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1 Introduction

The subject of the present thesis concerns the existence, construction and prop-
erties of branching rules and associated singular vectors for generalized Verma
modules or dually, differential invariants of homogeneous manifolds equipped
with a geometrical structure encapsulated by geometrical and representation
theoretical properties of semisimple Lie algebras and their parabolic subalge-
bras. The main focus is to uncover and explore the intimate relation between
several branches of mathematics including local differential geometry on homo-
geneous manifolds and its submanifolds with a parabolic structure, in particular
conformally invariant linear and bilinear differential operators, and homomor-
phisms and coproducts between induced modules in representation theory of
semisimple Lie algebras and groups.

In a series of pioneering papers, see [3], [4], [5], R. Baston introduced a num-
ber of general methods to study invariant differential operators on conformal
manifolds, and related class of parabolic geometries, which he called ”almost
hermitian symmetric (AHS)” structures. In particular, he suggested that cer-
tain complexes of natural differential operators, dual to generalized Bernstein-
Gelfand-Gelfand (BGG) resolutions of generalized Verma modules, could be
extended from the homogeneous context (generalized flag manifolds) to man-
ifolds modeled on these spaces. He provided a construction of such a BGG
sequence (no longer a complex in general) for AHS structures, and introduced
a class of induced modules, now called semiholonomic Verma modules.

Baston’s work fits into the program of parabolic invariant theory initiated by
Fefferman and Graham, [26]. Several authors completed these ideas and hence
provided a theory of invariant operators in all parabolic geometries, includ-
ing conformal geometry, projective geometry, quaternionic geometry, projective
contact geometry, CR geometry and quaternionic CR geometry. In [23], East-
wood and Slovak began the study of semiholonomic generalized Verma modules
and classified the generalized Verma module homomorphisms lifting to the semi-
holonomic modules in the conformal case. The suggestion by R. Baston of the
construction of BGG sequences has been clarified in [14], and in the process,
generalized to all parabolic geometries. Hence we now know that all standard
homomorphisms of parabolic Verma modules induce differential operators also
in the curved setting, providing us with a huge supply of invariant linear differ-
ential operators. The construction of BGG sequences has been simplified in [11]
by introducing the so called A∞-structure, which organizes these sequences of
linear differential operators together with bilinear and more generally multilin-
ear differential pairings induced by cup product on the Lie algebra cohomology
into one package.

This development turned out to find its place in a wider framework of ques-
tions, characterized by mutual interaction of geometrical and analytical tech-
niques approaching various incarnations of fundamental geometrical objects. A
representative example is Q-curvature, which is an important object in confor-
mal Riemannian geometry, see [37] and references therein. In conformal Rie-
mannian geometry, one associates to a hypersurface or boundary i : Σ →֒ M
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of a Riemannian manifold (M, g) a 1-parameter family of natural conformally
covariant differential operators mapping densities on M to densities on Σ. Then
the Q-curvature resp. the Graham-Jenne-Mason-Sparling (GJMS) operators of
(Σ, i⋆(g)) appear as the linear resp. constant coefficients of the family parame-
ter expansion of these differential operators, and their transformation properties
are a direct consequence of invariance of these natural differential operators.

There are two prominent examples of curved extensions of families of in-
variant differential operators - the families coming from invariant calculus of
tractors and the residue families related to asymptotic of eigenfunctions of am-
bient hyperbolic Laplace operator and scattering operator. On the other hand,
Q-curvature [9] is an invariant produced by analytic techniques like variational
problems for spectral functional determinants and analytic half torsion.

The setting of residue families is based on canonical extension of the metric
on Σ to a metric on M , arising in the case of conformally compact Einstein
metrics or Fefferman-Graham construction of the ambient metric in the case
when Σ is a boundary of M . The Poincare-Einstein metric associates to a
conformal class of metrics on Σ a diffeomorphism class of conformally compact
Einstein metrics onM with a prescribed conformal class as its conformal infinity.
In the case of invariant metric on homogeneous space, the related mathematical
concept is Helgason’s theory of Poisson transformation in harmonic analysis on
symmetric spaces.

An inspiration for mathematically rigorous understanding of this circle of
ideas is based on concepts of theoretical physics and string theory called holo-
graphic principle in quantum gravity and AdS/CFT correspondence. Another, a
number theoretical, inspiration comes from analytical continuation of intertwin-
ing operators for discrete cocompact Kleinian groups Γ, whose residues contain
automorphic forms supported on the limit set for Γ.

In the last couple of years, we developed in [43], [44], [55] a systematic
approach to treat two intimately related problems. The first problem has its
origin in basic questions of representation theory, namely the branching rules
for generalized Verma modules. The answer to this question is expressed in
terms of qualitative properties of the decomposition with respect to an embed-
ded (non-)compatible semisimple Lie subalgebras of a given simple Lie algebra,
and includes a far reaching generalization of Kazhdan-Lusztig polynomials. The
second problem is a quantitative part of abstract (qualitative) conclusions, de-
scribing the construction of singular vectors generating submodules in an initial
generalized Verma module. In the series of cited articles we applied the distri-
bution Fourier transform to convert the quest for singular vectors to a problem
of solving the system of special partial differential equations subordinate to a
symmetry in question. For example, in the case of conformal parabolic sub-
algebra of the simple Lie algebra so(n + 1, 1,R) with compatible subalgebra
so(n, 1,R), the problem for singular vectors is transformed into the special dif-
ferential equation for the Gegenbauer polynomials, or the case of semisimple Lie
algebra sl(2,R) × sl(2,R) with Borel subalgebra and the compatible diagonal
subalgebra sl(2,R) this procedure leads to the Jacobi polynomials.

The equivalence between homomorphisms of generalized Verma modules and
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invariant differential operators acting on smooth (holomorphic) sections of ho-
mogeneous vector bundles over homogeneous manifold yields the explicit form
of differential invariants.

Another part of the project almost not touched in the present thesis is the
construction of lifts to homomorphisms in the category of semiholonomic gener-
alized Verma modules. Generalizing the pattern of the arguments given in [23],
one can prove the existence of curved extensions of many differential invariants,
cf. [43], [44] for some examples of this construction. The curved translation
procedure and invariant calculus of tractors then allow, at least in principle, to
construct the curved operators explicitly.

Let us briefly describe the structure and results in the thesis based on the
work of the author, together with general scheme developed in collaboration
with co-authors in [43], [44] and overviewed in Section 3, Section 4, Section 5.

The Section 2 offers a recollection of the standard material about Lie theory
with emphasis on the structure of parabolic subalgebras of simple Lie algebras,
universal enveloping Lie algebras of simple Lie algebras, intertwining differential
operators and the Bernstein-Gelfand-Gelfand parabolic category Op.

Then we pass to a panorama of representative problems and examples, each
of them having its own range of applications.

The Section 6 and Section 7 deal with the simplest example when either
g′ = g or g, g′ are two compatible consecutive orthogonal Lie algebras with
(compatible) conformal subalgebras, and the inducing representations are ei-
ther characters or the spinor modules twisted by characters. In this way we
recover in the case of conformal parabolic subalgebras of simple orthogonal Lie
algebras and generalized Verma modules induced from characters the classifica-
tion given in [21], and for two consecutive compatible orthogonal Lie algebras
g, g′ with conformal parabolic subalgebras the results in [37]. It is worth to
emphasize that we construct both the standard and non-standard homomor-
phisms of generalized Verma modules. Another (almost) complete classification
is given in the case of the conformal geometry, when the inducing representation
is spinor module twisted by family of characters. In this example the singular
vectors correspond to powers of the Dirac operator.

The Section 8 is devoted to the description of the structure of composition
series in the case g, g′ are two compatible consecutive orthogonal Lie algebras
with (compatible) conformal subalgebras. Particularly interesting is the ap-
pearance of projective modules in the BGG category Op for special values of
the inducing character λ. A consequence of the detailed analysis is a proof of
conjectures formulated by A. Juhl, [37].

The Section 9 contains a detailed analysis of the case when g, g′ are two
compatible consecutive orthogonal Lie algebras with (compatible) conformal
subalgebras, and as the induced representation is taken the fundamental vec-
tor representation of the Levi factor corresponding to 1-forms. Consequently,
there are two series of families of operators with target either 0− or 1-forms on
the conformal submanifold. The curved version of these family operators are
currently used in the construction of higher Q-curvature on forms and Branson-
Gover operators.
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The next example in Section 10 corresponds to the diagonal branching prob-
lem for orthogonal Lie algebras and its parabolic subalgebras of conformal
type, when the singular vectors induce bilinear differential operators general-
izing Rankin-Cohen brackets, for the first time studied in the context of the
ring structure on automorphic forms on SL(2,R). The full classification of sin-
gular vectors and their dual differential operators is achieved for the inducing
1-dimensional representations.

In Section 11 we treat again the cases of orthogonal Lie algebras and its con-
formal parabolic subalgebras, but this time we take the inducing representation
to be infinite dimensional representation given by generalized Verma module of
scalar type twisted by character of the Levi subalgebra. In this case our results
give the flat version of so called universal splitting operator, when the inducing
representation has non-trivial composition structure with respect to the confor-
mal parabolic subalgebra. For special values of the inducing twisting character,
passing to the finite dimensional quotient yields the splitting operators on sym-
metric powers of the standard tractor representation. Rewriting the valuation
as a formal power series in terms of an infinite product, one can write down its
curved generalization in terms of the curved Casimir operator.

In Section 12 we demonstrate another flexibility of our approach, namely
the possibility of the branching problem and construction of singular vectors for
non-compatible couple of Lie algebras and their (non-compatible) parabolic sub-
algebras. In particular, we consider the case of orthogonal Lie algebra so(7,C)
with its conformal parabolic subalgebra, and the Lie algebra Lie G2 with its
unique 3-graded parabolic subalgebra. The construction of invariant differential
operators in this specific case is closely related to the question of Lie G2 distribu-
tions of type (2, 3, 5) on manifolds with conformal structure in dimension 5. In
a recent article, [55], we extended the framework of the scheme presented in the
thesis to a much broader setting. In particular, on some technical assumptions,
we deal in a uniform way with non-compatible parabolic subalgebras fitting into
the class of Fernando-Kac algebras.

The final Appendix contains summary and properties of Gegenbauer poly-
nomials, characterized as polynomial solutions of second order ordinary Gegen-
bauer differential equation.
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2 Introduction of basic objects in Lie and rep-
resentation theory

The material presented in this section may be found in any advanced textbook
on Lie and representation theory, e.g. [38], [27]. It is an introductory material
aiming to orient the interested reader when reading the main text of the thesis.

2.1 (Semiholonomic) Universal enveloping algebra

The universal enveloping complex algebra U(g) of a Lie algebra g is defined as
a quotient of the tensor algebra T (g) by two-sided ideal generated by elements
X ⊗ Y − Y ⊗X − [X,Y ] for all X,Y ∈ g. The non-homogeneous ideal induces
an increasing filtration {U i(g)}i∈N0 on U(g):

{0} ⊂ U1(g) ⊂ U2(g) ⊂ U3(g) ⊂ . . .

and according to Poincare-Birkhoff-Witt theorem, the canonical inclusion g →֒
U(g) extends to the vector space isomorphism

⊕li=0S
i(g)

∼−→ U l(g), l ∈ N0,

where S⋆(g) denotes the polynomial algebra on g⋆. If g ≃ g1⊕g2 is a semisimple
Lie algebra with two simple summands g1, g2, we have

U(g) = U(g1)⊗ U(g2).

In a basis {ej}j=1,...,dim(g) of g the elements ei1 · · · · · eim , m ≤ l, linearly span

U l(g). The adjoint representation

adX : g→ g, Y 7→ [X,Y ], X, Y ∈ g,

extends to a g-module structure on U(g), completely reducible for g a reductive
Lie algebra. The subalgebra of elementsX ∈ Z(U(g)) ⊂ U(g) such that [X,Y ] =
0 for all Y ∈ g is called the center of U(g).

Let V be a complex representation of reductive Lie algebra g, given by Lie
algebra homomorphism φ : g→ End(V). It follows from the universal property
of U(g) that there is a unique lift of φ to a homomorphism of associative algebras
φ̃ : U(g)→ End(V). In the case V is irreducible, the elements from Z(U(g)) act
by scalars and the underlying homomorphism

χ(φ,V) : Z(U(g))→ C

is called central (infinitesimal) character. Let (φ1,V1), (φ2,V2) be two irre-
ducible representations of g and T : V1 → V2 a U(g)-homomorphism (an inter-
twining linear map.) Then we have for all v1 ∈ V1, z ∈ Z(U(g))

χ(φ2,V2)(z)T (v1) = zT (v1) = Tz(v1) = Tχ(φ1,V1)(z)(v1) = χ(φ1,V1)(z)T (v1),
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so that either T = 0 or χ(φ1,V1) = χ(φ2,V2).
The geometric meaning of U(g) is given by the tensor algebra generated by

(left or right) invariant vector fields on a connected Lie group G with Lie algebra
g, i.e. by the enveloping algebra of (left or right) invariant differential operators
acting on functions on G.

Given a parabolic subalgebra p of g and a finite dimensional irreducible p-
module (σ,Vσ), the generalized Verma module induced from (σ,Vσ) is defined
by

Mg
p (Vσ) = M(g, p,Vσ) = (U(g)⊗ Vσ)/ < X ⊗ v − 1⊗ σ(X)v, X ∈ p, v ∈ Vσ >

= U(g)⊗U(p) Vσ , (2.1)

where <> denotes a left U(g)-ideal generated by indicated elements. The (finite
dimensional) irreducible p-representation (σ,Vσ) is embedded into M(g, p,Vσ)
via

Vσ → (1 ⊗C Vσ) →֒ U(p)⊗U(p) Vσ. (2.2)

As a consequence of the Poincare-Birkhoff-Witt theorem we have the vector
space isomorphism

M(g, p,Vσ) ≃ U(n−)⊗ Vσ, (2.3)

where n− is the opposite nilradical of n, g ≃ n− ⊕ p. In the case when n− is
abelian nilradical, M(g, p,Vσ) is isomorphic to the space of Vσ-valued polyno-
mials on n:

U(n−)⊗ Vσ ≃ S∗(n−)⊗ Vσ ≃ Pol(n)⊗ Vσ. (2.4)

Let us consider again two irreducible finite dimensional p-modules (σ1,Vσ1),
(σ2,Vσ2) and a U(g)-homomorphism

T : M(g, p,Vσ1)→M(g, p,Vσ2). (2.5)

The semiholonomic universal enveloping algebra Us(g) of the Lie algebra g is
defined as a quotient of the tensor algebra T (g) by a two-sided ideal generated
by elements X ⊗ Y − Y ⊗X − [X,Y ] for all X ∈ g, Y ∈ p. In other words, it is
allowed to commute two elements only in the case when at least one of them is
in p, i.e. the relations < X ⊗ Y − Y ⊗X − [X,Y ] > do not hold for X,Y ∈ n−.
Given a parabolic subalgebra p of g and a finite dimensional irreducible p-module
(σ,Vσ), the semiholonomic generalized Verma module induced from (σ,Vσ) is
defined by

Ms(g, p,Vσ) = (Us(g)⊗ Vσ)/ < X ⊗ v − 1⊗ σ(X)v, X ∈ p, v ∈ Vσ >

= Us(g)⊗U(p) Vσ , (2.6)

where <> denotes a left Us(g)-ideal.
There is a canonical projection π : Us(g) → U(g) inducing a surjective

homomorphism

Ms(g, p,Vσ)→M(g, p,Vσ) (2.7)

for all irreducible p-modules (σ,Vσ).
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2.2 Parabolic subalgebras of simple Lie algebras

Let us consider a simple Lie algebra g with fixed Cartan subalgebra h and a
set of simple positive roots △+

s . Each subset Σ ⊂ △+
s determines a standard

parabolic subalgebra pΣ ≤ g, characterized as a linear span of root spaces whose
roots have in their expansion into simple roots positive coefficients by elements
from Σ, i.e.

pΣ = h⊕ (⊕α∈<−△+
s \Σ>gα)⊕ (⊕α∈<△+

s >
gα), (2.8)

where <> denotes linear combinations with positive coefficients. The sum can
be conveniently rewritten by dividing all roots in the previous sum on the part
(△+

s \ Σ) ∪ (−△+
s \ Σ) generating together with the Cartan subalgebra h the

reductive Lie subalgebra lΣ, and its vector complement generating the nilradical
nΣ:

pΣ ≃ lΣ ⊕ nΣ, g ≃ nΣ− ⊕ pΣ. (2.9)

The parabolic subalgebra pΣ contains the standard Borel subalgebra, lΣ is called
the Levi factor of pΣ and nΣ− the opposite nilradical to nΣ. This decomposi-
tion of g is called the Iwasawa-Langlands decomposition. In what follows, we
usually omit the subscript Σ from the notation when a parabolic subalgebra is
fixed. Notice that any parabolic subalgebra is conjugate to a standard parabolic
subalgebra.

For a given root α of g, we define its (pΣ,Σ)-height as the sum of coefficients
by simple roots from Σ. The (pΣ,Σ)-height yields the structure of |k|-graded Lie
algebra on g ≃ ⊕ki=−kgi, where gi is the linear span of root spaces associated to
roots with (pΣ,Σ)-height i. All graded subspaces are g0-modules, in particular
g0 = l is the Levi subalgebra and g1 is generated by simple roots in Σ, such that

[gi, gj ] ⊂ gi+j , i, j = −k, . . . , 0, . . . , k. (2.10)

Conversely, the structure of |k|-graded simple Lie algebra on g ≃ ⊕ki=−kgi im-
plies

pΣ = g0 ⊕ g1 ⊕ · · · ⊕ gk, nΣ = g1 ⊕ · · · ⊕ gk, nΣ− = g−1 ⊕ · · · ⊕ g−k. (2.11)

There is an unique element E0 ∈ g0 encapsulating the graded structure on g,
i.e.

adE0(X) = [E0, X ] = iX, X ∈ gi, i = −k, . . . , k. (2.12)

For all i = −k, . . . , k−1, [g−1, gi+1] = gi and if no simple factor of g is contained
in g0, g−1 acts on g1 with surjective image g0. If an element X ∈ gi, i = 1, . . . , k
fulfills [X,Y ] = 0 for all Y ∈ g−1, then X = 0 (the result can be extended to
i = 0 on the condition of non-existence of a simple factor contained in g0.)
The Killing-Cartan non-degenerate symmetric bilinear form on g restricts to
the isomorphism of g0-modules

g−i
∼−→ (gi)

⋆, i = 1, . . . , k. (2.13)
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As for the representation theory of parabolic subalgebras, each irreducible p-
module is an irreducible g0-module equipped with the trivial action of p+. Be-
cause g0 is reductive Lie algebra, a finite dimensional irreducible g0-module is
determined by the highest weight of gs0 = [g0, g0] (the semisimple part of g0) and
the character of Z(g0), the center of g0. Most of the p-modules are reducible
but indecomposable, i.e. carry a finite (or infinite) length p-filtration:

V = V0 ⊃ V1 ⊃ V2 · · · ⊃ Vl ⊃ {0}, l ∈ N0. (2.14)

The subspaces
⋃l
i=j Vi, j = 1, . . . , l are p-submodules and the quotient of V by

these submodules are p-quotient modules of V. In particular, the quotients
Vi/Vi+1, i = 0, . . . , l are direct sums of irreducible p-modules. Associated
graded g0-modules are distinguished by the eigenvalues of the grading element
E0.

2.3 Weyl groups and Hasse posets of simple Lie algebras
and their parabolic subalgebras

Let us consider a simple Lie algebra g, its Cartan subalgebra h⋆ ⊂ g and a
root lattice △ ⊂ h⋆. The Cartan-Killing form restricts to a positive definite
symmetric bilinear form < −,− > on h⋆. The hyperplane perpendicular to a
root α ∈ △ is called the wall Wα. We denote rα the reflection generated by Wα.
The Weyl group W of g is the finite group generated by reflections rα, α ∈ △+

s .
The length function

l : W → N0, w 7→ l(w)

is defined as a minimal integer, such that w ∈ W can be expressed as a product of
l(w) simple reflections. Such an expression is generally not unique and is called a
reduced expression of w. The walls Wα, α ∈ ∆, stratify h⋆ into polyhedral cones
called Weyl chambers, faithfully permuted by the action of W . Any chamber
determines the set of simple roots and conversely, the dominant chamber is
obtained by a choice of simple roots. Let λ ∈ h⋆. Then

rα(λ) = λ− < λ,α∨ > α, (2.15)

where α∨ = 2α
<α,α> is the coroot of α.

The Weyl groupW of g admits the structure of partially ordered set (directed
graph or Hasse graph): the vertices are elements of W and for w1, w2 ∈ W there
is a directed edge w1 → w2 if l(w2) = l(w1)+1 and w2 = rαw1 for some α ∈W .
The structure of partial ordering is also called Bruhat order, and it reflects the
topology of complete flag manifold G/B in terms of the stratification by affine
cells (B-orbits) of increasing dimension.

Let us denote by ρ = 1
2

∑
α∈∆+ α the half-sum of positive roots (equal to

the sum of fundamental weights.) The shifted action of W on h⋆ is given by

w · λ = w(λ+ ρ)− ρ, w ∈ W, λ ∈ h⋆ (2.16)
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and conventionally appears in the formulation of the Lie algebra cohomology via
Bott-Borel-Weyl theorem and Bernstein-Gelfand-Gelfand resolutions on G/B.
A weight λ ∈ h⋆ is called singular if λ + ρ has a nontrivial stabilizer in W (or,
equivalently, lies on some wall of a chamber.) Another characterization is given
by the existence of a coroot α∨

i and w ∈W such that < w(λ + ρ), α∨
i >= 0. In

the opposite case is λ called non-singular or regular.
In order to construct Hasse graph for standard parabolic subalgebra p ⊂ g

as a subgraph of the Hasse graph for Borel subalgebra b discussed above, we
use the characterization given by Kostant, [46]. It identifies the Hasse poset W p

with the set of minimal length right coset representatives of the Weyl group Wl

of the reductive Levi factor l in W : any w ∈W admits a unique decomposition
w = wpw

p with wp ∈Wl and wp ∈W p. Moreover, l(w) = l(wp)+ l(wp) and wp

is the only element of the coset with the minimal length.
The Hasse diagram of a parabolic subalgebra reflects the topological struc-

ture of the generalized flag manifold G/P and the Bernstein-Gelfand-Gelfand
resolutions on G/P , and controls the topology of the fiber for direct image
operation between homogeneous vector bundles on generalized flag manifolds.

2.4 Invariant differential operators on homogeneous spaces
and homomorphisms of generalized Verma modules

We shall first consider the case of homogeneous or Cartan model of flat geometry
of type (G,P, ω) and recall the bijective correspondence between G-invariant
differential operators

D : C∞(G,Vσ1 )
P → C∞(G,Vσ2 )

P (2.17)

acting between smooth sections of homogeneous vector bundles Vσ1 , Vσ2 induced
from irreducible P -modules Vσ1 ,Vσ2 , and U(g)-module homomorphisms of gen-
eralized Verma modules

D̃ : M(g, p,V⋆σ2
)→M(g, p,V⋆σ1

). (2.18)

The G-invariant differential operator D induces a linear map

ϕ : U(g) ⊗ V⋆σ2
→ U(g)⊗ V⋆σ1

,

X ⊗ v⋆2 7→ XU ⊗ v⋆1 , (2.19)

where
U ∈ U(g), v⋆1 ∈ V⋆σ1

, v⋆2 ∈ V⋆σ2

are characterized by

< D(f)(e), v⋆2 >=< U(u)(e), v⋆1 >, u ∈ C∞(G,Vσ1 )
P (2.20)

for U ∈ U(g) acting from the right on C∞(G) and e ∈ G the unit element.
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Lemma 2.1 The ϕ induces linear map

< X ⊗ v⋆2 − 1⊗ σ⋆2(X)v⋆2 |X ∈ p, v⋆2 ∈ V⋆σ2
>−→

< X ⊗ v⋆1 − 1⊗ σ⋆1(X)v⋆1 |X ∈ p, v⋆1 ∈ V⋆σ1
> (2.21)

of left U(g)-ideals, and consequently a homomorphism of generalized Verma
modules

D̃ : M(g, p,V⋆σ2
)→M(g, p,V⋆σ1

). (2.22)

Proof: First of all notice that D̃(1⊗ v⋆2) = U ⊗ v⋆1 implies

D̃(1⊗ σ⋆2(X)v⋆2) = ad(X)U ⊗ v⋆1 + U ⊗ σ⋆1(X)v⋆1 .

In fact, we have by left G-invariance of D

< D(f)(e), σ⋆2(X)v⋆2 >=< −σ2(X)D(f)(e), v⋆2 >

=< −(LX)⋆D(f)(e), v⋆2 >=< −D((LX)⋆f)(e), v⋆2 >

=< −U((LX)⋆f)(e), v⋆1 >=< (ad(X)U)f(e), v⋆1 >

+ < (Uf)(e), σ⋆1(X)v⋆1 >, (2.23)

where (LX)⋆ denotes the infinitesimal left translation by X ∈ p. Hence

D̃(X ⊗ v⋆2)− D̃(1 ⊗ σ⋆2(X)v⋆2)

= XU ⊗ v⋆1 − (ad(X)U ⊗ v⋆1 + U ⊗ σ⋆1(X)v⋆1)

= U(X ⊗ v⋆1 − 1⊗ σ⋆1(X)v⋆1). (2.24)

In the other direction, we reconstruct D from D̃ by

u(g) 7→ (g 7→ (v⋆2 7→ D̃(1⊗ v⋆2)(u)(g))), g ∈ G, (2.25)

where D̃(1⊗ v⋆2)(u)(g) = (U ⊗ v⋆1)(u)(g) acts on C∞(G,Vσ1)
P by

< U(u)(g), v⋆1 >, U ⊗ v⋆1 ∈ U(g)⊗ V ⋆σ1
.

This completes the proof of the Lemma.
�

2.5 Bernstein-Gelfand-Gelfand parabolic category Op

Many questions raised in the thesis are naturally formulated and dissolved in
the framework of the Bernstein-Gefand-Gelfand parabolic category Op.

Definition 2.2 The BGG parabolic category Op is the full subcategory of U(g)-
modules, whose objects M satisfy the following conditions:

1. M is a finitely generated U(g)-module.
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2. M is l-semisimple U(g)-module, i.e. M ≃ ⊕µMµ is a direct sum of finite
dimensional simple l-modules.

3. M is locally n-finite (n is the nilradical for p), i.e. for each v ∈ M , the
subspace U(n) · v ⊂M is finite dimensional.

The morphisms between two objects M,N in the BGG category Op are denoted
HomOp(M,N).

Obviously, Op contains all finite dimensional g-modules. There are several
equivalent characterizations of objects M of the BGG parabolic category Op.
For example, n-finiteness in the last item of the previous Definition is equivalent
to dim(Mµ) = dim(Mwµ) for all w ∈ Wl (the Weyl group of the Levi factor l),
or the stability of the set Weightsh⋆(M) under Wl.

There is a useful duality in the category Op, defined by

M → M∨,

⊕µMµ 7→ ⊕µ(Mµ)
⋆

(2.26)

with g-module structure on f ∈M⋆
µ, f 7→ f◦ι and ι : g→ g the involution acting

as ι : gα 7→ g−α for all α ∈ △ and ι : h→ h the identity map. The BGG category
Op is closed under the duality ∨, under direct sum, submodules, quotients and
extensions in Op as well as the tensor product with finite dimensional U(g)-
modules. If M ∈ Op decomposes according to the infinitesimal character as
M = ⊕χMχ with Mχ ∈ Op

χ, then each Mχ ∈ Op. The simple modules L(λ)
given by quotients of generalized Verma modules by their maximal submodules
are in Op.

The basic building blocks for all objects in the categoryOp are highest weight
modules, i.e. the U(g)-modules M ≃ U(g) · v generated by one vector v ∈ M .
Despite the fact that an extension class M ∈ Op need not be semisimple, there
exists on M an increasing finite (standard) filtration 0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂
Mn = M by U(g)-submodules such that the quotient Mi+1/Mi is a generalized
Verma module.

A central problem significant for geometric applications of Bernstein-Gelfand-
Gelfand resolutions is the determination of character formulas for the simple
modules L(λ) ∈ Op, λ ∈ Λ(l), in terms of generalized Verma modules (standard
modules):

ch(L(λ)) =
∑

w∈Wp

(−1)l(w)ch(M(g, p,Vw·λ)). (2.27)

A reformulation of this problem involves two bases of classes of symbols repre-
sented by simple modules, [L(λ)], and generalized Verma modules, [M(λ)], in
the Grothendieck group K(Op). The transition matrix between the two bases
involves integral unipotent matrix, which captures the information on Kazhdan-
Lusztig polynomials.

The effective use of methods of homological algebra in the category Op

relies on the notion of projective (injective) objects. A central result leading
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to the BGG reciprocity states that the category Op has enough projectives
(injectives.) This means that for each M ∈ Op there exists a projective object
P ∈ Op and an epimorphism P → M . Recall that an object P in an abelian
category is called projective if the left exact functor Hom(P,−) is also right
exact. This property can be equivalently characterized by universality, i.e. given
an epimorphism π : M → N and a morphism ϕ : P → N , there is a lift
ψ : P →M fulfilling π ◦ψ = ϕ. Dually, an object I ∈ Op is injective if the right
exact functor Hom(−, I) is also left exact. The duality ∨ in Op implies the
equivalence between enough projectives and enough injectives objects in Op. In
particular, for a simple highest weight module L(λ) the epimorphism P → L(λ)
quotients due to the projectivity of P as P →M(λ)→ L(λ) (here M(λ) is the
generalized Verma module whose simple quotient by its maximal submodule is
L(λ)), and so P is the projective cover of M(λ). Recall that each M ∈ Op has
a unique projective cover, i.e. there is a projective object P ∈ Op unique up
to an isomorphism such that the surjective homomorphism P →M is essential
meaning that no proper submodule of P is mapped onto M .

The basic homological properties of the parabolic category Op are captured
by BGG reciprocity: if λ1, λ2 ∈ Λ+(l), then

[P (g, p,Vλ1) : M(g, p,Vλ2)] = [M(g, p,Vλ2) : L(g, p,Vλ1)], (2.28)

where L(g, p,Vλ1) = L(λ1) is the simple U(g)-module (the quotient ofM(g, p,Vλ1)
by its maximal submodule), and P (g, p,Vλ1) the projective cover of L(g, p,Vλ1).
Here we use the standard notation

[P (g, p,Vλ1) : M(g, p,Vλ2)] = dimHomOp(P (g, p,Vλ1),M(g, p,Vλ2)
∨), (2.29)

and [M(g, p,Vλ2) : L(g, p,Vλ1)] denotes the multiplicity of the isomorphism
class of L(g, p,Vλ1) in the composition series of M(g, p,Vλ2). In fact, for each
module M ∈ Op holds

dimHomOp(P (g, p,Vλ1),M
∨) = [M : L(g, p,Vλ1)], (2.30)

and each projective module P (g, p,Vλ1) ∈ Op has standard filtration for which

[P (g, p,Vλ1) : M(g, p,Vλ1)] = 1. (2.31)

Moreover, λ2 > λ1 for all other subquotients M(g, p,Vλ2) of P (g, p,Vλ1).
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3 Distribution Fourier transform method and
analytic computation of singular vectors

A very basic aspect of the Lie theory is the connection between differential equa-
tions and their possible Lie groups of symmetries, partly motivated by aim to
understand the spaces of solutions. Another point is the link to differential ge-
ometry, regarded as the study of geometric quantities invariant under the action
of a Lie group of symmetries. In the present section we give a new systematic
approach termed “F -method”to find large classes of systems of partial differ-
ential operators, attached to geometric structures, [43], [44]. These structures
belong to the class that has been much studied in recent years, namely the
so-called parabolic geometries. In particular, we present panorama of represen-
tative problems coming from conformal geometry, where the natural invariants
are studied via techniques and ideas inspired by holographic correspondence.

On the algebraic level, i.e. in the dual language of homomorphisms between
generalized Verma modules, the whole construction is connected to a very natu-
ral question in representation theory, namely the branching laws. It seems that
no attempts at a systematic approach to branching laws for Verma modules has
been made, and our results might be of independent interest from this point of
view. Now restricting a generalized Verma module to a reductive subalgebra
often leads to wild problems, see [41], but it is possible to find families of exam-
ples with good behavior, which are at the same time particularly important for
our geometric purposes. Also, many of the operators we construct have already
appeared in physics, for example (powers of) the wave operator and Dirac oper-
ator. Even here is our approach new and in many cases simplifies classification
problems enormously.

Since in parabolic geometry a large amount of natural differential operators
have been found already, it is worth pointing out, that the ones found here are
exactly the ones that are the hardest to find by the previous methods (essentially
coming from the BGG resolution). Here we work primarily in the model case
situation, where the manifold is a real flag manifold, but it is pointed out in [44]
that (as seen for example in the case of conformal geometry) it is both possible
and interesting to extend to the ”curved case” of manifolds equipped with the
corresponding parabolic geometry.

The results we are going to present are inspired by geometrical considera-
tions. In particular, they correspond to differential invariants (of higher order in
general) in the case of models for parabolic geometries. These operators act on
sections of homogeneous bundles over homogeneous models G/P for parabolic
geometries (i.e., on representations induced from a parabolic subgroup P of a
semisimple Lie group G) and they have values in similar space of section of ho-
mogeneous bundles over different homogeneous models G′/P ′ with (a reductive)
G′ ⊂ G,P ′ = G′ ∩ P . In effect, what happens is that first sections are differ-
entiated and then restricted to a submanifold, and this combined operation is
covariant for the group G′.

Our language chosen for presenting these results is algebraic, relying at cer-
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tain stage on analytic techniques, however. We translate geometrical problems
into a problem of branching of generalized Verma modules for (the Lie algebra
of) G, induced from P , under their restriction to (the Lie algebra of) G′. It is
shown that many features of such branching problems are given by general char-
acter formulas expressed in terms of the Grothendieck group of the parabolic
Bernstein-Gelfand-Gelfand category Op′

(see Theorem 5.5.) This describes the
result of the branching in ’generic’ situations. In order to get more precise infor-
mation, we develop a procedure for describing the branching for all values of the
parameters. It is based on a complete description of the structure of the space
of singular vectors (i.e., the highest weight vectors with respect to a parabolic
subalgebra of a reductive subalgebra under consideration). The structure of
the space of singular vectors as a module under the action of the Levi factor
of the parabolic subgroup can be used to describe the resulting branching com-
pletely, including special (‘non-generic’) values of parameter(s) for the inducing
representation of the generalized Verma modules.

The structure of the space of singular vectors could in principle be computed
by combinatorial considerations (see [37] in the case of conformal densities.)
However, such a computation could be worked out only in a quite limited number
of cases due to its computational complexity.

Our new method of constructing analogues of Juhl’s families of conformally
equivariant differential operators is based on the “Fourier transform” of gen-
eralized Verma modules, and call it the F -method. In contrast to the existing
algebraic techniques to find singular vectors (e.g. by recurrence relations in gen-
eralized Verma modules), this new method translates the computation of the
singular vectors to a question of finding all polynomial solutions of differential
equations. In many cases this procedure leads to an ordinary differential equa-
tion (due to symmetry involved), which can then often be identified with some
classical differential equation for certain special functions (special polynomials).
Hence this new method offers a uniform and effective tool to find explicitly
singular vectors in many different cases.

The F -method itself is described in detail in Section 4. The key idea of the
F -method is as indicated earlier to transform an algebraic branching problem for
generalized Verma modules to an analytic problem, namely, solving a system
of differential equations. While the existing methods based on combinatorial
computations of recurrence relations did not explain the origin of special func-
tions (e.g., the Gegenbauer polynomials) in formulas for singular vectors, our
new method is completely different and explains their appearance in a natural
way.

In Section 5, we discuss a class of branching problems for modules in the
category Op having a discrete decomposability property. Moreover, one of our
guiding principles is to focus on multiplicity-free cases which was studied sys-
tematically in [40, 41]. Thus we expect a priori that the F -method should
work nicely in such cases. Branching rules are formulated in terms of the
Grothendieck ring of the BGG category Op, and they give a sufficient infor-
mation on the branching in ’generic’ cases.

The rest of the paper contains applications of the F -method for descriptions
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of the space of all singular vectors in particular cases of conformal geometry.
It contains a complete description of the branching for the case of generalized
Verma modules induced from one-dimensional P -modules in Section 6 (includ-
ing the discussion of exceptional values of the inducing parameter), and from
the spinor P -module in Section 7. The Section 8 treats the case of Juhl’s op-
erators for P -modules given by the fundamental vector representation twisted
by characters. Section 9 is devoted to the fundamental vector representation
as an inducing P -module, while in Section 10 we study the diagonal branching
problem termed Rankin-Cohen brackets for P -modules given by tensor product
of characters. In Section 11 we apply the technique to irreducible infinite-
dimensional highest weight representation of P , while Section 12 treats the pair

of non-compatible Lie algebras Lie G2
i→֒ so(7).

As we already emphasized, our original motivation for the study of branching
rules for generalized Verma modules came from differential geometry and, in
fact, also from number theory. When A. Juhl introduced various families of
invariant differential operators acting between manifolds of different dimensions,
he was inspired by previous studies of automorphic distributions. From the point
of view of differential geometry, there is a substantial relation of the curved
version of the Juhl family and recently introduced notions of Q-curvature and
conformally invariant powers of the Laplace operator. In [44], the curved version
of the Juhl family is constructed using ideas of semi-holonomic Verma modules
in the scalar case.

To summarize, we present new results concerning the relationship between
several important topics in representation theory and differential parabolic ge-
ometry, namely branching laws for generalized Verma modules and the con-
struction of covariant differential operators on manifolds, including in particu-
lar operators with natural restrictions to submanifolds. The methods can be
extended further to a larger class of examples, including higher rank cases and
parabolic subgroups with non-Abelian nilradical (e.g. the Heisenberg algebras).

We mostly use the following notation: N = {0, 1, 2, · · · }, N+ = {1, 2, · · · }.

4 F -method

A general approach to a study of branching problems in parabolic category
Op and a number of basic results can be found in [40, 41]. In particular, the
branching of generalized Verma modules for the case of a symmetric pair (g, g′)
was discussed in [41] and the branching was described in a quite general situation
for generic case. In [55], these results were generalized to the case of branching of
generalized Verma modules for non-compatible parabolic subalgebras. However,
for particular values of inducing parameters, more subtle phenomena can appear
and the branching problem is much harder to understand. Here we address two
different (but closely related) problems.

Problem A.
Find branching rules for all values of inducing parameters.
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Problem B.
Find the structure of all irreducible g′-submodules in a generalized Verma

module for g, or equivalently, to describe the structure of all singular vectors.

The second problem is a refinement of the first one, and is usually much
harder. The answer to both problems depends on the ability to compute explic-
itly the form of all singular vectors.

This section explains the general idea of the F -method, a new approach to
finding singular vectors by using distribution Fourier transform and invariant
theory. The main advantage of the method is that an algebraic problem is con-
verted to a question to find solutions of a set of partial, or ordinary, differential
equations. An explicit answer to both problems in various situations (related
to questions in differential geometry), is the content of the rest of thesis.

4.1 The big cell in a flag manifold

Let G be a connected real reductive Lie group with Lie algebra g(R). Let
x ∈ g(R) be a hyperbolic element. This means that ad(x) is diagonalizable and
its eigenvalues are all real. Then we have a Gelfand–Naimark decomposition

g(R) = n−(R) + l(R) + n+(R),

according to the negative, zero, and positive eigenvalues of ad(x). The subalge-
bra p(R) := l(R) + n+(R) is a parabolic subalgebra of g(R), and its normalizer
P in G is a parabolic subgroup of G. Subgroups N± ⊂ G are defined by
N± = exp n±(R).

The fibration p : G → G/P is a principal fiber bundle with the group P
over a compact manifold G/P . The manifold M := p(N− P ) is an open dense
subset of G/P , sometimes referred to as the big Schubert cell of G/P. Let
o := e · P ∈ G/P . The exponential map

φ : n− →M, φ(X) := exp(X) · o ∈ G/P
gives the canonical identification of the vector space n− with M.

4.2 A G-invariant pairing

Given a complex finite dimensional P -module V , we consider the unnormalized
induced representation π of G on the space IndGP (V ) of smooth sections for the
homogeneous vector bundle V := G ×P V → G/P . We can identify this space
with

C∞(G, V )P := {f ∈ C∞(G, V ) : f(g p) = p−1 · f(g), g ∈ G, p ∈ P}.
Let U(g) denote the universal enveloping algebra of the complexified Lie al-

gebra g of g(R). Let V ∨ denote the contragredient representation. Then V ∨

extends to a representation of the whole enveloping algebra U(p). The general-
ized Verma module Mg

p (V ∨) is defined by

Mg
p (V ∨) := U(g)⊗U(p) V

∨.
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It is a well-known fact that there is an equivariant pairing between IndGP (V ) and
the generalized Verma module Mg

p (V ∨). A detailed discussion of it and some
basic facts recalled below may be found in [10]. We present here a version better
adapted to our needs (it is a simple adaptation of arguments in [53, Theorem
8.3]).

Fact 4.1 Let G be a connected semisimple Lie group with complexified Lie alge-
bra g, and P a parabolic subgroup of G with complexified Lie algebra p. Suppose
further that V is a finite dimensional P -module and V ∨ its dual. Then there is
a (g, P )-invariant natural pairing between IndGP (V ) and Mg

p (V ∨).

Moreover, the space of G-equivariant differential operators from IndGP (V ) to
IndGP (V ′) is isomorphic with the space of (g, P )-homomorphisms from Mg

p ((V ′)∨)
to Mg

p (V ∨) for two representations V and V ′ of P .

In order to construct explicitly equivariant differential operators it suffices to
find singular vectors by Fact 4.1 (see also Theorem 4.4 below). The F-method
transfers the latter problem into the following steps:

generalized Verma module distributions on G/P supported at the origin

 polynomials on n+

Then singular vectors in generalized Verma modules are transferred to polyno-
mial solutions of certain differential equations on n+.

To fix the notation for actual computation by the F-method we briefly review
the pairing stated in the theorem in the next subsections. The tools that we
are using here go back to Kostant [46], and more details on various parts of the
construction can be found in [45].

4.3 The induced modules

Let V be an irreducible complex finite dimensional P -module, and let us consider
the corresponding induced representation π of G on IndGP (V ) ≃ C∞(G, V )P .
The representation of G on IndGP (V ) will be denoted by π and the infinitesimal
representation dπ of its complexified Lie algebra g will be considered in the non-
compact picture. We can restrict dπ to a representation of g(R) on functions
on the big cell n−(R) ≃M ⊂ G/P with values in V.

More precisely, we identify the space of equivariant smooth maps C∞(N− P, V )P

and the space C∞(N−, V ) resp. C∞(n−(R), V ) as follows. A function f ∈
C∞(N−, V ) corresponds to f̃ ∈ C∞(N− P, V )P defined by f̃(n− p) = p−1 ·
f(n−), n− ∈ N−, p ∈ P. We identify the space C∞(N−, V ) with C∞(n−(R), V )
via the exponential map exp : n−(R)→ N−, and consider the latter as a repre-
sentation of g(R) by the action of dπ.

We need to know an explicit form of the action dπ(Z) for Z ∈ n+(R) on
C∞(n−(R), V ). The action is realized by vector fields on n−(R) with coefficients
in Pol(n−)⊗ EndV, where Pol(n−) denotes the space of all polynomials on n−
([46]).
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An actual computation of the representation dπ(Z) can be carried out by the
usual scheme: for a given Z ∈ n+(R), we consider the one-parameter subgroup
n(t) = exp(tZ) ∈ N+ and rewrite the product n(t)−1x, for x ∈ N− and for
small t as

n(t)−1x = x̃(t)p(t), x̃(t) ∈ N−, p(t) ∈ P.
Then, for f ∈ C∞(n−(R), V ), we have

[dπ(Z)f ](x) =
d

dt

∣∣
t=0

(p(t))−1 · f(x̃(t)). (4.1)

4.4 Generalized Verma modules

To describe the pairing in Fact 4.1, it is important to realize the generalized
Verma modules as the space of distributions supported at the origin.

Recall that V ∨ denotes the module contragredient to the irreducible complex
finite dimensional p-module V. It extends to the representation of the whole
enveloping algebra U(p).

By the Poincaré–Birkhoff–Witt theorem, the generalized Verma moduleMg
p (V ∨)

is isomorphic to U(n−) ⊗ V ∨ as an l-module. It will be useful to realize the
space U(n−) as a suitable subspace of the Weyl algebra Diff(n−) of differential
operators with polynomial coefficients on n−. For this, let DiffN−

(n−) be a sub-
space of Diff(n−) consisting of all holomorphic differential operators which are
invariant under the left action of N−.

We define for each Y ∈ n−(R) the left N−-invariant vector field DY on n−(R)
by

[DY · f ](xo) =
d

dt

∣∣
t=0

f(x exp(tY )o) for x ∈ N−, f ∈ C∞(n−,C).

The correspondence Y 7→ DY extends to a ring isomorphism U(n−)
∼→ DiffN−

(n−).
In the special case when n− is commutative, the space DiffN−

(n−) is nothing but
the space of holomorphic differential operators on n− with constant coefficients.

4.5 Duality

Recall from Fact 4.1 that there exists a (g, P )-pairing between induced modules
IndGP (V ) and generalized Verma modules Mg

p (V ∨). Now we are going to de-
scribe this natural pairing. Let D′(G/P )⊗ V ∨ be the space of all distributions
on G/P with values in V ∨. The evaluation defines a canonical pairing between
IndGP (V ) and D′(G/P )⊗ V ∨, which restricts to the pairing

IndGP (V )×D′
[o](G/P )⊗ V ∨ → C, (4.2)

where D′(G/P )[o] ⊗ V ∨ denotes the space of distributions with support in the
base point o ∈ G/P. As shown in [10], the space D′

[o](G/P )⊗V ∨ can be identi-

fied, as a g(R)-module, with the generalized Verma module Mg
p (V ∨). We shall

now describe the isomorphism in more details.
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We are considering the space of distributions with support in o, hence we
can restrict to the non compact picture as well and to consider the subspace
D′

[0] ⊂ D′(n−(R)) of all distributions on n− with support at 0. There is a natural

N−-invariant identification of DiffN−
(n−(R)) with D′

[0] given by the map Y ∈
DiffN−

(n−(R)) 7→ Y δ0 ∈ D′
[0], where δ0 is the Dirac distribution at the point

0 ∈ n−(R) (see [46]). More generally, we can identify the space D′
[0] ⊗ V ∨ with

DiffN−
(n−(R))⊗V ∨, which is isomorphic (as a vector space) to the generalized

Verma module Mg
p (V ∨).

The pairing (4.2) now translates to the pairing between C∞(n−(R), V ) and
DiffN−

(n−(R))⊗ V ∨, given by the evaluation

〈Y, f〉 = Y δ0(f), Y ∈ DiffN−
(n−(R)) ⊗ V ∨, f ∈ C∞(n−(R), V ).

It can be checked ([10, 46]) that it gives a g(R) -invariant pairing. It will be used
to compute the dual action dπ ∨(Z), Z ∈ n+ on the generalized Verma module.

The representation dπ of g(R) on C∞(n−(R), V ) induces the contragredient
representation dπ ∨ of g(R) on D′

[0]⊗V ∨ ≃ DiffN−
(n−(R))⊗V ∨ by the formula

〈dπ ∨(X)T, f〉 = −〈T, dπ(X)f〉, (4.3)

for T ∈ DiffN−
(n−(R)) ⊗ V ∨, f ∈ C∞(n−(R), V ).

Then dπ ∨(X) is given by first order differential operators with values in End(V ∨).
It can be extended to a representation, denoted by the same letter dπ ∨, of the
universal enveloping algebra U(g) on DiffN−

(n−(R))⊗ V ∨.

4.6 The Fourier transform

Let us consider now the case when the Lie algebra n−(R) is commutative. In
this case, the operators dπ ∨(X), X ∈ g(R) are realized as differential operators
on n−(R) with constant coefficients in End(V ∨).

Using the Fourier transform on the space n−(R), the generalized Verma
module DiffN−

(n−(R))⊗V ∨ can be identified with the space Pol(n+)⊗V ∨ and
the action dπ ∨ of g(R) on DiffN−

(n−(R)) ⊗ V ∨ is translated to the action dπ̃
of g(R) on Pol(n+) ⊗ V ∨, realized again by differential operators with values
in End(V ∨), possibly of higher order. The explicit form of dπ̃(X) is easy to
compute by the Fourier transform from the explicit form of dπ ∨.

4.7 Singular vectors

As explained in Fact 4.1, there is a one-to-one correspondence relating inter-
twining differential operators between principal series representations and (al-
gebraic) homomorphisms between generalized Verma modules. The latter ho-
momorphisms are characterized by the image of the highest weight vectors with
respect to the parabolic subalgebra in consideration, which are sometimes re-
ferred to as singular vectors, i.e., those vectors annihilated by the nilradical
n+.
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We shall consider a more general setting. Suppose that, together with the
couple P ⊂ G used above, we take another couple P ′ ⊂ G′, such that G′ ⊂ G
is a reductive subgroup of G and P ′ = P ∩ G′ is a parabolic subgroup of G′.
We shall see that this occurs if p is g′-compatible in the sense of Definition
5.3. In this case, n′

+ := n+ ∩ g′ is the nilradical of p′, and we set L′ = L ∩ G′

for the corresponding Levi subgroup in G′. We are interested in the problem
to describe explicitly branching of a generalized Verma module Mg

p (V ∨) under
the restriction from g to g′.

Definition 4.2 Let V be any irreducible finite dimensional p-module. Let us
define the L′-module

Mg
p (V ∨)n′

+ := {v ∈Mg
p (V ∨) : dπ ∨(Z)v = 0 for any Z ∈ n′

+}. (4.4)

For G = G′, the set Mg
p (V ∨)n′

+ is of finite dimension. Note that for G 6= G′,

the set Mg
p (V ∨)n′

+ is infinite dimensional but it is still completely reducible

as an l′-module. Let us decompose Mg
p (V ∨)n′

+ into irreducible modules of L′

and take W ∨ to be one of its irreducible submodules. Then we get an injec-

tive g′-homomorphism from Mg′

p′ (W ∨) to Mg
p (V ∨). Dually, in the language of

differential operators, we get an invariant differential operator from IndGP (V )

to IndG
′

P ′ (W ) by Theorem 4.4 below. So the knowledge of all irreducible sum-

mands of Mg
p (V ∨)n′

+ gives the knowledge of all possible targets for equivariant

differential operators on IndGP (V ).

In the F-method, we then realize the space Mg
p (V ∨)n′

+ in the space of poly-
nomials on n+ with values in V ∨ with action dπ̃. It can be done efficiently using
the Fourier transform as follows:

Definition 4.3 We define

Sol ≡Sol(g, g′;V ∨) (4.5)

:={f ∈ Pol[n+]⊗ V ∨ : dπ̃(Z)f = 0 for any Z ∈ n′
+}. (4.6)

The inverse Fourier transform gives an L′-isomorphism

ϕ : Sol(g, g′;V ∨)
∼→Mg

p (V ∨)n′
+ . (4.7)

An explicit form of the action dπ̃(Z) leads to a (system of) differential equation
for elements in Sol and it makes it possible to describe its structure completely
in many particular cases of interest. We shall see in Sections 6 and 7 the full
structure of the set Sol as an L′-module, and give the complete classification of

g′-homomorphisms from Mg′

p′ (W ∨) to Mg
p (V ∨).

The transition from Mg
p (V ∨)n′

+ to Sol is the key point of the F-method.
It makes it possible to transform algebraic problem of computation of singular
vectors in Verma modules into analytic problem of solving differential equations.
The F-method is often more efficient than other existing algebraic methods in
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finding singular vectors. Furthermore, the F-method clarifies why the combina-
torial formula appearing in the coefficients of intertwining differential operators
in the example of Juhl [37, Chapter 5] are related to those of the Gegenbauer
polynomials. It also reduces substantially the amount of computation needed
and gives a complete description of the set of singular vectors; finally it offers
a systematic and effective tool for the investigation of singular vectors in many
cases. It will be illustrated below with a series of different examples.

4.8 Equivariant differential operators to submanifolds

The above scheme for computing elements in Sol will be implemented below
in various special cases, for different groups, different parabolics, and different
induced representations. For applications in geometry, it is useful to extend the
Fact 4.1 to the more general situation.

Theorem 4.4 The set of all G′-intertwining differential operators from IndGP (V )

to IndG
′

P ′(V ′) is in one-to-one correspondence with the space of all (g′, P ′)-

homomorphisms from Mg′

p′ (V ′ ∨) to Mg
p (V ∨).

See [43], [44], [45] for the proof of Theorem 4.4 (and some further generaliza-
tions) and for the precise meaning of “differential operators” between different
base spaces with morphisms. This correspondence will be used in the next
sections.

5 Discretely decomposable branching laws

In this section we fix the notation for the parabolic BGG category Op, and
summarize the algebraic framework on discretely decomposable restrictions and
multiplicity-free theorems in branching laws established in [39, 40, 41]. These
algebraic results are a guiding principle in the current article in finding appro-
priate settings in parabolic geometry, and then in obtaining explicit formulas of
invariant differential operators.

5.1 Category O and Op

We begin with a quick review of the parabolic BGG category Op (see [35] for
an introduction to this area).

Let g be a semisimple Lie algebra over C, and j a Cartan subalgebra. We
write ∆ ≡ ∆(g, j) for the root system, gα (α ∈ ∆) for the root space, and α∨

for the coroot, and W ≡ W (g) for the Weyl group for the root system ∆(g, j).
We fix a positive system ∆+, write ρ ≡ ρ(g) for half the sum of positive roots,
and define a Borel subalgebra b = j + n with nilradical n := ⊕α∈∆+gα. The
Bernstein–Gelfand–Gelfand category O (BGG category for short) is defined to
be the full subcategory of g-modules whose objects are finitely generated g-
modules X such that X are j-semisimple and locally n-finite [7].
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Let p be a parabolic subalgebra containing b, and p = l+n+ its Levi decom-
position with j ⊂ l. We set ∆+(l) := ∆+ ∩∆(l, j), and define

n−(l) :=
⊕

α∈∆+(l)

g−α.

The parabolic BGG category Op is the full subcategory of O whose objects X
are locally n−(l)-finite. We note that Ob = O by definition.

The set of λ for which λ|j∩[l,l] is dominant integral is denoted by

Λ+(l) := {λ ∈ j∗ : 〈λ, α∨〉 ∈ N for all α ∈ ∆+(l)}.

We write Fλ for the finite dimensional simple l-module with highest weight
λ, inflate Fλ to a p-module via the projection p → p/n+ ≃ l, and define the
generalized Verma module by

Mg
p (λ) ≡Mg

p (Fλ) := U(g)⊗U(p) Fλ. (5.1)

Then Mg
p (λ) ∈ Op, and any simple object in Op is the quotient of some Mg

p (λ).
We say Mg

p (λ) is of scalar type if Fλ is one-dimensional, or equivalently, if
〈λ, α∨〉 = 0 for all α ∈ ∆(l).

If λ ∈ Λ+(l) satisfies

〈λ+ ρ, β∨〉 6∈ N+ for all β ∈ ∆+ \∆(l), (5.2)

then Mg
p (λ) is simple, see [17].

Let Z(g) be the center of the enveloping algebra U(g), and we parameterize
maximal ideals of Z(g) by the Harish-Chandra isomorphism:

HomC-alg(Z(g),C) ≃ j∗/W, χλ ↔ λ.

Then the generalized Verma module Mg
p (λ) has a Z(g)-infinitesimal character

λ+ ρ ∈ j∗/W.
We denote by Op

λ the full subcategory of Op whose objects have generalized
Z(g)-infinitesimal characters λ ∈ j∗/W , namely,

Op
λ =

∞⋃

n=1

{X ∈ Op : (z − χλ(z))nv = 0 for any v ∈ X and z ∈ Z(g)}.

Any g-module in Op is a direct sum of finite g-modules belonging to some Op
λ.

Let K(Op
λ) be the Grothendieck group of Op

λ, and set

K(Op) :=
∏

λ∈j∗/W

′
K(Op

λ),

where
∏′

denotes the direct product for which the components are zero except
for countably many constituents. Then K(Op) is a free Z-module with basis
elements Ch(X) in one-to-one correspondence with simple modulesX ∈ Op. We
note that K(Op) allows a formal sum of countably many Ch(X), and contains
the Grothendieck group of Op as a subgroup.
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5.2 Discretely decomposable branching laws for Op

Retain the notation of Subsection 5.1. Let g′ be a reductive subalgebra of g.
We note that rank g′ may be strictly smaller than rank g. Our subject here is to
understand the g′-module structure of a g-module X ∈ Op, to which we simply
refer as the restriction X |g′ . This question might look easy in the category Op

at first glance, however, the restriction X |g′ behaves surprisingly in a various
(and sometimes “wild”) manner even when (g, g′) is a reductive symmetric pair.
In particular, it may well happen that the restriction X |g′ does not contain any
simple module of g′ (see [41]).

For a simple g-module X , the restriction X |g′ contains a simple g′-module
if and only if the restriction X |g′ is “discretely decomposable”. Here we recall:

Definition 5.1 ([39, Part III]) A g′-module X is discretely decomposable if
there exists an increasing sequence of g′-modules Xj of finite length (j ∈ N)
such that X = ∪∞j=0Xj.

It then turns out that the concept of “discretely decomposable restrictions”
exactly corresponds to our main interest here, namely to the construction of
equivariant differential operators (including normal derivatives) in parabolic ge-
ometry.

We then ask for which triple g′ ⊂ g ⊃ p the restriction X |g′ of X ∈ Op

is discretely decomposable as a g′-module. A criterion for this was established
in [41] as follows: Let G be the group Int(g) of inner automorphisms of g,
P ⊂ G the parabolic subgroup of G with Lie algebra p, and G′ ⊂ G a reductive
subgroup with Lie algebra g′ ⊂ g.

Proposition 5.2 If G′P is closed in G, then the restriction X |g′ is discretely
decomposable for any simple X ∈ Op. The converse statement also holds if
(G,G′) is a symmetric pair.

Proof:
See [41, Proposition 3.5 and Theorem 4.1].

�

Let us consider a simple sufficient condition for the closedness of G′P in
G, which will be fulfilled in all the examples discussed in the thesis. To that
aim, let E be a hyperbolic element of g defining a parabolic subalgebra p(E) =
l(E) + n(E).

Definition 5.3 ([41, Definition 3.7]) A parabolic subalgebra p is g′-compatible
if there exists a hyperbolic element E′ ∈ g′ such that p = p(E′).

If p = l+n is g′-compatible, then p′ := p∩g′ becomes a parabolic subalgebra
of g′ with the following Levi decomposition:

p′ = l′ + n′ := (l ∩ g′) + (n ∩ g′),

and P ′ := P∩G′ becomes a parabolic subgroup ofG′. Hence, G′/P∩G′ becomes
automatically a closed submanifold of G/P , or equivalently, G′P is closed in G.
Here is a direct consequence of Proposition 5.2:
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Proposition 5.4 ([41, Proposition 3.8]) If p is g′-compatible, then the re-
striction X |g′ is discretely decomposable for any X ∈ Op.

Let p be a g′-compatible parabolic subalgebra, and keep the above notation.
We denote by F ′

µ a finite dimensional simple l′-module with highest weight
µ ∈ Λ+(l′). The l′-module structure on the opposite nilradical n− descends
to n−/(n− ∩ g′), and consequently extends to the symmetric tensor algebra
S(n−/(n− ∩ g′)). We set

m(λ, µ) := dim Homl′(F
′
µ, Fλ|l′ ⊗ S(n−/(n− ∩ g′))).

The following identity is a key step to find branching laws (in a generic case)
for the restriction X |g′ for X ∈ Op:

Theorem 5.5 ([41, Proposition 5.2]) Suppose that p = l+n+ is a g′-compatible
parabolic subalgebra of g, and λ ∈ Λ+(l). Then

1) m(λ, µ) <∞ for all µ ∈ Λ+(l′).

2) We have the following identity in K(Op):

Mg
p (λ)|g′ ≃

⊕

µ∈Λ+(l′)

m(λ, µ)Mg′

p′ (µ)

for any generalized Verma modules Mg
p (λ) and Mg′

p′ (µ) defined respectively by

Mg
p (λ) = U(g)⊗U(p) Fλ, M

g′

p′ (µ) = U(g′)⊗U(p′) F
′
µ.

Finally, we highlight the multiplicity-free case, namely, when m(λ, µ) ≤ 1
and give a closed formula of branching laws. Suppose now that p = l + n+ is
a parabolic subalgebra such that the nilradical n+ is abelian. We write g =
n− + l + n+ for the Gelfand–Naimark decomposition. Let τ be an involutive
automorphism of g such that τp = p. We take a Cartan subalgebra j of l such
that jτ is a maximal abelian subspace of lτ . Here, for a subspace V in g, we
write V ±τ := {v ∈ V : τv = ±v} for the ±1 eigenspaces of τ . Let ∆(n−τ

− , jτ ) be
the set of weights of n−τ

− with respect to jτ . The roots α and β are said to be
strongly orthogonal if neither α+ β nor α− β is a root. We take a maximal set
of strongly orthogonal roots {ν1, · · · , νk} in ∆(n−τ

− , jτ ) inductively as follows:

1) ν1 is the highest root of ∆(n−τ
− , jτ ).

2) νj+1 is the highest root among the elements in ∆(n−τ
− , jτ ) that are strongly

orthogonal to ν1, · · · , νj (1 ≤ j ≤ l − 1).

Then we recall from [40, 41] the multiplicity-free branching law:
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Theorem 5.6 Suppose that p, τ , and λ are as above. Then the generalized
Verma module Mg

p (λ) decomposes into a multiplicity-free direct sum of general-
ized Verma modules of gτ in K(Op):

Mg
p (λ)|gτ ≃

⊕

a1≥···≥al≥0
a1,··· ,al∈N

Mgτ

pτ (λ|jτ +

l∑

j=1

ajνj). (5.3)

It is still a direct sum in the parabolic BGG category Op if the following criterion
is satisfied:
〈λ|jτ + ρ(gτ ) +

∑l
j=1 ajνj , β

∨〉 ∈ N+ for all β ∈ ∆(nτ+, j
τ ),

λ|jτ + ρ(gτ ) +
∑l

j=1 ajνj are all distinct in (jτ )∗/W (gτ ).

Proof:
The formula (5.3) was proved in [40, Theorem 8.3] (in the framework of

holomorphic discrete series representations) and in [41, Theorem 5.2] (in the
framework of generalized Verma modules) under the assumption that λ is suf-
ficiently negative. The latter proof shows in fact that the identity (5.3) holds
for all λ in K(Op). Since two modules with different infinitesimal characters do
not have extension, the last statement follows.

�

Remark 5.7 In the case l = gτ = pτ , each summand of the right-hand side is
finite dimensional.

The pair (g ⊕ g, diag(g)) is a special case of a symmetric pair, and we can
apply Theorem 5.6. For the convenience to the reader, we write the branching
laws in this special case as below. Suppose p1, p2 are two standard parabolic
subalgebras of g. Then the generalized Verma module Mg⊕g

p1⊕p2
(λ, µ) of the direct

product Lie algebra g⊕ g is naturally isomorphic to the outer tensor product:

Mg⊕g
p1⊕p2

(λ, µ) ≃Mg
p1

(λ)⊠Mg
p2

(µ).

The restriction to diag(g) ≃ g is nothing but the tensor product representation:

Mg⊕g
p1⊕p2

(λ, µ)|diag(g) ≃Mg
p1

(λ)⊗Mg
p2

(µ). (5.4)

The subalgebra diag(g) is compatible with (g⊕g, p1⊕p2) in the sense of Defini-
tion 5.3, and hence (5.4) decomposes discretely by Proposition 5.2. For simplic-
ity, suppose now that p1 = p2 = p, where p = l + n+ is a parabolic subalgebra
of g with n+ abelian .

Let {µ1, · · · , µk} be a maximal set of strongly orthogonal roots in ∆(n−, j),
which are taken inductively as

1) µ1 is the highest root among ∆(n−, j),

2) µj+1 is the highest root among the elements in ∆(n−, j) that are strongly
orthogonal to {µ1, · · · , µj}.
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The following theorem is a special case of Theorem 5.6.

Theorem 5.8 ([40, Theorem 8.4]) Let λ1, λ2 ∈ Λ+(l). Then the tensor prod-
uct representation of two generalized Verma modules of scalar type decomposes
into a multiplicity-free sum of generalized Verma modules in K(Op):

Mg
p (λ1)⊗Mg

p (λ2) ≃
⊕

a1≥···≥ak>0
a1,··· ,ak∈N

Mg
p (λ1 + λ2 +

k∑

j=1

ajµj). (5.5)

The right-hand side is a direct sum in Op if the following criterion is satisfied:
• 〈λ1 + λ2 + ρ+

∑k
j=1 ajµj , β

∨〉 6∈ N+ for β ∈ ∆(n+, j),

• the infinitesimal characters λ1+λ2+ρ+
∑k
j=1 ajµj ∈ j∗/W are all distinct.
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6 Conformal geometry with arbitrary signature

The present section deals with a generalization of the Juhl families of invariant
differential operators acting between sections of line bundles over two conformal
manifolds (of different dimensions), of which the original form was constructed
with completely different motivation by combinatorial techniques in [37]. In
particular, we describe the basic family of the Juhl family of differential op-
erators, extended to the case of arbitrary signature. They are acting between
sections of line bundles. The case of spinor bundles over conformal manifolds
and differential operators acting between their sections will be treated in the
next section.

6.1 Notation

Let p ≥ 1, q ≥ 2, n = p + q − 2, and suppose that ǫi = 1 for i = 1, . . . , p − 1
resp. ǫi = −1 for i = p, . . . , p + q − 2. Let us consider the quadratic form
2x0 xn+1+

∑n
i=1 ǫix

2
i and its invariance Lie group G = SOo(p, q) (the connected

component containing the identity).
The group G preserves the null cone N = Np,q ⊂ Rp,q, and the parabolic

subgroup P ⊂ G is defined as the isotropy subgroup of the line in the null coneN
generated by e0 = (1, 0, . . . , 0). The homogeneous space G/P is the projective
null cone PN with its conformal structure. Let P = LN = MAN be the
Langlands decomposition. The group M can be identified with SO(p−1, q−1),
it preserves the coordinates x0, xn+1 up to a sign, and the spaces n± are its
fundamental vector, resp. dual, representations. The group M preserves the
quadratic form

∑n
i=1 ǫix

2
i . Denote by J the matrix of this quadratic form with

elements ǫi on the diagonal.
Elements in G (resp. in g) can be written as block matrices with respect to

the direct sum decomposition

Rn+2 = R(x0)⊕ Rn(x1, . . . , xn)⊕ R(xn+1). (6.1)

Elements in P are given by block triangular matrices

p =




ǫ(m)a ⋆ ⋆
0 m ⋆
0 0 ǫ(m)a−1


 ∈ P

with a ∈ R+, (m, ǫ) ∈ M = SO(p − 1, q − 1). Here ǫ(m) = ±1 according to
whether m ∈M belongs to the connected component of the identity or not.

Using notation

n+ ≡ {Z : Z = (z1, . . . , zn)} ≃ Rn, n− ≡ {X : tX = (x1, . . . , xn)} ≃ Rn,

we have a standard basis of n+ given by {Ej}, j = 1, . . . , n. We realize elements
n ∈ N+, x ∈ N− as

n = expZ =




1 Z − |Z|2
2

0 Id −JtZ
0 0 1


 , x = expX =




1 0 0
X Id 0

− |X|2
2 −tXJ 1


 , (6.2)
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where |X |2 = tXJX and |Z|2 = ZJtZ.

6.2 The representations dπλ and dπ̃λ.

We are going now to apply the F -method explained in Section 4 to the conformal
case. The first goal is to describe the action of elements in n+ in terms of
differential operators acting on the “Fourier image” of the Verma module. This
can be systematically deduced from the explicit form of the (easily described)
action of the induced representation in the non-compact picture. In particular,
we shall find singular vectors in Mg

p (Cλ) by using the F -method. Later on,

we shall use them to obtain equivariant differential operators from IndGP (Cλ) to

IndG
′

P ′(Cλ+K) by switching λ to −λ.
Let us consider the complex representation πλ, λ ∈ C, of G, induced from

the character p 7→ aλ, p ∈ P , acting on the one dimensional representation space
Cλ ≃ C. In other words, πλ acts by left regular representation on IndGP (Cλ).

We define a family of differential operators by

Qj(λ) = −1

2
ǫj |X |2∂j + xj(−λ+

∑

k

xk∂k), j = 1, . . . , n,

Pj(λ) = i

(
1

2
ǫjξj�+ (λ− E)∂ξj

)
, j = 1, . . . , n, (6.3)

where
� = ∂2

ξ1 + · · ·+ ∂2
ξp−1
− ∂2

ξp
− · · · − ∂2

ξp+q−2

is the Laplace operator of signature (p−1, q−1) and E =
∑
k ξk∂ξk

is the Euler
homogeneity operator. The operators Pj(λ) (1 ≤ j ≤ n) were constructed in
[42, Chapter 1], and are referred to as “fundamental differential operators”.

Lemma 6.1 The elements Ej ∈ n+ are acting on C∞(n−,Cλ) by

dπλ(Ej)(g ⊗ v) = Qj(λ)(g)⊗ v for g ∈ C∞(n−), v ∈ Cλ. (6.4)

The action of dπ̃λ on Pol[ξ1, . . . , ξn]⊗ C∨
λ is given by

dπ̃λ(Ej)(f ⊗ v) = Pj(λ)(f) ⊗ v for f ∈ Pol[ξ1, . . . , ξn], v ∈ C∨
λ . (6.5)

Proof:
Given elements n ∈ N+, x ∈ N−, as in 6.2, we define a = 1−Z ·X+ |Z|2|X|2

4 .
Then the action of dπλ(Z) on C∞(n−,Cλ) is computed from the formula

n−1 · x =




a −Z + 1

2 |Z|2tXJ − 1
2 |Z|2

X − 1
2 |X |2JtZ Id−JtZ ⊗ tXJ JtZ
− 1

2 |X |2 −tXJ 1



 =
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=




1 0 0
a−1(X − 1

2 |X |2JtZ) Id 0
− 1

2a
−1|X |2 a−1(tXJ + 1

2 |X |2Z) 1


 ·

·




a 0 0
0 m 0
0 0 a−1



 ·




1 ⋆ ⋆
0 Id ⋆
0 0 1



 =

= x̃ · p

where x̃ ∈ N− and p ∈ P . Here the elements x̃, a and m are computed up to
first order in Z by

a ∼ 1− Z ·X, m ∼ Id−JtZ ⊗ tXJ +X ⊗ Z; (6.6)

x̃ = exp X̃, X̃ ∼ (1 + Z ·X)

(
X − |X |

2JtZ

2

)
. (6.7)

Taking Z(t) = tEj and applying the first derivative d
dt |t=0 yields the formula

(6.4) for the action dπλ(Ej).
The action of dπ̃λ(Ej) is computed in two steps. The first step is to compute

the dual action dπ ∨ (resulting in the multiplication of each operator by sign of
its order) reversing the order in the composition of operators and adding sign
changes depending on the order of the operator. The second step is to apply
the (distributional) Fourier transform

xj 7→ −i∂ξj
, ∂xj

7→ −iξj

preserving the order of operators in the composition.
�

6.3 The case (G, G′) = (SOo(p, q), SOo(p, q − 1)).

Let us consider the group G′ = SOo(p, q − 1) embedded into G = SOo(p, q) as
the subgroup leaving the coordinate xn invariant and the compatible parabolic
subgroup P ′ = P ∩G′ in G′ in the sense of Definition 5.3.

We recall n = p+ q − 2. The nilpotent radical

n′
− ≃ {tX : X = (x1, . . . , xn−1)} ≃ Rn−1,

has codimension one in n−. We endow n− ≃ Rp+q−2 with the standard flat
quadratic form (p − 1, q − 1), denoted by Rp−1,q−1. The subspace n− ≃ Rn−1

has signature (p− 1, q − 2).
According to the recipe of the F -method, we begin by finding the L′-module

structure on the space Sol (see (4.5) for the definition) in this case.
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6.3.1 The space of singular vectors

Recall the isomorphism between the space of singular vectors Mg
p (V ∨)n′

+ and
the space Sol. We are now going to compute the form of the set Sol, hence we
describe in such a way completely the set of singular vectors.

If C
(α)
ℓ (x) is the Gegenbauer polynomial, then x−ℓC(α)

ℓ (x) is an even func-

tion. Hence we can write it as x−ℓC(α)
ℓ (x) = C̃αℓ (x2). More details on Jacobi

and Gegenbauer polynomials can be found in the Appendix.

Theorem 6.2 Let vλ be a non-zero vector in the one-dimensional vector space
Cλ, λ ∈ C.

(1) For every λ ∈ C, the L′-module Sol corresponding to the Verma mod-
ule Mg

p (Cλ) contains a direct sum of one-dimensional invariant subspaces
generated by vectors wK = FK ⊗ vλ,K ∈ N, with

FK(ξ) = ξKn PK(t), t =

∑n−1
i=1 ǫnǫiξ

2
i

ξ2n
,

where PK(t) = C̃αK(−t−1) with α = −λ− n−1
2 . Then FK is a homogeneous

polynomial of order K.

(2) If λ ∈ N, then the space Sol contains in addition a direct sum ⊕λ+1
j=1H

′
j ,

where H ′
j are isomorphic to the space Hj(Rp−1,q−2) of homogeneous poly-

nomial solutions of �′ =
∑n−1

j=1 ǫj∂
2
j of degree j. Let us denote by ϕ

general isomorphism from the set Sol to the set Mg
p (V ∨)n′

+ . For each
j = 1, . . . , λ + 1, the image ϕ(H ′

j) is included in the g′-Verma module
generated by the vector ϕ(wK),K = j − 1.

The list above is a complete description of the space Sol.

Proof:
We apply the F -method as follows. By (6.3), the equation dπ̃(Z)f = 0 for

Z ∈ n+ amounts to a system of differential equations

Pj(λ)f = 0 j = 1, . . . , n− 1. (6.8)

The operators Pj(λ) respect homogeneity, hence we can restrict to the space of
polynomials of a fixed homogeneity. When acting on a homogeneous polynomial
f ∈ Pol[ξ1, . . . , ξn], we have

(ǫiξiPj(λ)− ǫjξjPi(λ))f = 0⇐⇒ (E − λ− 1)(ǫjξj∂ξi
− ǫiξi∂ξj

)f = 0 (6.9)

for all i, j = 1, . . . , n− 1. Hence if λ 6= deg f − 1, any element in the kernel Sol
of the action dπ̃λ is a polynomial invariant under SOo(p− 1, q − 2).

1. SOo(p− 1, q − 2)-invariant solutions.
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This is always the case when λ 6∈ N. Classical invariant theory says that
any polynomial invariant with respect to SOo(p−1, q−2) in homogeneity
K can be written in the form

f(ξ1, . . . , ξn) = ξKn P (t),

where t = ǫn|ξ′|2
ξ2n

, |ξ′|2 =
∑n−1

i=1 ǫiξ
2
i and P is a polynomial of degree N,

(depending of parity of K, either K = 2N, or K = 2N + 1).

Let us set (for simplicity) η = ξn. Hence we look for a solution in the form

v = ηKP (t), t = ǫn|ξ′|2
η2 . We get immediately

∂jv = ηK−22ǫnǫjξj P
′, ∂2

j v = ηK−2[4P ′′ ξ
2
j

η2
+ ǫnǫj2P

′], j = 1, . . . , n− 1,

�
′v = ǫnη

K−2[4P ′′t+ 2(n− 1)P ′], ∂ηv = ηK−1[K P − 2P ′t],

ǫn∂
2
ηv = ǫnη

K−2[K(K − 1)P + (−4K + 6)P ′t+ 4P ′′t2],

�v = ǫnη
K−2[4t(1 + t)P ′′ + [2(n− 1) + t(−4K + 6)]P ′ +K(K − 1)P ]

(λ− E)∂jv = ǫnǫjξjη
K−2[2λ− 2K + 2]P ′.

Collecting terms together, we get the common factor 1
2ǫnǫjξjη

K−2 multi-
plied by the term

4t(1 + t)P ′′ + [(2n+ 4λ− 4K + 2) + t(−4K + 6)]P ′ +K(K − 1)P.(6.10)

Hence the resulting system of equations (for j = 1, . . . , n − 1) reduces to
one second order ordinary differential equation.

We can now relate the equation (6.10) and to the differential equation for

Gegenbauer polynomials C
(α)
ℓ (x). It has the form

(1 − x2)C
(α)
ℓ

′′
(x)− (2α+ 1)xC

(α)
ℓ

′
(x) + n(n+ 2α)C

(α)
ℓ (x) = 0, (6.11)

where n ∈ N and α ∈ C.

The Gegenbauer equation (6.11) for C = C
(α)
ℓ can be transformed by the

substitution t = − 1
x2 , C(x) = xℓh(t) (for ℓ suitable) to the form

4t(1 + t)h′′ + [−(4ℓ+ 4α− 4) + t(−4ℓ+ 6)]h′ + ℓ(ℓ− 1)h = 0. (6.12)

Comparing with equation (6.10), we see that they coincide for α = −λ−
n−1

2 , and either ℓ = K or ℓ = K − 1. Because F is a polynomial, it is
equal to the Gegenbauer polynomial of the corresponding degree, up to a
multiple.
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2. λ ∈ N.

If λ is a non-negative integer, the term (λ − E)∂ξj
f vanishes for homo-

geneous polynomials f of degree k = λ+ 1. It means that vectors f need
not be invariant under the action of SOo(p − 1, q − 2). But in this case,
the system of equations reduces to the single equation �F = 0. Its solu-
tions space is the space Hk(Rp−1,q−1) of ’harmonic’ polynomials of degree
k = λ+ 1.

For j = 1, . . . , k, let Mj be the g′-modules generated by the singular
vectors ϕ(wj). Comparing their (L′)-highest weights, it is immediately
clear that their infinitesimal characters are mutually different, hence their
sum is direct.

It is easy to see that the space

H̃k := {ϕ(F ⊗ vλ) : F ∈ Hk(Rp−1,q−1)}

is included in the sum ⊕kj=0Mj . By the classical branching rules, the space

Hk(Rp−1,q−1) decomposes into the direct sum of M ′-modules:

Hk(Rp−1,q−1) ≃ H ′
k ⊕H ′

k−1 ⊕ . . .⊕H ′
1 ⊕H ′

0,

with H ′
j ≃ Hj(Rp−1,q−2), j = 0, . . . , k. At the same time the space

H̃k = H ′
k ⊕H ′

k−1 ⊕ . . .⊕H ′
1 ⊕H ′

0 (6.13)

is the decomposition as L′-modules. Here we use the Langlands decompo-
sition for the compatible parabolic subgroup P ′ = L′N ′ = M ′A′N ′ with
A′ being the same as A. This decomposition is analogous to the one for
P .

Let us now consider one fixed summand H ′
j ; j = 1, . . . , k. Using its high-

est weight (resp. highest weights for l′ of its irreducible components), it
is immediately seen that the infinitesimal character of the g′-module gen-
erated by H ′

j is different from infinitesimal characters of all Mi, i 6= j − 1.
Hence it must be included in Mj−1.

�

The first part of the above proposition gives a complete description of the
set of singular vectors invariant with respect to SOo(p−1, q−2). Such invariant
singular vectors were found by A. Juhl (in positive signature, i.e. p = 1 case) in
[37, Chapter 5] by a long combinatorial computation using recurrence relations.
We would like to emphasize that our approach is very different and conceptual.
Notice that the Juhl’s computations depend on the parity of M.

An important point is that the method above gives a complete description
of the set of singular vectors and its structure as L′-module. In the second
part of the above proposition, we describe also all L′-submodules of higher
dimensions. This is sufficient not only for understanding of the branching but
also for complete description of composition series of individual summands.
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Indeed, the higher dimensional submodules in the set Sol are responsible for
reducibility of the corresponding summands in the branching. Note that higher
dimensional components of singular vectors are much more difficult to detect
by algebraic methods.

As stated in Theorem 4.1, the homomorphisms between generalized Verma
modules calculated above induce equivariant differential operators acting on lo-
cal sections of induced bundles on the corresponding flag manifolds. We shall
describe these differential operators using the non-compact picture of the in-
duced representation. The restriction from G to N− P induces the non-compact
model of the induced representation by the map

β : IndGP (Cλ)→ C∞(N−,C) ≃ C∞(Rp−1,q−1).

Using this identification, we get the following explicit form of the induced in-
variant differential operator.

Theorem 6.3 Let λ ∈ C.

1. The singular vectors w2N ∈ Mg
p (Cλ) from Theorem 6.2 (1) induce (in

the non-compact picture) the family D2N(λ) of even order G′-equivariant
differential operators of the form

D2N (λ) : C∞(Rp−1,q−1)→ C∞(Rp−1,q−2)

D2N (λ) =
N∑

j=0

aj(−λ)(�′)j(
∂

∂ xn
)2N−2j ,

where �′ denotes the (ultra)- wave operator on Rp−1,q−2 and D2N (λ) is
normalized in such a way that the coefficient aN is equal to 1. Here the
parameter for the action on the left resp. the right hand side is λ resp.
λ+ 2N .

Explicitly,

D2N (λ)dπGλ (X) = dπG
′

λ+2N (X)D2N(λ), (6.14)

where X ∈ g′.

The coefficients aj are explicitly given by

aj(λ) =
N !

j!(2N − 2j)!
(−2)N−j

N−1∏

k=j

(2λ− 4N + 2k + n+ 1). (6.15)

Similarly, the singular vectors w2N+1 ∈ Mg
p (Cλ) from Theorem 6.2 (1)

induce the family D2N+1(λ) of odd order equivariant differential operators
of the form

D2N+1(λ) =

N∑

j=0

bj(−λ)(�′)j(
∂

∂ xn
)2N−2j+1,
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where the operator D2N (λ) is normalized in such a way that the coefficient
bN is equal to 1. Here the parameter for the action on the left resp. the
right hand side is λ resp. λ + 2N + 1. The coefficients bj are explicitly
given by

bj(λ) =
N !

j!(2N − 2j + 1)!
(−2)N−j

N−1∏

k=j

(2λ− 4N + 2k + n− 1), (6.16)

normalized to bN (λ) = 1.

2. If λ is a non-negative integer, then the components H ′
j , j = 1, . . . , λ+ 1 of

dimension larger than one in the set of singular vectors induce equivariant
differential operators Dj mapping (in non-compact picture) functions to
the j−th power of the gradient projected to the trace free part of it.

Remark 6.4 Denote the representation induced from p 7→ aλ as above πλ,+
and denote the representation induced from p 7→ ǫaλ by πλ,−. They give rise to
the same action of the Lie algebra, but on the level of induced representations
we have the following intertwining relation

DK(λ)πGλ,ǫ1 (g
′) = πG

′

λ+K,ǫ2(g
′)DM (λ), (6.17)

where g′ ∈ G′ and ǫ1 · ǫ2 = (−)M .

The first part of the theorem follows immediately from Proposition 6.2(1) and
from the fact that an element X ∈ n− acts on functions from C∞(n−) by
the derivative in the direction X. The results generalize those obtained in [37,
Section 5.2] for Euclidean signature (i.e. p = 1 case). Our proof based on the
F -method is completely different from [37], and is significantly shorter even in
the case p = 1.

The second part follows immediately from Proposition 6.2(2) and the well-
known classification of conformally invariant operators on the sphere Sn−1 ≃
G′/P ′ (see, e.g., [53]).

Note that the operators Dj in Remark 6.4 are the first BGG operators in
BGG sequences corresponding to the G′-module given by the symmetric powers
of the defining representation of G′, see [15].

6.3.2 The branching rules for Verma modules - generic case

The branching rules in generic cases are obtained using general results of Section
5 and they do not require knowledge of the explicit form of singular vectors.

Theorem 6.5 For λ ∈ C \ { 1
2 (k − n) : k = 2, 3, 4, · · · }, the Verma module

Mg
p (λ) decomposes as a direct sum of generalized Verma modules of g′:

Mg
p (λ)|g′ ≃

⊕

N∈N

Mg′

p′ (λ−N). (6.18)

39



We normalize the parameter space j∗ ≃ C as ρ = n
2 , and then ρ′ = n−1

2 .
Proof:
Apply Theorem 5.5 to the special case where

(g, g′, p/n+) ≃ (so(n+ 2,C), so(n+ 1,C), so(n,C) + C).

Then l = 1 and ν1 = −1 via the identification j∗ ≃ C. Hence we get (6.18)
from Theorem 5.5 as the identity in the Grothendieck group. The criterion in
Theorem 5.5 amounts to

• λ−N + 1
2 (n− 1) 6∈ 1

2N,

• infinitesimal characters λ − N + 1
2 (n − 1) (N ∈ N) are all distinct in

j∗/W ≃ C/Z2.

This is equivalent to 2λ+ n 6= 2, 3, 4, · · · , whence the last statement.
�

6.3.3 The branching rules - exceptional cases

For exceptional values of the parameter, the structure of branching is more
complicated. To understand it fully, we need an explicit form of singular vectors.
The description of the branching rules for all values of exceptional parameters
was first obtained in the case of Juhl’s operator in [54].

Let us first notice that the whole Verma module Mg
p (λ) decomposes for all

λ into an even and odd part. We have mapped it by Fourier transform to
Pol(ξ1, . . . , ξn)⊗ Cλ, which decomposes as

( ∞⊕

k=0

Pol(ξ1, . . . , ξn−1)ξ
2k
n

)
⊗ Cλ ⊕

( ∞⊕

k=0

Pol(ξ1, . . . , ξn−1)ξ
2k+1
n

)
⊗ Cλ.

Since we have realized g′ = so(n+ 1,C) in g = so(n+ 2,C) in the first (n+ 1)-
coordinates, it is easy to check that both summands are g′-submodules.

Let us discuss the even part (the odd one has a similar behavior). In Theorem
6.2, we have computed an explicit formula for the singular vectorw2N .Denote by
V2N the g′-Verma module it generates. In the generic case, individual summands
in the branching are realized inside the Verma module Mg

p (λ) by submodules
V2N .

In cases where submodules V2N and V2N ′ have the same infinitesimal char-
acter, we know (due to knowledge of the explicit form of the singular vectors)
that one of them is submodule of the other. In this cases, it is necessary to
replace their sum in the branching rules by their (non-trivial) extension. We
shall illustrate it in a number of examples.

We set

λj :=
1

2
(−n+ 1 + j). (6.19)
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Example 6.6 The case λ1 = −n+2
2 . In this case, all infinitesimal characters

of summand generated by singular vectors are mutually different up to those
corresponding to w0 and w1, which coincide. But due to the fact that the whole
g-module splits into a direct sum of even and odd parts, the whole branching is
again the same as in the generic case.

Example 6.7 The case λ2 = −n+3
2 . In this case, infinitesimal characters of

summand generated by singular vectors w0 and w2 coincide and are different
from all others (which are mutually different, too). Denote �′ =

∑n−1
i=1 ξ

2
i .

The top two singular vectors - w0 (N = 0) and w2 (N = 2) are determined by
polynomials P0 = 1 and P2(λ) = −(2λ+n−3)ξ2n+�′, hence P2(λ)|λ= −n+3

2
= �′.

Thus for λ2 = −n+3
2 , the g′-generalized Verma module generated by w0 con-

tains a unique nontrivial submodule, generated by w2. On the other hand, the
direct sum M02 of the U(n′

−) span of w0 = vλ and the U(n′
−) span of the vector

ξ2n ⊗ vλ is invariant under the action of g′, and it is a (non-split) extension

0→Mg′

p′ (λ2)→M02 →Mg′

p′ (λ2 − 2)→ 0. (6.20)

All the other infinitesimal characters are different (and mutually different),
hence the branching rule is now given by

Mg
p (λ2) ≃M02 ⊕

⊕

N∈N,N 6=0,2

Mg′

p′ (λ2 −N).

Example 6.8 The case λ3 = −n+4
2 . In this case, infinitesimal characters of

summand generated by singular vectors w0, w3 respectively w1, w2 coincide, and
both characters are different from each other, and different from all others (which
are also mutually different). But again due to the fact that the whole g-module
splits into a direct sum of even and odd parts, the whole branching is again the
same as in generic case.

Example 6.9 Let λ4 = −n+5
2 . Computation shows that in this case, the vectors

w0 (N = 0) and w4 (N = 4) given by

P4(λ) = �′2 − (2λ+ n− 5)�′ξ2n + (2λ+ n− 7)(2λ+ n− 5)ξ4n

correspond to the same infinitesimal character. Another couple with the same
infinitesimal characters (but different from the previous couple) are modules
generated by w1 and w3.

The explicit form of w4 shows that it belongs to the g′-module generated
by w4, and it is again possible to show that there is in the g-Verma module a
non-trivial extension of g′-Verma modules generated by w0 and w4. We denote
it M04. It can be defined as the module generated by vλ, ξ

2
n ⊗ vλ and ξ4n ⊗ vλ,

quotioned by the submodule generated by w2. The resulting extension takes the
form

0→Mg′

p′ (λ4)→M04 →Mg′

p′ (λ4 − 4)→ 0. (6.21)
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Similarly, there is a non-trivial extension

0→Mg′

p′ (λ4 − 1)→M13 →Mg′

p′ (λ4 − 3)→ 0 (6.22)

of modules generated by w1 and w3, denoted by M13, and the branching rule is

Mg
p (λ4) ≃M04 ⊕M13 ⊕

⊕

N∈N,N 6=0,1,3,4

Mg′

p′ (λ4 −N).

The general case looks similar. Whenever there is a couple of singular vectors
corresponding to the same infinitesimal character, they do not generate direct
summands in the branching sum but their sums are replaced by nontrivial ex-
tensions.

Theorem 6.10 Recall (6.19).

1. For k = 1, 2, . . ., the branching is the same as in the generic case

Mg
p (λ2k+1) ≃

⊕

N∈N

Mg′

p′ (λ2k+1 −N). (6.23)

2. For k = 1, 2, . . ., there exist for each j = 0, . . . , k − 1 modules Mj,2k−j ⊂
Mg

p (λ2k), realizing nontrivial extensions

0→Mg′

p′ (λ2k − j)→Mj,2k−j →Mg′

p′ (λ2k − (2k − j))→ 0 (6.24)

such that

Mg
p (λ2k) ≃

k−1⊕

j=0

Mj,2k−j ⊕Mg′

p′ (λ2k − k)⊕
∞⊕

N=2k+1

Mg′

p′ (λ2k −N).

The proof of the theorem is based on the following simple statement applied
to our situation.

Lemma 6.11 Suppose N is a g-module in the category O, and V1, V2 are sub-
modules satisfying the following three conditions:

1) Ch(V1) + Ch(V2) = Ch(N),

2) V1 is irreducible,

3) Homg(V1, V2) ≃ Homg(V1, N) ≃ C.

Then there exists a non-split short exact sequence of g-modules:

0→ V2 → N → V1 → 0. (6.25)
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Proof:
Since V1 is irreducible, V1 is isomorphic to the quotient N/V2 by the first

condition. Then the third condition implies that (6.25) does not split.
�

Proof of Theorem 6.10: By assumption, the sum

∞⊕

N=2k+1

Mg′

p′ (λ2k −N)

is direct and gives g′-submodule in Mg
p (λ2k). The quotient N ′ is a module in

Og′

p′ and can be written as a direct sum

N ′ =
⊕

j

N ′
χj
, N ′

χj
∈ (Og′

p′ )χj
,

where χj , j = 0, 1, . . . , k − 1 are infinitesimal characters of modules generated
by wj . We know by Theorem 5.5 that

Ch(N ′
χj

) = Ch(Mg′

p′ (λ2k − j)) + Ch(Mg′

p′ (λ2k − (2k − j))).

The explicit form of singular vectors computed in Proposition 6.2 shows that
whenever the infinitesimal character is the same for two modules MI ,MJ , I < J,
there is an inclusion MI ⊂MJ . Moreover, the knowledge of all singular vectors
implies that MI is irreducible. The theorem follows by application of Lemma
6.11.

�

6.3.4 Factorization identities

Let us return back to the Example 6.6. For λ0 = −n+3
2 , the action of g′ on

the top two singular vectors w0 and w2 generate Verma modules V0, resp. V2

in Mg
p (λ0). The second one is a submodule of the first one. The corresponding

inclusion is a g′-homomorphisms ψ, whose dual differential operator is the con-
formally invariant Yamabe operator. If we denote by φ0, resp. φ2, inclusions of
V0, resp. V2, into Mg

p (λ0), we get the relation

φ2 = φ0 ◦ ψ.

As another example, let us consider the weight λ0 = −n2 + 5
2 . Then the

module V1 generated by the singular vector w1 and the module V3 generated
by the singular vector w3 have the same infinitesimal character. There exists a
g′-homomorphism ψ from V3 to V1. The homomorphism φ3 from V3 to Mg

p (λ0)
can be factorized as φ1 ◦ φ.

Hence for some particular discrete subset of values for λ, there is a possibility

to factorize an element in Homg′(Mg′

p′ (λ′),M
g
p (λ)) as a composition of an ele-

ment in the space Homg′(Mg′

p′ (λ′),M
g′

p′ (λ′′)) and an element in Homg′(Mg′

p′ (λ′′),M
g
p (λ)).
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There is also a complementary possibility to factorize an element in Homg′(Mg′

p′ (λ′),M
g
p (λ))

as a composition of an element in Homg′(Mg′

p′ (λ′),M
g
p (λ′′)) and in Homg(M

g
p (λ′′),Mg

p (λ)).
The fact that such a behavior can happen only for discrete values of λ is con-

sequence of classification of homomorphisms of g-generalized Verma modules.
These properties were discovered and used effectively for curved generalizations
by A. Juhl (see [37, Chapter 6]) under the name factorization identities. It is
not a special feature of this particular example with G = SOo(1, n+ 1), but it
is a more general phenomenon. It holds not only in the Juhl case (the scalar
case), but it can be proved also in the spinor-valued case.

In the dual language of differential operators the factorization is described
as follows: The first example above is expressing the Juhl operator D2 as the
composition of the operator D0 and the Laplace operator. The second example
shows that the operator D3 is given by the composition of D1 and the Laplace
operator.

6.4 The case G = G′ = SOo(p, q).

An interesting special case of the previous procedure gives a new independent
construction of all differential intertwining operators for G = SOo(p, q)-modules
induced from densities.

The computation of the set Sol of singular vectors for the case G = G′ runs
in the same way as above. We have to find homogeneous solutions of the system
of PDE’s

Pj(λ)F (ξ1, . . . , ξn) = F(dπλ(Ej))(Fu(ξ1, . . . , ξn)) = 0 (6.26)

for all basis elements Ej ∈ n+, 0 ≤ j ≤ n = p + q − 2. By the same argument
as in the proof of Theorem 6.2, either polynomial F should be invariant under
the action of the group SOo(p − 1, q − 1), or it should be in the kernel of the
Laplace operator �.

In the first case, classical invariant theory implies that the ring of SOo(p−
1, q − 1)-invariants in PolC(Rp−1,q−1) is generated by

Q(ξ) := ξ21 + · · ·+ ξ2p−1 − ξ2p − · · · − ξ2p+q−2

and the Fourier system is (recall we are in the setting G = G′)

(
1

2
ǫjξj�+ (λ− E)∂ξj

)f(Q(ξ)) = 0, (6.27)

for j = 1, . . . , n. In homogeneity 2m, we get that

ξ2m = (ξ21 + · · ·+ ξ2p−1 − ξ2p − · · · − ξ2p+q−2)
m

is a solution of the previous system if and only if λ = −n2 +m.
In the second case, there are again higher dimensional L-modules of singular

vectors given by the kernel of � in appropriate homogeneity, as above.
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It gives a complete description of the set Sol of singular vectors. Let Cλ
is a one-dimensional P -module and 1λ its highest weight vector. If F is a
homomorphism from a generalized Verma module Mg

p (V ) to a Mg
p (Cλ), then

the image of 1λ ⊗ V by F should form an irreducible submodule Sol. In such a
way, we have got an alternative short proof of the well known classification of
all homomorphisms from a generalized Verma module Mg

p (Cλ).
In the dual language of differential operators acting in the non-compact

picture, we get powers �m of the Laplace operator acting from densities of the
weight −n2 +m to densities of the weight −n2 −m and the series Dk of the first
BGG operators (equations for conformal Killing tensors) given by the projection
to the trace-free part of the multiple gradient ∇(a . . .∇b)0σ (number of indices
being k).
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7 Dirac operators and Spino(p, q)

7.1 Notation

In the present section we use the same conventions as in the previous sections.
Let p ≥ 1, q ≥ 2, n = p+q−2, n = n′+1, suppose that we have the quadratic form
as in the Section 6.1, and let us consider the Clifford algebra Cp,q generated by
an orthogonal basis e0, . . . , ep+q−1 with the relations e2i = −ǫi for i = 1, . . . , p+
q − 2 and e0ep+q−1 + ep+q−1e0 = 1, and its subalgebra Cp−1,q−1 generated

by e1, . . . , en, n = p + q − 2. We realize Spin(p, q) in Cp,q and define G̃ to be
the identity component of Spino(p, q). Denote the canonical projection p :
Spino(p, q)→ SOo(p, q). Hence G̃ is acting on Rp,q preserving the null cone and
its projective version Sn as discussed above for G = SOo(p, q). We shall keep
the notation from Section 6.1. The subgroup P̃ ⊂ G̃ is defined as the stabilizer
of the chosen null line generated by the vector (1, 0, . . . , 0), and p(P̃ ) = P. The
Levi factor is denoted by L̃, and the corresponding M̃ = Spin(p− 1, q − 1).

The corresponding Lie algebras g̃ and p̃ are isomorphic via p∗ to those for
SOo(p, q) case. We take the Cartan subalgebra h in g so that h ⊂ l, hence
the weights of our P -modules will be in h∗. We denote by S± the irreducible
representations for M̃ , isomorphic for p + q odd and mutually non-isomorphic
for p + q even. The module structure is trivially extended on the N+-part to
a P̃ -module. We often abuse the notation and write S for S±. The generators
(ǫiǫjEij − Eji) for i < j of so(p − 1, q − 1) act on the spinor representations
as elements − 1

2ǫi( ei ej + δij) of Clifford algebra. Here Eij , i, j = 1, . . . , n are
elementary matrices (having 1 at the (i, j)-position) and Xij = ǫiǫjEij − Eji.

7.2 Representations dπλ and dπ̃λ.

In this case the inducing P̃ -module will be the M̃ -module Sλ, λ ∈ C with the
highest weight (λ+ 1

2 ,
1
2 , . . . ,

1
2 ). Hence Sλ is isomorphic to Cλ ⊗ S, with Cλ as

in Section 6.2. The induced representation is now IndG̃
P̃

Sλ, denoted πS,λ - for

simplicity just πλ. An element F ∈ C∞(G̃, Sλ)P̃ satisfies

F (g m̃an) = a−λρ(m̃, ǫ(m))−1F (g), g ∈ G̃, p̃ = m̃an ∈ P̃
with

Π(m̃an) =




ǫ(m)a ⋆ ⋆
0 m ⋆
0 0 ǫ(m)a−1


 , (m, ǫ(m)) ∈ SO(p−1, q−1), a > 0, ǫ = ±1,

where Π : Spin(p − 1, q − 1) → SO(p − 1, q − 1) is the twofold covering. In
particular, Π(m̃) = m.

To calculate the action of dπ(Z), Z ∈ n+, on the induced representation, we
can use the previous calculation in the scalar case. We already observed that

U ∼ JtZ ⊗ tXJ−X ⊗ Z =

n∑

i,j=1

zixj(ǫiǫjEij − Eji), (7.1)

46



where m = exp(U). Hence dρ(U) is realized as multiplication by the element
− 1

2 (z x+
∑n

i=1 ǫixizi) in the corresponding Clifford algebra, where x =
∑n

1 xiei,
and z =

∑n
1 ǫiziei. Summarizing information obtained so far, we get the follow-

ing claim.

Lemma 7.1 The standard basis elements Ej , j = 1, . . . , n for n+ are acting on

C∞(Rp−1,q−1, S±
λ ) (C∞(G̃, Sλ)

P ) by

dπλ(Ej) = −1

2
ǫj |X |2∂j + xj(−λ+

∑

k

xk∂k +
1

2
) +

1

2
(ǫjejx), Ej ∈ n+. (7.2)

The dual action composed with the Fourier transform is

(dπ̃λ(Ej)) = i

(
1

2
ǫjξj�+ (λ− E +

1

2
)∂ξj
− 1

2
(ǫjejD)

)
, (7.3)

where D :=
∑n

k=1 ek∂k is the Dirac operator and E is the Euler homogeneity
operator.

7.3 The space Sol of singular vectors

In the spinor case, we restrict Sol to vectors invariant with respect to the action
of m on the space of polynomials in n variables ξ1, . . . , ξn with values in End(Sλ).
The latter space is a subspace of the complexified Clifford algebra Ccp,q and the
classical invariant theory shows that the algebra of invariants is generated by ξ
and η, where

ξ =
n−1∑

j=1

ǫj ej ξj , η = ǫn enη, η = ξn,

with ξ2 = −|ξ′|2 = −∑n−1
j=1 ǫjξ

2
j and η2 = −η2. Denote also t = ξ2

η2 .
Moreover, the equations for Sol are homogeneous, hence we can consider

only invariant polynomials of a given homogeneity K. Their structure depends
on the parity of K:

F2N (t) = η2NP (t) + η2N−2Q(t)ξη , (7.4)

where P and Q are a polynomials in a real variable t, P is of order N and Q is
of order N − 1 and similarly,

F2N+1(t) = η2N [P (t)ξ +Q(t)η] , (7.5)

where both P and Q are polynomials of order N. The vectors in Sol are annihi-
lated by the operators

Pj = ǫjξj�− (2E − 2λ− 1)∂j − ǫjejD, j = 1, . . . , n− 1,
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where

� = �′ + ∂2
η ,�

′ =

n−1∑

j=1

ǫj∂
2
ξj
, D = D′ + en∂η,

D′ =

n−1∑

j=1

ej∂ξj
, E =

n−1∑

j=1

ξj∂ξj
+ η∂η. (7.6)

This leads to a system of ordinary differential equations for polynomials P
and Q. We shall first treat the case of even homogeneity K = 2N.

Lemma 7.2 Let vλ be the highest weight vector of Sλ. The vector v = [η2NP (t)+
η2N−2Q(t)ξη] · vλ is a vector in Sol if and only if the following system of differ-
ential equations is satisfied:

4P ′′t(1 + t) + P ′[t(−8N + 6) + (−8N + 4λ+ 2n+ 4)]

+2N(2N − 1)P = 0, (7.7)

4Q′′t(1 + t) +Q′[t(−8N + 10) + (−8N + 4λ+ 2n+ 8)]

+(2N − 1)(2N − 2)Q = 0, (7.8)

−2N P + 2 t P ′ + (2λ+ n− 4N + 2)Q+ 2Q′t = 0, (7.9)

−(2N − 1)Q+ 2Q′t− 2P ′ = 0. (7.10)

The first two equations are the consequence of the last two.

Proof:
Denote v1 = η2NP (t) and v2 = η2N−2Q(t)ξη. Then

∂jv1 = 2ǫnǫjξjη
2N−2P ′(t),

∂2
j v1 = 2ǫnǫjη

2N−2P ′(t) + 4η2N−4ξ2jP
′′(t),

�
′v1 = ǫnη

2N−2[4 t P ′′ + (2n− 2)P ′],

∂ηv1 = η2N−1[2N P − 2 t P ′],

∂2
ηv1 = η2N−2[2N(2N − 1)P + (−8N + 6) t P ′ + 4 t2 P ′′],

ejD
′v1 = 2ǫn ejη

2N−2 P ′ξ,

ejen∂ηv1 = ǫn ejη
2N−2[2N P − 2 t P ′]η.

Similarly,
∂jv2 = ǫnǫjη

2N−42Q′ξjξη + η2N−2ǫjejQ(t)η,

�
′ v2 = η2N−4ǫn[4 tQ

′′ + (2n+ 2)Q′]ξη,

∂ηv2 = η2N−3[(2N − 1)Q− 2 tQ′]ξη,

∂2
ηv2 = η2N−4[(2N − 1)(2N − 2)Q+ t (−8N + 10)Q′ + 4 t2Q′′]ξη,
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−ejD′v2 = −ejη2N−2[2 tQ′ + n′Q]η,

−ejen∂ηv2 = ejη
2N−2[(2N − 1)Q− 2 tQ′]ξ.

Collecting all terms by the four different expressions

ǫjǫnξjη
2N−2, ǫjǫnξjη

2N−4ξη, ǫj ej ǫnη
2N−2ξ, ǫj ej ǫnη

2N−2η,

yields the four equations in the Lemma. It can be easily checked that a suit-
able linear combination of the last two equations in (7.2) yields the first two
equations. Hence all equations are compatible.

�

We know from the previous analysis that the first two solutions are given by
suitable Gegenbauer polynomials. The last two equations then determine the
coefficients of the linear combination of P and Q.

Notice that the polynomial P (t) already appeared in the previous sections
in the case of generalized Verma modules of scalar type, while the second poly-
nomial Q(t) is a new one. Here we abuse the notation slightly for the poly-
nomials: In terms of PM (t) defined in Theorem 6.2, we have PN (t) = P̃2N (t)
and QN−1(t) = P̃2N−1(t). Note also a change in the parameter, which is now
α = −λ− n

2 as opposed to the previous α = −λ− n−1
2 .

Lemma 7.3 Let N ∈ N. Denote

P̃N (t) = (−t)NC(α)
2N (

i√
t
), α = −λ− n

2
(7.11)

Q̃N−1(t) = i(−t)N 1√
t
C

(α)
2N−1(

i√
t
), α = −λ− n

2
(7.12)

the solutions of (7.7), resp.,(7.8).
Then the polynomial PN has degree N and polynomial QN−1 has degree N−1

and

v2N = [η2NPN (t) + η2N−1QN−1(t)ξη] · vλ, N ∈ N (7.13)

is a vector in Sol of homogeneity 2N. The vectors v2N , N ∈ N form a complete
set of singular vectors of even homogeneity invariant with respect to the action
of the Lie algebra m′ = so(p− 1, q − 2).

Proof:
It follows from the basic formula for the derivative of Gegenbauer polyno-

mials (13.5) that

P ′
N (t) = (−1)N tN−1(NC

(α)
2N (

i√
t
)− i 1√

t
αC

(α+1)
2N−1 (

i√
t
)),

Q′
N−1(t) = i(−1)N tN−1((N − 1

2
)

1√
t
C

(α)
2N−1(

i√
t
)− i1

t
αC

(α+1)
2N−2 (

i√
t
)).
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The singular vector has a form

vN = Aη2NPN (t) +Bη2N−1QN−1(t)ξη, N ∈ N, A,B ∈ C. (7.14)

and the substitution into the equation (7.10) leads to

−A[2P ′]−B[(2N − 1)Q− 2tQ′] ∼ −A2NC
(α)
2N (

i√
t
)

+Ai
1√
t
2αC

(α+1)
2N−1 (

i√
t
)−B2αC

(α+1)
2N−2 (

i√
t
).

Comparing the right hand side with another identity for Gegenbauer polynomi-
als

mC(ν)
m (z)− 2νzC

(ν+1)
m−1 (z) + 2νC

(ν+1)
m−2 (z) = 0,

gives the relations m = 2N, ν = α, z = i√
t

and A = 1, B = 1. The equation

(7.9) can be treated analogously.
�

Let λ ∈ C, and N ∈ N. The case of odd homogeneity is contained in the
next two Lemmas, whose proof is left to the reader.

Lemma 7.4 Let vλ be the highest weight vector of Sλ. The vector v2N+1 =
[η2N+1(P (t)ξ+Q(t)η)]·vλ is a singular vector if and only if the following system
of differential equations is satisfied:

4P ′′t(1 + t) + P ′[t(−8N + 6) + (−8N + 4λ+ 2n+ 4)]

+2N(2N − 1)P = 0, (7.15)

4Q′′t(1 + t) +Q′[t(−8N + 2) + (−8N + 4λ+ 2n)]

+(2N + 1)(2N)Q = 0, (7.16)

(2N + 1)Q+ 2 t P ′ + (2λ+ n− 4N)P − 2Q′t = 0, (7.17)

2N P − 2P ′t− 2Q′ = 0. (7.18)

The first two equations follow from the last two.

Lemma 7.5 Let N ∈ N and λ ∈ C. Recall the special polynomials introduced
earlier in Lemma 7.3. Then the polynomials PN and QN have degree N and

v2N+1 = [η2N (PN (t)ξ +QN (t)η)] · vλ, N ∈ N (7.19)

is a vector in Sol of homogeneity 2N + 1. The vectors v2N+1, N ∈ N form a
complete set of vectors in Sol of odd homogeneity invariant with respect to the
action of the algebra m′.

As in Section 4, the homomorphisms of generalized Verma modules defined
by the singular vectors described above induce equivariant differential operators
acting on local sections of induced bundles on the corresponding flag manifolds.
We shall again describe these differential operators using the non-compact pic-
ture of the induced representations and we get, as a corollary of the previous
lemmas, the following theorem.
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Theorem 7.6 Let �′ denote the Laplace operator on Rp−1,q−2, let D′ =
∑n−1

i=1 ei∂i
resp. ∂n = en∂n denote the Dirac operator in Rp−1,q−2 resp. R0,1.

The singular vectors v2N of even homogeneity given by (7.13) induce in the
non-compact picture the family D2N (λ) of even order equivariant differential
operators of the form

D2N (λ) : C∞(Rp−1,q−1, S±
λ )→ C∞(Rp−1,q−2, S±

λ+2N ),

D2N (λ) =

N∑

j=0

ãj(−λ− 1)(�′)j(∂n)2N−2j +

N∑

j=0

b̃j(−λ− 1)(�′)j(∂n)2N−2jD′∂n.

The intertwining relation is

D2N (λ)dπGS,λ(X) = dπG
′

S,λ+2N (X)D2N (λ), (7.20)

where X ∈ g′.
Similarly, the family D2N+1(λ) of odd order equivariant differential operators

D2N+1(λ) : C∞(Rp−1,q−1, S±
λ )→ C∞(Rp−1,q−2, S∓

λ+2N+1),

induced by the singular vectors v2N+1 has the form

D2N+1(λ) =
N∑

j=0

˜̃aj(−λ−1)(�′)j(∂n)2N−2jD′+
N∑

j=0

˜̃bj(−λ−1)(�′)j(∂n)2N−2j∂n.

Based on the conventions (6.15), (6.16), the coefficients ãj , b̃j, ˜̃aj ,
˜̃bj are in

both cases explicitly given by

ãj(λ) = aj(λ+
1

2
), b̃j(λ) = bj(λ+

1

2
), (7.21)

˜̃aj(λ) = aj(λ+
1

2
),

˜̃
bj(λ) = bj(λ+

1

2
). (7.22)

In the article [44], we shall prove the existence of lifts of homomorphisms corre-
sponding to singular vectors in generalized Verma modules induced from spinor
representations to homomorphisms of semiholonomic generalized Verma module
covering them. According to the philosophy of parabolic geometries, [15], we
get curved versions of our equivariant differential operators acting on sections
of spinor bundles on manifolds with conformal structure.
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8 Juhl’s conjectures

8.1 Introduction and Motivation

The question we are going to answer in the present section has its original
motivation in geometry. Let (Mn, g) be a Riemannian manifold, iΣ : Σn−1 →֒
Mn embedded codimension one (i.e. (n−1)-dimensional) submanifold and i⋆Σ(g)
the induced metric on Σn−1. One of the basic problems in geometrical analysis
on Riemannian or conformal manifolds defined by these data is the existence,
uniqueness and properties of natural differential (scalar) operators

DN(Mn,Σn−1, g, λ) : C∞(Mn)→ C∞(Σn−1)

of order N ∈ N and depending polynomially on λ ∈ C, which are conformally
invariant in the sense that

e−(λ−N)i∗Σ(ϕ)DN(Mn,Σn−1, e2ϕg, λ)eλϕ = DN(Mn,Σn−1, g, λ)

for each ϕ ∈ C∞(Mn).
It is difficult to handle this problem for a general metric g, but the situation

simplifies considerably in the case of a homogeneous flat domain realized on an
open orbit of the partial flag manifold. The case of our interest in this article
corresponds to Mn = Sn resp. Mn = Rn and Σn−1 = Sn−1 resp. Σn−1 = Rn−1

in the compact resp. non-compact models of induced representations of (con-
formal) Lie algebra g(n+ 1, 1) = so(n+ 1, 1), and its signature generalizations.

For any simple Lie algebra g and its parabolic subalgebra p we have the
Langlands decomposition g = n− ⊕ l ⊕ n+ and the Iwasawa decomposition
p = l ⊕ n+. Here l denotes the Levi factor of p, n+ its nilradical and n− the
opposite nilradical. In this section we focus again on the maximal parabolic
subalgebra of orthogonal Lie algebra with abelian nilradical given by omitting
the first simple root.

There is a well-known equivalence between invariant differential operators
acting on induced representations and homomorphisms of generalized Verma
modules, realized by the pairing

IndGP (Vλ)×Mg
p (V⋆λ)→ C (8.1)

for any finite dimensional irreducible p-module Vλ and its dual V⋆λ. This allows
to turn the former motivating problem into the question of g(p, q+1) = so(p, q+
1)-homomorphisms of generalized Verma modules

M
g(p,q+1)
p(p,q+1) (Vλ1)→M

g(p+1,q+1)
p(p+1,q+1) (Vλ2), (8.2)

where Vλi
, i = 1, 2 denote finite dimensional irreducible inducing representations

of p(p, q + 1) resp. p(p+ 1, q + 1).
Let us denote the standard inclusion

i : g(n, 1) →֒ g(n+ 1, 1),
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characterized by the fact that the highest weight vector Yn of l-module n is
preserved by i(l′), the image of the Levi factor of g(n, 1). Recently in [37], A.
Juhl constructed a collection of elements

DN (λ) ∈ HomU(g(n,1))(M
g(n,1)
p(n,1) (Cλ−N ),M

g(n+1,1)
p(n+1,1) (Cλ))

numbered by N ∈ N and polynomially dependent on the character λ ∈ C of
p(n, 1)-module Cλ−N , such that DN(λ) ∈ U(n−(n+ 1, 1)) is induced by

U(g(n, 1))⊗ Cλ−N → U(g(n+ 1, 1))⊗ Cλ,

V ⊗ 1 7→ i(V )DN (λ). (8.3)

Then he formulated the following conjectures (see [37] for the case g(n, 2); the
cases of remaining signatures have, according to A. Juhl, analogous formula-
tion):

Conjecture 8.1 The set of families {DN(λ)}N∈N generates the space

M
g(p,q+1)
p(p,q+1) (Cλ−N )→M

g(p+1,q+1)
p(p+1,q+1) (Cλ), N ∈ N

of all homomorphisms U(g(p, q + 1))-modules.

This construction was then subsequently considered also in the Lorentzian sig-
nature, [1].

The main aim of the present section is to prove these conjectures for a
generic value of the inducing character λ in the case of any signature. The
tool used to complete this task is based on the analysis of character formulas
for corresponding parabolic subalgebras. The second aim is a direct analysis of
the space of homomorphisms or, equivalently, the space of singular vectors, for
certain discrete subset of the values of inducing character. The result is that
in these special cases some of the g(p, q + 1)-generalized Verma modules which
decompose a given g(p + 1, q + 1)-generalized Verma module form non-trivial
extensions, i.e. they represent projective objects (nontrivial extension classes)
in the BGG parabolic category Op of the pair g(p, q + 1), p(p, q + 1). We give
the complete list of projective modules appearing in the branching problem,
thus completing the decomposition as a task in the BGG parabolic category Op

rather then the set of Verma modules alone, see e.g. [35], [7].
Notice that in the special case corresponding to the domain of unitarity DU

for generalized Verma modules M
g(p+1,q+1)
p(p+1,q+1) (Cλ) of scalar type, this decompo-

sition was treated by geometrical techniques and orbit methods in [39]. In the
recent article [41], the author develops branching problem for generalized Verma
modules even for non-standard embeddings of smaller Lie algebra in the bigger
one. However, the decomposition is defined only if the induction parameters
belong to a certain region in the dual of Cartan subalgebra.
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8.2 so(p, q+1)-homomorphisms and so(p, q+1)-singular vec-
tors for so(p + 1, q + 1)-generalized Verma modules in-
duced from character

In this subsection we construct discrete family of 1-dimensional continuous fam-
ilies of U(so(p, q+ 1))-homomorphisms between generalized Verma so(p, q+ 1)-
resp. so(p + 1, q + 1)-modules induced from character. This also amounts
to the construction of so(p, q + 1)-singular vectors in the target generalized
so(p+ 1, q + 1)-Verma module.

For the Lie algebra so(p+ 1, q+1) of signature (p+1, q+ 1) (p+ q = n), let
J be the diagonal matrix with the number of (p+ 1) 1’s and (q + 1) −1’s. The
set of matrices (i, j = 1, . . . , n)

Mij =




0 0 0
0 eTi ⊗ ej − JeTj ⊗ eiJ 0
0 0 0


 , H0 =



−1 0 0
0 0 0
0 0 1




Y −
i =

√
2




0 ei 0
0 0 −JeTi
0 0 0



 , Y +
i =

√
2




0 0 0
eTi 0 0
0 −eiJ 0



 (8.4)

gives the matrix realization of Iwasawa decomposition of so(p+ 1, q + 1). Here
{ei}i is the basis of Rp,q. The following commutation relations for so(p+1, q+1)
will be useful:

[Y +
i , Y

−
j ] = 2(δijH0 +Mij),

[H0, Y
±
i ] = ±Y ±

i ,

[Mij , Y
±
k ] = δjkY

±
i − δikY ±

j . (8.5)

It is now elementary to extend the results in [37] (for the signature (n + 1, 1))
resp. [1] (for the signature (n, 2)) to any signature. The following identities will
be helpful:

[Y +
1 , (Y −

1 )
2
] = −2Y −

1 + 4Y −
1 H0,

[Y +
1 , (Y −

i )
2
] = 2Y −

1 + 4Y −
1 M1i, i = 2, . . . , n.

The next Lemma is a key step to construct continuous families of homomor-
phisms of generalized Verma modules. Its proof differs from [37] and is based
on suitable inductive procedure. We use the obvious shorthand notation for
Lie subalgebras appearing in the Iwasawa decomposition of so(p+1, q+1), e.g.
mn = m(so(p + 1, q + 1)) = so(p, q) and nn− = n−(so(p + 1, q + 1)) ≃ Rp,q,
etc. As we shall see all the results are independent of signature and depend on
n = p+ q only. The subscript by �− denotes the underlying dimension.

Lemma 8.2 For any signature (p+ 1, q + 1) (p+ q = n) and j ∈ N, we have

[Y +
1 , (�−

n−1)
j ]− 2j(p+ q − 1− 2j)Y −

1 (�−
n−1)

j−1 − 4jY −
1 (�−

n−1)
j−1H0

∈ U(nn−)mn. (8.6)
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Proof:
The proof goes by induction on j. Let us recall the conventional notation

�
−
n−1 :=

∑n−1
j=1 (Y −

j )2. The case j = 1 amounts to

[Y +
1 ,

p∑

j=1

(Y −
j )2 +

n−1∑

j=p+1

(Y −
j )2] = (−2Y −

1 + 4Y −
1 H0) +

(2Y −
1 + 4Y −

2 M1,2) + · · ·+ (2Y −
1 + 4Y −

p M1,p) +

(2Y −
1 + 4Y −

p+1M1,p+1) + · · ·+ (2Y −
1 + 4Y −

n−1M1,n−1) =

2(p+ q − 3)Y −
1 + 4Y −

1 H0 mod U(nn−)mn (8.7)

and the claim is proved.
Let us now assume that the claim is true for j ∈ N, i.e.

[Y +
1 , (�

−
n−1)

j ] = 2j(p+ q − 1− 2j)Y −
1 (�−

n−1)
j−1 +

4jY −
1 (�−

n−1)
j−1H0 mod U(nn−)mn. (8.8)

Then

[Y +
1 , (�−

n−1)
j+1] = �−

n−1[Y
+
1 , (�−

n−1)
j ] + [Y +

1 ,�−
n−1](�

−
n−1)

j =

�
−
n−1(2j(p+ q − 1− 2j)Y −

1 (�−
n−1)

j−1 + 4jY −
1 (�−

n−1)
j−1H0) +

(2(p+ q − 3)Y −
1 + 4Y −

1 H0)(�
−
n−1)

j

= 2(j + 1)(p+ q − 1− 2(j + 1))Y −
1 (�−

n−1)
j +

4(j + 1)Y −
1 (�−

n−1)
jH0 mod U(nn−)mn (8.9)

and the claim follows.
�

A direct consequence of the previous Lemma yields the explicit form of homo-
morphisms or, when evaluated, singular vectors in the target generalized Verma
module. The Theorem is divided into two parts according to the homogeneity
of the homomorphism.

Theorem 8.3 1. (Families of even order) Let (so(p+ 1, q+ 1), so(p, q+ 1))
(p+ q = n) be the couple of orthogonal Lie algebras. For any p, q,N ∈ N,
(p+ q) ≥ 3 and λ ∈ C, the element

D2N (λ) =
N∑

j=0

aj(λ)(�
−
n−1)

j−1(Y −
n )2N−2j ∈ U(nn+1−) (8.10)

satisfies

[Y +
i ,

N∑

j=0

aj(λ)(�
−
n−1)

j−1(Y −
n )2N−2j ]

∈ U(nn+1−)(mn+1 ⊕ C(H0 − λ)) (8.11)
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for i = 1, . . . , n−1 iff the coefficients {aj}Nj=0 fulfill the recursive relations

(N − j + 1)(2N − 2j + 1)aj−1

+j(p+ q − 1 + 2λ− 4N + 2j)aj = 0, (8.12)

j = 1, . . . , N . In effect, the left multiplication by this element induces
U(so(p, q + 1))-homomorphism

M
g(p,q+1)
p(p,q+1) (Cλ−N )→M

g(p+1,q+1)
p(p+1,q+1) (Cλ)

(8.13)

2. (Families of odd order) For any p, q,N ∈ N, p+ q = n ((p+ q) ≥ 3) and
λ ∈ C the element

D2N+1(λ) =

N∑

j=0

bj(λ)(�
−
n−1)

j−1(Y −
n )2N−2j+1 ∈ U(nn+1−) (8.14)

satisfies

[Y +
i ,

N∑

j=0

aj(λ)(�
−
n−1)

j−1(Y −
n )2N−2j+1] (8.15)

∈ U(nn+1−)(mn+1 ⊕ C(H0 − λ)), i = 1, . . . , n− 1

(8.16)

iff the coefficients {bj}Nj=0 fulfill the recursive relations

(N − j + 1)(2N − 2j + 3)bj−1 (8.17)

+j(p+ q − 3 + 2λ− 4N + 2j)bj = 0, j = 1, . . . , N.

As we shall prove in the next section, this set of singular vectors (enumerated
by N ∈ N) is complete and sufficient to decompose a given generalized Verma
module with respect to a rank one less orthogonal Lie subalgebra.

8.3 The composition series for branching problem of gen-
eralized Verma modules

In the previous subsection we produced a collection of so(p, q+1)-homomorphism
from g′ = so(p, q+1)-generalized Verma modules to a fixed g = so(p+1, q+1)-
generalized Verma module (regarded as so(p, q + 1)-module via standard em-
bedding so(p, q + 1) →֒ so(p + 1, q + 1)) or, when evaluated, the collection of
so(p, q+1)-singular vectors in the so(p+1, q+1)-generalized Verma module. The
remaining question is whether the construction in the previous section produced
complete (exhausting) family of singular vectors.

One way to analyze this question is based on character identities for the
restriction of generalized Verma modules with respect to a reductive subalgebra
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g′ for which the parabolic subalgebra p′ := g′ ∩ p is standard (p = l + n+, p
′ =

l′ + n′
+), see e.g. [41]. Let Vλ be a finite dimensional l-module with highest

weight λ ∈ Λ+(l) and likewise Vλ′ be a finite dimensional representation of l′,
λ′ ∈ Λ+(l′). Given a vector space V we denote S(V ) = ⊕∞

l=0Sl(V ) the symmetric
tensor algebra on V . Let us extend the adjoint action of l′ on n+/(n+ ∩ g′) to
S(n+/(n+ ∩ g′)). We set

m(λ′, λ) = Homl′(Vλ′ ,Vλ|l′ ⊗ S(n+/(n+ ∩ g′))). (8.18)

Theorem 8.4 ([41], Theorem 3.9) Suppose p is g′-compatible standard parabolic
subalgebra of g, λ ∈ Λ+(l). Then

1. m(λ′, λ) <∞ for all λ′ ∈ Λ+(l′).

2. In the Grothendieck group of Op′

there is g′-isomorphism

Mg
p (Cλ)|g′ ≃

⊕

λ′∈Λ+(l′)

m(λ′, λ)Mg′

p′ (Cλ′). (8.19)

A consequence of this Theorem is that in the case of multiplicity free l′-module
n+/(n+∩g′)) and for generic character λ the decomposition of generalized Verma
module Mg

p (Cλ) (induced from character λ) with respect to g′ is multiplicity
free. Moreover, for any value of the character λ the following relation holds true
in the Grothendieck group of Op′

:

Corollary 8.5 For g ≡ so(p+1, q+1), g′ ≡ so(p, q+1) with standard maximal
parabolic subalgebras p, p′ given by omitting the first simple root, we have n+ ≃
Rp,q, n+ ∩ g′ ≃ Rp−1,q and n+/(n+ ∩ g′) ≃ R transforms as the character of the
Levi subalgebra of g′. Then m(λ, λ′) = 1 if and only if λ′ = λ − j, j ∈ N and
m(λ, λ′) = 0 otherwise. In the Grothendieck group of Op′

holds

Mg
p (Cλ) ≃

⊕

j∈N

Mg′

p′ (Cλ−j). (8.20)

8.4 Branching rules for the generic value λ of inducing
character of generalized Verma module

In this subsection we prove that the previous observation on the relation in the
Grothendieck group corresponds, in case of a generic inducing character, to the
actual branching rule for the couple (g, g′) ≡ (so(p+ 1, q + 1), so(p, q + 1)) and
a generalized Verma U(g)-module induced from the character λ ∈ C of p ⊂ g.

First of all we note that for any λ there is always a direct sum decomposition
of g′-module Mg

p (Cλ) into the even and odd part,

Mg
p (Cλ) =

( ∞∑

k=0

〈w2k〉
)
⊕
( ∞∑

k=0

〈w2k+1〉
)

= Ueven ⊕ Uodd,
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according to the homogeneity of an element in the polynomial algebra U(n−).
Here wl denotes the singular vector in Mg

p (Cλ) corresponding to the image of
the homomorphism Dl(λ), l ∈ N, and < wl > denotes its U(g′)-span. The
spaces 〈wj〉 = U(g′)wj are invariant under the action of n′

−, while under the
action of n′ the spaces 〈wj〉 are mapped to the sum

∑
ℓ∈N
〈wj−2ℓ〉. Hence

W2k =

k∑

ℓ=0

〈w2l〉, k ∈ N

form a g′-filtration of Ueven by invariant subspaces. Analogous result is true
for the odd part and consequently the spaces Ueven and Uodd have invariant
filtrations under the g′-action.

We shall now discuss decomposition problem of Ueven, Uodd for λ 6= k − n
2 .

The values of λ ∈ C, λ 6= k − n
2 are henceforth termed generic.

Theorem 8.6 Let λ ∈ C, λ 6= k − n
2 for k ∈ N, i.e. let λ be generic. Then

Ueven =

∞⊕

j=0

Mg′

p′ (Cλ−2j),

Uodd =

∞⊕

i=0

Mg′

p′ (Cλ−2i−1), (8.21)

gives the direct sum decomposition of the left hand side into irreducible sub-

modules under the restriction from g to g′. The embedding of Mg′

p′ (Cλ−2j) →֒
Mg

p (Cλ) resp. Mg′

p′ (Cλ−2i−1) →֒ Mg
p (Cλ) is induced by the singular vector

w2j ∈Mg
p (Cλ) resp. w2i+1 ∈Mg

p (Cλ), i, j ∈ N.

Proof:
The singular vector wl generates a cyclic g′-submodule 〈wl〉 in Mg

p (Cλ−1)
with the highest weight λl = (λ−l|0, . . . , 0). The vectors have mutually different
infinitesimal characters, because the difference of the quadratic Casimir for wj
resp. wi is

|λj + δ|2 − |λi + δ|2 = (i− j)(2λ+ n− (i+ j)),

which is nonzero by assumptions of Theorem. Here δ denotes the half of the
sum of simple roots of g′. This conclusion implies direct sum decomposition in
Corollary 8.5 and the result follows.

�

8.5 Branching rules for the non-generic value λ of induc-
ing character of generalized Verma module

The remaining task is the analysis of the composition series for non-generic
values λ ∈ C of induced character in a given block ofOp′

, characterized as a locus
given by special values of quadratic Casimir operator. Recall that these values
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correspond to the known classification of homomorphisms of generalized Verma
so(p, q+1)-modules induced from character, [21]. As we shall see, parabolic Op′

category naturally appears in our decomposition problem.
Because the weights used to induce generalized Verma modules are charac-

ters of reductive Levi factor of g, we are basically left with sl(2)-theory (gener-
ated by the first simple root of g). It is then natural to remind as a motivation
the structure of Ob category for sl(2) and then return back to our former prob-
lem.

Example 8.7 Throughout this example we use the notation

Mλ = M
sl(2,C)
b (Cλ),Lλ = Lλ(sl(2,C), b),Pλ = Pλ(sl(2,C), b).

As for g = sl(2,C), the dual of Cartan subalgebra h⋆ is isomorphic to C. The
non-integral weights are linked by action of the Weyl group to no comparable
weights (in the standard ordering), and so the only interesting subcategories
(blocks) Oλ of the Borel category Ob are given by λ ∈ Z. Let us consider the
orbit of the Weyl group for λ, µ := w · λ = −λ − 2, λ ∈ N. There is no lower
weight associated to µ, consequently Lµ = Mµ (dim(Lµ) = ∞). For λ ∈ N we
get dim(Lλ) <∞ and there is a short exact sequence

0→ Lµ →Mλ → Lλ → 0. (8.22)

For the dominant integral weight λ we have Pλ = Mλ. Its dual in Ob-category
Q(λ) := P̃λ is the injective module whose socle is Lλ and its head is Lµ. The
top quotient of Pµ is Lµ = Mµ, and it follows from the BGG reciprocity [Pµ :
Mλ] = [Mλ : Lµ], λ, µ ∈ h⋆ that there is a non-split short exact sequence

0→Mλ → Pµ →Mµ → 0. (8.23)

The dual of projective module P̃µ is Qµ ≃ Pµ. The (quadratic) Casimir operator
z ∈ U(g) acts by scalar λ2 +2λ on both Mλ and Mµ. The element z− (λ2 +2λ)
is nonzero when acting on Pµ, but (z − (λ2 + 2λ))2 is trivial on Pµ.

In conclusion, there are five isomorphism classes of indecomposable objects
in Ob

λ:

Lλ,Lµ = Mµ,Mλ = Pλ,Qλ = M̃λ,Pµ = Qµ.

We shall now analyze explicitly the first few cases when the nontrivial compo-
sition series emerges. We focus on the nontrivial part of the decomposition,
which means that the vector complement in the decomposition consists of gen-
eralized Verma modules with mutually different infinitesimal characters, hence
direct summands in the decomposition. We discuss the even case only, the dis-
cussion of odd case goes along the same lines. Recall the convention �′ := �−

n−1

(n = p+ q.)
The first non-trivial case corresponds to the value λ for which 2λ+n−3 = 0,

N = 1 and D2(λ) = (2λ + n − 3)Y −
n

2
+ �′. Hence for this value of λ the

homomorphism reduces to �′ and so with respect to the homogeneity of Y −
n ,
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the first row Mg′

p′ (Cλ) given by U(g′)-span of highest weight vector of Mg
p (Cλ)

contains the nontrivial submodule (its singular vector is generated by the image
of �′). Taken together with the third row Mg

p (Cλ−2) form the nontrivial (non
split) extension class

0→Mg′

p′ (Cλ)→ Pλ−2(g
′, p′)→Mg′

p′ (Cλ−2)→ 0, (8.24)

where Pλ−2(g
′, p′) is an object in the block of the parabolic category Op′

. The
picture representing such a situation is

t t

d
@@

where (anti)diagonals represent the singular vectors and the degeneration of
particular singular vector for the previously mentioned value of λ is pictured in
such a way that the missing monomials (in Y −

n
2
,�′) correspond to white circles

and the nontrivial present monomials to black circles. The first resp. the third
rows correspond to U(g′)-span of vλ resp. Y −

n
2
vλ, where vλ is the highest weight

vector of Mg
p (Cλ).

The next case is related to the appearance of a non-trivial composition series,
whose source is the fourth order operator (N = 2)

D4(λ) = (2λ+ n− 7)(2λ+ n− 5)Y −
n

4
+ (2λ+ n− 5)Y −

n
2
�

′ + (�′)2.

The computation of infinitesimal character implies that this happens for λ
fulfilling 2λ + n − 5 = 0. For such λ, the generalized Verma U(g′)-modules

Mg′

p′ (Cλ),M
g′

p′ (Cλ−4) form nontrivial extension

0→Mg′

p′ (Cλ)→ Pλ−4(g
′, p′)→Mg′

p′ (Cλ−4)→ 0, (8.25)

realizing an object Pλ−4(g
′, p′). The generalized Verma module Mg′

p′ (Cλ) has a

nontrivial composition structure in itself - its nontrivial submoduleMg′

p′ (Cλ−4) ⊂
Mg′

p′ (Cλ) is generated by the image of �′2. The picture in which the first and the
third row represent Pλ−4(g

′, p′) and the second row has a different infinitesimal
character is drawn on the following picture:

t t t

d t

d

@
@

@

@@

The last explicit case we mention corresponds to λ fulfilling 2λ+ n− 7 = 0.
The sixth order operator (here N = 3) generating the family of singular vector
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is

D6(λ) = (2λ+ n− 11)(2λ+ n− 9)(2λ+ n− 7)Y −
n

6

+(2λ+ n− 9)(2λ+ n− 7)Y −
n

4
�

′

+(2λ+ n− 7)Y −
n

2
(�′)2 + (�′)3. (8.26)

In this case we observe the emergence of two objects in the parabolic category
Op′

. The first comes from the nontrivial extension

0→Mg′

p′ (Cλ)→ Pλ−6(g
′, p′)→Mg′

p′ (Cλ−6)→ 0, (8.27)

while the second from

0→Mg′

p′ (Cλ−2)→ Pλ−4(g
′, p′)→Mg′

p′ (Cλ−4)→ 0. (8.28)

Note that Mg′

p′ (Cλ) has nontrivial filtered structure - its submodule is a gener-

alized Verma module generated by the image of (�′)3. Similarly, Mg′

p′ (Cλ−2)
has nontrivial composition series - its maximal generalized Verma submodule

Mg′

p′ (Cλ−4) is generated by the image of�′. The modules Pλ−6(g
′, p′),Pλ−4(g

′, p′)
have different infinitesimal character.

The picture in which the first and the fourth resp. the second and the third
row represent Pλ−6(g

′, p′) resp. Pλ−4(g
′, p′) is

t t t t

d t t

d d

d

@
@

@
@@

@
@

@

@@

Theorem 8.8 Let Mg
p (Cλ) be a family of generalized Verma U(g)-modules in-

duced from character λ, where g = so(p + 1, q + 1) (p + q = n) and p ⊂ g its
standard maximal parabolic subalgebra given by omitting the first simple root.
Let g′ = so(p, q + 1) be the reductive subalgebra of g and p′ = g′ ∩ p.

As an U(g′)-module, Mg
p (Cλ) has a contribution to the non-trivial composi-

tion structure from both the even and odd homogeneity homomorphisms:

1. The case of even homogeneity homomorphisms corresponds to λ ∈ C ful-
filling 2λ + n = 2N + 1, N ∈ N+. In the decomposition there are [N+1

2 ]
modules

Pλ−2N (g′, p′),Pλ−2N+2(g
′, p′), . . . ,Pλ−2N+2[ N−1

2 ](g
′, p′).
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These modules appear as nontrivial extensions in short exact sequences

0→Mg′

p′ (Cλ−2[ N−1
2 ])→ Pλ−2N+2[ N−1

2 ](g
′, p′)

→Mg′

p′ (Cλ−2N+2[ N−1
2 ])→ 0,

. . .

0→Mg′

p′ (Cλ−2j)→ Pλ−2N+2j(g
′, p′)→Mg′

p′ (Cλ−2N+2j)→ 0,

. . .

0→Mg′

p′ (Cλ)→ Pλ−2N (g′, p′)→Mg′

p′ (Cλ−2N )→ 0, (8.29)

where j = 0, 1, . . . , [N−1
2 ]. The j-th module Mg′

p′ (Cλ−2j), j = 0, 1, . . . , [N−1
2 ]

has nontrivial composition series - its maximal submodule Mg′

p′ (Cλ−2N+2j)

is generated by the image of �′N−2j
:= �n−1

N−2j and the quotient Pλ−2N+2j(g
′, p′)/Mg′

p′ (Cλ−2j)
is simple module. The module Pλ−2N+2j(g

′, p′) is realized in the gener-
alized Verma so(p + 1, q + 1)-module by U(g′)-span of singular vectors
w2j , w2N−2j.

Let us introduce the finite set S := {λ−2j, λ−2N+2j|j = 0, 1, . . . , [N−1
2 ]},

so S′ := {{λ − 2N} \ S|N ∈ N} is infinite. Then we have the branching
rule

Mg
p
even(Cλ) ≃

⊕

j=0,1,...,[ N−1
2 ]

Pλ−2N+2j(g
′, p′)

⊕

λ′∈S′

Mg′

p′ (Cλ′). (8.30)

2. The case of odd homogeneity homomorphisms corresponds to λ ∈ C ful-
filling 2(λ − 1) + n = 2N + 1, N ∈ N+. In the decomposition there are
[N+1

2 ] modules

Pλ−2N−1(g
′, p′),Pλ−2N+1(g

′, p′), . . . ,Pλ−2N−1+2[ N−1
2 ](g

′, p′).

These modules appear as nontrivial extensions in short exact sequences

0→Mg′

p′ (Cλ−1−2[ N−1
2 ])→ Pλ−2N−1+2[ N−1

2 ](g
′, p′)

→Mg′

p′ (Cλ−2N−1+2[ N−1
2 ])→ 0,

. . .

0→Mg′

p′ (Cλ−1−2j)→ Pλ−2N−1+2j(g
′, p′)→Mg′

p′ (Cλ−2N−1+2j)→ 0,

. . .

0→Mg′

p′ (Cλ−1)→ Pλ−2N−1(g
′, p′)→Mg′

p′ (Cλ−2N−1)→ 0, (8.31)

where j = 0, 1, . . . , [N−1
2 ]. The j-th module Mg′

p′ (Cλ−2j−1), j = 0, 1, . . . , [N−1
2 ]

has nontrivial composition series - its maximal submodule Mg′

p′ (Cλ−2N−1+2j)

is generated by the image of Y −
n �

′N−2j
and the quotient Pλ−2N−1+2j(g

′, p′)/Mg′

p′ (Cλ−1−2j)
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is simple module. The module Pλ−2N−1+2j(g
′, p′) is realized in the gen-

eralized Verma so(p + 1, q + 1)-module by U(g′)-span of singular vectors
w2j+1, w2N+1−2j.

Let us introduce the finite set S̃ := {λ − 1 − 2j, λ − 2N − 1 + 2j|j =
0, 1, . . . , [N−1

2 ]}, so S̃′ := {{λ− 2N− 1} \ S̃|N ∈ N} is infinite. Then we
have the branching rule

Mg
p
odd(Cλ) ≃

⊕

j=0,1,...,[ N−1
2 ]

Pλ−2N−1+2j(g
′, p′)

⊕

λ′∈S̃′

Mg′

p′ (Cλ′). (8.32)

Finally, we have direct sum decomposition of g′-modules (which is even
true for any λ):

Mg
p (Cλ) ≃Mg

p
even(Cλ)

⊕
Mg

p
odd(Cλ). (8.33)

Proof:
The general case follows the scheme indicated in the discussion of the struc-

ture of singular vectors preceded this Theorem. Corollary 8.5 implies that the
elements constructed in Theorem 8.3 cover all singular vectors. Moreover, for
non-generic value of the inducing character λ (determined in Theorem 8.6) there
is finite number of couples of singular vectors with equal infinitesimal character,
as follows again from Theorem 8.6. These couples are enumerated in Equation
8.29 for even homogeneity resp. Equation 8.31 for odd homogeneity case. The
non-triviality of each extension class is an elementary direct check applied to
the singular vector (evaluated at the corresponding non-generic value λ) based
on Equation 8.5, Equation 8.6.

�

The techniques used in the present section do not allow further analysis of
constructed extension classes of generalized Verma modules. In [8], there are
certain partial results describing (non-recursive) scheme to compute Kazhdan-
Lusztig polynomials associated to Hermitian symmetric spaces. In particular,
Kazhdan-Lusztig polynomials are determined in the case of regular block of
zero weight in Proposition 5.1., p. 288, [8], with the following result (in the
even dimensional orthogonal case): Pwi,wj

(u) is trivial for incomparable wi, wj ,
Pwi,wj

(u) = 1+uj−n−1 for n+2 ≤ j ≤ 2n−1, 1 ≤ i ≤ 2n−j and Pwi,wj
(u) = 1

otherwise. In the odd orthogonal case, the structure of Kazhdan-Lusztig poly-
nomials is even simpler. As the extension classes Ext⋆U(g)(Mwi

,Lwj
) are the co-

efficients of Kazhdan-Lusztig polynomials, they are at most one dimensional. In
a basic example, taking into account the relationship between extension classes
and Lie algebra cohomology classes of commutative nilradical ([35]), one can
directly compare the extension class produced in the branching rule with its
geometrical realization based on Lie algebra cohomology method, see [5]. How-
ever, in many cases are our results realized in singular infinitesimal character for
which the structure of Kazhdan-Lusztig polynomials are to our best knowledge
not available.
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Another remark, closely related to the remarks in the last paragraph, is
that in many cases the extension classes appearing in the main Theorem are
projective objects of parabolic BGG category Op′

.
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9 Branching problem for couple of (codimension
one) conformal geometries and inducing fun-

damental vector representation

We shall start with qualitative analysis of character identities for the restriction
of generalized Verma modules with respect to a reductive subalgebra g′ for the
standard compatible parabolic subalgebra p′ := g′ ∩ p (p = l + n+, p

′ = l′ + n′
+),

see e.g. [43]. Let Vλ be a finite dimensional l-module with highest weight
λ ∈ Λ+(l) and likewise Vλ′ be a finite dimensional representation of l′, λ′ ∈
Λ+(l′). Given a vector space V we denote S(V ) = ⊕∞

l=0Sl(V ) the symmetric
tensor algebra on V . Let us extend the adjoint action of l′ on n+/(n+ ∩ g′) to
S(n+/(n+ ∩ g′)). We set

m(λ′, λ) = Homl′(Vλ′ , Vλ|l′ ⊗ S(n+/(n+ ∩ g′))). (9.1)

Theorem 9.1 ([43], Theorem 3.9) Suppose p is g′-compatible standard parabolic
subalgebra of g, λ ∈ Λ+(l). Then

1. m(λ′, λ) <∞ for all λ′ ∈ Λ+(l′).

2. In the Grothendieck group of the Bernstein-Gelfand-Gelfand parabolic cat-
egory Op′

there is g′-isomorphism

Mg
p (Vλ)|g′ ≃

⊕

λ′∈Λ+(l′)

m(λ′, λ)Mg
p (Vλ′).

In particular, we focus on and consequently classify g′ = so(p, q+1)-homomorphisms
between g′ = so(p, q+1)-generalized Verma modules and a fixed g = so(p+1, q+
1)-generalized Verma module (regarded as so(p, q+1)-module via standard em-
bedding g′ = so(p, q+1) →֒ g = so(p+1, q+1)) induced from fundamental form
representations or, when evaluated, the collection of g′ = so(p, q + 1)-singular
vectors in the g = so(p + 1, q + 1)-generalized Verma module. Inductively, one
can construct the singular vectors in the case of the difference in the ranks of
g, g′ higher than one.

The remaining question is whether the construction based on the F-method
produces complete (exhausting) family of singular vectors. It follows from the
isomorphism of m′-modules

Λp(Cn) ≃ Λp(Cn−1)⊕ Λp−1(Cn−1)

and the fact dimC(n+/(n+ ∩ g′)) = 1 that the singular vectors constructed in
the article form complete set and realize branching problem in the Grothendieck
group K(Op′

) of the BGG parabolic category Op′

. For the generic value of the
inducing character λ, the branching is a direct sum decomposition of multiplicity
free (g′, P ′)-modules.

As for the inducing representation given by fundamental vector representa-
tion, we use the notation ei, i = 1, . . . , n for its basis. We shall work directly in
the Fourier dual space, and retain the notation used in previous sections.
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9.1 Branching problem for couple of conformal geome-
tries and inducing fundamental vector representation
twisted by character - qualitative analysis and the con-
struction of singular vectors

Example 9.2 The singular vector of homogeneity one corresponding to a (g′, P ′)-
homomorphism

U(g′)⊗U(p′) Cλ−2 → U(g) ⊗U(p) (Λ1(Cn)⊗ Cλ)

is of the form

v1(λ) = Aξn ⊗ en +B
n−1∑

i=1

ξi ⊗ ei ∈ U(g)⊗U(p) (Λ1(Cn)⊗ Cλ)

for some A,B ∈ C to be determined. The condition

v1(λ) ∈ Ker(Pj(λ) =
1

2
ξj�ξ + (λ− Eξ)∂j −

n∑

k=1

∂k(ek ⊗ e⋆j − ej ⊗ e⋆k)),

j = 1, . . . , n− 1, with the notation ∂k = ∂
∂ξk

understood is equivalent to

A+B(λ+ n− 2) = 0,

which yields the family of linear singular vectors

v1(λ) = −(λ+ n− 2)ξn ⊗ en +

n−1∑

i=1

ξi ⊗ ei. (9.2)

Example 9.3 The singular vector of homogeneity two corresponding to a (g′, P ′)-
homomorphism

U(g′)⊗U(p′) Cλ−3 → U(g) ⊗U(p) (Λ1(Cn)⊗ Cλ)

is of the form

v2(λ) = A

n−1∑

i=1

ξ2i ⊗ en +Bξ2n ⊗ en + C

n−1∑

i=1

ξnξi ⊗ ei = ξ2n(At+B)⊗ en

+ξnC

n−1∑

i=1

ξi ⊗ ei ∈ U(g)⊗U(p) (Λ1(Cn)⊗ Cλ) (9.3)

for some A,B,C ∈ C to be determined and P (t) = At+B,Q(t) = C (deg(P ) =
1, deg(Q) = 0). The condition

v2(λ) ∈ Ker(Pj(λ) =
1

2
ξj�ξ + (λ− Eξ)∂j −

n∑

k=1

∂k(ek ⊗ e⋆j − ej ⊗ e⋆k)),
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j = 1, . . . , n− 1, is equivalent to

ξj ⊗ en(A(n− 1)+A2(λ− 1)+B−C)+ ξn⊗ ej(2B+C(λ− 1)−C(2−n)) = 0,

j = 1, . . . , n− 1, or to the system of linear equations

(2λ+ n− 3)A+B − C = 0,

2B + (λ+ n− 3)C = 0.

Its solution yields the family of quadratic singular vectors

v2(λ) = (λ + n− 1)

n−1∑

i=1

ξ2i ⊗ en − (λ+ n− 3)(2λ+ n− 3)ξ2n ⊗ en

+2(2λ+ n− 3)

n−1∑

i=1

ξnξi ⊗ ei. (9.4)

Example 9.4 The singular vector of homogeneity three corresponding to a (g′, P ′)-
homomorphism

U(g′)⊗U(p′) Cλ−4 → U(g) ⊗U(p) (Λ1(Cn)⊗ Cλ)

is of the form

v3(λ) = Aξn

n−1∑

i=1

ξ2i ⊗ en +Bξ3n ⊗ en +

C

n−1∑

k=1

ξ2k

n−1∑

i=1

ξi ⊗ ei +Dξ2n

n−1∑

i=1

ξi ⊗ ei

= ξ3n(At+B)⊗ en + ξ2n(Ct+D)
n−1∑

i=1

ξi ⊗ ei ∈ U(g)⊗U(p) (Λ1(Cn)⊗ Cλ)

for some A,B,C,D ∈ C to be determined and P (t) = At + B,Q(t) = Ct +D
(deg(P ) = 1, deg(Q) = 1). The condition

v3(λ) ∈ Ker(Pj(λ) =
1

2
ξj�ξ+(λ−Eξ)∂j−

n∑

k=1

∂k(ek⊗e⋆j−ej⊗e⋆k)), j = 1, . . . , n−1

is equivalent to

ξlξn ⊗ en(A(n− 1) + 3B +A2(λ− 2)− 2D) + (9.5)

ξl

n−1∑

i=1

ξi ⊗ ei(C(n+ 1) +D + 2C(λ− 2)− 2C) +

n−1∑

i=1

ξ2i ⊗ el(C(λ − 2)− (−nC −A)) +

ξ2n ⊗ el(D(λ− 2)− ((2 − n)D − 3B)) = 0 (9.6)
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for all j, l = 1, . . . , n− 1, or to the system of linear equations

(λ+ n− 2)C +A = 0,

3B + (λ+ n− 4)D = 0,

D + (2λ+ n− 5)C = 0,

(2λ+ n− 5)A+ 3B − 2D = 0.

The determinant of this linear system is trivial and its solution yields the family
of cubic homogeneity singular vectors

v3(λ) = −(λ+ n− 2)ξn

n−1∑

i=1

ξ2i ⊗ en +
1

3
(2λ+ n− 5)(λ+ n− 4)ξ3n ⊗ en

+

n−1∑

k=1

ξ2k

n−1∑

i=1

ξi ⊗ ei − (2λ+ n− 5)ξ2n

n−1∑

i=1

ξi ⊗ ei. (9.7)

9.2 Families of odd homogeneity homomorphisms from
bulk 1-forms to boundary 0-forms

It follows from the m′-module structure on HomC(Λ0(Cn−1),Λ1(Cn)) and the

structure of the algebra of m′-invariants Pol(
∑n−1

i=1 ξ
2
i , ξn) ⊂ Pol(ξ1, . . . , ξn−1, ξn)

that a singular vector of odd homogeneity (2N + 1), N ∈ N, corresponding to a
(g′, P ′)-homomorphism

U(g′)⊗U(p′) Cλ−(2N+1)−1 → U(g)⊗U(p) (Λ1(Cn)⊗ Cλ)

is of the form

v2N+1(λ) = ξ2Nn [P (t)ξn ⊗ en +Q(t)

n−1∑

i=1

ξi ⊗ ei], j = 1, . . . , n− 1 (9.8)

for some polynomials P (t), Q(t) of homogeneity N to be determined. Based on
the change of variables

∂j =
2ξj
ξ2n

∂

∂t
(j = 1, . . . , n− 1), ∂n = − 2

ξn
t
∂

∂t
,

the action of

Pj(λ) =
1

2
ξj�ξ + (λ− Eξ)∂j −

n∑

k=1

∂k(ek ⊗ e⋆j − ej ⊗ e⋆k)

on ξ2Nn P (t)ξn ⊗ en is

Pj(λ)(ξ
2N
n P (t)ξn ⊗ en) = ξ2N−1

n [(2tP ′′ + (n− 1)P ′)(ξj ⊗ en)
+(N(2N + 1)P + (−4N + 1)tP ′ + 2t2P ′′)(ξj ⊗ en)
+2(λ− 2N)P ′(ξj ⊗ en) + ((2N + 1)P − 2tP ′)(ξn ⊗ ej)]
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and on ξ2Nn Q(t)
∑n−1
i=1 ξi ⊗ ei is

Pj(λ)(ξ
2N
n Q(t)

n−1∑

i=1

ξi ⊗ ei) = ξjξ
2N−2
n (2tQ′′ + (n− 1)Q′ + 2Q′)(

n−1∑

i=1

ξi ⊗ ei)

+ξjξ
2N−2
n (N(2N − 1)Q+ (−4N + 3)tQ′ + 2t2Q′′)(

n−1∑

i=1

ξi ⊗ ei)

+(λ− 2N)(ξ2N−2
n ξj2Q

′(
n−1∑

i=1

ξi ⊗ ei) + ξ2N−1
n Qξn ⊗ ej)

−2ξjξ
2N−2
n Q′

n−1∑

i=1

ξi ⊗ ei − ξ2N−1
n Qξn ⊗ ej − ξ2N−1

n (2NQ− 2tQ′)ξj ⊗ en

+ξ2N−1
n 2tQ′ξn ⊗ ej + ξ2N−1

n (n− 1)Qξn ⊗ ej .

The system of differential equations

Pj(λ)(v2N+1(λ)) = 0, j = 1, . . . , n− 1

is equivalent to the system of three ordinary differential equations for P,Q
representing the coefficients of ξj ⊗ en, ξn⊗ ej and ξj

∑n−1
i=1 ξi⊗ ei, respectively:

(2t2 + 2t)P ′′ + [(2λ+ n− 4N − 1) + (−4N + 1)t]P ′ +N(2N + 1)P

−2NQ+ 2tQ′ = 0,

−2tQ′ − (n+ λ− 2N − 2)Q+ 2tP ′ − (2N + 1)P = 0,

(2t2 + 2t)Q′′ + [(n+ 2λ− 4N − 1) + (−4N + 3)t]Q′ +N(2N − 1)Q = 0.

(9.9)

In what follows we prove that there is a unique solution of the system (9.9).
As a consequence of the substitution of the second equation of (9.9) into the
first one, the (unique) solution of (9.9) solves the rank two system (deg(P ) =
deg(Q) = N):




(2t2 + 2t)∂2
t + (2λ+ n− 4N − 1)∂t+ −(n+ λ− 2)

(−4N + 3)t∂t + (N − 1)(2N + 1)
(2t2 + 2t)∂2

t + (n+ 2λ− 4N − 1)∂t+
0 (−4N + 3)t∂t +N(2N − 1)




(
P (t)
Q(t)

)
= 0.

Lemma 9.5 The first equation in (9.9) can be rewritten, modulo the second
and the third one, as

(n+ 2λ− 2N − 2)P ′ −N(n+ λ− 1)Q+ (−λ+ 2N + 1)Q′ + (n+ λ− 1)tQ′ = 0.

(9.10)

Proof:
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The application of the first derivative ∂t to the second equation (9.9) and
consequent multiplication by t yields its differential consequences,

2P ′ + 2tP ′ − (2N + 1)P ′ = 2Q′ + 2tQ′′ + (n+ λ− 2N − 2)Q′,

2tP ′ + 2t2P ′ − (2N + 1)tP ′ = 2tQ′ + 2t2Q′′ + (n+ λ− 2N − 2)tQ′.

Summing up both of them together and subtracting the first and the third
equation in (9.9) cancels out the terms (2t2 + 2t)P ′′, (2t2 + 2t)Q′′ and gives

(2λ+ n− 2N − 2)P ′ − 2NtP ′ +N(2N + 1)P + (−λ+ 2N + 1)Q′

+(n+ λ+ 2N − 1)tQ′ −N(2N + 1)Q = 0. (9.11)

The second and the third terms in the last equation combine together and enter
the second equation in (9.9), which finally results in

(n+ 2λ− 2N − 2)P ′−N(n+ λ− 1)Q+ (−λ+ 2N + 1)Q′ + (n+ λ− 1)tQ′ = 0.

�

The consequence of the Lemma is that the first equation in (9.9) is a differen-
tial consequence of the second and the third ones. In what follows we prove the
existence and uniqueness of the solution of the second and the third equation
in (9.9), polynomial in λ, t.

Lemma 9.6 Let us denote the coefficients of the polynomials P,Q by pj and qj ,

respectively, i.e. P (t) =
∑N

i=0 pjt
j and Q(t) =

∑N
i=0 qjt

j. Given the collection
{qj}j, the second equation in (9.9) yields a unique collection {pj} fulfilling

pj =
n+ λ+ 2j − 2N − 2

2j − 2N − 1
qj , j = 0, . . . , N. (9.12)

There exists a unique polynomial (both in λ and t) solution of the second and
the third equation in (9.9). In particular, the third equation in (9.9) gives the
unique solution Q with required properties (Gegenbauer type polynomial) and
the coefficients of the polynomial P are (uniquely) determined from the last
display, equivalent to the second equation in (9.9). The first equation in (9.9)
is a differential consequence of the second and the third equation.

Proof:
The uniqueness of the solution with required properties of the system (9.9)

results from the following observations. The polynomial solution (of homo-
geneity N) of the third equation in (9.9) is the Gegenbauer type polynomial

Q(t) =
∑N
i=0 qjt

j , whose coefficients fulfill

(N − j + 1)(2N − 2j + 1)qj−1 + j(n+ 2λ− 4N + 2j − 3)qj = 0, j = 1, . . .N.

The relation (9.12) easily follows from the second equation in (9.9) - the coeffi-
cient by monomial tj yields

−2jqj − (n+ λ− 2N − 2)qj + 2jpj − (2N + 1)pj = 0
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and the result follows.
Finally, as we have already discussed in the previous Lemma, the first equa-

tion in (9.9) is equivalent to (9.10) and we show that it is a differential conse-
quence of the second and the third equation in (9.9). The polynomial equality
in (9.10) reduced to the monomial tj is

(j + 1)(2λ+ n− 2N − 2)
n+ λ+ 2j − 2N

2j − 2N + 1
qj+1 −N(n+ λ− 1)qj

+(j + 1)(−λ+ 2N + 1)qj+1 + j(n+ λ− 1)qj = 0. (9.13)

Using the identity

(n+ λ+ 2j − 2N)(2λ+ n− 2N − 2) + (2j − 2N + 1)(−λ+ 2N + 1)

= (n+ λ− 1)(n+ 2λ− 4N + 2j − 1), (9.14)

the previous equation reduces to

(j −N)(2j − 2N + 1)qj + (j + 1)(n+ 2λ− 4N + 2j − 1)qj+1 = 0, j = 1, . . .N

and the shift in j, j → j − 1, yields the required claim by recursive property of
the coefficients of Gegenbauer polynomial. The proof is complete.

�

9.3 Families of even homogeneity homomorphisms from
bulk 1-forms to boundary 0-forms

As in the case of odd homogeneity, a singular vector of even homogeneity 2N
corresponding to a (g′, P ′)-homomorphism

U(g′)⊗U(p′) Cλ−2N−1 → U(g)⊗U(p) (Λ1(Cn)⊗ Cλ)

is of the form

v2N (λ) = ξ2N−1
n [P (t)ξn ⊗ en +Q(t)

n−1∑

i=1

ξi ⊗ ei]

= ξ2Nn P (t)⊗ en + ξ2N−1
n Q(t)

n−1∑

i=1

ξi ⊗ ei (9.15)

for j = 1, . . . , n− 1 and polynomials P (t), Q(t) of homogeneity N and N − 1 in

t =
∑n−1

i=1 ξ2i
ξ2n

to be determined. The system of differential equations

Pj(λ)(v2N (λ)) = 0, j = 1, . . . , n− 1
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is equivalent to the system of three ordinary differential equations for P,Q
representing coefficients of ξj ⊗ en, ξn ⊗ ej and ξj

∑n−1
i=1 ξi ⊗ ei, respectively:

(2t2 + 2t)P ′′ + [(2λ+ n− 4N + 1) + (−4N + 3)t]P ′ +N(2N − 1)P

−(2N − 1)Q+ 2tQ′ = 0,

−2tQ′ − (n+ λ− 2N − 1)Q+ 2tP ′ − 2NP = 0,

(2t2 + 2t)Q′′ + [(n+ 2λ− 4N + 1) + (−4N + 5)t]Q′ + (N − 1)(2N − 1)Q = 0.

(9.16)

As a consequence the solution of this system solves (deg(P ) = N, deg(Q) =
N − 1):




(2t2 + 2t)∂2
t + (2λ+ n− 4N + 1)∂t+ −(n+ λ− 2)

(−4N + 5)t∂t + (2N − 3)N
(2t2 + 2t)∂2

t + (n+ 2λ− 4N + 1)∂t+
0 (−4N + 5)t∂t + (N − 1)(2N − 1)




(
P (t)
Q(t)

)
= 0.

(9.17)

Lemma 9.7 There exists a unique polynomial solution of the system (9.16). In
particular, the third equation in the system (9.16) gives the recursive relation
for the coefficients {qj}j,

(2j − 2N + 1)(j −N + 1)qj

+(j + 1)(n+ 2λ− 4N + 2j + 1)qj+1 = 0, (9.18)

j = 0, . . . , N−1, and the second equation in the system (9.16) gives the collection
{pj}j:

pj =
(n+ λ− 2N + 2j − 1)

2j − 2N
qj , j = 0, . . . , N − 1 (9.19)

The first equation of the system (9.16) is a differential consequence of the second
and the third equations.

Proof:
The monomial expansion of the third equation amounts to

[2j(j − 1) + (−4N + 5)j + (N − 1)(2N − 1)]qj + [2j(j + 1)

+(n+ 2λ− 4N + 1)(j + 1)]qj+1 = 0 (9.20)

and the first result follows from an elementary factorization.
The result for {pj}j is an immediate consequence of monomial expansion of

the second equation.
As in the odd homogeneity case it is elementary to verify that the first

equation is a differential consequence of the second and the third equations,
and the proof is complete.

�
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9.4 Even and odd order family homomorphisms from bulk
1-forms to boundary 1-forms

It follows from the m′-module structure of HomC(Λ1(Cn−1),Λ1(Cn)) and the

structure of the algebra of m′-invariants Pol(
∑n−1

i=1 ξ
2
i , ξn) ⊂ Pol(ξ1, . . . , ξn−1, ξn)

that a singular vector of homogeneityN corresponding to a (g′, P ′)-homomorphism

U(g′)⊗U(p′) (Λ1(Cn−1)⊗ Cλ−N )→ U(g)⊗U(p) (Λ1(Cn)⊗ Cλ)

is of the form

vN (λ) =
∑

a,b∈N|a+2b+2=N

Aa,b(ξn)
a(

n−1∑

i=1

ξkξk)
bξj

n−1∑

i=1

ξi ⊗ ei

+
∑

a,b∈N|a+2b=N

Ba,b(ξn)
a(

n−1∑

i=1

ξkξk)
b ⊗ ej

+
∑

a,b∈N|a+2b+1=N

Ca,b(ξn)a(

n−1∑

i=1

ξkξk)
bξj ⊗ en.

for some Aa,b, Ba,b, Ca,b ∈ C to be determined.
Let us list a few examles of lowest homogeneity (A,B,C,D,E ∈ C):

1. Homomorphism of homogeneity 0 is induced by singular vector

A⊗ ej

2. Homomorphism of homogeneity 1 is induced by singular vector

Aξn ⊗ ej +Bξj ⊗ en,

3. Homomorphism of homogeneity 2 is induced by singular vector

A
n−1∑

i=1

ξiξj ⊗ ei +Bξ2n ⊗ ej + Cξnξj ⊗ en +D
n−1∑

i=1

ξiξi ⊗ ej,

4. Homomorphism of homogeneity 3 is induced by singular vector

Aξn

n−1∑

i=1

ξiξj⊗ei+Bξ3n⊗ej+Cξn
n−1∑

i=1

ξ2i ⊗ej+Dξj
n−1∑

i=1

ξ2i ⊗en+Eξ2nξj⊗en.

In the next part we convert both the even and odd homogeneity case to a system
of three ordinary differential equations encapsulated by upper triangular matrix
valued operator with Gegenbauer type differential equation on the diagonal.
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Example 9.8 The singular vector of homogeneity two corresponding to a (g′, P ′)-
homomorphism

U(g′)⊗U(p′) (Λ1(Cn−1)⊗ Cλ−2)→ U(g)⊗U(p) (Λ1(Cn)⊗ Cλ)

is of the form

v2(λ) = A

n−1∑

i=1

ξiξj⊗ei+Bξ2n⊗ej+Cξnξj⊗en+D
n−1∑

i=1

ξiξi⊗ej ∈ U(g)⊗U(p)(Λ
1(Cn)⊗Cλ)

for some A,B,C,D ∈ C to be determined and P (t) = A,Q(t) = Dt+B,R(t) =
C (deg(P ) = 0, deg(Q) = 1, deg(R) = 0). The condition

v2(λ) ∈ Ker(Pj(λ) =
1

2
ξj�ξ+(λ−Eξ)∂j−

n∑

k=1

∂k(ek⊗e⋆j−ej⊗e⋆k)), j = 1, . . . , n−1

is equivalent to

Q+ ((2λ+ n− 3)− t)Q′ = 0,

−2Q+ 2tQ′ + (λ− 1)R = 0,

(λ+ n− 2)P +R + 2Q′ = 0

or to the system of linear equations

B + (2λ+ n− 3)D = 0,

−2B + (λ− 1)C = 0,

(λ+ n− 2)A+ C + 2D = 0.

Its solution yields the family of quadratic singular vectors

v2(λ) =

n−1∑

i=1

ξiξj ⊗ ei −
1

2
(λ− 1)(n+ 2λ− 3)ξ2n ⊗ ej

−(n+ 2λ− 3)ξnξj ⊗ en +
1

2
(λ− 1)

n−1∑

i=1

ξiξi ⊗ ej . (9.21)

9.5 Families of even homogeneity homomorphisms from
bulk 1-forms to boundary 1-forms

We construct singular vectors of homogeneity 2N corresponding to (g′, P ′)-
homomorphisms

U(g′)⊗U(p′) (Λ1(Cn−1)⊗ Cλ−2N )→ U(g)⊗U(p) (Λ1(Cn)⊗ Cλ).

Based on the change of variables

∂l =
2ξl
ξ2n

∂

∂t
(l = 1, . . . , n− 1), ∂n = − 2

ξn
t
∂

∂t
,
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the action of

Pl(λ) =
1

2
ξl�ξ + (λ− Eξ)∂l −

n∑

k=1

∂k(ek ⊗ e⋆l − el ⊗ e⋆k)

is given on particular summands as follows:

1.

v1
2N (λ) = ξ2(N−1)

n P (t)ξj

n−1∑

i=1

ξi ⊗ ei,

of ξ-homogeneity 2N , where P (t) is of t-homogeneity (N − 1) with coeffi-
cients Aa,b.

1

2
ξl�ξv

1
2N (λ) = ξ2(N−1)−2

n [(N − 1)(2N − 3)P + ((n+ 3) + (−4N + 7)t)P ′

+(2t+ 2t2)P ′′]ξlξj

n−1∑

i=1

ξi ⊗ ei + ξ2(N−1)
n Pξl ⊗ ej,

(λ − Eξ)∂lv1
2N (λ) = (λ− (2N − 1))[ξ2(N−1)−2

n 2ξlξjP
′
n−1∑

i=1

ξi ⊗ ei

+ξ2(N−1)
n Pδjl

n−1∑

i=1

ξi ⊗ ei + ξ2(N−1)
n Pξj ⊗ el],

n∑

k=1

∂k(ek ⊗ e⋆j − ej ⊗ e⋆k)v1
2N (λ) = ξ2(N−1)−2

n 2ξjξlP
′
n−1∑

i=1

ξi ⊗ ei

+ξ2(N−1)−1
n (2(N − 1)P − 2tP ′)ξjξl ⊗ en + ξ2(N−1)

n Pξl ⊗ ej
+ξ2(N−1)

n (−2tP ′ − (n− 1)P )ξj ⊗ el,

and so

Pl(λ)(v
1
2N (λ)) = ξ2(N−1)−2

n [(N − 1)(2N − 3)P + ((2λ+ n− 4N + 3)

+(−4N + 7)t)P ′ + (2t2 + 2t)P ′′]ξlξj

n−1∑

i=1

ξi ⊗ ei

+ξ2(N−1)
n (λ − (2N − 1))Pδjl

n−1∑

i=1

ξi ⊗ ei

+ξ2(N−1)−1
n (−2(N − 1)P + 2tP ′)ξjξl ⊗ en

+ξ2(N−1)
n ((λ + n− 2N)P + 2tP ′)ξj ⊗ el (9.22)

for l = 1, . . . , n− 1.

2.
v2
2N (λ) = ξ2Nn Q(t)⊗ ej ,
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of ξ-homogeneity 2N , where Q(t) is of t-homogeneity N with coefficients
Ba,b.

(
1

2
ξl�ξ + (λ− Eξ)∂l)v2

2N (λ) = ξ2(N−1)
n [N(2N − 1)Q

+((n+ 2λ− 4N + 1) + (−4N + 3)t)Q′ + (2t+ 2t2)Q′′]ξl ⊗ ej,
n∑

k=1

∂k(ek ⊗ e⋆j − ej ⊗ e⋆k)v2
2N (λ) = ξ2(N−1)

n 2Q′δjl

n−1∑

i=1

ξi ⊗ ei

+ξ2N−1
n (2NQ− 2tQ′)δjl ⊗ en − ξ2(N−1)

n 2Q′ξj ⊗ el,

and so

Pl(λ)(v
2
2N (λ)) = ξ2(N−1)

n [N(2N − 1)Q+ ((2λ+ n− 4N + 1)

+(−4N + 3)t)Q′ + (2t2 + 2t)Q′′]ξl ⊗ ej − ξ2(N−1)
n 2Q′δjl

n−1∑

i=1

ξi ⊗ ei

−ξ2N−1
n (2NQ− 2tQ′)δjl ⊗ en + ξ2(N−1)

n 2Q′ξj ⊗ el

for l = 1, . . . , n− 1.

3.
v3
2N (λ) = ξ2N−1

n R(t)ξj ⊗ en,
of ξ-homogeneity 2N , where R(t) is of t-homogeneity (N − 1) with coeffi-
cients Ca,b.

1

2
ξl�ξv

3
2N (λ) = ξ2N−3

n [(N − 1)(2N − 1)R+ ((n+ 1) + (−4N + 5)t)R′

+(2t+ 2t2)R′′]ξlξj ⊗ en,
(λ − Eξ)∂lv3

2N (λ) = (λ− (2N − 1))[ξ2N−3
n 2R′ξlξj ⊗ en + ξ2N−1

n Rδjl ⊗ en],
n∑

k=1

∂k(ek ⊗ e⋆j − ej ⊗ e⋆k)v3
2N (λ) = −ξ2N−2

n ((2N − 1)R− 2tR′)ξj ⊗ el,

and so

Pl(λ)(v
3
2N (λ)) = ξ2N−3

n [(N − 1)(2N − 1)R+ ((2λ+ n− 4N + 3)

+(−4N + 5)t)R′ + (2t2 + 2t)R′′]ξlξj ⊗ en + ξ2N−1
n (λ− (2N − 1))Rδjl ⊗ en

+ξ2N−2
n ((2N − 1)R− 2tR′)ξj ⊗ el

for l = 1, . . . , n− 1.
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Taken together, we have

Pl(λ)(v
1
2N (λ) + v2

2N (λ) + v3
2N (λ)) = ξ2N−4

n [(N − 1)(2N − 3)P

+((2λ+ n− 4N + 3) + (−4N + 7)t)P ′ + (2t2 + 2t)P ′′]ξlξl

n−1∑

i=1

ξi ⊗ ei

+ξ2(N−1)
n [(λ − (2N − 1))P − 2Q′]δjl

n−1∑

i=1

ξi ⊗ ei

+ξ2N−3
n [(N − 1)(2N − 1)R+ ((2λ+ n− 4N + 3) + (−4N + 5)t)R′

+(2t2 + 2t)R′′ − 2(N − 1)P + 2tP ′]ξlξj ⊗ en + ξ2N−2
n [(λ+ n− 2N)P

+2tP ′ + (2N − 1)R− 2tR′ + 2Q′]ξj ⊗ el + ξ2N−2
n [N(2N − 1)Q

+((2λ+ n− 4N + 1) + (−4N + 3)t)Q′ + (2t2 + 2t)Q′′]ξl ⊗ ej
+ξ2N−1

n [−2NQ+ 2tQ′ + (λ − (2N − 1))R]δjl ⊗ en,

and so the system of differential equations

Pl(λ)(v2N (λ)) = 0, l = 1, . . . , n− 1

is equivalent to the system of six ordinary differential equations for P,Q,R
representing coefficients of ξlξj

∑n−1
i=1 ξi⊗ei, δjl

∑n−1
i=1 ξi⊗ei, ξlξj⊗en, ξj⊗el, ξl⊗

ej and δjl ⊗ en:

(N − 1)(2N − 3)P + ((2λ+ n− 4N + 3) + (−4N + 7)t)P ′ + (2t2 + 2t)P ′′ = 0,

N(2N − 1)Q+ ((2λ+ n− 4N + 1) + (−4N + 3)t)Q′ + (2t2 + 2t)Q′′ = 0,

(N − 1)(2N − 1)R+ ((2λ+ n− 4N + 3) + (−4N + 5)t)R′ + (2t2 + 2t)R′′

−2(N − 1)P + 2tP ′ = 0,

−2NQ+ 2tQ′ + (λ− (2N − 1))R = 0,

(λ− (2N − 1))P − 2Q′ = 0,

(λ+ n− 2N)P + 2tP ′ + (2N − 1)R− 2tR′ + 2Q′ = 0. (9.23)

The solution of this system solves the extension class of a rank three system
corresponding to (deg(P ) = N − 1, deg(Q) = N, deg(R) = N − 1):




λ− (2N − 1) 0 −2N + 2t∂t

0 λ− (2N − 1) −2∂t
0 0 O1








R(t)
P (t)
Q(t)



 = 0, (9.24)

where

O1 = N(2N − 1) + ((2λ+ n− 4N + 1) + (−4N + 3)t)∂t + (2t2 + 2t)∂2
t .

(9.25)

In what follows we discuss the existence and uniqueness of a solution of (9.23).
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Lemma 9.9 The polynomial solutions P (t) =
∑N−1

j=0 Pjt
j , Q(t) =

∑N
j=0Qjt

j

of the first and the second differential equation of the system (9.23) are Gegen-
bauer polynomials, i.e. the coefficients {Pj}j, {Qj}j fulfill the recursive relations

Pj−1(N − j)(2N − 2j − 1) + Pj(2λ+ n− 4N + 2j + 1)j = 0,

Qj−1(N − j + 1)(2N − 2j + 1) +Qj(2λ+ n− 4N + 2j − 1)j = 0.

(9.26)

Proof:
A direct comparison of the coefficients by monomials tj−1, j = 1, . . . , N + 1

after substitution of P (t), Q(t) into the first and the second equation of the
system (9.23) gives the recursive relations

Pj−1[(N − 1)(2N − 3) + (−4N + 7)(j − 1) + 2(j − 1)(j − 2)]

+Pj [j(2λ+ n− 4N + 3) + 2j(j − 1)] = 0,

Qj−1[N(2N − 1) + (−4N + 3)(j − 1) + 2(j − 1)(j − 2)]

+Qj [j(2λ+ n− 4N + 1) + 2j(j − 1)] = 0 (9.27)

and some elementary manipulation yields the required result.
�

Lemma 9.10 The fifth equation in the system (9.23) gives the mutual normal-
ization of two collections of coefficients {Pj}j, {Qj}j:

Qj+1 =
(λ − (2N − 1))

2(j + 1)
Pj , j = 0, . . . , N. (9.28)

Proof:
It follows from the two formulas in previous Lemma 9.9

Pj−1(N − j)(2N − 2j − 1) + Pj(2λ+ n− 4N + 2j + 1)j = 0,

Qj(N − j)(2N − 2j − 1) +Qj+1(2λ+ n− 4N + 2j + 1)(j + 1) = 0

(9.29)

and so
Pj−1

jPj
=

Qj
(j + 1)Qj+1

implies the proportionality relation Pj ∼ (j + 1)Qj+1, j = 0, . . . , N . The fifth
equation in the system (9.23) makes the proportionality explicit and the result
follows.

�

Lemma 9.11 The fourth equation in the system (9.23) yields a unique solution

for the polynomial R(t) =
∑N−1

j=1 Rjt
j in the form

Qj =
(λ− (2N − 1))

(2N − 2j)
Rj j = 0, . . . , N − 1 (9.30)

78



or, equivalently, as

Rj =
(N − j)

j
Pj−1, j = 1, . . . , N. (9.31)

Proof:
The proof is a straightforward consequence of the fourth equation in the

system (9.23).
�

Lemma 9.12 The third and the sixth equations in the system (9.23) are dif-
ferential consequences of the remaining equations.

Proof:
Add the fifth and the sixth equations in the system (9.23):

(λ+ n− 2N)P + 2tP ′ + (2N − 1)R− 2tR′ + (λ − (2N − 1))P = 0.

Substituting the result of the previous Lemma and comparing the contribution
by monomials yields

j(2λ+ n− 4N + 2j + 1)Pj + (2N − 2j − 1)(N − j)Pj−1 = 0, j = 0, . . . , N,

which is the defining recursive property of the collection {Pj}j. This completes
the claim that the sixth equation is an algebraic consequence of the remaining
(except the third) equations in the system (9.23).

As for the sixth equation, the proof is more complicated. Let us differentiate
by ∂t and then multiply by t the equality

(λ+ n− 2N)P + 2tP ′ + (2N − 1)R− 2tR′ + (λ− (2N − 1))P = 0

to get

(2λ+ n− 4N + 3)P ′ + 2tP ′′ + (2N − 3)R′ − 2tR′′ = 0,

(2λ+ n− 4N + 3)tP ′ + 2t2P ′′ + (2N − 3)tR′ − 2t2R′′ = 0.

Their sum is

(2λ+ n− 4N + 3)P ′ + (2λ+ n− 4N + 3)tP ′ + (2t+ 2t2)P ′′

+(2N − 3)R′ + (2N − 3)tR′ − (2t+ 2t2)R′′ = 0

and adding the first and the third equation gives

−(N − 1)(2N − 1)P + (2λ+ n− 2)tP ′ + (N − 1)(2N − 1)R

+(2λ+ n− 2N)R′ + j(−2N + 2)tR′ = 0. (9.32)

Substituting for the polynomials P,R and using (9.31), this coverts after some
manipulation into

(n+ 2λ− 4N + 2j + 1)Pj + (2N − 2j − 1)Rj = 0.

79



The last substitution of

Qj+1 =
(λ− (2N − 1))

2(j + 1)
Pj , Rj =

2N − 2j

(λ− (2N − 1))
Qj (9.33)

leads to

(j + 1)(n+ 2λ− 4N + 2j + 1)Qj+1 + (2N − 2j − 1)(N − j)Qj = 0,

which are the defining recursive relations for the coefficients ofQ(t) =
∑N

j=0Qjt
j .

This completes the proof that the third equation is a differential consequence
of the remaining ones.

�

9.6 Families of odd homogeneity homomorphisms from
bulk 1-forms to boundary 1-forms

We construct singular vectors of homogeneity 2N + 1 corresponding to (g′, P ′)-
homomorphisms

U(g′)⊗U(p′) (Λ1(Cn−1)⊗ Cλ−(2N+1))→ U(g)⊗U(p) (Λ1(Cn)⊗ Cλ).

The operator

Pl(λ) =
1

2
ξl�ξ + (λ− Eξ)∂l −

n∑

k=1

∂k(ek ⊗ e⋆l − el ⊗ e⋆k)

acts on particular summands of odd homogeneity 2N + 1 as follows:

1.

v1
2N+1(λ) = ξ2N−1

n P (t)ξj

n−1∑

i=1

ξi ⊗ ei,

of ξ-homogeneity 2N + 1, where P (t) is of t-homogeneity (N − 1) with
coefficients Aa,b.

1

2
ξl�ξv

1
2N+1(λ) = ξ2N−3

n [(N − 1)(2N − 1)P + ((n+ 3) + (−4N + 5)t)P ′

+(2t+ 2t2)P ′′]ξlξj

n−1∑

i=1

ξi ⊗ ei + ξ2N−1
n Pξl ⊗ ej,

(λ − Eξ)∂lv1
2N+1(λ) = (λ− 2N)[ξ2N−3

n 2ξlξjP
′
n−1∑

i=1

ξi ⊗ ei

+ξ2N−1
n Pδjl

n−1∑

i=1

ξi ⊗ ei + ξ2N−1
n Pξj ⊗ el],

n∑

k=1

∂k(ek ⊗ e⋆j − ej ⊗ e⋆k)v1
2N+1(λ) = ξ2N−3

n 2ξjξlP
′
n−1∑

i=1

ξi ⊗ ei

+ξ2N−2
n ((2N − 1)P − 2tP ′)ξjξl ⊗ en + ξ2N−1

n Pξl ⊗ ej
+ξ2N−1

n (−2tP ′ − (n− 1)P )ξj ⊗ el
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and so

Pl(λ)(v
1
2N+1(λ)) = ξ2N−3

n [(N − 1)(2N − 1)P + ((2λ+ n− 4N + 1)

+(−4N + 5)t)P ′ + (2t2 + 2t)P ′′]ξlξj

n−1∑

i=1

ξi ⊗ ei

+ξ2N−1
n (λ− 2N)Pδjl

n−1∑

i=1

ξi ⊗ ei + ξ2N−2
n (−(2N − 1)P + 2tP ′)ξjξl ⊗ en

+ξ2N−1
n ((λ + n− 2N − 1)P + 2tP ′)ξj ⊗ el (9.34)

for l = 1, . . . , n− 1.

2.
v2
2N+1(λ) = ξ2N+1

n Q(t)⊗ ej ,
of ξ-homogeneity 2N + 1, where Q(t) is of t-homogeneity N with coeffi-
cients Ba,b.

(
1

2
ξl�ξ + (λ− Eξ)∂l)v2

2N+1(λ) = ξ2N−1
n [N(2N + 1)Q

+((n+ 2λ− 4N − 1) + (−4N + 1)t)Q′ + (2t+ 2t2)Q′′]ξl ⊗ ej,
n∑

k=1

∂k(ek ⊗ e⋆j − ej ⊗ e⋆k)v2
2N+1(λ) = ξ2N−1

n 2Q′δjl

n−1∑

i=1

ξi ⊗ ei

+ξ2Nn ((2N + 1)Q− 2tQ′)δjl ⊗ en − ξ2N−1
n 2Q′ξj ⊗ el

and so

Pl(λ)(v
2
2N+1(λ)) = ξ2N−1

n [N(2N + 1)Q+ ((2λ+ n− 4N − 1)

+(−4N + 1)t)Q′ + (2t2 + 2t)Q′′]ξl ⊗ ej − ξ2N−1
n 2Q′δjl

n−1∑

i=1

ξi ⊗ ei

−ξ2Nn ((2N + 1)Q− 2tQ′)δjl ⊗ en + ξ2N−1
n 2Q′ξj ⊗ el

for l = 1, . . . , n− 1.

3.
v3
2N+1(λ) = ξ2Nn R(t)ξj ⊗ en,

of ξ-homogeneity 2N + 1, where R(t) is of t-homogeneity N with coeffi-
cients Ca,b.

1

2
ξl�ξv

3
2N+1(λ) = ξ2N−2

n [N(2N − 1)R+ ((n+ 1) + (−4N + 3)t)R′

+(2t+ 2t2)R′′]ξlξj ⊗ en,
(λ − Eξ)∂lv3

2N+1(λ) = (λ− 2N)[ξ2N−2
n 2R′ξlξj ⊗ en + ξ2Nn Rδjl ⊗ en],

n∑

k=1

∂k(ek ⊗ e⋆j − ej ⊗ e⋆k)v3
2N+1(λ) = −ξ2N−1

n (2NR− 2tR′)ξj ⊗ el
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and so

Pl(λ)(v
3
2N+1(λ)) = ξ2N−2

n [N(2N − 1)R+ ((2λ+ n− 4N + 1)

+(−4N + 3)t)R′ + (2t2 + 2t)R′′]ξlξj ⊗ en + ξ2Nn (λ− 2N)Rδjl ⊗ en
+ξ2N−1

n (2NR− 2tR′)ξj ⊗ el

for l = 1, . . . , n− 1.

Taken together, we have

Pl(λ)(v
1
2N+1(λ) + v2

2N+1(λ) + v3
2N+1(λ)) = ξ2N−3

n [(N − 1)(2N − 1)P

+((2λ+ n− 4N + 1) + (−4N + 5)t)P ′ + (2t2 + 2t)P ′′]ξlξl

n−1∑

i=1

ξi ⊗ ei

+ξ2N−1
n [(λ− 2N)P − 2Q′]δjl

n−1∑

i=1

ξi ⊗ ei

+ξ2N−2
n [N(2N − 1)R+ ((2λ+ n− 4N + 1) + (−4N + 3)t)R′

+(2t2 + 2t)R′′ − (2N − 1)P + 2tP ′]ξlξj ⊗ en + ξ2N−1
n [(λ+ n− 2N − 1)P

+2tP ′ + 2NR− 2tR′ + 2Q′]ξj ⊗ el + ξ2N−1
n [N(2N + 1)Q

+((2λ+ n− 4N − 1) + (−4N + 1)t)Q′ + (2t2 + 2t)Q′′]ξl ⊗ ej
+ξ2Nn [−(2N + 1)Q+ 2tQ′ + (λ − 2N)R]δjl ⊗ en,

and so the system of differential equations

Pl(λ)(v2N+1(λ)) = 0, l = 1, . . . , n− 1

is equivalent to the system of six ordinary differential equations for P,Q,R
representing coefficients of ξlξj

∑n−1
i=1 ξi⊗ei, δjl

∑n−1
i=1 ξi⊗ei, ξlξj⊗en, ξj⊗el, ξl⊗

ej and δjl ⊗ en:

(N − 1)(2N − 1)P + ((2λ+ n− 4N + 1) + (−4N + 5)t)P ′ + (2t2 + 2t)P ′′ = 0,

N(2N + 1)Q+ ((2λ+ n− 4N − 1) + (−4N + 1)t)Q′ + (2t2 + 2t)Q′′ = 0,

N(2N − 1)R+ ((2λ+ n− 4N + 1) + (−4N + 3)t)R′ + (2t2 + 2t)R′′

−(2N − 1)P + 2tP ′ = 0,

−(2N + 1)Q+ 2tQ′ + (λ− 2N)R = 0,

(λ− 2N)P − 2Q′ = 0,

(λ+ n− 2N − 1)P + 2tP ′ + 2NR− 2tR′ + 2Q′ = 0. (9.35)

The solution of this system solves the extension class of a rank three system
corresponding to (deg(P ) = N − 1, deg(Q) = N, deg(R) = N):




λ− 2N 0 −(2N + 1) + 2t∂t

0 λ− 2N −2∂t
0 0 O1








R(t)
P (t)
Q(t)



 = 0, (9.36)
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where

O1 = N(2N + 1) + ((2λ+ n− 4N − 1) + (−4N + 1)t)∂t + (2t2 + 2t)∂2
t .

(9.37)

In what follows we discuss the existence and uniqueness of solutions of the
system (9.23).

Lemma 9.13 The polynomial solutions P (t) =
∑N−1

j=0 Pjt
j , Q(t) =

∑N
j=0Qjt

j

of the first and the second differential equation of the system (9.23) are Gegen-
bauer polynomials, i.e. the coefficients {Pj}j, {Qj}j fulfill the recursive relations

Pj−1(N − j)(2N − 2j + 1) + Pj(2λ+ n− 4N + 2j − 1)j = 0,

Qj−1(N − j + 1)(2N − 2j + 3) +Qj(2λ+ n− 4N + 2j − 3)j = 0.

(9.38)

Proof:
A direct comparison of the coefficients by monomials tj−1, j = 1, . . . , N + 1

after the substitution of P (t), Q(t) into the first and the second equation of the
system (9.23) gives the recursive relations

Pj−1[(N − 1)(2N − 1) + (−4N + 5)(j − 1) + 2(j − 1)(j − 2)]

+Pj [j(2λ+ n− 4N + 1) + 2j(j − 1)] = 0,

Qj−1[N(2N + 1) + (−4N + 1)(j − 1) + 2(j − 1)(j − 2)]

+Qj [j(2λ+ n− 4N − 1) + 2j(j − 1)] = 0

and an elementary manipulation yields the required result.
�

Lemma 9.14 The fifth equation in the system (9.23) gives the mutual normal-
ization of two collections of coefficients {Pj}j, {Qj}j:

Qj+1 =
(λ− 2N)

2(j + 1)
Pj , j = 0, . . . , N. (9.39)

Proof:
It follows from the two formulas in Lemma 9.9

Pj−1(N − j)(2N − 2j + 1) + Pj(2λ+ n− 4N + 2j − 1)j = 0,

Qj(N − j)(2N − 2j + 1) +Qj+1(2λ+ n− 4N + 2j − 1)(j + 1) = 0

(9.40)

and so
Pj−1

jPj
=

Qj
(j + 1)Qj+1

implies the proportionality relation Pj ∼ (j + 1)Qj+1, j = 0, . . . , N . The fifth
equation in the system (9.23) makes the proportionality explicit and the result
follows.

�
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Lemma 9.15 The fourth equation in the system (9.23) yields a unique solution

for the polynomial R(t) =
∑N

j=1 Rjt
j in the form

Qj =
(λ− 2N)

(2N − 2j + 1)
Rj , j = 0, . . . , N (9.41)

or, equivalently, as

Rj =
(2N − 2j + 1)

2j
Pj−1, j = 1, . . . , N. (9.42)

Proof:
The proof is a straightforward consequence of the fourth equation in the

system (9.23).
�

Lemma 9.16 The third and the sixth equations in the system (9.23) are dif-
ferential consequences of the remaining equations.

Proof:
Add the fifth and the sixth equations in the system (9.23):

(λ+ n− 2N − 1)P + 2tP ′ + 2NR− 2tR′ + (λ− 2N)P = 0.

Substituting the result of the previous Lemma and comparing the contributions
by monomials yields

j(2λ+ n− 4N + 2j − 1)Pj + (2N − 2j + 1)(N − j)Pj−1 = 0, j = 0, . . . , N,

which is the defining recursive property of the collection {Pj}j. This completes
the claim that the sixth equation is an algebraic consequence of the remaining
(except the third) equations in the system (9.23).

As for the sixth equation, the proof is more complicated. Let us differentiate
by ∂t and then multiply by t the equality

(λ+ n− 2N − 1)P + 2tP ′ + 2NR− 2tR′ + (λ − 2N)P = 0

to get

(2λ+ n− 4N + 1)P ′ + 2tP ′′ + (2N − 2)R′ − 2tR′′ = 0,

(2λ+ n− 4N + 1)tP ′ + 2t2P ′′ + (2N − 2)tR′ − 2t2R′′ = 0.

Their sum is

(2λ+ n− 4N + 1)P ′ + (2λ+ n− 4N + 1)tP ′ + (2t+ 2t2)P ′′

+(2N − 2)R′ + (2N − 2)tR′ − (2t+ 2t2)R′′ = 0

and adding the first and the third equation gives

−N(2N−1)P+(2λ+n−2)tP ′+N(2N−1)R+(2λ+n−2N−1)R′+j(−2N+1)tR′ = 0.
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Substituting for the polynomials P,R and using (9.31), this coverts after some
manipulation into

(n+ 2λ− 4N + 2j − 1)Pj + (2N − 2j)Rj = 0.

The last substitution of

Qj+1 =
(λ − 2N)

2(j + 1)
Pj , Rj =

2N − 2j + 1

(λ− 2N)
Qj (9.43)

leads to

(j + 1)(n+ 2λ− 4N + 2j − 1)Qj+1 + (2N − 2j + 1)(N − j)Qj = 0, (9.44)

which are the defining recursive relations for the coefficients ofQ(t) =
∑N

j=0Qjt
j .

This completes the proof that the third equation is a differential consequence
of the remaining ones.

�
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9.7 The realization of singular vectors by invariant calcu-
lus of tractors in parabolic geometries

In the present subsection we comment on the relationship between the F-method
and the invariant calculus of tractors for parabolic geometries, see [13] and the
references therein. We remark that both conformal geometries (i.e., the confor-
mal geometry and its codimension one conformal subgeometry) are examples
of parabolic geometries. The tractor approach relies on the iteration of a basic
invariant differential operator together with branching rules for finite dimen-
sional (tractor) representations, while the F-method is based on analytic tool of
solving the system of differential equations in the Fourier dual picture.

The normal vector field Na ∈ Ea (NaN
a = 1) to an embedded (conformal

or Riemannian) submanifold i : Σ →֒M allows to decompose ωa ∈ Ea as

ωa
∼→ (ωa′ , ωn),

where the first component is in the image of the projector

Πb
a = δba −NaN b : Eb → Ea

and the second component is identified with the kernel of Πb
a. We will use the

notation i⋆ for the composition of restriction to Σ followed by the projection
Πb
a.

The embedding of conformal manifolds i : (Σ, i⋆[g]) →֒ (M, [g]) induces
reduction of tractor bundles

i⋆(EA) = EA|(Σ,i⋆[g])
∼→ EAΣ ⊕NA,

where NA is the normal tractor bundle whose sections are denoted by



0
Na

−H



 ∈ E(NA), Na ∈ Ea(M)[1], H ∈ E(M)[−1].

Conformally invariant projection of tractor bundle

ΠA
B = (δAB −NANB) : i⋆(EA)→ Ker(NA

y)

induces an isomorphism

ΠA
B : EAΣ

∼→ Ker(NA
y),


σ
ωa
̺


 7→




σ
Πb
aωb +HNaσ
̺− 1

2H
2σ


 .

In the previous display we denoted by H the mean curvature of the embedded
submanifold. The inverse isomorphism is given by

V A :=




σ
ωa
̺


 , NAyV

A = 0 7→ Ṽ A :=




σ
Πb
aωb

̺+ 1
2H

2σ


 ∈ EAΣ . (9.45)
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The injectors of irreducible subquotients of a bundle onM are denotedXA, ZAa , Y
A

and for a bundle on Σ by X̃A, Z̃Aa , Ỹ
A. When restricted from M on Σ, the in-

jectors are related

Ỹ A = Y A + ZAa N
aH − 1

2
H2XA,

Z̃Aa = Πb
aZ

A
b ,

X̃A = XA,

and an invariant isomorphism EAΣ ≃ Ker(NA
y)

∼→ EA′

is given by




σ
ωa
̺



 7→




σ

Πb
aωb

̺+HωaN
a − 1

2H
2σ



 . (9.46)

It is easy to verify that the operator (in dimension n)

EbA : Eb[w]→ EA[w − 1],

ωb 7→




0
(n+ w − 2)ωa

−∇cωc




is an invariant spitting operator. We define a family of first order conformally
invariant operators Σ as D̃BΠB

AE
bA acting on 1-forms on M and valued in

densities on Σ. We have for ωb ∈ Eb[w]

D̃BΠB
AE

bAωb = D̃B




0
(n+ w − 2)Πb

aωb
−∇bωb + (n+ w − 2)HωaN

a




= (n+ 2(w − 1)− 1)∇̃aΠb
aωb + (n+ 2(w − 1)− 1)(n+ w − 3)(−∇bωb

+(n+ w − 2)HN bωb) = (n+ 2w − 3)[(n+ w − 2)∇̃aΠb
aωb

+(n+ w − 3)(−∇bωb + (n+ w − 2)HN bωb)] = (n+ 2w − 3)[δaωa

−(n+ w − 3)δnωn + (n+ w − 2)(n+ w − 3)HN bωb]. (9.47)

Let us emphasize that the symbol of this operator is, up to an overall factor
(n+2w−3), a linear combination of tangent codifferential of the cotangent part
ωa and normal codifferential of the normal component ωn.

The first order operator D̃BΠB
AE

bA as well as the zero order operator given
by projection on ωn, can be translated by fundamental tractor D-operator DA

and its dual tractor operator DA to even and odd order operators, respectively,
acting on 1-forms on M .

The tractor D-operator

DB : Ea(M)[w] −→ EBa (M)[w − 1]
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is given by

ωa 7→




⋆
(n+ 2w − 4)(n+ w − 2)(w − 1)∇bωa + (n+ 2w − 4)(n+ w − 2)∇aωb

−(n+ 2w − 4)wδba∇cωc
⋆


 ,

where ⋆-symbol indicates for our purposes irrelevant components of the trac-
tor. It follows from the normalization of Na that i⋆∇Nωa = ∇Nωa′ , and this
together with i⋆Na = 0 implies that

i⋆NBD
B : Ea(M)[w]→ EBa (M)[w − 1]→ Ea′(Σ)[w − 1]

is the first order invariant operator from bulk 1-forms to boundary 1-forms,
given in the flat case by

i⋆[(n+ 2w − 4)(n+ w − 2)(w − 1)Nb∇bωa
+(n+ 2w − 4)(n+ w − 2)∇a(Nbωb)− (n+ 2w − 4)wNa∇cωc]
= (n+ 2w − 4)(n+ w − 2)[(w − 1)Nb∇bωa′ +∇a′ωn]. (9.48)

In particular, the operator is the linear combination of the normal derivative
of tangent part of the bulk form ωa and tangent derivatives of its normal part.
The zero order operator given by projection on the normal part of the bulk
1-form and the first order operator i⋆NBD

B can be translated by fundamental
tractor D-operator DA and its dual tractor operator DA to even and odd order
operators, respectively, acting on bulk 1-forms.
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10 F-method for diagonal branching problem and
Rankin-Cohen brackets for orthogonal Lie al-

gebras

The bilinear invariant differential operators, as the simplest representatives of
multilinear invariant differential operators organized in an A∞-homotopy struc-
ture, appear in a wide range of Lie theoretic applications. For example, the
classical Rankin-Cohen brackets realized by holomorphic SL(2,R)-invariant bi-
linear differential operators on the upper half plane H are devised, originally
in a number theoretic context, to produce from a given pair of modular forms
another modular form. They turn out to be intertwining operators producing
ring structure on SL(2,R) holomorphic discrete series representations, and can
be analytically continued to the full range of inducing characters. Consequently,
such operators were constructed in several specific situations of interest related
to Jacobi forms, Siegel modular forms, holomorphic discrete series of causal
symmetric spaces of Cayley type, etc., [28], [18], [52].

The main reason behind the underlying classification scheme for such class
of operators is inspired by geometrical analysis on manifolds with, e.g., the
conformal structure, and related PDE problems of geometrical origin. For M̃ a
smooth (or, complex) manifold equipped with a filtration of its tangent bundle
TM̃ , V a smooth (or holomorphic) vector bundle on M̃ and JkV the weighted
jet bundle, a bilinear differential pairing between sections of the bundle V and
sections of the bundle W to sections of a bundle Y is a sheaf homomorphism

B : JkV ⊗ J lW → Y.

In the case M̃ = G̃/P̃ is a generalized flag manifold, a pairing is called in-
variant if it commutes with the action of G̃ on sections of the homogeneous
vector bundles V ,W ,Y. Denoting V, W, Y the inducing P̃ -representations of
homogeneous vector bundles V ,W ,Y, G̃-invariant differential pairings can be
algebraically characterized as the space

HomU(g̃)(M(g̃, p̃,Y), (U(g̃)⊗ U(g̃))⊗U(p̃)⊗U(p̃) (V∨ ⊗W∨)). (10.1)

In other words, the former geometrical problem for finding bilinear invariant
differential operators on G̃/P̃ acting on induced representations turns into a
Lie algebraic problem of the characterization of homomorphisms of generalized
Verma modules. In the geometrical context of flag manifolds and general curved
manifolds with parabolic structure, a classification of first order bilinear differen-
tial operators for parabolic subalgebras with commutative nilradicals (so called
AHS structures) was completed in [48]. One of the main applications of bilinear
differential operators is that they act via invariant cup product as symmetries of
invariant differential operators, see e.g. [20] for the case of conformally invariant
Laplace operator.

Yet another approach to these questions is purely analytical and consists of
meromorphic continuation of invariant distributions given by a multilinear form
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on the principal series representations. For example, a class of G = SO0(n +
1, 1,R) (i.e., conformally)-invariant linear and bilinear differential operators was
constructed as residues of meromorphically continued invariant trilinear form on
principal series representations induced from characters, see [6].

To summarize, the present section contains a general Lie theoretic classifica-
tion of Rankin-Cohen-like brackets for the couple of real orthogonal Lie algebra
so(n+1, 1,R) and its conformal parabolic Lie subalgebra, and their explicit - in
the sense of dependence on representation theoretical parameters - construction
for characters as inducing representations.

The structure of present section goes as follows. As already mentioned,
we first reformulate the existence of invariant bilinear differential operators (or
equivalently, Rankin-Cohen-like brackets) in terms of purely abstract Lie the-
oretic classification scheme for diagonal branching rules of generalized Verma
modules, associated to the real orthogonal Lie algebra so(n + 1, 1,R) and its
conformal parabolic Lie subalgebra p. The reason behind the choice for this
parabolic subalgebra is its fundamental property of having the commutative nil-
radical. Consequently, the branching problem takes value in the Grothendieck
group K(Op) of the Bernstein-Gelfand-Gelfand parabolic category Op. Here
the main device are character formulas and their reduction in the branching
problems. The quantitative part of the problem consists of the construction
of singular vectors. It is based on the procedure of rewriting the representa-
tion theoretical action in the Fourier dual picture, where the positive nilradical
of p is acting on symmetric algebra of the (commutative) opposite nilradical.
This action produces the four term functional equation for singular vectors, and
its solution is technically the most difficult part with both analytic and com-
binatorial aspects arising from generalized hypergeometric equation. The last
subsection determines the explicit formulas for bilinear conformally invariant
differential operators representing these singular vectors.

10.1 Abstract characterization of diagonal branching rules
applied to generalized Verma modules for so(n+1, 1, R)

The present subsection contains qualitative results on the diagonal branching
rules for so(n+ 1, 1,R) applied to generalized Verma modules.

Let n ∈ N such that n ≥ 3. Throughout the section g denotes the real Lie
algebra so(n+ 1, 1,R) of the connected and simply connected simple Lie group
G = SOo(n + 1, 1,R). Let p be its maximal parabolic subalgebra p = l ⋉ n, in
the Dynkin diagrammatic notation for parabolic subalgebras given by omitting
the first simple root of g. The Levi factor l of p is isomorphic to so(n,R)×R and
the commutative nilradical n (resp. the opposite nilradical n−) is isomorphic to
Rn. Let diag : (g, p) →֒ (g⊕ g, p⊕ p) denote the diagonal embedding.

The main task of the present section concerns the branching problem for
the family of scalar generalized Verma U(g ⊕ g, p ⊕ p)-modules induced from
characters of the center of l⊕l, with respect to diag(g, p). An inducing character
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χλ,µ on p⊕ p is determined by two complex characters χµ, χλ on l:

χλ,µ ≡ (χλ, χµ) : p⊕ p→ C

(p1, p2) 7→ χλ(p1) · χµ(p2), (10.2)

where the homomorphism (χλ, χµ) quotients through the semisimple subalgebra
[p, p]⊕[p, p]. The generalized Verma (g⊕g, p⊕p)-module induced from character
(χλ, χµ) (λ, µ ∈ C) is

Mg
p (Cλ,µ) = U(g⊕ g)⊗U(p⊕p) (Cλ ⊗ Cµ), (10.3)

where Cλ ⊗Cµ is a 1-dimensional representation (χλ, χµ) of p⊕ p. As a vector
space, Mg

p (Cλ,µ) is isomorphic to the symmetric algebra S⋆(n− ⊕ n−), where
n− ⊕ n− is the vector complement of p⊕ p in g⊕ g.

A way to resolve this branching problem abstractly is based on character
identities for the restriction of Mg

p (Cλ,µ) to the diagonal subalgebra diag(g)
with standard compatible parabolic subalgebra

diag(p) := diag(g) ∩ (p⊕ p), p = l ⋉ n, diag(p) = diag(l) ⋉ diag(n).

For a fixed choice of positive simple roots of g we denote by Λ+(l ⊕ l) the set
of weights dominant for l ⊕ l and integral for [l, l] ⊕ [l, l]. Let Vλ,µ be a finite
dimensional irreducible l⊕ l-module with highest weight (λ, µ) ∈ Λ+(l⊕ l), and
likewise Vλ′ be a finite dimensional representation of diag(l), λ′ ∈ Λ+(diag(l)).
Given a vector space V we denote S⋆(V) = ⊕∞

l=0Sl(V) the symmetric tensor
algebra on V. Let us extend the adjoint action of diag(l) on (n− ⊕ n−)/((n− ⊕
n−)∩ diag(g)) to S⋆

(
(n−⊕ n−)/((n−⊕ n−)∩ diag(g))

)
. Notice that we have an

isomorphism
(n− ⊕ n−)/((n− ⊕ n−) ∩ diag(g)) ≃ n−

of diag(l)-quotient modules. We set

m
(
λ′, (λ, µ)

)
:=

Homdiag(l)

(
Vλ′ ,Vλ,µ|diag(l) ⊗ S⋆

(
(n− ⊕ n−)/((n− ⊕ n−) ∩ diag(g)

))
.

(10.4)

Let us recall

Theorem 10.1 ([41], Theorem 3.9) Let (g̃, p̃), (g̃′, p̃′) be a compatible couple
of simple Lie algebras and their parabolic subalgebras, and suppose p̃ is g̃′-
compatible standard parabolic subalgebra of g̃, (λ, µ) ∈ Λ+(̃l⊕ l̃). Then

1. m(λ′, (λ, µ)) <∞ for all λ′ ∈ Λ+(̃l′).

2. In the Grothendieck group of Bernstein-Gelfand-Gelfand parabolic category
Op̃′

there is g̃′-isomorphism

M g̃

p̃
(Cλ,µ)|g̃′ ≃

⊕

λ′∈Λ+ (̃l′)

m(λ′, (λ, µ))M g̃′

p̃′ (Cλ′).
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Applied to the case of our interest (g̃, p̃) = (g⊕ g, p⊕ p), (g̃′, p̃′) = diag(g, p) =
(diag(g), diag(p)), we see that the polynomial ring S⋆

(
(n− ⊕ n−)/((n− ⊕ n−) ∩

diag(g))
)

decomposes as diag(l)-module on irreducibles with higher multiplic-
ities. In particular, each diag(l)-module realized in homogeneity k polynomi-
als also appears in polynomials of homogeneity (k + 2), k ∈ N. As we al-
ready explained, we focus on the case of 1-dimensional inducing representations
Vλ,µ ≃ Cλ⊗Cµ as (l⊕l)-modules and Vλ′ ≃ Cν as diag(l)-modules (λ, µ, ν ∈ C).
The multiplicity formula then implies that a nontrivial homomorphism in (10.4)
occurs for each 1-dimensional diag(l)-module in S⋆

(
(n− ⊕ n−)/((n− ⊕ n−) ∩

diag(g))
)
, and it is a result in classical invariant theory (see [29], [47]) that for

each even homogeneity there is just one 1-dimensional module. Because n− is
as (diag(l)/[diag(l), diag(l)])-module isomorphic to the character C−1, the fol-
lowing relation holds true in the Grothendieck group of O(p) with p ≃ diag(p):

Corollary 10.2 For g⊕ g = so(n+ 1, 1,R)⊕ so(n+ 1, 1,R), diag(g) ≃ so(n+
1, 1,R) with standard maximal parabolic subalgebras p⊕p, diag(p) given by omit-
ting the first simple root in the corresponding Dynkin diagrams, m(ν, (λ, µ)) = 1
if and only if ν = λ+ µ− 2j, j ∈ N and m(ν, (λ, µ)) = 0 otherwise.

Consequently, in the Grothendieck group of the Bernstein-Gelfand-Gelfand
parabolic category Op holds

Mg⊕g
p⊕p (Cλ,µ)|diag(g) ≃

⊕

j∈N

Mg
p (Cλ+µ−2j),

where ν = λ+ µ− 2j.

Although we work in one specific signature (n+ 1, 1), the results are easily
extended to a real form of any signature.

10.2 The construction of singular vectors for diagonal branch-
ing rules applied to generalized Verma modules for
so(n + 1, 1, R)

The rest of the section is devoted to the construction of singular vectors, whose
abstract existence was concluded in Corollary 10.2. This can be regarded as a
quantitative part of our diagonal branching problem.

10.2.1 Description of the representation

In this subsection we describe the representation of g ⊕ g, acting upon the
generalized Verma module

Mg⊕g
p⊕p (Cλ,µ) = U(g⊕ g)⊗U(p⊕p) (Cλ,µ), Cλ,µ = Cλ ⊗ Cµ,

in its Fourier image, i.e. apply the framework for the F -method explained in
Section 4 to

Mg⊕g
p⊕p (Cλ,µ) ≃Mg

p (Cλ)⊗Mg
p (Cµ). (10.5)
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The first goal is to describe the action of elements in the nilradical diag(n)
of diag(p) in terms of differential operators acting on the Fourier image of
Mg⊕g

p⊕p (Cλ,µ). This can be derived from the explicit form of the action on the
induced representation realized in the non-compact picture, and it follows from
(10.5) that the problem can be reduced to the question on each component
of the tensor product separately. Let us consider the complex representation
πλ, λ ∈ C, of G = SOo(n + 1, 1,R), induced from the character p 7→ aλ,
p ∈ P , acting on the one dimensional representation space Cλ ≃ C. Here
a ∈ A = R⋆ is the abelian subgroup in the Langlands decomposition P = MAN ,
M = SO(n), N = Rn. In other words, πλ acts by left regular representation on
IndGP (Cλ).

Let xj be the coordinates with respect to the standard basis on n−, and ξj ,
j = 1, . . . , n the coordinates on the Fourier transform of n−. We consider the
family of differential operators

Qj(λ) = −1

2
|x|2∂j + xj(−λ+

∑

k

xk∂k), j = 1, . . . , n, (10.6)

P ξj (λ) = i

(
1

2
ξj�

ξ + (λ− Eξ)∂ξj

)
, j = 1, . . . , n, (10.7)

where |x|2 = x2
1 + · · ·+ x2

n,

�
ξ = ∂2

ξ1 + · · ·+ ∂2
ξn

is the Laplace operator of positive signature, ∂j = ∂
∂xj

and Eξ =
∑

k ξk∂ξk
is

the Euler homogeneity operator (i ∈ C the complex unit.) The following result
is a routine computation:

Lemma 10.3 ([43]) Let us denote by Ej the standard basis elements of n, j =
1, . . . , n. Then Ej ∈ n are acting on C∞(n−,C−λ) by

dπ̃λ(Ej)(s⊗ v) = Qj(λ)(s)⊗ v, s ∈ C∞(n−,C), v ∈ C−λ, (10.8)

and the action of (dπ̃)Fλ on Pol[ξ1, . . . , ξn]⊗ C∨
λ is given by

(dπ̃)Fλ (Ej)(f ⊗ v) = P ξj (λ)(f) ⊗ v, f ∈ Pol[ξ1, . . . , ξn], v ∈ C∨
−λ. (10.9)

As for the action of remaining basis elements of g in the Fourier image of the
induced representation, the action of n− is given by multiplication by coordinate
functions, the standard basis elements of the simple part of the Levi factor
[l, l] = so(n) act by differential operators

M ξ
ij = (ξj∂ξi

− ξi∂ξj
), i, j = 1, . . . , n

and the basis element of the Lie algebra of A acts as the homogeneity operator,
Eξ =

∑n
i=1 ξi∂ξi

.
In the Fourier image of the tensor product of two induced representations in

the non-compact realization on n−⊕n− with coordinates ξi resp. νi on the first
resp. second copy of n− in n− ⊕ n−, the generators of the diagonal subalgebra
diag(g) act on the representation IndG×G

P×P (Cλ,µ) induced from (χλ, χµ) as
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1. Multiplication by

(ξj ⊗ 1) + (1⊗ νj), j = 1, . . . , n (10.10)

for the elements of diag(n−),

2. First order differential operators with linear coefficients

M ξ,ν
ij = (M ξ

ij ⊗ 1) + (1⊗Mν
ij)

= (ξj∂ξi
− ξi∂ξj

)⊗ 1 + 1⊗ (νj∂νi
− νi∂νj

), (10.11)

i, j = 1, . . . , n for the elements of the simple subalgebra of diag(l) and

Eξ ⊗ 1 + 1⊗ Eν =
n∑

i=1

(ξi∂ξi
⊗ 1 + 1⊗ νi∂νi

), (10.12)

for the generator of diag(l)/[diag(l), diag(l)],

3. Second order differential operators with linear coefficients

P ξ,νj (λ, µ) = (P ξj (λ) ⊗ 1) + (1⊗ P νj (µ))

= i(
1

2
ξj�

ξ + (λ− Eξ)∂ξj
)⊗ 1

+i1⊗ (
1

2
νj�

ν + (µ− Eν)∂νj
), (10.13)

j = 1, . . . , n for the elements diag(n).

This completes the description of the first part of abstract procedure in the case
of the diagonal branching problem of our interest.

10.2.2 Reduction to a hypergeometric differential equation in two
variables

It follows from the previous discussion that diag(l)-modules inducing singular
vectors for the diagonal branching rules are one dimensional. This means that
they are annihilated by diag(ls) = diag([l, l]) ≃ so(n,R), the simple part of
the diagonal Levi factor diag(l) ≃ so(n,R) × R. It follows that the singular
vectors are invariants of diag(l) acting diagonally on the algebra of polynomials
on n− ⊕ n− as a l ⊕ l-module. The following result is a special case of the first
fundamental theorem in classical invariant theory, see e.g. [29], [47].

Lemma 10.4 Let (V,<,>) be a finite dimensional real vector space with bilin-
ear form <,> and SO(V ) the Lie group of automorphisms of (V,<,>). Then
the subalgebra of SO(V )-invariants in the complex polynomial algebra Pol[V⊕V ]
(SO(V ) acting diagonally on V ⊕V ) is polynomial algebra generated by < ξ, ξ >,
< ξ, ν > and < ν, ν >. Here we use the convention that ξ is a vector in the first
component V of V ⊕ V and ν in the second summand.
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In our case, the complex polynomial algebra is Pol[ξ1, . . . , ξn, ν1, . . . , νn] and we
use the notation Pol[r, s, t] for the (complex) subalgebra of invariants:

r :=< ξ, ν >=
n∑

i=1

ξiνi,

s :=< ξ, ξ >=

n∑

i=1

ξiξi,

t :=< ν, ν >=

n∑

i=1

νiνi. (10.14)

The task of the present subsection is to rewrite the operators P ξ,νj (λ, µ) in the

variables r, s, t, i.e. we reduce the action of P ξ,νj (λ, µ) from the polynomial ring
to the ring of diag(n−)-invariants on n− ⊕ n−.

We compute

∂νi
r = ξi, ∂ξi

r = νi, ∂νi
s = 0, ∂ξi

s = 2ξi, ∂νi
t = 2νi, ∂ξi

t = 0, (10.15)

and

∂ξi
= νi∂r + 2ξi∂s,�

ξ = t∂2
r + 4r∂r∂s + 2n∂s + 4s∂2

s , i = 1, . . . , n. (10.16)

Note that analogous formulas for ∂νi
, �ν can be obtained from those for ξ by

applying the involution

ξi ←→ νi, s←→ t, r←→ r. (10.17)

We also have for all i = 1, . . . , n

Eξ∂ξi
= νi(E

r + 2Es)∂r + ξi(2Er + 4Es + 2)∂s, (10.18)

and so taking all together we arrive at the operators

P r,s,ti (λ, µ) = ξi(
1

2
t∂2
r + (n+ 2λ− 2− 2Es)∂s − (Er + 2Et − µ)∂r)

+νi(
1

2
s∂2
r + (n+ 2µ− 2− 2Et)∂t − (Er + 2Es − λ)∂r) (10.19)

acting on complex polynomial algebra Pol[r, s, t], i = 1, . . . , n. A consequence
of the system of equations (i = 1, . . . , n) is

P r,s,tξ (λ, µ) :=

n∑

i=1

ξiP
r,s,t
i (λ, µ) = s(

1

2
t∂2
r + (n+ 2λ− 2− 2Es)∂s

−(Er + 2Et − µ)∂r) + r(
1

2
s∂2
r + (n+ 2µ− 2− 2Et)∂t − (Er + 2Es − λ)∂r),

P r,s,tν (λ, µ) :=

n∑

i=1

νiP
r,s,t
i (λ, µ) = r(

1

2
t∂2
r + (n+ 2λ− 2− 2Es)∂s

−(Er + 2Et − µ)∂r) + t(
1

2
s∂2
r + (n+ 2µ− 2− 2Et)∂t − (Er + 2Es − λ)∂r).

(10.20)
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Notice that the second equation follows from the first one by the action of
involution

λ←→ µ, s←→ t, r ←→ r.

In what follows we construct a set of homogeneous polynomial solutions of
P r,s,tξ (λ, µ), P r,s,tν (λ, µ) solving the system {P r,s,ti (λ, µ)}i, i = 1, . . . , n. The
uniqueness of the solution for the generic values of the inducing parameters
implies the unique solution of the former system of PDEs.

Notice that (10.20) is the system of differential operators preserving the space
of homogeneous polynomials in the variables r, s, t, i.e. P r,s,tξ (λ, µ), P r,s,tν (λ, µ)

commute with Er,s,t := Er + Es + Et.
Let p = p(r, s, t) be a homogeneous polynomial of degree N , deg(p) = N ,

and write

p = rNp(
s

r
,
t

r
) = rN p̃(u, v), u :=

s

r
, v :=

t

r
,

p̃(u, v) =
∑

i,j|0≤|i+j|≤N
Ai,ju

ivj , (10.21)

where p̃ is the polynomial of degree N . We have

∂s =
1

r
∂u +

1

u
∂r, ∂t =

1

r
∂v +

1

v
∂r

and so the summands in (10.20) transform as

1

2
st∂2

r =
1

2
N(N − 1)uv,

s(n+ 2λ− 2− 2Es)∂s = (n+ 2λ− 2Eu − 2N)(Eu +N),

−s(Er + 2Et − µ)∂r = −N(3N − 3 + 2Ev − µ)u,

1

2
rs∂2

r =
1

2
N(N − 1)u,

r(n+ 2µ− 2− 2Et)∂t = (n+ 2µ− 2Ev − 2N)(∂v +
N

v
),

−r(Er + 2Es − λ)∂r = −N(2Eu − λ+ 3N − 3) (10.22)

when acting on rN p̃(u, v). Taken all together, we get

Lemma 10.5 The substitution (10.21) transforms the former system of PDEs
(10.20) to a hypergeometric differential operator

Pu,vξ (λ, µ) =
1

2
N(N − 1)uv + (n+ 2λ− 2Eu − 2N)(Eu +N)

−N(3N − 3 + 2Ev − µ)u+
1

2
N(N − 1)u

+(n+ 2µ− 2Ev − 2N)(∂v +
N

v
)−N(2Eu − λ+ 3N − 3),

(10.23)

fulfilling
Pu,vν (λ, µ) = P v,uξ (µ, λ).
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In the next subsection we find, for generic values of the inducing parameters
λ, µ, a unique solution for this hypergeometric equation for a given homogeneity.

10.2.3 Solution of the hypergeometric differential equation in two
variables

We start with a couple of simple examples.

Example 10.6 Let us consider the polynomial of homogeneity one,

p(r, s, t) = Ar +Bs+ Ct, A,B,C ∈ C.

The application of P r,s,ti (λ, µ) yields

P r,s,ti (λ, µ)(Ar +Bs+ Ct) = ξi(B(n+ 2λ− 2) +Aµ) + νi(C(n + 2µ− 2) +Aλ)

(10.24)

for all i = 1, . . . , n. When A is normalized to be equal to 1, we get

C = − λ

n+ 2µ− 2
, B = − µ

n+ 2λ− 2
.

The unique homogeneous (resp. non-homogeneous) solution of P r,s,ti (λ, µ) for
all i = 1, . . . , n is then

p(r, s, t) = (n+ 2λ− 2)(n+ 2µ− 2)r − µ(n+ 2µ− 2)s− λ(n+ 2λ− 2)t.

(10.25)

Example 10.7 Let

p(r, s, t) = Ar2 +Bs2 + Ct2 +Drs+ Est+ Frt, A,B,C,D,E, F ∈ C

be a general polynomial of homogeneity two. We have

P r,s,ti (λ, µ)p(r, s, t) = ξi[r(D(n + 2λ− 2) +A2(µ− 1)) + s(B2(n+ 2λ− 4) +Dµ)

+t(A+ E(n+ 2λ− 2) + F (µ− 2))],

+νi[r(F (n + 2µ− 2) +A2(λ− 1)) + s(A+ E(n+ 2µ− 2) +D(λ − 2))

+t(C2(n+ 2µ− 4) + Fλ)], (10.26)

for all i = 1, . . . , n. The equations
∑

i

ξiP
r,s,t
ξi

(λ, µ) = 0,
∑

i

νiP
r,s,t
νi

(λ, µ) = 0

are equivalent to two systems of linear equations:

D(n+ 2λ− 2) +A2(µ− 1) +A+ E(n+ 2µ− 2) +D(λ− 2) = 0,

F (n+ 2µ− 2) +A2(λ− 1) = 0,

B2(n+ 2µ− 4) +Dµ = 0,

A+ E(n+ 2λ− 2) + F (µ− 2) = 0,

C2(n+ 2µ− 4) + Fλ) = 0, (10.27)

97



resp.

D(n+ 2λ− 2) +A2(µ− 1) = 0,

B2(n+ 2µ− 4) +Dµ = 0,

A+ E(n+ 2λ− 2) + F (µ− 2) + F (n+ 2µ− 2) +A2(λ− 1) = 0,

A+ E(n+ 2µ− 2) +D(λ− 2) = 0,

C2(n+ 2µ− 4) + Fλ = 0. (10.28)

Both systems are equivalent under the involution

A←→ A, E ←→ E, D ←→ F, B ←→ C, λ←→ µ

and its unique solution invariant under this involution is

A = 1, F =
−2(λ− 1)

n+ 2µ− 2
, C =

λ(λ− 1)

(n+ 2µ− 2)(n+ 2µ− 4)
,

E = 2
(λ− 2)(µ− 2)− (1 + n

2 )

(n+ 2µ− 2)(n+ 2λ− 2)
, D =

−2(µ− 1)

(n+ 2λ− 2)
,

B =
µ(µ− 1)

(n+ 2λ− 2)(n+ 2λ− 4)
. (10.29)

The vector

p(r, s, t) = (n+ 2λ− 2)(n+ 2λ− 4)(n+ 2µ− 2)(n+ 2µ− 4)r2

+µ(µ− 1)(n+ 2µ− 2)(n+ 2µ− 4)s2

+λ(λ− 1)(n+ 2λ− 2)(n+ 2λ− 4)t2

−2(µ− 1)(n+ 2λ− 4)(n+ 2µ− 2)(n+ 2µ− 4)rs

+2((λ− 2)(µ− 2)− (1 +
n

2
))(n+ 2λ− 4)(n+ 2µ− 4)st

−2(λ− 1)(n+ 2λ− 2)(n+ 2λ− 4)(n+ 2µ− 4)rt. (10.30)

is then the unique solution of P r,s,ti (λ, µ) of homogeneity two.

We now return back to the situation of a general homogeneity. The deho-
mogenesation (r, s, t, )→ (r, u, v) is governed by coordinate change

u :=
s

r
, v :=

t

r
, r := r, (10.31)

and so

∂s →
1

r
∂u, ∂t →

1

r
∂v, ∂r → −

1

r
u∂u −

1

r
v∂v + ∂r ,

Es → Eu, Et → Ev, Er → −Eu − Ev + Er . (10.32)
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The terms in P r,s,tξ (λ, µ) transform into

1

2
st∂2

r → 1

2
uv(Eu + Ev − Er + 1)(Eu + Ev − Er),

−r(Er + 2Es − λ)∂r → (Eu + Ev − Er)(Eu − Ev + Er − λ− 1),

r(n+ 2µ− 2− 2Et)∂t → (n+ 2µ− 2− 2Ev)∂v,

1

2
rs∂2

r → 1

2
u(Eu + Ev − Er + 1)(Eu + Ev − Er),

−s(Er + 2Et − µ)∂r → u(Eu + Ev − Er)(−Eu + Ev + Er − µ− 1),

s(n+ 2λ− 2− 2Es)∂s → (n+ 2λ− 2Eu)Eu, (10.33)

and when acting on a polynomial of homogeneity N , p(r, s, t) = rN p̃(u, v) for a
polynomial p̃(u, v) of degree N in u, v, Er = N and we get

Pu,vξ (λ, µ) =
1

2
uv(Eu + Ev −N + 1)(Eu + Ev −N)

−(Eu)2 + Eu(n+ λ− 1) + (Ev −N)(−Ev +N − λ− 1)

+(n+ 2µ− 2− 2Ev)∂v

+
1

2
u(Eu + Ev −N)(−Eu + 3Ev +N − 2µ− 1). (10.34)

Similarly, one gets

Pu,vν (λ, µ) =
1

2
uv(Eu + Ev −N + 1)(Eu + Ev −N)

−(Ev)2 + Ev(n+ µ− 1) + (Eu −N)(−Eu +N − µ− 1)

+(n+ 2λ− 2− 2Eu)∂u

+
1

2
v(Ev + Eu −N)(−Ev + 3Eu +N − 2λ− 1). (10.35)

Let us denote Ai,j(λ, µ) the coefficient by monomial uivj in the polynomial
p̃(u, v). The assumption Ai,j(λ, µ) = Aj,i(µ, λ), combined with the symmetry
between Pu,vξ (λ, µ) and Pu,vν (λ, µ), allows to restrict to the action of Pu,vξ (λ, µ)
on a polynomial of degree N of the form

p̃(u, v) =
∑

i,j|i≤N, j≤N
Ai,j(λ, µ)uivj , Ai,j(λ, µ) = Aj,i(µ, λ), (10.36)

thereby converting the differential equation (10.34) into the four-term functional
relation

1

2
(i+ j −N − 1)(i+ j −N − 2)Ai−1,j−1(λ, µ)

+(−i2 + i(n+ λ− 1) + (j −N)(−j +N − λ− 1)Ai,j(λ, µ)

+(j + 1)(n+ 2µ− 2− 2j)Ai,j+1(λ, µ)

+
1

2
(i+ j −N − 1)(−i+ 3j +N − 2µ)Ai−1,j(λ, µ) = 0 (10.37)
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for i, j = 1, . . . , N and j ≥ i, which recursively computes Ai,j+1(λ, µ) in terms
of Ai−1,j−1(λ, µ), Ai−1,j(λ, µ) and Ai,j(λ, µ).

There is still one question we have not mentioned yet, concerning the nor-
malization of Ai,j(λ, µ). A singular vector can be normalized by multiplication
by common denominator resulting in the coefficients valued in Pol[λ, µ] rather
than the field C(λ, µ). As we shall prove in the next Theorem, a consequence of
(10.37) is the uniqueness of its solution in the range λ, µ /∈ {m− n

2 |m ∈ N}. We
observe that the uniqueness of solution fails for λ, µ ∈ {m − n

2 |m ∈ N}, which
indicates the appearance of a non-trivial composition structure in the branching
problem for generalized Verma modules.

In the following Theorem we construct a set of singular vectors, which will be
the representatives realizing abstract character formulas of the diagonal branch-
ing problem in Corollary 8.5.

Theorem 10.8 Let λ, µ ∈ C \ {m − n
2 |m ∈ N}, N ∈ N, and (x)l = x(x +

1) . . . (x + l − 1), l ∈ N be the Pochhamer symbol for x ∈ C. The four-term
functional equation (10.37) for the set {Ai,j(λ, µ)}i,j∈{1,...,N} fulfilling

Aj,i(λ, µ) = Ai,j(µ, λ), j ≥ i,

has a unique nontrivial solution

Ai,j(λ, µ) =

Γ(i+ j −N)Γ(1− n
2 − µ)Γ(1− i+ j −N + λ)Γ(λ+ n

2 − i)
2i+j(−)i+ji!j! Γ(−N)Γ(1−N + λ)Γ(1 + j − n

2 − µ)Γ(λ+ n
2 )
·

i∑

k=0

(−)k
(
i

k

)
(j − i+ 1 + k)i−k(λ+

n

2
− i)i−k(µ−N + 1)k(λ−N + 1− k)k.

(10.38)

Out of the range λ, µ ∈ C \ {m− n
2 |m ∈ N}, (10.38) is still a solution, but not

necessarily unique.

Proof:
Let us first discuss the uniqueness of the solution. The knowledge ofAi,j(λ, µ)

for i+ j ≤ k0 allows to compute the coefficient Ai,j+1(λ, µ) with i+ j = k0 + 1
from the recursive functional equation, because of assumption λ, µ /∈ {m−n

2 |m ∈
N}. The symmetry condition for Ai,j(λ, µ) gives Aj,i(µ, λ) = Ai,j(λ, µ) and the
induction proceeds by passing to the computation of Ai,j+2(λ, µ). Note that
all coefficients are proportional to A0,0(λ, µ) and its choice affects their explicit
form.

The proof of the explicit form for Ai,j(λ, µ) is based on the verification of the
recursion functional equation (10.37). To prove that the left hand side of (10.37)
is trivial is equivalent to the following check: up to a product of linear factors
coming from Γ-functions, the left hand side is the sum of four polynomials in
λ, µ. A simple criterion for the triviality of a polynomial of degree d we use is
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that it has d roots (counted with multiplicity) and the leading monomial in a
corresponding variable has coefficient zero.

It is straightforward but tedious to check that the left hand side of (10.37)
has, as a polynomial in λ, the roots λ = k − n

2 for k = 1, . . . , i and its leading
coefficient is zero. Let us first consider λ = i− n

2 , so get after substitution

Ai,j(i−
n

2
, µ) =

(−)j(i+ j −N − 1) . . . (−N)

2i+ji!j!
·

(j −N − n
2 ) . . . (i−N − n

2 + 1)(1− n
2 −N)i(µ−N + 1)i

(j − n
2 − µ) . . . (1− n

2 − µ)(λ + n
2 − 1) . . . (λ+ n

2 − i)
(10.39)

and

Ai,j+1(i−
n

2
, µ) = Ai,j(i−

n

2
, µ) · (−)(i+ j −N)(j −N − n

2 + 1)

2(j + 1)(j − n
2 − µ+ 1)

. (10.40)

Taken together, there remain just two contributions on the left hand side of
(10.37) given by Ai,j(i − n

2 , µ), Ai,j+1(i − n
2 , µ). Up to a common rational

factor, their sum is proportional to

i(
n

2
− 1) + (j −N)(−j +N − i+ n

2
− 1) +

(j + 1)(n+ 2µ− 2− 2j)(−)
(i+ j −N)(j −N − n

2 + 1)

2(j + 1)(j − n
2 − µ+ 1)

= 0,

which proves the claim. The proof of triviality of the left hand side at special
values λ = i− 1− n

2 , . . . , 1− n
2 is completely analogous.

Note that there are some other equally convenient choices for λ, µ allowing
the triviality check for (10.37), for example based on the choice λ = k +N − 1,
k = 1, . . . , i or µ = N − k, k = 1, . . . , i.

The remaining task is to find the leading coefficient on the left hand side of
(10.37) as a polynomial in λ. Because

(λ+
n

2
− i)i−k λ→∞∼ λi−k,

(λ−N + 1− k)k λ→∞∼ λk, (10.41)

the polynomial is of degree λj−i λ
i

λi = λj−i, j ≥ i. The leading coefficient of
Ai,j(λ, µ) is

lim
λ→∞

Ai,j(λ, µ)

λj−i
= (

i∑

k=0

(−)k
(
i

k

)
(j − i+ 1 + k)i−k(µ−N + 1)k) ·

(−)i+j(i+ j −N − 1) . . . (−N)

2i+ji!j! (j − n
2 − µ) . . . (1− n

2 − µ)
. (10.42)
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There are three contributions to (10.37):

(N − j + i) lim
λ→∞

Ai,j(λ, µ)

λj−i
,

(j + 1)(n+ 2µ− 2− 2j) lim
λ→∞

Ai,j+1(λ, µ)

λj+1−i ,

1

2
(i+ j −N − 1)(−i+ 3j +N − 2µ) lim

λ→∞

Ai−1,j(λ, µ)

λj+1−i , (10.43)

whose sum is a polynomial in µ multiplied by common product of linear poly-
nomial. In order to prove triviality of this polynomial, it suffices as in the first
part of the proof to find sufficient amount of its roots and to prove the triviality
of its leading coefficient. For example in the case µ = N−1, we get from (10.43)
that the coefficients of this polynomial are proportional to the sum

(N − j + i) +
(j + 1)(i+ j −N)

(j − i+ 1)
− i(−i+ 3j +N − 2(N − 1))

(j − i+ 1)
,

which equals to zero. The verification of the required property for µ = N − k,
k = 2, . . . , i is completely analogous. This completes the proof.

�

This completes the description of the set Sol(g⊕ g, diag(g),Cλ,µ) character-
izing solution space of a diagonal branching problem for so(n+ 1, 1,R), (4.5).

Remark 10.9 It is an interesting observation that the four term functional
equation (10.37) for Ai,j(λ, µ) can be simplified using hypergeometric functions

3F2:

3F2(a1, a2, a3; b1, b2; z) :=

∞∑

m=0

(a1)m(a2)m(a3)m
(b1)m(b2)m

zm

m!
,

where a1, a2, a3, b1, b2 ∈ C and (x)m = x(x+ 1) . . . (x+m− 1). In particular, it
can be converted into four term functional equation

(n+ 2λ)Γ(i+ j −N)Γ(−n2 − λ)Γ(1 − i+ j −N + λ)Γ(1 − n
2 − µ)

2i+j(−)i+jΓ(1 + i)Γ(−N)Γ(1−N + λ)Γ(1 + j − n
2 − µ)

·

(i(−2j + n+ 2µ)3F2(1 − i, N − λ, 1 −N + µ; 1− i+ j, 1− n

2
− λ; 1) +

i(−1 + i− j +N − λ)(i− 3j −N + 2µ) ·
·3F2(1− i, N − λ, 1−N + µ; 2− i+ j, 1− n

2
− λ; 1) +

(i2 − i(−1 + n+ λ) + (j −N)(1 + j −N + λ)) ·
·3F2(−i, N − λ, 1 −N + µ; 1− i+ j, 1− n

2
− λ; 1) +

(1 + j)(i+ j −N)(−1 + i− j +N − λ) ·
·3F2(−i, N − λ, 1 −N + µ; 2− i+ j, 1− n

2
− λ; 1)) = 0. (10.44)

This functional equation, whose knowledge would clearly simplify the formulation
of the proof of the last Theorem, is advanced to be found in any standard textbook
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on special function theory of several variables (see e.g., [25], [2]), and does not
seem to be accessible in the literature.

In fact, a large part of the monograph [2] is devoted to evaluations of gen-
eralized hypergeometric functions p+1Fp at z = 1, at least for reasonably small
values of p ∈ N. However, the Saalschutz’s theorems of the form

n∑

r=0

(1
2a)r(

1
2 + 1

2a− b)r(−4)r(a+ 2r)n−r
r!(n− r)!(1 + a− b)r

=

(a)n
n!

3F2(
1

2
+

1

2
a− b, a+ n,−n; 1 + a− b, 1

2
+

1

2
a; 1) (10.45)

are too special and restrictive to be of direct use for our needs.

Example 10.10 As an example, we have

A1,j(λ, µ) =
Γ(1 + j −N)Γ(j −N + λ)Γ(1− n

2 − µ)

2j+1(−)j+1Γ(1 + j)Γ(−N)Γ(1 −N + λ)Γ(1 + j − n
2 − µ)

·

· (j(−2 + n+ 2λ) + 2(N − λ)(1 −N + µ))

(n+ 2λ− 2)
(10.46)

for all j ∈ {1, . . . , N}.

Let us also remark that for special values λ, µ ∈ {m − n
2 |m ∈ N}, the formula

Ai,j(λ, µ) simplifies due to the factorization of the underlying polynomial. Our
experience suggests that the factorization indicates so called factorization iden-
tity, when a homomorphism of generalized Verma modules quotients through
a homomorphism of generalized Verma modules of one of its summands (in
the source) or a target homomorphism of generalized Verma modules. This
naturally leads to the question of full composition structure of the branching
problem going beyond the formulation in terms of the Grothendieck group of
Bernstein-Gelfand-Gelfand parabolic category Op.

Let us mention another interesting observation. The diagonal coefficients
Ai,i(λ, µ) = Ai,i(µ, λ) are, up to a rational multiple coming from the ratio of
the product of Γ-functions, symmetric with respect to λ↔ µ. As a consequence,
these polynomials belong to the algebra of Z2-invariants:

C[λ, µ]Z2 ∼→ C[λµ, λ+ µ].

Lemma 10.11 The diagonal coefficients can be written as

Ai,i(λ, µ) =
Γ(2i−N)

22i+1i! Γ(−N)Γ(1 + i− n
2 − µ)Γ(1 + i− n

2 − λ)
·

(Γ(1 + i− n

2
− λ)Γ(1− n

2
− µ)3F2(−i, N − λ, 1 −N + µ; 1, 1− n

2
− λ; 1) +

Γ(1 + i− n

2
− µ)Γ(1 − n

2
− λ)3F2(−i, 1−N + λ,N − µ; 1, 1− n

2
− µ; 1))
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Proof:
It follows from the definition of 3F2 that

1

Γ(1 + i− n
2 − µ)Γ(1 + i− n

2 − λ)
·

(Γ(1 + i− n

2
− λ)Γ(1− n

2
− µ)3F2(−i, N − λ, 1 −N + µ; 1, 1− n

2
− λ; 1) +

Γ(1 + i− n

2
− µ)Γ(1 − n

2
− λ)3F2(−i, 1−N + λ,N − µ; 1, 1− n

2
− µ; 1)) =

i∑

m=0

(
(−i)m(N − λ)m(1−N + µ)m

(1m)(1− n
2 − λ)m(1− n

2 − µ)i−1

+
(−i)m(N − µ)m(1−N + λ)m

(1m)(1 − n
2 − µ)m(1− n

2 − λ)i−1
)

1

m!
, (10.47)

where the sum is finite due to the presence of (−i)m in the nominator. Using
basic properties of the Pochhamer symbol, e.g. (x)m = (−)m(−x + m − 1)m,
an elementary manipulation yields the result.

�

Example 10.12 As an example, in the case of i = 1 we have

A1,1(λ, µ) =
N(N − 1)(λµ−N(λ+ µ) + (1− n

2 +N(N − 1)))

(2λ+ n− 2)(2µ+ n− 2)
(10.48)

Let us summarize our results in

Theorem 10.13 Let g = so(n+1, 1,R) be a simple Lie algebra and p its confor-
mal parabolic subalgebra with commutative nilradical. Then the diagonal branch-
ing problem for the scalar generalized Verma U(g ⊕ g)-modules induced from
character (λ, µ) is determined in the Grothendieck group of Bernstein-Gelfand-
Gelfand parabolic category Op by U(g)-isomorphism

Mg⊕g
p⊕p (Cλ,µ)|g ≃

∞⊕

j=0

Mg
p (Cλ+µ−2j). (10.49)

Here the summand Mg
p (Cλ+µ−2j) is generated by singular vector of homogeneity

2j and the form (10.21) with coefficients given by equation (10.38), j ∈ N. In
particular, the singular vectors are non-zero, unique up to a multiple, linearly
independent and of expected weight (given by homogeneity), and the cardinality
of the set of singular vectors is as predicted by Corollary 8.5.

The explicit formulas for the singular vectors will be given, in the dual
language of bilinear differential operators, in the next section.
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10.3 Application - the classification of bilinear conformal
invariant differential operators on line bundles

Let M be a smooth (or complex) manifold equipped with the filtration of its
tangent bundle

0 ⊂ T 1M ⊂ · · · ⊂ Tm0M = TM,

V → M a smooth (or holomorphic) vector bundle on M and JkV → M the
weighted jet bundle over M , defined by

JkV =
⋃

x∈M
JkxV , JkxV

∼→ ⊕kl=1Hom(Ul(gr(TxM)),Γ(Vx)),

where Ul(gr(TxM)) is the subspace of homogeneity k-elements in the universal
enveloping algebra of the associated graded gr(TxM). A bilinear differential
pairing between sections of the bundle V and sections of the bundleW to sections
of the bundle Y is a vector bundle homomorphism

B : JkV ⊗ J lW → Y. (10.50)

In the case M̃ = G̃/P̃ is a generalized flag manifold, a pairing is called invariant
if it commutes with the action of G̃ on local sections of the homogeneous vector
bundles V ,W ,Y. Denoting V, W, Y the inducing P̃ -representations of homoge-
neous vector bundles V ,W ,Y, the space of G̃-invariant differential pairings can
be algebraically characterized as

((U(g̃)⊗ U(g̃))⊗U(p̃)⊗U(p̃) Hom(V⊗W,Y))P̃ ≃
HomU(g̃)(M

g̃

p̃
(Y),M g̃⊕g̃

p̃⊕p̃
(V∨ ⊗W∨)), (10.51)

where the superscript denotes the space of P̃ -invariant elements and V∨,W∨

denote the dual representations, see e.g., [48]. In our case, we get

Theorem 10.14 Let G = SOo(n+ 1, 1,R) and P its conformal parabolic sub-
group, λ, µ ∈ C\{m− n

2 |m ∈ N}, N ∈ N. Let us denote by L−λ the homogeneous
line bundle on n-dimensional sphere G/P ≃ Sn induced from the character χ−λ
of P . Then there exists up to a multiple a unique set of bilinear conformally
invariant operators

BN : C∞(G/P,L−λ)× C∞(G/P,L−µ)→ C∞(G/P,L−λ−µ−2N ) (10.52)

of the form

BN =
∑

0≤i,j,k≤N |i+j+k=N
Ai,j(λ, µ)s̃i t̃j r̃k, (10.53)
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where

Ai,j(λ, µ) =

Γ(i+ j −N)Γ(1− n
2 − µ)Γ(1− i+ j −N + λ)Γ(λ+ n

2 − i)
2i+j(−)i+ji!j! Γ(−N)Γ(1−N + λ)Γ(1 + j − n

2 − µ)Γ(λ+ n
2 )
·

i∑

k=0

(−)k
(
i

k

)
(j − i+ 1 + k)i−k(λ+

n

2
− i)i−k(µ−N + 1)k(λ−N + 1− k)k,

Ai,j(λ, µ) = Aj,i(µ, λ), (10.54)

such that

s̃ =

n∑

i=1

∂2
xi

= �x, t̃ =

n∑

i=1

∂2
yi

= �y, r̃ =

n∑

i=1

∂xi
∂yi
. (10.55)

Out of the range λ, µ ∈ C \ {m − n
2 |m ∈ N}, BN is still an element of the

previous set, but there might be additional ones indicating the emergence of a
nontrivial composition structure.

Proof:
The proof is a direct consequence of Theorem 10.38 and duality (4.2), to-

gether with the application of inverse Fourier transform

xj ←→ −i∂ξj
, ∂xj

←→ −iξj

with i ∈ C the imaginary complex unit.
�

In many applications, it is perhaps more convenient to express the bilinear
differential operators in terms of tangent resp. normal coordinates ti = 1

2 (ξi+νi)
resp. ni = 1

2 (ξi − νi), i = 1, . . . , n to the diagonal submanifold, where

r =
1

4
(< t, t > − < n, n >),

s =
1

4
(< t, t > + < n, n > +2 < t, n >),

t =
1

4
(< t, t > + < n, n > −2 < t, n >). (10.56)
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11 The branching problem and singular vectors
for infinite dimensional indecomposable in-

ducing representations

Not much is known on the classification of homomorphisms between general-
ized Verma modules induced from indecomposable representations, where the
typical representative examples of interest are p-modules given by restriction of
finite dimensional g-modules. In case of homogeneous parabolic geometry, the
splitting operator is a homomorphism from a module induced by an irreducible
representation of p to a module induced by an indecomposable p-module.

Invariant differential operators acting between sections of vector bundles in-
duced from irreducible modules are rare and they appear in discrete families.
On the contrary, the splitting operators appear in families indexed by contin-
uous parameters. In particular, splitting operators are basic building blocks in
the discussion of translation functors, which play a prominent role in proper
understanding of discrete families of operators between bundles induced from
irreducible representations.

In the present section we give the construction of homomorphism for which
the source space is the bundle induced by an irreducible finite dimensional mod-
ule W of the parabolic subalgebra p, and the target space of the operator is the
bundle induced by the generalized Verma moduleM(W ) induced fromW. Hence
the target space is infinite dimensional vector bundle and the splitting operator
is a differential operator of infinite but locally finite order. This means that on
each homogeneity level of the target is the operator in question of finite order,
but there is an infinite number of homogeneity levels.

These splitting operators form meromorphic families depending in the case
of orthogonal algebra and its conformal (maximal) parabolic subalgebra on one
complex parameter, the value of inducing character twisting generalized Verma
module M(W ). The analytically continued values at singularities offer an im-
portant information, e.g. the residues resp. bottom coefficients at a singularity
define invariant differential operators between bundles induced by irreducible
p-modules. Hence the splitting operators can be used to construct such opera-
tors.

It is well known that generalized Verma modules are universal objects in
the BGG category Op of highest weight g-modules. Each finite dimensional
g-module can be realized as the quotient of a generalized Verma module with
the same highest resp. lowest weight by its maximal submodule. Similarly, each
product W ⊗ V of an irreducible l-module W and an irreducible g-module V
can be realized as a quotient of the generalized Verma module induced from
W. Similarly, splitting operators with values in generalized Verma modules are
universal among splitting operators with values in the productW⊗V. The latter
ones are usual splitting operators used in a variety of constructions.

Splitting operators with values in generalized Verma modules collect in one
definition a sequence of splitting operators with values in different twisted trac-
tor bundles (i.e., the bundles of type W ⊗ V described above). The latter ones
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are obtained by projection from the former ones. In this sense we can say that
the splitting operators with values in generalized Verma modules are universal
splitting operators.

There is a very simple relation between splitting operators valued in gen-
eralized Verma modules and splitting operators with values in twisted tractor
bundles constructed via Casimir operators. The latter ones are given by poly-
nomials in Casimir operators, defined as finite products of linear factors. The
former ones are given by limit of the latter ones, i.e. by infinite (but locally fi-
nite) suitably normalized products of linear factors. This reformulation leads to
a curved generalization given by replacing Casimir operator by curved Casimir
operator, cf. [16].

11.1 Analytic computation of universal splitting operator
- the conformal case of lowest weight scalar Verma
module

Following the general introduction, we determine the representation action by
basis elements of n on generalized (lowest weight) Verma modules induced from
the p-module given by tensor product of a character and generalized (lowest
weight) g-Verma module (induced from the trivial character). Up to a non-zero
multiple, which will not be of any importance for us due to the fact that we
are interested in the kernel of these operators, the representation action of i-th
standard basis element of n on the generalized (lowest weight) Verma module
isomorphic to C[u1, . . . , un] is given by multiplication by ui. Consequently,

Pi(λ) =
1

2
ξi�

ξ + (λ− Eξ)∂ξi
+ ui, i = 1, . . . , n. (11.1)

The distributive Fourier transform leads to the algebra

C[ξ1, . . . , ξn, u1, . . . , un] ≃ C[ξ1, . . . , ξn]⊗ C[u1, . . . , un]

and classical invariant theory implies that the subalgebra of so(n)-invariants is
generated by |ξ|2 =

∑
i ξiξi, |u|2 =

∑
i uiui and < ξ, u >=

∑
i ξiui. We impose

the grading |ξi| = (1, 0) and |ui| = (0, 1), so ||ξ|2| = (2, 0), ||u|2| = (0, 2) and
| < u, ξ > | = (1, 1). By definition, we need to work with graded subalgebra of
C[|ξ|2, |u|2, < ξ, u >] generated by elements of homogeneity (p, p), p ∈ N, and
again classical invariant theory implies that this subalgebra is isomorphic to
C[< u, ξ >, |ξ|2|u|2]. We have ||ξ|2|u|2| = (2, 2) and use the notation

s :=< u, ξ >, t := |ξ|2|u|2

with
(Eξ + Eu)s = 2s, (Eξ + Eu)t = 4t.

The Jacobian of the map s = s(ξi, ui), t = t(ξi, ui) has components

∂s

∂ξi
= ui,

∂s

∂ui
= ξi,

∂t

∂ξi
= 2ξi|u|2,

∂t

∂ui
= 2ui|ξ|2. (11.2)
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The vector field ∂ξi
transforms as

∂ξi
= ui∂s + 2ξ|u|2∂t,

and so the Laplace operator takes in the variables s, t the form

∑

i

∂ξi
∂ξi

= |u|2(∂2
s + 4s∂s∂t + 4t∂2

t + 2n∂t),

i.e.
1

2
ξi�

ξ =
1

2
ξi|u|2(∂2

s + 2(2Es + 2Et + n))

Similarly, we have

Eξ∂ξi
= ui(E

s + 2Et)∂s + 2ξi|u|2(Es + 2Et + 1)∂t. (11.3)

Collecting all terms together allows to rewrite the representation action on the
subalgebra C[s, t].

Theorem 11.1 The basis elements of the nilradical n act on the subalgebra
C[s, t] ⊂ C[ξ1, . . . , ξn, u1, . . . , un] as

Pi(λ) = ξi|u|2(
1

2
∂2
s + (2λ− 2Et + (n− 2))∂t + ui(λ− Es − 2Et)∂s + 1)

(11.4)

for i = 1, . . . , n.

The multiplication by ξi resp. ui and summing over i yields two partial differ-
ential equations

∑
i ξiPi(λ) = 0 resp.

∑
i uiPi(λ) = 0 in the variables s, t:

(
1

2
t∂2
s + (2λ− 2Es − 2Et + n)Et + (λ+ 1− Es)Es + s)P (s, t) = 0, (11.5)

((λ− 1

2
Es − 2Et)∂s + s(2λ− 2Et + (n− 2))∂t + 1)P (s, t) = 0. (11.6)

The only relation used to derive the previous expression is

sEs∂s = Es2 − Es, tEt∂t = Et
2 − Et.

Note that (11.5) can be classified as a degenerate hypergeometric equation in
two variables s, t. It is genuinely not homogeneous, i.e. it can not be rewritten as
a differential equation in the variable z := t

s2 . Note that 1
2 t∂

2
s = 2z3∂2

z + 3z2∂z,
Es = −2Ez and Et = Ez .

Let us consider an increasing filtration {Fm(C[s, t])}m∈N associated to the
graded polynomial ring C[s, t], gr(s) = 1, gr(t) = 2, with Fm(C[s, t]) given by
elements of grading ≤ m. The second operator preserves Fm(C[s, t]), while
the first does not. On the other hand, one can define decreasing filtration
F̃m(C[s, t]) given by elements of grading less or equal to m. Clearly, the first
operator preserves F̃m(C[s, t]), while the second does not.
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The application of the first equation allows to introduce suitable induction
procedure. Note that we shall work in the ring of formal power series C[[s, t]],
which is more convenient for our purposes. The proof of the next Lemma is
elementary and follows from the recursion formula.

Lemma 11.2 Let us consider the formal power series P (s, t) :=
∑

k Ak,0s
k

(constant in t), such that the first coefficient is normalized to A0,0 = 1 and
k ∈ N. Then there is a recursive formula

Ak,0 = −Ak−1,0
1

c0k
,

whose solution is

Ak,0 =

k∏

i=1

−1

c0i
=

(−1)k

c01c
0
2 . . . c

0
k

.

As a next step, we pass to polynomials (or formal power series) linear in t and
solve analogous recursive relations as in the previous Lemma. Note that we can
(and so we will) omit the monomials independent of t, because their coefficients
were determined by previous Lemma.

Lemma 11.3 Let us consider the formal power series P (s, t) :=
∑

k Ak,1s
kt

(linear in t), k ∈ N. Then there is a recursive formula among Ak+2,0, Ak−1,1

and Ak,1, whose solution is

Ak,1 =
(k + 1)(k + 2)

2

(−1)k+1

c01c
0
2 . . . c

0
k+2c

1
2

.

Proof:
The equation (11.5) implies the three-term relations among aforementioned

coefficients

Ak+2,0
(k + 2)(k + 1)

2
+Ak−1,1 +Ak,1((k + 2)λ+ n− (k2 + k + 2)) = 0,

as a coefficient by monomial skt. One can immediately verify that

Ak,1 =
(k + 1)(k + 2)

2

(−1)k+1

c01c
0
2 . . . c

0
k+2c

1
2

is (a unique) solution of the recursive relation.
�

Now we verify that the solution of equation (11.5) described in previous
Lemmas satisfies equation (11.6) automatically. In other words, the second
differential equation is just a consequence of the first one.

Lemma 11.4 Let k ∈ N. The relation among Ak+1,0, Ak,0 and Ak−1,1, coming
from equation (11.6), is the consequence of the relations coming from the two
previous Lemmas (i.e., the consequence of equation (11.5).)
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Proof:
The relation by monomial sk coming out of equation (11.6) is

(λ− k

2
)(k + 1)Ak+1,0 +Ak,0 + (2λ+ n− 2)Ak−1,1 = 0.

The result of direct computation now follows from an easy to check relation

(λ − k

2
)(k + 1)− c0k+1 =

k(k + 1)

2
,

and the proof follows.
�

The next Theorem computes explicit form of the coefficient Ak,l.

Theorem 11.5 Let k, l ∈ N. Then the collection of coefficients Ak,l,

Ak,l =
(−1)k+l(k + 1) . . . (k + 2l)

2lc01 . . . c
0
k+2lc

1
2 . . . c

l
2l

(11.7)

is the unique solution to the recursive relation

(k + 1)(k + 2)

2
Ak+2,l−1 +Ak−1,l+((k+2l)λ−k2 +k(1−2l)+ l(n−2l))Ak,l = 0

coming out of the equation (11.5).

Proof:
The equation (11.5) contributes to the three term relation amongAk+2,l−1, Ak−1,l, Ak,l

by the monomial sktl just by the aforementioned relation. It follows by direct
check that this relation is equivalent to the identity

−(k + 2l)(k + 1)(k + 2)cl2l − k(k + 1)(k + 2)c0k+2l +

(k + 1)(k + 2)(k + 2l)(l(n+ 2λ− 2l) + k(λ− k − 2l + 1)) = 0,

(11.8)

which is easy to verify with cl2l = l(n+2λ− 2l), c0k+2l = (k+2l)(λ− k− 2l+1).
This completes the proof.

�

The remaining task is to check the consistency of this solution with equation
(11.6).

Theorem 11.6 Let k, l ∈ N and Ak,l be the collection of constants solving
equation (11.5). Then the formal power series P (s, t) =

∑
k,lAk,ls

ktl also solves
equation (11.6), i.e. equation (11.6) is the consequence of equation (11.5).

Proof:
Equation (11.6) is equivalent to

(k + 1)(λ− k

2
− 2l)Ak+1,l +Ak,l + (l + 1)(2λ− 2l + n− 2)Ak−1,l+1 = 0,
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and can be easily reduced to

−2(λ− k

2
− 2l)(k + 2l+ 1)cl+1

2l+2 + 2c0k+2l+1c
l+1
2l+2

+k(k + 2l+ 1)(l + 1)(2λ− 2l + n− 2) = 0. (11.9)

This is elementary to verify and the claim follows.
�

11.2 Algebraic relations among eigenvalues of Casimir op-
erator

In the present subsection we prove a vast number of algebraic relations among
the eigenvalues of Casimir operator, which is useful in the construction of fami-
lies of invariant differential operators, comparisons for expansions of invariants
in different bases, etc. We focus on the collection of eigenvalues coming from
the generalized Verma modules of scalar type.

In particular, let cl2l = l(n + 2λ − 2l), l ∈ N, be the family of such eigen-
values (see the next subsection for their description) and c̃m2m, m ∈ N, be the
corresponding set of eigenvalues coming from the dual Verma module by com-
parison with l-th symmetric trace free representation Sl0Rn+1,1 of so(n+ 1, 1).
We denote by l the half of the order of constructed operator or, equivalently, the
symmetric tensor power of the representation Rn+1,1 used in this construction
such that for a given l, k = l, l + 1, l + 2, . . . denotes descended relation of the
same homogeneity as the primary one. Recall that for the fixed l we have

c̃m2m = −m(n+ 2λ− 4l + 2m− 1), (11.10)

but we need just the values m = l, l+1, . . . (as already mentioned, the notation
for such m is k.) The underline sign − by c’s means that n was replaced by
n− 1.

Let us introduce the two simplest cases, l = 1 with its descendants and l = 2
with its descendants.

Lemma 11.7 (Linear relations) For l = 1, there is for any k = 1, 2, 3, . . . the
linear relation

− (2k − 1)

n+ 4k − 4
c02k −

k(n+ 2k − 3)

n+ 4k − 4
c12 = c̃k2k.

The first two relations appearing in order two and four are

− 1

n
c02 −

n− 1

n
c12 = c̃12,

− 3

n+ 4
c04 −

2(n+ 1)

n+ 4
c12 = c̃24. (11.11)
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Lemma 11.8 (Quadratic relations) For l = 2, there is for any k = 2, 3, . . . the
quadratic relation

2(k − 1)(2k − 5)(2k − 7)

(2k − 1)(n+ 4k − 6)(n+ 4k − 8)
c02k−1c

0
2k −

(k − 1)(2k − 7)(n+ 6k − 13)

(n+ 4k − 4)(n+ 4k − 8)
c02kc

2
4 +

k(k − 1)(n+ 6k − 11)(n+ 6k − 13)

2(n+ 4k − 4)(n+ 4k − 6)
c12c

2
4 = c̃k−1

2(k−1)c̃
k
2k. (11.12)

The first in this series, k = 2, appearing in order four is

2

n(n+ 2)
c03c

0
4 +

3(n− 1)

n(n+ 4)
c04c

2
4 +

(n− 1)(n+ 1)

(n+ 2)(n+ 4)
c12c

2
4 = c̃12c̃

2
4. (11.13)

Both Lemmas are easily proved by (uniquely) solvable system of linear equations
coming from substitution of suitable values for λ in c’s.

Let us focus on general situation l = 1, 2, . . . , associated to the representation
Sl0Rn+1,1.

Theorem 11.9 For a given l ∈ N and k = l, l + 1, . . . , we have the following
(homogeneity l) algebraic relations among eigenvalues of Casimir operator:

A0c
0
2kc

0
2k−1 . . . c

0
2k−l+1 +A1c

0
2kc

0
2k−1 . . . c

0
2k−l+2c

l
2l +

A2c
0
2kc

0
2k−1 . . . c

0
2k−l+3c

l−1
2l−2c

l
2l + · · ·+Alc

1
2c

2
4 . . . c

l−1
2l−2c

l
2l

= c̃k2k c̃
k−1
2(k−1) . . . c̃

k−1+1
2(k−l+1), (11.14)

where

Aj =
k(k − 1) . . . (k − l+ 1)

j!2j2k(2k − 1) . . . (2k − l + j + 1)
· (2l− 2k + 2j + 1)(2l − 2k + 2j + 3)

(l − 2k − n
2 − j + 1)(l − 2k − n

2 − j + 2) . . .

. . . (2l − 2k + 2l− 1)(6k − 6l+ n− 1)(6k − 6l+ n+ 1) . . . (6k − 6l+ n+ 2j − 3)

. . . ̂(l − 2k − n
2 − 2j + 1) . . . (l − 2k − n

2 + l − j + 1)

j = 0, . . . , l. (11.15)
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For example, we have

A0 =
k(k − 1) . . . (k − l + 1)

2k(2k − 1) . . . (2k − l + 1)
·

· (2l − 2k + 1)(2l− 2k + 3) . . . (2l − 2k + 2l− 1)

(l − 2k − n
2 + 1)(l − 2k − n

2 + 2) . . . (l − 2k − n
2 + l)

,

A1 =
k(k − 1) . . . (k − l + 1)

22k(2k − 1) . . . (2k − l + 2)
·

· (2l − 2k + 3)(2l− 2k + 5) . . . (2l − 2k + 2l− 1)(6k − 6l + n− 1)

(l − 2k − n
2 )(l − 2k − n

2 + 1) . . . (l − 2k − n
2 + l − 2)(l − 2k − n

2 + l)
,

Al =
k(k − 1) . . . (k − l + 1)

l!2l
·

· (6k − 4l+ n− 3)(6k − 4l + n− 5) . . . (6k − 4l + n− 2l− 1)

(l − 2k − n
2 + 1)(l − 2k − n

2 ) . . . (l − 2k − n
2 − l + 3)(l − 2k − n

2 − l + 2)
.

We will illustrate the proof of Theorem (11.9) in one explicit case and then
return back to its proof in full generality. To that aim, fix l = 2 and let us find
λ such that (l − 2)(n + 2λ− 2(l − 2)) = cl−2

2l−4 = 0. We get λ = l − n
2 − 2, and

the assumption of knowledge of A0, A1 yields the linear equation for A2:

A2(2l − 2k − n

2
− 2)(2l− 2k − n

2
− 1)(2l − 2k − n

2
)2k(2k − 1) . . .

(2k − l + 3)l(l− 1)(l − 2k − n

2
− 1)(l − 2k − n

2
) . . . (l − 2k − n

2
+ l − 4)(−2)(−4) =

k(k − 1) . . . (k − l + 1)(2l− 2k + 5)(2l − 2k + 7) . . . (2l− 2k + 2l − 1) ·
{(4l− 2k + 1)(4l− 2k + 3)(2l− 2k − n

2
− 2)(2l − 2k − n

2
)(2l− 2k − n

2
− 1)

−(2l − 2k + 3)(l− 2k − n

2
− 1)(6l− 6k − n+ 1)(2l − 2k − n

2
− 1)2l

−(2l− 2k + 1)(2l − 2k + 3)(l − 2k − n

2
− 1)(l − 2k − n

2
)(2l − 2k − n

2
− 2)}.

(11.16)

The only technical point is to prove that the polynomial of degree 5

(4l− 2k + 1)(4l − 2k + 3)(2l− 2k − n

2
− 2)(2l − 2k − n

2
)(2l − 2k − n

2
− 1)

−(2l− 2k + 3)(l − 2k − n

2
− 1)(6l − 6k − n+ 1)(2l− 2k − n

2
− 1)2l

−(2l− 2k + 1)(2l − 2k + 3)(l − 2k − n

2
− 1)(l − 2k − n

2
)(2l − 2k − n

2
− 2)

(11.17)

is divisible by linear polynomials l, l−1, 2l−2k−n2 , 6k−6l+n−1, 6k−6l+n+1 and
this can be verified directly. Moreover, the comparison of coefficients of leading
monomials l5 on both sides reveals that the polynomial of degree 5 is just the
product of these linear polynomials and the required formula for A2 follows.
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Proof: (of Theorem 11.9)
A close inspection reveals that the system of linear equations for {A0, A1, . . . , Al}

is triangular, i.e. jth equation solves Aj in terms of already computed variables
A0, . . . , Aj−1. When combined together, we arrive at the question of factoriza-
tion of degree 2j + 1 polynomial, and it is routine but tedious to verify that all
divisors of this polynomial are as required.

�

11.3 Casimir eigenvalues for l-modules in generalized Verma
modules of scalar type

Here we describe procedure of the decomposition of a symmetric tensor into its
irreducible components, necessary to determine l-structure of generalized Verma
modules. Let us restrict to the even dimension n, n = 2m, and write

X = Tk−2 ⊙ g + Tk−4 ⊙ g ⊙ g + Tk−6 ⊙ g ⊙ g ⊙ g + . . . , (11.18)

where Tl is a symmetric trace-free tensor of valence l. The task is to compute
the collection of tensors {Tl}l from {trj(X)}j, j ∈ N, where trj denotes j-th
power of an application of the trace operator to a given symmetric tensor. For
example, for j = 1 we get

tr(X) =
4(m+ k − 2)

k(k − 1)
Tk−2 +

8(m+ k − 3)

k(k − 1)
Tk−4 ⊙ g + . . . . (11.19)

The coefficients in the upper triangular matrix corresponding to linear transfor-
mation {Tl}l → {trj(X)}j for k-th symmetric tensor X ,

tr0(X) = X = Tk + Tk−2 ⊙ g + Tk−4 ⊙ g ⊙ g + . . . ,

tr1(X) = 0 + c11(k)Tk−2 + c12(k)Tk−4 ⊙ g + . . . ,

tr2(X) = 0 + 0 + c22(k)Tk−4 + . . . ,

. . . (11.20)

form the matrix C = AB, where A is a diagonal matrix with entries

aij =
4iδij

k(k − 1) . . . (k − 2i+ 1)

and B is an upper triangular matrix with entries

bij = (j− 1)(j− 2) . . . (j− i+ 1)(m+ k− j)(m+ k− j− 1) . . . (m+ k− i− j+ 2)

for i ≤ j. The matrix D is defined as D = C−1, i.e. D = B−1A−1 and its
explicit form is



1 − k(k−1)
4(m+k−2)

k(k−1)(k−2)(k−3)
422(m+k−2)(m+k−3) − k...(k−5)

436(m+k−2)(m+k−3)(m+k−4) . . .

0 − k(k−1)
4(m+k−2) − k(k−1)(k−2)(k−3)

42(m+k−2)(m+k−4)
k...(k−5)

432(m+k−2)(m+k−4)(m+k−5) . . .

0 0 k(k−1)(k−2)(k−3)
422(m+k−3)(m+k−4) − k...(k−5)

432(m+k−3)(m+k−4)(m+k−6) . . .

0 0 0 k...(k−5)
436(m+k−4)(m+k−5)(m+k−6) . . .

. . . . . . . . . . . . . . .




115



An interested reader can derive a formula for the general element of this matrix
using modular arithmetic.

In particular, djj(k) = (cjj(k))
−1 for all k and we have

Tk = d0
0(k)X + d0

1(k)tr(X)⊙ g + d0
2(k)tr

2(X)⊙ g ⊙ g + . . . ,

Tk−2 = 0 + d1
1(k)tr(X) + d1

2(k)tr
2(X)⊙ g + . . . ,

Tk−4 = 0 + 0 + d2
2(k)tr

2(X) + . . . .

. . . (11.21)

In terms of highest weights written in Euclidean basis, the (k, j)-th g0 = so(2n)-
module in the so(2n + 1, 1)-Verma module induced from the spinor represen-
tation (our convention is that k denotes the homogeneity and j the num-
ber of traces in this homogeneity) twisted by character z has highest weight
(z − k, k − 2j, 0, . . . , 0). The Kostant-Laplace operator evaluated on this g0-
module gives the g0-Casimir eigenvalues

�(k,j) ≡ cjk = kz + 2jm+ [(k − 2j)(1− k)− 2j2]. (11.22)

For small values of (j, k), the collection of these eigenvalues is

c00 = 1,

c01 = z,

c02 = 2(z − 1), c12 = n+ 2z − 2. (11.23)

Notice that there is a clash in the notation for elements of the matrix C and
Casimir eigenvalues, but we hope the attentive reader will be able to distin-
guished them in the mathematical text.
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12 Branching problem and singular vectors for

the pair Lie G2
i→֒ so(7) and non-compatible

parabolic subalgebras

Let us assume that g is a complex semisimple Lie algebra, i(g′) is reductive in
g and i(b′) ⊂ b ⊂ p, where b′ and b are Borel subalgebras of respectively g′ and
g. Let Mg

p (Vλ) be the generalized Verma g-module induced from the irreducible
finite dimensional p-module with highest weight λ. We define the branching
problem of Mg

p (Vλ) over g′ to be the problem of finding all b′-singular vectors
in Mg

p (Vλ), that is, the set of all vectors annihilated by image of the nilradical
of b′ on which the image of the Cartan subalgebra of b′ has diagonal action.

Recall that for an arbitrary g-module M , the Fernando-Kac subalgebra of
g associated to M is the Lie subalgebra of elements that act locally finitely on
every vector v ∈ M . As the Fernando-Kac subalgebra associated to Mg

p (Vλ)
is p, it follows that the Fernando-Kac subalgebra of g′ associated to Mg

p (Vλ)
equals i−1(i(g′)∩p). Then the requirement that p contains the image of a Borel
subalgebra of g′ implies the discrete decomposability of Mg

p (Vλ) over i(g′), see
[55].

If we drop the requirement i(b′) ⊂ p, it appears that there is no good under-
standing of the simple g′-modules with Fernando-Kac subalgebras of the form
i−1(i(g′)∩p). Even more, there appears to be no complete understanding of the
structure of the Lie algebra i−1(i(g′)∩p). We note that if p does not contain an
image of the Borel subalgebra of g′, we can restrict our attention to a maximal
reductive in ḡ subalgebra g′1 with the property that it has a Borel subalgebra
whose image is contained in p. If g′1 6= {0}, the branching problem of Mg

p (Vλ)
over g′1 is well-posed.

Here we apply the distribution Fourier transform to the case Lie G2
i→֒

so(7). In particular, we fix the conformal parabolic subalgebra of p ⊂ so(7)
and parabolic subalgebra p′ ⊂ Lie G2 not compatible with (g, p), p′ = i(g′) ∩ p.
The nilradical n of p is commutative, while the nilradical n′ of p′ is the 3-step
nilpotent Lie algebra with dimensions of p′-submodules (2, 3, 5). As for the so(7)
generalized Verma modules, we restrict to the case of 1-dimensional inducing
representations of p.

12.1 Branching problem and (non-compatible) parabolic

subalgebras for the pair Lie G2

i→֒ so(7)

In the present Section we introduce the Lie theoretic conventions for the complex
Lie algebra so(7), exceptional Lie algebra Lie G2, and Levi resp. parabolic
subalgebras p of so(7) relative to parabolic subalgebras i(p′) of i(Lie G2). For
more detailed review, cf. [55].

We start by fixing a Chevalley-Weyl basis of the Lie algebra so(2n+ 1). Let
the defining vector space V of so(2n+ 1) have a basis e1, . . . en, e0, e−1, . . . e−n,
where the defining symmetric bilinear formB of so(2n+1) is given byB(ei, ej) :=
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0, i 6= −j, B(ei, e−i) := 1, B(ei, e0) := 0, B(e0, e0) := 1, or alternatively defined
as an element of S2(V ∗),

B :=

n∑

i=−n
e∗i ⊗ e∗−i = (e∗0)

2 + 2

n∑

i=1

e∗i e
∗
−i, (12.1)

under the identification v∗w∗ := 1
2! (v∗ ⊗ w∗ + w∗ ⊗ v∗).

In the basis e1, . . . en, e0, e−1, . . . e−n, the matrices of the elements of so(2n+
1) are of the form




A

v1
...
vn

C = −CT

w1 . . . wn 0 −v1 . . . −vn

D = −DT

−w1

...
−wn

−AT




,

i.e., all matrices C such that AtB+BA = 0. We fix e∗1, . . . e
∗
n, e

∗
0, e

∗
−1, . . . e

∗
−n to

be basis of V ∗ dual to e1, . . . en, e0, e−1, . . . e−n. We identify elements of End(V )
with elements of V ⊗ V ∗. In turn, we identify elements of End(V ) with their
matrices in the basis e1, . . . , en, e0, e−1, . . . , e−n.

Fix the Cartan subalgebra h of so(2n+ 1) to be the subalgebra of diagonal
matrices, i.e., the subalgebra spanned by the vectors ei ⊗ e∗i − e−i ⊗ e∗−i. Then
the basis vectors e1, . . . en, e0, e−1, . . . e−n are a basis for the h-weight vector
decomposition of V . Let the h-weight of ei, i > 0, be εi. Then the h-weight of
e−i, i > 0 is −εi, and an h-weight decomposition of so(2n + 1) is given by the
elements gεi−εj

:= ei ⊗ e∗j − e−j ⊗ e∗−i, g±(εi+εj) := e±i ⊗ e∗∓j − e±j ⊗ e∗∓i and

g±εi
:=
√

2
(
e±i ⊗ e∗0 − e0 ⊗ e∗∓i

)
, where i, j > 0.

Define the symmetric bilinear form 〈•, •〉g on h∗ by 〈εi, εj〉g = 1 if i = j and
zero otherwise.

The root system of so(2n+1) with respect to h is given by ∆(g) := ∆+(g)∪
∆−(g), where we define

∆+(g) := {εi ± εj |1 ≤ i < j ≤ n} ∪ {εi|1 ≤ i ≤ n} (12.2)

and ∆−(g) := −∆+(g). We fix the Borel subalgebra b of so(2n+ 1) to be the
subalgebra spanned by h and the elements gα, α ∈ ∆+(g). The simple positive
roots corresponding to b are then given by

η1 := ε1 − ε2, . . . , ηn−1 := εn−1 − εn, ηn := εn .

For the remainder of this Section we fix the odd orthogonal Lie algebra to
be so(7). We order the 18 roots of so(7) in graded lexicographic order with
respect to their simple basis coordinates. We then label the negative roots by
the indices −9, . . . ,−1 and the positive roots by the indices 1, . . . , 9. Finally,
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we abbreviate the Chevalley-Weyl generator gα ∈ so(7) by gi, where i is the
label of the corresponding root. For example, g±1 = g±(ε1−ε2), g±2 = g±(ε2−ε3),
g±3 = g±(ε3) are the simple positive and negative generators, the element g−9 =
g−ε1−ε2 is the Chevalley-Weyl generator corresponding to the lowest root, and
so on. We furthermore set h1 := [g1, g−1], h2 := [g2, g−2], h3 := 1/2[g3, g−3].

Let now g′ = Lie G2. One way of defining the positive root system of Lie G2

is by setting it to be the set of vectors

∆(g′) := {±(1, 0),±(0, 1),±(1, 1),±(1, 2),±(1, 3),±(2, 3)}. (12.3)

We set α1 := (1, 0) and α2 := (0, 1). We fix a bilinear form 〈•, •〉ḡ on h′,
proportional to the one induced by Killing form by setting

(
〈α1, α1〉ḡ 〈α1, α2〉ḡ
〈α2, α1〉ḡ 〈α2, α2〉ḡ

)
:=

(
2 −3
−3 6

)
. (12.4)

In an 〈•, •〉ḡ-orthogonal basis the root system of Lie G2 is often drawn as

α2

α1

.

Similarly to the so(7) case, we order the 12 roots of Lie G2 in the graded
lexicographic order with respect to their simple basis coordinates, and label the
roots with the indices −6, . . . ,−1, 1, . . . , 6. We fix a basis for the Lie algebra
Lie G2 by giving a set of Chevalley-Weyl generators g′i, i ∈ {±1, · · · ± 6}, and
by setting h′1 := [g′1, g

′
−1], h

′
2 := 3[g′2, g

′
−2]. Just as in the so(7) case, we ask that

the generator g′±i correspond to the root space labelled by ±i.
All embeddings Lie G2

i→֒ so(7) are conjugate over C. One such embedding
is given via

i(g′±2) := g±2, i(g′±1) := g±1 + g±3 .

As g′±1, g
′
±2 generate Lie G2, the preceding data determines the map i and one

can directly check it is a Lie algebra homomorphism. Alternatively, we can use
i(g′±1), i(g

′
±2) to generate a Lie subalgebra of so(7), verify that this subalgebra

is indeed 14-dimensional and simple, and finally use this 14-dimensional image
to compute the structure constants of Lie G2.

We denote by ω1 := ε1, ω2 := ε1 + ε2 and ω3 := 1
2 (ε1 + ε2 + ε3) the

fundamental weights of so(7) and by ψ1 := 2α1 + α2, ψ2 := 3α1 + 2α2 the
fundamental weights of Lie G2.

Let pr : h∗ → h′∗ be the map naturally induced by i. Then

pr(ε1 − ε2︸ ︷︷ ︸
η1

) = pr( ε3︸︷︷︸
η3

) = α1, pr(ε2 − ε3︸ ︷︷ ︸
η2

) = α2, (12.5)

or equivalently
pr(ω1) = pr(ω3) = ψ1, pr(ω2) = ψ2.
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Conversely, ι : h′∗ → h∗ is the map

ι(α2) = 3η2 = 3ε2 − 3ε3, ι(α1) = η1 + 2η3 = ε1 − ε2 + 2ε3. (12.6)

We recall from [55] that the pairwise inclusions between the parabolic subal-
gebras of so(7) and the embeddings of the parabolic subalgebras of Lie G2 are
given as follows.

Lemma 12.1 For the pair G2
i→֒ so(7), let h, b, p, h′, b′, p′ denote respectively

Cartan, Borel and parabolic subalgebras with the assumptions that i(h′) ⊂ h ⊂ b,
i(b′) ⊂ b ⊂ p, b′ ⊂ p′. Then we have the following inclusion diagram for all
possible values of p, p′.

p(0,0,0) ≃ so(7)

p(1,0,0)

88qqqqqqqqqqq
p(0,1,0)

OO

p(0,0,1)

ffMMMMMMMMMMM

p′(0,0) ≃ Lie G2

kkVVVVVVVVVVVVVVVVVVV

p(1,1,0)

OO 88qqqqqqqqqqqq
p(1,0,1)

ffMMMMMMMMMMMM

88qqqqqqqqqqqq
p(0,1,1)

ffMMMMMMMMMMMM

OO

p′(0,1)

ffMMMMMMMMMM

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

p(1,1,1) ≃ b

OO 88qqqqqqqqqqqq

ffMMMMMMMMMMMM

p′(1,0)

kkVVVVVVVVVVVVVVVVVVVVVVVVVV

OO

p′(1,1) ≃ b′

OOkkVVVVVVVVVVVVVVVVVVVVVV

AA
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

If a path of arrows exists from one node of the diagram to the other, then the
corresponding parabolic subalgebras lie inside one another. If in the diagram
a direct arrow exists from a parabolic subalgebra p′ of Lie G2 to a parabolic
subalgebra p of so(7), then p′ = i−1(i(g′) ∩ p).

The structure of so(7) as a module over the Levi part of parabolic subalgebras
of Lie G2 is described in detail in [55, Lemma 5.2], and we will implicitly use it
throughout Subsection 12.2.

Note that in the special case of conformal parabolic subalgebra p ⊃ b ⊃ h of
so(7) and p′ of i(Lie G2) given by p′ = i(g) ∩ p are not compatible.

12.2 Lie G2 ∩ p′-singular vectors in the so(7)-generalized
Verma modules of scalar type for the conformal parabolic
subalgebra

In this subsection we determine the g′ = i(Lie G2) ∩ p-singular vectors in the

family of g = so(7) generalized Verma modules M
so(7)
p(1,0,0)

(Cλ) induced from char-
acter χλ : p→ C of the weight λε1 (ε1 is the first fundamental weight of so(7)).
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In this way, the results computed in the present section are analytic counterpart
realized by F-method of the algebraic results developed in [55].

Let us denote by vλ the highest weight vector of the generalized Verma so(7)-

module M
so(7)
p(1,0,0)

(Vλ). Notice that as i(hα1) = 3hε2−ε3 and i(hα2) = hε1−ε2 +
2hε3 , the h′-weight of vλ is µ = λ(α1 + 2α2) because 〈µ, α1〉 = 0, 〈µ, α2〉 = λ.

The opposite nilradical n− associated to the parabolic subalgebra p is com-
mutative,

U(n−)⊗ V∨ ≃ Pol

(
∂

∂x1
, . . . ,

∂

∂x5

)
⊗ Cλ ≃ Pol

(
∂

∂x1
, . . . ,

∂

∂x5

)

and the variables ∂
∂x1

, . . . , ∂
∂x5

denote the following so(7)-root spaces:

∂
∂x1

:= g−ε1+ε2 = g−1,
∂
∂x2

:= g−ε1−ε3 = g−8,
∂
∂x3

:= g−ε1 = g−6,
∂
∂x5

:= g−ε1+ε3 = g−4,
∂
∂x4

:= g−ε1−ε2 = g−9.

Here, we recall that [xi,
∂
∂xj

] = −[ ∂
∂xj

, xi] =

{
0 if i 6= j
−1 if i = j

is the adjoint

action of the differential operator xi on the differential operator ∂
∂xj

.

By Lemma 12.1, the simple part of the Levi factor of i(p̃) is isomorphic to
sl(2) and its action on n− can be extended to action on U(n−) ≃ S⋆(n−). The
elements h := h2, e := g2, f := g−2 give the standard h, e, f -basis of sl(2), i.e.,
[e, f ] = h, [h, e] = 2e, [h, f ] = −2f . Then the action of h on n− is the adjoint
action of x1

∂
∂x1

+ x2
∂
∂x2
− x4

∂
∂x4
− x5

∂
∂x5

, the action of e is the adjoint action

of −x5
∂
∂x1

+ x4
∂
∂x2

and the action of f is the adjoint action of −x1
∂
∂x5

+x2
∂
∂x4

.

We now proceed to generate all l′-invariant singular vectors in M
so(7)
p(1,0,0)

(Cλ),
i.e., the singular vectors that induce i(Lie G2)-generalized Verma modules in-
duced from character (scalar generalized Verma modules). To do that we need
the following Lemma from the classical invariant theory of reductive Lie alge-
bras.

Lemma 12.2 Then the sl(2)-invariants of S⋆(n−) are an associative algebra
generated by the elements u1 := ∂

∂x1

∂
∂x4

+ ∂
∂x2

∂
∂x5

and u2 = ∂
∂x3

.

Proof:
Direct computation shows that u1, u2 are invariants. Alternatively, as the

direct sum of two two-dimensional sl(2)-modules gives a natural embedding
sl(2) →֒ sl(2) × sl(2), we can view u1 as the invariant element induced by the
defining symmetric bilinear form of so(4) ≃ sl(2)× sl(2). Let the positive root
of sl(2) be η , and the multiplicity of the sl(2)-module with highest weight tη2
in Sl(n−) be b(l, t). Denoting by x, z a couple of formal variables, we have that∑
l∈Z≥0,t∈Z≥0

b(l, t)(zlxt+ zlx−1−t) is the power series expansion of the rational

function

(1 − x−2)
1

(1 − zx)2
1

(1− zx−1)2
1

(1 − z) .
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Direct computation shows that b(l, t) equals −1/2t2 + 1 + 1/2tl + 1/2l + 1/2t
whenever l+ t is even and −1/2t2 +1/2+1/2tl+1/2l whenever l+ t is odd, and
l, t satisfy the inequalities l ≥ t ≥ 0. Finally, substituting with t = 0, we get
b(l, 0) = 1+l/2 for even l and b(l, 0) = 1/2+l/2. For a fixed l, this is exactly the
dimension of the vector space generated by the linearly independent invariants
uq1u

r
2 ∈ Sl(n−) with r + 2q = l, which completes the proof of our Lemma.

�

It follows from the definition of embedding map i that

ad(i(g1)) = −x2∂4 + x1∂5,

ad(i(g−1)) = −x4∂2 + x5∂1,

ad(i(h1)) = [ad(i(g1)), ad(i(g−1))] = x1∂x1 + x2∂x2 − x4∂x4 − x5∂x5 ,

ad(i(h2)) = −3x2∂2 − x3∂3 + x5∂5 − 2x1∂1,

and therefore

ad(i(3h1 + 2h2)) = −x1∂x1 − 3x2∂x2 − 2x3∂x3 − 3x4∂x4 − x5∂x5

represents the central element of the Levi factor i(l′). It induces a grading gr
on the Weyl algebra of n− in the variables

{x1, x2, x3, x4, x5,
∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5
},

we have

gr(x1) = −gr(∂1) = −1, gr(x2) = −gr(∂2) = −3,

gr(x3) = −gr(∂3) = −2, gr(x4) = −gr(∂4) = −3,

gr(x5) = −gr(∂5) = −1 ,

i.e. the invariants u1 = ∂
∂x1

∂
∂x4

+ ∂
∂x2

∂
∂x5

and u2 = ( ∂
∂x3

)2 are homogeneous
with respect to the gr-grading.

Employing the distributive Fourier transform means that we pass to the
polynomial ring Pol[ξ1, . . . , ξ5], where ξi denote the Fourier images of ∂

∂xi
, i =

1, . . . , 5. In the image of the Fourier transform, the subalgebra of l′s = sl(2)-
invariants with respect to the Fourier dual representation is the polynomial ring
Pol[ξ1ξ4 + ξ2ξ5, ξ3], cf. Lemma 12.2.

Theorem 12.3 Let vλ be the highest weight vector of the so(7)-generalized

Verma module M
so(7)
p(1,0,0)

(Cλ) induced from character χλ, λ ∈ C. Let N ∈ N
be a positive integer and Ai ∈ C, i ∈ N a collection of complex numbers such
that at least one of them is non-zero.

1. A vector u · vλ is i(Lie G2) ∩ p-singular vector (“singular vector of scalar

type”) of homegenuity 2N if and only if λ = N−5/2 and u = (2u1 + u2)
N

=

(2u1 + u2)
λ+5/2.
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2. M
so(7)
p(1,0,0)

(Cλ) has no i(Lie G2)∩ p-singular vector of homogeneity 2N + 1.

3. A vector in M
so(7)
p(1,0,0)

(Cλ) is so(7) ∩ p-singular if and only if it is the
i(Lie G2) ∩ p-singular vector given in point 1.

Proof:
1. By Lemma 12.2 and Subsection 12.1 a p′-singular vector of homogeneity

2N must be of the form u :=
∑N

k=0 Aku
k
1u

N−k
2 .

First we determine the action of the second simple positive root g2 in the
Fourier dual representation dπ̃(ad(i(g2))), acting on Pol[ξ1, . . . , ξ5].

Let ni be non-negative integers. Then

i(g2) · (ξn1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5 · vλ) =(

(−n2
1 + n1)ξ

n1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5 − n2ξ

n1
1 ξn2−1

2 ξn3+1
3 ξn4

4 ξn5
5

+n1λξ
n1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5 + (n2

3 − n3)ξ
n1
1 ξn2

2 ξn3−2
3 ξn4+1

4 ξn5
5

+2n3ξ
n1
1 ξn2

2 ξn3−1
3 ξn4

4 ξn5+1
5 − n1n5ξ

n1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5

+n2n5ξ
n1
1 ξn2−1

2 ξn3
3 ξn4+1

4 ξn5−1
5 − n1n2ξ

n1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5

−n1n3ξ
n1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5

)
· vλ

= (−ξ1∂2
1 − ξ3∂2 + λ∂1 + ξ4∂

2
3 + 2ξ5∂3 − ξ5∂1∂5 + ξ4∂2∂5

−ξ2∂1∂2 − ξ3∂1∂3) · (ξn1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5 ) · vλ, (12.7)

where ∂i is short notation for the differential operator ∂
∂ξi

, i = 1, . . . , 5. Let P (λ)

denote the differential operator on C[ξ1, ξ2, ξ3, ξ4, ξ5] obtained in the following
computation:

(−ξ1∂2
1 − ξ3∂2 + λ∂1 + ξ4∂

2
3 + 2ξ5∂3

−ξ5∂1∂5 + ξ4∂2∂5 − ξ2∂1∂2 − ξ3∂1∂3)
= (−ξ3∂2 + ξ4∂

2
3 + 2ξ5∂3 + (−ξ5∂1 + ξ4∂2)∂5

−(ξ1∂1 + ξ2∂2 + ξ3∂3 − λ)∂1)
= (−ξ3∂2 + ξ4∂

2
3 + 2ξ5∂3 + ∂5(−ξ5∂1 + ξ4∂2)

−(ξ1∂1 + ξ2∂2 + ξ3∂3 − λ− 1)∂1).

We compute

∂1 · (ub11 ub22 ) = b1ξ4u
b1−1
1 ub22 ,

∂2 · (ub11 ub22 ) = b1ξ5u
b1−1
1 ub22 ,

(ξ1∂1 + ξ2∂2) · (ub11 ub22 ) = b1u
b1
1 u

b2
2 ,

∂3 · (ub11 ub22 ) = 2b2ξ3u
b1
1 u

b2−1
2 ,

∂2
3 · (ub11 ub22 ) = 2b2(2b2 − 1)ub11 u

b2−1
2 ,
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and so

(−ξ3∂2 + ξ4∂
2
3 + 2ξ5∂3 + ∂5(−ξ5∂1 + ξ4∂2)−

(ξ1∂1 + ξ2∂2 + ξ3∂3 − λ− 1)∂1) · (ub11 ub22 )

= (−ξ3∂2 + ξ4∂
2
3 + 2ξ5∂3 − (ξ1∂1 + ξ2∂2 + ξ3∂3 − λ− 1)∂1) · (ub11 ub22 )

= −b1ξ3ξ5ub1−1
1 ub22 + 2b2(2b2 − 1)ξ4u

b1
1 u

b2−1
2 + 4b2ξ5ξ3u

b1
1 u

b2−1
2

−(ξ1∂1 + ξ2∂2 + ξ3∂3 − λ− 1) · (b1ξ4ub1−1
1 ub22 )

= −b1ξ3ξ5ub1−1
1 ub22 + 2b2(2b2 − 1)ξ4u

b1
1 u

b2−1
2 + 4b2ξ5ξ3u

b1
1 u

b2−1
2

+(−b1 + 1 + λ+ 1− 2b2)b1ξ4u
b1−1
1 ub22

= 2b2((2b2 − 1)ξ4 + 2ξ5ξ3)u
b1
1 u

b2−1
2

+b1((−b1 − 2b2 + λ+ 2)ξ4 − ξ3ξ5)ub1−1
1 ub22 . (12.8)

The operator P (λ) is homogeneous with respect to the grading in (12.7), and
its application to a homogeneous polynomial in u1 = u1(ξ1, . . . , ξ5), u2 =
u2(ξ1, . . . , ξ5) yields

P (λ)(
∑N

k=0 Aku
k
1u

N−k
2 )

=
∑N

k=0 Ak(2(N − k)((2(N − k)− 1)ξ4 + 2ξ5ξ3)u
k
1u

N−k−1
2

+k((−k − 2(N − k) + λ+ 2)ξ4 − ξ3ξ5)uk−1
1 uN−k

2 )

=
∑N+1

s=1 2As−1(N − (s− 1))((2(N − (s− 1))− 1)ξ4

+2ξ5ξ3)u
(s−1)
1 u

N−(s−1)−1
2

+
∑N

k=0 kAk((−k − 2(N − k) + λ+ 2)ξ4 − ξ3ξ5)uk−1
1 uN−k

2

=
∑N

s=1(2As−1(N − s+ 1)((2N − 2s+ 1)ξ4 + 2ξ5ξ3)

+ sAs((s− 2N + λ+ 2)ξ4 − ξ3ξ5))us−1
1 uN−s

2 ).

The 2N summands of the form ξ4u
s−1
1 uN−s

2 and ξ3ξ5u
s−1
1 uN−s

2 are linearly
independent and therefore the above sum is zero if and only if

2As−1(N − s+ 1)((2N − 2s+ 1)ξ4 + 2ξ5ξ3)

+sAs((s− 2N + λ+ 2)ξ4 − ξ3ξ5)) (12.9)

equals zero for all values of s. When s = N , the above sum becomes

2AN−1(ξ4 + 2ξ3ξ5) +NAN ((−N + λ+ 2)ξ4 − ξ3ξ5) .

It is a straightforward check that if AN vanishes, then AN−1, AN−2, . . . must
also vanish; therefore we may assume AN 6= 0. The vanishing of the coefficient
in front of ξ4 implies AN−1 = − 1

2NAN (−N + λ+ 2) and in turn, the vanishing
of the coefficient in front of ξ3ξ5 implies −5 + 2N − 2λ = 0. Therefore

λ = N − 5/2 .

Substituting λ back into (12.9), we get

2As−1(N − s+ 1)((2N − 2s+ 1)ξ4 + 2ξ5ξ3)

+sAs((−N + s− 1/2)ξ4 − ξ3ξ5) = 0.

124



This implies As = 4(N−s+1)
s As−1 = · · · = 4s

(
N
s

)
A0, which completes the proof

of 1).
2. A i(Lie G2) ∩ p-singular vector is, in particular, sl(2) ≃ i([l′, l′])-singular

and by Lemma 12.2 must be of the form u = ξ3
∑N

k=0 Aku
k
1u

N−k
2 . The applica-

tion of 2ξ5∂3 converts AN (ξ1ξ4 + ξ2ξ5)
Nξ3 into 2AN (ξ1ξ4 + ξ2ξ5)

N ξ5. Further-
more 2AN (ξ1ξ4 + ξ2ξ5)

Nξ5 contains in its binomial expansion 2AN (ξ1ξ4)
Nξ5.

Direct check shows that the action of P (λ) on (ξ1ξ4 + ξ2ξ5)
N−iξ1+2i

3 for i > 0
does not contain the monomial (ξ1ξ4)

N ξ5. This implies that AN = 0 and by
induction, the polynomial is trivial. Consequently, there is no nontrivial odd
homogeneity polynomial solving the differential equation P (λ).

As an illustration, for N = 0 we have P (λ)(A0ξ3) = 2A0ξ5. This vanishes
provided A0 = 0, which implies the polynomial is trivial.

3. An so(7) ∩ p-singular vector must be i(Lie G2) ∩ p-singular. From 1) we
know that there is at most one i(Lie G2) ∩ p-singular vector. The simple part
of l is isomorphic to so(5) and induces the quadratic form with matrix in the
coordinates ξ1, . . . , ξ5

Q =




0 0 0 2 0
0 0 0 0 2
0 0 1 0 0
2 0 0 0 0
0 2 0 0 0



,

i.e., the metric of the form

g(ξ1, ξ2, ξ3, ξ4, ξ5) = (dξ3)
2 +2(dξ1⊗ dξ4 + dξ4⊗ dξ1)+ 2(dξ2⊗ dξ5 + dξ5⊗ dξ2).

The Fourier transform of the so(5)-invariant Laplace operator associated to Q
is

F(�ξ) = Q(ξ1, ξ2, ξ3, ξ4, ξ5) = 4(ξ1ξ4 + ξ2ξ5) + ξ23 .

Relying on �ξ and the binomial formula for (4(ξ1ξ4 + ξ2ξ5) + ξ23)s, we see that
the Lie G2 ∩ p-singular vector constructed 1) is indeed so(7) ∩ p-singular. The
proof is complete.

�

We note that an alternative proof of 3) can be given as follows. From a
well known example (see e.g., [21], [43], [44]) of singular vectors in conformal
geometry of dimension 5 describing conformally invariant powers of the Laplace
operator, we know that for λ ∈ {−3/2,−1/2, 1/2, . . .} there exists one so(7)∩p-

singular vector in M
so(7)
p(1,0,0)

(Cλ). On the other hand points 1) and 2) of Theorem
12.3 present us with only one such candidate, so that candidate must be the
so(7) ∩ p-singular vector in question.

For λ ∈ {−3/2, −1/2, 1/2, . . .}, the h-weight of the so(7)∩ p-singular vector

in M
so(7)
p(1,0,0)

(Cλ) given by Theorem 12.3 equals (λ−2N)ε1 = (λ−2(λ+5/2))ε1 =
(−λ− 5)ε1. Therefore the vector from Theorem 12.3 corresponds to the homo-
morphism of generalized Verma modules

M
so(7)
p(1,0,0)

(Cλ) →֒M
so(7)
p(1,0,0)

(C−λ−5). (12.10)
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In an analogous fashion we conclude that Theorem 12.3 gives a homomorphism
of generalized Verma modules

MLie G2

p′
(1,0)

(Vλψ1)→MLie G2

p′
(1,0)

(C(−λ−5)ψ1
). (12.11)

We conclude this paper with the following observation from [50], a proof of
which we include for completeness.

Proposition 12.4 Suppose λ ∈ {−3/2, −1/2, 1/2, . . .}. Then both (12.10) and
(12.11) are non-standard homomorphisms.

Proof:

1. Let ρl be the half-sum of the positive roots of l, i.e., ρl := 3/2ε2 + 1/2ε3,
and let sη3 denote the reflection with respect to the simple root η3 = ε3.
Then

sη3(λε1 + ρl)− ((−λ− 5)ε1 + ρl) = (2λ+ 5)ε1 − ε3. (12.12)

As λ ∈ {−3/2, −1/2, 1/2, . . .}, the expression (12.12) is a sum of positive
roots of so(7). Therefore by [19, Chapter 7] the non-generalized Verma
module with highest weight (−λ − 5)ε1 + ρl lies in the non-generalized
Verma module with highest weight sη3(λε1+ρl). Therefore by [49, Propo-
sition 3.3] the homomorphism (12.10) is non-standard.

2. Let ρl′ = 1/2α2. Let sα2 denote the reflection with respect to the simple
root α2 (in h′∗). Then

sα1(λψ1 + ρl′)− ((−5− λ)ψ1 + ρl′) = (2λ+ 6)α2 + (4λ+ 16)α1

is clearly a positive integral combination of positive roots of Lie G2 and
the statement follows again by [19, Chapter 7] and [49, Proposition 3.3].

�
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13 Appendix: Jacobi and Gegenbauer polyno-
mials

In the Appendix we summarize for reader’s convenience a few basic conventions
and properties related to Jacobi and Gegenbauer polynomials.

First, we define the analytic continuation of binomial coefficient by
(
z

n

)
:=

Γ(z + 1)

Γ(n+ 1)Γ(z − n+ 1)
,

where Γ(z) is the Gamma function. Then
(
z
n

)
= 0 if n− z ∈ N+ and z 6∈ −N+.

The Jacobi polynomials P
(α,β)
n (z) are polynomials of degree n with two pa-

rameters α, β defined by special values of the hypergeometric function:

P (α,β)
n (z) =

(
n+ α

n

)
2F1

(
−n, 1 + α+ β + n;α+ 1;

1− z
2

)

=
Γ(α+ n+ 1)

n!Γ(α+ β + n+ 1)

n∑

m=0

(
n

m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
z − 1

2

)m

=

n∑

j=0

(
n+ α

j

)(
n+ β

n− j

)(
z − 1

2

)n−j (
z + 1

2

)j
.

The normalization is given by

P (α,β)
n (1) =

(
n+ α

n

)
=

(α+ 1)n
n!

,

where (α+ 1)n is the Pochhammer symbol for the rising factorial.
Jacobi polynomials satisfy the orthogonality condition

∫ 1

−1

(1− x)α(1 + x)βP (α,β)
m (x)P (α,β)

n (x) dx =

2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
δnm (13.1)

for α > −1 and β > −1.
The polynomials have various symmetries, e.g.

P (α,β)
n (−z) = (−1)nP (β,α)

n (z).

In the special case when the four quantities n, n+ α, n+ β, and n+ α+ β
are nonnegative integers, the Jacobi polynomial can be written as

P (α,β)
n (x) = (n+ α)!(n + β)!

∑

s

[s!(n+ α− s)!(β + s)!(n− s)!]−1

(
x− 1

2

)n−s (
x+ 1

2

)s
, (13.2)
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where the sum on s runs over all integer values for which the arguments of the
factorials are nonnegative.

The kth derivative of P
(α,β)
n (z) leads to

dk

dzk
P (α,β)
n (z) =

Γ(α+ β + n+ 1 + k)

2kΓ(α+ β + n+ 1)
P

(α+k,β+k)
n−k (z). (13.3)

Jacobi polynomials P
(α,β)
n (x) are solution of the hypergeometric differential

equation

[(1 − x2)
d2

dx2
+ (β − α− (α+ β + 2)x)

d

dx
+ n(n+ α+ β + 1)]y = 0. (13.4)

The Jacobi polynomials specialize for α = β to the Gegenbauer polynomials,
which can be defined in terms of their generating function

1

(1− 2xt+ t2)α
=

∞∑

n=0

C(α)
n (x)tn

and satisfy the recurrence relation

Cαn (x) =
1

n
[2x(n+ α− 1)Cαn−1(x) − (n+ 2α− 2)Cαn−2(x)]

with Cα0 (x) = 1, Cα1 (x) = 2αx. Gegenbauer polynomials are solutions of the
Gegenbauer differential equation

[(1 − x2)
d2

dx2
− (2α+ 1)x

d

dx
+ n(n+ 2α)]y = 0.

When α = 1/2, the equation reduces to the Legendre equation, and the Gegen-
bauer polynomials reduce to the Legendre polynomials. Again, they are given
as Gaussian hypergeometric series in certain cases when the series is finite

C(α)
n (z) =

(2α)n
n!

2F1

(
−n, 2α+ n;α+

1

2
;
1− z

2

)
.

Explicitly,

C(α)
n (z) =

⌊n/2⌋∑

k=0

(−1)k
Γ(n− k + α)

Γ(α)k!(n − 2k)!
(2z)n−2k.

As special cases of the Jacobi polynomials they fulfill

C(α)
n (x) =

(2α)n

(α+ 1
2 )n

P (α−1/2,α−1/2)
n (x),

whose consequence is the Rodrigues formula

C(α)
n (x) =

(−2)n

n!

Γ(n+ α)Γ(n+ 2α)

Γ(α)Γ(2n+ 2α)
(1− x2)−α+1/2 d

n

dxn

[
(1− x2)n+α−1/2

]
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and the basic formula for derivative of Gegenbauer polynomials

d

dz
C

(α)
2N (z) = 2αC

(α+1)
2N−1 (z). (13.5)

The polynomials are orthogonal on [−1, 1] with respect to the weighting function

w(z) =
(
1− z2

)α− 1
2 .
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