarize the results of the experimental evaluation we can state that 

B2C-consistency with the proposed process for the selection of variables 

represents a powerful technique that can be used as a basis of a SAT preprocess-

ing tool. Our experimental evaluation has proven that prototype preprocessing 

tool preprocessSIGMA based on B2C-consistency is fully competitive with 

respect to the existent prominent SAT preprocessing tools in terms of saving the 

number of conflicts as well as in terms of the overall runtime. Competitiveness in 

terms of runtime has been achieved despite the not well optimized implementa-

tion of the prototype. 

An especially good performance was exhibited by preprocessSIGMA in 

instances encoding integer factorization problems where there is still room for 

fine tuning the parameters of B2C-consistency to achieve yet better performance. 

The evaluation of the internal characteristics of our prototype preprocessing 

tool – namely the evaluation of the process of selection of the list of variables for 

consistency check – indicates a good match with theoretical expectations. 

6.   Conclusion and Future Work 

In this paper, a new type of consistency called B2C-consistency (bounded 

(2,𝑘)-consistency) for use in Propositional satisfiability (SAT) has been pre-

sented. This new consistency has been inspired by both global constraints and 

local consistency. Basically, it is (2, 𝑘)-consistency with the bounded number of 

search steps for proving inconsistency enriched by reasoning over complete sub-

graphs of pair-wise conflicting literals. Reasoning over complete sub-graphs in-

troduces a global aspect into proving inconsistency and it can improve the consis-

tency enforcing process significantly especially in SAT instances encoding the 

well known P/H principle (pigeon/hole principle) and similar principles which are 

known to be difficult for a standard solving process based on search. 

The whole design of new consistency is explained in the context of modeling 

SAT as a constraint satisfaction problem (CSP) using the so-called explicit literal 

encoding (that is, literal encoding with explicit clauses obtained by singleton unit 

propagation). 

Next we investigated probabilistic properties of the so-called generalized P/H 

principle – particularly the expected number of satisfied (consistent) tuples of 

values with respect to a tuple of the selected variables for consistency check. The 

investigation showed that a certain distribution of the expected number of satis-

fied tuples is characteristic for the P/H principle where many inconsistent tuples 
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of values can be found. Therefore we proposed a process for the selection of va-

riables which is trying to select variables so that the corresponding expected num-

ber of satisfied tuples of variables has a similar probabilistic distribution as in the 

case of the P/H principle. Using this process, we are trying to identify difficult 

sub-problems (such as the P/H principle) that can be yet resolved by 

B2C-consistency. 

To evaluate our proposal we implemented B2C-consistency and the process of 

selection of variables within the prototype SAT preprocessing tool prepro-

cessSIGMA. The experiments have confirmed that B2C-consistency and the 

variable selection process are beneficial and that we are able to select variables 

for consistency checks with similar probabilistic characteristics as in the case of 

the generalized P/H principle. The competitive evaluation on a set of 344 SAT 

instances from SATLib, SAT Competition 2003/2004 and 2007/2009 (mixture of 

satisfiable and unsatisfiable) showed that preprocessSIGMA delivers better 

results than the existent preprocessing tools BCE, HyPre, LiVer, and Niver 

which are based on local reasoning and comparable results to saucy-3 based on 

symmetry breaking. In instances encoding the integer factorization problem pre-

processSIGMA performed as far the best of all the tested preprocessing tools. 

Moreover, preprocessSIGMA has some advantages with respect to the compa-

rable saucy-3. It is easier to implement – in saucy-3, graph isomorphism 

which, in itself, is a difficult problem needs to be solved – and it has many para-

meters that can be further fine tuned. Note that we have achieved a competitive 

performance despite the not well optimized implementation of preprocess-

SIGMA.   

There are several interesting questions for future work. At present, we used a 

characterization of the distribution of an expected number of satisfied tuples of 

values with two parameters – the lower and the upper bound. It would be interest-

ing to use more parameters to control the shape of the resulting distribution over 

all the consistency checks more precisely. 

Another interesting investigation may be done with a repeated use of 

B2C-consistency. Consider a preprocessed instance to be preprocessed once 

again. Unfortunately, this approach is impractical at the current implementation 

stage as the setup of preprocessing is relatively time-consuming, and in order to 

preserve relatively acceptable competitiveness we cannot afford to run the process 

more than once. However, a more efficient implementation may change the situa-

tion. 
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Abstract. Solving cooperative path finding (CPF) by translating it to propositional 

satisfiability represents a viable option in highly constrained situations. The task 

in CPF is to relocate agents from their initial positions to given goals in a colli-

sion free manner. In this paper, we propose a reduced time expansion that is fo-

cused on makespan sub-optimal solving. The suggested reduced time expansion 

is especially beneficial in conjunction with a goal decomposition where agents 

are relocated one by one. 

Keywords: cooperative path finding, propositional satisfiability, time expansion 

graphs, vertex disjoint paths 

1.  Introduction and Motivation 

The problem of cooperative path-finding (CPF) [Kornhauser et al., 1984; Silver, 

2005, Ryan, 2008] is a graph theoretical abstraction for many real life problems 

where the task is to cooperatively relocate a group of robots or other movable 

objects in a collision free manner. Each agent of the group is given its initial and 

goal position in the environment. The problem consists in constructing a spatial 

temporal plan for each agent by which it can relocate from its initial position to 

the given goal. The environment where agents move is modeled as an undirected 

mailto:pavel.surynek@mff.cuni.cz
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graph [Kornhauser et al., 1984] where vertices represent locations and edges 

represent possibility of relocation between two locations. 

 Agents are represented as abstract items placed in vertices while at most one 

agent is located in each vertex. An agent can instantaneously relocate itself to the 

neighboring vertex assumed the target vertex is unoccupied and no other agent is 

trying to enter the same target vertex. 

 In this research, we further develop solving of CPF by translating it to proposi-

tional satisfiability (SAT) [Biere et al., 2009]. Recent propositional encodings 

[Surynek, 2012a, 2012b, 2013, 2014] of CPF are based on time expansion of the 

graph modeling the environment so that the encoding is able to represent ar-

rangements of agents over the graph at all the time steps up to the final one. Since 

there may be many time-steps before all the agents reach their goals, these encod-

ings may become extremely large and hence unsolvable in reasonable time. We 

are trying to overcome this limitation by reducing the expansion of the graph in 

this work. 

1.1. Context of Related Works 

The approach to solve CPF by reducing it to SAT has multiple alternatives. There 

exist algorithms based on search that find makespan optimal or near optimal solu-

tions. The seminal work in this category is represented by Silver’s WHCA* algo-

rithm [Silver, 2005]. Recent contributions include OD+ID [Standley and Korf, 

2011], which is a combination of A* and powerful agent independence detection 

heuristics, and ICTS [Sharon et al., 2013] which employs the concept of increas-

ing cost tree (instead of makespan, the total cost of solution is optimized). Other 

approaches resolve conflicts among robot trajectories when avoidance is neces-

sary [Čáp et al., 2013; Barer et al., 2014; Wagner and Choset, 2015]. 

 Fast polynomial time algorithms for generating makespan suboptimal solu-

tions include PUSH-AND-ROTATE [de Wilde et al., 2014]. The drawback of 

these algorithms is that their solutions are dramatically far from the optimum. 

 Translation of CPF to a different formalism, namely to answer set program-

ming (ASP), has been suggested in [Erdem et al., 2013]. Integer programming 

(IP) as the target formalism has been also used [Yu and LaValle, 2013]. The 

choice of SAT as the target formalism is very common in domain independent 

planning where the idea of time expansion [Kautz and Selman, 1999; Huang et 

al., 2010] and its reductions [Wehrle and Rintanen, 2007] are studied. 
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2.  Formal Definition of CPF 

An arbitrary undirected graph 𝐺 =  𝑉, 𝐸  can be used to model the environment 

where agents are moving. The placement of agents in the environment is modeled 

by assigning them vertices of the graph. Let 𝐴 = {𝑎1 , 𝑎2 , …,  𝑎𝜇 } be a finite set of 

agents, then, an arrangement of agents in vertices of graph 𝐺 is fully described by 

a location function 𝛼: 𝐴 ⟶ 𝑉. At most one agent can be located in each vertex; 

that is 𝛼 is uniquely invertible. 

 

Definition 1 (COOPERATIVE PATH FINDING). An instance of cooperative 

path-finding problem is a quadruple Σ = [𝐺 =  𝑉, 𝐸 , 𝐴, 𝛼0 , 𝛼+] where location 

functions 𝛼0 and 𝛼+ define the initial and the goal arrangement of a set of agents 

𝐴 in 𝐺 respectively. □ 

  

 The dynamicity of the model supposes a discrete time divided into time steps. 

An arrangement 𝛼𝑖  at the 𝑖-th time step can be transformed by a transition action 

which instantaneously moves agents in the non-colliding way to form a new ar-

rangement 𝛼𝑖+1. The transition between 𝛼𝑖  and 𝛼𝑖+1 must satisfy the following 

validity conditions: 

 

 ∀𝑎 ∈ 𝐴  either 𝛼𝑖(𝑎) = 𝛼𝑖+1(𝑎) or {𝛼𝑖(𝑎), 𝛼𝑖+1(𝑎)} ∈ 𝐸  

   (agents move along edges or not move at all), 

 ∀𝑎 ∈ 𝐴  𝛼𝑖(𝑎) ≠ 𝛼𝑖+1(𝑎) ⇒  ∀𝑏 ∈ 𝐴 𝛼𝑖 𝑏 ≠ 𝛼𝑖+1 𝑎    

   (agents move to vacant vertices only), and 

 ∀𝑎, 𝑏 ∈ 𝐴  𝑎 ≠ 𝑏 ⇒ 𝛼𝑖+1(𝑎) ≠ 𝛼𝑖+1(𝑏) 

   (no two agents enter the same target/unique 

   invertibility of resulting arrangement). 

 

The task in cooperative path finding is to transform 𝛼0 using above valid transi-

tions to 𝛼+. An illustration of CPF and its solution is depicted in Figure 1. 

 

Definition 2 (SOLUTION, MAKESPAN). A solution of a makespan 𝑚 to a co-

operative path finding instance Σ = [𝐺, 𝐴, 𝛼0 , 𝛼+] is a sequence of arrangements 

𝑠 = [𝛼0 , 𝛼1 , 𝛼2 , … , 𝛼𝑚 ] where 𝛼𝑚 = 𝛼+ and 𝛼𝑖+1 is a result of valid transition 

from 𝛼𝑖  for every 𝑖 = 1,2, … , 𝑚 − 1 . □ 

 

 It is known that finding makespan optimal solution to CPF is NP-hard [Ratner 

and Warmuth, 1986]. 
 

(1) 

(2) 

(3) 



Reduced Time-Expansion Graphs and Goal Decomposition for Solving CPF Sub-optimally 198 

 

 

 

 

Figure 1. Cooperative path-finding (CPF) on a 4-connected grid. The task is to relocate three 

agents 𝑎1, 𝑎2, and 𝑎3 to their goal vertices so that they do not collide with each other. A solution 𝑠  
of makespan 4 is shown. 

3.  (Sub)optimization in CPF via SAT 

The approach we are suggesting here to obtain parameter optimal solutions is to 

employ propositional satisfiability (SAT) solving as the key technology. This 

approach has been already successfully applied in obtaining makespan optimal 

plans in domain-independent planning [Kautz and Selman, 1999; Huang et al., 

2010] as well as in CPF [Surynek, 2013].  

  

  
Algorithm 1. SAT-based parameter optimal CPF solving – sequential increasing strategy. The 

algorithm sequentially finds the smallest possible makespan 𝜂 for that a propositional encoding of a 

given CPF Σ = (𝐺, 𝐴, 𝛼0, 𝛼+) is solvable. 

 input:   Σ – a CPF instance 

 output:  a pair consisting of the optimal parameter and 

     corresponding parameter optimal solution 

 

function Find-Optimal-Parameter (Σ = (G, 𝐴, 𝛼0, 𝛼+)): pair 

1:  𝜂 ← 1 

2  loop 

3:   𝐹(Σ, 𝜂) ←Encode-CPF-as-SAT (𝛴, 𝜂) 

4:   if Solve-SAT (𝐹(Σ, 𝜂)) then 

5:    let 𝑓 be a satifying valuation of 𝐹(Σ, 𝜂) 

6:    return (𝜂, 𝑓) 

7:   𝜂 ← 𝜂 + 1 

8:  return (∞, ∅) 

 

CPF Σ=(G, {a1,a2,a3}, α0, α+) 
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 In case of CPF, a propositional formula 𝐹(Σ, 𝜂) such that it is satisfiable if and 

only if a given CPF Σ with makespan bound 𝜂 is solvable can be constructed. 

Being able to construct such a formula 𝐹(Σ, 𝜂) one can obtain the optimal makes-

pan for the given CPF Σ by asking multiple queries whether formula 𝐹(Σ, 𝜂) is 

satisfiable with different makespan bounds 𝜂. 

 Various strategies of the parameter for queries exist for getting the parameter 

optimal solution. The simplest is to try sequentially makespans 𝜂 = 1,2, … until 𝜂 

is equal to the optimum (minimum). This strategy will be further referred as se-

quential increasing. Pseudo-code of the strategy is listed as Algorithm 1.  

4.  Reduced Time Expansion Graph 

The main drawback of makespan optimal CPF solving via SAT is the large size of 

the formulae that encode the optimization questions [Surynek, 2013, 2014]. The 

size of encoding formulae becomes especially prohibitive when they encode ques-

tions if a solution with a large makespan exists. This is due to the fact that exist-

ing encodings expands the graph modeling the environment over the time up to 

the given makespan bound 𝜂. At each time step of the expansion arrangement of 

agents over the graph is represented and constraints ensure that only transitions 

conforming to validity conditions are possible between arrangements at consecu-

tive time steps. 

 Our idea hence was to reduce the time expansion with possible relaxation of 

the requirement of makespan optimality of the solution. The key observation is 

that if there is no need of any complex avoidance between agents (there is no need 

to visit a single vertex multiple times), no time expansion of the graph is neces-

sary at all. The question if there is a solution (not necessarily makespan optimal) 

can be stated as a question of existence of vertex disjoint paths connecting initial 

positions of agents with their goals in the original graph. Translating of this ques-

tion into SAT is possible as well. 

 Nevertheless, in real situations movement interactions among agents require 

complex avoidance. A single vertex may need to be visited multiple times. This 

led us to the suggestion of a concept of reduced time expansion graph, which 

combines the expansion reduction with ability to represent complex avoidance. 

 

Definition 3 (REDUCED TIME EXPANSION GRAPH - rExpT(𝐺, 𝜗)). Let 

𝐺 = (𝑉, 𝐸) be an undirected graph and 𝜗 ∈ ℕ. A reduced time expansion graph 

with 𝜗 time layers associated with 𝐺 is a directed graph rExpT 𝐺, 𝜗 = (𝑉 ×
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{1,2, … , 𝜗}, 𝐸′) where 𝐸′ = {( 𝑢, 𝑙 ,  𝑣, 𝑙 )| 𝑢, 𝑣 ∈ 𝐸; 𝑙 = 1,2, … , 𝜗} ∪ 

{( 𝑣, 𝑙 ,  𝑣, 𝑙 + 1 ) | 𝑙 = 1,2, …, 𝜗 − 1}. □ 

 

 Note, that for each original undirected edge there are two directed arcs in both 

directions in the reduced time expansion graph. A time-layer in the reduced time 

expansion graph is an induced sub-graph of rExpT 𝐺, 𝜗  over the set of vertices 

𝑉 × {𝑙} for a given 𝑙 ∈ {1,2, … , 𝜗}. 

 Solving of CPF Σ = [𝐺, 𝐴, 𝛼0 , 𝛼+] can be viewed as a search for vertex disjoint 

paths in rExpT 𝐺, 𝜗  that connect initial positions and goals in the first and the 

last time-layer respectively provided that the number of time-layers 𝜗 is suffi-

ciently high. The idea is illustrated in Figure 2. 

 

 

Figure 2. An example of CPF and its solving through reduced time expansion graph. A reduced 

time expansion graph rExpT(𝐺, 3) consisting of 3 time layers is build for a given CPF Σ. A solution 

to Σ corresponds to a collection of vertex disjoint paths connecting the initial positions agents in the 

first layer with their goal positions in the last time layer. 

4.1. 𝜗-RELAXED Propositional Encoding 

The correspondence between the existence of vertex disjoint paths and the exis-

tence of a solution of CPF established in the previous section provides a guide 

how to design required propositional encoding. We merely need to design a prop-
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ositional formula preferably in conjunctive normal form (CNF) [Biere et al., 

2009] that is satisfiable if and only if vertex disjoint paths connecting initial posi-

tion and goals exist in rExpT(𝐺, 𝜗) for 𝜗 ∈ ℕ. 

 Intuitivelly, the size and the structure of the resulting formula matters when it 

is solved by a SAT solver. Our choice was to design an encoding that is space 

efficient and contains short clauses. Note that short clauses support unit propaga-

tion [Biere et al., 2009]. 

 The encoding is separated into two parts. The first part is purely propositional 

and consists of variables that express selection of vertices and edges into paths – 

this can be also regarded as occupancy/selection of path by a flow of commodity. 

The inspiration for this design comes from the theory of network flows [Ahuja et 

al., 1993]. The absence of necessity to distinguish between individual agents 

enables expressing the requirement that paths should be vertex disjoint as simple 

capacity constraints. 

 The distinguishable agents are treated in the second part of the model where a 

bit vector using binary encoding is associated with each vertex in rExpT(𝐺, 𝜗) to 

express what agent is occupying that. The benefit of using bit-vectors is that 

equality can be easily expressed over them. Both parts are put together by intro-

ducing a constraint that requires occupation by the same agent at both ends of a 

selected edges. Formally, the encoding – which we called 𝜗-RELAXED – is in-

troduced in the following definition. 

 

Definition 4 (𝜗-RELAXED encoding - 𝐹𝜗−𝑅𝐸(Σ)). Let Σ = [𝐺, 𝐴, 𝛼0 , 𝛼+] be a 

CPF  with 𝐺 = (𝑉, 𝐸). A 𝜗-RELAXED encoding for CPF Σ consists of the follow-

ing collections of variables for every time layer 𝑙 ∈ {1,2, … , 𝜗}: finite domain 

variables 𝒜𝑣
𝑙 ∈ {0,1, … , 𝜇} for every 𝑣 ∈ 𝑉 (that are encoded as bit vectors), 

propositional variables 𝒳𝑣
𝑙  for every 𝑣 ∈ 𝑉, and propositional variables ℰ𝑢 ,𝑣

𝑙  for 

every ordered pair 𝑢, 𝑣 such that  𝑢, 𝑣 ∈ 𝐸 (that is, for a single edge  𝑢, 𝑣 ∈ 𝐸 

and 𝑙 we have two propositional variables ℰ𝑢 ,𝑣
𝑙  and ℰ𝑣,𝑢

𝑙 ). Additionally, there is a 

set of propositional variables ℰ𝑣
𝑙  for every every 𝑣 ∈ 𝑉 and 𝑙 ∈ {1,2, … , 𝜗 − 1} 

representing interconnections between time layers. Constraints of 𝜗-RELAXED 

encoding are as follows: 

 

  𝒜𝑣
𝑙 ≠ 0 ⇒ 𝒳𝑣

𝑙    for every 𝑣 ∈ 𝑉 and 

        𝑙 ∈ {1,2, … , 𝜗} 

  (if there is some agent in a vertex then the 

  vertex is non-empty) 

(4) 
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  ℰ𝑢 ,𝑣
𝑙 ⇒ 𝒳𝑢

𝑙 ∧ 𝒳𝑣
𝑙    for every  𝑢, 𝑣 ∈ 𝐸 

         and 𝑙 ∈ {1,2, … , 𝜗} 

  ℰ𝑣
𝑙 ⇒ 𝒳𝑣

𝑙 ∧ 𝒳𝑣
𝑙+1  for every 𝑣 ∈ 𝑉 and 

         𝑙 ∈ {1,2, … , 𝜗 − 1} 

  (if an edge within a time layer or between time layers 

  is non-empty then its both ends are non-empty) 

   ℰ𝑢 ,𝑣
1

𝑢|{𝑢 ,𝑣}∈𝐸    for every 𝑣 ∈ 𝑉 such that 

          ∃𝑎 ∈ 𝐴 𝛼0 𝑎 = 𝑣 

  (for every source vertex at the first time layer 

  all the incoming directed edges are empty) 

   ℰ𝑢 ,𝑣
𝜗

𝑣|{𝑢 ,𝑣}∈𝐸    for every 𝑢 ∈ 𝑉 such that 

          ∃𝑎 ∈ 𝐴 𝛼+ 𝑎 = 𝑢 

  (for every destination vertex at the last time layer 

  all the outgoing directed edges are empty)  

   ℰ𝑢 ,𝑣
𝑙 ⇒ 𝒜𝑢

𝑙 = 𝒜𝑣
𝑙    for every  𝑢, 𝑣 ∈ 𝐸 and 

         𝑙 ∈ {1,2, … , 𝜗} 

  ℰ𝑣
𝑙 ⇒ 𝒜𝑣

𝑙 = 𝒜𝑣
𝑙+1  for every 𝑣 ∈ 𝑉 and 

         𝑙 ∈ {1,2, … , 𝜗 − 1} 

  (if an edge is non-empty then there is the 

  same agent at its both endpoints) 

  𝒳𝑢
𝑙 ⇒  ℰ𝑢 ,𝑣

𝑙  𝑣|{𝑢 ,𝑣}∈𝐸 ∨ ℰ𝑢
𝑙    for every 𝑢 ∈ 𝑉 and 

             𝑙 ∈ {1,2, … , 𝜗 − 1} 

   ℰ𝑢 ,𝑣
𝑙  𝑣|{𝑢 ,𝑣}∈𝐸 + ℰ𝑢

𝑙  ≤ 1 

  (if a vertex is non-empty at a time layer other than 

  the last one then exactly one of its outgoing edges is 

  non-empty as well) 

  𝒳𝑢
𝜗 ⇒  ℰ𝑢 ,𝑣

𝜗  𝑣|{𝑢 ,𝑣}∈𝐸    for every 𝑢 ∈ 𝑉 such that  

   ℰ𝑢 ,𝑣
𝜗  𝑣|{𝑢 ,𝑣}∈𝐸  ≤ 1    ∀𝑎 ∈ 𝐴 𝛼+ 𝑎 ≠ 𝑢 

  (if a non-destination vertex at the last time layer is 

  non-empty then exactly one of its outgoing edges is 

  non-empty as well) 

  𝒳𝑣
𝑙 ⇒  ℰ𝑢 ,𝑣

𝑙
𝑢 |{𝑢 ,𝑣}∈𝐸 ∨ ℰ𝑣

𝑙−1  for every 𝑣 ∈ 𝑉 and  

            𝑙 ∈ {2,3, … , 𝜗} 

   ℰ𝑢 ,𝑣
𝑙  𝑢|{𝑢 ,𝑣}∈𝐸 + ℰ𝑣

𝑙−1 ≤ 1 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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  (if a vertex is non-empty at a time layer other than  

  the first one then exactly one of its incoming edges is 

  non-empty as well). 

  𝒳𝑣
1 ⇒  ℰ𝑢 ,𝑣

1
𝑢|{𝑢 ,𝑣}∈𝐸    for every 𝑣 ∈ 𝑉 such that 

   ℰ𝑢 ,𝑣
1  𝑢|{𝑢 ,𝑣}∈𝐸 ≤ 1   ∀𝑎 ∈ 𝐴 𝛼0 𝑎 ≠ 𝑣 

  (if a non-source vertex at the first layer is non-empty 

  then exactly one of its incoming edges is non-empty as well). □ 

 

Initial and goal arrangements are expressed as constraints over variables of the 

first and the last time layer. Note that some agents do not need to be assigned any 

goal if we do not care about their final positions. 

 The resulting formula of the 𝜗-RELAXED encoding in the CNF form will be 

denoted as 𝐹𝜗−𝑅𝐸(Σ). Without proof let us summarize the size of the encoding. 

 

Proposition 1 (𝝑-RELAXED ENCODING SIZE). The number of propositional 

variables in 𝐹𝜗−𝑅𝐸(𝛴) is 𝒪(𝜗 ∙ ( 𝑉 ∙  log2(𝜇 + 1) +  𝐸 )) and the number of 

clauses is 𝒪(𝜗 ∙ (( 𝑉 +  𝐸 ) ∙  log2(𝜇 + 1) +  𝑉 3)).  

 

 A set 𝛱 = {𝜋1 , 𝜋2, … , 𝜋𝜇 } of vertex disjoint paths in rExpT(G, ϑ) so that 𝜋𝑖  

connects [𝛼0(𝑎𝑖),1] with [𝛼+(𝑎𝑖), 𝜗] for 𝑖 = 1,2, … , 𝜇 exists if and only if 

𝐹𝜗−𝑅𝐸(𝛴) is satisfiable. The extraction of a solution of CPF Σ from a satisfying 

valuation of 𝐹𝜗−𝑅𝐸(𝛴) is shown using pseudo-code as Algorithm 2. 

 The algorithm tracks moves of agents towards their exits from the current time 

layer of the reduced time expansion graph during which the solution 𝛼 is record-

ed. Note, that in each time layer the time step at which agents exit the layer is 

synchronized among all the agents (that is, agents exit at the same time step). It 

may therefore occur that agents wait for the last agent to finish its movements in 

the layer before they exit the layer together into the next one. The algorithm al-

lows us to state the following theorem (proof is omitted). 

 

Theorem 1 (SOLUTION OF Σ AND 𝐹𝜗−𝑅𝐸(Σ) SATISFACTION). A solution of a 

CPF Σ = (𝐺, 𝐴, 𝛼0 , 𝛼+) with 𝐴 = {𝑎1 , 𝑎2 , … , 𝑎𝜇 } exists if and only if there 

ist 𝜗 ∈ ℕ for that formula 𝐹𝜗−𝑅𝐸(Σ) is satisfiable.  

  

 The original goal to reduce the size of the encoding by reducing the expansion 

of 𝐺 is fulfilled by the fact that ϑ-RELAXED encoding needs no more time-layers 

than encodings for makespan optimal CPF solving. Moreover, there are cases 

where ϑ-RELAXED encoding needs significantly fewer time expansions – see 

(17) 

(18) 
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example in Figure 2 where 3 time expansions are needed in ϑ-RELAXED encod-

ing while makespan optimal encodings need 8 time expansions. 
 

Algorithm 2. Solution extraction algorithm for 𝜗-RELAXED encoding. A sequence of arrangements 

of agents forming a solution of given CPF Σ is extracted from satisfying valuation 𝑓of formula 

𝐹𝜗−𝑅𝐸(Σ) representing 𝜗-RELAXED encoding of Σ. 

 input:  Σ – an instance of CPF 

    𝜗 – the number of time layers in 𝜗-RELAXED encoding 

    𝑓 – a satisfying valuation of 𝐹𝜗−𝑅𝐸(Σ) 

 output: makespan and sequence of arrangements of agents 

    forming the solution 𝛼0, 𝛼1,..., 𝛼+ 

 

function Extract-Solution-𝜗-RELAXED (Σ = [𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+], 𝜗, 𝑓): pair 

1:  𝜂max ← 0 // time step at which movements at a time layer 

     // are finished 

2:  for each 𝑙 = 1,2, … , 𝜗 do 

3:   𝜂min ← 𝜂max   // time step at which movements 

        // at a time layer start 

4:   for each 𝑎 ∈ 𝐴 do 

5:    𝜂 ← 𝜂min  

6:     𝑢 ← 𝛼𝜂min
(𝑎) 

7:    while (𝑙 ≠ 𝜗 and 𝑓 ℰ𝑢
𝑙  = 𝐹𝐴𝐿𝑆𝐸) 

     or (𝑙 = 𝜗 and 𝑢 ≠ 𝛼+(𝑎)) do 

8:     𝛼≥𝜂 (𝑎) ← 𝑢 // agent 𝑎 will be located in 𝑢 

         // at all the time steps ≥ 𝜂 

9:      for each 𝑣 ∈ 𝑉 such that {𝑢, 𝑣} ∈ 𝐸 do 

10:      if 𝑓 ℰ𝑢 ,𝑣
𝑙  = 𝑇𝑅𝑈𝐸 then 

11:       𝑢 ← 𝑣 

12:     𝜂 ← 𝜂 + 1 

13:    𝜂max ← max(𝜂max , 𝜂) 

14:    𝛼≥𝜂  𝑎 ← 𝑢 

15:  return (𝜂max ,  𝛼0, 𝛼1 , … , 𝛼𝜂max
 ) 

 

Proposition 2 (ADVANTAGE OF  𝝑-RELAXED ENCODING). Let 𝜂 be an 

optimal makespan achievable in a CPF Σ. Then 𝐹𝜗−𝑅𝐸(Σ) is solvable for 𝜗 ≤ 𝜂. 

Moreover, there exists a CPF instance Σ where strict inequality 𝜗 < 𝜂 holds.  

 

 The number of time layers in ϑ-RELAXED encoding that grants finding a 

solution corresponds rather to the intensity of interactions among agents. Hence to 

further reduce the size of the encoding via reducing the number of time layers we 

suggest decomposing solving of a given CPF Σ into solving multiple CPFs in 

which intesity of interactions among agents is low and thus they can be solved by 

satifying ϑ-RELAXED encoding formulae consisting of few time layers. 
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 The suggested decomposition corresponds to placing agents to their goals one 

by one while individual CPFs represents relocating a single agent where positions 

of previously placed agents are preserved. The process is called UniAGENT solv-

ing and it is formally described as Algorithm 3. 

 Without proof let us state that the UniAGENT method is sound; that is, it al-

ways finds a solution provided a solution exists. This is due to the fact, that we do 

constrain only agents that have been placed so far while remaining agents can be 

placed arbitrarily. This in theory tells that all the sub-goals determined by single 

agent placement are feasible. 
 

Algorithm 3. UniAGENT SAT-based CPF solving. Agents (robots) are placed to their goals one by 

one. Relocation of a single agent to its goal is solved as an individual CPF using 𝜗-RELAXED 

encoding  where already placed agents preserve their positions. Relatively small difference between 

the initial arrangement and goal in single agent relocation CPFs allows to solve them with few time 

layers in the reduced time expansion graph. 

 input:  Σ – an instance of CPF 

 output: makespan and a sequence of arrangements of agents 

    of arrangements of agents forming the solution 

 

function Solve-UniAGENT (Σ = [𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0 , 𝛼+]): pair 

1:  let 𝐴 = {𝑎1 , 𝑎2, … , 𝑎𝜇 } 

2:  𝜂max ← 0 

3:  for each 𝑖 = 1,2, … , 𝜇 do 

4:   𝛽0 ← 𝛼𝜂max
 

5:   for each 𝑗 = 1,2, … , 𝑖 − 1 do 

6:    𝛽+(𝑎𝑗 ) ← 𝛼𝜂max
(𝑎𝑗 ) 

7:   𝛽+(𝑎𝑖) ← 𝛼+(𝑎𝑖) 

8:   (𝜗, 𝑓) ← Find-Optimal-Parameter (Φ =  𝐺, 𝐴, 𝛽0 , 𝛽+ ) 

9:   (𝜂, 𝑠 ) ← Extract-Solution-𝜗-RELAXED (Φ, 𝜗, 𝑓) 

10:   for each 𝑘 = 0,1, … , 𝜂 − 1 do 

11:    𝛼𝜂max +𝑘 ← 𝑠 [𝑘] 

12:   𝜂max ← 𝜂max + 𝜂 

13: return (𝜂max ,  𝛼0, 𝛼1, … , 𝛼𝜂max
 ) 

  

 In our minor experiments, we found that the ϑ-RELAXED encoding is very 

easy to solve if there are few time layers but it gets rapidly harder with the in-

creasing number of time layers. The number of time layers necessary to reach the 

solvability when a single agent is relocated is typically very low (usually 1 to 3 

time layers). Moreover, the makespan of solutions generated by the UniAGENT 

solving process is similar to that of generated by solving the ϑ-RELAXED encod-

ing where all the agents are relocated at once in cases where we managed to solve 
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the ϑ-RELAXED encoding. These observations together justifies the use of the 

new encoding as suggested in the UniAGENT solving process. 

5.  Experimental Evaluation 

Series of experiments have been conducted in order to evaluate the suggested 

propositional ϑ-RELAXED encoding and UniAGENT solving process that is 

based on it. 

 The comparison has been done with existent encodings for makespan optimal 

CPF solving – INVERSE, ALL-DIFFERENT, DIRECT, MATCHING, and SIM-

PLIFIED [Surynek, 2012a, 2012b, 2014]. To include other than SAT-based me-

thods, the comparison with A*-based OD+ID [Standley and Korf, 2011] for ma-

kespan optimal solving is also presented. Makespan suboptimal methods are 

represented by WHCA* [Silver, 2005] in our comparison. 

 We used benchmarks suggested in [Silver, 2005] which consist of randomly 

generated CPF instances over 4-connected grids with randomly placed obstacles. 

There are also randomly placed obstacles by which 20% of all the vertices are 

occupied. An important module in the whole solving process is a SAT solver. 

Glucose version 3.0 [Audemard and Simon, 2013] has been used in the expe-

rimental evaluation. 

5.1. Encoding Size Comparison 

The important characteristic of propositional formulae with respect to the speed of 

their solving is their size while small is preferable (the size is represented by the 

number of variables and clauses in our case). 

 Selected results are shown in Table 1. Size measurement is done on 4-

connected grid and for various numbers of agents in the environment. For each 

number of agents 10 random instances were generated and average value for 

each characteristic is presented. 

 It can be observed from presented results that the ϑ-RELAXED encoding is 

the smallest in terms of the number of clauses and the second smallest in terms of 

the number of variables just after the MATCHING encoding. The average clause 

length also indicates that most of clauses are binary. 

 Note, that formulae for all the encodings were generated with the same number 

of time-layers. In most cases however, 𝜗-RELAXED encoding needs fewer time-

layers to achieve solvability. 
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Table 1. Size comparison of encodings over 8⨯8 grid. INVERSE, ALL-DIFFERENT, DIRECT, 

MATCHING, SIMPLIFIED [Surynek, 2012a, 2012b, 2014] and 𝜗-RELAXED encodings  are com-

pared. CPF instances are generated over the 4-connected grid of size 8⨯8 with 20% of cells occu-

pied by obstacles. Makespan bound 𝜂 and the number of time layers in reduced time expansion 

graph 𝜗 is always 16. The number of variables and clauses, the ratio of the number of clauses and 

the number of variables, and the average clause length are listed for different sizes of the of agents 

𝐴. The advantage of 𝜗-RELAXED encoding is that it is relatively small compared to other encodings. 

Grid 8⨯8 
INVERSE ALL-DIFFERENT DIRECT MATCHING SIMPLIFIED θ-RELAXED 

|Agents| 

1 
#Variables 

#Clauses 
Ratio 

Length 

8 358.7 
31 327.9 

3.748 
2.616 

1 489.3 
7 930.4 

5.325 
3.057 

814.4 
23 241.9 

28.539 
2.149 

4 520.3 
25 881.1 

5.710 
2.441 

1 628.8 
3 384.6 

2.078 
2.550 

4 645.1 
 20 246.6 

4.358 
2.515 

4 
10 019.5 
55 437.0 

5.532 
2.641 

7 834.5 
34 781.9 

4.440 
3.103 

3 257.6 
115 934.3 

35.589 
2.272 

6 181.1 
43 171.0 

6.984 
2.640 

4 072.0 
17 997.8 

4.420 
2.374 

6 273.9 
 33 904.1 

5.404 
 2.660 

16 
11 680.3 
91 344.5 

7.820 
3.127 

67 088.3 
216 745.4 

3.231 
3.147 

13 030.4 
840 540.6 

64.506 
2.505 

7 841.9 
72 259.3 

9.215 
3.315 

13 844.8 
150 259.2 

10.853 
2.180 

7 902.7 
47 324.6 

5.988 
 2.714 

32 
12 510.7 

122 170.3 
9.765 
3.733 

230 753.0 
646 616.2 

2.802 
3.168 

26 060.8 
2 738 584.7 

105.084 
2.621 

8 672.3 
99 675.5 

11.494 
4.045 

26 875.2 
510 672.1 

19.002 
2.111 

8 717.1 
53 697.0 

6.159 
2.722 

 

 

 
 

|A| 1 4 8 12 16 20 24 28 32 

𝜼 5.3 8.4 11.0 11.7 12.4 12.3 - - - 

𝝎 5.6 9.3 - - - - - - - 

𝝑 9.3 15.8 33.0 49.3 83.4 96.1 131.4 154.1 201.7 

 

Figure 3. Runtime and makespan comparison over 8⨯8 grid. UniAGENT and WHCA* produce 

makespan sub-optimal solutions; all other methods are makespan optimal. Evaluation of runtime 

and makespan was done for the growing number of agents (timeout is 256 seconds). Average optim-

al makespan is shown as 𝜂; 𝜗 and 𝜔 are average makespans of UniAGENT and WHCA* respective-

ly. 

5.2. Runtime Evaluation 

Runtime tests were done over 4-connected grids with growing number of agents. 

The timeout has been set to 256 seconds and for each number of agents 10 ran-

dom instances were solved while runtime was recorded – average runtime is 

presented. 

0,001

0,01

0,1

1

10

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Average runtime | Grid 8⨯8 | 20% obstacles

OD+ID INVERSE
ALL-DIFFERENT DIRECT
MATCHING SIMPLIFIED
UNIAGENT WHCA

|A| 



Reduced Time-Expansion Graphs and Goal Decomposition for Solving CPF Sub-optimally 208 

 

 

 

 
 

|A| 1 2 4 6 8 12 14 16 18 

𝜼 4.2 4.9 5.6 7.0 7.4 7.9 8.6 - - 

𝝎 4.3 5.3 5.7 - - - - - - 

𝝑 5.7 8.5 11.1 16.7 30.2 43.1 49.3 50.5 87.3 

 

Figure 4. Runtime and makespan comparison over 6⨯6 grid. The UniAGENT solving is almost by 

order of magnitude faster than second best method for higher number of agents. 

 

 Runtime results are presented in  

Figure 3 and  

Figure 4. Average optimal makespan and average sub-optimal makespan obtained 

with the UniAGENT and WHCA* methods are also shown. It can be observed 

that OD+ID and WHCA* although performing as best for small number of 

agents, quickly reaches the timeout as the number of agents grows. UniAGENT 

method scales up as the best for growing number of agents though the makespan 

is up to several times longer than the optimum. Up to 30 agents (occupancy 83%) 

and up to 48 agents (occupancy of 75%) can be solved in 6⨯6 and 8⨯8 grid re-

spectively with no obstacles within the timeout of 1.0 minute. 

  
Table 2. Makespan comparison with domain independent planners. Suboptimal planners LPG-td 

and SGPLAN managed to solve instances over the 6⨯6 grid with 20% obstacles with up to 6 agents 

within the timeout of 256 seconds. UNIAGENT solver generates solutions of shorter makespan and 

is much faster. 

 
|A| in 6⨯6 1 2 3 4 5 6 7 

LPG-td 17.2 7.6 18.5 16.2 22.7 134.1 - 

SGPLAN 7.2 9.8 16.7 15.1 23.4 - - 

UNIAGENT 5.7 8.5 12.3 11.1 15.9 16.7 20.5 

  

 Motivated by experiments presented in [Standley and Korf, 2011], we also 

tried to solve (𝑁2 − 2)-puzzles by the UniAGENT solver; that is, 4-connected 

grids with two blanks (two blanks grant that instances are solvable). In these sit-

uations, A*-based solvers relying on independence detection such as OD+ID and 
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MGS1 do not scale well. The (32 − 2)-puzzles were solved in less than 1.0 

second by UniAGENT solver. The (42 − 2)-puzzles needed approximately 10 

seconds. Larger puzzles have not been solved under 1.0 minute.  

 We also made comparison with several domain independent planners includ-

ing SAT-based makespan optimal SATPLAN [Kautz and Selman, 1999] and 

SASE [Huang et al., 2010] and makespan suboptimal LPG-td [Gerevini et al., 

2008] and SGPLAN [Hsu et al., 2006]. Planners were run on instances over 6⨯6 

grid with 20% obstacles containing few agents - part of results is shown in Table 

2. SATPLAN and SASE performed orders of magnitude worse than SAT-based 

solving with referred domain dependent encodings (thus not presented). Makes-

pan suboptimal planners LPG-td and SGPLAN performed much better but still do 

not scale up. Moreover, they tend to generate worse makespans than the UniA-

GENT method. 

6.  Conclusions 

The concept of reduced time expansion graph and 𝜗-RELAXED propositional 

encoding of CPF based on this graph have been introduced. The search for a solu-

tion of CPF is reduced to the search of vertex disjoint paths in reduced time 

expansion graph which is done via SAT solving. In order to maximally reduce the 

size of the propositional encoding, the search for a goal arrangement is decom-

posed into multiple searches for sub-goals which correspond to placement of a 

single agent. 

 Experimental evaluation indicates that the novel CPF solving method - called 

UniAGENT solver - scales up better for higher number of agents than compara-

ble makespan suboptimal search-based method WHCA*. The relaxation from the 

requirement on the makespan optimality allowed significant runtime improve-

ment compared to other propositional encodings and related SAT-based solving 

schemes. This advanced applicability of SAT-based CPF solving in highly con-

strained situations towards even denser occupancy with agents. 

 Although solutions generated by the UniAGENT method are makespan subop-

timal, they are obtained through optimization of a different parameter - namely 

the number of time layers in the ϑ-RELAXED encoding - hence their makespan is 

not as dramatically far from the optimum as in the case of rule based algorithms 

like PUSH-AND-ROTATE [de Wilde et al., 2014]. Altogether, UniAGENT solv-

er represents a viable alternative to existing rule and search based CPF solvers. 
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Abstract. A novel eager encoding of the ALLDIFFERENT constraint over bit-

vectors is presented in this short paper. It is based on 1 to 1 mapping of the input 

bit-vectors to a linearly ordered set of auxiliary bit-vectors. Experiments with four 

SAT solvers showed that the new encoding can be solved order of magnitudes 

faster than the standard encoding in a hard unsatisfiable case. 

Keywords: All-Different constraint, propositional encodings, SAT, linear order-

ing, bit-vectors 

1. Introduction and Motivation 

Models of many real-life problems require a subset of modeling variables to be 

pair-wise distinct. This requirement is known as an ALLDIFFERENT constraint 5 

in the constraint programming context. As the SAT solving technology 1, 3, 6 is 

becoming a tool of choice in many practical applications, efficient manipulation 

with the ALLDIFFERENT constraint in SAT solvers is of interest. Unlike other 

works on translating the ALLDIFFERENT constraint into SAT that use direct 

encoding of variable’s domains 4, we study how to encode the constraint over the 

set of bit-vectors which essentially use binary encoding. We present a new eager 

encoding that maps the given set of bit-vectors to a linearly ordered set of aux-

iliary bit-vectors. We show that the new encoding is more efficient for hard unsa-
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tisfiable cases of the constraint on which SAT solvers struggle with the existent 

encoding for bit-vectors 2. 

2. Background – Standard Model 

Suppose to have a set of bit-vectors {ℬ1 ,ℬ2 ,… ,ℬ𝑛} each of length 𝑙. Bit-vectors 

are interpreted as non-negative integers. The ALLDIFFERENT constraint over 

ℬ1 ,ℬ2 ,… ,ℬ𝑛  - denoted as ALLDIFFERENT({ℬ1 ,ℬ2 ,… ,ℬ𝑛 }) - requires that 

numbers represented by the bit-vectors are all distinct. The standard encoding 2 

basically follows the scheme where pair-wise differences are encoded: 

ALL-DIFFERENT( ℬ1,ℬ2 ,… ,ℬ𝑛 ) ≡  ℬ𝑖 ≠ ℬ𝑗

𝑛

𝑖 ,𝑗=1 ∧ 𝑖<𝑗

 

Trivially it is possible to encode the individual inequalities as follows. Let the 

𝕚-th bit of the 𝑘-th bit-vector with 𝕚 ∈ {1,2,… , 𝑙} and 𝑘 ∈ {1,2,… ,𝑛} be denoted 

as ℬ𝕚
𝑘 . 

ℬ𝑖 ≠ ℬ𝑗 ≡   ℬ𝕚
𝑖 ∨ ℬ𝕚

𝑗
 ∧  ℬ𝕚

𝑖 ∨ ℬ𝕚
𝑗
 

𝑙

𝕚=1
 

However, if unfolded into the CNF representation though the distributive rule it 

results into too many clauses which is impractical. Therefore encoding using aux-

iliary propositional variables is used. It follows the standard technique of Tseitin’s 

hierarchical encoding. A fresh propositional variable is introduced for each in-

equality between individual bits of the involved bit-vectors. That is, there is a new 

variable 𝑎𝕚
𝑖 ,𝑗

 for every 𝑖, 𝑗 ∈ {1,2,… ,𝑛} with 𝑖 < 𝑗 and 𝕚 ∈ {1,2,… , 𝑙}. The aux-

iliary variable indicates if the corresponding bits in the inequality between bit-

vectors differ or not. Thus, the following clauses are included to express this in-

terpretation: 

  𝑎𝕚
𝑖 ,𝑗

∨ ℬ𝕚
𝑖 ∨ ℬ𝕚

𝑗
 ∧  𝑎𝕚

𝑖 ,𝑗
∨ ℬ𝕚

𝑖 ∨ ℬ𝕚
𝑗
 

𝑙

𝕚=1
 

Bit-vectors ℬ𝑖   and ℬ𝑗  differ if they differ in at least one position; that is, fol-

lowing clauses should be included:  𝑎𝕚
𝑖 ,𝑗𝑙

𝕚=1 . Notice that auxiliary variables are 

linked to the original bits only in one direction. If 𝑎𝕚
𝑖,𝑗

 is set to 𝑇𝑅𝑈𝐸 then ℬ𝕚
𝑖  and 

ℬ𝕚
𝑗
 are forced to differ. However, if 𝑎𝕚

𝑖,𝑗
 is 𝐹𝐴𝐿𝑆𝐸 then ℬ𝕚

𝑖  and ℬ𝕚
𝑗
 are left uncon-

strained. 

 

Proposition 1 (STANDARD ENCODING SIZE).  The standard encoding of the 

ALLDIFFERENT constraint requires 𝑙 ∙ 𝑛 propositonal variables to represent the 
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bit-vectors and 𝑙 ∙ 𝑛 (𝑛+1)

2
 auxiliary propositional variables; that is, 𝒪(𝑙 ∙ 𝑛2) va-

riables altogether. The number of clauses is 1 + 𝑙 ∙ 𝑛(𝑛 + 1); that is, 𝒪(𝑙 ∙ 𝑛2) . ■ 

 

 
 

Figure 1. Illustration of the standard and the bijection ALLDIFFERENT encodings. In the bijection 

encoding, a 1-to-1 mapping of the bit-vectors is found first. Then the values of bit-vectors are forced 

to be linearly ordered according to their position in the mapping. 

3. Alternative Bijection Encoding 

We observed that a SAT solver struggles over the standard encoding especially in 

the unsatisfiable case according to our preliminary experiments. Therefore we 

developed an alternative encoding that is more suitable for this case. It maps the 

original bit-vectors to a linearly ordered set of auxiliary bit-vectors. First, a 1-to-1 

mapping (bijection) between sets of bit-vectors needs to be modeled to enable this 

encoding style (see  

Figure 1 for illustration). 

Let the new linearly ordered bit-vectors be denoted as 𝒜1 , 𝒜2 ,… ,𝒜𝑛 . Addi-

tionally bit-vectors 𝛼1 ,𝛼2 ,… ,𝛼𝑛  and 𝛽1 ,𝛽2 ,…, 𝛽𝑛  of size  log2 𝑛  are introduced 

to model the bijection. The bit-vector 𝛼𝑘  indicates what 𝒜𝑖  with 𝑖 ∈ {1,2,… ,𝑛} 

the original ℬ𝑘  will be mapped to. Bit-vectors 𝛽𝑗  are used to enforce that at most 

one original bit-vector is mapped to a single ordered bit-vector. The following 

integer constraints are to establish the bijection: 

 𝛼𝑘 = 𝑖 ⟹ ℬ𝑘 = 𝒜𝑖 ∧ 𝛽𝑖 = 𝑘
𝑛

𝑖,𝑘=1
 

It is crucial, that domains of bit-vectors 𝛼𝑘  and 𝛽𝑗  consists of exactly 𝑛 values 

to ensure that the bijection is modeled correctly (extra values are forbidden). The 

individual integer implication is encoded with a single auxiliary propositional 

variable ℯ𝑖
𝑘  as follows: 

 

ℬ1 

ℬ2 

ℬ3 ℬ4 

ℬ5 

≠ 

5 = 𝛼1 <
 

<
 

<
 

𝒜1 = ℬ3   

 
𝒜2 = ℬ2   

𝒜3 = ℬ4 

𝒜4 = ℬ5 

2 = 𝛼2 

1 = 𝛼3 

3 = 𝛼4 

𝛽1 = 3 

  

𝛽2 = 2 

𝛽3 = 4 

𝛽4 = 5 

ℬ1 

ℬ2 

ℬ3 

ℬ4 

𝒜5 = ℬ1 4 = 𝛼5 
ℬ5 

<
 

𝛽5 = 1 

⇔ 

≠ 

≠ ≠ 

≠ 

≠ ≠ 

≠ 

≠ ≠ 

Standard Bijection 

ℯ𝑖
𝑘 ∨ lit(𝑖𝕚,𝛼𝕚

𝑘)
 log 2 𝑛 

𝕚=1
 

 

where 

 
lit(𝑖𝕚,𝛼𝕚

𝑘) =  
𝛼𝕚
𝑘      iff 𝑖𝕚 = 1 

𝛼𝕚
𝑘  iff 𝑖𝕚 = 0
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Finally, there are integer constraints enforcing the ordering: 

 𝒜𝑖 < 𝒜𝑖+1
𝑛−1

𝑖=1
 

The individual inequality is encoded as a strict lexicographic ordering over the 

two bit-vectors. Now, 𝑙 fresh propositional variables 𝒻𝕚
𝑖 with 𝕚 ∈ {1,2,… , 𝑙} are 

introduced to indicate the first bit where 𝒜𝑖  is less than 𝒜𝑖+1. The ordering itself 

then just means that there exists such a first bit where bit-vectors differ:  𝒻𝕚
𝑖𝑙

𝕚=1 . 

  𝒻𝕚
𝑖 ∨ 𝒜𝕛

𝑖 ∨ 𝒜𝕛
𝑖+1 ∧  𝒻𝕚

𝑖 ∨𝒜𝕛
𝑖 ∨ 𝒜𝕛

𝑖+1 
𝕚−1

𝕛=1
 

 𝒻𝕚
𝑖 ∨ 𝒜𝕚

𝑖 ∧ (𝒜𝕚
𝑖+1 ∨ 𝒻𝕚

𝑖) 

Proposition 2 (BIJECTION ENCODING SIZE).  The bijection encoding requires 

2𝑙 ∙ 𝑛 propositional variables to represent the bit-vectors, 2𝑛 𝑙𝑜𝑔2𝑛  variables to 

represent the bijection, and 𝑛2 + 𝑙(𝑛 − 1) auxiliary propositional variables; that is 

𝒪(𝑛 ∙ 𝑚𝑎𝑥 𝑛, 𝑙 ) propositional variables altogether. 

The number of clauses is 𝑛2(1 + 𝑙 +  log2 𝑛 ) + (𝑛 − 1)2𝑙(𝑙+1)

2
; that is, 

𝒪(𝑛2 ∙ 𝑚𝑎𝑥{ log2 𝑛 , 𝑙} + 𝑛 ∙ 𝑙2). ■ 

 
 

Table 1. Comparison of sizes of the standard and the bijection encoding. 

 

#bit-vectors 
(16-bits) 

Standard Bijection 

#Variables #Clauses #Variables #Clauses 

64 67584 133056 9968 176943 
128 266240 536448 28400 690031 
256 1056768 2154240 90096 2756591 

4. Experimental Evaluation 

As shown in Table 1, the bijection encoding has fewer variables while the number 

of clauses is slightly higher than in the standard encoding. Nevertheless, we also 

need runtime comparison. A setup where a transition-phase behavior was ob-

served is presented. We used 32 bit-vectors consisting of 6 bits. Additionally, 

there was a lower bound and an upper bound per each bit-vector. If 𝑑 ∈ ℕ, 𝑑 ≤

  ℯ𝑖
𝑘 ∨ ℬ𝕚

𝑘 ∨ 𝒜𝕚
𝑖 ∧  ℯ𝑖

𝑘 ∨ ℬ𝕚
𝑘 ∨ 𝒜𝕚

𝑖 
𝑙

𝕚=1
 

 
 ℯ𝑖

𝑘 ∨ lit(𝑘𝕚,𝛽𝕚
𝑖)

 log 2 𝑛 

𝕚=1
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34 is a given domain size, then the lower bound 𝑏𝐿
𝑘 ∈ ℕ and the upper bound 

𝑏𝑈
𝑘 ∈ ℕ for the bit-vector ℬ𝑘  were generated randomly as follows: 𝑏𝐿

𝑘  was se-

lected uniformly from [0. .34 − 𝑑] and 𝑏𝑈 was set to 𝑏𝑈
𝑘 + 𝑑. Thus,  𝑏𝐿

𝑘 ≤ ℬ𝑘 ≤

𝑏𝑈
𝑘  is enforced for each 𝑘. Finally, a single ALLDIFFERENT over 32 bit-vectors 

was added. 

Three SAT solvers were used in the evaluation: MINISAT 3, GLUCOSE 1, and 

CRYPTOMINISAT 6. The runtime was measured for different domain sizes 𝑑 

ranging from 2 to 34 - Figure 2. For small 𝑑 unsatisfiability could be checked 

easily; for large 𝑑 the same could be done for satisfiability. The most interesting 

behavior occurred around 𝑑 = 13 which represent difficult cases. 

None of the tested SAT solvers was able to solve all the instances over the 

standard encoding in the time limit of 1 hour (wall clock limit per instance). The 

best performing over the standard encoding was GLUCOSE which solved 29 

instances out of 33 and was also the fastest. Over the bijection encoding, MINI-

SAT and CRYPTOMINISAT solved all the instances and very importantly the 

runtime of CRYPTOMINISAT was always below 2 seconds. GLUCOSE also 

performed relatively well compared to the standard encoding with 30 solved in-

stances. 

Generally, the standard encoding can be solved faster in the satisfiable case. 

However, the bijection encoding is significantly better in the hard unsatisfiable 

case. This is because it can be checked more easily for this encoding if there are 

enough values in domains of bit-vectors to establish the required pair-wise differ-

ence (at least by some SAT solvers). A single linearly ordered set of bit-vectors is 

matched into the domains while in case of the standard encoding all the orderings 

(permutations) of the original bit-vectors may be checked. 
 

 

 
Figure 2. Instances are sorted according to the increasing runtime. 
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5. Conclusions 

A new encoding for the ALLDIFFERENT constraint over bit-vectors based on 1-

to-1 mapping has been proposed. It has fewer variables and it is more efficient in 

difficult unsatisfiable cases than the existent encoding 2 that uses pair-wise differ-

ences. In the future work, it would be also interesting to investigate how the pre-

sented eager encodings performs with respect to the strong ALLDIFFERENT 

propagators 5 integrated with the solver lazily via the SMT framework and also 

how it performs in applications. 
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Abstract. The problem of solving (𝑛2 − 1)-puzzle and cooperative path-finding 

(CPF) sub-optimally is addressed in this manuscript. The task in the puzzle is to 

rearrange 𝑛2 − 1 pebbles on the square grid of the size of 𝑛 × 𝑛 using one vacant 

position to a desired goal configuration. An improvement to the existent poly-

nomial-time algorithm is proposed and experimentally analyzed. The improved 

algorithm is trying to move pebbles in more efficient way than the original one by 

grouping them into so-called snakes and moving them jointly within the snake. 

An experimental evaluation showed that the algorithm using snakes produces so-

lutions that are 8% to 9% shorter than solutions generated by the original algo-

rithm. 

 The snake-based relocation was also integrated into an algorithm for solving 

the CPF problem sub-optimally, which is a closely related task. The task in CPF 

is to relocate a group of abstract robots that move over an undirected graph to 

given goal vertices. Robots can move to unoccupied neighboring vertices and at 

most one robot can be placed in each vertex. The (𝑛2 − 1)-puzzle is a special 

case of CPF where the underlying graph is represented by a 4-connected grid and 

there is only one vacant vertex. Improvements gained by using snakes in the algo-

rithm for CPF were around 30% in (𝑛2 − 1)-puzzle solving and up to 50% in 

CPFs over biconnected graphs with various ear decompositions and multiple va-

cant vertices. 

Keywords: (𝑛2 − 1)-puzzle, 15-puzzle, cooperative path-finding, polynomial 

complexity, multi-robot path planning, algorithm BIBOX 

mailto:pavel.surynek@mff.cuni.cz
mailto:petr.michalik@accenture.com


An Improved Sub-optimal Algorithm for Solving (𝑁2 − 1)-Puzzle  220 
 
 

 

1. Introduction and Motivation 

The (𝑛2 − 1)-puzzle [2, 3, 5, 6] represents one of the best-known examples of a 

so-called cooperative path-finding (CPF) [12, 16, 19, 23] problem. It is important 

both practically and theoretically. From the theoretical point of view it is interest-

ing for the hardness of its optimization variant which is known to be 𝑁𝑃-hard [7, 

8]. 

 Practically it is important since many real-life relocation problems can be 

solved by techniques developed for the (𝑛2 − 1)-puzzle. Those include path 

planning for multiple robots [10, 11, 13, 14, 17, 20, 23], rearranging of shipping 

containers in warehouses, or coordination of vehicles in dense traffic. Moreover, 

the reasoning about relocation/coordination tasks should not be limited to physical 

entities only. Many tasks such as planning of data transfer, commodity transpor-

tation, and motion planning of units in computer-generated imagery can be 

tackled using techniques originally developed for the (𝑛2 − 1)-puzzle. 

 In this manuscript, we concentrate ourselves on solving the (𝑛2 − 1)-puzzle 

sub-optimally, that is, by a fast polynomial-time algorithm. We are trying to im-

prove the basic incremental placing of pebbles as it is done by the existent on-line 

solving algorithm of Parberry [6] by moving them in groups called snakes. Mov-

ing pebbles jointly in snakes is supposed to be more efficient in terms of the total 

number of moves than moving them individually as it was originally proposed 

[6]. An improved algorithm exploiting snake-based movements is presented. 

 We utilized experiences gained during making snake-based improvements to 

Parberry’s algorithm in solving CPF. We observed that existent BIBOX algorithm 

[13, 16] for solving CPF sub-optimally over biconnected graphs with at least two 

vacant vertices operates in a similar way to Parberry’s algorithm and hence snake-

based reasoning can be integrated into it. 

 An extensive competitive experimental evaluation was done to evaluate quali-

ties of snake-based improvements in solving (𝑛2 − 1)-puzzle as well as in solving 

CPFs over biconnected graphs. 

 The manuscript is organized as follows. The problem of (𝑛2 − 1)-puzzle is 

formally introduced in Section 2. An overview of existent solving algorithm and 

other related solving approaches is given in Section 3. The main part of the paper 

is constituted by Section 4 and Section 5 where the snake movement is introduced 

into Parberry’s algorithm and into the BIBOX algorithm for CPF solving. An ex-

tensive experimental evaluation is given in Section 6. 
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2. Problem Statement 

The (𝑛2 − 1)-puzzle consists of a set of pebbles that are moved over a square grid 

of size 𝑛 × 𝑛 [1, 6, 7, 8, 24]. There is exactly one position vacant on the grid and 

others are occupied by exactly one pebble. A pebble can be moved to the adjacent 

vacant position. The task is to rearrange pebbles on the grid into a desired goal 

state. 

2.1. Formal Definition 

Sets of pebbles will be denoted as Ω𝑛  for 𝑛 ∈ ℕ. It holds that  Ω𝑛  = 𝑛2 − 1 for 

every 𝑛 ∈ ℕ. It is supposed that pebbles from a set Ω𝑛  are arranged on a square 

grid of the size 𝑛 × 𝑛 where each pebble is placed into one of the cells of the grid. 

There is at most one pebble in each cell of the grid; one cell on the grid remains 

always vacant (Figure 1). 

 

Definition 1 (configuration in a grid). An configuration of a set of pebbles Ω𝑛  in 

a square grid of the size 𝑛 × 𝑛 with 𝑛 ∈ ℕ is fully described using two functions 

𝑥𝑛 : Ω𝑛 ⟶ ℕ and 𝑦𝑛 : Ω𝑛 ⟶ ℕ that satisfy the following puzzle conditions: 

(i) 𝑥𝑛 𝑝 ∈ {1,2, … , 𝑛} and 𝑦𝑛 𝑝 ∈ {1,2, … , 𝑛} ∀𝑝 ∈ Ω𝑛  

(ii)  {𝑝 ∈ Ω𝑛 |(𝑥𝑛 𝑝 , 𝑦𝑛 𝑝 ) = (𝑖, 𝑗)} ≤ 1 for ∀𝑖, 𝑗 ∈ {1,2, … , 𝑛} 

(every cell of the grid is occupied by at most one pebble) 

(iii) ∃𝑖, 𝑗 ∈ {1,2, … , 𝑛} such that ∀𝑝 ∈ Ω𝑛  (𝑥𝑛 𝑝 , 𝑦𝑛 𝑝 ) ≠ (𝑖, 𝑗) 

(there exists a cell in the grid that remains vacant). 

For convenience, we will also use some kind of an inverse to 𝑥𝑛  and 𝑦𝑛  which 

will be called an occupancy function and denoted as 𝜍𝑛 :  1,2, … , 𝑛 ×
 1,2, … , 𝑛 ⟶ Ω𝑛 ∪ {⊥}. It holds that 𝜍𝑛 𝑖, 𝑗 = 𝑝 if and only if ∃𝑝 ∈ Ω𝑛  such 

that 𝑥𝑛 𝑝 = 𝑖 and 𝑦𝑛 𝑝 = 𝑗 or 𝜍𝑛 𝑖, 𝑗 =⊥ if no such pebble 𝑝 exists (that is, if 

the cell  𝑖, 𝑗  is vacant). □ 

 

The configuration of pebbles in the grid can be changed through moves. An al-

lowed move is to shift a pebble horizontally or vertically from its original cell to 

the adjacent vacant cell. Formally, the notion of move is described in the follow-

ing definition. Four types of moves are distinguished here: left, right, up, and 

down – only left move is defined formally; right, up, and down moves are analog-

ous. 

 

(1) 

(2) 

(3) 
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Definition 2 (left move). A left move with pebble 𝑝 ∈ Ω𝑛  can be done if 𝑥𝑛 𝑝 >

1 and 𝜍𝑛(𝑥𝑛 𝑝 − 1, 𝑦𝑛 𝑝 ) =⊥; it holds for the resulting configuration after the 

move described by 𝑥𝑛
′  and 𝑦𝑛

′  that 𝑥𝑛
′  𝑞 = 𝑥𝑛 𝑞  and 𝑦𝑛

′  𝑞 = 𝑦𝑛 𝑞  ∀𝑞 ∈ Ω𝑛  

such that 𝑞 ≠ 𝑝 and 𝑥𝑛
′  𝑝 = 𝑥𝑛 𝑝 − 1 and 𝑦𝑛

′  𝑝 = 𝑦𝑛 𝑝 . □ 

 

 We are now able to define the (𝑛2 − 1)-puzzle using the formal constructs we 

have just introduced. The task is to transform a given initial configuration of peb-

bles in the grid to a given goal one using a sequence of allowed moves. 

 

Definition 3 ((𝒏𝟐 − 𝟏)-puzzle). An instance of the (𝑛2 − 1)-puzzle is a tuple 

(𝑛, Ω𝑛 , 𝑥𝑛
0 , 𝑦𝑛

0 , 𝑥𝑛
+, 𝑦𝑛

+) where 𝑛 ∈ ℕ is the size of the instance, Ω𝑛  is a set of peb-

bles, 𝑥𝑛
0 and 𝑦𝑛

0 is a pair of functions that describes the initial configuration of 

pebbles in the grid, and 𝑥𝑛
+ and 𝑦𝑛

+ is a pair of functions that describes the goal 

configuration of pebbles. The task is to find a sequence of allowed moves that 

transforms the initial configuration into the goal one. Such sequence of moves 

will be called a solution to the instance. □ 

 

 Again it is supposed that the occupancy function is available with respect to 

the initial configuration 𝑥𝑛
0 , 𝑦𝑛

0 and the goal configuration 𝑥𝑛
+, 𝑦𝑛

+; that is, we are 

provided with occupancy functions 𝜍𝑛
0 and 𝜍𝑛

+. To avoid special cases it will be 

also supposed that 𝜍𝑛
+ 𝑛, 𝑛 =⊥; that is, the vacant position is finally in the right 

bottom corner. 

 

 
 

Figure 1. An illustration of the (𝑛2 − 1)-puzzle. The initial and the goal configuration of pebbles on 

the square grid of size 3 × 3 are shown. Two solutions of the instance are shown as well. 

2.2. Complexity and Variants of the Problem 

It is known that the decision variant of the (𝑛2 − 1)-puzzle (that is, the yes/no 

question whether there exists a solution to the given instance) is in 𝑃 [1, 6, 24]. It 

can be checked by using simple parity criterion. Using techniques for rearranging 

1 2 3 

4 

5 

6 

7 8 

1 2 3 

4 5 6 

7 8 

(3, Ω3 , 𝑥3
0, 𝑦3

0 , 𝑥3
+, 𝑦3

+) 

𝑥3
0 , 𝑦3

0 𝑥3
+, 𝑦3

+ 

𝑛 =3 

Ω3={1,2,…,8} 

Solution sequence: 
[L, U, R]  

Less efficient solution 
sequence: [L, U, D, U, R]  



An Improved Sub-optimal Algorithm for Solving (𝑁2 − 1)-Puzzle  223 
 
 

 

pebbles over graphs [1] a solution of length 𝒪(𝑛6) can be constructed in the 

worst-case time of 𝒪 𝑛6  if there exists any. An approach dedicated exclusively 

to the (𝑛2 − 1)-puzzle is [6] able to generate a solution of length 𝒪(𝑛3) in the 

worst-case time of (𝑛3) if there exists any. 

 If a requirement on the length of the solution is added, the problem becomes 

harder. It is known that the decision problem of whether there exists a solution to 

a given (𝑛2 − 1)-puzzle of at most the given length is 𝑁𝑃-complete [8]. 

3. The Original Solving Algorithm and Related Works 

A special sub-optimal solving algorithm dedicated for the (𝑛2 − 1)-puzzle has 

been proposed by Parberry in [6]. As our new solving algorithm is based on the 

framework of the original one, we need to recall it at least briefly in this section. 

3.1. Algorithm of Parberry 

The algorithm of Parberry [6] sequentially places pebbles into rows and columns. 

More precisely, pebbles are placed sequentially into the first row and then into the 

first column, which reduces the instance to that of the same type but smaller – that 

is, we obtain an instance of the ((𝑛 − 1)2 − 1)-puzzle. 

 
Algorithm 1. The original algorithm of Parberry for solving the (𝑛2 − 1)-puzzle [6]. The main loop 

of the algorithm is shown. Detailed description of placement of individual pebbles is not shown here 

–it will be discussed in the context of new approach for pebble placement. 

 

procedure Solve-N^2-1-Puzzle(𝑛, Ω𝑛 , 𝑥𝑛
0, 𝑦𝑛

0 , 𝑥𝑛
+, 𝑦𝑛

+) 

/* A procedure that produces a sequence of moves that solves the given (𝑛2 − 1)-puzzle. 

Parameters: 𝑛, Ω𝑛  - a size of the puzzle and a set of pebbles, 

    𝑥𝑛
0, 𝑦𝑛

0   - an initial configuration of pebbles in the grid, 

    𝑥𝑛
+, 𝑦𝑛

+ - a goal configuration of pebbles in the grid. */ 

1:  𝑥𝑛 , 𝑦𝑛 ← (𝑥𝑛
0 , 𝑦𝑛

0) 

2: for 𝑖 = 1,2, … , 𝑛 − 3 do 

3:  for 𝑗 = 𝑖, 𝑖 + 1, … , 𝑛 do {current row is solved – from the left to the right} 

4:   𝑝 ← 𝜍𝑛
+(𝑖, 𝑗) 

5:   if  𝑖, 𝑗 ≠ (𝑥𝑛
+(𝑝), 𝑦𝑛

+(𝑝)) then 

6:     𝑥𝑛 , 𝑦𝑛 ← Place-Pebble 𝑥𝑛 , 𝑦𝑛 , 𝑖, 𝑗, 𝑝  

7:    Ω𝑛 ← Ω𝑛 ∖ {𝑝} 

8:  for 𝑗 = 𝑛, 𝑛 − 1, … , 𝑖 + 1 do {current column is solved – from the bottom to the up} 

9:   𝑝 ← 𝜍𝑛
+(𝑖, 𝑗) 

10:   if  𝑖, 𝑗 ≠ (𝑥𝑛
+(𝑝), 𝑦𝑛

+(𝑝)) then 

11:    (𝑥𝑛 , 𝑦𝑛) ← Place-Pebble(𝑥𝑛 , 𝑦𝑛 , 𝑖, 𝑗, 𝑝) 

12:   Ω𝑛 ← Ω𝑛 ∖ {𝑝}  

13: Ω3 ← Ω𝑛 ; 𝑥3
0 ← 𝑥𝑛 |Ω3

; 𝑦3
0 ← 𝑦𝑛 |Ω3

; 𝑥3
+ ← 𝑥𝑛

+|Ω3
; 𝑦3

+ ← 𝑦𝑛
+|Ω3

 {restriction on Ω𝑛} 

14: Solve-8-Puzzle(Ω3 , 𝑥3
0 , 𝑦3

0 , 𝑥3
+, 𝑦3

+) {the residual 8-puzzle is solved by A* algorithm} 
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This process of pebble placement is repeated until an 8-puzzle on the grid of 

size 3 × 3 is obtained. The final case of the 8-puzzle is then solved optimally by 

the A* algorithm [9]. 

The main loop of the algorithm is shown in pseudo-code as Algorithm 1. The 

algorithm uses two high-level functions Place-Pebble, which conducts placement 

of a pebble to a given position, and Solve-8-Puzzle, which finalizes the solution 

by solving the residual 8-puzzle. 

The placement of pebbles implemented within the function Place-Pebble will 

be discussed in more details later in the context of our improvement. Neverthe-

less, it is done quite naturally by moving a pebble first diagonally towards the 

goal position if necessary and then horizontally or vertically. To be able to con-

duct diagonal, horizontal and vertical movement a vacant position needs to be 

moved together with the pebble being placed. Actually, the vacant position is 

moving around the pebble always to the front in the direction of the intended 

move. After having vacant position in the front, the pebble is moved forward. It is 

necessary to avoid already placed pebbles when placing a new one. 

3.2. Other Related Works 

The (𝑛2 − 1)-puzzle represents a special variant of a more general problem of 

cooperative path-finding - CPF (also known as pebble motion problem on a 

graph) [3, 4, 10, 11, 12, 14, 24]. The generalization consists in the fact that there 

is an arbitrary undirected graph representing the environment instead of the regu-

lar 4-connected grids as it is in the case of (𝑛2 − 1)-puzzle. There are also peb-

bles, in context of CPF called robots (or agents), that are placed in vertices of the 

graph while at least one vertex remains vacant. The allowed state transition is a 

single move with a robot to a vacant adjacent vertex. The task is expectably to 

rearrange robots from a given initial configuration to a given goal one. 

Although the problem has been studied long time ago [3, 24] recently there has 

been a considerable progress. The first new work showing solvability of every 

instance of pebble motion problem consisting of biconnected graph [18, 21, 22] 

containing at least two vacant positions is [13]. The related solving algorithm 

called BIBOX [13] can produce solution of length at most 𝒪( 𝑉 3) in the worst-

case time of 𝒪( 𝑉 3) (𝑉 is the set of vertices of the input graph). The BIBOX al-

gorithm also generates solutions that are significantly shorter than those generated 

by algorithms from previous works are [3, 24]. 

 More results followed then. A generalization of BIBOX algorithm called BI-

BOX-θ is described in [14]. It does not need the second vacant position and again 

can solve instances on bi-connected graphs (notice that the grid of the (𝑛2 − 1)-
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puzzle is a bi-connected graph; hence BIBOX-θ is applicable to it). Theoretically, 

it generates solutions of the worst-case length of 𝒪( 𝑉 4); however, practically 

solutions are much shorter. 

Two years later an algorithm called PUSH-and-SWAP has been published in 

[4] – it shows that for every solvable instance on arbitrary graph containing at 

least two vacant positions a solution of length 𝒪( 𝑉 3) can be generated. The 

algorithm however contains some errors and the its correction PUSH-and-

ROTATE has been published later in [23]. 

 In all the above results the solution length is sub-optimal and the worst-case 

time complexity is guaranteed (it is polynomial). A progress has been also made 

in optimal solving of the pebble motion problem. A new technique that can opti-

mally solve a special case consisting of a grid with obstacles and relatively small 

number of pebbles is described in [17]. It is based on an informed search, which 

however does not guarantee time necessary to produce a solution (the time may 

be exponential in the size of the instance). 

Special cases of the problem with large graphs and relatively sparsely arranged 

pebbles are studied in [19, 20]. These new techniques are focused on applications 

in computer games. The complexity as well as the solution quality is guaranteed 

by these techniques. Another specialized technique for relatively large graphs and 

small number of pebbles has been developed within [10, 11]. The graph 

representing the environment is decomposed into subgraph patterns, which are 

subsequently used for more efficient solving by search. 

4. A New Solving Approach Based on ‘Snakes’ 

In this section, we are about to define a new concept of a so-called snake. Infor-

mally, a snake is a sequence of pebbles that consecutively neighbors with a pebble 

that proceeds. As we will show, moving and placing a snake as a whole is much 

more efficient than moving and placing individual pebbles it consists of.  

 Recall that original algorithm for solving the puzzle [6] places pebbles indivi-

dually into currently solved row or column. This may be inefficient if two or more 

pebbles that need to be placed are grouped together in some location distant from 

their goal location. In such a case, it is necessary that the vacant position is moved 

together with the pebble being placed and then it is moved back to the distant 

location to allow movement of the next pebble. If we manage all the pebbles 

forming the group to move from their distant location to their goal positions joint-

ly, multiple movements of the vacant position between the distant location and 

goal positions may be eliminated. 
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4.1. Formal Definition of a ‘Snake’ 

Consider a situation shown in Figure 2 where pebbles 1 and 2 are grouped togeth-

er in a location distant from their goal positions. The original algorithm consumes 

16𝑛 − 20 moves to place both pebbles successfully to their goal positions. If 

pebbles are moved not one by one but jointly as it is shown in Figure 3, much less 

movements are necessary. Grouping pebbles can save up to 4𝑛 moves. 

This is the basic idea behind the concept of snake. Let us start with definition 

of a metric on the grid of the puzzle. Then the definition of the snake will follow. 

 

 
 

Figure 2. A setup of the (𝑛2 − 1)-puzzle where the original algorithm [6] is inefficient. Pebbles 1 

and 2 need to be moved from the bottom right corner (a) to the upper left corner (f). First, pebble 1 

is moved diagonally to its goal position (b, c, d, and e). After pebble 1 is successfully placed, vacant 

position is moved towards pebble 2 and it starts to move in the same way as pebble 1 to its goal 

position. The whole process of rearranging consumes 16𝑛 − 20 moves. 

 

Definition 4 (Manhattan distance). A Manhattan distance for the (𝑛2 −

1)-puzzle 𝜇𝑛 : {1,2, … , 𝑛}2 × {1,2, … , 𝑛}2 ⟶ {0,1, … ,2𝑛 − 1} is a metric on the 

square grid such that 𝜇𝑛 (𝑥1 , 𝑦1); (𝑥2 , 𝑦2) =  𝑥1 − 𝑥2 +  𝑦1 − 𝑦2 . □ 

 

 The input parameters of the Manhattan distance 𝜇 are coordinates of two posi-

tions. Having a metric on the grid of the puzzle, we are able to define neighbor-

hood of a pebble. A snake will be then defined using the notion of neighborhood 

as a sequence of pebbles that consecutively lies in neighborhood of a pebble that 

proceeds. 
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Definition 5 (Manhattan neighborhood). A Manhattan neighborhood of a peb-

ble 𝑝 denoted as 𝜈(𝑝) is a set of those pebbles that are located directly left, right, 

above and below to 𝑝 with respect to the configuration on the grid. That is, 

𝜈 𝑝 = {𝑞 ∈ Ω𝑛 |𝜇𝑛 (𝑥𝑛 𝑝 , 𝑦𝑛 𝑝 ); ( 𝑞 , 𝑦𝑛 𝑞 ) = 1}. □ 

  

Definition 6 (Snake). A snake 𝑠 of size 𝑘 is a sequence of pebbles 𝑠 =
[𝑠1, 𝑠2, … , 𝑠𝑘 ] such that ∀𝑖 ∈ {1,2, … , 𝑘} 𝑠𝑖 ∈ Ω𝑛  and ∀𝑗 ∈ {2,3, … , 𝑘} 𝑠𝑗 ∈

𝜈(𝑠𝑗−1). Pebble 𝑠1 is called a head of the snake; pebble 𝑠𝑘  is called a tail of the 

snake. □ 

 

 
 

Figure 3. Placing grouped pebbles using a snake. The situation from Figure 2 is solved by grouping 

pebbles 1 and 2 into a snake, which is then moved as a whole from its original location in bottom 

right corner to the goal position in the upper left corner. The process consumes 12𝑛 + 𝒪(1) which 

is approximately 4𝑛 better than the original approach that places pebbles individually. 

 

Notice that each pebble itself forms a trivial snake of size 1. Composed 

movements of a snake horizontally, vertically, and diagonally can be defined 

analogically as in the case of a single pebble. If fact, they are generalizations of 

composed movements for single pebble. It is always assumed that the vacant posi-

tion is in front of the head of snake in the direction of the intended movement. In 

such a setup, the snake can move forward by one position. The vacant position 

then needs to be moved around the snake in front of its head again to allow the 

next movement forward. See Figure 4 for illustration of composed movements for 

snakes (movements for a snake of length 2 are shown; it is easy to generalize 

composed movements for snakes of arbitrary length). 

The horizontal and vertical composed movements consume 2𝑘 + 3 moves. 

The number of moves consumed by the diagonal movement depends on the shape 

of a snake in the middle section – it is not that easy to express. However, if we 
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need to move a snake of length 2 diagonally forward following the shape from 

Figure 4, then it consumes 10 moves. 

Unfortunately it is rarely the case that a group of pebbles in some distant from 

goal location forms a snake. Even it is not that frequent that pebbles which are to 

be placed consecutively are close to each other. Hence, to take the advantage of 

moving a group of pebbles as a snake we need first to form a snake of them. This 

is however not for free as a number of moves are necessary to form a snake. Thus, 

it is advisable to consider whether forming a snake is worthwhile. Moreover, there 

are many ways how to form a snake while each may be of different cost in terms 

of the number of moves. 

 

 
 

Figure 4. Composed movements of a snake of length 2. The horizontal and diagonal composed 

movements of a snake of length 2 are shown. Other cases as well as generalization for snakes of 

arbitrary length are straightforward. 

 

Generally, the simplest way is to move one pebble to the other or vice versa in 

order to form a snake of length 2. It is known by using above calculations what 

number of moves is consumed by moving a snake as well as what number of 

moves are consumed by moving a pebble towards other pebble. Hence, it is easy 

to estimate the cost of using a snake in either of both ways as well as the cost of 

not using it at all in terms of the number of moves. Thus, it is possible to choose 

the most efficient option. This is another core idea of our new algorithm. 

4.2. A ‘Snake’ Based Algorithm 

Our new algorithm for solving the (𝑛2 − 1)-puzzle will use snakes of length 2. 

The algorithm proceeds in the same way as the original algorithm of Parberry [6]. 

That is, pebbles are placed into the first row and then into the first column and 

(ix) 
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after the first row and the first column are finished the task is reduced to the puz-

zle of the same type but smaller (namely, the task is reduced to solve the ((𝑛 −

1)2 − 1)-puzzle). The trivial case of the 8-puzzle on a grid of the size 3 × 3 is 

again solved by the A* algorithm [9]. 

 
Algorithm 2. The main function of a new algorithm for solving the (𝑛2 − 1)-puzzle. The function 

for producing a sequence of moves for placing two consecutive pebbles using snakes (if using 

snakes turns out to be beneficial) is shown. 

 

function Place-Pebbles(𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+, 𝑝, 𝑞): pair 

/* A function that produces a sequence of moves for placing two consecutive pebbles 

with respect to the order of placement. The new configuration is returned in a return value. 

Parameters: 𝑥𝑛 , 𝑥𝑦   - a current configuration of pebbles in the grid, 

    𝑥𝑛
+, 𝑦𝑛

+ - a goal configuration of pebbles in the grid, 

𝑝, 𝑞  - two consecutive pebbles that will be placed. */ 

1: 𝑐 ← cost1 𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+  𝑝, 𝑞  

2: 𝑒𝑝 ,𝑞 ← estimatesnake  𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+  𝑝, 𝑞  

3: 𝑒𝑞 ,𝑝 ←  estimatesnake  𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+  𝑞, 𝑝  

4: if min{𝑒𝑝 ,𝑞 , 𝑒𝑞 ,𝑝} < 1.2𝑐 then 

5:  if 𝑒𝑝 ,𝑞 < 𝑒𝑞 ,𝑝  then 

6:   let  𝑖, 𝑗  be a position such that  𝑖 − 𝑥𝑛 𝑝  +  𝑗 − 𝑦𝑛 𝑝  = 1 

7:   (𝑥𝑛 , 𝑦𝑛 ) ← Move-Vacant(𝑥𝑛 , 𝑦𝑛 , 𝑖, 𝑗) 

8:   𝑑𝑚𝑖𝑛 ← min{ 𝑖′ − 𝑥𝑛 𝑝  +  𝑗′ − 𝑦𝑛 𝑝  | 𝑖′ , 𝑗′ ∈ ℕ ∧  𝑖′ − 𝑥𝑛 𝑞  +  𝑗′ − 𝑦𝑛 𝑞  = 1} 

9:    let  𝑖, 𝑗  be a position such that  𝑖 − 𝑥𝑛 𝑝  +  𝑗 − 𝑦𝑛 𝑝  = 𝑑𝑚𝑖𝑛  

10:   (𝑥𝑛 , 𝑦𝑛 ) ← Place-Pebble(𝑥𝑛 , 𝑦𝑛 , 𝑖, 𝑗, 𝑝) 

11:  else 

12:   let (𝑖, 𝑗) be a position such that  𝑖 − 𝑥𝑛(𝑞) +  𝑗 − 𝑦𝑛(𝑞) = 1 

13:   (𝑥𝑛 , 𝑦𝑛 ) ← Move-Vacant 𝑥𝑛 , 𝑦𝑛 , 𝑖, 𝑗  

14:   𝑑𝑚𝑖𝑛 ← min{ 𝑖′ − 𝑥𝑛 𝑞  +  𝑗′ − 𝑦𝑛 𝑞  | 𝑖′ , 𝑗′ ∈ ℕ ∧  𝑖′ − 𝑥𝑛 𝑝  +  𝑗′ − 𝑦𝑛 𝑝  = 1} 

15:    let  𝑖, 𝑗  be a position such that  𝑖 − 𝑥𝑛 𝑞  +  𝑗 − 𝑦𝑛 𝑞  = 𝑑𝑚𝑖𝑛  

16:   (𝑥𝑛 , 𝑦𝑛 ) ← Place-Pebble(𝑥𝑛 , 𝑦𝑛 , 𝑖, 𝑗, 𝑞) 

17:  let 𝑠 =  𝑝, 𝑞  be a snake {actually 𝑝 and 𝑞 form a snake at this point} 

18:  let 𝜋 be a shortest path from  (𝑥𝑛 𝑝 , 𝑦𝑛 𝑝 ) to (𝑥𝑛
+ 𝑝 , 𝑦𝑛

+ 𝑝 ) such that 

   𝜋  𝜋 − 1 = (𝑥𝑛
+ 𝑞 , 𝑦𝑛

+ 𝑞 ) and 𝜋 does not intersect any position 

containing already placed pebble 

19:  for 𝑘 = 1,2, … ,  𝜋 − 1 do 

20:    (𝑥𝑛 , 𝑦𝑛 ) ← Snake-Composed-Movement(𝑥𝑛 , 𝑦𝑛 , 𝜋 𝑘 , 𝜋 𝑘 + 1 , 𝑠) 

{when vacant position is moved it should avoid already placed pebbles} 

21: else 

22:  (𝑥𝑛 , 𝑦𝑛 ) ← Place-Pebble(𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+, 𝑝) 

23:  (𝑥𝑛 , 𝑦𝑛 ) ← Place-Pebble(𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+, 𝑞) 

24: return (𝑥𝑛 , 𝑦𝑛) 

 

Along the solving process, the concept of snakes is used to move pebbles in a 

more efficient way. The basic idea is to make an estimation whether it will be 

beneficial to form a snake of two pebbles that are about to be placed. If so then a 

snake is formed in one of the two ways – the first pebble is moved towards the 
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second one or vice versa – the better option according to the estimations is always 

chosen. If forming a snake turns out not to be beneficial then pebbles are moved 

in the same way as in the case of the original algorithm; that is, one by one. 

Let estimatesnake (𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+): Ω𝑛 × Ω𝑛 ⟶ ℕ0 is a functional that esti-

mates the number of moves necessary to place a given two pebbles using the 

snake like motion. More precisely, estimatesnake  𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+ (𝑝, 𝑞) is the 

estimation of the number of moves necessary to form a snake by moving pebble 𝑝 

towards 𝑞 and to place the formed snake into the goal location where 𝑥𝑛 , 𝑦𝑛  and 

𝑥𝑛
+, 𝑦𝑛

+ denote the current and the goal configurations respectively. Notice, that 

estimatesnake (𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+) can be calculated as sum of distances between sev-

eral sections multiplied by number of moves needed to travel a unit of distance in 

that section. However, as different shapes of snake may occur, this calculation 

may not be exact. Next, let cost1(𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+): Ω𝑛 × Ω𝑛 ⟶ ℕ0 be a functional 

that calculates exact number of moves necessary to place given two pebbles indi-

vidually. As the case of individual pebbles is not distorted by any irregularities 

(such as different shapes as in the case of snake) the number of moves can be 

calculated exactly – again it is the sum of distances between given sections mul-

tiplied by the number of moves needed to travel unit distance in the individual 

sections. 

 

 
 

Figure 5. Illustration of snake formation. A snake will be formed by moving pebble 2 towards 

pebble 1 and then the whole snake will move to its goal location. The other way of forming a snake 

is to move pebble 1 towards pebble 2 and then to move the whole snake. 
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A preliminary experimental evaluation has shown that it suitable to use the fol-

lowing decision rule: if min {estimatesnake  𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+  𝑝, 𝑞 , 

estimatesnake  𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+   𝑝, 𝑞 } < 1.2cost1 𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+  𝑝, 𝑞  holds then 

it is tried to form a snake in the better of two ways and to compare the number of 

moves when snake is used with cost1 𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛
+, 𝑦𝑛

+  𝑝, 𝑞 . If snake is still better 

then it is actually used to produce sequence of moves into the solution. Otherwise, 

the original way of placement of pebbles one by one is used. 

The main function Place-Pebbles for placing a pair of pebbles using snake like 

motions is shown using pseudo-code as Algorithm 2. It is supposed that the func-

tion is used within the main loop of the solving algorithm (Algorithm 1). Several 

primitives, which all gets current configuration of pebbles as its first two parame-

ters, are used within Algorithm 2: a function Move-Vacant moves the vacant posi-

tion to a specified new location; a function Place-Pebble implements the pebble 

placement process from the original algorithm of Parberry – here it is used as 

generic procedure to move pebble from one position to another. Finally, a Snake-

Composed-Movement is a function that implements composed movements of a 

specified snake; two positions are specified – the current position of the head of 

snake and the new position for the head. It is also assumed that movement of the 

snake does not interfere with already placed pebbles. An example of snake forma-

tion and its placement is shown in Figure 5. 

4.3. Discussion on Longer Snakes 

We have also considered usage of snakes of length greater than 2. However, cer-

tain difficulties preclude using them effectively. There are many more options 

how to form a snake of length greater than 2. In the case of length 𝑘, there are at 

least 𝑘! basic options how a snake can be formed (the order of pebbles is deter-

mined and then the snake collects pebbles in this order). Moreover, those do not 

include all the options (for example, it may be beneficial to form two snakes in-

stead of a long one and so on). Therefore considering all the options and choosing 

the best one is computationally infeasible. Hence, using snakes of length 2 seems 

to be a good trade-off. 

4.4. Theoretical Analysis 

Although our new algorithm produces locally better sequence of moves for plac-

ing a pair of pebbles, it may not be necessarily better globally. Consider that dif-

ferent way of placing the pair of pebbles rearranges other pebbles differently as 

well, which may influence subsequent movements. Hence, theoretical analysis is 
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quite difficult here. To evaluate the benefit of the new technique in a more realis-

tic manner, we need some experimental evaluation. Nevertheless, theoretical 

analysis of worst cases can be done at least to get basic insight. 

 It has been shown that the original algorithm can always find a solution of the 

length at most 5𝑛3 + 9
2
𝑛2 + 19

2
𝑛 − 89; that is, 5𝑛3 + 𝒪(𝑛2) [6]. 

 

Proposition 1 (Worst-case Solution Length). Our new algorithm based on snakes 

can always produce a solution to a given instance of the (𝑛2 − 1)-puzzle of the 

length of at most 14

3
𝑛3 + 𝒪(𝑛2).  

 

Proof. It can be observed that the worst situation for the algorithm using snakes is 

when the two pebbles – let us denote them 𝑝 and 𝑞 – that are about to be placed 

are located in the last row or column. In such a case, we need 14𝑛 + 𝒪(1) moves 

in the worst case. Without loss of generality let us suppose both pebbles 𝑝 and 𝑞 

to be placed in the last row while 𝑝 is in the first column and 𝑞 is in the last col-

umn. Exactly it is needed: at most 2𝑛 − 1 moves to move the vacant position near 

𝑞; then at most 5(𝑛 − 1) moves to move 𝑞 towards 𝑝 which forms a snake; and 

finally 7𝑛 + 𝒪(1) moves to relocate the snake into the first row of the grid. 

The algorithm needs to place 𝑛 − 1 pairs of pebbles and one pebble indivi-

dually. Observe that moving one pebble individually to its goal position requires 

at most 8𝑛 moves. Hence, the first row and the first column requires at most 

14𝑛2 + 𝑐1𝑛 + 𝑐0 moves where 𝑐0 , 𝑐1 ∈ ℝ with 𝑐0 , 𝑐1 ≥ 0. Let 𝑀(𝑛) denotes 

number of moves needed to solve the (𝑛2 − 1)-puzzle of size 𝑛 × 𝑛 then it holds 

that 𝑀 𝑛 ≤ 𝑀 𝑛 − 1 + 14𝑛2 + 𝑐1𝑛 + 𝑐0. The solution of this inequality is  

𝑀 𝑛 = 14

3
𝑛3 + 𝒪(𝑛2).  

 

Proposition 2 (Worst-case Time Complexity). Our new algorithm based on 

snakes has the worst case time complexity of 𝒪(𝑛3).  

 

Proof. The total time consumed by calls of Move-Vacant and Place-Pebble is 

linear in the number of moves that are performed. The time necessary to find 

shortest path avoiding already placed vertices is linear as well since the path has 

always a special shape that is known in advance (diagonal followed by horizontal 

or vertical). There is no need to use any path-search algorithm. 

Time necessary for calculating estimatesnake  is at most the time necessary to 

finish the call of Place-Pebble, that is, linear in the number of moves again. 

Finally, we need to observe that the call of Snake-Composed-Movement con-

sumes time linear in the number of moves again since first the shortest path of the 
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special shape needs to be found and then a snake needs to be moved along the 

path.  

5. Application of ‘Snakes’ in Cooperative Path-Finding 

Promising theoretical and preliminary experimental results from the application of 

the idea of ‘snakes’ in solving (𝑛2 − 1)-puzzle inspired us to extend the idea to a 

closely related problem of cooperative path-finding (CPF). The task in coopera-

tive path-finding is to relocate a set of abstract robots over a given undirected 

graph in a non-colliding way so that each robot eventually reaches its goal vertex 

[12]. Similarly as in (𝑛2 − 1)-puzzle robots can move into unoccupied vertex 

while no other robot is allowed to enter the same target vertex at the same time. 

The natural requirement in CPF is that at least one vertex is empty in the input 

CPF instance to allow robots to move. Unlike the situation in (𝑛2 − 1)-puzzle, 

CPF allows multiple robots to move simultaneously provided there are multiple 

vacant vertices. 

 The (𝑛2 − 1)-puzzle is thus clearly a special variant of CPF where there is 

only one unoccupied vertex in the graph and the graph, where pebbles (robots) 

move, has a special structure of the 4-connected grid. A possible application of 

snakes in CPF is further supported by the fact that several polynomial-time rule-

based algorithms that address CPF such as BIBOX [13], PUSH-and-SWAP [4], 

and PUSH-and-ROTATE [23] relocate robots one by one over the graph towards 

their goal locations. That is, in the same way as it is done in the algorithm of Par-

berry. Hence, these algorithms are candidates for integrating snake movements 

into their solving process. In this work, we have chosen the BIBOX algorithm that 

has been first introduced in [13] for such a modification. 

5.1. Cooperative Path Finding Formally 

Cooperative path-finding takes place over an undirected graph 𝐺 =  𝑉, 𝐸  where 

𝑉 = {𝑣1, 𝑣2 , … , 𝑣𝑛} is a finite set of vertices and 𝐸 ⊆  𝑉
2
  is a set of edges. The 

configuration of robots over the graph is modeled by assigning them vertices of 

the graph. Let 𝑅 = {𝑟1, 𝑟2 , … , 𝑟𝜇 } be a finite set of robots. Then, a configuration of 

robots in vertices of graph 𝐺 will be fully described by a location function 

𝛼: 𝑅 ⟶ 𝑉; the interpretation is that an robot 𝑟 ∈ 𝑅 is located in a vertex 𝛼(𝑟). At 

most one robot can be located in a vertex; that is 𝛼 is a uniquely invertible func-

tion. A generalized inverse of 𝛼 denoted as 𝛼−1: 𝑉 ⟶ 𝑅 ∪ {⊥} will provide us a 

robot located in a given vertex or ⊥ if the vertex is empty. 
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Definition 7 (Cooperative Path-Finding). An instance of cooperative path-

finding problem (CPF) is a quadruple Σ = [𝐺 =  𝑉, 𝐸 , 𝑅, 𝛼0 , 𝛼+] where location 

functions 𝛼0 and 𝛼+ define the initial and the goal configurations of a set of ro-

bots 𝑅 in 𝐺 respectively. □ 

 The dynamicity of the model assumes a discrete time divided into time steps. 

A configuration 𝛼𝑖  at the 𝑖-th time step can be transformed by a transition action 

which instantaneously moves robots in the non-colliding way to form a new con-

figuration 𝛼𝑖+1. The resulting configuration 𝛼𝑖+1 must satisfy the following valid-

ity conditions: 

(i)  ∀𝑟 ∈ 𝑅  either 𝛼𝑖(𝑟) = 𝛼𝑖+1(𝑟) or {𝛼𝑖(𝑟), 𝛼𝑖+1(𝑟)} ∈ 𝐸 holds 

 (robots move along edges or not move at all), 

(ii)  ∀𝑟 ∈ 𝑅  𝛼𝑖(𝑟) ≠ 𝛼𝑖+1(𝑟) ⇒ 𝛼𝑖
−1 𝛼𝑖+1(𝑟 ) =⊥ 

 (robots move to vacant vertices only), and 

(iii)  ∀𝑟, 𝑠 ∈ 𝐴  𝑟 ≠ 𝑠 ⇒ 𝛼𝑖+1(𝑟) ≠ 𝛼𝑖+1(𝑠) 

 (no two robots enter the same target/unique invertibility of  

the resulting configuration). 

 The task in cooperative path finding is to transform 𝛼0 using above valid tran-

sitions to 𝛼+. An illustration of CPF and its solution is depicted in Figure 6. 

 

Definition 8 (Solution). A solution of a makespan 𝑚 to a cooperative path find-

ing instance Σ = [𝐺, 𝑅, 𝛼0 , 𝛼+] is a sequence of configurations 

𝑠 = [𝛼0 , 𝛼1 , 𝛼2 , … , 𝛼𝑚 ] where 𝛼𝑚 = 𝛼+ and 𝛼𝑖+1 is a result of valid transforma-

tion of 𝛼𝑖  for every = 1,2, … , 𝑚 − 1. □ 

 

 The number  𝑠  = 𝑚 is a makespan of solution 𝑠 . It is known that deciding 

whether there exists a solution of CPF of a given makespan is 𝑁𝑃-complete [8, 

15]. 

 
Figure 6. An example of cooperative path-finding problem (CPF). Three robots 𝑟1, 𝑟2, and 𝑟3 need 

to relocate from their initial positions represented by 𝛼0 to goal positions represented by 𝛼+. A 

solution of makespan 4 is shown. 
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5.2. Introducing ‘Snakes’ into the BIBOX Algorithm 

We will briefly recall basics of the BIBOX algorithm before the improvement with 

snakes will be integrated into it. The comprehensive description and evaluation of 

the algorithm is given in [16] to which we refer the reader for further details. The 

algorithm is designed for CPFs over biconnected graphs with at least two unoc-

cupied vertices (modifications for single unoccupied vertex exist as well [14]). 

 

Definition 9 (connected graph).  An undirected graph 𝐺 = (𝑉, 𝐸) is connected if 

 𝑉 ≥ 2 and for any two vertices 𝑢, 𝑣 ∈ 𝑉 such that 𝑢 ≠ 𝑣 there is an undirected 

path connecting 𝑢 and 𝑣. □ 

 

Definition 10 (biconnected graph, non-trivial).  An undirected graph 𝐺 = (𝑉, 𝐸) 

is biconnected if  𝑉 ≥ 3 and the graph 𝐺′ = (𝑉′, 𝐸′), where 𝑉 ′ = 𝑉 ∖ {𝑣} and 

𝐸′ = {{𝑢, 𝑤}|𝑢, 𝑤 ∈ 𝑉 ∧ 𝑢 ≠ 𝑣 ∧ 𝑤 ≠ 𝑣}, is connected for every 𝑣 ∈ 𝑉. A bicon-

nected graph not isomorphic to a cycle will be called non-trivial biconnected 

graph. □ 

 

Observe that, if a graph is bicon-

nected, then every two distinct vertices 

are connected by at least two vertex 

disjoint paths (equivalently, there is a 

cycle containing both vertices; only 

internal vertices of paths are considered 

when speaking about vertex disjoint 

paths - vertex disjoint paths can inter-

sect in their start points and endpoints). 

An example of biconnected graph is 

shown in Figure 7. 

An algorithmically important prop-

erty of biconnected graphs is that every 

biconnected graph can be constructed from a cycle by adding sequence of ears to 

the currently constructed graph [18, 21, 22]. The BIBOX algorithm is substantially 

based on this property. Consider a graph 𝐺 = (𝑉, 𝐸); the new ear with respect to 

𝐺 is a sequence 𝐿 = [𝑢, 𝑤1 , 𝑤2 , … , 𝑤ℎ , 𝑣] where ℎ ∈ ℕ0, 𝑢, 𝑣 ∈ 𝑉 such that 𝑢 ≠ 𝑣 

(called connection vertices) and 𝑤𝑖 ∉ 𝑉 for 𝑖 = 1,2, … , ℎ (𝑤𝑖  are fresh vertices). 

The result of the addition of the ear 𝐿 to the graph 𝐺 is a new graph 𝐺 ′ = (𝑉 ′ , 𝐸′) 

where 𝑉 ′ = 𝑉 ∪ {𝑤1, 𝑤2 , … , 𝑤ℎ} and either 𝐸′ = 𝐸 ∪ {{𝑢, 𝑣}} in the case of ℎ = 0 

or 𝐸′ = 𝐸 ∪ {{𝑢, 𝑤1},  𝑤1, 𝑤2 , … ,  𝑤ℎ−1 , 𝑤ℎ  , {𝑤ℎ , 𝑣}} in the case of ℎ > 0. Let 

𝑪𝟎  

𝑳𝟏 

𝑳𝟐 

𝑳𝟑 

𝐺 = (𝑉, 𝐸) 

Figure 7. Example of biconnected graph. An ear 

decomposition is illustrated. The graph can be 

constructed by starting with cycle 𝐶0 and by 

gradually adding ears 𝐿1, 𝐿2, and 𝐿3. 
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the sequence of ears together with the initial cycle be called an ear decomposition 

of the given biconnected graph. Again, see Figure 7 for illustrative example. 

 

Lemma 1 (ear decomposition) [18, 21, 22]. Any biconnected 𝐺 = (𝑉, 𝐸) graph 

can be obtained from a cycle by a sequence of operations of adding an ear.  

 

The important property of the construction of a biconnected graph according to 

its ear decomposition is that the currently constructed graph is biconnected at 

every stage of the construction. The algorithm for solving CPFs over biconnected 

graphs can proceed inductively according to the ear decomposition by arranging 

robots into individual ears – after finishing placement of robots into an ear, the 

problem reduces to a problem of the same type but on a smaller graph without the 

currently solved ear. 

As the BIBOX algorithm has been already thoroughly published, its enhance-

ment with snakes described using pseudo-code has been deferred to Appendix B 

(Algorithm 3). The idea behind using snakes within the BIBOX algorithm is simi-

lar as in the case of the algorithm of Parberry. 

Again, snakes of length 2 are used within the modified BIBOX algorithm. 

Consider that robots 𝑟 and 𝑠 are two consecutive robots within the processed ear 

𝐿𝑖 . In the original algorithm, they are moved one by one towards the ear connec-

tion vertex and stacked inside the ear by its rotation afterwards; that is, relocation 

and stacking inside the ear of 𝑟 and 𝑠 is done separately. When snake reasoning is 

used, it is first checked if 𝑟 and 𝑠 are close enough to each other before 𝑟 is relo-

cated towards the ear connection vertex. If it is the case, then 𝑟 and 𝑠 are relocated 

together in tandem until 𝑟 reaches the connection vertex. After such relocation, 

robot 𝑠 is next to the connection vertex and can be then stacked into the ear quick-

ly. If robots 𝑟 and 𝑠 are too far from each other, then the original relocation of 

both robots separately is used. The process of relocation of two consecutive ro-

bots is implemented by procedure Move-Robot-Snake within the pseudo-code of 

Algorithm 3. 

Let us now clarify what does it mean that robots are close enough to each other 

and what relocation in tandem means. When considering if snake based relocation 

pays-off, a simple distance heuristic is used. The cost of relocation is estimated by 

the length of shortest path between the original and target location. Let 𝑣 be an 

ear connection vertex, 𝛼 current configuration of robots and let distG (𝑢, 𝑣) for 

𝑢, 𝑣 ∈ 𝐺 denote the shortest path between 𝑢 and 𝑣 in 𝐺 = (𝑉, 𝐸). Then robots 𝑟 

and 𝑠 are relocated in tandem if: 

 

distG(𝑣, 𝛼(𝑟)) + distG(𝛼 𝑟 , 𝛼(𝑠)) < distG (𝑣, 𝛼(𝑟)) + distG (𝑣, 𝛼(𝑠)) (7) 
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Figure 8. Illustration of using snakes of size 2 within the BIBOX algorithm. A pair of robots 𝑟 and 

𝑠 needs to be stacked into ear 𝐿𝑖  next to each other. They first need to be moved towards ear connec-

tion vertex 𝑣. Shortest paths connecting robot locations with vertex 𝑣 are depicted. According to 

distance heuristic it is decided that 𝑟 and 𝑠 should be relocated together in tandem. Thus, robot 𝑠 is 

moved next to 𝑟 by rotating cycle 𝐶1 (stages (b), (c)). Then, 𝑟 and 𝑠 moves like a snake in tandem by 

rotating cycle 𝑟 and 𝐶2 until 𝑟 appears in the ear connection vertex 𝑣 (stage (d)). Finally, robot 𝑟 is 

stacked into ear 𝐿𝑖  by rotation of cycle 𝐶(𝐿𝑖) associated with the ear (stage (e)). As robot 𝑠 has been 

next to 𝑟 all the time, it consequently moved to its target vertex during the last rotation as well (stage 

(f)). The symbol _ stands for an anonymous robot. 
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That is, if relocation of 𝑠 towards 𝑟 and relocation of 𝑟 and 𝑠 in tandem to-

wards 𝑣 seems to be less costly than relocation of 𝑟 and 𝑠 towards 𝑣 separately. 

The original relocation of a robot 𝑟 within the BIBOX algorithm is done by 

finding a cycle which includes the target vertex and robot 𝑟. One vertex within the 

cycle is made unoccupied which enable rotation of the cycle. Robot 𝑟 is moved 

towards its target by rotating the cycle until 𝑟 appears in the target vertex. The 

original relocation is implemented by Move-Robot procedure in the pseudo-code. 

The tandem relocation of a pair of robots uses the very same idea. First, robot 

𝑠 is moved next to 𝑟 by the original way of relocating robots (Move-Robot). Then 

a cycle containing the edge whose endpoints are occupied by 𝑟 and 𝑠 respectively. 

The cycle rotated until 𝑟 reached its target. Throughout the series of rotations of 

the cycle, robots 𝑟 and 𝑠 are preserved to stay next to each other, which eventually 

means that 𝑠 is close to its target at the end of tandem relocation. The tandem 

relocation is implemented by Move-Robot-Snake within the pseudo-code. The 

illustration of the process of tandem relocation of a pair of robots is shown in 

Figure 8. 

6. Experimental Evaluation 

An experimental evaluation is necessary to explore qualities of our new snake-

based improvements to the algorithm of Parberry and to the BIBOX algorithm. 

 

 
 
 

Figure 9. Comparison of the original Parberry’s algorithm and its snake-based improvement in 

terms of total number of steps. Comparison has been done for several sizes of the puzzle ranging 

from 3 to 50. Forty random instances were generated for each size of the puzzle. The average num-

ber of moves for both algorithms is shown in the left part. The absolute improvement that can be 

achieved by using snakes is shown in the right part. 

 

0

50000

100000

150000

200000

250000

300000

350000

0 10 20 30 40 50

N
u
m

e
b
r 

o
f 

m
o

v
e
s

Parberry / Snake Comparison

Parberry

Snake

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50

A
b

s
o

lu
t

Im
p
ro

v
e
m

e
n
t 

(m
o
v
e
s
)

Improvement in Parberry

Puzzle size (n) Puzzle size (n) 



An Improved Sub-optimal Algorithm for Solving (𝑁2 − 1)-Puzzle  239 
 
 

 

 In case of snake-based improvement to Parberry’s algorithm, we have only the 

upper bound estimation of the total number of steps so far which however does 

not show that the new algorithm actually produces fewer moves. Thus, a thorough 

empiric evaluation needs to be done. 

 The snake-based improvements to Parberry’s algorithm as well as the original 

algorithm were implemented in C++ to make experimental evaluation possible. 

The snake-based reasoning was also integrated into the BIBOX algorithm which 

original C++ implementation was available [13] so only minor changes to the 

code needed to be made.  A series of tests has been conducted to measure the 

total number of moves performed by each algorithm. The runtime necessary to 

solve the given instance has been measured too. 

 

 
 

 Regarding the choice of testing puzzles, we followed the benchmark genera-

tion proposed by Korf and Taylor in [2] where random instances of the  52 − 1 -

puzzle were used. There is an experimental evidence that solving random in-

stances of the  52 − 1 -puzzle optimally is difficult. Our experimental evaluation 

has been done for random puzzles of sizes of ranging from 4 to 50 (that is, 𝑛 was 

ranging from 4 to 50). For each size of the puzzle, 40 solvable instances with 

random initial and goal configuration of pebbles were generated (notice, that sol-
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  Relative Improvement 
in Parberry’s Algorithm 

𝒏 
Length 

Improvement (%) 

4 5.58 

5 4.79 

6 5.57 

8 5.75 

10 6.34 

12 6.51 

14 6.59 

16 6.66 

18 7.29 

20 7.51 

22 7.54 

25 7.49 

30 7.84 

35 7.84 

40 8.07 

45 8.26 

50 8.26 

 

Table 1. Relative improvement achieved by using snakes with 

respect to the original algorithm. Again, the improvement has 

been measured for several sizes of the puzzle ranging from 4 to 

50. For each size, 40 random instances were generated and the 

average improvement was calculated. 

 

Figure 10. Illustration of the trend in the average improvement. 

It can be observed that the relative improvement tends to stabil-

ize between 8% and 9% as instances are getting larger. 

Puzzle size (n) 
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vability can be detected by permutation parity check). Each generated instance 

was then solved by all the tested algorithms, that is, by Parberry’s algorithm, its 

snake-based improvement, by the BIBOX algorithm, and BIBOX with snake im-

provement. 

  

 
 

 
 
 

Figure 11. Development of the improvement in Parberry’s algorithm with the growing size of the 

puzzle instance. Comparison of the number of moves conducted by the algorithm of Parberry and by 

its snake-based improvement is shown for four puzzles of the increasing size. Individual instances 

for each size of the puzzle are sorted according to the increasing number of steps made by Parber-

ry’s algorithm. It is observable that a worsening after applying snake-based approach may appear in 

small instances. Nevertheless, the improvement is becoming stable (between 8-9%) for larger in-

stances. 
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over 4-connected grid, which is a very special case of biconnected graph. Moreo-
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of size 1, which is a yet more special case. Hence, evaluation of snake-based im-

provements in the BIBOX algorithm on biconnected graphs with ear decomposi-

tions consisting of longer ears has been done. Tests with CPFs were also focused 

on evaluation of snake-based improvements with various numbers of robots in the 

instance (multiple vacant vertices may be available). 

The complete source code and raw experimental data are provided at the web-

site: http://ktiml.mff.cuni.cz/~surynek/research/j-puzzle-2014 to allow full repro-

ducibility of presented results and own experiments with snake-based improve-

ments in tested algorithms. 

6.1. Competitive Comparison of Parberry’s Algorithm with Snakes 

The competitive comparison of the total number of moves made by the algorithm 

of Parberry and its snake-based improvement is shown in Figure 9. The improve-

ment achieved by snake-based approach is illustrated as well. For each size of the 

instance, average out of 40 random instances is shown. 

 

   
 

 

Figure 12. Comparison of the original BIBOX algorithm and its modification that uses snakes. The 

experimental setup is the same as in the case of Parberry’s algorithm – (42 − 1) to (502 − 1) puz-

zles with 40 random instances for each size were used for evaluation. The average number of steps 

over 40 instances is shown for each size of the puzzle. The BIBOX algorithm needs approximately 

3-times more steps than Parberry’s algorithm to solve an instance of the (𝑛2 − 1)-puzzle. The abso-

lute improvement in terms of the number of steps after introducing snake-based movements into 

BIBOX algorithm is larger in absolute number of steps than after using snakes within the Parberry 

algorithm. 

 

It is observable that the growth of the number of moves for growing size of the 

instance is polynomial. Next, it can be observed that snakes achieve a stable im-

provement, which is proportional to the total number of moves. The more detailed 
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insight into the achieved improvement of the total number of moves is provided 

by Figure 10 and Table 1. It clearly indicates that the improvement is becoming 

stable between 8% and 9% with respect to the original algorithm, as instances are 

getting larger. 

6.2.  Parberry’s Algorithm on Individual Puzzle Instances 

Comparison of the total number of moves on the individual instances of various 

sizes is shown in Figure 11. These results show that using snakes, even though it 

is locally a better choice, can lead to global worsening of the solution. This phe-

nomenon sometimes occurs exclusively on small instances. Here it is visible for 

instances of the size of 4 × 4. 

On larger instances, the local benefit of using snakes dominates over any local 

worsening of the configuration so there is stably significant improvement of 7% 

and 9%. Notice, that this is not the average improvement calculated from several 

instances; this is improvement on a single instance. 

6.3. Competitive Comparison of BIBOX Algorithm with Snake Improvement 

The BIBOX algorithm can be used to solve (𝑛2 − 1)-puzzle instances, as they are 

special cases of CPF. Note however, that the general algorithm for biconnected 

graphs needs at least two unoccupied vertices. These two unoccupied vertices are 

needed to arrange robots/pebbles in the initial cycle of the ear decomposition 

while just one vacant vertex is sufficient to arrange pebbles in regular ears [16]. 

As we are working with graphs of fixed 4-connected structure in (𝑛2 − 1)-puzzle 

a slight adaptation of the BIBOX algorithm that arranges pebbles in the initial 

cycle by fixed rules using just one vacant vertex is possible. Throughout the solv-

ing process, an ear decomposition of the 4-connected grid where internal ears 

consist of single internal vertex was used. 

Results from the comparison of the number of steps in solutions of the puzzle 

generated by the BIBOX algorithm and its snake-based improvement are shown in 

Figure 12. Observe that the BIBOX algorithm generates approximately 3 times 

larger solutions than the algorithm of Parberry. This is however natural result as 

BIBOX algorithm is more general for biconnected graphs and does not exploit the 

advantage of a priori knowledge that the underlying graph is a 4-connected grid. It 

is also noticeable that using snakes in case of the BIBOX algorithm saves much 

more steps in absolute terms than in the case of Parberry’s algorithm. 

The relative improvement after introducing snakes into the BIBOX algorithm 

as shown in Figure 13 and Table 2 is around 30% in larger puzzle instance. In 
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small instances even worsening may appear which is caused by inaccuracy of the 

distance heuristic (7) which does not take into account that the number of per-

formed moves does not need to correspond to shortest paths and that the second 

robot (denoted as 𝑠 in section 5.2) may relocate after relocating the first robot 

(denoted as 𝑟). 

 

 
 

6.4. BIBOX Algorithm on Individual Puzzle Instances 

Similarly as in the case of Parberry’s algorithm, we show results of test of the 

BIBOX algorithm over individual instances of the puzzle. Results are shown in 

Figure 14. In small instances, relatively significant worsening may appear after 

using snakes in algorithm BIBOX. On the other hand, in large instances significant 

improvement over 30% can be achieved. Again the worsening in small instances 

can be explained by inaccuracy of distance heuristic (7) as in small instances 

stronger interference between two relocated robots is more likely. 
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  Relative Improvement 
in BIBOX Algorithm 

𝒏 
Length 

Improvement (%) 

4 -9.29 

5 -1.46 

6 2.72 

8 13.98 

10 18.48 

12 19.71 

14 22.08 

16 22.42 

18 23.54 

20 24.45 

22 26.03 

25 26.46 

30 26.88 

35 29.04 

40 29.79 

45 30.07 

50 30.14 

 

Table 2. Relative improvement achieved by using snakes in the 

BIBOX algorithm. Again, the improvement has been measured 

for several sizes of the puzzle ranging from (42 − 1) to 

(502 − 1) with 40 random instances per size. Relative im-

provement is significantly larger in the case of BIBOX algo-

rithm than in Parberry’s algorithm. 

 

Figure 13. Illustration of the trend in the average improvement 

in the BIBOX algorithm. It can be observed that the relative 

improvement tends to stabilize around 30% as instances of the 

(n2 − 1)-puzzle are getting larger. 

 

Puzzle size (n) 



An Improved Sub-optimal Algorithm for Solving (𝑁2 − 1)-Puzzle  244 
 
 

 

6.5. Evaluation of Using Snakes in BIBOX Algorithm on CPFs 

Promising results obtained in solving (𝑛2 − 1)-puzzle by snake-improved algo-

rithms inspired us to evaluate snake-based version of the BIBOX algorithm on 

instances of CPF over biconnected graphs that are structurally different from the 

puzzle. 

  

 

 
 

 
 
 

Figure 14. Development of the improvement in the BIBOX algorithm with the growing size of the 

puzzle instance. The improvement is shown for all the 40 random instances for several sizes of the 

(𝑛2 − 1)-puzzle. Worsening may appear after using snakes in the BIBOX algorithm in small in-

stances – the same behavior can be observed in Parberry’s algorithm. Nevertheless, the improve-

ment is becoming stable around 30% in larger instances. 

 

 Note that the ear decomposition of the 4-connected grid, where (n2 − 1)-

puzzle takes place, is quite special – it consists of ears having just one internal 

vertex. Hence, it would be interesting how snake improvement behaves in BIBOX 

algorithm over biconnected graphs with longer ears.  
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Figure 15. Improvements after introducing snakes into BIBOX algorithm on biconnected graphs. 

Biconnected graph with different sizes of ears in ear decompositions were tested – 

𝐵𝑖𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑐, 𝑒, 𝑚) stands for a biconnected graph with initial cycle of size 𝑐, average internal 

ear size 𝑒, and number of ears 𝑚. Also, the number of robot changed from almost fully occupied 

graph (one vacant vertex) to a graph occupied by single robot. Again, the average number of steps in 

solutions to 40 random instances for each number of occupied vertices is shown. In almost all the 

cases using snakes brings significant improvement of the total number of steps. There is also ob-

servable tendency that snakes appear more beneficial if multiple vacant vertices are available. The 

only case where snakes cause worsening consist of almost fully occupied graphs with relatively long 

ears in the ear decomposition. 
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 We also evaluated snake-based improvements over CPF instances with various 

numbers of robots; that is, when multiple vacant vertices are available which may 

affect snake formation and interference between two relocated robots significant-

ly. We expect higher accuracy of the distance heuristic (7) in cases of with fewer 

robots (more vacant vertices) as there should be weaker interference between two 

relocated robots. 

Several random biconnected graphs were constructed over which random CPF 

instances were generated. Random instances over fixed graph are obtained by 

generating random initial and goal configuration of robots. Results from the eval-

uation on CPFs over biconnected graphs are shown in Figure 15. 

The notation 𝐵𝑖𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑐, 𝑒, 𝑚) denotes random biconnected graph with 

an ear decomposition where the initial cycle consists of 𝑐 vertices, the average 

number of internal vertices of ears is 𝑒, and the total number of ears is 𝑚. Several 

biconnected graphs containing approximately 90 vertices were used in the evalua-

tion. 

 Results indicate that snake-based improvement is more efficient if there are 

more unoccupied vertices in the instance, which conforms to our expectation. Up 

to 50% moves can be saved after employing snakes in CPF solving over bicon-

nected graphs with approximately half of vertices occupied by robots and even 

larger proportion (up to 80%) of moves can be saved in sparsely occupied graphs. 

Worsening after using snakes appears more frequently than in the case of puz-

zle. It may appear especially with long ears in densely occupied graphs. This be-

havior can be explained by the fact that there are fewer alternative paths in bicon-

nected graphs with long ears and by the fact that robot can sometimes be influ-

enced by other robots in densely occupied graph which can divert it from its di-

rection. Due to absence of alternative paths the diversion cannot be repaired as 

easily as in the case of (𝑛2 − 1)-puzzle – in  other words distance heuristic (7) is 

quite inaccurate in such cases. 

6.6. Runtime Measurement 

Finally, results regarding runtime are presented in Table 3. The average runtime 

for puzzles of size up to 50 × 50 are shown. Expectably, snake-based improve-

ment of Parberry’s algorithm is slower as it makes decisions that are more com-

plex (in fact, it is running the original algorithm plus snake placement to compare 

if snake is locally better). Nevertheless, the slowdown is well acceptable. 

Notice that both algorithms – Parberry’s and its snake-based improvement – 

are capable of solving puzzles with solutions consisting of hundreds of thousands 
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of moves almost immediately. Hence, it can be concluded that both algorithms 

scales up extremely well and they can be used in on-line applications. 

 
Table 3. Runtime1 measurements of the algorithm of Parberry, BIBOX algorithm and their snake 

variants. Average time is calculated for each size of the puzzle out of 40 runs with different random 

setups. It can be observed that both algorithms scale up well. 

 

𝒏 10 20 30 40 50 

Time 
(seconds) 

Parberry < 0.10 < 0.10 < 0.10 0.10 0.10 

Parberry/Snakes < 0.10 < 0.10 < 0.10 0.10 0.19 

BIBOX < 0.10 3.52 37.39 211.95 835.06 

BIBOX/Snakes < 0.10 2.99 30.25 168.50 657.57 

 

The absolute time in the case of BIBOX algorithm is much worse since the al-

gorithm works on general biconnected graph while Parberry’s algorithm works on 

fixed grid thus there is much less decisions in Parberry’s algorithm. We also 

would like to mention that we used the original implementation of algorithm BI-

BOX provided by the author [13] in above measurements. We expect that the im-

plementation can be further optimized. The important result is the difference be-

tween the original and snake-improved version. 

It is noticeable that although snakes require more complex computations these 

in fact should not increase the runtime significantly – the distance heuristic (7); 

that is, the distance between currently placed robot and the next robot to be placed 

can be calculated by looking into table containing all-pairs of shortest paths. The 

time needed for this pre-calculation is dominated by the runtime of the rest of the 

BIBOX algorithm theoretically as well as empirically. The performance in terms 

of the runtime is better when snakes are utilized because the algorithm does need 

to produce significantly fewer moves. 

6.7. Summary of Experimental Evaluation 

The conducted experimental evaluation clearly shows the hat snake-based reason-

ing integrated to the original algorithm of Parberry as well as to the BIBOX algo-

rithm brings significant improvements in terms of the quality of generated solu-

tions (defined as total number of moves). This claim is experimentally supported 

in both (𝑛2 − 1)-puzzle and yet more distinctively in cooperative path finding 

instances on biconnected graphs. 

 
1 All the tests with Parberry’s algorithm were run on a commodity PC with CPU Intel Core2 Duo 3.00 GHz and 

2 GB of RAM under Windows XP 32-bit edition. The C++ code was compiled with Microsoft Visual Studio 

2008 C++ compiler. Tests with the BIBOX algorithm were run on an experimental server with the 4-core CPU 
Xeon 2.0GHz and 12GB RAM under Linux kernel 3.5.0-48. 
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 Experiments support the claim that using snakes greedily, that is, if they are 

locally better, leads to global improvement of solution even though the current 

configuration may be worsened sometimes from the global point of view. As in-

stances are getting larger, the improvement tends to stabilize itself between 8% 

and 9% in average in case of Parberry’s algorithm and around 30% in the case of 

BIBOX algorithm on (𝑛2 − 1)-puzzle. On larger instances – that is larger than 

30 × 30 – possible fluctuations towards worsening the solution are eliminated, 

hence using snakes expectably leads to mentioned improvement on an individual 

instance. 

 Runtime measurements show that original Parberry’s algorithm and its snake-

based improvement solve instances of tested sizes in less than 0.2𝑠. Thus, it can 

be concluded that scalability is extremely good. 

 Surprisingly, snake-based reasoning improves solutions quite dramatically in 

CPFs on biconnected graphs with longer ears in the decomposition and fewer 

robots in the graph. In such cases, snakes help the BIBOX algorithm to reduce the 

size of the solution by up to 50% or even 80% in sparsely populated instances. 

7. Conclusions and Future Work 

We have presented an improvement to the polynomial-time algorithm for solving 

the (𝑛2 − 1)-puzzle in an on-line mode sub-optimally. The improvement is based 

on an idea to move pebbles jointly in groups called snakes, which was supposed 

to reduce the total number of moves. The experimental evaluation eventually con-

firmed this claim and showed that the new algorithm outperforms the original 

algorithm of Parberry [6] by 8% to 9% in terms of the average length of the solu-

tion. Theoretical upper bounds on the worst-case length of the solution are also 

better for the new algorithm as we have shown. Regarding the runtime, the new 

algorithm is marginally slower due to its more complex computations, however 

this is acceptable for any real-life application as the runtime is linear in the num-

ber of produced moves (approximately 106 moves can be produced per second). 

 Promising results with snake-based pebble moving in (𝑛2 − 1)-puzzle led us 

to the idea to try to integrate snake-based movement into methods for solving the 

problem of cooperative path-finding (CPF) of which the (𝑛2 − 1)-puzzle is a 

special case. We have chosen the BIBOX algorithm [16] for integrating snakes as 

it processes robots in CPFs in a similar way how Parberry’s algorithm processes 

pebbles (that is, one by one and after the robot is placed it does not move any 

more). Improvements gained after integrating snake-based reasoning into BIBOX 

algorithm were even more significant than in case of Parberry’s algorithm. Up to 

30% improvement was reached in solving (𝑛2 − 1)-puzzle with algorithm BI-
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BOX and up to 50% improvement has been reached in CPFs over biconnected 

graphs with long ears and multiple unoccupied vertices. Moreover, the improve-

ment in CPFs on biconnected graphs has the growing tendency as the number of 

unoccupied vertices increases. 

 It will be interesting for future work to add more measures for reducing the 

total number of moves towards the optimum. Observe that choosing a more prom-

ising local rearrangement among several options can be easily parallelized. 

 We are also interested in generalized variants of the (𝑛2 − 1)-puzzle where 

there is more than one vacant position. These variants are known as the (𝑛2 − 𝑘)-

puzzle with 𝑘 > 1 [14]. Although it seems that obtaining optimal solutions re-

mains hard in this case, multiple vacant positions can be used to rearrange pebbles 

more efficiently in the sub-optimal approach. 

 It seems that adapting the BIBOX algorithm for snakes of length more than 2 is 

also possible. A robot can collect the snake along its relocation towards the ear 

connection vertex. Another open question is how the snake-based approach could 

perform in the directed version of CPF [1, 25]. Unidirectional environment puts 

additional constraints on relocation and hence solution reduction using snakes 

may have greater effect. 

 Finally, it is interesting for us to study techniques for optimal solving of this 

and related problems; especially the case with small unoccupied space (that is, 

with 𝑘 ≪ 𝑛2). This is quite open area as today’s optimal solving techniques [17] 

can manage only small number of pebbles compared to the size of the unoccupied 

space. 
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Appendix A – Analysis of the Average Case 

Regarding the average case analysis we will assume in accordance with [6] that 

every initial configuration of pebbles can occur with the same probability. We 

will first show that algorithm of Parberry [6] produces 4𝑛3 − 1

2
𝑛2 + 3

2
𝑛 − 70 

moves in the average case. Then we will simulate this analysis also for our snake-

based algorithm. Unfortunately, it seems not to be possible to express the average 

number of moves as any simple formula in the case of the snake-based algo-

rithms. However, we can provide some arguments that the average solution length 

of the snake-based algorithm is strictly better than that of Parberry’s algorithm. 

 Before we start with proofs of main propositions, we will introduce several 

technical lemmas. Proofs of these lemmas are omitted since they are easy and 

rather technical (detailed proofs can be found in [5]). 

 

Lemma 2. The average value of 𝜇𝑛( 1,1 ;  𝑥, 𝑦 ) for 𝑥, 𝑦 ∈ {1,2, … , 𝑛} (that is 

the average Manhattan distance from the position  1,1 ) is 𝑛 − 1.  
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Lemma 3. The average value of 𝜇𝑛( 1, 𝑘 ;  𝑥, 𝑦 ) for 𝑘, 𝑥, 𝑦 ∈ {1,2, … , 𝑛} such 

that for 𝑥 > 𝑘 or for 𝑦 > 1 (that is, for a given 𝑘 we consider only  𝑥, 𝑦  positions 

that follows the position  1, 𝑘  in the top-down/left-right direction) is at most 

𝑛 − 1

2
.  

 

 The similar result can be obtained for positions in the first column. But here 

the estimation of the Manhattan distance is lower – namely 𝑛 − 1. 

 

Lemma 4. The number of moves necessary to move a pebble from a position 

(𝑖, 𝑗) to a position (1, 𝑘) supposed that the position (1, 𝑘) is unoccupied is at most 

6𝜇𝑛  1, 𝑘 ;  𝑖, 𝑗  + 1.  

 

Proposition 3 (Average-case Solution Length - Parberry). The average length of 

solutions to (𝑛2 − 1)-puzzle produced by Parberry’s algorithm is at most 

4𝑛3 − 1

2
𝑛2 + 3

2
𝑛 − 70.  

 

Proof. From the Lemma 3 and Lemma 4 we can obtain that the expected number 

of moves necessary to solve the first row of the puzzle is at most: 𝑛 ∙

 6 ∙  𝑛 − 1

2
 + 1 = 6𝑛2 − 2𝑛. Similarly for the first column:  𝑛 − 1 ∙

 6 ∙  𝑛 − 1 + 1 = 6𝑛2 − 11𝑛 + 5. Altogether the upper estimation of the num-

ber of moves to solve the first row and the first column is: 12𝑛2 − 13𝑛 + 5. 

 Suppose that the position  1,1  is unoccupied and let us denote 𝑆(𝑛) the esti-

mation of the number of moves to solve the entire (𝑛2 − 1)-puzzle. Then it holds 

that: 𝑆 𝑛 = 𝑆 𝑛 − 1 + 12𝑛2 − 13𝑛 + 5, where 𝑆 3 = 34 (calculated as the 

upper for average length of optimal solutions). After solving the recurrent equa-

tion we obtain that: 𝑆 𝑛 = 4𝑛3 − 1

2
𝑛2 + 3

2
𝑛 − 70.  

 

 Notice, that this is a new theoretical result for the Parberry’s algorithm (in [6] 

only the worst case upper bound of 5𝑛3 + 𝒪(𝑛2) and lower bounds are given). 

 

Observation 1 (Average-case Solution Length – Snake-based). The average 

length of solutions to (𝑛2 − 1)-puzzle generated by the Snake-based algorithm is 

strictly lower than that of solutions generated by the algorithm of Parberry.  

 

Commentary. The average length of the solution in random instances in the case 

of the snake-based algorithm can be expressed as the average number of moves 

necessary to place first two pebbles (top-down/left-right direction) plus the aver-

age solution length to instances where first two pebbles are already placed. Notice 
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that the average number of moves to place the first two pebbles is strictly lower in 

the snake-based algorithm. Hence, if we unfold the recurrence expression for the 

average length of the solution entirely the result will be strictly smaller than the 

average length of solutions of Parberry’s algorithm.  

 

Although we don’t provide any explicit formula for the average length of solu-

tions generated by our snake-base algorithm we know that it is strictly less than 

4𝑛3 − 1

2
𝑛2 + 3

2
𝑛 − 70. 

Appendix B – BIBOX Algorithm with Snakes 

A commented pseudo-code of the BIBOX algorithm enhanced with snakes is giv-

en in this appendix. The original BIBOX algorithm arranges robots into ears 

while the problem inductively reduces on a smaller biconnected graph whenever 

robots are arranged into the ear – robots in such an ear do not move any more. 

The algorithm is listed below as Algorithm 1. It uses several auxiliary functions to 

solve subtasks. Pseudo-code of auxiliary functions is given in [16] – here they are 

only briefly described. 

 The algorithm starts with constructing ear decomposition (line 1). It is as-

sumed that a cycle denoted as 𝐶(𝐿𝑖) is associated with each ear; 𝐶(𝐿𝑖) can be 

constructed by adding a path connecting ear’s connection vertices 𝑢 and 𝑣. Then 

the goal configuration of robots is transformed so that vacant vertices are even-

tually located in the initial cycle of the decomposition (line 2). The algorithm 

solves this modified instance afterwards. The solution of the original instance is 

obtained by relocating vacant vertices from initial cycle to their original goal loca-

tions (line 8). This instance transformation is carried out by auxiliary functions 

Transform-Goal and Finish-Solution that relocates vacant vertices along two ver-

tex disjoint paths. The main loop (lines 4-6) processes ear from the last one to-

wards the initial cycle. Robots are arranged by another auxiliary procedure Solve-

Original-Cycle in the original cycle (line 7). 

 Individual ears are processed by the procedure Solve-Regular-Ear. It arranges 

robots into the ear in stack like manner. First, unoccupied vertices are moved out 

of the processed ear as they will be needed there (lines 10-14). Then robots, 

whose goal positions are in the ear, are processed. Two cases are distinguished 

depending on whether the processed robot is located outside the ear (lines 17-25) 

or within the ear (lines 27-51). The easier case is with robot outside – in this case, 

the robot is moved to the connection vertex 𝑢 using either Move-Robot or Move-

Robot-Snake auxiliary procedure. The other connection vertex 𝑣 is vacated by 

Make-Unoccupied procedure.  
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Algorithm 3. The BIBOX with snakes algorithm. The algorithm solves cooperative path-finding 

problem (CPF) over bi-connected graphs consisting of a cycle and at least one ear with two unoccu-

pied vertices. The algorithm proceeds inductively according to the ear decomposition. The two 

unoccupied vertices are necessary for arranging robots within the initial cycle in the rest of the graph 

only one unoccupied vertex is needed. The pseudo-code is built around several higher-level opera-

tions. The modification from the original version consists in placing robots into an ear where two 

consecutive robots are considered at once. If consecutive robots are closed enough they are relo-

cated towards the ear in a snake like manner together. 

 Lock 𝑈       locks all the vertices from  set 𝑈; each vertex is either 

        locked or unlocked; an robot must not be moved out of the 

        locked vertex which is respected by other operations 

 Unlock 𝑈      unlocks all the vertices from set 𝑈 

 Make-Unoccupied(𝑣)  vacates vertex 𝑣 

 Move-Robot 𝑟, 𝑣    moves robot 𝑟 from its current location to vertex  𝑣 

 Move-Robot-Snake(𝑟, 𝑠, 𝑣) moves robots 𝑟 and 𝑠 from their current locations 

        towards 𝑣; that is 𝑟 is moved to 𝑣 and 𝑠 is moved together 

        with 𝑠 in a snake-like manner if 𝑟 and 𝑠 are close enough 

        initially (distG (𝑣, 𝛼 𝑟 ) + distG(𝛼 𝑟 , 𝛼 𝑠 ) < distG (𝑣, 
        𝛼 𝑟 ) + distG(𝑣, 𝛼 𝑠 ); that is, the total distance towards 

        destination 𝑣 is smaller if robots go together than if they go 

        one by one) 

 Rotate-Cycle+(𝐶)   rotates cycle 𝐶 in the positive direction; a vacant vertex 

        must be present in the cycle 

 Rotate-Cycle−(𝐶)   rotates cycle 𝐶 in the negative direction 

 Transform-Goal(𝐺, 𝑅, 𝛼+)  transforms goal configuration 𝛼+ to a new configuration so 

        that finally unoccupied vertices are located in the initial 

        cycle of the ear decomposition; two disjoint paths along 

        which empty vertices are relocated are returned 

 Finish-Solution(𝜑, 𝜒)  transforms the configuration with two unoccupied vertices  

        in  the initial cycle to the original goal configuration; 𝜑 and  

        𝜒 are two disjoint paths along which empty vertices shifted 

 Solve-Original-Cycle   arranges robots within the initial cycle of the ear decompo- 

        sition to comply with the transformed goal configuration;  

        two empty vertices are employed to arrange robots 
 

procedure BIBOX-Snake-Solve(𝐺 =  𝑉, 𝐸 , 𝑅, 𝛼0 , 𝛼+) 

/* Top level function of the BIBOX algorithm with snakes; solves 

a given cooperative path-finding problem. 

Parameters: 𝐺 - a graph modeling the environment, 

𝑅 - a set of robots, 

𝛼0 - a initial configuration of robots, 

𝛼+ - a goal configuration of robots. */ 

1: let 𝒟 =  𝐶0, 𝐿1 , 𝐿2, … , 𝐿𝑘   be a ear decomposition of 𝐺 

2: (𝛼+, 𝜑, 𝜒) ← Transform-Goal(𝐺, 𝑅, 𝛼+) 

3: 𝛼 ← 𝛼0 

4: for 𝑐 = 𝑘, 𝑘 − 1, … ,1 do 

5:  if  𝐿𝑐  > 2 then 

6:   Solve-Regular-Ear(𝑐) 

7: Solve-Original-Cycle 

8: Finish-Solution(𝜑, 𝜒) 
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procedure Snake-Solve-Regular-Ear(𝑐) 

/* Places robots which destinations are within a 

ear 𝐿𝑐 ; robots placed in the ear 𝐿𝑐  are finally 

locked so they cannot move any more. 

Parameters:  𝑐 – index of a ear */ 

9: let [𝑢, 𝑤1 , 𝑤2, … , 𝑤𝑙 , 𝑣] = 𝐿𝑐   

 /* Both unoccupied vertices must be located 

outside the currently solved ear. */ 

10: let 𝑥, 𝑧 ∈ 𝑉 ∖  (𝐿𝑗
𝑘
𝑐=𝑗 ∖ {𝑢, 𝑣}) such that 𝑥 ≠ 𝑧 

11: Make-Unoccupied(𝑥) 

12: Lock  𝑥   

13: Make-Unoccupied(𝑧) 

14: Unlock  𝑥   

15: for 𝑖 = 𝑙, 𝑙 − 1, … ,1 do 

16:  Lock(𝐿𝑐 ∖  𝑢, 𝑣 ) 

  /* An robot to be placed is outside the ear 𝐿𝑐 . */ 

17:  if 𝛼(𝛼+
−1(𝑤𝑖)) ∉ (𝐿𝑐 ∖  𝑢, 𝑣 ) then 

18:   if 𝑖 > 1 then 

19:    Move-Robot-Snake(𝛼+
−1 𝑤𝑖 , 𝛼+

−1 𝑤𝑖−1 , 𝑢) 

20:   else 

21:    Move-Robot(𝛼+
−1 𝑤𝑖 , 𝑢) 

22:   Lock({𝑢}) 

23:   Make-Unoccupied(𝑣) 

24:   Unlock(𝐿𝑐) 

25:   Rotate-Cycle+(𝐶(𝐿𝑐)) 

/* An robot to be placed is inside the ear 𝐿𝑐 . */ 

26:  else 

27:   Make-Unoccupied(𝑢) 

28:   Unlock(𝐿𝑐) 

29:   𝜌 ← 0 

30:   while 𝛼(𝛼+
−1 𝑤𝑖 ) ≠ 𝑣 do 

31:    Rotate-Cycle+(𝐶(𝐿𝑐)) 

32:    𝜌 ← 𝜌 + 1 

33:   Lock(𝐿𝑐 ∖  𝑢, 𝑣 ) 

34:   let 𝑦 ∈ 𝑉 ∖ ( (𝐿𝑗 ∖ {𝑢, 𝑣}) ∪𝑑
𝑗=𝑐+1 𝐶(𝐿𝑗 )) 

35:   if 𝑖 > 1 then 

36:    Move-Robot-Snake(𝛼+
−1 𝑤𝑖 , 𝛼+

−1 𝑤𝑖−1 , 𝑦) 

37:   else 

38:    Move-Robot (𝛼+
−1 𝑤𝑖 , 𝑦) 

39:   Lock ({𝑦}) 

40:   Make-Unoccupied (𝑢) 

41:   Unlock (𝐿𝑐) 

42:   while 𝜌 > 0 do 

43:    Rotate-Cycle(𝐶(𝐿𝑐)) 

44:    𝜌 ← 𝜌 − 1 

45:   Unlock ( 𝑦 ) 

46:   Lock (𝐿𝑐 ∖  𝑢, 𝑣 ) 

47:   Move-Robot (𝛼+
−1(𝑤𝑖), 𝑢) 

modification w.r.t. 
original BIBOX 

modification w.r.t. 
original BIBOX 
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48:   Lock ({𝑢}) 

49:   Make-Unoccupied  𝑣  

50:   Unlock (𝐿𝑐) 

51:   Rotate-Cycle+(𝐶(𝐿𝑐)) 

52: Lock (𝐿𝑐 ∖  𝑢, 𝑣 ) 

 

  

 If some vertex is free on the cycle 𝐶(𝐿𝑐) then the cycle can be rotated which is 

done once in the positive direction by Rotate-Cycle
+
 function. The rotation places 

the robot into the ear. Throughout the relocation of robots vertex locking is used 

(functions Lock and Unlock) to fix an robot in certain vertex while other robots or 

vacant vertex are relocated. 

 A more difficult case appears if the robot is inside the handle. In such case, the 

robot must be rotated out of the handle to the rest of the graph (lines 30-32). The 

number of positive rotations to get the robot out of the handle is counted (lines 

27-32). The counted number of rotations is used to restore the situation by the 

corresponding number of negative rotations (lines 42 -44). At this point, the situa-

tion is the same as in the previous case. Thus, the robot is stacked into the handle 

in the same way. 

 The difference of BIBOX algorithm with snakes from the original BIBOX algo-

rithm consists in adding Move-Robot-Snake procedure. When robots are relocated 

towards the currently processed ear, the snake based reasoning considers two 

consecutive robots whenever possible (lines 18-19 and 35-36). That is, while in 

the original algorithm, a single robot has been always relocated, in the snake ver-

sion, the next to be relocated robot is considered as well. If both consecutive ro-

bots are close enough to each other they are relocated towards their target ear 

together in tandem (the process of tandem relocation is implemented within 

Move-Robot-Snake procedure). 
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Abstract. The problem of makespan optimal solving of cooperative path finding 

(CPF) is addressed in this paper. The task in CPF is to relocate a group of agents 

in a non-colliding way so that each agent eventually reaches its goal location 

from the given initial location. The abstraction adopted in this work assumes that 

agents are discrete items moving in an undirected graph by traversing edges. Ma-

kespan optimal solving of CPF means to generate solutions that are as short as 

possible in terms of the total number of time steps required for the execution of 

the solution. 

 We show that reducing CPF to propositional satisfiability (SAT) represents a 

viable option for obtaining makespan optimal solutions. Several encodings of 

CPF into propositional formulae are suggested and experimentally evaluated. The 

evaluation indicates that SAT based CPF solving outperforms other makespan op-

timal methods significantly in highly constrained situations (environments that 

are densely occupied by agents). 

 

Keywords: cooperative path-finding (CPF), propositional satisfiability (SAT), 

time expanded graphs, makespan optimality, multi-robot path planning, multi-

agent path finding, pebble motion on a graph 

1. Introduction and Motivation 

Cooperative path-finding - CPF [14, 23, 25] (also known as multi-agent path find-

ing - MAPF [21, 22, 37, 38] or as multi-robot path planning - MRPP [18, 19] or 

as pebble motion on a graph - PMG [14, 16]) is an abstraction for many real-file 

tasks where the goal is to relocate some objects that spatially interacts with each 

other. In case of CPF, we are speaking about mobile agents (or robots) that can be 

mailto:pavel.surynek@mff.cuni.cz
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moved in a certain environment. Each agent starts at a given initial position in the 

environment and it is assigned a unique goal position to which it has to relocate. 

The problem consists in finding a spatial-temporal path for each agent by which 

the agent can relocate itself from its initial position to the given goal without col-

liding with other agents (that are simultaneously trying to reach their goals as 

well). 

 A graph theoretical abstraction, where the environment in which agents are 

moving is modeled as an undirected graph, is often adopted [18, 20]. Agents are 

represented as discrete items placed in vertices of the graph in this abstraction. 

Space occupancy imposed by presence of agents is modeled by the requirement 

that at most one agent resides in each vertex. 

 Movements of agents are also greatly simplified in the abstraction. An agent 

can instantaneously move to a neighboring vertex assumed that the target vertex is 

unoccupied and no other agent is trying to enter the same target vertex simulta-

neously. Note that various versions of the problem may have different conditions 

on movements - sometimes it is for instance allowed to move agents in a train like 

manner [28] or even rotate agents around cycle without any unoccupied vertex in 

the cycle [39]. 

There are many practical motivations for CPF ranging from unit navigation in 

computer games [24] to item relocation in automated storage (see KIVA robots 

[13]).  Interesting motivations can be also found in traffic where problems like 

vessel avoidance at sea are of great practical importance [12]. An analogical chal-

lenge appears in the air where availability of drones implies need for developing 

cooperative air traffic control mechanisms [15]. 

We suggest to solve CPF via reducing it to propositional satisfiability (SAT) 

[7]. Particularly we are dealing with so-called makespan optimal solving of CPF 

[23, 29], which means to find a solution of a makespan as short as possible. The 

makespan of a solution is the number of steps necessary to execute all the moves 

of the solution. In other words, it is the length of the longest path from paths tra-

veled by individual agents. 

It is known that finding makespan optimal solutions to CPF is a difficult prob-

lem, namely it is NP-hard [16, 32, 39]. Hence reducing the makespan optimal 

CPF to SAT is justified as both problems are at the same level in terms of the 

complexity. Moreover, the reduction allows exploiting the power of modern SAT 

solvers [2, 3] in CPF solving. The question however is the design of an encoding 

of the CPF problem into propositional formula. 

Several encodings of CPF into propositional formulae are introduced in this 

paper. They are based on a so-called time expansion of the graph that models the 

environment [11, 26] so that the formula can represent all the possible arrange-
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ments of agents at all the time steps up to the given final time step. All the encod-

ings are thoroughly experimentally evaluated with each other and also with alter-

native techniques for makespan optimal CPF solving. 

2. Context of Related Works 

The approach to solve CPF by reducing it to SAT has multiple alternatives. There 

exist algorithms based on search that find makespan optimal or near optimal solu-

tions. The seminal work in this category is represented by Silver’s WHCA* algo-

rithm [20] which is a variant of A* search where cooperation among agents is 

incorporated. Recent contributions include OD+ID [23], which is a combination of 

A* and powerful agent independence detection heuristics, and ICTS [21] which 

employs the concept of increasing cost tree (instead of makespan, the total cost of 

solution is optimized). Other approaches resolve conflicts among robot trajecto-

ries when avoidance is necessary [5, 8, 34]. 

Fast polynomial time algorithms for generating makespan suboptimal solu-

tions include PUSH-AND-ROTATE [37, 38] and other algorithms [28]. The draw-

back of these algorithms is that their solutions are dramatically far from the opti-

mum. 

 Translation of CPF to a different formalism, namely to answer set program-

ming (ASP), has been suggested in [9]. Integer programming (IP) as the target 

formalism has been also used [39]. The choice of SAT as the target formalism is 

very common in domain independent planning where the idea of time expansion 

[10, 11] and its reductions [4, 35] are studied. 

3. Background 

An arbitrary undirected graph can model the environment where agents are 

moving. Let 𝐺 =  𝑉,𝐸  be such a graph where 𝑉 = {𝑣1 ,𝑣2 ,… , 𝑣𝑛} is a finite set 

of vertices and 𝐸 ⊆  𝑉
2
  is a set of edges. The configuration of agents in the envi-

ronment is modeled by assigning them vertices of the graph. Let 𝐴 =
{𝑎1 ,𝑎2 ,… ,𝑎𝜇 } be a finite set of agents. Then, a configuration of agents in vertices 

of graph 𝐺 will be fully described by a location function 𝛼:𝐴 ⟶ 𝑉; the interpre-

tation is that an agent 𝑎 ∈ 𝐴 is located in a vertex 𝛼(𝑎). At most one agent can be 

located in a vertex; that is 𝛼 is a uniquely invertible function. A generalized in-

verse of 𝛼 denoted as 𝛼−1:𝑉 ⟶ 𝐴 ∪ {⊥} will provide us an agent located in a 

given vertex or ⊥ if the vertex is empty. 
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Definition 1 (COOPERATIVE PATH FINDING). An instance of cooperative path-

finding problem (CPF) is a quadruple Σ = [𝐺 =  𝑉,𝐸 ,𝐴,𝛼0 ,𝛼+] where location 

functions 𝛼0 and 𝛼+ define the initial and the goal configurations of a set of 

agents 𝐴 in 𝐺 respectively. □ 

 The dynamicity of the model assumes a discrete time divided into time steps. 

A configuration 𝛼𝑖  at the 𝑖-th time step can be transformed by a transition action 

which instantaneously moves agents in the non-colliding way to form a new con-

figuration 𝛼𝑖+1. The resulting configuration 𝛼𝑖+1 must satisfy the following valid-

ity conditions: 

  ∀𝑎 ∈ 𝐴  either 𝛼𝑖(𝑎) = 𝛼𝑖+1(𝑎) or {𝛼𝑖(𝑎),𝛼𝑖+1(𝑎)} ∈ 𝐸 holds 

 (agents move along edges or not move at all), 

  ∀𝑎 ∈ 𝐴  𝛼𝑖(𝑎) ≠ 𝛼𝑖+1(𝑎) ⇒ 𝛼𝑖
−1 𝛼𝑖+1(𝑎 ) =⊥ 

 (agents move to vacant vertices only), and 

  ∀𝑎, 𝑏 ∈ 𝐴  𝑎 ≠ 𝑏 ⇒ 𝛼𝑖+1(𝑎) ≠ 𝛼𝑖+1(𝑏) 

 (no two agents enter the same target/unique 

 invertibility of resulting arrangement). 

 The task in cooperative path finding is to transform 𝛼0 using above valid tran-

sitions to 𝛼+. An illustration of CPF and its solution is depicted in Figure 1. 

 

Definition 2 (SOLUTION, MAKESPAN). A solution of a makespan 𝜂 to a coopera-

tive path finding instance Σ = [𝐺,𝐴,𝛼0 ,𝛼+] is a sequence of arrangements 

𝑠 = [𝛼0 ,𝛼1 ,𝛼2 ,… ,𝛼𝜂 ] where 𝛼𝜂 = 𝛼+ and 𝛼𝑖+1 is a result of valid transforma-

tion of 𝛼𝑖  for every 𝑖 = 1,2,… , 𝜂 − 1. □ 

 

 
Figure 1. An example of cooperative path-finding problem (CPF). Three agents 𝑎1, 𝑎2, and 𝑎3 need 

to relocate from their initial positions represented by 𝛼0 to goal positions represented by 𝛼+. A 

solution of makespan 4 is shown. 

 

 The number  𝑠  = 𝜂 is a makespan of solution 𝑠 . It is often a question whether 

there exists a solution of Σ of the given makespan 𝜂 ∈ ℕ. This is known as a deci-
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sion variant of CPF. It is known that the decision variant of CPF is NP-complete, 

hence finding makespan optimal solution to CPF is NP-hard [16]. Note that due to 

no-ops introduced in valid transitions, it is equivalent to ask whether there is a 

solution of exactly the given makespan ant to ask whether there is a solution of at 

most given makespan. 

4. Solving CPF Optimally through Propositional Satisfiability 

The question we are addressing is how to obtain makespan optimal solutions of 

CPFs in some practical manner. The approach we are suggesting here employs 

propositional satisfiability (SAT) [1] solving as the key technology. Note that the 

decision variant of CPF is in NP, hence it can be reduced to propositional satisfia-

bility. That is, a propositional formula 𝐹(Σ, 𝜂) such that it is satisfiable if and only 

if a given CPF Σ with makespan 𝜂 is solvable can be constructed. Being able to 

construct such a formula 𝐹(Σ, 𝜂) one can obtain the optimal makespan for the 

given CPF Σ by asking multiple queries whether formula 𝐹(Σ, 𝜂) is satisfiable 

with different makespan bounds 𝜂. 

 Various strategies of choice of makespan bounds for queries exist for getting 

the optimal makespan. The simplest and efficient one at the same time is to try 

sequentially makespan 𝜂 = 1,2,… until 𝜂 equal to the optimal makespan is 

reached. This strategy will be further referred as sequential increasing. The se-

quential increasing strategy is also used in domain independent planners such as 

SATPLAN [11], SASE [10] and others. Pseudo-code of the strategy is listed as 

Algorithm 1. 
  
 
Algorithm 1. SAT-based optimal CPF solving – sequential increasing strategy. The algorithm 

sequentially finds the smallest possible makespan 𝜂 for that a given CPF Σ = (𝐺,𝐴,𝛼0,𝛼+) is solv-

able. A question whether a solution of CPF Σ exists is constructed with respect to increasing makes-

pans and submitted to a SAT solver. 

 input:   Σ – a CPF instance 

 output: a pair consisting of the optimal makespan and corresponding optimal solution 
 

function Find-Optimal-Solution-Sequentially (Σ = (G,𝐴,𝛼0 ,𝛼+)): pair 

1: 𝜂 ← 1 

2 loop 

3:  𝐹(Σ, 𝜂) ←Encode-CPF-as-SAT (𝛴, 𝜂) 

4:  if Solve-SAT (𝐹(Σ, 𝜂)) then 

5:   𝑠 ← Extract-Solution-from-Valuation(𝐹(Σ, 𝜂)) 

6:   return (𝜂, 𝑠) 

7:  𝜂 ← 𝜂 + 1 

8: return (∞,∅) 
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 The focus here is on SAT encoding while querying strategies are out of scope 

of the paper; though let us mention that in depth study of querying strategies is 

given in [17].  There is a great potential in querying strategies as they can bring 

speedup of planning process in orders of magnitude, especially when combined 

with parallel processing. 

 The important property of propositional encoding 𝐹(Σ, 𝜂) is that a solution of 

CPF Σ of makespan 𝜂 can be unambiguously extracted from satisfying valuation 

of 𝐹(Σ, 𝜂) (otherwise, equivalence between solvability of CPF Σ bounded by 𝜂 

and solvability of 𝐹(Σ, 𝜂) could be trivially established by setting 𝐹(Σ, 𝜂) ≡

𝑇𝑅𝑈𝐸 in case Σ is solvable in 𝜂 time steps and 𝐹(Σ, 𝜂) ≡ 𝐹𝐴𝐿𝑆𝐸 otherwise). 

 Note that the solving process represented by Algorithm 1 is incomplete, as it 

does not terminate when the input instance is unsolvable. Nevertheless, the solv-

ing process can be easily made complete by checking instance solvability prior to 

SAT-based optimization by some fast polynomial time algorithm such as those 

described in [14, 28, 38]. 

 The important advantage of solving CPF as SAT is that there exist many po-

werful solvers for SAT [2, 3] implementing numerous advanced techniques such 

as intelligent search space pruning and learning. The spectrum of these techniques 

is so rich and so well engineered in modern SAT solvers that it is almost impossi-

ble to reach the equal level of advancement in solving CPF by own dedicated 

solver. Nevertheless, all the well-engineered techniques implemented in SAT 

solvers can be employed in CPF solving if it is translated to SAT. Note, that the 

effect of SAT solving techniques is indirect in CPF solving as it is mediated 

through the translation. Hence, the design of the encoding of CPF as SAT should 

take into consideration the way in which SAT solvers operate. 

4.1. Time Expansion Graphs 

The trajectory of an agent in time over 𝐺 is not necessarily simple in general case 

(that is, a single vertex can be visited multiple times). In a propositional represen-

tation of such kind of trajectory, it is difficult to fix the number of variables. 

Therefore, a graph derived from 𝐺 by expanding it over time, where the trajectory 

of each agent will correspond to a simple path in this graph, will be used (a simple 

path visits each vertex of the graph at most once). The graph of required proper-

ties is introduced in the following definition and illustrated in Figure 3. 

 

Definition 3 (TIME EXPANSION GRAPH - ExpT(𝐺, 𝜂)). Let 𝐺 = (𝑉,𝐸) be an 

undirected graph and 𝜂 ∈ ℕ. A time expansion graph with 𝜂 + 1 time layers (in-

dexed from 0 to 𝜂) associated with 𝐺 is a directed graph ExpT 𝐺, 𝜂 = (𝑉 ×
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{0,1,… , 𝜂},𝐸′) where 

𝐸′ = {( 𝑢, 𝑙 ,  𝑣, 𝑙 + 1 ) |  𝑢, 𝑣 ∈ 𝐸; 𝑙 = 0,1,… , 𝜂 − 1} ∪    𝑣, 𝑙 ,  𝑣, 𝑙 + 1     
𝑣 ∈ 𝑉; 𝑙 = 0,1,… , 𝜂 − 1}. □ 

 

 Notation 𝑢𝑙  will be sometimes used instead of  𝑢, 𝑙  in figures. The search for 

a solution of CPF with makespan bound 𝜂 can be viewed as the search for a col-

lection of so-called non-overlapping vertex disjoint paths in the corresponding 

time expansion graph consisting of 𝜂 layers ExpT(𝐺, 𝜂). This is also the reason 

why the number of time layers in time expansion graphs and the makespan bound 

in CPF use the same notation with 𝜂. Non-overlapping vertex disjoint paths must 

have disjoint set of endpoints of non-

trivial edges in consecutive time layers of 

ExpT(𝐺, 𝜂) as described in the following 

definition. 

 

Definition 4 (NON-OVERLAPPING 

VERTEX DISJOINT PATHS IN 

ExpT(𝐺, 𝜂)). A collection of paths 

Π = {𝜋1,𝜋2 ,… ,𝜋𝜇 } in ExpT(𝐺, 𝜂) so that 

𝜋𝑖  connects [𝑥𝑖 , 0] with [𝑦𝑖 , 𝜂] with 

𝑥𝑖 ,𝑦𝑖 ∈ 𝑉 for 𝑖 = 1,2,… , 𝜇 is called to be 

non-overlapping vertex disjoint if and 

only if 𝜋𝑖 ∩ 𝜋𝑗 = ∅ for any two 𝑖, 𝑗 ∈

{1,2,… , 𝜇} with 𝑖 ≠ 𝑗 and 

{𝜋𝑖[𝑙, 2] | 𝜋𝑖[𝑙, 2] ≠ 𝜋𝑖[𝑙 + 1,2] ∧ 𝑖 =

1,2,… , 𝜇} ∩ {𝜋𝑖[𝑙 + 1,2] | 𝜋𝑖[𝑙, 2] ≠

𝜋𝑖[𝑙 + 1,2] ∧ 𝑖 = 1,2,… , 𝜇}1 for 𝑙 =

0,1,… , 𝜂 − 1. □ 

 

 Non-overlapping vertex disjoint paths between two consecutive time layers of 

ExpT(𝐺, 𝜂) are shown in Figure 2. The correspondence between existence of a 

solution to CPF and non-overlapping vertex disjoint paths is established in the 

next proposition. 

 

Proposition 1 (NON-OVERLAPPING VERTEX DISJOINT PATHS IN EXPT). 

A solution of makespan 𝜂 ∈ ℕ of a CPF Σ = (𝐺,𝐴,𝛼0 ,𝛼+) with 𝐴 =

 
1 The notation  𝜋𝑖[𝑙, 2] refers to the second component of the 𝑙-th element of  𝜋𝑖 . 
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Figure 2. An illustration of non-overlapping 

vertex disjoint paths. Parts of three non-

overlapping paths between time layers 𝑙 and 

𝑙 + 1 of ExpT 𝐺, 𝜂  are shown. 
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{𝑎1 ,𝑎2 ,… ,𝑎𝜇 } exists if and only if there exist a set Π = {𝜋1 ,𝜋2,… ,𝜋𝜇 } of non-

overlapping vertex disjoint paths in ExpT(𝐺, 𝜂) so that 𝜋𝑖  connects [𝛼0(𝑎𝑖),0] 

with [𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2,… , 𝜇.  

 

 
Figure 3. An example of CPF and its time expansion graph. A time expansion graph ExpT(𝐺, 4) 

consisting of 5 time layers is build for a given CPF Σ. Solving Σ in 5 time steps can be represented 

as searching for a collection of non-overlapping vertex disjoint paths connecting the initial positions 

agents in the first layer with their goal positions in the last layer of ExpT(𝐺, 4).  

 

Proof. Assume that a solution 𝑠 = [𝛼0 ,𝛼1 ,𝛼2 ,… ,𝛼𝜂 ] of makespan 𝜂 of given 

CPF Σ exists. Then vertex disjoint paths 𝜋1 ,𝜋2 ,… ,𝜋𝜇  in ExpT(𝐺, 𝜂) can be con-

structed from 𝑠 . Path 𝜋𝑖  will correspond to the trajectory of agent 𝑎𝑖 ; that is, 

𝜋𝑖 = ( 𝛼0(𝑎𝑖),0 ,  𝛼1(𝑎𝑖),1 , …,  𝛼𝜂(𝑎𝑖), 𝜂 ). The path constructed in this way is 

a correct path in ExpT(𝐺, 𝜂), since {𝛼𝑙 𝑎𝑖 ,𝛼𝑙+1(𝑎𝑖)} ∈ 𝐸 or 𝛼𝑙 𝑎𝑖 = 𝛼𝑙+1(𝑎𝑖) 

for 𝑙 = 0,1,… , 𝜂 − 1; that is, ([𝛼𝑙 𝑎𝑖 , 𝑙], [𝛼𝑙+1 𝑎𝑖 , 𝑙 + 1]) ∈ 𝐸′ holds by con-

struction of  ExpT(𝐺, 𝜂). Obviously 𝜋𝑖  connects [𝛼0(𝑎𝑖),0] with  [𝛼+(𝑎𝑖) =
𝛼𝜂(𝑎𝑖), 𝜂] in ExpT(𝐺, 𝜂). It remains to check that no two constructed paths inter-

sect and that paths are non-overlapping. Validity condition (3) ensures that no two 

path share a common vertex since otherwise agents would collide. Validity condi-

tions (1) and (2) together ensure that overlapping between set of endpoints of 

edges of paths between consecutive time layers happens only with trivial edges – 

that is, edges that continues into the same vertex in the next time layer. 

CPF Σ=(G=(V,E), {a1,a2}, α0, α+) 
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 Let us show the opposite implication. Assume that non-overlapping vertex 

disjoint paths 𝜋1 ,𝜋2 ,… ,𝜋𝜇  in ExpT(𝐺, 𝜂) exist. We will construct a solution of 

CPF Σ of makespan 𝜂. Assume that Let 𝜋𝑖 = ([𝑢0, 0], [𝑢1 , 1], [𝑢2 , 2], …,  [𝑢𝜂 , 𝜂]), 

𝑢𝑙 ∈ 𝑉 for 𝑙 = 0,1,… , 𝜂 where 𝑢0 = 𝛼0(𝑎𝑖) and 𝑢𝜂 = 𝛼+(𝑎𝑖). The trajectory of 

agent 𝑎𝑖  is set as follows: 𝛼0 𝑎𝑖 = 𝑢0, 𝛼1 𝑎𝑖 = 𝑢1 , 𝛼2 𝑎𝑖 = 𝑢2 , …, 𝛼𝜂 𝑎𝑖 =

𝑢𝜂 . It can be easily verified that validity conditions (1) – (3) are satisfied by such 

a construction. Paths are vertex disjoint, so agents do not collide by following 

them – condition (2) is satisfied. As paths do not overlap agents either stay in a 

vertex or move into a vertex that was not occupied in the previous step. Altogeth-

er, validity conditions (1) – (3) are satisfied.  

4.2. Propositional Encodings Based on Time Expansion Graphs 

The concept of time expansion graph represents an important step towards the 

design of a propositional formula that is satisfiable if and only if the given CPF 

has a solution of a given makespan. Moreover, we require such a formula where a 

corresponding CPF solution can be extracted from its satisfying valuation. Time 

expansion graph can be used as a basis for such a formula as it can capture all the 

arrangements of agents over the graph modeling the environment at all the time 

steps up to the given final step. 

4.2.1. INVERSE Propositional Encoding 

Let degG (𝑣) denote the degree of vertex 𝑣 in 𝐺; that is, degG (𝑣) is the number of 

edges from 𝐸 incident with 𝑣. It is further assumed that neighbors of each vertex 

𝑣 in 𝐺 are assigned ordering numbers by a one-to-one assignment 𝜎𝑣 : {𝑢|{𝑣,𝑢} ∈

𝐸} ⟶ {1,2,… , degG(𝑣)} (that is, for each neighbor 𝑢 of 𝑣 we are told that it is a 

𝜎𝑣(𝑢)-th neighbor). An inverse 𝜎𝑣
−1 is naturally defined (that is, 𝜎𝑣

−1(𝑖) returns 𝑖-

th neighbor of 𝑣 for 𝑖 ∈ {1,2,… , degG (𝑣)}). 

 The following definition introduces the INVERSE encoding over finite do-

main state variables that will be further encoded into bit-vectors using the stan-

dard binary encoding. 

 

Definition 5 (INVESE ENCODING – 𝐹𝐼𝑁𝑉(𝜂, Σ)). Assume that a CPF Σ =

[𝐺,𝐴,𝛼0 ,𝛼+] with 𝐺 = (𝑉,𝐸) is given. An INVERSE encoding for CPF Σ con-

sists of the following finite domain variables for each time layer 𝑙 ∈ {0,1,… , 𝜂}: 

𝒜𝑣
𝑙 ∈ {0,1,… , 𝜇} for every 𝑣 ∈ 𝑉 to model agent occurrences in vertices. For time 

layers 𝑙 ∈ {0,1,… , 𝜂 − 1} there are also finite domain variables 𝒯𝑣
𝑙 ∈ {0,1,… , 2 ∙

degG (𝑣)} for every 𝑣 ∈ 𝑉 to represent agent movements. Constraints of IN-

VERSE encoding are as follows: 
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 𝒯𝑣
𝑙 = 0 ⇒ 𝒜𝑣

𝑙+1 = 𝒜𝑣
𝑙    for every 𝑣 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1} 

  (if there is no movement occurs in a vertex then the vertex hold 

  the same agent at the next time step) 

 0 < 𝒯𝑣
𝑙 ≤ deg𝐺 𝑣  ⇒ 𝒜𝑢

𝑙 = 0 ∧ 𝒜𝑢
𝑙+1 = 𝒜𝑣

𝑙  ∧ 𝒯𝑢
𝑙 = 𝜎𝑢 𝑣 + deg𝐺 𝑢 , 

for every 𝑣 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1}, where 𝑢 = 𝑜𝑣
−1 𝒯𝑣

𝑙  

  (an agent leaves from 𝑣 to its 𝒯𝑣
𝑙-th neighbor 𝑢) 

 deg𝐺 𝑣 < 𝑇𝑣
𝑙 ≤ 2 ⋅ deg𝐺 𝑣  ⇒ 𝒯𝑢

𝑙 = 𝜎𝑢 𝑣 , 

for every 𝑣 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1}, where 𝑢 = 𝜎𝑣
−1 𝒯𝑣

𝑙 − deg𝐺 𝑣    

  (an agent leaves arrives to 𝑣 from its (𝒯𝑣
𝑙 − deg𝐺 𝑣 )-th neighbor 𝑢). □ 

 

 Initial and goal arrangements will be expressed though the following con-

straints: 

 𝒜𝑢
0 = 𝑖  for 𝑢 ∈ 𝑉 if there is 𝑖 ∈  1,2,… , 𝜇  

     such that 𝛼0 𝑎𝑖 = 𝑢 

  𝒜𝑢
0 = 0  for 𝑢 ∈ 𝑉 if (∀𝑎 ∈ 𝐴)𝛼0 𝑎 ≠ 𝑢 

 𝒜𝑢
𝜂

= 𝑖  for 𝑢 ∈ 𝑉 if there is 𝑖 ∈  1,2,… , 𝜇  

     such that 𝛼+ 𝑎𝑖 = 𝑢 

 𝒜𝑢
𝜂

= 0  for 𝑢 ∈ 𝑉 if (∀𝑎 ∈ 𝐴)𝛼+ 𝑎 ≠ 𝑢 

 

The resulting propositional formula in CNF, where 𝒜𝑣
𝑙  and 𝒯𝑣

𝑙 variables are re-

placed with bit vectors with binary encoding and constraints are replaced accor-

dingly, will be denoted as 𝐹𝐼𝑁𝑉(𝜂, Σ). 

 The meaning of 𝒜𝑣
𝑙  variables correspond to the inverse location function at 

time step 𝑙. That is, if the inverse location function at time step 𝑙 is 𝛼𝑙
−1 then 

𝒜𝑣
𝑙 = 𝑗 iff 𝛼𝑙

−1 𝑣 = 𝑎𝑗  and 𝒜𝑣
𝑙 = 0 iff 𝛼𝑙

−1 𝑣 =⊥. Variables 𝒯𝑣
𝑙 represent tran-

sitions of agents among vertices. Zero value is reserved for no-movement. Half of 

remaining values from 1 to degG (𝑣) represent outgoing movements from 𝑣 to 

some neighbor indicated by 𝒯𝑣
𝑙 ; the other half of values represent incoming 

movements into 𝑣 from some of its neighbors indicated by 𝒯𝑣
𝑙 − degG (𝑣). 

 It is not straightforward to encode the above finite domain model into proposi-

tional model where finite domain state variables are replaced with bit-vectors 

(vectors of propositional variables) using binary encoding as we need to represent 

quite complex integer constraints over bit vectors. Variables 𝒜𝑣
𝑙  are modeled by a 

vector of  log2(𝜇 + 1)  propositional variables where individual (propositional) 

bits will be accessed by a bit index 𝕚 ∈ {0,1,… ,  log2 𝜇 + 1  − 1} denoted as 

𝒜𝑣
𝑙 [𝕚]. Variables 𝒯𝑣

𝑙  are modeled by vectors of  log2(2 ⋅ deg𝐺 𝑣 + 1)  proposi-

tional variables. Note, that typical environments are connected only locally, which 

(4) 

(5) 

(6) 

   Goal locations 
(10) 

(7) 

(9) 

   Initial locations 
(8) 
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means that deg𝐺 𝑣 ≪ 𝜇 typically. If the represented finite domain variable has 

the number of states that is different from the power of 2, then extra states are 

forbidden. 

 Constraints need to distinguish between all the 2 ⋅ degG 𝑣 + 1 states of 𝒯𝑣
𝑙  

variables since over bit vectors we are able to express very simple constraints 

only – such as an expression that a bit vector equals to a constant. Note that over 

𝒜𝑣
𝑙  variables we only need to model equality between them and equality to zero 

which does not distinguish between too many cases. Let 𝕓:ℕ0 × ℕ0 → {0,1} be a 

binary representation of positive integers where 𝕓(𝑥, 𝕚) represents value of the 𝕚-

th bit in binary encoding of 𝑥; that is 𝑥 =  𝕓(𝑥, 𝕚) ⋅ 2𝕚𝑏−1
𝕚=0 . 

 Equality of a 𝒯𝑣
𝑙  variable to a given constant 𝑐 ∈ {0,1,…, 2 ⋅ deg𝐺 𝑣 } will be 

expressed as following conjunction: 

 

 

 

 

 

 

 

 Equality between variables 𝒜𝑣
𝑙  and 𝒜𝑢

𝑙+1 is expressed by the following con-

junction of equivalences: 

 

  

 

 

 The above elementary constructions are put together to represent constraints 

(4) – (6) using Tseitin’s encoding [33] which introduces auxiliary propositional 

variables to the encoding. Auxiliary propositional variables 𝑎𝑣,𝑙
zero  representing 

empty vertex 𝑣 at time step 𝑙, 𝑎𝑢 ,𝑣,𝑙
=  representing equality between 𝒜𝑣

𝑙  and 𝒜𝑢
𝑙+1, 

and 𝑎𝑣,𝑙,𝑐
tran  representing equality 𝒯𝑣

𝑙 = 𝑐. The connection of auxiliary variables 

with their exact meaning is done by the following constraints: 

 

 

  

 

 

 As 𝒜𝑣
𝑙  variables appear only on the right side of implications in constraints (4) 

– (6) of the INVERSE encoding it is sufficient to connect their auxiliary by impli-

(12) 

con= 𝒯𝑣
𝑙 , 𝑐 =  lit(𝒯𝑣

𝑙 , 𝑐, 𝕚)

 log 2(2⋅deg 𝐺  𝑣 +1) −1

𝕚=0

 

  

where lit 𝒯𝑣
𝑙 , 𝑐, 𝕚 =  

𝒯𝑣
𝑙[𝕚]

𝒯𝑣
𝑙[𝕚]

  iff 𝕓 𝑐, 𝕚 = 1 

 iff 𝕓 𝑐, 𝕚 = 0 

 

var= 𝒜𝑣
𝑙 ,𝒜𝑢

𝑙+1 =   𝒜𝑣
𝑙 [𝕚] ∨𝒜𝑢

𝑙+1[𝕚] ∧  𝒜𝑣
𝑙 [𝕚] ∨ 𝒜𝑢

𝑙+1[𝕚] 

 log 2 𝜇+1  −1

𝕚=0

 

 

(11) 

(13) 𝑎𝑣,𝑙
zero ⇒ con= 𝒜𝑣

𝑙 , 0  

𝑎𝑢 ,𝑣,𝑙
= ⇒ var= 𝒜𝑣

𝑙 ,𝒜𝑢
𝑙+1  

𝑎𝑣,𝑙 ,𝑐
tran ⇔ con= 𝒯𝑣

𝑙 , 𝑐  

 

(14) 

(15) 
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cations only. Whereas 𝒯𝑣
𝑙  variables appear on both sides of implications in (4) – 

(6); therefore they need to be connected by equivalences to their auxiliary va-

riables. 

 Having above auxiliary variables, INVERSE encoding constraints can be easi-

ly expressed using them as follows: 

 

 𝑎𝑣,𝑙,0
tran  ⇒ 𝑎𝑣,𝑣,𝑙

=   

  for every 𝑣 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1} 

 𝑎𝑣,𝑙,𝑐
tran ⇒ 𝑎𝑢 ,𝑙

zero ∧ 𝑎𝑢 ,𝑣,𝑙
= ∧ 𝑎𝑢 ,𝑙,𝜎𝑢  𝑣 +deg 𝐺 𝑢 

tran  

  for each 0 < 𝑐 ≤ deg𝐺 𝑣 , 𝑣 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1}, 

  where 𝑢 = 𝑜𝑣
−1 𝑐  

 𝑎𝑣,𝑙,𝑐
tran  ⇒ 𝑎𝑢 ,𝑙 ,𝜎𝑢  𝑣 

tran  

  for each deg𝐺 𝑣 < 𝑐 ≤ 2 ⋅ deg𝐺 𝑣 , 𝑣 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1}, 

  where 𝑢 = 𝜎𝑣
−1 𝒯𝑣

𝑙 − deg𝐺 𝑣    

   

 In the following space consumption of the INVERSE encoding only regular 

time layers are counted as asymptotically requirements of the initial and final time 

layers are dominated by the rest. 

 

Proposition 2 (INVERSE ENCODING SIZE). The number of visible proposi-

tional variables in 𝐹𝐼𝑁𝑉(𝜂,𝛴) is 𝒪 𝜂 ∙   𝑉 ∙  log2(𝜇) +   log2(deg𝐺 𝑣 ) 𝑣∈𝑉    

and there are 𝒪(𝜂 ∙ ( 𝑉 +  𝐸 )) auxiliary variables; that is 𝒪 𝜂 ∙   𝑉 ∙

 log2(𝜇) +   log2(deg𝐺 𝑣 ) 𝑣∈𝑉 +  𝐸    propositional variables in total. The 

number of clauses is 𝒪 𝜂 ∙   𝑉 ∙  log2 𝜇  +  𝐸 ∙  log2 𝜇  +  deg𝐺 𝑣 𝑣∈𝑉 ∙

( log2 deg𝐺 𝑣   )  .  

 

Proof. To show the result we need just to calculate variables and clauses. The 

visible variables, that is, propositional variables representing 𝒜𝑣
𝑙  and 𝒯𝑣

𝑙 counts 

for (𝜂 + 1) ∙  𝑉 ∙  log2 𝜇 + 1   and 𝜂 ∙   log2(2 ⋅ deg𝐺 𝑣 + 1) 𝑣∈𝑉  respective-

ly. The number of auxiliary variables 𝑎𝑣,𝑙
zero  is (𝜂 + 1) ∙  𝑉 ; the number of  𝑎𝑢 ,𝑣,𝑙

=  

variables is (𝜂 + 1) ∙  𝐸 ; and the number of 𝑎𝑣,𝑙 ,𝑐
tran  variables is 2 ∙ 𝜂 ∙

 deg𝐺 𝑣 𝑣∈𝑉  which is 4∙ 𝜂 ∙ |𝐸|. Hence the total number of propositional va-

riables is  𝜂 + 1 ∙   𝑉 ∙  log2 𝜇 + 1  +  𝑉 +  𝐸  + 

𝜂 ∙    log2(2 ⋅ deg𝐺 𝑣 + 1) 𝑣∈𝑉 + 4 ∙ |𝐸|  which is 𝒪 𝜂 ∙   𝑉 ∙  log2(𝜇) +

  log2(deg𝐺 𝑣 ) 𝑣∈𝑉 +  𝐸   . 

(16) 

(17) 

(18) 
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 Let us calculate the number of clauses. A single constraint (13) develops into 

 log2 𝜇 + 1   binary clauses; a single constraint (14) develops into 2 ∙
 log2 𝜇 + 1   ternary clauses; and a single constraint (15) develops into 

 log2(2 ⋅ deg𝐺 𝑣 + 1)  binary clauses and one clause of arity 

 log2(2 ⋅ deg𝐺 𝑣 + 1) + 1. There is as many as 𝜂 ∙  𝑉  constraints (13); 𝜂 ∙  𝐸  

constraints (14); and 𝜂 ∙  deg𝐺 𝑣 𝑣∈𝑉  constraints (15) which in total gives 

𝜂 ∙  ( 𝑉 + 2 ∙  𝐸 ) ∙  log2 𝜇 + 1  +  deg𝐺 𝑣 𝑣∈𝑉 ∙ ( log2 2 ⋅ deg𝐺 𝑣 + 1  +

1)  clauses (binary, ternary, and one multi-arity). 

 Constraints (16) count for 𝜂 ∙ |𝑉| binary clauses, constraints (17) together with 

(18) count for 4 ∙ 𝜂 ∙  deg𝐺 𝑣 𝑣∈𝑉  binary clauses which is clearly dominated by 

the already calculated number of clauses. Hence, we have 𝜂 ∙   𝑉 ∙  log2 𝜇  +
 𝐸 ∙  log2 𝜇  +  deg𝐺 𝑣 𝑣∈𝑉 ∙ ( log2 deg𝐺 𝑣   )  clauses.  

 

Proposition 3 (PATHS AND 𝐹𝐼𝑁𝑉(𝜂, Σ) SATISFACTION). A set Π =
{𝜋1,𝜋2 ,… ,𝜋𝜇 } of non-overlapping vertex disjoint paths in ExpT(𝐺, 𝜂) so that 𝜋𝑖  

connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2,… , 𝜇 exists if and only if 

𝐹𝐼𝑁𝑉(𝜂, Σ) is satisfiable. Moreover, paths 𝜋1 ,𝜋2 ,… ,𝜋𝜇  can be unambiguously 

constructed from satisfying valuation of 𝐹𝐼𝑁𝑉(𝜂, Σ) and vice versa.  

 

Sketch of proof. For simplicity, we will show the proposition over finite domain 

variables instead of bit-vectors. The equivalence between bit vectors and finite 

domain variables is can be seen directly from the translation of finite domain con-

straints to equivalent constraints over bit vectors. 

 Assume that there exists a collection of vertex disjoint paths Π =
{𝜋1,𝜋2 ,… ,𝜋𝜇 }, where 𝜋𝑖  connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂]. Let 𝜋𝑖 = ([𝑢0 , 0], 

[𝑢1 , 1], [𝑢2 , 2], …,  [𝑢𝜂 , 𝜂]), 𝑢𝑙 ∈ 𝑉 for 𝑙 = 0,1,… , 𝜂 where 𝑢0 = 𝛼0(𝑎𝑖) and 

𝑢𝜂 = 𝛼+(𝑎𝑖). We can set 𝒜𝑢0
0 = 𝑖, 𝒜𝑢1

1 = 𝑖, …, 𝒜𝑢𝜂

𝜂
= 𝑖. Transition variables are 

set according to traversed edges; that is, 𝒯𝑢0
0 = 𝜎𝑢0

 𝑢1 , 𝒯𝑢1
0 = 𝜎𝑢1

 𝑢0 +

deg𝐺 𝑢1 , 𝒯𝑢1
1 = 𝜎𝑢1

 𝑢2 , 𝒯𝑢2
1 = 𝜎𝑢2

 𝑢1 + deg𝐺 𝑢2 , …, 𝒯𝑢 𝑙
𝑙 = 𝜎𝑢 𝑙

 𝑢𝑙+1 , 

𝒯𝑢 𝑙+1
𝑙 = 𝜎𝑢 𝑙+1

 𝑢𝑙 + deg𝐺 𝑢𝑙+1 , …, 𝒯𝑢𝜂−1

𝜂−1
= 𝜎𝑢𝜂−1

 𝑢𝜂 , 𝒯𝑢𝜂

𝜂−1
= 𝜎𝑢𝜂

 𝑢𝜂−1 +

deg𝐺 𝑢𝜂 . Other paths from Π are processed in the same way. Observe that there 

is no conflict in setting the variables; that is, each variable is set at most once by 

the assignment; which is due to the fact that paths are vertex disjoin. Variables 

𝒜𝑣
𝑙  and 𝒯𝑣

𝑙 that has not been set so far are set to 0. It is not difficult to check that 

constraints (4) – (6) as well as (7) – (11) are satisfied. 

 On the other hand, if there is a satisfying valuation of 𝐹𝜂−𝐼𝑁𝑉(Σ) then we are 

able to reconstruct required vertex disjoint paths from it. Let 𝜋𝑖 = ([𝑢0 , 0], 
[𝑢1 , 1], [𝑢2 , 2], …,  [𝑢𝜂 , 𝜂]) where 𝑢0 = 𝛼0(𝑎𝑖), and 𝑢𝑙+1 = 𝜎𝑢 𝑙

−1(𝒯𝑢𝑙
𝑙 ) for every 
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𝑙 = 0,1,… , 𝜂 − 1 (it holds also that 𝑢𝑙 = 𝜎𝑢 𝑙+1
−1  𝒯𝑢 𝑙+1

𝑙+1 − degG (𝑢𝑙+1)). Transition 

state variables 𝒯𝑣
𝑙  that take just one value ensure that each vertex at each time 

layer needs to decide if it either is connected to a neighbor or accepts a connection 

from a neighbor (or is connected to itself). It is ensured that no intersection be-

tween selected paths appears as otherwise a vertex must have accepted connec-

tions from at least two sources or has to branch connections to at least two neigh-

bors, which is both forbidden. A value of 𝒜𝑣
𝑙  variable is propagated to the next 

time layer only through the connection of the corresponding transition state varia-

ble 𝒯𝑣
𝑙 . The fact that agents were propagated to their goals ensures that there must 

be a paths induced by transition state variables from initial positions of agents to 

their goal.  

 

 The following theorem can be directly obtained by applying Proposition 1 and 

Proposition 3 which together justify solving of CPF via translation to SAT. 

 

Theorem 1 (SOLUTION OF Σ AND 𝐹𝐼𝑁𝑉(𝜂, Σ) SATISFACTION). A solution of 

a CPF Σ = (𝐺,𝐴,𝛼0 ,𝛼+) with 𝐴 = {𝑎1 ,𝑎2 ,… ,𝑎𝜇 } exists if and only if there 

ist 𝜂 ∈ ℕ for that formula 𝐹𝜂−𝐼𝑁𝑉(Σ) is satisfiable.  

4.2.2. ALL-DIFFERENT Propositional Encoding 

Choosing location function instead of its inverse for representing arrangements of 

agents at individual time steps led to another encoding called ALL-DIFFERENT 

– the name comes from the fact that it is necessary to express the requirement that 

each vertex is occupied by at most one agent explicitly which is modeled by pair-

wise differences between variables representing the arrangement. Again it is easi-

er to express the encoding over finite domain state variables before it is trans-

formed to propositional formula. 

 

Definition 6 (ALL-DIFFERENT ENCODING – 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ)). Assume that a CPF 

Σ = [𝐺,𝐴,𝛼0 ,𝛼+] with 𝐺 = (𝑉,𝐸) is given. An ALL-DIFFERENT encoding for 

CPF Σ consists of finite domain variables ℒ𝑎
𝑙 ∈ {1,… ,𝑛} for every 𝑎 ∈ 𝐴 and each 

time layer 𝑙 ∈ {0,1,… , 𝜂} to model locations of agents over time. Constraints are 

as follows: 

 ℒ𝑎
𝑙 = 𝑗 ⇒ ℒ𝑎

𝑙+1 = 𝑗 ∨  ℒ𝑎
𝑙+1 = 𝒿𝒿∈ 1,…,𝑛 |{𝑣𝑗 ,𝑣𝒿}∈𝐸  

for every 𝑎 ∈ 𝐴, 𝑗 ∈ {1,2,… ,𝑛} and 𝑙 ∈ {0,1,… , 𝜂 − 1} 

  (agent 𝑎 moves along edges only or stay in a vertex) 

  ℒ𝑎
𝑙+1 ≠ ℒ𝑏

𝑙
𝑏∈𝐴|𝑏≠𝑎     for every 𝑎 ∈ 𝐴 and 𝑙 ∈ {0,1,… , 𝜂 − 1} 

(19) 

(20) 
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  (target vertex of agent’s 𝑎 move must be empty) 

 AllDifferent(ℒ𝑎1
𝑙 ,ℒ𝑎2

𝑙 ,… ,ℒ𝑎𝜇
𝑙 ) for every 𝑙 ∈ {0,1,… , 𝜂} 

(at most one agent reside in each vertex at each time step). □ 

  

 Initial and goal arrangements will be expressed though the following con-

straints: 

 ℒ𝑎
0 = 𝑗   for 𝑎 ∈ 𝐴 with 𝛼0 𝑎 = 𝑣𝑗  

 ℒ𝑎
𝜂

= 𝑗   for 𝑎 ∈ 𝐴 with 𝛼+ 𝑎 = 𝑣𝑗  

 

 Again, finite domain state variables ℒ𝑎
𝑙  are represented as a bit vector (vector 

of propositional variables) using binary encoding. That is,  log2 |𝑉|  propositional 

variables are introduced for each ℒ𝑎
𝑙  variable. The resulting formula in CNF will 

be denoted as 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ). 

 AllDifferent(ℒ𝑎1
𝑙 ,ℒ𝑎2

𝑙 ,… ,ℒ𝑎𝜇
𝑙 ) constraint requires that all the involved va-

riables are assigned different values; that is,  ℒ𝑎𝑗
𝑙 ≠ ℒ𝑎𝑘

𝑙
𝑗 ,𝑘∈ 1,2,…,𝜇 |𝑗<𝑘 . Differ-

ences between finite domain state variables are encoded using the scheme intro-

duced in [1]. The scheme is used to encode constraints (20) as well as (21). In-

equality between variables ℒ𝑎𝑗
𝑙  and ℒ𝑎𝑘

𝑙  is expressed in the scheme by the follow-

ing clauses. Auxiliary variables 𝑑𝑗 ,𝑘
𝑙  representing difference at individual bits are 

introduced. 

 

 

 

 

 

 

  

 Conditional equality disjunction (19) is encoded by introducing auxiliary 

propositional variables to represent equalities between bit vectors. For each 

𝑗 ∈ {1,2,… ,𝑛} (that is, for each vertex), agent 𝑎 ∈ 𝐴, and time layer 𝑙 ∈

{0,1,… , 𝜂}, an auxiliary variable 𝑒𝑎 ,𝑗
𝑙  which stands for equality ℒ𝑎

𝑙 = 𝑗 is intro-

duced. The link between auxiliary variables 𝑒𝑎 ,𝑗
𝑙  and actual equalities is estab-

lished through the following constraint: 

 

 

(23) 

   Initial locations (22) 

(21) 

   Goal locations 

(24) 

  𝑑𝑗 ,𝑘
𝑙 ∨ ℒ𝑎𝑗

𝑙  𝕚 ∨ ℒ𝑎𝑘
𝑙  𝕚  ∧  𝑑𝑗 ,𝑘

𝑙 ∨ ℒ𝑎𝑗
𝑙  𝕚 ∨ ℒ𝑎𝑘

𝑙 [𝕚] 

 log 2𝑛 −1

𝕚=0

 

 

var≠  ℒ𝑎𝑗
𝑙 ,ℒ𝑎𝑘

𝑙  =  𝑑𝑗 ,𝑘
𝑙

 log 2𝑛 −1

𝕚=0

 

 

 

where 

(25) 𝑒𝑎 ,𝑗
𝑙 ⇔ con= ℒ𝑎

𝑙 , 𝑗  
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 Then moving along edges – constraints (19) – can be easily expressed as single 

clause over auxiliary variables: 

 

 

 

 Again, the space consumption of the ALL-DIFFERENT encoding will be cal-

culated for regular time layers only. 

 

Proposition 4 (ALL-DIFFERENT ENCODING SIZE). The number of visible 

propositional variables in 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) is 𝒪(𝜂 ∙ 𝜇 ∙  log2|𝑉| ) and there are 𝒪(𝜂 ∙

𝜇 ∙ |𝑉|) auxiliary variables; that is, the number of variables is 𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|). The 

number of clauses is 𝒪  𝜂 ∙  log2 𝑉  ∙   
𝜇
2
 + 𝜇 ∙  𝑉   .  

 

Proof. Let us calculate the number of variables and clauses. Each variable ℒ𝑎
𝑙  is 

represented by log2|𝑉| variables and the number of  ℒ𝑎
𝑙  variables is (𝜂 + 1) ∙ 𝜇. 

For each ℒ𝑎
𝑙  variable and its value, an auxiliary variable is introduced. As ℒ𝑎

𝑙  can 

take |𝑉| values, we get the result that there are  𝜂 + 1 ∙ 𝜇 ∙ (log2 𝑉 + |𝑉|) va-

riables which is 𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|). 

 A single time layer requires as many as  𝜇
2
  inequalities between all pairs of 

ℒ𝑎
𝑙  variables corresponding to distinct agents to model the AllDifferent constraint 

from (21). Each inequality is modeled by 2 ∙  log2|𝑉|  ternary clauses plus one 

clause of arity  log2|𝑉| . This is in total  𝜂 + 1 ∙  𝜇
2
 ∙ (2 ∙  log2|𝑉| + 1) claus-

es. 

 Next, we need as many as  𝜇
2
  inequalities between ℒ𝑎

𝑙  variables from two 

consecutive time layers (constraint (20)) which adds the same number of  𝜂 + 1 ∙

 𝜇
2
 ∙ (2 ∙  log2|𝑉| + 1) clauses again. 

 Links between auxiliary variables 𝑒𝑎 ,𝑗
𝑙  and actual equalities (25) they represent 

need  log2|𝑉|  binary clauses plus one clause of arity  log2|𝑉| + 1, which is 

 𝜂 + 1 ∙ 𝜇 ∙  𝑉 ∙ ( log2 𝑉  + 1) in total. 

 Finally, constraints expressing that agents move along edges only (26) contri-

bute to each vertex 𝑣𝑗  in ExpT(𝐺, 𝜂) at given time layer except the last one by 𝜇 

clauses of arity degG 𝑣𝑗  + 2 which is 𝜂 ∙ 𝜇 ∙ |𝑉| clauses in total. 

 Altogether we have  𝜂 + 1 ∙ ( 𝜇
2
 ∙  2 ∙  log2 𝑉  + 1 + 𝜇 ∙  𝑉 ∙ ( log2 𝑉  + 

1)) + 𝜂 ∙ 𝜇 ∙ |𝑉| clauses in 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ)  encoding which is 𝒪(𝜂 ∙  log2 𝑉  ∙  

  𝜇
2
 + 𝜇 ∙  𝑉  ).  

 

 

𝑒𝑎 ,𝑗
𝑙 ⇒ 𝑒𝑎 ,𝑗

𝑙+1 ∨ 𝑒𝑎 ,𝒿
𝑙+1

𝒿∈ 1,…,𝑛 |{𝑣𝑗 ,𝑣𝒿}∈𝐸
 

 

(26) 
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Proposition 5 (PATHS AND 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) SATISFACTION). A set Π =
{𝜋1,𝜋2 ,… ,𝜋𝜇 } of non-overlapping vertex disjoint paths in ExpT(𝐺, 𝜂) so that 𝜋𝑖  

connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2,… , 𝜇 exists if and only if 

𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) is satisfiable. Moreover, paths 𝜋1 ,𝜋2,… ,𝜋𝜇  can be unambiguously 

constructed from satisfying valuation of 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) and vice versa.  

 

Sketch of proof. For simplicity, we will work on the level of finite domain state 

variables. Assume that non-overlapping vertex disjoint paths 𝜋1 ,𝜋2 ,… ,𝜋𝜇  exist in 

ExpT(𝐺, 𝜂). The satisfying valuation of 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) can be directly constructed 

from these paths. Let 𝜋𝑖 = ([𝑢0 , 0], [𝑢1 , 1], [𝑢2 , 2], …,  [𝑢𝜂 ,𝜂]), 𝑢𝑙 ∈ 𝑉 for 

𝑙 = 0,1,… , 𝜂 where 𝑢0 = 𝛼0(𝑎𝑖) and 𝑢𝜂 = 𝛼+(𝑎𝑖). Then finite domain state va-

riables will be set as follows: ℒ𝑎𝑖
0 = 𝑢0 , ℒ𝑎𝑖

1 = 𝑢1 , …, ℒ𝑎𝑖

𝜂
= 𝑢𝜂  for every 𝑖 =

1,2,… , 𝜇. The assumptions that paths were vertex disjoint and non-overlapping 

ensure that constraints (21) and (20) respectively are satisfied. Consecutive ver-

tices in paths are connected by directed edges that correspond to edges in 𝐺. 

Hence, constraints (19) are satisfied. 

 Assume on the other hand that we have a satisfying valuation of 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ). 

We can immediately set 𝜋𝑖 = ([ℒ𝑎𝑖
0 , 0], [ℒ𝑎𝑖

1 , 1], [ℒ𝑎𝑖
2 , 2], …,  [ℒ𝑎𝑖

𝜂
, 𝜂]) for every 

𝑖 = 1,2,… , 𝜇. Satisfaction of constraints (19) ensures that constructed sequences 

of vertices are paths in ExpT(𝐺, 𝜂) which are moreover vertex disjoint and non-

overlapping due to constraints (21) and (20).  

 

 CPF solving via 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) satisfaction is justified by the following theorem 

which can be shown by combining Proposition 1 and just proven Proposition 5 

(from 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) satisfaction non-overlapping vertex disjoint paths can be ob-

tained which correspond to CPF solution). 

 

Theorem 2 (SOLUTION OF Σ AND 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) SATISFACTION). A solution 

of a CPF Σ = (𝐺,𝐴,𝛼0 ,𝛼+) exists if and only if there exist 𝜂 ∈ ℕ for that formula 

𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) is satisfiable.  

4.2.3. MATCHING Propositional Encoding 

We observed that vertex disjoint non-overlapping paths in time expansion graph 

resemble a commodity flow [1] in a network of time expansion graph where ver-

tices and edges are assigned unit capacities. The intuition is that edges included 

into paths should be saturated by one unit of the flow. Such setting conveys com-

modity from each initial vertex to each goal vertex. However, the correspondence 

between paths of required properties and flow works in one direction only. The 
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flow reflects well the requirement that paths should be vertex disjoint but does not 

simulate non-overlapping between paths as well as the correct interconnection 

between initial and goal vertex of the same agents (the flow may interconnect 

initial and goal vertices of two distinct agents). 

 

 
Figure 4. Correspondence of agent movement and flow in bipartite graph. Movement between time 

steps 𝑙 and 𝑙 + 1 and corresponding flow in bipartite graph made of 𝑙-th and (𝑙 + 1)-th time layer 

where vertices and edges are assigned unit capacities is shown. Valid movement always induces 

flow in which saturated edges are non-overlapping; that is,  𝐴,𝐸 ∩  𝐵,𝐶 = ∅ (upper part).  On the 

other hand, flow does not necessarily induce non-overlapping edges which may result in invalid 

movement (lower part). 

 

 The design of the MATCHING encoding will follow the intuition suggested 

by single commodity flows. It will be divided into two parts – the first part, called 

FLOW part, will check the existence of a flow that generates non-overlapping 

vertex disjoint paths. This part can be regarded as an encoding of a relaxed CPF 

with anonymous agents where we care about relocation of a group of agents to a 

set of goal vertices but we don’t care about what particular agent arrives at partic-

ular goal vertex (generated paths may interconnect initial and goal vertices of 

distinct agents). The second part, called MAPPING part, of the encoding maps 
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distinguishable agents to paths marked out by the flow, which eventually override 

the relaxation from the first part of the encoding. The encoding should allow fast 

testing of the existence of non-overlapping flow to enable using this test as a heu-

ristic since its existence is necessary condition for existence of a solution. 

 

Definition 7 (MATCHING ENCODING – 𝐹𝜂−𝑀𝐴𝑇𝐶𝐻
𝐹𝐿𝑂𝑊 (Σ)). A FLOW part of the 

MATCHING encoding of given CPF Σ = [𝐺,𝐴,𝛼0 ,𝛼+] with 𝐺 = (𝑉,𝐸) consists 

of a propositional variable for each vertex and edge in the time expansion graph 

that model its saturation by the flow. That is, propositional variable ℳ𝑣
𝑙  is intro-

duced for every 𝑙 = 0,1,… , 𝜂 and 𝑣 ∈ 𝑉 and propositional variables ℰ𝑢 ,𝑣
𝑙  and ℰ𝑢

𝑙  

are introduced for every 𝑙 = 0,1,… , 𝜂 and {𝑢, 𝑣} ∈ 𝐸 and 𝑢 ∈ 𝑉 respectively.  

Constraints enforce that variables set to 𝑇𝑅𝑈𝐸 form a non-overlapping flow: 

 ℰ𝑢 ,𝑣
𝑙 ⇒ ℳ𝑢

𝑙 ∧ℳ𝑣
𝑙+1    for every {𝑢, 𝑣} ∈ 𝐸 

          and 𝑙 ∈ {0,1,… , 𝜂 − 1}, 

ℰ𝑢
𝑙 ⇒ ℳ𝑢

𝑙 ∧ℳ𝑢
𝑙+1     for every 𝑢 ∈ 𝑉 and  𝑙 ∈  0,1,… , 𝜂 − 1  

(if an edge is selected into flow then its endpoints are selected as well) 

 ℰ𝑢
𝑙 +  ℰ𝑢 ,𝑣

𝑙
𝑣|{𝑢 ,𝑣}∈𝐸 ≤ 1   for every 𝑢 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1}, 

 ℰ𝑣
𝑙 +  ℰ𝑢 ,𝑣

𝑙
𝑢|{𝑢 ,𝑣}∈𝐸 ≤ 1    for every 𝑣 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1}, 

(at most one incoming and outgoing edge is selected into flow) 

 ℳ𝑢
𝑙 ⇒ ℰ𝑢

𝑙 ∨  ℰ𝑢 ,𝑣
𝑙

𝑣|{𝑢 ,𝑣}∈𝐸   for every 𝑢 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1}, 

ℳ𝑣
𝑙+1 ⇒ ℰ𝑢

𝑙 ∨  ℰ𝑢 ,𝑣
𝑙

𝑢|{𝑢 ,𝑣}∈𝐸  for every 𝑣 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂 − 1}, 

(if a vertex is selected into flow then at least one outgoing and 

incoming edge must be selected as well) 

 ℰ𝑢 ,𝑣
𝑙 ⇒ ℳ𝑣

𝑙       for every {𝑢, 𝑣} ∈ 𝐸 

          and 𝑙 ∈ {0,1,… , 𝜂 − 1}, 

(source and target vertices of non-trivial moves must be disjoint). □ 

 

 The second part of the encoding where individual distinguishable agents ma-

nifest themselves is introduced in the following definition. 

 

Definition 8 (MATCHING ENCODING – 𝐹𝜂−𝑀𝐴𝑇𝐶𝐻
𝑀𝐴𝑃 (Σ)). A MAPPING part of 

the MATCHING encoding of given CPF Σ = [𝐺,𝐴,𝛼0 ,𝛼+] with 𝐺 = (𝑉,𝐸) con-

sists of a finite domain variable 𝒜𝑣
𝑙 ∈ {0,1,… , 𝜇} for each vertex 𝑣 ∈ 𝑉 and every 

time layer 𝑙 = 0,1,… , 𝜂 to model agent occurrence in a vertex. Constraints inter-

connect the MAPPING part with FLOW part so that actual agents follow paths 

indicated by the flow: 

(25) 

(26) 

(27) 

(28) 
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 ℰ𝑢 ,𝑣
𝑙 ⇒ 𝒜𝑢

𝑙 = 𝒜𝑣
𝑙+1     for every {𝑢, 𝑣} ∈ 𝐸       

           and 𝑙 ∈ {0,1,… , 𝜂 − 1}, 

(if an edge is saturated by the flow then the same agent appears at its both 

ends) 

 𝒜𝑢
𝑙 ≠ 0 ⇒ ℳ𝑢

𝑙       for every 𝑢 ∈ 𝑉 

          and  𝑙 ∈  0,1,… , 𝜂  

(if an agent occurs in a vertex then the vertex is saturated by the flow) □ 

 

 

 
 

Figure 5. Non-overlapping vertex disjoint paths in time expansion graph depicted and single com-

modity flow correspondence. Edges and vertices in time expansion graph are assumed to have unit 

capacities. A correct flow can be reconstructed from vertex disjoint non-overlapping paths (upper 

right part). On the other hand, flow does not necessarily correspond to paths of required properties 

(middle right part shows connection of initial and goal vertices of different agents and lower right 

part shows overlapping paths between time layers 1 and 2). 

 

 As in the previous encodings 𝒜𝑣
𝑙  variables having 𝜇 + 1 states are represented 

by  log2(𝜇 + 1)  propositional variables using binary encoding. Initial and goal 

arrangements will be expressed though the following constraints: 
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 𝒜𝑢
0 = 𝑖 ∧ℳ𝑢

0   for 𝑢 ∈ 𝑉 if there is 𝑖 ∈  1,2,… , 𝜇  

        such that 𝛼0 𝑎𝑖 = 𝑢 

  𝒜𝑢
0 = 0 ∧ ℳ𝑢

0  for 𝑢 ∈ 𝑉 if (∀𝑎 ∈ 𝐴)𝛼0 𝑎 ≠ 𝑢 

 𝒜𝑢
𝜂

= 𝑖 ∧ℳ𝑢
𝜂
   for 𝑢 ∈ 𝑉 if there is 𝑖 ∈  1,2,… , 𝜇  

        such that 𝛼+ 𝑎𝑖 = 𝑢 

 𝒜𝑢
𝜂

= 0 ∧ ℳ𝑢
𝜂
  for 𝑢 ∈ 𝑉 if (∀𝑎 ∈ 𝐴)𝛼+ 𝑎 ≠ 𝑢 

 

 The resulting formula of the MATCHING encoding in CNF is a conjunction 

of the FLOW part, MAPPING part, and boundary conditions and is denoted as 

𝐹𝜂−𝑀𝐴𝑇𝐶𝐻 (Σ). To obtain CNF it is necessary to rewrite (26) as clauses. That is, 

for example ℰ𝑢
𝑙 +  ℰ𝑢 ,𝑣

𝑙
𝑣|{𝑢 ,𝑣}∈𝐸 ≤ 1 is rewritten as a conjunction of clauses that 

forbid all pairs of involved variables to be set to 𝑇𝑅𝑈𝐸 simultaneously: 

 

 

 

 

 

 

 Binary encoded variables 𝒜𝑣
𝑙  are not involved in any complex relation – only 

conditional equality between these variables are introduced while all other model-

ing issues concerning validity conditions are done in the FLOW part of the encod-

ing. 

 The conditional equality between 𝒜𝑢
𝑙  and 𝒜𝑣

𝑙+1 (25) can be expressed using 

construct introduced earlier: 

 

 

  

 Constraint (26) can be also easily rewritten as follows: 

 

 

 

 

Proposition 6 (MATCHING ENCODING SIZE). The number of propositional 

variables in 𝐹𝜂−𝑀𝐴𝑇𝐶𝐻 (Σ) is 𝒪 𝜂 ∙   𝐸 + |𝑉| ∙  log2(𝜇)   . The number of claus-

es is 𝒪  𝜂 ∙    𝑉 +  𝐸  ∙  log2 𝜇  +   deg G  𝑣 
2

 𝑣∈𝑉   .  

 

Proof. The FLOW part of the MATCHING encoding has a propositional variable 

ℳ𝑣
𝑙  for each vertex 𝑣 ∈ 𝑉 and time layer 𝑙 ∈ {0,1,… , 𝜂} and ℰ𝑢 ,𝑣

𝑙  for each edge 

   Goal locations 

(34) 

(33) 

(32) 

   Initial locations 
(31) 

 ℰ𝑢 ,𝑣
𝑙 ∨ ℰ𝑢 ,𝑤

𝑙

𝑣,𝑤 |{𝑢 ,𝑣}∈𝐸∧{𝑢 ,𝑤}∈𝐸∧𝑣≠𝑤
 

 ℰ𝑢 ,𝑣
𝑙 ∨ ℰ𝑢

𝑙

𝑣|{𝑢 ,𝑣}∈𝐸
 

 

(35) 

ℰ𝑢 ,𝑣
𝑙 ⇒ var= 𝒜𝑢

𝑙 ,𝒜𝑣
𝑙+1  (36) 

 𝒜𝑢
𝑙 [𝕚] ∨ℳ𝑢

𝑙
 log 2(𝜇+1) −1

𝕚=0
 

 

(37) 
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{𝑢, 𝑣} ∈ 𝐸 and time layer, which in total makes (𝜂 + 1) ∙   𝑉 +  𝐸   proposition-

al variables. Further, we have a vector of  log2 𝜇 + 1   propositional variables 

representing 𝒜𝑣
𝑙  for each vertex and time layer in the MAPPING part. This in 

total makes another (𝜂 + 1) ∙  𝑉 ∙  log2 𝜇 + 1   variables. Altogether, there are 

(𝜂 + 1) ∙   𝐸 +  𝑉 +  𝑉 ∙  log2 𝜇 + 1    variables which is 𝒪 𝜂 ∙   𝐸 + |𝑉| ∙

 log2(𝜇)   . 

 Constraints (25) develops into 𝜂 ∙ ( 𝑉 + |𝐸|) ternary clauses. Constraints (26) 

develop into 2 ∙ 𝜂 ∙   deg G  𝑣 +1
2

 𝑣∈𝑉  binary clauses as indicated by (31). Con-

straints (27) introduce two clauses of length degG 𝑣 + 1 for each vertex and 

time layer; that is, 2 ∙ 𝜂 ∙  𝑉  clauses are added. Finally, constraints (28) add a 

binary clause for each vertex and time layer, which is again dominated by pre-

vious expressions. Conditional equality between two bit vectors in (29) develops 

into 2 ∙  log2 𝜇 + 1   ternary clauses while the equality is introduced for each 

edge and time layer; that is, 2 ∙ 𝜂 ∙ |𝐸| ∙  log2 𝜇 + 1   ternary clauses are added. It 

is easy to observe that expression (30) represents (𝜂 + 1) ∙ |𝐸| ∙  log2 𝜇 + 1   

binary clauses. Altogether, there are 𝜂 ∙ (3 ∙  𝑉 +  𝐸 + 2 ∙   deg G  𝑣 +1
2

 𝑣∈𝑉 + 2 ∙

|𝐸| ∙  log2 𝜇 + 1  ) + (𝜂 + 1) ∙ |𝐸| ∙  log2 𝜇 + 1   clauses which is 

𝒪  𝜂 ∙    𝑉 +  𝐸  ∙  log2 𝜇  +   deg G  𝑣 
2

 𝑣∈𝑉   .  

 

Proposition 7 (PATHS AND 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) SATISFACTION). A set Π =
{𝜋1,𝜋2 ,… ,𝜋𝜇 } of non-overlapping vertex disjoint paths in ExpT(𝐺, 𝜂) so that 𝜋𝑖  

connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2,… , 𝜇 exists if and only if 

𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) is satisfiable. Moreover, paths 𝜋1 ,𝜋2 ,… ,𝜋𝜇  can be unambiguously 

constructed from satisfying valuation of 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) and vice versa.  

 

Sketch of proof. We will work at the level of finite domain state variables 𝒜𝑣
𝑙  

instead of bit vectors to simplify the proof. 

 Assume that non-overlapping vertex disjoint paths 𝜋1 ,𝜋2,… ,𝜋𝜇  exist so that 

𝜋𝑖  connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂] in ExpT(𝐺, 𝜂). Let 𝜋𝑖 = ([𝑢0 , 0], [𝑢1, 1], 
[𝑢2 , 2], …,  [𝑢𝜂 , 𝜂]), with 𝑢𝑙 ∈ 𝑉 for 𝑙 = 0,1,… , 𝜂 where 𝑢0 = 𝛼0(𝑎𝑖) and 

𝑢𝜂 = 𝛼+(𝑎𝑖). The satisfying valuation of 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) can be easily constructed 

by setting 𝒜𝑢0
0 = 𝑖, 𝒜𝑢1

1 = 𝑖, …, 𝒜𝑢𝜂

𝜂
= 𝑖. Next, variables representing flow ℳ𝑢0

0 , 

ℳ𝑢1
1 , …, ℳ𝑢𝜂

𝜂
 are set to 𝑇𝑅𝑈𝐸 and ℰ𝑢0 ,𝑢1

0 , ℰ𝑢1 ,𝑢2
1 , …, ℰ𝑢𝜂−1 ,𝑢𝜂

𝜂−1
 are set to 𝑇𝑅𝑈𝐸 as 

well (the convention that ℰ𝑢 𝑙 ,𝑢𝑙+1
𝑙 ≡ ℰ𝑢 𝑙

𝑙  if 𝑢𝑙 = 𝑢𝑙+1 is used here). Now, observe 

that all the constraints are satisfied. The interconnection between the FLOW and 

the MAPPING part (constraints (25) and (26)) is satisfied by the construction so 

we just need to check constraints in the FLOW part of the encoding. Propagation 
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of the flow from edges to vertices (constraints (24)) is also ensured by the con-

struction. The fact that original paths are vertex disjoint ensures validity of con-

straints (25) and (26) which together enforce selection of exactly one incoming 

and one outgoing edge through setting ℰ𝑢 ,𝑣
𝑙  variables for each vertex saturated by 

the flow indicated by ℳ𝑣
𝑙  variable set to 𝑇𝑅𝑈𝐸. Finally, the non-overlapping 

property of paths is directly translated to satisfaction of constraints (28). Initial 

and goal location constraints are trivially satisfied. Altogether, 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) is 

satisfied by constructed valuation of its variables. 

 Now let us check the opposite implication. Assume that 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) is satis-

fiable. Let 𝜋𝑖 = ([𝑢0 , 0], [𝑢1, 1], [𝑢2 , 2], …,  [𝑢𝜂 , 𝜂]) such that 𝑢0 = 𝛼0(𝑎𝑖) and 

ℰ𝑢 𝑙 ,𝑢 𝑙+1
𝑙 is 𝑇𝑅𝑈𝐸 for each 𝑙 = 0,1,… , 𝜂 − 1. This can be done due to constraints 

(25) - (27) that propagate flow from the initial positions in the first time layer 

towards final layer. We shall verify that paths constructed in this way have re-

quired properties – are vertex disjoint non-overlapping and interconnects initial 

and goal positions of agents. FLOW part of the encoding ensures that constructed 

paths are vertex disjoint and non-overlapping. We need just to add non-

overlapping to already checked flow propagation. The non-overlapping is estab-

lished by constraints (28). However, the FLOW part does not ensure that 𝑢𝜂 =

𝛼+(𝑎𝑖); satisfaction of the FLOW part alone may result in a path that intercon-

nects initial and goal positions of two distinct agents. This is corrected by con-

straints included in the MAPPING part of the encoding. These constraints propa-

gate agent 𝑎𝑖  along edges {𝑢𝑙 ,𝑢𝑙+1} and eventually force it to appear in 𝑢𝜂  where 

goal constraints (33) and (34) ensure that agent 𝑎𝑖  arrives to the right vertex.  

 

 By combining just proven Proposition 7 and correspondence between non-

overlapping vertex disjoint paths in ExpT(𝐺, 𝜂) the following theorem can be 

immediately obtained. 

 

Theorem 3 (SOLUTION OF Σ AND 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) SATISFACTION). A solu-

tion of a CPF Σ = (𝐺,𝐴,𝛼0 ,𝛼+) exists if and only if there exist 𝜂 ∈ ℕ for that 

formula 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) is satisfiable.  

4.2.4. DIRECT/SIMPLIFIED Propositional Encoding 

As all the previous encodings of CPF used binary representation of agent occur-

rence in a vertex in some form, we also considered encoding of CPF that ex-

presses agent occurrences in vertices directly. That is, there will be single proposi-

tional variable that encodes occurrence of a given agent in a given vertex at a 

given time-step. The resulting CPF encoding will be called DIRECT. While the 
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design of variables is extremely simple in the DIRECT encoding, the set of con-

straints is more complex as summarized in the following definition [30]. 

 

Definition 9 (DIRECT ENCODING – 𝐹𝐷𝐼𝑅(𝜂, Σ)). Assume that a CPF Σ =

[𝐺,𝐴,𝛼0 ,𝛼+] with 𝐺 = (𝑉,𝐸) is given. A DIRECT encoding for CPF Σ consists 

of propositional variables 𝒳𝑎 ,𝑣
𝑙  for every 𝑎 ∈ 𝐴, 𝑣 ∈ 𝑉, and time layer 𝑙 ∈

{0,1,… , 𝜂} to model occurrences of agents in vertices over time. The interpreta-

tion is that 𝒳𝑎 ,𝑣
𝑙  is assigned 𝑇𝑅𝑈𝐸 if and agent 𝑎 appears in vertex 𝑣 at time step 

𝑙. The following constrains ensure satisfaction of validity conditions between 

consecutive arrangements of agents: 

  𝒳𝑎 ,𝑢
𝑙 ∨ 𝒳𝑎 ,𝑣

𝑙
𝑢 ,𝑣∈𝑉,𝑢≠𝑣     for every 𝑙 ∈ {0,1,… , 𝜂} 

 𝒳𝑎 ,𝑣
𝑙

𝑣∈𝑉          and 𝑎 ∈ 𝐴 

  (an agent is placed in exactly one vertex at each time step) 

  𝒳𝑎 ,𝑣
𝑙 ∨ 𝒳𝑏 ,𝑣

𝑙
𝑎 ,𝑏∈A,𝑎≠𝑏     for every 𝑙 ∈ {0,1,… , 𝜂} 

             and 𝑣 ∈ 𝑉 

 (at most one agent is placed in each vertex at each time step) 

 𝒳𝑎 ,𝑣
𝑙 ⇒ 𝒳𝑎 ,𝑣

𝑙+1 ∨  𝒳𝑎 ,𝑢
𝑙+1

𝑢∈𝑉,{𝑣,𝑢}∈𝐸   for every 𝑙 ∈ {0,1,… , 𝜂 − 1},  

𝒳𝑎 ,𝑣
𝑙+1 ⇒ 𝒳𝑎 ,𝑣

𝑙 ∨  𝒳𝑎 ,𝑢
𝑙

𝑢∈𝑉,{𝑣,𝑢}∈𝐸   𝑣 ∈ 𝑉, and 𝑎 ∈ 𝐴 

(an agent relocates to some of its neighbors or makes no move) 

 𝒳𝑎 ,𝑣
𝑙 ∧ 𝒳𝑎 ,𝑢

𝑙+1 ⇒  𝒳𝑏,𝑢
𝑙

𝑏∈𝐴 ∧  𝒳𝑏 ,𝑣
𝑙+1

𝑏∈𝐴  

          for every 𝑙 ∈ {0,1,… , 𝜂 − 1}, 𝑢, 𝑣 ∈ 𝑉 

          such that {𝑢, 𝑣} ∈ 𝐸 and 𝑎 ∈ 𝐴 

 (target vertex of a move must be vacant and the source vertex 

 will be vacant after the move is performed). □ 

 

 Initial and goal arrangements will be expressed though the following con-

straints: 

 𝒳𝑎 ,𝑣
0     for 𝑣 ∈ 𝑉 if there is 𝑎 ∈ 𝐴 

      such that 𝛼0 𝑎 = 𝑣 

 𝒳𝑎 ,𝑣
0     otherwise 

 𝒳𝑎 ,𝑣
𝜂

    for 𝑣 ∈ 𝑉 if there is 𝑎 ∈ 𝐴 

      such that 𝛼+ 𝑎 = 𝑣 

 𝒳𝑎 ,𝑣
𝜂

    otherwise 

  

 The resulting DIRECT encoding formula in CNF will be denoted as 

𝐹𝐷𝐼𝑅(𝜂, Σ). It can be easily observed that the vacancy of target vertex and source 

(38) 

(39) 

(40) 

(41) 

   Goal locations 

(43) 

   Initial locations 

(42) 

(44) 

(45) 
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vertex before and after the move (constraint (41)) is quite repetitive as the right 

side of the implication is independent of agent 𝑎. Therefore, the encoding is en-

hanced by introducing auxiliary variables ℰ𝑢
𝑙  for each vertex 𝑢 ∈ 𝑉 and time layer 

𝑙 ∈ {0,1,… , 𝜂} that represent vacancy of vertex 𝑢 at time step 𝑙. Semantics of ℰ𝑢
𝑙  

variables is represented by the following constraint: 

 

 ℰ𝑢
𝑙 ⇒  𝒳𝑎 ,𝑢

𝑙
𝑎∈𝐴     for every 𝑙 ∈ {0,1,… , 𝜂} and 𝑢 ∈ 𝑉 

 (in an empty vertex no agent can appear at given time) 

 

 The repetitive part in constraint (41) can be then replaced by its version with 

auxiliary variables as follows: 

 

 𝒳𝑎 ,𝑣
𝑙 ∧ 𝒳𝑎 ,𝑢

𝑙+1 ⇒ ℰ𝑢
𝑙 ∧ ℰ𝑣

𝑙+1  for every 𝑙 ∈ {0,1,… , 𝜂 − 1}, 𝑢, 𝑣 ∈ 𝑉 

        such that {𝑢, 𝑣} ∈ 𝐸 and 𝑎 ∈ 𝐴. 

 

 The resulting encoding with auxiliary variables will be called SIMPLIFIED 

and the corresponding CNF formula will be denoted as 𝐹𝑆𝐼𝑀(𝜂, Σ). 

 

Proposition 8 (DIRECT/SIMPLIFIED ENCODING SIZE). The number of 

propositional variables in 𝐹𝐷𝐼𝑅(𝜂, Σ) is 𝒪 𝜂 ∙ 𝜇 ∙ |𝑉| . The number of clauses is 

𝒪 𝜂 ∙  𝜇 ∙  𝑉 2 + 𝜇2 ∙  𝑉 + 𝜇2 ∙ |𝐸|  . 𝐹𝑆𝐼𝑀 (𝜂, Σ) contains additional 𝒪 𝜂 ∙  𝑉   

propositional variables while the total number of clauses is 𝒪 𝜂 ∙  𝜇 ∙  𝑉 2 + 𝜇2 ∙

 𝑉 + 𝜇 ∙ |𝐸|  .  

 

Proof. It is easy to see that there are exactly (𝜂 + 1) ∙ 𝜇 ∙ |𝑉| variables 𝒳𝑎 ,𝑣
𝑙  and 

𝜂 ∙  𝑉  ℰ𝑢
𝑙  variables just by calculating their index scopes which gives us the result 

regarding the number of propositional variables in 𝐹𝐷𝐼𝑅(𝜂, Σ) and 𝐹𝑆𝐼𝑀  𝜂, Σ . 

 Every time layer and agent adds   V 
2
  binary clauses and one |𝑉|-ary clause 

within constraints (38). Thus, we have (𝜂 + 1) ∙ 𝜇 ∙   V 
2
  binary clauses and 

(𝜂 + 1) ∙ 𝜇 |𝑉|-ary from writing constraints (38) as clauses in total. The similar 

calculation can be done for constraints (39); we have  𝜇
2
  binary clauses for each 

time layer and a vertex; that is, (𝜂 + 1) ∙  𝑉 ∙  𝜇
2
  binary clauses in total. 

 There are two (degG 𝑣 + 2)-ary clauses for every vertex 𝑣 in every time 

layer except the last one and for every agent from constraints (40), which in total 

gives 𝜂 ∙ 𝜇 (degG 𝑣 + 2)-ary clauses for each vertex 𝑣 ∈ 𝑉. That is, 𝜂 ∙ 𝜇 ∙ |𝑉| 

clauses in total. 

 Note that each implication in constraint (41) develops into 2 ∙ 𝜇 ternary claus-

es. There are |𝐸| such groups of clauses for every agent and a time layer except 

(46) 

(47) 
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the last one. Thus, 2 ∙ 𝜂 ∙ 𝜇2 ∙ |𝐸| ternary clauses are needed in total for expressing 

constraints (41). 

 Altogether, the total number of clauses in 𝐹𝐷𝐼𝑅(𝜂, Σ) is 

(𝜂 + 1) ∙  𝜇 ∙    V 
2
 + 1 +  𝑉 ∙  𝜇

2
  + 2 ∙ 𝜂 ∙ 𝜇 ∙   𝑉 + 𝜇 ∙ |𝐸|  which is 

𝒪 𝜂 ∙  𝜇 ∙  𝑉 2 + 𝜇2 ∙  𝑉 + 𝜇2 ∙ |𝐸|  . 

 Constraints (47) develop into smaller number of clauses if compared with the 

original constraints (41) which they replace because of the shorter right hand side 

in the implication in 𝐹𝑆𝐼𝑀(𝜂, Σ). Concretely, each implication from (47) develops 

into exactly 2 ternary clauses which gives 2 ∙ 𝜂 ∙ 𝜇 ∙ |𝐸| ternary clauses in total. 

 Interconnection of auxiliary variables ℰ𝑢
𝑙  with their meaning requires 𝜇 binary 

clauses per one implication from constraint (46). There are as many as (𝜂 + 1) ∙

|𝑉| such interconnections which results in (𝜂 + 1) ∙ 𝜇 ∙ |𝑉| in total. Hence, the 

total number of clauses in 𝐹𝑆𝐼𝑀(𝜂, Σ) is (𝜂 + 1) ∙  𝜇 ∙    V 
2
 + 1 +  𝑉 ∙  𝜇

2
  +

𝜂 ∙ 𝜇 ∙   𝑉 + 2 ∙ |𝐸|  which is 𝒪 𝜂 ∙  𝜇 ∙  𝑉 2 + 𝜇2 ∙  𝑉 + 𝜇 ∙ |𝐸|  .  

 

Proposition 9 (PATHS AND 𝐹𝐷𝐼𝑅(𝜂, Σ)/𝐹𝑆𝐼𝑀(𝜂, Σ) SATISFACTION). A set 

Π = {𝜋1,𝜋2 ,… ,𝜋𝜇 } of non-overlapping vertex disjoint paths in ExpT(𝐺, 𝜂) so 

that 𝜋𝑖  connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2,… , 𝜇 exists if and only if 

𝐹𝐷𝐼𝑅(𝜂, Σ) is satisfiable. Moreover, paths 𝜋1 ,𝜋2,… ,𝜋𝜇  can be unambiguously 

constructed from satisfying valuation of 𝐹𝐷𝐼𝑅(𝜂, Σ) and vice versa. The same hold 

for 𝐹𝑆𝐼𝑀(𝜂, Σ).  

 

Sketch of proof. Assume that non-overlapping vertex disjoint paths 𝜋1 ,𝜋2 ,… ,𝜋𝜇  

exist so that 𝜋𝑖  connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂] in ExpT(𝐺, 𝜂). We will con-

struct a satisfying valuation of 𝐹𝐷𝐼𝑅(𝜂, Σ) from 𝜋1 ,𝜋2 ,… ,𝜋𝜇 . 

 Let 𝜋𝑖 = ([𝑢0 , 0], [𝑢1 , 1], [𝑢2 , 2], …,  [𝑢𝜂 , 𝜂]), with 𝑢𝑙 ∈ 𝑉 for 𝑙 = 0,1,… , 𝜂 

where 𝑢0 = 𝛼0(𝑎𝑖) and 𝑢𝜂 = 𝛼+(𝑎𝑖), then variables 𝒳𝑎𝑖 ,𝑢0
0 , 𝒳𝑎𝑖 ,𝑢1

1 , ..., 𝒳𝑎𝑖 ,𝑢𝜂

𝜂
 will 

be set to 𝑇𝑅𝑈𝐸. This setup of 𝒳𝑎 ,𝑣
𝑙  variables will be set for every 𝑖 = 1,2,… , 𝜇. 

 It is now easy to verify that all the constraints from the DIRECT encoding 

hold. Constraints (38) hold because each directed path 𝜋𝑖  intersects the time layer 

in exactly one vertex. Constraints (39) hold since directed paths are vertex dis-

joint. As paths go from one time layer to the next, constraints (40) hold as well. 

Finally, since paths are non-overlapping constraints (41) also hold. 

 Satisfying valuation of 𝐹𝑆𝐼𝑀(𝜂, Σ) requires assigning truth values to ℰ𝑢
𝑙  va-

riables in addition. Nevertheless, truth values of ℰ𝑢
𝑙  are directly implied from as-

signment of truth values to 𝒳𝑎 ,𝑣
𝑙  through constraints (46). Satisfaction of con-

straints (47) is ensured by satisfaction of constraints (41) and by transitivity of 
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implication through the auxiliary ℰ𝑢
𝑙 . Connecting initial positions of agents with 

their goals by paths ensures satisfaction of constraints (42)-(45) enforcing that 

initial time layer and the final time layer correspond to initial and goal arrange-

ments of agent respectively. 

 If on the other hand we have satisfying valuation of 𝐹𝐷𝐼𝑅(𝜂, Σ), non-

overlapping vertex disjoint paths can be constructed from it. Paths 𝜋1,𝜋2 ,… ,𝜋𝜇  

will be constructed by following variables 𝒳𝑎 ,𝑣
𝑙 . Let 𝜋𝑖 = ([𝑢0 , 0], [𝑢1 , 1], [𝑢2 , 2], 

…,  [𝑢𝜂 ,𝜂]) where 𝒳𝑎𝑖 ,𝑢0
0 , 𝒳𝑎𝑖 ,𝑢1

1 , ..., 𝒳𝑎𝑖 ,𝑢𝜂

𝜂
 are 𝑇𝑅𝑈𝐸. Single path is correctly 

defined as in each time layer 𝑙 ∈ {0,1,… , 𝜂} and agent 𝑎𝑖 ∈ 𝐴 there is exactly one 

𝒳𝑎𝑖 ,𝑣
𝑙  with 𝑣 ∈ 𝑉 set to 𝑇𝑅𝑈𝐸 which is ensured by constraints (38). Consecutive 

vertices in the path are connected by arcs which is ensured by constraints (40). If 

we consider all the paths together, then constraints (39) enforce that paths never 

intersects because two distinct agents cannot share a vertex. Finally, non-

overlapping is ensured by constraints (41) since whenever non-trivial traversal 

between two consecutive time layers is made, no other agent can be involved in 

affected vertices.  

 

 Again, recall that non-overlapping vertex disjoint paths correspond to CPF 

solutions (Proposition 1) which together with just proven result gives the follow-

ing theorem. 

 

Theorem 4 (SOLUTION OF Σ AND 𝐹𝐷𝐼𝑅(𝜂, Σ)/ 𝐹𝑆𝐼𝑀(𝜂, Σ) SATISFACTION). 

A solution of a CPF Σ = (𝐺,𝐴,𝛼0 ,𝛼+) exists if and only if there exist 𝜂 ∈ ℕ for 

that formula 𝐹𝐷𝐼𝑅(𝜂, Σ) is satisfiable. The same result holds for the simplified 

formula 𝐹𝑆𝐼𝑀 (𝜂, Σ).  

4.3. Summary of the Size Complexity of Propositional Encodings 

Theoretical analysis of the size of encodings has been fine grained so far and it is 

not straightforward to see immediately how individual encodings compare with 

each other just by looking on expressions. Therefore, the extreme cases of all the 

expressions showing the number of variables and clauses have been evaluated and 

are shown here to provide a more complete picture. 

 The extreme cases concern the number of agents and neighborhood size in the 

graph 𝐺, which is either considered to be constant or asymptotically the same as 

the number of vertices. 

 Assumptions that the number of agents 𝜇 and the size of neighborhood in the 

graph asymptotically compares the number of vertices has been adopted in the 
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space analysis in order to show the number of variables and clauses as much as 

possible in terms of the size of the input graph 𝐺 = (𝑉,𝐸). 

 Thus, we have following 4 scenarios (2 cases for each of 2 parameters): 

 

 Scenario (i): The number of agents 𝜇 and the size of the neighborhood in 

       𝐺 is  asymptotically the same as the number of vertices. 

      (that is, 𝜇 ∈ Θ(|𝑉|) and degG (𝑣) ∈ Θ(|𝑉|) for ∀𝑣 ∈ 𝑉). 

  The assumption tells that the graph is highly occupied by agents and that 

the graph contains many edges. The consequence of the second assumption 

is also that the number of edges in the graph is asymptotically quadratic 

with respect to the number of vertices; that is, |𝐸| ∈ Θ(|𝑉|2). 

  Space complexities in terms of the number of variables and clauses 

based upon above assumptions for this scenario are shown in Table 1. 

 
Table 1. Comparison of the Size Complexities of CPF Encodings – Scenario (i). The number of 

agents 𝜇 in this scenario is asymptotically the same as the number of vertices of 𝐺 (that is, 𝜇 ∈
Θ(|𝑉|)) and the size of the vertex neighborhood in 𝐺 is also asymptotically the same as the number 

of vertices (that is, degG(𝑣) ∈ Θ(|𝑉|) for ∀𝑣 ∈ 𝑉). For reference fine-grained complexity expres-

sion are shown as well. 

 
 #Variables 

fine-grained/scenario (i) 

#Clauses 

fine-grained/scenario (i) 

INVERSE 

 𝐹𝐼𝑁𝑉(𝜂, Σ) 
𝒪(𝜂 ∙ ( 𝑉 ∙  log2(𝜇) + 

  log2 deg𝐺 𝑣   𝑣∈𝑉 +  𝐸 ))  

𝒪(𝜂 ∙ ( 𝑉 ∙  log2 𝜇  +  𝐸 ∙  log2 𝜇  + 

 deg𝐺 𝑣 𝑣∈𝑉 ∙ ( log2 deg𝐺 𝑣   ))  

𝒪 𝜂 ∙  𝑉 2  𝒪 𝜂 ∙  𝑉 2 ∙  log2|𝑉|   

ALL-DIFFERENT 

 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) 
𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|) 𝒪 𝜂 ∙  log2 𝑉  ∙   

𝜇

2
 + 𝜇 ∙  𝑉    

𝒪(𝜂 ∙ |𝑉|2) 𝒪 𝜂 ∙  𝑉 2 ∙  log2 𝑉    

MATCHING 

 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) 
𝒪 𝜂 ∙   𝐸 +  𝑉 ∙  log2 𝜇     𝒪  𝜂 ∙    𝑉 +  𝐸  ∙  log2 𝜇  +   deg G  𝑣 

2
 𝑣∈𝑉     

𝒪 𝜂 ∙ |𝑉|2  𝒪 𝜂 ∙ |𝑉|3   

DIRECT 

 𝐹𝐷𝐼𝑅(𝜂, Σ) 
𝒪 𝜂 ∙ 𝜇 ∙ |𝑉|  𝒪 𝜂 ∙  𝜇 ∙  𝑉 2 + 𝜇2 ∙  𝑉 + 𝜇2 ∙ |𝐸|   

𝒪 𝜂 ∙ |𝑉|2  𝒪 𝜂 ∙ |𝑉|4  

SIMPLIFIED 

 𝐹𝑆𝐼𝑀(𝜂, Σ) 
𝒪 𝜂 ∙ 𝜇 ∙ |𝑉|  𝒪 𝜂 ∙  𝜇 ∙  𝑉 2 + 𝜇2 ∙  𝑉 + 𝜇 ∙ |𝐸|   

𝒪 𝜂 ∙ |𝑉|2  𝒪 𝜂 ∙  𝑉 3  
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 Scenario (ii): The number of agents 𝜇 is asymptotically the same as the   

      number of vertices while the size of the neighborhood in 𝐺  

      is asymptotically constant (that is, 𝜇 ∈ Θ(|𝑉|) and  

      degG (𝑣) ∈ Θ(1) for ∀𝑣 ∈ 𝑉). 

  The second assumption tells the graph is sparse and can be intuitively 

compared to planar graphs [36] that are very common in practice. The as-

sumption also tells that the number of edges is asymptotically the same as 

the number of vertices; that is, |𝐸| ∈ Θ(|𝑉|). 

  Space complexities for this scenario are shown in Table 2. 

 
Table 2. Comparison of the size complexities of CPF encodings – Scenario (ii). The number of 

agents 𝜇 in this scenario is asymptotically the same as the number of vertices of 𝐺 (that is, 𝜇 ∈
Θ(|𝑉|)) while the size of the vertex neighborhood in 𝐺 is asymptotically constant (that is, 

degG(𝑣) ∈ Θ(1) for ∀𝑣 ∈ 𝑉). 

 

 #Variables 

scenario (ii) 

#Clauses 

scenario (ii) 

INVERSE 

 𝐹𝐼𝑁𝑉(𝜂, Σ) 𝒪 𝜂 ∙  𝑉 ∙  log2 |𝑉|    𝒪 𝜂 ∙  𝑉 ∙  log2|𝑉|   

ALL-DIFFERENT 

 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|2) 𝒪 𝜂 ∙  𝑉 2 ∙  log2 𝑉    

MATCHING 

 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) 𝒪 𝜂 ∙ |𝑉| ∙  log2|𝑉|    𝒪 𝜂 ∙  𝑉 ∙  log2|𝑉|   

DIRECT 

 𝐹𝐷𝐼𝑅(𝜂, Σ) 𝒪 𝜂 ∙ |𝑉|2  𝒪 𝜂 ∙ |𝑉|3  

SIMPLIFIED 

 𝐹𝑆𝐼𝑀(𝜂, Σ) 𝒪 𝜂 ∙ |𝑉|2  𝒪 𝜂 ∙  𝑉 3  

 

 

 Scenario (iii): The number of agents 𝜇 is asymptotically constant while   

      the size of the neighborhood in 𝐺 is asymptotically the  

      same as the number of vertices. 

      (that is, 𝜇 ∈ Θ(1) and degG (𝑣) ∈ Θ(|𝑉|) for ∀𝑣 ∈ 𝑉). 

  This scenario can be intuitively regarded as a planar graph densely oc-

cupied by agents. Space complexities for this scenario are shown in Table 

3. 

 

 Scenario (iv): The number of agents 𝜇 and the size of the neighborhood in 

      𝐺 are both asymptotically constant. 

      (that is, 𝜇 ∈ Θ(1) and degG (𝑣) ∈ Θ(1) for ∀𝑣 ∈ 𝑉). 
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  Again, this scenario can be intuitively regarded as a planar graph with 

few agents inside. Space complexities for this scenario are shown in Table 

4. 

 

 The measure used here for comparison of encodings is that the smaller number 

of variables or clauses the better. This is usually a realistic measure as the search 

space often correlates with the number of (decision) variables when solving the 

propositional formula satisfiability problem by standard search procedures. Simi-

larly, the small number of clauses means that the overall size of the propositional 

formula is small and thus it is easier for the overall processing. Nevertheless, such 

small formula preference should be considered just as an intuitive measure since 

sometimes lot of variables may be derivable from values of other variables (thus 

they do not increase size of the search space) and sometimes more clauses may 

improve propagation. 

  

Table 3. Comparison of the size complexities of CPF encodings – Scenario (iii). The number of 

agents 𝜇 in this scenario is constant (that is, 𝜇 ∈ Θ(1)) while the size of the vertex neighborhood is 

asymptotically the same as the number of vertices of 𝐺 (that is, degG(𝑣) ∈ Θ(|𝑉|) for ∀𝑣 ∈ 𝑉). 

 
 #Variables 

scenario (iii) 

#Clauses 

scenario (iii) 

INVERSE 

 𝐹𝐼𝑁𝑉(𝜂, Σ) 𝒪 𝜂 ∙  𝑉 2  𝒪 𝜂 ∙  𝑉 2 ∙  log2|𝑉|   

ALL-DIFFERENT 

 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪 𝜂 ∙  𝑉 ∙  log2 𝑉    

MATCHING 

 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) 𝒪 𝜂 ∙ |𝑉|2  𝒪 𝜂 ∙ |𝑉|3  

DIRECT 

 𝐹𝐷𝐼𝑅(𝜂, Σ) 𝒪 𝜂 ∙ |𝑉|  𝒪 𝜂 ∙ |𝑉|2  

SIMPLIFIED 

 𝐹𝑆𝐼𝑀(𝜂, Σ) 𝒪 𝜂 ∙ |𝑉|  𝒪 𝜂 ∙  𝑉 2  

 

 Several conclusions can be made upon asymptotic numbers of variables and 

clauses in individual encodings presented in Table 1 - Table 4. In cases with many 

agents and dense graphs (corresponding to scenario (i)), INVERSE and ALL-

DIFFERENT encodings excel in a small number of clauses.  

 When we have many agents and relatively sparse graphs (scenario (ii)), which 

is the most common case in practice, then INVERSE and MATCHING encodings 

excel in both, in the number of variables as well as in the number of clauses. 
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 The remaining two scenarios (scenario (iii) and (iv)) can be regarded as non-

cooperative scenarios since the number of agents is constant and hence the inte-

raction among them is limited. The ALL-DIFFERENT encoding is the most space 

saving in a case with dense graphs (scenario (iii)) while INVERSE and MATCH-

ING encodings are the most space saving on sparse graphs (scenario (iv)). 

 Observe that DIRECT and SIMPLIFIED encodings do not excel in any of the 

suggested scenarios. This is mostly caused by the fact that no binary encoding of 

finite domain state variables, which significantly reduces the size of representa-

tion of the state variable using propositional variables, is used in these two encod-

ings. 

 
Table 4. Comparison of the size complexities of CPF encodings – Scenario (iv). Both the number of 

agents 𝜇 as well as the size of the vertex neighborhood are asymptotically constant in this scenario 

(that is, 𝜇 ∈ Θ 1  and degG(𝑣) ∈ Θ(1) for ∀𝑣 ∈ 𝑉). 

 
 #Variables 

scenario (iv) 

#Clauses 

scenario (iv) 

INVERSE 

 𝐹𝐼𝑁𝑉(𝜂, Σ) 𝒪 𝜂 ∙  𝑉   𝒪 𝜂 ∙  𝑉   

ALL-DIFFERENT 

 𝐹𝐷𝐼𝐹𝐹 (𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪 𝜂 ∙  𝑉 ∙  log2 𝑉    

MATCHING 

 𝐹𝑀𝐴𝑇𝐶𝐻 (𝜂, Σ) 𝒪 𝜂 ∙ |𝑉|  𝒪 𝜂 ∙ |𝑉|  

DIRECT 

 𝐹𝐷𝐼𝑅(𝜂, Σ) 𝒪 𝜂 ∙ |𝑉|  𝒪 𝜂 ∙ |𝑉|2  

SIMPLIFIED 

 𝐹𝑆𝐼𝑀(𝜂, Σ) 𝒪 𝜂 ∙ |𝑉|  𝒪 𝜂 ∙  𝑉 2  

 

4.3.1. Knowledge Compilation – Distance Heuristics 

Encodings based on time expansion graph can be be further enhanced by a so 

called distance heuristic. Intuitively said, a path indicating the trajectory of a giv-

en agent cannot go through vertices that there too far from the initial or the goal 

vertex under given time constraints. In other words, vertices at a given time layer 

where the distance to the initial position of the agent is larger than the time 

elapsed for the time layer (which equals to the position of the time layer in the 

time expansion graph) or where the distance to the goal vertex is larger than the 

time that remains for the given time layer (which equals to the position of the time 

layer in the time expansion graph counted from the end) can never be visited by 
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the agent. The just described time consideration can be easily formalized in the 

time expansion graphs through existence of directed paths. 

 The knowledge of these impassable vertices can rule out the occurrence of the 

agent in them from further consideration during the search for a solution and con-

sequently reduce the search space. 

 Assume a time expansion graph ExpT(𝐺, 𝜂) for CPF Σ = (𝐺,𝐴,𝛼0 ,𝛼+); let 

distD
→(𝑢, 𝑣) denote the length of the shortest directed path connecting 𝑢 to 𝑣 in a 

given digraph 𝐷 = (𝑋,𝐹); distD
→(𝑢, 𝑣) = ∞ if there is no path connecting 𝑢 to 𝑣 

in 𝐷. 

 

Proposition 10 (DISTANCE HEURISTIC). Any solution 𝑠 = [𝛼0 ,𝛼1 ,𝛼2 ,… ,𝛼𝜂 ] 

to Σ satisfies that distExp T 𝐺,𝜂 
→   𝛼0 𝑎𝑖 , 0 ,  𝛼𝑙 𝑎𝑖 , 𝑙  < ∞ and 

distExp T 𝐺,𝜂 
→ ( 𝛼𝑙 𝑎𝑖 , 𝑙 ,  𝛼𝜂 𝑎𝑖 , 𝜂 ) < ∞ for every 𝑖 ∈ {1,2,… , 𝜇} and 𝑙 ∈

{0,1,… , 𝜂}.  

 

Proof. The proposition is in fact a direct consequence of Proposition 1. If 

distExp T 𝐺,𝜂 
→   𝛼0 𝑎𝑖 , 0 ,  𝑣, 𝑙  = ∞ or distExp T 𝐺,𝜂 

→   𝑣, 𝑙 ,  𝛼𝜂 𝑎𝑖 , 𝜂  = ∞ for 

some 𝑣 ∈ 𝑉 then there is no directed path connecting  𝛼0 𝑎𝑖 , 0  and  𝛼𝜂 𝑎𝑖 , 𝜂  

going through  𝑣, 𝑙 . A fortiori, there is no path connecting  𝛼0 𝑎𝑖 , 0  and 

 𝛼𝜂 𝑎𝑖 , 𝜂  visiting  𝑣, 𝑙  that does not overlap and does not intersect other paths. 

Hence, 𝛼𝑙 𝑎𝑖 ≠ 𝑣.  

 

 The above proposition can be used to design a heuristic. All the vertices  𝑣𝑗 , 𝑙  

with 𝑣𝑗 ∈ 𝑉 and 𝑙 ∈ {0,1,… , 𝜂} in ExpT(𝐺, 𝜂) for that 

distExp T 𝐺,𝜂 
→   𝛼0 𝑎𝑖 , 0 ,  𝑣𝑗 , 𝑙  = ∞ or distExp T 𝐺,𝜂 

→ ( 𝑣𝑗 , 𝑙 ,  𝛼𝜂 𝑎𝑖 , 𝜂 ) = ∞ 

can be excluded from trajectories corresponding to agent 𝑎𝑖  (in original graph it 

translates to the requirement that agent 𝑎𝑖  cannot enter 𝑣𝑗  at time step 𝑙). In all the 

encodings, this can be done easily as follows: 

 

 

 

 

 

  

 

 The inequality between a bit vector and a constant is encoded as a single 

clause that forbids the bit vector to take that constant. That is, at least one bit must 

𝒜𝑣𝑗
𝑙 ≠ 𝑖 

ℒ𝑎𝑖
𝑙 ≠ 𝑗 

𝒳𝑎𝑖 ,𝑣𝑗
𝑙  

 

 

 

 

in the INVERSE and MATCHING encoding 

 

in the ALL-DIFFERENT encoding 

 
in the DIRECT/SIMPLIFIED encoding 

 

(30) 

(31) 

(32) 
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disagree with binary representation of the constant. For example, the inequality 

𝒜𝑣
𝑙 ≠ 𝑐 is encoded as follows: 

 

 

 

 

 It holds that added inequalities are logical consequences of the encoded propo-

sitional formulae (that is, for example 𝐹𝐼𝑁𝑉(𝜂, Σ) ⇒ 𝒜𝑣𝑗
𝑙 ≠ 𝑖 is a valid formula). 

Thus in theory, the SAT solver should be able to infer that some vertices are not 

reachable at certain time steps. However, it may be costly to derive such a fact for 

the SAT solver while the same knowledge can be obtained easily in advance and 

compiled directly into the formula almost without any increase of its complexity. 

5. Experimental Evaluation 

Experimental evaluation has been focused on measuring the actual size of sug-

gested encodings and on measuring runtime when encodings are used for makes-

pan optimal CPF solving. 

 The solving procedure presented as Algorithm 1 was used as a core framework 

for our makespan optimal CPF solving technique (that is, the sequential increas-

ing strategy for querying the SAT solver was used) while suggested individual 

propositional encodings can be regarded as its exchangeable modules. The SAT 

solver itself was connected to the solving technique as another external module. 

All the implemented encodings used build-in distance heuristic discussed in sec-

tion 4.3.1. 

 The SAT-based CPF solving proce-

dure was implemented in C++ as well as 

procedures for generating propositional 

formulae from given CPF and makespan 

bound (solving procedure and formulae 

generation were compiled together as a 

single executable program). 

 We used glucose 3.0 SAT solver 

[2] in our tests, which is justified by the 

fact that this SAT solver ranked among 

the winners in recent SAT Competitions 

[3] in the category of hard combinatorial 

problems to which we consider CPF be-

longs as well. The SAT solver was a sep-

con≠ 𝒜𝑣
𝑙 , 𝑐 =  lit(𝒜𝑣

𝑙 , 𝑐, 𝕚)

 log 2 𝜇  −1

𝕚=0

 

 

(33) 

Figure 6. Four-connected grid of size 4⨯4 

with 3 obstacles. Positions of obstacles with-

in the grid are depicted though they are 

actually not present in the graph. 

 

v2 v3 v4 v1 

G=(V,E) 

v5 v6 v7 
obstacle 

v9 v8 

v11 v12 v13 v10 

obstacles 
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arate module and was called externally by the CPF solving procedure (the solving 

procedure always generated a formula into a file, which was then submitted as 

input to the SAT solver; the answer of the SAT solver was generated into another 

file, from which the procedure read it and further processed). 

5.1. Benchmark Setup 

We followed benchmark setup suggested by Silver in [20]. Four-connected grids 

of various sizes were used to model environments in testing instances. The size of 

grids ranged from 6⨯6 to 12⨯12 with 20% of randomly selected vertices occu-

pied by obstacles (obstacle was represented by a missing vertex in grid – see Fig-

ure 6). Initial and goal arrangements of agents was random – the random ar-

rangement of agents has been obtained by placing agents one by one while the 

position has been uniformly randomly picked from the remaining unoccupied 

vertices. Only solvable instances were taken into runtime tests. 

 To allow full reproducibility of presented results all the source codes and ex-

perimental data were posted on-line on: http://ktiml.mff.cuni.cz/~surynek/ 

research/j-encoding-2015. 

5.2. Encoding Size Evaluation 

The size of propositional formulae was tested for discussed 4-connected grids 

with the increasing number of agents inside. The number of agents ranged from 1 

up to the half all the vertices in the graph. 

 For each number of agents, 10 random CPF instances were generated and their 

characteristics were measured. Formulae corresponding to all the suggested en-

codings were generated for each number of agents. The number of layers in time 

expansion graphs was fixed and set relatively to the size of the instance – it was 

12 for 6⨯6 grid; 16 for 8⨯8 grid; and 24 for 12⨯12 grid. 

 The average number of propositional variables, average number of clauses, 

ratio between the number of clauses and variables, and average clause length were 

calculated for each encoding and number of agents out of 10 randomly generated 

instances. Partial results are shown in Table 5, Table 6, and Table 7 – preferred 

values of individual characteristics are listed in bold. 

 The number of variables and clauses directly correspond to the size of formu-

lae. Preference is given to formulae that are smaller as they are expected to be 

easier to solve as well as easier for processing. 

 The ratio of the number of clauses and the number of variables is an important 

measure of the difficulty of propositional formula. Formulae that are under-

constrained or over-constrained are easier to solve [7] (easily satisfiable or easily 

http://ktiml.mff.cuni.cz/~surynek/research/j-encoding-2015
http://ktiml.mff.cuni.cz/~surynek/research/j-encoding-2015
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unsatisfiable respectively) and hence such situation is preferred in formulae en-

coding CPF. 
  
Table 5. Size comparison of propositional encodings of CPF over 6⨯6 grid. CPF instances are 

generated over the 4-connected grid of size 6⨯6 with 20% of vertices occupied by obstacles. The 

number of time layers in corresponding time expansion graph 𝜂 is 12. The number of variables and 

clauses, the ratio of the number of clauses and the number of variables, and the average clause 

length are listed for different sizes of the set of agents 𝐴. Small size of the formula and short clauses 

(they support unit propagation) are preferred – best values for each measure according to this prefe-

rence are shown in bold. DIRECT and SIMPLIFIED encodings are best in number of measures on 

6⨯6 grid. 

 
Grid 6⨯6 

INVERSE ALL-DIFFERENT MATCHING DIRECT SIMPLIFIED 
|Agents| 

1 
#Variables 

#Clauses 
Ratio 

Length 
3 384.3 

12 494.3 
3.692 
2.622 

701.4 
3 160.7 

4.506 
2.979 

1 841.1 
10 300.6 

5.595 
2.436 

342.0 
6 048.2 

17.685 
2.261 

684.0 
1 499.6 

2.192 
2.587 

2 
3 738.3 

17 012.0 
4.551 
2.599 

1 723.5 
7 191.7 

4.173 
2.980 

2 195.1 
13 497.1 

6.149 
2.512 

684.0 
14 176.0 

20.725 
2.353 

1 026.0 
3 441.4 

3.354 
2.562 

4 
4 092.3 

22 110.2 
5.403 
2.642 

4 127.5 
15 392.6 

3.729 
3.026 

2 549.1 
17 274.1 

6.777 
2.632 

1 368.0 
34 962.7 

25.558 
2.427 

1 710.0 
7 956.1 

4.653  
2.423 

8 
4 446.3 

28 225.0 
6.348 
2.794 

12 066.7 
39 216.1 

3.250 
3.060 

2 903.1 
22 067.7 

7.601 
2.867 

2 736.0 
99 381.3 

36.324 
2.543 

3 078.0 
21 436.3 

6.964 
2.319 

16 
4 800.3 

36 527.1 
7.609 
3.133 

38 791.0 
109 781.6 

2.830 
3.104 

3 257.1 
29 048.6 

8.919 
3.313 

5 472.0 
308 484.7 

56.375 
2.633 

5 814.0 
64 314.8 

11.062 
2.201 

 

 A very important characteristic is the average length of clause while short 

clauses are preferred since they support unit propagation [7], which allows deriv-

ing values for other variable without search. 

  
Table 6. Size comparison of propositional encodings of CPF over 8⨯8 grid. The number of time 

layers in the corresponding time expansion graph is 16. DIRECT and SIMPLIFIED encodings have 

fewer variables and clauses for small number of agents while MATCHING encoding is better in these 

measures for many agents in the instance. 

 
Grid 8⨯8 

INVERSE ALL-DIFFERENT MATCHING DIRECT SIMPLIFIED 
|Agents| 

1 
#Variables 

#Clauses 
Ratio 

Length 

4 520.3 
25 881.1 

3.748 
2.616 

1 489.3 
7 930.4 

5.325 
3.057 

4 520.3 
25 881.1 

5.710 
2.441 

814.4 
23 241.9 

28.539 
2.149 

1 628.8 
3 384.6 

2.078 
2.550 

4 
10 019.5 
55 437.0 

5.532 
2.641 

7 834.5 
34 781.9 

4.440 
3.103 

6 181.1 
43 171.0 

6.984 
2.640 

3 257.6 
115 934.3 

35.589 
2.272 

4 072.0 
17 997.8 

4.420 
2.374 

8 
10 849.9 
70 725.9 

6.519 
2.792 

21 875.4 
83 794.2 

3.831 
3.113 

7 011.5 
55 050.3 

7.851 
2.874 

6 515.2 
297 319.9 

45.635 
2.390 

7 329.6 
49 381.3 

5.736 
2.694 

16 
11 680.3 
91 344.5 

7.820 
3.127 

67 088.3 
216 745.4 

3.231 
3.147 

7 841.9 
72 259.3 

9.215 
3.315 

13 030.4 
840 540.6 

64.506 
2.505 

13 844.8 
150 259.2 

10.853 
2.180 

32 
12 510.7 

122 170.3 
9.765 
3.733 

230 753.0 
646 616.2 

2.802 
3.168 

8 672.3 
99 675.5 

11.494 
4.045 

26 060.8 
2 738 584.7 

105.084 
2.621 

26 875.2 
510 672.1 

19.002 
2.111 

 

 Results indicate that DIRECT and SIMPLIFIED encodings have best size cha-

racteristics with respect to the small size preference in cases with small number of 

agents in the instance. This result can be observed for all the sizes of the grid 

modeling the environment. As the neighborhood connectivity in 4-connected gr-

ids can be regarded as constant; that is, degG (𝑣) ∈ Θ(1) for ∀𝑣 ∈ 𝑉, the cases, 

where DIRECT and SIMPLIFIED encoding have best size characteristics, rough-
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ly correspond to scenario (iv). However, theoretical asymptotic formula size esti-

mations suggest different results - DIRECT and SIMPLIFIED encodings should 

be same as other encodings in terms of the number of variables and worse than 

other encodings in terms of the number of variables. Hence, experimental evalua-

tion has shown a surprising result in this aspect. 

 If the number of agents is higher, the MATCHING encoding dominates in the 

size characteristics for all the size of the grid. It has the fewest number of proposi-

tional variables as well as the fewest number of clauses. If we consider that this 

case roughly correspond to scenario (ii), these observations correspond to theoret-

ical asymptotic estimations, which indicate that MATCHING encoding together 

with INVERSE encoding should be smallest (note, that the INVERSE encoding is 

the second smallest according to experimental results). 

 
Table 7. Size comparison of propositional encodings of CPF over 12⨯12 grid. The number of time 

layers in the time expansion graph is 24 here. The MATCHING encoding is clearly the smallest 

encoding for larger number of agents. 

 
Grid 12⨯12 

INVERSE ALL-DIFFERENT MATCHING DIRECT SIMPLIFIED 
|Agents| 

1 
#Variables 

#Clauses 
Ratio 

Length 
29 798.7 

116 302.8 
3.903 
2.635 

4 973.9 
30 928.8 

6.218 
3.031 

15 961.3 
94 603.2 

5.927  
2.443 

2 767.2 
168 027.8 

60.721 
2.073 

5 534.4 
11 587.0 

2.094  
2.578 

8 
38 172.3 

257 739.9 
6.752 
2.793 

55 602.1 
271 730.3 

4.887 
3.088 

24 334.9 
197 835.9 

8.130  
2.871 

22 137.6 
1 722 059.3 

77.789 
2.230 

24 904.8 
167 026.1 

6.707  
2.289 

16 
40 963.5 

330 249.1 
8.062 
3.115 

153 047.5 
656 615.4 

4.290 
2.999 

27 126.1 
257 974.6 

9.510 
3.300 

44 275.2 
4 310 137.7 

97.349 
2.343 

47 042.4 
542 862.4 

11.540 
2.059 

32 
43 754.7 

439 680.0 
10.049 

3.701 
475 135.0 

1 628 634.8 
3.428 
3.148 

29 917.3 
354 306.4 

11.843 
4.021 

88 550.4 
12 121 528.6 

136.888 
2.475 

91 317.6 
1 730 745.7 

18.953 
2.112 

64 
46 545.9 

620 942.7 
13.340 

4.632 
1 626 205.9 
4 713 520.1 

2.898 
3.183 

32 708.5 
522 834.3 

15.985 
5.065 

177 100.8 
38 361 723.7 

216.610 
2.594 

179 868.0 
6 297 660.9 

35.0127 
2.062 

 

 DIRECT and SIMPLIFIED encodings excel in terms of the ratio of the num-

ber of clauses to the number of variables. Both encodings tend to be over-

constrained, which intuitively suggest easier proving of unsatisfiability. The aver-

age length of clauses is shortest for the SIMPLIFIED encoding. As the number of 

agents increases the average clause length converges towards 2 for all the sizes of 

the grid (that is, most of clauses are binary in the SIMPLIFIED encoding). 

 Above observations of static characteristics of encodings indicate that 

MATCHING encoding and especially SIMPLIFIED encoding should perform 

well in CPF solving (or at least better than other encodings). 

5.3. Runtime Evaluation 

We re-implemented A*-based OD+ID CPF solving procedure [23] in C++ with 

the objective function for minimizing the makespan and compared it with our 
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SAT based solving method in order to provide broader picture regarding the run-

time evaluation. 

 Again, CPFs over 4-connected grids of sizes 6⨯6, 8⨯8, and 12⨯12 with 20% 

of vertices occupied by randomly placed obstacles were used. Initial and goal 

arrangements of agents were generated randomly. Runtime evaluation was done 

for the increasing number of agents in instances while for each number of agents 

10 random instances were generated and solved. All the instances used for evalu-

ation were solvable. 
   

 
 

Grid 6⨯6 
1 2 3 4 5 6 7 8 9 10 12 14 16 18 

|A| 

Makespan 4.2 4.9 5.2 5.6 6.5 7.0 7.0 7.4 7.1 6.9 7.9 8.6 8.2 9.1 

 
Figure 7. Runtime evaluation over 6⨯6 4-connected grid with 20% of vertices occupied by ob-

stacles. A*-based method OD+ID and SAT-based method with INVERSE, ALL-DIFFERENT, 

MATCHING, DIRECT, and SIMPLIFIED encodings are compared on random CPF instances on the 

grid. Average and median runtimes out of runtimes on 10 random instances are shown; average 

optimal  makespans are also shown. OD+ID method does not scale for higher number of agents 

while SAT-based solving performs better with many agents. Particularly SIMPLIFIED encoding 

performs as best. Up to two orders of magnitude are between the best and worst encoding in run-

time. 

 

 The timeout for single CPF instance solving was set to 256 seconds (approx-

imately 4 minutes). The number of agents was increased until all the 10 random 

instances were solvable within the given timeout – that is, each solving method 

(encoding) is characterized by the maximum number of agents for which it is able 

to solve all the 10 random instances within the given timeout. 

 The average and median runtimes were calculated out of these 10 instances for 

all the tested methods. In the case of SAT based CPF solving methods, the run-

time is a sum of the runtime of the core CPF solving procedure (corresponding to 
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Algorithm 1) plus runtimes of all the runs of the SAT solver invoked by the core 

procedure. 

 Runtime results together with average optimal makespan are shown in Figure 

7, Figure 8, and Figure 9
1
 (note that, all the methods generate solutions of the 

same optimal makespan). 
  

 
 

Grid 8⨯8 
1 2 3 4 5 6 8 10 12 14 16 18 20 22 24 

|A| 

Makespan 5.6 5.3 7.8 8.0 8.8 10.7 9.7 10.4 10.8 10.0 11.0 10.5 11.5 11.2 11.5 

 
Figure 8. Runtime evaluation over 8⨯8 4-connected grid with 20% of vertices occupied by ob-

stacles. Again, the SAT-based solving with SIMPLIFIED encoding performs as best for higher num-

ber of agents. The MATCHING encoding also starts with promising performance but it quickly de-

grades for more than approximately 14 agents. 

 

 It can be observed that OD+ID, although it is the fastest for small number of 

agents, does not scale up as the runtime quickly blows up for more agents. The 

SAT-based solving method with all the encodings performs better and scales up 

for higher number of agents. Particularly, the SIMPLIFIED encoding performs as 

best in all the sizes of the grid followed by MATCHING, DIRECT, ALL-

DIFFERENT, and INVERSE encodings respectively. 

 Note that the good performance of the SIMPLIFIED encoding has been pre-

dicted by the static analysis of encodings (particularly, it has been assumed to 

support unit propagation well). Another well competing MATCHING encoding 

 
1 All the runtime measurements were done on a machine with the 4-core CPU Xeon 2.0GHz and 12GB RAM 

under Linux kernel 3.5.0-48. Although we used multiple cores to run experiments in parallel, the individual 

instances were solved in a single thread (that is, the core solving procedure and all its call to the SAT solver were 

run in single thread). 
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had been predicted to have a good performance as well due to its small size in 

testing instances. 

 An interesting behavior can be observed with MATCHING encoding that start 

with almost the same promising performance as the SIMPLIFIED encoding for 

small number of agents, but it quickly degrades and it is eventually outperformed 

by the DIRECT encoding on 6⨯6 and 12⨯12 grids for higher number of agents 

(in case of the 8⨯8 grid, the degradation of the MATCHING encoding can be 

observed as well but it is less significant – the DIRECT encoding reached the 

timeout before it could overtake the MATCHING encoding). 

  

 
 

Grid 12⨯12 
1 2 3 4 6 8 10 12 16 18 20 24 28 32 

|A| 

Makespan 7.5 10.6 11.4 12.7 13.9 15.3 13.8 14.9 15.5 16.3 14.6 17.3 15.9 16.4 

 

Figure 9. Runtime evaluation over 12⨯12 4-connected grid with 20% of vertices occupied by 

obstacles. The best performance is exhibited by the SIMPLIFIED encoding again. The MATCHING 

encoding is able to solve second highest number of agents in the given timeout. 

 

 Instances with occupancy by agents up to 62% are solvable within the given 

timeout in the 6⨯6 grid by using the SIMPLIFIED encoding. This figure is 46% 

for the 8⨯8 grid and 28% for the 12⨯12 grid for the SIMPLIFIED encoding. 

OD+ID method can solve instances with occupancy up to 24%, 13%, and 7% in 

6⨯6, 8⨯8, 12⨯12 grids respectively. Thus, approximately 3 times more agents are 

solvable with SAT based method than with OD+ID in given testing instances. 

 The general conclusion from the above experimental evaluation is also that the 

binary encoding used for encoding finite domain state variables in the INVERSE, 

ALL-DIFFERENT, and MATCHING encoding contributes to the small size but it 

is questionable if it contributes the overall performance as these encodings clearly 
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performed worse than the DIRECT and SIMPLIFIED encodings that did not rely 

on the binary encoding. 

 On the other hand, the simple design of the DIRECT and SIMPLIFIED encod-

ings is not at the expense of the performance of their solving. The simple design 

of variables allowed modeling constraints using short clauses that significantly 

support intensive unit propagation, which is most likely the key factor for the 

good performance of both encodings – especially in the case of the SIMPLIFIED 

encoding. 

5.4. Solution Quality Evaluation 

Although all the solutions generated by the suggested SAT based solving tech-

niques are makespan optimal, that is, the best with respect to our objective func-

tion, they may differ in other aspects. Particularly important is the total number of 

moves performed by agents (also called a sum of costs) which can be regarded as 

the total energy consumed by agents to perform their movements. The total num-

ber of moves is also considered as an objective function in several approaches to 

CPF solving such as [21, 22]. Hence, it is interesting what do solutions generated 

by makespan optimal SAT solving look like with respect to the total number of 

moves despite the fact that this aspect has been completely disregarded in the 

design of propositional encodings of CPF. 

 The way in which a given problem is encoded into propositional formula 

greatly affects heuristics the SAT solver uses for selecting variables and their 

values. Values selected to satisfy the formula are then reflected in the CPF solu-

tion reconstructed from its satisfying valuation. Although not a rule, SAT solvers 

in their default settings usually prefer assigning 𝐹𝐴𝐿𝑆𝐸 value if it is not more 

advantageous than to assign value 𝑇𝑅𝑈𝐸. 

 Observe that only values assigned to visible propositional variables are direct-

ly reflected in the resulting CPF solution. Visible propositional variables in the 

suggested encodings are either part of a directly encoded state (DIRECT and 

SIMPLIFIED encodings) or part of a binary encoded bit vector (INVERSE, ALL-

DIFFERENT, and MATCHING encodings). 

 Propositional variables within directly encoded state directly correspond to 

occupancy of a vertex or an edge by a fixed agent. Assignment of value 𝐹𝐴𝐿𝑆𝐸 to 

a propositional variable of the directly encoded state corresponds to no occupancy 

by the given fixed agent. Complete no-occupancy appears if and only if all the 

propositional variables directly encoding the state are set to 𝐹𝐴𝐿𝑆𝐸 for all the 

agents. 
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Figure 10. Solution quality comparison over 6⨯6 4-connected grid. The total number of moves in 

optimal solutions obtained by each tested method is compared for the growing number of agents in 

the grid (left part). Sorted differences in total number of moves from the number of moves generated 

with the SIMPLIFIED encoding are also shown (right part). The SIMPLIFIED encoding yields a solu-

tion with the fewer number of moves than other methods in about one third of all the generated 

solutions. 

 

 The interpretation of bit vector propositional variables is that occupancy of a 

corresponding vertex or an edge appears if any of the propositional variables 

within the bit vector is set to 𝑇𝑅𝑈𝐸. No occupancy corresponds to the assignment 

of integer zero to the bit vector, which means to assign 𝐹𝐴𝐿𝑆𝐸 to all the proposi-

tional variables, which the bit vector consists of. 

  

 
Figure 11. Solution quality comparison over 8⨯8 4-connected grid. The SIMPLIFIED encoding 

yields solutions with fewest moves in approximately 75% of cases of solution generation. Note that 

A*-based OD+ID generates solutions with even fewer moves but it does not scale up enough to 

show its qualities for higher density of agents. 
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 If we assume that the SAT solver tries to find a solution conservatively; that is, 

it prefers to assign 𝐹𝐴𝐿𝑆𝐸 values, then it seems that using encodings with visible 

variables that directly encode states results in smaller vertex and edge occupancy, 

which correspond to CPF solutions consisting of fewer total number of moves. 

  

  
Figure 12. Solution quality comparison over 12⨯12 4-connected grid. The SIMPLIFIED encoding 

yields almost always a solution with fewer moves than other methods in this larger scenario. Again, 

solutions with fewest moves are generated by OD+ID but the comparison could be done for few 

agents only due to insufficient scalability of OD+ID. 

 

 The reasoning behind this hypothesis assumes to have a set of agents 𝐴 and a 

location (vertex/edge) that is to be occupied by at most one agent from 𝐴. The 

occupancy of the location is modeled by directly encoded state in one scenario 

and as a binary encoded bit vector in the second scenario. The first scenario yields 

|𝐴| propositional variables with  𝐴 + 1 allowed assignments - one of these as-

signments corresponding to no occupancy of the location assigns 𝐹𝐴𝐿𝑆𝐸 to all the 

propositional variables; other allowed assignments have just a single propositional 

variable set to 𝑇𝑅𝑈𝐸. The second scenario yields log2  𝐴 + 1  propositional 

variables - all the possible combinations of Boolean values are allowed as as-

signments while all the propositional variables set to 𝐹𝐴𝐿𝑆𝐸 correspond to no 

occupancy of the location. If the preference of assigning 𝐹𝐴𝐿𝑆𝐸 actually results 

in setting strictly fewer variables to 𝑇𝑅𝑈𝐸 then no occupancy immediately ap-

pears in the first scenario while there is little chance that no occupancy appears in 

the second scenario (setting strictly fewer variables to 𝑇𝑅𝑈𝐸 may lead to another 

assignment of the bit vector with some propositional variables set to 𝑇𝑅𝑈𝐸 - that 

is, representing some occupancy). 

 Results of measurement of the total number of moves generated by SAT based 

CPF solving with suggested encodings are presented in Figure 10, Figure 11, and 

Figure 12. The same set of testing instances over 4-connected grids as in the run-
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time measurement has been used. The total number of moves generated by 

OD+ID is also included in the measurement. 

 The fewest number of moves in most testing instances is yielded by the SIM-

PLIFIED encoding. Thus, we also present sorted differences in the total number 

of moves between those yielded by the SIMPLIFIED encoding and other me-

thods. It can be also observed that OD+ID generates solutions with the smallest 

number of moves in instances containing few agents. Unfortunately, as OD+ID 

does not scale up well enough it cannot show qualities of its solutions for larger 

number of agents. 

 There is almost no significant difference in the total number of moves generat-

ed by other methods except a marginal tendency of the DIRECT encoding to yield 

better solutions than methods using binary encoded bit vectors especially observ-

able over 8⨯8 grid. 

 Altogether, we can conclude that the hypothesis that encodings using directly 

encoded states is more advantageous than encodings with binary encoded bit-

vectors with respect to the total number of moves. 

6. Conclusions 

Several propositional encodings of cooperative path-finding problem (CPF) have 

been introduced - INVERSE, ALL-DIFFERENT, MATCHING, DIRECT, and 

SIMPLIFIED encodings. The presented encodings are based on the notion of the 

time expanded graph that expands the graph modeling the environment over time 

so that arrangements of agents at all the time steps up to a certain final time step 

can be represented. Time expanded graphs provided an essential step towards 

building propositional formulae, in which a query whether there is a solution of a 

given CPF with the specified number of time steps is encoded. Obtaining makes-

pan optimal solution is then carried out by submitting multiple encoded queries to 

a SAT solver. The reduction of CPF to SAT allows accessing all the advanced 

search, pruning, and learning techniques of the SAT solver that can be in this way 

employed in CPF solving. 

 The suggested encodings either use binary encoded bit vectors (INVERSE, 

ALL-DIFFERENT, and MATCHING encoding) or directly encoded states (DI-

RECT and SIMPLIFIED encodings) to model arrangements of agents at individu-

al time steps. Using binary encoded bit vectors results in smaller formulae in 

terms of the number of variables and clauses. The advantage of encodings with 

directly encoded states is on the other hand a better support for Boolean constraint 

propagation (unit propagation) which enabled by the presence of many short 

clauses. 
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 Performed experimental evaluation indicates that CPF solving via SAT is gen-

erally the best option in highly constrained situations (environments densely oc-

cupied by agents). SAT based CPF solving scales up for larger number of agents 

much better than the alternative A* based search technique. 

 If we compare solely SAT encodings, than the SIMPLIFIED encoding turned 

out to perform as best. Instances with the highest occupancy by agents were 

solved only by the SIMPLIFIED encoding in the given timeout. Moreover, the 

comparison of the quality of solutions generated by the SAT based solving in 

terms of the total number of generated moves also indicates that the SIMPLIFIED 

encoding generates fewest moves.  
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