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1 Introduction

In this habilitation thesis, I propose a collection of eighteen journal publications and
two chapters in books of which I am a co-author. My part of the work has been
done in the Department of chemical physics and optics at the Faculty of Mathematics
and Physics, Charles University in Prague and during my post-doc fellowship at the
University of Southampton, UK. Also collaborations with the Department of thin
films and nanostructures of Academy of Sciences of Czech Republic, Institute de
Physique et Chimie des Matériaux de Strasbourg in France, University od California
at San Diego, USA, and École Polytechnique Fédérale de Lausanne, Switzerland, were
essential for the publications.

The aforementioned papers would not be written without an intense collaboration
with experimentalists or without following particular experimental results on low-
dimensional semiconductor structures. Most of the published works focus on the
optical spectroscopy of semiconductor nanostructures, with picosecond time resolution
and also often with high spatial resolution. The sophisticated spectroscopic methods
used in the experiments require high preciseness and experience in the experimental
part and are also challenging for theoretical work because the experimental data
display only a result of indirect observation which is a fractional information about
the state of electron excitations in the investigated system. Any need of a proposal
of an innovative experimental setup to detect a particular phenomenon, need of an
interpretation of the raw experimental data, simulation or identification of a process
responsible for the behavior of the optical field, were mostly my motivation for the
collaboration with experimentalists. In all publications, I contributed to theoretical
parts which were essential in order to detect or interpret the observations.

The collection of publications in this thesis may be divided according to the three
main subjects: optical waveguides, semiconductor quantum wells and semiconductor
microcavities. Although the mentioned three physical systems may seem to be very
different in their composition and physical properties, they reveal one common char-
acteristics: they are effectively two-dimensional nanostructures in which the dynamics
of electronic excitations, namely excitons, is observed by the methods of optical spec-
troscopy with spin (polarization) and ultrafast temporal resolution. The density of
excitations in the system is imprinted into the optical field as a result of the exciton–
photon interaction, which is a core theme of all the collected papers.

The work published in papers proposed in this thesis had been done in a close
collaboration with many researchers who took an essential part in the process of the
data acquisition, interpretation and publication. I would like to thank my colleagues
at this place for willingness, support and many useful advices, in particular I thank
prof. Petr Malý, prof. Bernd Hönerlage, prof. Ivan Pelant, prof. Jan Valenta, prof.
Alexey Kavokin and prof. Pavlos Lagoudakis. I would like also to thank my friends
who were always disposed to discuss physical problems and who had a large impact
on the publications: dr. Kateřina Herynková, dr. Mathieu Gallart, dr. Jean–Pierre
Likforman, prof. Leonid Butov, prof. Wolfgang Langbein, dr. Maria Maragkou, dr.
Alastair Grundy and dr. Konstantinos Lagoudakis.
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2 Two-dimensional semiconductor nanostructures and
optical spectroscopy

The scope of the publications collected in this habilitation thesis, namely two–dimensi-
onal systems of excitons and photons, fully reflects the recent extensive development
of both basic and applied research of nanotechnologies. Moreover, nanotechnologies
are not just a subject of scientific research but they can be already found as a part
of everyday electronics. The word nanotechnology can be understood in several dif-
ferent ways: the prefix nano- may represent a technique of fabrication of submicron
structures including new methods with the aim at achieving the highest possible in-
tegration of electronic components in order to make smaller, more efficient devices.
From the point of view of general physics, on the other hand, nano- is connected
predominantly with the quantum confinement [1, 2] — the energetical spectrum of
particles is significantly changed due to the breaking of the translation symmetry
and thus spatial localization or modification of effective mass in the material by the
structures with characteristic size in the nanometer domain. Usually localized states
with discrete energetical spectrum (bound states) or delocalized states with notably
modified energy dispersion in isolated bands are formed in nanostructures. As a di-
rect consequence, the physical properties of the nanomaterials may significantly differ
from those of bulk material: depending on the fabrication process and through pre-
cise control of growth conditions, it is possible to tune basic parameters of particles in
nanostructures, for example their effective mass, lifetime or interaction energy with
other (quasi-) particles.

Two-dimensional nanostructures are favorable for research of their basic physical
characteristics in particular thanks to relatively easy way of their fabrication by depo-
sition of uniform layers and also thanks to the in-plane translational symmetry what
is a key point in simplifications in effective theories. Boundary conditions are there-
fore defined in parallel planes and it is thus possible to separate in-plane coordinates
(denoted as x and y) from the coordinate with broken translational symmetry, usu-
ally denoted as z. The problem then effectively splits into a one-dimensional problem
whose boundary conditions define the quantum confinement and a two-dimensional
problem with translational symmetry. Systems in two dimensions moreover reveal a
large advantage for the methods of optical spectroscopy: while both the surface effects
plus the phenomena related to the propagation of excitations inside a bulk sample
must be taken into account in experiments, light propagation in the z direction usu-
ally does not significantly distort the optical response of two-dimensional systems or a
correction can be easily made. The optical image of two-dimensional nanostructures
then contains a real imprint of particle density in the plane of a sample.

In the collected publications, we consider and investigate excitons in semicon-
ductor crystals because they are a good model system of a well defined electronic
excitation with a well defined energy, effective mass and symmetry. Wannier exciton
— bound electron–hole pair [3] — has a nonzero dipole momentum and therefore it is
possible to create excitons by pump optical beam which is absorbed in the material.
It it also possible to detect the presence and the state of excitons by means of optical
spectroscopy.

2.1 Waveguiding structures with semiconductor nanocrystals

Waveguiding samples and experiment

The samples which are researched in the publications [P1–P8] were prepared by
ion implantation of silicon into fused silica slabs and subsequently annealed [4]. Under
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Figure 1: Electric field intensity distribution in direction z for waveguide modes (red
color) and respective refractive index. (a) Radiation mode, (b) substrate mode, (c)
guided mode, (d) evanescent mode.

the sample surface, a layer of silicon nanocrystals embedded in glass with thickness of
several hundreds of microns is created. Quantum confinement of electrons inside the
nanocrystals causes a relatively high efficiency of light luminescence after photoexci-
tation in the UV region. Furthermodre, a nonzero density of the nanocrystals in the
sample modifies its refractive index slightly below the surface, creating a planar opti-
cal waveguide. We used a series of samples with different concentrations of embedded
silicon nanocrystals.

The waveguiding structure in the samples reveals a continuous refractive index
profile in the direction normal to the surface due to the kinetics of Si ions in the
implantation process [5] and thus due to the variation of Si ion concentration before
annealing. In an experiment designed for measurement of optical gain in materials,
nanocrystals are excited by a laser beam and they then become a source of electro-
magnetic field inside the waveguide. That is a substantial deviation from conventional
experimental setups for measurement of waveguide properties in which the light is cou-
pled into the guiding layer from outside. The experimental setup, used in the research
of waveguiding structures with silicon nanocrystals, therefore turns out to reveal par-
ticular optical artifacts when using standard spectroscopy methods like variable stripe
length method [6] and it is therefore necessary to introduce corrections [7].

Theoretical description of electromagnetic field

Dielectric optical planar waveguides are formed by layers of materials which differ
in optical density (refractive index) in the optical frequency domain. The variation of
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the optical density in z direction can be step-like or continuous. Mathematically, it is
possible do decompose any electromagnetic field which satisfies boundary conditions
as a linear combination of the proper modes of the structure [8]: proper modes are
characterized by frequency ω and wave vector components βx and βy in directions x
and y while the size of the in-plane wave vector (propagation constant) is denoted

β =
√

β2
x + β2

y . We assume an asymmetric waveguide, i.e. the substrate refractive

index ns differs from that of the waveguide cladding nc and usually the core refractive
index nf fullfils condition nc < ns < nf . The wave vector in the j-th layer can be
defined as kj = ωnj/c where c is the vacuum light speed. In general, four types of
proper modes are distinguished [9] (Fig. 1) and these modes form a complete basis of
all states of electromagnetic field in the system:

• Radiation modes are delocalized in the whole space. They propagate in all
layers including the substrate and the cladding. The optical spectrum is con-
tinuous, see Fig. 2. If such mode is coupled to a waveguide, it leaks out rapidly:
partly into the substrate and partly to the cladding. Inequality β < kc holds.

• Substrate modes do not propagate in the cladding but rather form an evanec-
sent wave due to ks > β > kc. The field is delocalized in the core and the
substrate only. When coupled to a waveguide, optical field is radiated into the
substrate and propagates far from the core. The spectrum is continuous.

• Guided modes can propagate inside the core (if β < kf) and at the same time
there exists no wave which can propagate in either cladding or the substrate
with the same frequency and propagation constant: β > ks, kc. The mode is
then localized in the core and its close surrounding with the energy density
decreasing exponentially with increasing distance from the core.

• Evanescent modes are states of electromagnetic field with imaginary in-plane
wave vector: β2 < 0. Evanescent modes are principially radiative, i.e. they
radiate their energy into the cladding and the substrate. In addition, they do
not propagate as a harmonic wave in any direction in the plane of symmetry.
These modes serve no information of practical use for light propagation inside
the waveguides, however, they are mathematical solution of the wave equation
with proper boundary conditions and therefore it is necessary to include them
into the basis of physical solutions. Evanescent modes play a role only in the
vicinity of the light sources located in the core.

Electric field intensity for the modes listed above can be written in the form:

Eω,β(r, t) = Eω,β(z) exp[i(βxx+ βyy − ωt)] .

The symbol r = (x, y, z) denotes here the spatial coordinate. As follows from the
discussion above, not all modes are necessarily two-dimensional: only the guided
modes are localized in the z direction while the other groups are spatially delocalized.
Furthermore for β < kc there are neither guided nor substrate modes what makes
a large difference between this photonic structure and a potential well for particles
with a nonzero efective mass. Our research, nevertheless, aimed at light propagation
in a close vicinity to the core and therefore we can consider only the guided and the
substrate modes which decouple at small angles relative to the plane of symmetry
and which then do not reveal fast leakage of energy from the optically active region.

It will be convenient to define several more variables in terms of geometrical op-
tics. Let us, for illustration, consider a structure composed of three layers again
depicted in Fig. 2b. The propagation angle ϑ is an angle of incidence of the rays
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Figure 2: (a) Scheme of the mode dispersion of the dielectric waveguide. (b) Cross–
section of the considered structure.

onto core/cladding and core/substrate boundaries from the side of the waveguide
core and obviously β = kf sinϑ. We can then define a reflection coefficient rfc for
the core/cladding boundary and rfs for the core/substrate boundary, according to the
Fresnel’s formulae.1 There are, in general, two critical values for the propagation an-
gle denoted as ϑc = arcsin(nc/nf) and ϑs = arcsin(ns/nf). They refer to the crossover
between normal reflection and total internal reflection at the respective core/cladding
and the core/substrate boundary. According to the separation to the mode groups
above, it is clear that ϑ < ϑc for the radiation modes which refract into the cladding,
ϑc < ϑ < ϑs for the substrate modes and ϑ > ϑs for the guided modes, implying that
the rays cannot be refracted into any of the cladding or the substrate. While there
exists a radiation or a substrate mode for nonzero frequency when considering fixed
ϑ < ϑs (modes are in continuum), the guided modes, on the other hand, must satisfy
the condition of constructive interference for a defined ϑ > ϑs:

rfsrfc exp

[

id
√

k2
f
− β2

]

> 0 .

The expression on the left hand side must be real and d is the thickness of the core.
With fixed ϑ, we can accomplish the condition only for discrete values of frequency
and, consequently, at a fixed frequency, there exist only discrete values of the prop-
agation angle ϑ. If we select an appropriate narrow spectral range, it is possible to
observe a critical frequency ωcrit in this range such that there are N guided modes
for ω <∼ ωcrit and N + 1 guided modes for ω >∼ ωcrit.

2.2 Quantum wells

Basic definitions, interaction with electromagnetic field

Publications [P9–P13] report on results of research focused on optical spectroscopy
of quantum wells of several types and compositions. There was, however, a property
common to all structures: they were intrinsic, i.e. with no doping and thus revealing
excitonic resonance [3] which then dominates optical response at photon energies close
to the width of fundamental band gap. The exciton is formed after creation of an

1These coefficients differ in general for the two perpendicular linear polarizations TE and TM

due to the symmetry of the problem. As the polarization effects are not discussed here, we drop

the resolution of TE and TM and the variables here should be understood to stand for any of the

polarizations.
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electron–hole pair which is stable due to the attractive electrostatic force and reveals
optical nonlinearities whose investigation was the subject of the research.

It is possible to fabricate a layered structure, similarly to waveguides, whose layers
are made of materials with different band gap widths and thus effective potential en-
ergy for particles. Such structure may reveal quantum confinement in the z direction
and the wave function of electrons (excitons) can be written:

Ψ(r) = ψn(z)ψk‖
(x, y) ,

where n is a quantum number of a particle in one-dimensional potential well and k‖ is
an in-plane wave vector, defined according to periodic boundary condition and Bloch
theorem [3,10]. There are principially two different types of electron states in quantum
wells: bound states and scattering states. The bound states are localized in the
potential well and its close proximity in the z direction while they are delocalized in the
remaining two dimensions. The scattering states are, on the contrary, fully delocalized
in the whole structure. Electron gas in the localized states is then effectively two-
dimensional in the xy plane. There is, however, a significant difference from optical
waveguides: bound states exist for arbitrary in-plane wave vector k‖ and therefore
there can exist a bound state even with zero wave vector k‖ = 0.2

The heavy- and light-hole bands split in quantum wells with zinc-blende crystalic
structure due to symmetry arguments, resulting in removal of fourfold degeneracy
at the Γ point as compared to bulk crystals. This property is favorable for optical
applications because it is then possible to optically inject electrons and holes with
100% net spin polarization [11]. It is possible to make many different types of struc-
tures with embedded quantum wells having various physical properties. We focused
on main three types in the publications:

• In type I quantum wells, both an electron and a hole are localized in the same
layer (see Fig. 3a) and they form a two-dimensional exciton with large overlap of
the respective wave functions. Such exciton has a large dipole momentum [3,10]
and consequently relatively large linear and nonlinear optical response.

• Multiple type I quantum wells are type I quantum wells separated by a
barrier which eliminates particle tunneling. Without electromagnetic field, there
is no coupling between the particular wells and the energetical spectrum is
equivalent to that of a single well. The level degeneracy reflects the number of
wells in the structure. Multiple wells are used in order to increase the optical
response.

• Type I double quantum wells are composed of two type I wells, separated
by a thin tunneling barrier for electrons or holes. As a result of tunneling, the
double degeneracy is removed. By applying a DC electric field in the z direction,
it is possible to spatially separate electrons and holes (see Fig. 3b): different
particles are trapped in different wells what results in smaller spatial overlap
and thus also the dipole momentum. Finally, their lifetime increases from tens
to hundreds of picosecond [12] because the radiative recombination determines
the exciton lifetime in high quality samples.

Exciton spin and its relaxation

The symmetry of crystal lattice of semiconductors can be rotational besides the
translational symmetry. This symmetry is partly conserved in quantum wells with

2The bound state may not exist in shallow potential wells which reveal only the scattering states.
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Figure 3: Spatial profile of ground state wave function of electron (red) and hole
(green) in exciton in the z direction in type I quantum well (a) and type I double
quantum well with applied electric field (b). Potential energy is depicted in black.

the main axis z. As a mathematical consequence of the crystal symmetry (and also
rotational symmetry of the electron effective potential in a quantum well), the opera-
tor Jz of projection of angular momentum to the z axis commutes with Hamiltonian.
The z component of angular momentum is then physically a constant of motion, i.e.
magnetic quantum number is a good quantum number for an electron. This is true,
however, only for electron at rest because:

[

Jz, px,y

]

6= 0

due to the absence of translationally-rotational symmetry. On the contrary, [Jz, pz]=0
and therefore quantum confinement has no influence on conservation of angular mo-
mentum.

Electron spin is a good quantum number (it is a constant of motion) at the Γ point
(k‖ = 0) and outside it, electron’s eigenstates are, in the first approximation, linear
combinations of states with differents spins and with a fixed in-plane momentum.
Electron spin with nonzero wave vector is not thus conserved but oscillates due to the
spin-orbit interaction [13] which provides nonzero interaction energy of orbital motion
and the spin. We usually apply k·p theory [14] and Kohn–Luttinger Hamiltonian [15]
for calculation of the spin-orbit interaction. Beyond these theories, one must count
in Dresselhaus term in non-centrosymmetric crystals, Rashba term in quantum wells
and other terms according to the actual symmetry breaking of the system [13].

In combination of spin-orbit interaction and random electron scatterings on dis-
order or phonons, electron’s spatial coherence is lost and spin effectively relaxes ac-
cording to the Dyakonovo-Perel’s spin relaxation mechanism [16]. Other major mech-
anisms are Elliot-Yafet’s mechanism [17], describing spin loss through electron scat-
tering on phonons and disorder with simultaneous electron spin-flip and Bir-Aronov-

Pikus’ mechanism [18] of spin relaxation by its exchange with a sea of holes.
Likewise the electron spin, the spin of an exciton is well defined at the Γ point

[19]. Only those states with the symmery equal to that of electromagentic field are
dipole active while the other states do not interact with optical field in the first order
of perturbation theory. Due to the spin-orbit interaction, the exction spin is not
conserved outside the Γ point what can be effectively expressed in terms of power
series in size of the wave vector [20]. Direct absorption of a photon can, in principle,
create only excitons with small wave vectors compared to the size of the first Brillouin
zone and therefore we may neglect the quadratic and higher terms in the power series
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Figure 4: (a) Reflectivity spectrum of a Brag mirror, (b) reflectivity of an empty
cavity with the same mirrors as (a).

and we may assume that optical injection creates only excitons with well defined spin.
The spin sbsequently relaxes in picosecond time scale what can be measured with help
of the ultrafast optical spectroscopy [21,22].

Besides the exciton-specific features of spin-orbit interaction which come from a
complex spin structure, as compared to electrons, also exciton–exciton electrostatic
interaction shows up some particularity due to exciton’s internal composite structure
[23]. Spin of fermions (electrons and holes) can be exchanged during interaction of
two excitons and therefore the two interacting excitons can exchange some spin. The
effect is observable in four-wave mixing experiments in optical spectroscopy [22] and
may be theoretically described in terms of nonlinear model of optical excitations in
semiconductors [3, 24–34].

2.3 Microcavities

Empty cavity

As outlined on the Introduction, the last part of the collection of publications [P14–
P20] refers about microcavities. These nanostructures mix two-dimensional quantum
states of excitons and photons and also the eigenstates of the structure reveal proper-
ties partially of an electromagnetic wave and partially of a material wave. I propose
rather a wide introduction to microcavities due to the amount of physical phenom-
ena mentioned in the publications: it starts by introducing quantum confinement in
optical cavities with dielectric mirrors and ends with topological defects in polariton
condensates.

It was shown in the previous parts that photons in dielectric waveguides can be
localized in the z direction only if their in-plane wave vector is nonzero while electrons
and excitons are effectively two-dimensional in quantum wells irrespectively of their
wave vector. Light localization is possible in circuits made of 1D waveguides, in
microdisks or microspheres but we never simulate the properties of a 2D photon gas
using 0D structures in particular because of their discrete energetical spectrum while
the 2D gas has continuous spectrum and the density of states approaches a constant.
The use of metallic mirrors, which would fully enclose the photons inside the cavity
even for zero wave vector, are not suitable due to their absorption: the photon lifetime
would be too short and it would not be possible to make it longer.

Photonic structures with Bragg dielectric mirrors solve the problem. There are
altering layers with the optical thickness of λM/4 in the mirrors where λM/4 denotes
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Figure 5: (a) Spatial profile of electric field intensity of an optical mode in a cavity in
the z direction (red) and refractive index profile of a cavity and Bragg mirrors (blue).
(b) Exciton dispersion, effective mass 0.5 me (black) where me is free electron mass;
cavity photon dispersion with effective mass 5 · 10−5me (blue) and that of polariton
modes (red color). The green line depicts parabolic dispersion of the lower branch
with effective mass 2 · 10−4me.

the central wavelength of the high-reflection band of the mirror (see Fig. 4a). Periodic
structure made of materials with different refractive indices implies a modification of
photon dispersion and formation of bands of allowed and forbidden energies. One
of the gaps (band of forbidden energy) has its center at the wavelength λM. Real
mirror consits of a finite number of layers and therefore evanescent modes (those
lying in the band gap) can tunnel throught the mirror. Consequently, the mirror
reflectivity is smaller than 100% but we can approach this limit arbitrarily by setting
up properly the number of layers and refractive indices of layers. The only limitation
is the accuracy of the technology during growth.

Optical resonator with Bragg mirrors is similar to the Fabry–Pérot resonator and
differs only in the composition of the reflecting elements. The sharp maxima of the
transmission satisfy condition:

ϕM(ω) + kz(ω)LC = mπ , m ∈ N ,

where ϕM(ω) is the phase shift of a photon with frequency ω during its reflection at
the Bragg mirror (we consider both the mirrors the same), kz(ω) denotes the wave
vector in the cavity in the direction z at the frequency ω and LC is the cavity length.
If the resonation frequency of the cavity is close to that of the mirrors:

jλM/2 ≈ nCLC ,

where j is an integer and nC is the cavity refractive index, we observe a maximum
of reflectivity of the whole structure as well as the reflectivity maximum of a single
mirror but there is a sharp minimum at the wavelength λC ≈ nCLC which represents
a cavity optical mode (see Fig. 4b). The reflectivity minimum reveals a resonance
which has a small spectral width usually at the order of 0.1 meV thanks to high
quality of the resonator (high reflectivity of mirrors). The electric intensity profile
at the frequency of the resonance depicted in Fig. 5a clearly shows an increase of
the energy density of the field inside the cavity as compared to the space outside.
Such increase is responsible for large nonlinearities of cavities into whose an optically
nonlinear material is placed.

If we set the resonance frequency of the cavity much different from that of the
mirrors, the frequency of the eigenmode is somwhere in between: its particular value
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depends on many factors [35, pp. 63]. The important property in this case is, however,
removal of the polarization degeneracy of the eigenstates — they split into TE and
TM mode at nonzero wave vector.

One should note what is the largest difference between macroscopic cavities (e.g.
laser cavity) and microcavities. There are two main points: firstly, there are limited
diffraction losses of microcavities due to large ratio of the characteristic lateral size
and the cavity length. Secondly, the eigenstates reveal an effectively continuous dis-
persion in microcavitites while we consider the laser cavity spectrum to be discrete.
Furthermore, the microcavity dispersion is close to the parabolic one [35, pp. 62] inside
the light cone what is a large deviation from the 3D photons with linear dispersion.
We may then define an effective mass of the 2D photons. This effective mass can
be tuned by the sample geometry and it varies in the order 10−4 − 10−5 of the free
electron mass. We therefore usually apply a model of particles with nonzero mass and
finite lifetime to the cavity photons. The annihilation process stands for the photon
tunneling through mirrors and coupling to the 3D modes outside the cavity.

Strong interaction, polariton concept

As mentioned above, large optical nonlinearities emerge when an optically non-
linear material is placed into the cavity. Bulk material or low-dimensional objects
can be used, usually quantum wells play the role of nonlinear medium due to their
relatively simple and known band structure. The exciton absorption is the dominant
effect among all contributions to optical absorption near the band edge in intrinsic
semiconductors. The exciton–photon interaction energy is proportional to the over-
lap of their wave functions which is larger by orders of magnitude in a microcavity as
compared to free space due to the high density of electromagnetic energy. The inter-
action energy then may exceed the value 2~/T ∗

2 , where T
∗
2 is an effective dephasing

time of exciton. In that case, the photon coherence is conserved during its absorption
and re-emission by excitons and therefore it does not undercome scattering but rather
coherent oscillation in a common mode with excitons. Mathematically, we may de-
scribe the problem of exciton–photon oscillation by the equation for eigen-frequency
ω of coupled linear harmonic oscillators with interaction energy V [35, pp. 151]:

(ω0 − ω − iγ)(ωC − ω − iγc) =
V 2

~2
,

V = ~

√

2ω0ωLTLC

LDBR + LC

,

where ω0 and γ are the frequency and dephasing rate of the bare exciton resonance
and ωC and γC are frequency and dephasing rate of the bare photon resonance.
Longitudinal–transverse splitting of exciton is denoted as ~ωLT and finally LDBR

is an effective thickness of the Bragg mirror [35, pp. 63]. The eigen-frequencies of the
modes of a nonlinear medium inside the cavity are then expressed as:

ω1,2 =
ω0 + ωC

2
−

i

2

(

γ + γC
)

±

±

√

(

ω0 − ωC

2

)2

−

(

γ − γC
2

)2

+
V 2

~2
+
i

2

(

ω0 − ωC

)(

γ − γC
)

The imaginary part of the frequency describes homogeneous linewidth of the appro-
priate spectral line. Let us put ω0 = ωC for illustration:

ω1,2 = ω0 −
i

2

(

γ + γC
)

±

√

V 2

~2
−

(

γ − γC
2

)2

13



If the term under square root is negative, then the square root is imaginary and the
resulting modes are degenerate like in the problem of interaction of a quantum well
with light. One of the modes is then a fully material wave while the second is fully
photonic. If the term under the square root is positive, on the contrary, degeneracy
is clearly removed and the modes split into two. The interaction energy must be
sufficiently large for that purpose:

V > ~
|γ − γC|

2
.

The above condition is necessary but not sufficient: the modes must be physically
distinguishable, e.g. two distinct peaks must arise in transmission spectra. We may
require that the splitting energy must at least the sum of homogeneous linewidths:

√

V 2

~2
−

(

γ − γC
2

)2

>
γ + γC

2
.

If the above conditions are met i.e. if the modes of the cavity split, it is a conse-
quence of the strong interaction between the photon and the exciton which comes as
a result of their increased wave function overlap due to the photon resonance in the
microcavity. The photon and the material waves mix in the new eigenmodes and give
rise to quasiparticles — polaritons — with partial material and partial electromag-
netic character whose magnitude can be mathematically expressed through Hopfield
coefficients [35, pp. 209]. Polaritons are widely known as optical excitations of bulk
crystals however the microcavity polaritons differ in particular in dispersion depicted
in Fig. 5b. It is important to observe the dispersion minimum at nonzero energy,
it is non-parabolic and it contains inflection points. If we consider the dispersion as
parabolic around its minimum and we also consider polariton’s mixed character of
partly material and partly photon wave, we conclude that these are extremely light
and interacting particles with non-trivial dispersion — properties which are respon-
sible for an interesting physics in the area of the optical spectroscopy of solid state.

Stimulated scattering and condensation

Polariton’s total angular momentum (denoted here also as “spin”) is 1 as well
as photon’s spin and therefore they obey Bose statistics.3 Therefore, as for other
bosons, stimulated scattering processes should be observable, for example stimulated
scattering: if two polaritons with equal spins and with in-plane wave vectors k1 and k2

interact and scatter into final states with wave vectors k3 and k4 whose populations
are N3 and N4 and if k1 + k2 = k3 + k4, the scattering rate is proportional to
N3 +N4 +1. Such effect can be observed in other bosonic systems in solid state, e.g.
in exciton–exciton scattering [36], indeed in polaritonic systems the phenomenon is
more pronounced due to weaker band filling.

The total momentum and energy of the particle pair must be conserved in an
efficient scattering process. One possible geometry in two-dimensional systems is the
scattering on an elastic circle in which two particles with opposite wave vectors (and
equal energies) scatter to states with equal energies and opposite wave vectors again,
which lie on a circle in reciprocal space due to conservation laws (see Fig. 6). This
geometry for parametric interactions allows one to investigate the spin properties of
the polariton–polariton interaction which reflects the complex spin structure of the

3This is true only in the low density limit as well as for excitons, i.e. band filling effects are

negligible. Partial photonic character allows to reach much higher particle density as compared to

excitons, until the band filling effects start to take place.
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Figure 6: Scattering on elastic circle (a) in real and (b) in reciprocal space. Elastic
circle is depicted in (b) by blue line while the red and green lines show the polariton
dispersion in a microcavity. The incoming beams with wave vectors k1,2 are displayed
by yellow line, scattered beams by the magenta line. From [P14].

exciton–exciton scattering due to particular fermion–fermion interaction. The spin of
scattered polariton thus may depend on the angle of scattering.

Stimulated scattering is an important feature of the cavity polariton physics. It
allows for creation of high density of particles in the minimum of their dispersion
and reaching the quantum degeneracy limit. Condensate creation, its properties and
dynamics are the large area of the research of microcavities which aims at spontaneous
symmetry breaking, macroscopic coherence etc. This area is connected to condensates
in other quantum systems but microcavities are very cheap “laboratory” as compared
to other physical ssytems because phase transition is possible at room temperature
and optical emission directly displays the particle density. The disadvantage is, on
the other hand, short lifetime of polaritons due to tunneling through mirrors and
is about 10–100 ps and it is sometimes hard to determine whether the system is in
thermodynamics equilibrium or not.

Besides the resonant scattering, the condensate can be formed spontaneously. In-
coherent electron–hole pairs are injected into the semiconductor optically, electrically
or in other way. Then they quickly form bound free excitons and these subsequently
relax their energy via optical phonon emission and finally by accoustic phonon emis-
sion. After few tens of picoseconds, they reach the polariton band [37]. Energy re-
laxation continues at sufficiently large polariton density due to stimulated processes
(polariton–polariton or phonon–polariton) and finally a macroscopic population of
particles in the energetical minimum — the condensate — is formed [38].

Condensates and topological defects

Researchers in the field of cavity polaritons are interested in also other subjects but
the condensation kinetics: the major domains are research of spatial propagation and
coherence [39], superfluidity [40,41], topological defects of condensates, their kinetics
and mutual interaction [42,43], etc. The research areas mentioned here are connected
with the spatial coherence and phase transition to condensed state which is described
as the Kosterlitz–Thouless transition [44] to the superfluid phase.
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The polariton system may be assumed to be a two-dimensional, weakly interacting
gas with spin (polarization) degree of freedom, the total spin is 1. The lowest-energy
state is ordered with long-range coherence of both phase and spin. In two dimensions,
however, the ordering is broken by interaction with phonons and therefore the long-
range correlations vanish at nonzero temperature. Even though there does not exist
correlations at arbitrary distances, there is a local ordering as shown in [44]. The cited
model is based on an analysis of thermodynamic variables assigned to topological
defects, namely vortices in fluids. Isolated, freely propagating vortices may exist in
a system if the Helmholtz free energy of an isolated vortex F = U − TS is negative
with U being the internal energy, T is temperature and S is entropy. The condition
of negative free energy holds above the critical temperature:

TKT =
π~2n

2mkB
,

where n is the particle density, m is their effective mass and kB is the Boltzmann con-
stant. The advantage of polaritons is seen from the formula: as compared to the atom
nuclei in two dimensions, their mass is smaller by 8 orders of magnitude implying the
critical temperature being by 8 orders of magnitude higher. Spontaneous ordering is
disturbed by thermal fluctuations in a form of random creation of topological defects.
Initially, a vortex pair of type particle–antiparticle (with opposite angular momenta)
is virtually excited in the fluid. Above the critical temperature, the vortices dissoci-
ate and the particular quasiparticles move freely in the system, destroying the spatial
phase coherence which then decreases exponentially with distance. The fluid is then
in the normal (non-condensed) phase which is viscous due to the free vortices. At the
temperature below TKT, thermal fluctuations appear also as spontaneous creation of
vortex–antivortex pairs but they cannot dissociate so they disturb the spatial phase
correlations only locally and the phase correlation function decreases as a power law.
The superfluid does not exist in terms of the global order in the system nevertheless
local correlations provide persistent current loops and thus the superfluidity.

As proposed by the model, vortices are the elementary excitations of the system
of spins. The rotation of the wave function phase is denoted by the number k which
determine the number of 2π phase rotations due to the periodic boundary condition
along a closed loop around the vortex core. We can define spin vortices as well: they
are the linear polarization rotation along a closed loop around the core by an integer
multiple 2πm. As shown theoretically [45], mixed phase and polarization vortices are
the lowes-energy excitations. In such type of vortices, the linear polarization rotates
at a closed loop by only ±π and also the wave function’s phase change must be ±π
along the same loop in order to satisfy the periodic boundary condition. Both the
quantum numbers are then half-integer and there exist four distinct basic vortices:
(k,m) = (± 1

2
,± 1

2
).

The spatial correlation length of polariton condensates can be as large as tens of
micrometers [39] and the vortex core diameter is of the order of micrometers. We can
therefore directly observe condensates and their topological defects using spatially
and spin-resolved optical spectroscopy. Optical spectroscopy may be successfuly used
also in order to observe the behavior of the flow of polariton fluid in normal and
superfluid phase. In experiments, a phenomenon similar to the spin Hall effect has
been observed in the polariton system [46]. This phenomenon is caused by effective
spin-orbit interaction which takes place due to the TE and TM polarization splitting
of polariton eigenmodes in specially designed cavities. Also flow of the polariton fluid
in normal and superfluid phase around defects has been detected [40, 41] and proofs
of the existence of superfluid behavior have been proposed.
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3 Overview of the results

All the publications collected in this habilitation thesis refer to the optical spec-
troscopy of two-dimensional semiconductor systems (nanostructures) and it is possible
to divide them into three distinct groups as suggested in the Introduction:

1. optical waveguides,

2. semiconductor quantum wells,

3. semiconductor microcavities.

I give a comment to all of the groups in this part of the thesis in which the origi-
nal results and context of the publications are introduced. The most of the papers
contain an extensive experimental part, for example, they present observations of
new phenomena whose interpretation was, however, possible only with a theoretical
background. Finally, detailed theoretical modelling in order to confirm or refuse hy-
potheses about the origin of the effects was necessary. I consider such collaboration
of the theoretical and experimenal physics as the advantage of the publications due
to the wide characterization of the physical system.

3.1 Optical waveguides

Submicron size of a material may notably change its physical properties as compared
to bulk. Silicon nanocrystals are one example: they reveal strong photoluminescence
in the visible spectral range with quantum efficiency by orders of magnitude higher
than the 3D crystal whose band structure contains indirect optical band-to-band
transitions and thus phonon scattering is necessary for photoluminescence. Quantum
confinement (charge localization) causes delocalization of the wave function in the
reciprocal space, leading to a partial overlap of wave functions of electron and hole
what makes the optical transitions to be direct.

Silicon nanocrystals revealed themselves as a promising material for construction
of an efficient light source based on silicon technology, in particular for construction of
a laser which could be integrable to the existing platform of silicon opto-electronics.
The variable stripe length method (VSL) [6] is widely used for determination of the
size of optical gain, which is essential for the laser operation. The method is based
on measurement of the photoluminescence intensity when varying the lenght of an
optically excited stripe. The method has been applied among others to waveguiding
samples with optical waveguides [7]. The measurements reveal, however, optical arti-
facts whose origin was not clear. Futhermore, the photoluminescence spectra contain
distinct unexpected maxima, see Fig. 7 whose position is a characteristics of partic-
ular samples. Such mode structure was observed also in other waveguiding samples
prepared using a different method [47].

We performed a detailed experimental characterization of the above mentioned
modes in [P1–P3] and we proposed the hypothesis about their origin. Waveguiding
samples behave similarly to the common (passive) planar waveguides, however they
show up one additional property: the light source is inside the waveguide core while
the light coupling to the passive waveguides is from outside. Nanocrystals in the core
of the active waveguide therefore emit light to the whole wide spectrum of eigenmodes
introduced in the part 2.1 i.e. not only to the guided modes (with continuous spec-
trum) but also into the substrate modes. When using the particular detection optics,
light is collected from a small spatial angle and thus we select only those substrate
modes which propagate along the core from their continuum of states. The propa-
gation direction of substrate mode is connected with the angle of mode propagation
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Figure 7: Comparison of experimental (a) and theoretical (b) photoluminescence
spectra collected along the waveguiding layer of an active waveguide with silicon
nanocrystals. Spectra were detected and simulated at distinct deviations of the de-
tection direction from the direction of guiding, denoted as an angle close to the curves.
From [P7].

direction in the core ϑ through the Snell’s law while the substrate modes of interest
satisfy ϑ <∼ ϑs. Using Fresnel’s formulae, we found that the reflectivity of the wave

with ϑ <∼ ϑs on the core/substrate boundary is close to one. Light in such type of sub-
strate modes is therefore guided inside the core for several tens of roundtrips before it
decouples into the substrate and it must therefore satisfy the condition of constructive
interference as well as the guided modes. It is possible only for discrete energies and
therefore we observe pronounced maxima in photoluminiscence spectra at particular
wavelengths, characteristic for each of the samples. We compare the hypothesis in
[P1–P3] with experimental data and we performed additional measurements in order
to check the validity of the theory. The additional experiments clearly identified the
substrate modes and not the guided modes to be responsible for the phenomenon. We
compare the luminiscence and transmission spectra in [P4] and we show that spectral
positions of peaks are equal what is a clear confirmation of the theory.

The existence of observable substrate modes in the active planar waveguides with
silicon nanocrystals clearly implies the strong influence of mode leakage into the sub-
strate on measurements of the optical gain using the VSL and other methods. The
major question is, whether it is possible to reach positive net gain of these modes.
Our theoretical model is presented in detail in [P5] where also relevant formulae for
an estimate of luminescense response of a bulk or a waveguiding sample in various
experimental geometries are derived. With the help of numerics, we have marked
distinctions in the response of 3D and 2D samples which comes from the presence
of the substrate modes. The calculations show that corrections are essential in order
to properly determine the net gain value in VSL experiments. The theory of the ac-
tive waveguides and theoretical calculations of the optical field distribution across the
waveguide, of the optical gain etc. are summarized in the in-book chapter [P7]. The
overview of the experimental results with a basic theoretical description is presented
in another chapter [P8].
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The last publication [P6] dedicated to optical waveguides reports a phenomenon
which had not been yet described in the literature. Using the laser-induced transient
grating method, we measured the diffusion coefficient of excitons created by the laser
beam in a layer of silicon nanocrystals embedded in a waveguide. In this method,
the efficiency of diffraction on the transient grating is measured as a function of time
and grating period. Then it is possible to determine the diffusion coefficient from
the dependency of the time decay constant of the signal on the grating period. The
standard analysis of data results in the diffusion coefficient D = 420 cm2s−1 in our
experiment what is a value larger by one order of magnitude than the coefficient
for bulk silicon DSi ≈ 10 cm2s−1. There must therefore exist another important
physical effect besides diffusion which causes significant decay of the grating contrast
at the time scale of picoseconds. We proposed a hypothesis based on an optical
grating-induced feedback for photons which propagate in the waveguide. The feedback
amplifies spontaneously emitted light in the layer with crystals what leads at the end
to fast stimulated recombination of the excited states. As we show in the numerical
calculations, the rate of stimulated recombnation is affected by the period of grating
and therefore significantly influences the measurement of the diffusion coefficient.

3.2 Semiconductor quantum wells

The publications in the area of quantum wells may be separated into two subgropus
according to their particular subject: spin-related papers aiming at nonlinear spin
interactions in single quantum wells [P9–P11] and the other subgroup with works
aiming at spin transport in double quantum wells [P12–P13].

The paper [P9] deals with the basic characterization of the exciton and biexci-
ton wave functions. Based on the group theory, we deduce the spin structure of the
symmetrized wave functions of exciton and biexciton states as a combination of the
electron and the hole spin for quantum wells made from materials with wurtzite and
zinc-blende crystallographics structure and grown in main crystallographic directions.
We then apply the method of invariants to these wave functions and we derive ap-
propriate Hamiltonians which describe mixing of the symmetrized states what results
e.g. in the mixing of the states with equal spin and wave vector and different band
index in quantum wells. The size of this particular effect is also shown numerically.

We deal with nonlinear interactions of excitons in the article [P10], focusing on
the spin in optical four-wave mixing. There is a variety of models describing the same
thing which are based on semiconductor Bloch equations [24] or microscopic theories
with higher electron–hole correlation terms [25–28] and finally there are models which
consider level schemes with exciton states [30–34]. From the cited sources, only those
microscopic theories with higher-order correlation terms give the correct predictions
of both the dynamics and spin of the output signal: in semiconductor Bloch equations,
a reduced density matrix is used whose elements are two-point correlation functions
while the higher correlations are factorized in the kinetic equations in order to obtain
a closed set of equations. Higher order terms, consisting of informations about spin-
spin correlations, are absent. This disadvantage is corrected in the models which
contain full higher-order terms. Although the microscopic theories are successful,
they require time-consuming numerical evaluation. It is then much easier to resolve
an empiric model in a form of an exciton level scheme where the polarization of
the response can be found analytically. The polarization predictions of the existing
models nevertheless fail in some cases, presumably due to an inaccurate symmetry
of the starting Hamiltonian. Our model, published in [P10], has been found in order
to take into account the full symmetry of the relevant states which take place during
the nonlinear interaction and to give appropriate analytic predictions of the physical
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properties of the nonlinear optical response. We choose the basic optical excitations in
intrinsic semiconductors, namely the exciton and biexciton states as the starting point,
taking into account their correct internal structure, according to the composition of
the host material (bulk semiconductor, quantum well). The Hamiltonian contains the
interaction term for the exciton–exciton scattering which respects the spin structure
of particles and which is the key element for the nonlinear interactions. We then
derive kinetic equations for the reduced density matrix with four-point correlators
whose analytic solution is possible and the calculation of the outgoing polarization
reduces to an algebraic problem. Predictions of the model in [P10] agree with the
microscopic theories. The complexity of the calculations is, on the other hand, much
smaller and the model is applicable to systems with any arbitrary symmetry with
only minor modifications.

Time evolution of the exciton spin in GaAs quantum wells is analyzed in the pa-
per [P11]. Using the time- and spin-resolved optical spectroscopy, we measure the
dynamics of nonlinear response of excitons in multiple quantum wells. The study is
unique due to the use of pump and probe technique whose time-integrated response
after excitation by a picosecond pulse is detected in a wide spectral range which covers
the most of excitonic resonances of the system. We were able to accurately determine
the density of bright and also dark excitons from the differential transmission spectra
by spectral shape fitting. We proposed a simple level scheme which describes the
system’s dynamics, including the spin relaxation. We consider the proper particle
(exciton and biexciton) symmetry in the model according to [P9] and we perform
numerical fit of the measured dynamics in order to extract the appropriate spin relex-
ation times for particular processes, including spin relaxation of electrons, holes and
whole excitons. Even though the resulting data just confirmed the previously pub-
lished results measured by different techniques, our publication still has some impact
due to the complex analysis of the spectra of the response and also thanks to the
consistency of the kinetic model. These facts refute doubts about the correctness
of interpretation of e.g. degenerate pump and probe experiments on which most of
previous publications were based.

In semiconductor double quantum wells, we investigated spin transport of exci-
tons at macroscopic distances. In the paper [P12], the transport is diffusive while it
is ballistic in [P13]. In both works, DC voltage is applied across the layered structure
what results in spatial separation of electrons and holes to individual quantum wells.
The Coulomb interaction across the tunnelling barier is still strong enough in order
to allow creation of the bound electron–hole pairs — indirect excitons. Such exci-
tons have long lifetime due to slow radiative recombination and they can therefore
travel over large distances (up to tens of micrometers) during diffusive transport, even
though their effective mass is large (comparable to the free electron mass). Besides
the particle transport, we are interested mainly in the spin transport in our study: as
the exciton spin relaxes, according to the part 2.2, it is not clear whether the diffusive
spin transport could be efficient. Based on an experiment and subsequent theoretical
analysis, we show in [P12] that the spin transport is possible at the distance of sev-
eral micrometers and we discuss critical parameters which influence the spin transport
efficiency.

It is possible to observe ballistic exciton transport at higher exciton densities
which are accessible through increase of the energy density in the optical excitation.
Hot excitons in double quantum wells quickly relax their energy after optical exci-
tation and access low-energy states whose temperature can drop below the quantum
degeneracy limit due to the exciton long lifetime. Exciton–exciton interaction then
effectively screen exciton interactions with static defects and low temperature reduces
the strength of interactions with phonons. Exciton transport is then ballistic with
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Figure 8: Degree of linear polarization Plin and degree of circular polarization Pσ of
indirect excitons in double quantum wells. The green box encloses the same object
under the same experimental conditions with the exception of the detection optics
which is set to different polarization components. The exciton source is in the centre
of the green box. From [P13].

the coherence lenght of the order of few micrometers [48]. We observed spin struc-
tures which form spin vortices in linear polarization [P13] in systems of excitons,
propagating from a point source (see Fig. 8). We propose a theoretical model for the
interpretation of the phenomenon in which we consider coherent exciton propagation
and we include spin precession due to spin–orbit interaction. The model outputs are
in agreement with the experimental data. The model contributes to understanding of
the dynamics of the charge carriers in the researched structure and in general it con-
tributes to the knowledge of the dynamics of quantum degenerate systems of bosons
and fermions.

3.3 Semiconductor microcavities

In the publications in the microcavity area included in this habilitation thesis, the
research subject are the parametric interactions of polaritons with the special atten-
tion to the polariton spin and manifestation of the spin coherence. In the primary
works [P14–P15], we develop a theory of spin–spin interactions on the elastic circle:
two polaritons with opposite momenta scatter into states on the elastic circle in the
opposite positions in reciprocal space due to momentum conservation. We analyze
the scattering amplitudes in the paper [P14] using microscopic calculation, taking
into account the spatial and spin structure of polaritons. The calculations show that
the degree of optical polarization of the scattered particles is not isotropic and it is
strongly influenced by the composition and spatial separation of the electron and hole
wave function as a result of e.g. applied DC electric field perpendicular to the sample
plane. We further analyze the same geometry of the experiment in [P15] considering
additionally stimulated processes. There is a clear crossover between spontaneous
scattering with low polarization degree and the stimulated scattering regime with al-
most 100% polarization degree of the final states. Furthermore, we show theoretically
the existence of breaking of the spatial symmetry by the presence of the excitation
beams. The scattered polaritons in the stimulated regime do not occupy the whole
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elastic circle but rather discrete points so that the scattered beams propagate per-
pendicular to the incoming beams in the real space. Finally we point out that the
particular experimental geometry may be used in order to construct logical X–NOR
gate whose logical information is stored in the polarization of optical field.

Theory of logical circuits is further discussed in the paper [P16] on a model system
made of a microcavity covered by a line of thin metal rectangles. Eigenstates of the
microcavity–metal structure are a combination of the Tamm plasmon and exciton–
polariton [49] and they have lower energy compared to the cavity without the metal
stripe on its surface. The metal areas are then the potential wells for optically excited
states what is a promising feature for construction of circuits for optical excitations.
The dependency of the particle density in the nanostructure on the external illumina-
tion density is nontrivial and reveals a hysteresis loop and therefore bistable behavior.
One bit of the logical information may be then represented by the particle density
depending in which of the two bistable states the system is. We show, using numerical
calculations based on the solution of the Gross–Pitaevskii equation, that a logical in-
formation propagates in the chain of the areas with the metallic rectangles on the top
in a form of switching the polariton density from one branch of the hysteresis loop to
the other one. The gap between the rectangles plays a role of a barrier through which
polaritons tunnel from the neighboring well and move the hysteresis loop in the actual
well such that the density of polaritons skips to the second hysteresis branch. In this
way it is possible to “transport” the information to the logical gate where it is eval-
uated and the result may be carried in the same manner towards the next gate. We
also demonstrate theoretically that the hysteresis loops may be shifted by applying
electric field across the structure. It is then possible to construct field effect transistor
for polaritons or we may utilize the effect in setting up the logical information in the
circuit using electric field and connect integrated electronics and optics.

A possibility of an efficient condensation kinetics in a microcavity is experimen-
tally investigatedin the paper [P17]. Cavity polaritons are promising for construction
of efficient coherent light sources in particular due to theoretically higher quantum
efficiency as compared to usual lassers and due to the absence of a threshold for co-
herent emission. Kinetics of the polariton condensation from a thermal state to the
bottom of the polariton band is rather complex because the condensation requires
several interactions with accoustic phonons in the area where the polariton lifetime
is in the picosecond scale. Polaritons cumulate in the zone with negative effective
mass (polariton bottleneck) and they annihilate due to their short lifetime. Conden-
sation is possible only above some critical density [38] at which the phonon–assisted
scateerings are stimulated and the energy relaxation is fast enough. Clearly there
is a nonzero threshold on the contrary to the early theoretical estimate. We take
an advantage of the relaxation mechanism by optical phonon emission in the study
[P17]: the phonon energy is well defined in semiconductor crystals and the interac-
tion energy is by an order of magnitude larger as compared to the accoustic phonon
emission. The whole microcavity struture was designed such that the ligh hole (LH)
exciton band was above the polariton band minimum approximately by the energy of
an optical phonon. The relaxation then was a one–step process of the optical phonon
emission from the LH band directly to the bottom of the polariton band. The system
was optically pumped at the LH exciton energy and we measured the threshold for
coherent emission as a function of the energy diffrence between the LH exciton band
and the bottom of the polariton band. We found that this dependency is nontrivial
so we conclude that the energy relaxation by optical phonon emission may be efficient
and we may use the effect in electronic components where the system is electrically
pumped across a proper tunneling barrier.

The study of topological structures and perturbations is an indispensable part of
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Figure 9: Results of an experiment (a),(b) and theoretical simulation (c),(d) of inten-
sity of 2D optical field in a microcavity in real space when an optical wave approaches
a defect. The light is incident on a defect at the position (0,0) with the size of 3 µm
and propagates along the y axis. The plots (b) and (d) show an interference patterns
after interference with a reference beam. From [P20].

the condensed matter physics. There was a successful observation of phase vortices
in polariton condensates [50] but theory [45] predicates the existence of half-phase
and half-polarization vortices as being the elementary excitations in the cavity po-
lariton systems. We focus in the paper [P18] on experimental evidence of this type
of vortices, using spin-resolved optical spectroscopy. With the help of several differ-
ent experiments, we unambiguously showed the existence of the mentioned vortices,
confirming theoretical models of polariton fluids and quantum systems with the spin
degree of freedom in general and we opened the way for both theoretical and experi-
mental research of the dynamics of new topological defects in condensates.

In the last two publications listed in this thesis, we consider linear effects in micro-
cavities without nonlinear medium (with no exciton–photon interactions). The stud-
ied system is therefore an effectively two-dimensional non-interacting photon gas. On
the contrary to waveguides, cavity photons reveal parabolic dispersion and the state
with zero in-plane wave vector is a well defined eigenstate of the system. Study of the
photon dynamics in the linear regime is essential in order to understand the influence
of the interactions with material on the photon behavior or to study the effect of op-
tical nonlinearities on the characteristics of the photon gas. In the first study [P19],
we investigate polariton spin-orbit interaction and its consequences for the so-called

23



optical spin Hall effect [46]. While the authors of Ref. [46] claim that exciton–photon
interaction is necessary for the phenomenon, both theoretical calculations and experi-
mental data in [P19] unambiguously show the opposite. We interpret the phenomenon
in terms of photon ballistic transport and effetive spin–orbit interaction. The conclu-
sions refer to and support the paper [P13] where we discuss ballistic transport and
spin–orbit interaction in the system of indirect excitons in double quantum wells.

The theory of phase transition to the superfluid state by Kosterlitz and Thouless
[44] defines the critical temperature under which there is a nonzero density of particles
in locally correlated state in the system. The theory is, however, formulated for
spinless particles with an infinite lifetime while cavity polaritons have nonzero spin and
the lifetime comparable to the thermalization time. Despite of these facts, theoretical
works indicate that cavity polaritons should be able to reach the macroscopically
ordered state. Nonetheless it is the experiment which plays the key role and confirms
theory. There were several publications claiming on the polariton superfluidity [40,41]
in which the fluid was tested with several criteria for superfluidity. In the experiments,
the fluid mostly flows around an artificial defect and the fluid density is investigated
under different excitation conditions. Since it is possible to create the cavity polaritons
in a condensed state at an arbitrary point in the k-space by resonant optical excitation,
the influence of the fluid density and velocity on their scattering by the defect and
formation of dark solitons is widely studied. We perform a very similar study in the
publication [P20] in fully linear regime both experimentally and theoretically — we
study the linear scattering of the 2D photon gas on a defect and we also investigate the
role of the scattering in formation of structures similar to dark solitons and vortices.
Our results show that the criteria widely used up to now in order to indentify the
superfluid state are not sufficient for unambiguous confirmation of its existence. The
same structures with similar dimensions like in the proposed polariton superfluids
were identified in the optical response of the linear system both in the experiment
and theory under similar experimental conditions (see Fig. 9). It does not mean,
however, that the polariton superfluid does not exist. The clear message is, that
we should apply additional criteria for confirmation of the superfluidity and perform
supplementary experiments which give an answer to the question what is the critical
temperature for superfluid and whether it is possible to reach it.

4 The role of theory in optical spectroscopy

Optical spectroscopy consists of various experimental methods for indirect observation
of phenomena which occur in the investigated physical systems. One of the systems
of interest are semiconductors which are the subject of the collection of publications
in theis thesis. Despite of the experimental character of the methods used in optical
spectroscopy, it is not a purely experimental discipline: the data from indirect obser-
vations need to be analyzed and interpreted, often with the help of theoretical models
and computer simulations. Furthermore, in the era of the extensive development of
nanostructures and hybrid structures of various materials, the standard experimental
methods are not suitable for research of some particular properties of samples and
therefore it is necessary to develop new methods or to improve the older ones. One
then needs in some cases theoretical modeling and computer analysis of the design of
the setup. Most of the publications in this thesis reflect intensive collaboration of the
experiment and theory to which I contributed considerably. This type of collabora-
tion should continue at Faculty of Mathematics and Physics at Charles University in
Prague, for example recent publication [51] deals with measurement and theoretical
description of Kerr effect in magnetic semiconductors based on GaAs.

24



References

[1] U. Woggon, Optical properties of semiconductor quantum dots, Springer tracts
in modern physics vol. 136, Springer, Berlin, 1997.

[2] S. V. Gaponenko, Optical properties of semiconductor nanocrystals, Cambridge
studies in modern optics, Cambridge University Press, Cambridge, 1998.

[3] H. Haug and S. W. Koch, Quantum theory of the optical and electronic properties

of semiconductors, World Scientific, Singapore, 2004.
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dosesof 3, 4, 5,and 631017 Si cm−2 (in four different re-
gionsof the slab) werechosento producedifferentlevelsof
refractive index contrast betweenthe core and cladding/
substratelayers.PeakexcessSi concentrationswere up to
26 at. %Si. Implantedsampleswere subsequentlyannealed
for 1 h in N2 ambientat 1100°C and 1 h in forming-gas(

5%H2 in N2) at 500°C. The presenceof Si-NCs in the an-
nealed layers, with diameter between4–5 nm, was con-
firmed by Ramanscattering(not shownhere).

The PL propertiesof sampleswere investigatedusinga
continuouswave He-Cd laser s325 nmd as the excitation
source(excitationintensity,0.3 W/cm2) anda microscope
connectedto an imaging spectrographwith a CCD camera
for detection[Fig. 1(a)]. The detectionnumericalaperture
(NA) was 0.075 (i.e., an angularresolutionof about8.6°).
All measurementswereperformedat room temperatureand
all PL spectrawere correctedfor the systemresponse.To
achievebetterangularresolutiona secondexperimentalar-
rangementwasalsoemployedin which thesamplewasfixed
to the centreof a goniometer[Fig. 1(b)]. The PL emission
was then collectedby a silica optical fiber (core diameter
1 mm) rotatedaroundthe sampleat a distanceof 50 mm,
giving an angular resolution slightly less than 1° sNA
,0.01d. The output of the fibre was measuredusing the
samedetectionsystemdescribedabove.

Typical images observedwith the microscopic setup
[Fig. 1(a)] are illustrated in Figs. 1(c) and 1(d). Here the
diameterof the excitationspot,locatedat about1 mm from
thesampleedge,is roughly1 mm. Onecaneasilyrecognize
PL emissionfrom theexcitedspotasa bright ellipsoid.How-
ever, thereis alsoa secondcontributionemanatingfrom the
facet of the sample.This light is obviously guided in the
implantedlayer or closeto it. The imagesin Figs. 1(c) and
1(d) werecollectedfor sampleinclinationanglesof −15° and
+15°, respectively, i.e., in a geometryfor which the excited
spot was observedeither directly [Fig. 1(c)] or throughthe
substrate[Fig. 1(d)]. The experimentalarrangementshown
in Fig. 1(a) enablesthe detectionof the PL either from the
excitedspot or from the edgeof sampleby positioningthe
entranceslit of the spectrographto different locationsof the
PL image.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Figure2 (left column) presentsPL spectraof four layers
producedby implantingto differentdoses.The broaddotted
curvescorrespondto PL emanatingfrom the samplesurface
(perpendicularlyto theSi-NC layer, i.e., conventionalgeom-
etry) while the othercurvesrepresentPL collectedfrom the
facetof thesample(sampleinclinationwas+2.5°). It canbe
seenthat thesetwo typesof spectradiffer considerably. The
facetPL spectraaremuchnarrowerandcontain(exceptthe
331017 cm−2 sample) narrowTE andTM modesclearly re-

FIG. 1. Sketchof the experimentalgeometryfor the
microPL setup (a) and for the goniometersetup (b).
Lower panels show PL intensity images (area 2
31.2 mm2) of the excitedwaveguide(usingmicro-PL
setup) for sample inclination of a=−15° (c) and
a= +15° (d). Theelliptical spotis theexcitedregionon
thesurfaceof thesample,andthenarrowline is thePL
emanating from the sample facet. The substrateis
slightly illuminatedwith a white lampgiving riseto the
lighter graycolor in thebottompartof the images.The
white arrowsindicatethe directionof excitedbeam.

FIG. 2. Left column: ExperimentalPL spectrafor layers implantedwith
doses3, 4, 5,and631017 Si cm−2 (from topdown) detectedin two dif ferent
directions:TheconventionalnormalincidencePL spectra(broaddottedline)

and PL spectraemanatingfrom the facet of the sample[black line—PL
without polarizer, dashedline—with polarizer parallel to the layer (TE
mode), short-dashedlines—polarizer perpendicular to the layer (TM
mode)]. Right column: CalculatedPL spectrafrom the samplefacet sa
=0°d, taking into accountthe detectionNA =0.075. The broad emission
bandsappearingin the samples331017 Si cm−2 and431017 Si cm−2 rep-
resentguidedmodesscatteredinto the detectorcollectionangle.
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solvedwith a linear polarizationfilter parallel (TE) or per-
pendicular(TM) to the layer edge.SuchsurprisingPL spec-
tra from a simplelayerof Si-NCshave beenreportedfor the
first time only recently.13,14 Typical PL spectrafrom Si-NCs
consist of a broad band centeredat 700–800 nm with
FWHM of 150–200 nm, consistentwith thedottedcurvesin
Fig. 2.

We stressthat the TE/TM mode structureis only re-
solvedin PL spectracollectedin a direction closeto a=0°
(i.e., detectionaxis lying in the implanted plane). This is
clearly illustrated in Fig. 3(a) wherePL spectrafor several
collectionanglesa areplotted.Theseresultswereobtained
usingthe goniometersetup[Fig. 1(b)] with an angularreso-
lution of about1°. In this case,however, all emissionpropa-
gating towardsthe collecting optical fibre is detected.Only
in the micro-PL setupwe can separatethe contribution of
light guided along the implanted layer from normal inci-
dencelight emission[Fig. 1(a)]. The angulardependenceof
theseparatededgeemissionis shownin Fig. 3(b) whereone
canseeclearmodestructureemittedpreferentiallyto the a

=0° direction.
The crucial questionto be addressedis how do these

narrow lines originate? The waveguide formed by the
Si-NC plane“buried” in theSiO2 matrix is shownschemati-
cally in Fig. 4(a). Therefractiveindexprofile nszd acrossthe
layer is determinedby the Si-NC distribution beneaththe
surface.Suchprofiles were obtainedby fitting interference
fringesin visible-infraredtransmissionspectraof Si-NC lay-
ers (not shown here). Thesenszd profiles are displayedin
Fig. 4(b) for eachof the samplesinvestigated.Their differ-
encesfrom the substraterefractedindex nsub=1.455areap-
proximated either by nonsymmetric Gaussian or by
Gaussian-Lorentziancurves.The depthof the maximumre-
fractive indexcontrastDn belowthesurfacewasfoundto be
d=0.63mm in all samplesand the profiles are asymmetric,
tailing towardsthe surface,consistentwith the implantedSi
distribution (not shown).

Figure 4(a) summarizesthe following reasoningin the

frameworkof a rayscheme.PL rays,emerging (atdepthd) at
high enoughanglesu, undergo total internalreflectionat the
core-claddinginterfaceandpropagatewithin theSi-NC core
region as normal guided modes (representingcontinuous
spectrum). However, raysemerging at anglesu thatareclose
but slightly below the critical angle uc=arcsinfnsub/ snsub

+Dndg for total reflectionat the core-substrateinterfacecan
reachthe samplesurfacez=0 andbe totally reflectedat this
boundary.15 This reflectionintroducesanextrasteplikephase
shift that causesthe splitting of the TE andTM modes.16,17

The reflectedbeamthenpropagatesthroughthe coreregion
and undergoespartial reflection from the core-substratein-
terface.At eachsuch reflection a small part of energy of
modescanleak out from the Si-NC layer into the SiO2 ma-
trix asa substratemode18 thatfinally leavesthesamplefacet
at the detectionanglea closeto zero [Fig. 4(a)].

It is now demonstratedthat this modelcansimulatethe
experimentalemissionspectrawith high fidelity whentaking
into considerationthesesubstratemodes.We assumeisotro-
pic radiationof randomlyorienteddipolessSi-NCd that are
randomly scatteredinside the waveguide(i.e., we neglect
their positionswith respectto the z axis which would be-
comeimportantwhenstudyingmicrocavityeffects). The in-
teresthereis on the modeenergy, i.e., the output PL inten-
sity, as a function of the angleu and wavelengthl.19 With
the aid of equationsfor deriving the cavity enhancement
factor20 we get for themodeamplitudeinsidethewaveguide

Asu,ld = A0/s1 − tr1r2d,

whereA0 is an effective sourcestrengthand t,1 is a trans-
mission coefficient [in general t= tsu ,ld] during one
roundtrip of the wave in the waveguide.r1 and r2 are the
reflectivitiesof the waveguideboundariesthat canbe calcu-
lated (see,e.g.,16) by using a transfer-matrix method.The
transfermatrix M is calculatedasM =M1M2M3¯Mn, where

FIG. 3. Angular dependencies(sample531017 Si cm−2): UnpolarizedPL
spectrameasuredat various anglesa with respectto the normalto the
output facet in the sample531017 Si cm−2 using either the goniometer
setup(a) or themicro-PLsetup(b). Theangularresolutionis about8.6° and
1°, respectively. Panel (c) representsmodelcalculationsof the angularde-
pendencefor aperturecollectionangleof 8.6°.

FIG. 4. (a) Crosssectionof the Si-NC planar waveguidewith a graded
index profile nszd. Raysof both guidedandsubstratemodes areindicated.
(b) Refractiveindex profiles nszd in the investigatedsamples.Lower two
panelsshowcalculatedspectralpositionsof thesubstratemodes:As a func-
tion of the refractiveindex contrastDn (c) and as a function of the maxi-
mum index contrastdepthd in the sample531017 Si cm−2 (d).
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Mk, 0,køn, are transfermatricesfor very thin layersinto
which the structurewas “cut,” in parallel with the sample
surface,for the purposeof numericalcalculation.The inten-
sity of a modeis proportionalto AA* . In thepresentstudywe
usedt=0.995[in agreementwith experimentallyestablished
dampingof about10 cm−1 (Ref. 21 ) ] andn=5000.

The resultsof calculationsarepresentedin Fig. 2 (right
column). The overall agreementwith the experimentaldata
(left column) is excellent,providing strongsupportfor the
proposedmodelthat theobservedPL spectralnarrowingand
TE/TM splitting aredueto the substratemodespropagating
nearly in parallelwith the boundaryof the waveguide.(We
shouldnote that the intensity of the calculatedmodeshere
hasbeenmodulatedby the spontaneousbroadPL emission
bandto allow direct comparisonwith experiment.) Onecan
easilyrecognizein Fig. 2 a TE/TM “doublet” whosespectral
position is red shifting and the separationbetweencompo-
nentsis increasingwith increasingimplantationdose.This
behavioris displayedmoregenerallyin Fig. 4(c) (calculated
modepositionasa function of the maximumindex contrast
Dn, which is linked to theimplantationenergy) andFig. 4(d)

(calculatedmodepositionasa functionof thedepthd). Simi-
lar calculationswere performedfor the angulardependence
of PL for the layer 531017 Si cm−2 and the resultsaredis-
playedin Fig. 3(c). Onecanclearlyseethenarrowmodesat
anglescloseto a=0 in goodagreementwith the experimen-
tal results[Fig. 3(b)].

Thequestionthatremainsis why thesubstratemodesare
sosignificanthere.A likely answerto this questionis thatthe
regular guided modesexperiencegreaterloss during their
propagationin theplaneof thewaveguide.Indeed,thebeams
responsiblefor generatingthesubstratemodestravelreduced
distancesthrough the core region and once launched,the
substratemodeundergoesvirtually no lossin travelingto the
substratefacet. On the other hand, the standardguided
modesarestronglydampedon their trip over a macroscopic
distancefrom the placeof creationtowardsthe sampleedge
due to absorptionandscattering.The modelemployedhere
doesnot dependon the natureof the core lossesbut simply
on thefact that the lossis significant.Themostlikely source
of loss in the presentcaseis absorptionandscatteringfrom
nanocrystals,as well as scatteringfrom the “interface” be-
tweenthe core and cladding layers.The latter likely arises
from theimplantationprocesswherethepenetrationdepthof
the Si+ ions directly reflects the surfaceroughnessof the
polishedsilica substrate,which is of the orderof ±10 nm. It
is known that microphotonicetchedwaveguidestructures
suffer from optical scatteringlossdueto sidewall roughness
and that this loss increaseswith increasingrefractiveindex
contrastDn.22 The contributionof this later processis sup-
portedby the fact that thesesubstratemodesdo not reveal
themselvesin the edgeemissionof waveguideswith atomi-
cally flat sidewalls.

IV. CONCLUSIONS

It hasbeendemonstrated,both experimentallyandtheo-
retically, that continuouswavePL canpropagatein specific
narrow band,highly directional,substratemodesinsteadof

normalguidedmodesin an activeplanaroptical waveguide.
We haveanalyzeda waveguidemadeof Si-NCs but the ef-
fect is a general property of asymmetricthin films. The
waveguideself-selectsthesemodesfrom the broadbandPL
emissionof the core. The spectraldistribution and experi-
mentalmanifestationof suchmodesis critically dependent
upon severalwaveguideparameters,predominantlythe re-
fractive index difference betweenthe core and cladding/
substrate(determinedby theimplantationdosein thepresent
study), the waveguideloss, the depthd of Si-NCs distribu-
tion beneaththesurfaceandalsoupontheshapeof nszd. The
role of thesemodesin facilitating/hamperingoptical gain
requiresfurther analysis.11
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FIGURE 1 Planar optical waveguides formed by Si-NC thin layers embed-
ded in silica slabs. (a) Edge view of a silica sheet (Infrasil) ∼ 5.0× 1.0×

0.1 cm3 under diffused white light, with colored regions formed by Si-NC
films. Corresponding implant fluences, ranging from 3 to 6×1017 cm−2, are
indicated. (b) Dotted curves: conventional broad photoluminescence spec-
tra from Si-NCs measured at normal incidence. Full lines: room-temperature
photoluminescence spectra taken from the sample facet, in the direction in-
dicated by arrows in (a). Left-hand plots – experimental, right-hand plots

– calculated. (c) Examples of Raman spectra evidencing the presence of
Si-NCs (red and brown curves). Blue curve – Raman spectrum of unim-
planted Infrasil, black curve – reference spectrum of crystalline Si wafer

forms the high- refractive-index core of the waveguide struc-
ture. Because the refractive index of the Si-NC film is higher
than that of the SiO2 substrate and extends to the surface, the
film acts as a planar asymmetric optical waveguide.

The effect of photoluminescence spectral filtering is high-
lighted in Fig. 1b. The left-hand column in this figure shows
measured room-temperature photoluminescence spectra for
four different Si-NC waveguides under UV excitation. The
dotted curves represent emission from Si-NCs embedded
within the waveguide core, measured from the sample surface,
i.e. perpendicular to the Si-NC layer. Such broadband spectra
are typical of the inhomogeneously broadened emission from
Si-NCs but are undesirable for many optical applications. The
solid curves represent spectra taken parallel to the surface, i.e.
from the edge (facet) of the waveguide (arrows in Fig. 1a). The
two sets of spectra are clearly quite different, the latter be-
ing composed of two distinct peaks separated by about 30 nm.

Moreover, each of these peaks has a distinct linear polariza-
tion: the electric vector E of the short-wavelength peak lies in
the Si-NC film (red curves, TE polarization) while the long-
wavelength peak is characterized by E perpendicular to the
film (green curves, TM polarization). The right-hand column
in Fig. 1b represents theoretically calculated spectra, the basis
of which will be discussed later.

The strong directionality of the TE/TM peak emission
is highlighted in Fig. 2, which shows a polar radiation dia-
gram of the spectrally integrated emission for the sample im-
planted to a fluence of 5 ×1017 cm−2. The emission contains
surface Lambertian photoluminescence emission peaked at
∼ 90◦ (brownish areas in Fig. 2a), as well as two distinct lobes
due to emission emanating from the sample edge (the left-
hand lobe) and the internal reflection (the right-hand lobe).
The well-developed TE/TM peaks occur within the left-hand
lobe, close to the angle ∼ 0◦ only (yellow region in Fig. 2a).
This is more clearly seen in Fig. 2b, where the photolumi-
nescence emission was collected using a microscope objec-

FIGURE 2 Directionality of edge emission (the sample was implanted to
a fluence of 5×1017 cm−2). (a) Spectrally integrated photoluminescence
emission as a function of the polar angle, measured with the sample fixed
at the center of a goniometer. (b) Micro-photoluminescence spectra for six
directions (±5◦,±10◦,±15◦): the direct emission from the excited spot is
plotted by blue lines, the edge emission by black lines, and the polarization-
resolved TE and TM modes by red and green lines, respectively. (The
collection angle of the objective lens is ∼ 8.6◦.) Note different intensity
scales for upper and lower plots
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tive (with numerical aperture of 0.075, i.e. collection angle
of ∼ 8.6◦). The micro-imaging-spectroscopic set-up enabled
us to detect separately photoluminescence leaving the excited
spot directly (blue lines) and that coming from the edge of the
implanted layer (black lines).

With regard to the physical processes that give rise to this
novel spectral structure, we consider two distinct mechanisms
(summarized in Fig. 3a and b):

(i) The two linearly polarized peaks could simply re-
sult from standard guided modes of the planar Si-NC wave-
guide (Fig. 3a). However, an ideal transparent planar wave-
guide should transmit a continuous spectrum of guided modes
up to a cut-off wavelength [18]. The cut-off wavelength for
the first-order modes of our waveguides can be estimated to
lie above ∼ 1500 nm. Consequently, the Si-NC films should
transmit the entire 600–900 nm band emitted by the nanocrys-
tals, which obviously is not the case. Nevertheless, some
structure might arise from wavelength-dependent losses, with
those modes (wavelengths) that undergo the smallest loss be-
ing guided to the edge of the sample. These are likely those
modes that are ‘weakly guided’, i.e. the modes whose electric
field is strongly delocalized, and the modes propagate basi-
cally as a planar wave in the substrate [18]. Their effective
guide thickness tends to infinity [19]. Ray optics describes
these modes by an angle of incidence θ that is greater than but
very close to the critical angle θc for total internal reflection1.
The situation is depicted in Fig. 3c, which displays schemati-
cally the reflectance R and phase shift Φ of TE and TM waves
on the boundary between two dielectric media as a function

1 Here the lower boundary is of importance only since the refractive-
index contrast at the upper boundary is high enough to assure total
internal reflection at angles θ safely higher than θc

FIGURE 3 Schematics of spectral filtering processes. (a) Guided modes of
an asymmetric waveguide (inset shows implanted Si+-ion distribution across
the Si-NC film as calculated by SRIM (the Stopping and Range of Ions in
Matter), which determines the refractive-index profile). (b) Substrate radia-
tion (leaky) modes from the Si-NC core. (c) Reflectance and phase shifts on
the planar boundary between two dielectric media plotted for TE and TM
modes versus incident angle θ

of θ . In our case the boundaries are either the core/air (upper
boundary) or the core/SiO2 substrate (lower boundary). The
arrow G labels the angle θ for the strongly delocalized guided
modes, which were invoked [20, 21] to be responsible for the
filtration effect. The salient feature of the filtering, namely, the
separation between TE and TM modes, is then a direct con-
sequence of the asymmetric guide. It is due to different phase
shifts Φ for the TE and TM modes under total reflection at
both boundaries. In order to fulfill the phase condition that
after two successive reflections the phase difference can only
be equal to an integral multiple of 2π, suitable wavelengths
from the (continuous) emission band are combined with avail-
able (continuous) values of Φ. The latter is slightly different
for TE and TM polarizations at a given angle of incidence
(Fig. 3c) and results in mode wavelengths that are also slightly
different.

(ii) The second possible mechanism involves substrate
leaky or radiation modes of the Si-NC waveguide (Fig. 3b).
These propagate at an angle θ situated close to but below
θc (arrow S in Fig. 3c). These modes undergo total reflec-
tion at the upper boundary (larger index difference) but are
only partially reflected on the lower boundary (smaller index
difference). Consequently, a small fraction of their power is
radiated into the substrate at each bottom reflection. These
leaky modes are usually considered undesirable parasitic ra-
diation [18] and thus do not normally receive much attention.
If, however, the angle θ is only slightly less than θc, the leaky
modes propagate near-parallel to the Si-NC plane. Moreover,
the number of reflections is very high (R is close to unity), re-
sulting in a narrow spectral width for the modes. The mechan-
ism of spectral filtering in this case remains basically the same
as discussed above, the only difference being that a phase shift
Φ at the upper boundary only comes to play during the initial
stages of propagation.

After a finite number of internal reflections all the radiant
power escapes into leaky modes and emerges from the sample
facet in a well-defined direction, basically parallel with the Si-
NC film (see [14] and Fig. 2). This makes such leaky substrate
modes virtually indistinguishable from the guided modes.

The fact that the two mechanisms have a different depen-
dence on the refractive-index difference at the surface pro-
vides the basis for testing their validity. The principle is to
change locally the cladding layer refractive index between
a photoexcitation spot and the sample facet – which can be
achieved by putting drops of various liquids on the sample
surface close to the sample edge (Fig. 3a and b). If the ef-
fect of spectral filtering is due to weakly guided modes, then
the edge-emission spectrum should be strongly distorted by
such changes in index, since reflections on the upper boundary
(now with modified refractive index) control the phase condi-
tion for mode creation all along the ray trajectory. If, on the
other hand, the filtering is due to the substrate leaky modes,
no change in the spectrum is expected since, after propagat-
ing ≤ 1 mm from the excitation source, all energy flux in the
modes has leaked into the substrate and is no longer influ-
enced by the upper boundary (Fig. 3b).

Results of this experiment are displayed in Fig. 4a and
show no change in emission spectrum for liquid refractive
indices in the range from 1.359 to 1.657 – clear evidence
that the effect is due to leaky substrate modes. (This ob-
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FIGURE 4 Orthogonal polarization emission ‘doublet’ in the sample im-
planted to a fluence of 5×1017 cm−2. (a) Drops of various liquids located
on the upper boundary between excitation spot and sample facet, as sketched
by the liquid drops on the right in Fig. 3a and b. Black curve – blank upper
boundary. (b) The same liquids as in (a) but located above the excitation spot
(the dotted drops on the left in Fig. 3a and b)

servation contrasts with a similar experiment performed by
shifting the same liquid drops just above the excitation spot
– dotted drops in Fig. 3a and b – where reflections of the
leaky modes on the upper boundary still occur. The results
are shown in Fig. 4b: drastic spectral modifications, scaling
with liquid refractive index [22].) As further confirmation of
this model, the right-hand column in Fig. 1b shows theoret-
ically calculated edge-emission spectra of the substrate radi-
ation modes for all samples. In calculating these curves the
graded index profile of each sample [14] was employed as
extracted from interference-modulated optical transmission
curves, measured in normal incidence2. It is evident that the
calculated curves reproduce the measured spectra very well.

Importantly, the dominance of the leaky substrate mode
emission implies the suppression of the broadband emis-
sion from the Si-NCs. (This latter emission is partly ob-

2 We take this opportunity to correct the original version of the calcu-
lated curves quoted in [14], where a numerical error made worse the
agreement with experiment

FIGURE 5 Morphology of the sample surface (upper waveguide bound-
ary). (a) Line profile measured with a ZYGO phase-shifting interferometer
over a range of 180 µm. (b) AFM normal force image over an area of 500×

500 nm2. A selected line profile of the local height is also shown, giving the
vertical distance between the points marked by arrows of about 1.7 nm, in
good agreement with the interferometric data. (c) Three-dimensional image
of the local height in a 500×500 nm2 area. The z-range of the surface (min-
imum to maximum) is 3.9 nm, yielding a RMS roughness of 0.5 nm

served in samples implanted to fluences of 3 ×1017 cm−2 and
4 ×1017 cm−2 – Fig. 1b.) The attenuation of these guided
modes is attributed to waveguide losses. Surface and side-wall
roughness is often invoked to explain waveguide losses; how-
ever, this is not a likely cause in the present case. Indeed, in
the present case the waveguide surface morphology (Fig. 5)
is very flat with a RMS roughness of ∼ 0.5 nm only. This
value is substantially lower than typical side-wall roughness
in e.g. etched semiconductor waveguides [23] or in typical
silica waveguides [24]. The loss is therefore likely due to
self-absorption and/or Mie scattering in the waveguide core.
(Diffraction of the guided modes at the output facet may also
play a role.) The exact nature of the observed waveguide atten-
uation remains unsolved at present.



PELANT et al. Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics

4 Conclusions

To summarize, using a combination of experimen-
tal and theoretical results we have elucidated the principal role
of substrate radiation modes in the spectral filtration effect
of thin-film Si-NC waveguides. It is noteworthy that the nar-
row spectral width of both orthogonal polarization modes is
comparable with the emission of Si-NCs in an optical micro-
cavity [25, 26], without fabricating any Bragg reflectors. In
a certain sense the investigated waveguides act as a micro-
scopic Lummer–Gehrcke plate. The possibility of selecting
the output wavelength via modification of waveguide pa-
rameters can be applicable in silicon photonics for Si-laser
wavelength tuning, optical signal multiplexing, and optical
sensing.
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larized �vector E parallel to the sample plane� while the peak
on the long-wavelength side is TM polarized �vector E per-
pendicular to the sample plane�. The position of this doublet
shifts with increasing implant fluence �increasing refractive
index contrast between substrate and the waveguiding layer�
towards longer wavelengths.

We interpret the narrow modes in the edge PL spectra
using the leaky mode model12,13 schematically depicted in
Fig. 2. The waveguide refractive index profile can be ap-
proximated by nonsymmetrical Gaussian or Gaussian-
Lorentzian curves �similar to the implanted Si-ions distribu-
tion� with FWHM of about 0.3 �m.12 The trajectory of
relevant optical waves emitted by a chosen Si nanocrystal is
shown. In case of ordinary guided modes, the optical wave
undergoes total reflections both on the sample surface and at
the interface waveguide core/substrate and the wave propa-
gates inside the waveguide core. The leaky modes, on the
contrary, are developing in a different way: optical wave,
emitted by a silicon nanocrystal to the suitable direction
�close to the boundary for the total reflection on the sample
surface�, undergoes the total reflection on the sample surface
only. On the interface between the waveguide core and the
substrate, where the refractive index contrast is lower than on
the sample surface, the condition for the total reflection is not

fulfilled. The light partially reflects and partially refracts at
the angle very close to 90°; the refracted part then propagates
outside the waveguide core �leaky or radiation mode� but
almost parallel to it. The reflected part of light reflects again
on the sample surface and interferes with the original re-
fracted wave. The constructive interference arises only for a
narrow range of wavelengths. Therefore, only narrow spec-
tral range fulfilling the condition for the constructive inter-
ference is selected from the broad PL spectrum and these
leaky modes manifest themselves in the PL spectra as very
narrow peaks. Different spectral positions of the TE and TM
polarized peaks can be then explained by different phase
shifts for both polarizations, which are induced during the
optical wave total reflection at the sample surface.

The question arises as whether ordinary waveguided
light mode propagation within the implanted layer core can
also occur in our samples. The answer is yes; this kind of
emission can be noticed in samples implanted to fluences of
3�1017 and 4�1017 cm−2 as a wide band peaked at
�850–900 nm �Figs. 1�a� and 1�b��. However, these guided
modes are strongly attenuated in samples implanted to higher
total fluences due to waveguide losses. The exact nature of
this attenuation is not known at present.14

From the point of view of the waveguide optics, we
expect the leaky modes to be spectrally situated at slightly
lower frequencies than the cutoff frequencies of the wave-
guide. This is the main observable difference between our
leaky mode theory and the approach based on delocalized
ordinary waveguide modes as proposed by Khriachtchev
et al.,15–17 where these modes approach the cutoff frequency
from the higher frequency side. Because values of theoretical
cutoff frequencies are not easy to calculate, in particular, for
graded index profile, neither is easy to distinguish between
the two above models on the basis of spectral PL measure-
mens themselves. However, we have recently proposed and
realized a simple experimental approach of how to do it,
which takes advantage of local change of refractive index on
the sample surface.14 In what follows we apply this method
in a modified form to investigate further the properties of the
TE/TM doublets.

Figure 2�a� depicts the principle of our experiment,
based on dropping various liquids onto the excited spot on
the sample. By dropping a selected liquid, we change locally
the refractive index of the surrounding media on the sample
surface �air, formerly�. The optical conditions for developing
leaky modes will thus be changed on the sample surface. The
optical wave travels different distances and undergoes differ-
ent phase shifts during total reflection. Therefore, also the
conditions for constructive interference forming the leaky
modes change, which should manifest directly in the PL
spectra as a shift of the observed modes. Indeed, the left
column in Fig. 2�b� shows the change of the PL spectra in
our quartet of the samples upon dropping ethanol onto the
sample surface. In all cases, the observed narrow modes un-
dergo a significant redshift.

The right column of Fig. 2�b� demonstrates clearly that
the above-mentioned leaky mode model is able to describe
the observed redshift of the modes with high fidelity. This
column presents the results of theoretical calculations of the

FIG. 1. Room-temperature PL spectra from the sample facet �in the
waveguiding geometry schematically depicted in the inset� for layers im-
planted to a fluence of �a� 3�1017 cm−2, �b� 4�1017 cm−2, �c� 5
�1017 cm−2, and �d� 6�1017 cm−2, compared to the conventional 45° PL
geometry spectrum �curve “nonguided” in panel �c��. Thick lines—PL with-
out polarizer and thin lines—measurement with a polarizer: TE polarization
�vector E parallel to the waveguiding layer� and TM polarization �E perpen-
dicular to the layer�.
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leaky mode model developed in the framework of wave op-
tics. In calculating these curves the above mentioned graded
index profile of each sample, as determined by fitting
interference-modulated optical transmission spectra of the
implanted layers, was taken into account, together with re-
fractive index values of applied liquids. Neither spectral pro-
files nor spectral positions of the substrate leaky modes can
be calculated analytically. Numerical calculations were per-
formed using the formula for cavity enhancement factor19

�for more details, see Refs. 12 and 13� for the whole set of
the samples. Taking in account that the theoretical model
calculates only the leaky mode part of the PL spectra but not
the ordinary, spectrally broad guided modes, both experi-
mental data and the model correspond very well, which pro-
vides strong support for the validity of the model.

In order to further support the model, we investigate
both experimentally and theoretically the effect of different
liquids �different refractive indices� dropped onto the sample
implanted to a fluence of 5�1017 cm−2. The results are
drawn in Fig. 3�a� and again, the measured and the simulated
data agree very well. With increasing refractive index of the
liquid, we initially observe increasing redshift of the modes.
At some point, however, the “doublet” mode structure disap-
pears and a broad PL spectrum can be seen. Actually, this
happens when the refractive index of the liquid reaches the

refractive index of the sample substrate �ns=1.455�, i.e., the
point where the waveguide loses its asymmetry, total reflec-
tion on the upper boundary is canceled, and the condition for
developing narrow TE/TM resolved leaky modes is not ful-
filled anymore.

Figure 3�b� plots the PL peak position versus the refrac-
tive index of the applied liquids. Further refractive index
increase above ns still keeps the broad spectrum. Theoreti-
cally calculated shift goes, somewhat surprisingly, back to
shorter wavelengths. However, this can be intuitively under-
stood, since with further increasing refractive index of the
liquid above the refractive index of the sample substrate, the
role of the substrate and of the capping medium will inter-
change and �another type of� leaky modes should appear
again. Such a back shift is, however, difficult to trace experi-
mentally because of the large spectral bandwidth and pos-
sible admixture of normal incidence PL emission.

In calculating the theoretical curves in Figs. 3�a� and

FIG. 2. �Color� �a� Schematic cross section of the asymmetric planar wave-
guide showing propagation of the guided modes as well as formation of the
substrate leaky modes. Surface refractive index change �induced by a liquid
drop placed directly above the excited region� influences the development of
the leaky modes. �b� Comparison of the PL spectra in the waveguiding
geometry for the samples in ambient atmosphere �full lines� and upon drop-
ping ethanol �refractive index n=1.361, dotted lines� on the sample surface.
Implant fluences are indicated for each sample. Left column: experimental
data and right column: theory of leaky modes.

FIG. 3. �Color� �a� PL spectra in the waveguiding geometry showing leaky
modes in the layer implanted to a fluence of 5�1017 cm−2. Drops of various
liquids above the excited spot lead to a redshift of both TE and TM modes.
Spectra corresponding to various liquids have been vertically shifted. �b� PL
peak position as a function of the refractive index of the liquid. Symbols:
experimental data and lines: theory. For liquid refractive index higher than
refractive index of the silica substrate �ns=1.455� the theory predicts both
disappearance of the distinct doublet structure and a back shift of the broad
emission band to shorter wavelengths �see also the right panel in �a��.
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3�b� we considered the liquid droplet thickness infinite, since
its real thickness ��1 mm� is much larger than the wave-
guide core thickness as determined by the refractive index
profile �FWHM of �0.3 �m�.

CONCLUSIONS

In conclusion, by comparing the experimental and theo-
retical PL spectra under different ambient conditions, we fur-
ther verified the validity of the leaky mode PL model in the
samples containing silicon nanocrystals embedded in a SiO2

matrix. This phenomenon can find practical applications, for
example, as an optical sensor of the refractive index of the
media surrounding the sample.
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induced by femtosecond laser exposure which can be

applied to write 2D structures (gratings etc.) into the Si-

nanocrystalline waveguides with sub-micron resolution.

2. Experimental methods

Samples used in this study were prepared by Si+-ion

implantation into 1mm thick Infrasil (refractive index

ns ¼ 1:455) slabs with polished surfaces and edges, and into

SiO2 layers (about 5mm thick) prepared by thermal

oxidation of Si wafers. An implantation energy of

400 keV and ion fluences ranging between 3.0 and

6.0� 1017 cm�2 were used to fabricate the slab waveguides.

In order to form Si nanocrystals the samples were annealed

for 1 h at 1100 1C in an N2 ambient and then passivated for

1 h at 500 1C in forming gas (5% H2 in N2).

The implanted layer acts as an asymmetric planar

waveguide. The profile of the refraction index depends

not only on the implantation energy and fluence but also

on the annealing conditions. Although the annealing

temperatures, ambients and durations were nominally the

same, various sets of samples were annealed in different

laboratories and furnaces. Possible variations in the

thermal history and levels of oxidation lead to apparent

differences in refraction index for nominally identical

samples (here, Figs. 2–4 present results from one set of

samples and another set with lower refraction index is

shown in Figs. 5–7). In order to numerically model the

optical properties of particular samples the refraction index

profiles were measured separately for each implanted

sample. This was done by measuring infrared transmission

spectra (see Fig. 2B) and fitting the interference fringes

assuming an asymmetric double-Gaussian refraction index

profile. The maximum of the profile is typically about

600 nm below surface with a half width of about 300 nm.

The peak refraction index has a value as high as 2 for the

highest implantation fluence [11]. The diameter of nano-

crystals in the samples is estimated to be between 4 and

6 nm using Raman scattering (not shown here) [11].

PL was excited by a continuous wave He–Cd laser (325nm,

excitation intensity�0.3W/cm2). The sample was placed on a

rotatable x–y–z stage. A microscope with numerical aperture

(NA) of 0.075 (i.e. an angular resolution of about 8.61) was

used to collect light and send it to a detection system

consisting of an imaging spectrograph (Jobin Yvon Triax

190) with a CCD camera (Hamamatsu C4880) [9]. All

measurements were performed at room temperature and all

PL spectra were corrected for the system response.

The coupling of external light into the waveguides was

achieved in two ways (Fig. 1):

(a) Prism coupling of light from the upper surface of the

sample. Light from the Xe or halogen lamp was

collimated into a quartz prism. For better optical

contact between the prism and sample an immerse

liquid (index of refraction n ¼ 1:515) was dropped

between the contact surfaces.

(b) Direct coupling into the truncated facet (Fig. 1B). The

edge of the sample was polished at angle of about 701 in

order to separate light refracted to the higher-index

waveguide from light entering lower-index substrate.

Here a warm-white LED was used as a convenient light

source. The angle of incidence g was between 151 and

301 with respect to the plane of implanted layer. The

divergence of incident light was about 101.

In both external-light-coupling set-ups the signal is

collected by an optical fiber (detection NA �0.008) and

guided to the entrance slit of the imaging spectrometer

Jobin Yvon Triax 320 (with the low-dispersion grating of

100 grooves/mm). Spectra are detected with the PI-Max

intensified CCD (Princeton Instruments).

3. Results and discussion

3.1. Transmission spectra of Si-NC layers

The color of the Si-NC waveguide layers is yellow-brown

with the optical density increasing with implantation

fluence. The corresponding absorbance spectra are plotted

in Fig. 2A (they are measured in a direction perpendicular

to the nanocrystal plane using a UV-VIS double beam

spectrometer (Hitachi U-3300), the non-implanted area of

a silica slab being employed as a reference). The absorption

edge has approximately exponential shape. In infrared

spectral region several interference fringes are observed

(Fig. 2B) which are used to model refraction index profile

(see above).

ARTICLE IN PRESS

(A)

(B)

Fig. 1. Two experimental arrangements for coupling of external light into

a waveguide sample: (A) coupling through a quartz prism on the upper

sample surface. The second prism below sample is used to inhibit the back

reflection of light not coupled into the waveguide; (B) focused light

directed on the truncated edge of a sample. In both cases light leaving the

opposite edge of sample is collected with an optical fiber and sent to a

spectrometer. Sketches not to scale.
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3.2. PL of active planar waveguides

The PL spectra of the active planar waveguides have

very different shape depending on the experiment geome-

try. Two arrangements are used: (i) the light is collected in

a direction roughly perpendicular to the sample plane (this

is a conventional PL arrangement) or (ii) in the direction

close to parallel to the waveguide plane (i.e. from the

sample facet–waveguide arrangement)—see inset in Fig. 3.

In the former geometry the PL spectra are always broad

with a peak around 830 nm, typical of oxide-passivated Si

NCs with mean diameter �5 nm. On the other hand, the

waveguide geometry reveals narrow (down to 10 nm)

spectral features with a high degree of linear polarization.

Figs. 3A and B show PL spectra of implanted oxide

layers (on Si substrates) measured in directions perpendi-

cular and parallel to the layer, respectively. The conven-

tional PL (Fig. 3A) is modulated by deep interference

fringes due to high reflectivity of the Si substrate. The

facet-PL (Fig. 3B) is not affected by interference; instead

a relatively narrow band is observed, the position of

which depends on implantation fluence (i.e. refraction

index profile). This peak shows partial linear polarization
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(B)

(A)

Fig. 2. (A) Absorption spectra of the samples implanted with fluences

from 3 to 6� 1017 cm�2. A non-implanted area of the fused silica slab was

used as a reference. (B) Infrared transmission spectra of the same samples.

Interference fringes are used to calculate refraction index profiles.

(A)

(B)

Fig. 3. PL spectra of SiO2 layers on Si substrates implanted with fluences

of 3, 4, and 5� 1017 cm�2. (A) PL detected in direction perpendicular to

the layer. (B) PL detected in direction parallel to the layer (from the facet).

The inset illustrates the experimental arrangement.

(A)

(B)

Fig. 4. PL spectra of 4� 1017 cm�2 layers measured in edge geometry

without polarizer (solid line) or with a linear polarizer parallel (TE, dashed

line) or perpendicular to the waveguide plane (TM, dotted line). The upper

panel (A) concerns SiO2 layers on Si substrate, while the lower panel (B) is

for implanted fused silica slab.
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(Fig. 4A). Under identical conditions (of both fabrication

and PL-experiment) the facet-PL features are much better

resolved in implanted silica slabs (Fig. 4B). Here a clear

splitting of the narrow PL peak into two peaks with

polarization parallel (transverse electric TE or s mode) and

perpendicular (transverse magnetic TM or p mode) to the

Si-NC waveguide plane is observed. The following discus-

sion is restricted to implanted fused silica slabs where the

TE/TM splitted modes are nicely resolved.

PL spectra of other set of five samples prepared by

implantation to fluences of 4.0, 4.5, 5.0, 5.5, and

6.0� 1017 cm�2 are plotted in Fig. 5. The upper spectra

in Fig. 5A represent PL collected from the plane of

implanted layers, while the lower PL spectra with TE/TM

double-peaks are collected from the facet at angle +51

(NAdet ¼ 0.075). An angle-resolved facet PL spectra from

the layer implanted with dose of 6� 1017 cm�2 are plotted in

Fig. 5B and the polar representation of their integrated

intensity is shown in Fig. 5C. The TE/TM split doublets shift

to longer wavelength with increasing implantation dose. The

facet PL has a very narrow emission cone with the maximum

slightly shifted closer to substrate (aX01) (Figs. 1B and C).

3.3. Theoretical model of the mode structure—radiative

substrate modes

The surprising PL observations reported above do not

correspond to simple waveguiding in ideal transparent

waveguide which should transmit a continuous spectrum of

guided modes up to a cut-off wavelength [12]. The cut-off

for the first order modes of our waveguides can be

estimated to lie above �1500 nm. Consequently, the

waveguides should transmit the entire 600–900 nm band

emitted by Si-NCs, which is clearly not the case. There are

two possible explanations:

(i) Delocalized guided modes: Let us assume wavelength-

dependent losses in the waveguide, then those modes

ARTICLE IN PRESS

(A)

(B) (C)

Fig. 5. PL spectra of five fused silica slabs implanted to fluences of 4–6� 1017 cm�2. (A) Upper curves (a single wide band) correspond to PL emitted in a

direction perpendicular to the waveguide, while lower spectra with doublet peaks are facet-PL detected in a direction a ¼ 51 (a sketch of the experimental

arrangement is shown in the inset). (B) Angle resolved facet PL spectra of the sample 6� 1017 cm�2. (C) Polar representation of integrated PL intensity of

angle resolved facet spectra from the panel B. Most of the PL intensity is emitted in a direction close to 01.
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(wavelengths) that undergo the smallest losses will be

advantaged. These are likely those modes that are

‘‘weakly guided’’ with a strongly delocalized electric

field. Such modes propagate basically as planar waves

in the substrate [13]. Ray optics describes these modes

by an angle of incidence y that is greater than but very

close to the critical angle yc for total internal refection

(here the lower core/SiO2-substrate boundary is of

importance only since the refractive index contrast at

the upper core/air boundary is high enough to ensure

total internal reflection at angles y safely higher than

yc). This model was proposed by Khriachtchev et al.

[14,15] to explain TE/TM mode structure in Si-NC

planar waveguides similar to ours. The spectral

separation between TE and TM modes, is then a direct

consequence of the asymmetric index profile with

different phase shifts expected for the TE and TM

modes under total reflection at both boundaries.

(ii) Radiative substrate modes: We have previously pro-

posed an alternative mechanism involving substrate

leaking or radiation modes of the Si-NC waveguide

[10,11]. These modes propagate at angle y situated close

to but below yc and undergo total reflection at the

upper boundary (larger index difference) but are only

partially reflected on the lower boundary (smaller index

difference). Consequently, a small fraction of their

power is radiated into the substrate at each bottom

reflection. If the angle y is only slightly less than yc, the

leaking modes propagate near-parallel to the Si-NC

plane. Moreover, the number of reflections is very high

(R is close to unity), resulting in a narrow spectral

width for the modes. The mechanism of spectral

filtering in this case remains the same as discussed

above, the only difference being that a phase shift at the

upper boundary only comes to play during the initial

stages of propagation. After a finite number of internal

reflections all the radiant power escapes into leaking

modes and emerges from the sample facet in a well

defined direction, basically parallel to the Si-NC film.

This makes such substrate modes virtually indistin-

guishable from the guided modes. The substrate modes

are usually considered undesirable parasitic radiation

and thus do not normally receive much attention.

Indeed, only in cases where guided modes undergo

significant losses (absorption and scattering in the

waveguide core and diffraction on the narrow output

aperture) do the substrate leaking modes play a

dominant role.

The fact that the two above proposed mechanisms have

a different dependence on the refractive index difference at

the surface provides the basis for testing their validity

experimentally. The principle is to change locally the

cladding layer refractive index. This was done by placing

liquid drops on the waveguide/air surface [11,16]. If a drop

is above the excited PL spot, the TE/TM modes gradually

red-shift and broaden with increasing refraction index of

applied liquid and eventually disappear if the index

contrast approaches zero. However, when the drop is

placed some millimeters away from the spot (between the

photo-excited spot and the output facet), no changes in

modes is observed, consistent with all the radiant power

escaping into radiative substrate modes. These experiments

are supported by numerical modeling of the PL spectra

which show excellent agreement with experiments and

provide unambiguous validation of the leaking modes

model [11].

3.4. Coupling and propagation of external light in Si-Nc

waveguides

The transmission spectra of the five samples (implanta-

tion fluence 4–6� 1017 cm�2) obtained by white-light

coupling through a prism (Fig. 1A) are shown in Fig. 6.

In the measured spectral region two broad transmission

bands (blue and red) are observed for each sample. The

positions of both bands red-shifts with increasing fluence

and the position of long-wavelength bands coincides with

that of the PL leaking modes (Fig. 5A). Our calculation

show that the red and blue bands correspond to second and

third order leaking modes (the first one being in infrared).

Broadening of the mode structure may be a consequence of

the very low number of reflections undertaken by coupled

light before escaping to the substrate [17].

Coupling of external light (the warm-white LED)

through a truncated facet (Fig. 1B) gives the best result

for a coupling angle g�201, as expected (Fig. 7). In this

configuration we detect narrow and polarization-split

peaks at an output angle a�21. The peaks are, however,

not transmission but absorption peaks. This can be

understood if it is assumed that the detected light is not

from radiative substrate modes (which represent a small

portion of transmitted light) but from filtered transmitted

light propagating almost parallel to the Si-NC waveguide
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Fig. 6. The transmission spectra of prism-coupled light detected at angle

a ¼ 71 from samples presented in Fig. 5.
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from which a part of power escaped to the substrate

modes. The blue third order modes are much stronger

compared to second order because of higher absorption in

blue spectral region.

3.5. Leaking modes vs. optical gain

One of the most interesting questions concerning

nanocrystal waveguides is the interplay between radiative

substrate modes and optical amplification by stimulated

emission. Since the first report on optical gain in Si-ion

implanted Si-NC layers by Pavesi et al. [18] similar samples

have been investigated by other groups with both positive

[4] and negative [19] results. Two aspects of this problem

are addressed here.

First, experimental artefacts have been shown to play an

important role when measuring optical gain close to

leaking modes maxima by the commonly used variable-

stripe-length (VSL) technique [20]. These artefacts are

mainly due to unconventional propagation and coupling of

these modes in the detection system, and their interplay

with the NA of detection. In order to correct most of these

artefacts it has previously been proposed that VSL

measurements be combined with a shifting-excitation-spot

(SES) technique [20]. Indeed, it should be stressed that the

interpretation of VSL results without associated SES

measurements can lead to erroneous results.

Secondly, the potential advantages of leaking modes for

achieving optical gain are spectral narrowing, low losses,

and directionality of propagation. On the other hand the

propagation path of radiative modes through a pumped

active medium (Si-NCs forming the waveguide) is limited

by leakage into the substrate. Attempts to achieve optical

gain on leaking modes was successful only under strong

nanosecond pulsed pumping (6 ns, 355 nm from THG-

Nd:YAG laser) with the gain threshold around 50mJ/cm2

and maximum gain at TM mode of about 12 cm�1 for

100mJ/cm2 excitation [21].

Further theoretical investigation of the radiative modes

in the loss/gain medium is in progress.

3.6. Permanent changes of Si-NC waveguides induced by

laser pulses

The Si-NC waveguides in silica may be damaged by

high-intensity laser excitation and apparent differences in

damage are evident for nanosecond and femtosecond

pulses. When irradiated with the 420-nm, 5 ns output of

an optical parametric oscillator (OPO) pumped by THG-

Nd:YAG (NL 303+PG122, Ekspla) the damage threshold

is very sharp at around 800mJ/cm2. The damage appears

as micrometer-size granular aggregates in the Si-NC

followed immediately by complete ablation of the im-

planted layer. The mechanism is most probably related to

heating and even melting of Si-NCs [22] which leads to

failure of the silica matrix. This is evidenced by the

appearance of cracks and surface ruptures which can lead

to complete removal of the SiNC layer.

In contrast, femtosecond laser excitation (400 fs, 400 nm

from SHG-Ti:sapphire laser) starts to modify sample at

much lower pulse energies X20mJ/cm2. There are two

distinct phases of layer damage. The initial stage appears

as darkening (brown coloration) of the excited area. Micro-

Raman measurements (not presented here) show that

it corresponds to amorphization of the Si-NC layer

ARTICLE IN PRESS

Fig. 7. Comparison of transmission spectra of sample 5.5� 1017 cm�2

obtained by the direct facet-coupling (upper curves, solid line—no-

polarization, dashed and dotted lines correspond to TE and TM

polarization, respectively) and by the prism-coupling (lower spectrum).

Fig. 8. (A) The diffraction grating (period of about 12mm) ablated in the

Si-NC waveguide (implanted fluence 4� 1017 cm�2) by an interfering laser

pulses from femtosecond laser (SHG-Ti:sapphire laser, 400 fs, 400 nm). (B)

A photograph of the pattern produced by diffraction of 633 nm He–Ne

laser beam on the ablated grating.
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(it appears similar to the implanted layer before annealing).

In the second step at higher excitation the layer is ablated.

Clearly, the damage mechanism for ultrashort laser pulses

(400 fs) is different to that of the longer (5 ns) pulses. The

advantage of fs-ablation is that the boundary between the

ablated and unchanged area can be very sharp, enabling

fs-laser-ablation to be used for lithography to create

microstructures in the planar waveguides. In Fig. 8 we

demonstrate a diffraction grating with 12 mm period

written into 4� 1017 cm�2 implanted layer by 400 fs,

400 nm fs-pulses.

4. Conclusions

Si-ion implantation into silica slabs or oxide layers on Si

wafer followed by annealing is a relatively easy way to

fabricate active nanocrystalline planar waveguides. In spite

of their simplicity these waveguides show rich optical

phenomena which are mainly connected to peculiar

radiative substrate modes—so-called leaking modes. This

study has investigated the influence of these complex

propagation modes on PL, transmission, and gain spectra

both experimentally and theoretically. Similar anomalous

phenomena connected to the interplay between radiative

and guided modes are expected to take place in other types

of active waveguides. The possibility of spectral, polariza-

tion, and spatial filtering reported for active Si-NC

waveguides offer interesting possibilities for application

in silicon-based photonic devices or sensors.
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[16] K. Luterová, E. Skopalová, I. Pelant, M. Rejman, T. Ostatnický,
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Figure 1. PL spectra taken from the edge of investigated samples
(‘waveguiding geometry’). Excitation with the 442 nm line of a cw
HeCd laser, T = 295 K. Owing to insufficient resolving power the
doublet structure of the peaks can be discerned in the sample
3 × 1017 cm−2 only.

with dimensions of about 8 × 5 × 1 mm3. The implantation

energy was 400 keV and several implant fluences from 1

up to 6 × 1017 cm−2 were applied to different samples. A

post-implant anneal at 1100 ◦C in N2 ambient for 1 h caused

precipitation of dispersed excess Si+-ions into luminescent

Si-ncs with a typical diameter of 4–5 nm. A further anneal

for 1 h at 500 ◦C in forming gas (N2/H2) was employed to

passivate non-radiative defects and enhance the Si-nc PL

intensity [7]. Peak excess Si concentrations were up to

26 at% Si. To give an idea of how densely the Si-nc are

packed, we suppose (i) the nanocrystal diameter to be 5 nm and

(ii) only 50% of the implanted Si atoms have been accumulated

to form the nanocrystals. For the excess Si concentration

of 20 at% we get in this way the mean distance between

nanocrystals of about 16 nm. The ensembles of Si-ncs with

the nanocrystal concentration peaking at a mean depth of

∼630 nm (the total thickness of the Si-nc layers being about

800 nm) represent planar waveguides buried in fused silica [3].

Room-temperature PL spectra of the three samples implanted

to the highest fluences, as taken in the waveguiding geometry

(i.e. from the edge of the samples), are shown in figure 1.

The spectra consist of relatively narrow peaks whose position

is systematically red shifted with increasing implant fluence.

These peaks represent radiative modes of the waveguides [3]

and are in fact TE/TM doublets; here, their doublet structure

is clearly resolved in the 3 × 1017 cm−2 sample only.

In the LIG technique, two coherent laser pulses interfere

in the sample, creating a periodic, spatially modulated pattern.

Diffraction of a third, time-delayed pulse is used to monitor

the decay of the grating with time. Frequency-doubled pulses

(λp = 400 nm, hν = 3.1 eV) of ∼400 fs duration, provided

by a cw doubled Nd3+–YAG laser-pumped Ti–sapphire laser,

were split into two pump pulses of equal intensity. These

were used to define an LIG in the waveguides parallel to the

sample surface. The grating period � was varied by varying

the angle θ between the writing pulses (� = λp/2 sin(θ/2)).

The pump spot diameter was about 300 µm and the pump

Figure 2. Normalized LIG decay curves for different grating
periods � (next to the curves) in a waveguide implanted to a fluence
of 4 × 1017 cm−2. Pump energy density ∼14 mJ cm−2. The lines are
guides to the eye. Inset represents ‘standard’ evaluation of the data
(see text).

energy density ranged from ∼2.8 mJ cm−2 to ∼14 mJ cm−2

(peak power density Iexc ∼ 30 GW cm−2). A weaker, time-

delayed test pulse of the fundamental frequency (800 nm) in

the optically transparent region of the samples, with a diameter

of ∼100 µm, was aligned with the LIG and its diffracted

intensity monitored using a conventional Si photodiode. All

experiments were performed at room temperature.

3. Results and discussion

In what follows we focus our attention on the sample implanted

to a fluence of 4×1017 cm−2, in which the observed phenomena

are most evident. The LIG dynamics in this sample are shown

in figure 2. It can be seen that the grating decay time τg

decreases with decreasing grating period �—an effect that is

both distinct and interesting. In particular, our primary interest

has been focused on the potential photocarrier lateral diffusion

between nanocrystals because of the fundamental importance

of this effect for electrical pumping of potential light-emitting

devices based on Si-ncs. Such a lateral carrier diffusion, even

if the Si-ncs are localized in an insulating matrix such as SiO2,

cannot be a priori excluded. It is true that in our samples

the mean internanocrystal spacing (∼16 nm) is quite large for

an efficient charge transport. However, taking into account the

non-uniform distribution of the nanocrystals and their tendency

to form larger clumps with higher volume density, at many a

2
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place the separation between surfaces of neighbouring Si-ncs

may be considerably smaller, several tenths of nanometer

only. Then, carrier tunnelling can occur (an observation of

picosecond carrier tunnelling between Si-ncs has already been

reported [8]). Moreover, the remaining excess Si atoms as well

as the defects in the SiO2 matrix could increase conductivity

between the individual Si-ncs. As a result, a percolation

conducting path in the Si-ncs/SiO2 system can be established.

To extract information about such carrier diffusion, however,

is not easy.

It is almost certain that within the duration of the excitation

pulse, nonlinear recombination processes (both radiative and

non-radiative) occur in the excited Si-ncs, since, estimating

the absorption cross section of Si-ncs at 400 nm for the

samples with 20% excess Si concentration to be σ ≈ 2 ×

10−16 cm2 [9, 10] and considering the pump energy density

of ∼10 mJ cm−2, we get the initial mean number of electron–

hole pairs per nanocrystal as high as 3–5 (nevertheless, we

were checking carefully that the pump power density was

always below the threshold for irreversible sample changes,

i.e. below the threshold for writing down a ‘permanent grating’

[11]). These nonlinear recombination processes in principle

can be described by nonlinear terms in the relevant kinetic

equations dealing with the time evolution of the LIG carrier

population [4, 12] and could manifest themselves through a

non-exponential decay of the LIG diffraction efficiency in time.

However, the very formulation of such kinetic equations would

be very difficult if not impossible, in view of the fact that the

physics of highly excited Si-ncs has not been well understood

till now. Instead, we apply here a simplified treatment

of the experimental data, which is based on the following

approach.

In order to estimate the involvement of carrier diffusion we

have used the linear parts (in log scale) of the LIG decay curves

at long delays only where the number of e–h pairs per Si-ncs

can be supposed to be already low and the LIG decay should

be driven mainly by relatively slow carrier lateral diffusion

and recombination. The decay is then expected to be a single-

exponential with a decay time τg; this is indeed the case (see

figure 2). In this way we obtain τg(� = 2.8 µm) ≈1.12 ps,

τg(� = 5.5 µm) ≈1.71 ps, τg(� = 13 µm) ≈1.92 ps and

τg(� = 31 µm) ≈2.25 ps. Standard evaluation then consists

of plotting (τg)
−1 against 8π2/�2, the slope of which yields

the diffusion constant of carriers D [4]. Such a plot is

shown in the inset of figure 2 and yields a value of D about

420 cm2 s−1, which is unrealistically high, bearing in mind that

D in bulk Si is of the order of 10 cm2 s−1 [13]. Carrier diffusion

thus seems not to be involved in our ultrafast LIG decay.

One has therefore to suggest another interpretation of the

experimental data, in particular, of the peculiar variation of τg

with �.

To assist in this regard, additional pump–probe

experiments were undertaken. These used basically the same

experimental set-up as above, only one of the writing beams

was blocked and the energy density of the remaining one

increased. The results, displayed in figure 3, revealed that

the ‘slow components’ (delay �1.5 ps) of pump/probe and of

LIG dynamics with large grating period � coincide. The decay

Figure 3. Comparison of the LIG dynamics (� = 31 µm, full
squares) with a pump-and-probe decay curve (open squares),
measured on one and the same place of the sample. The ‘slow’ parts
of both curves coincide for delays �1.5 ps. Inset shows decrease in
τg with increasing pump energy density. At the initial stage of decay
both the curves are not directly comparable because the energy
density of the pump beam in the pump-and-probe experiment was
chosen slightly higher (∼21 mJ cm−2) than that of the total pump in
the case of LIG (∼14 mJ cm−2).

time τg was also studied as a function of pump intensity and it

was found that increasing the pump intensity led to a reduction

of τg (inset of figure 3).

The most obvious interpretation of these observations—

fast non-radiative Auger recombination of carriers in Si-ncs—

cannot readily account for the fact that the decay time depends

on the grating period �. We therefore speculate about the

following effects.

(i) Exciton (not free carrier) migration and tunnelling

between neighbouring nanocrystals was proposed to be

responsible for fast LIG decay in CdTe/ZnSe quantum

dots under femtosecond pumping [14]. Both optical and

acoustic phonons can participate in this exciton tunnelling

at room temperature in order to compensate for the

energy difference between different nanocrystals [15].

Due to the concentration gradient, the exciton diffusion

tends to smooth the LIG and such a migration process

should manifest itself predominantly at small �, in good

agreement with our observation, see figure 2. Quite recent

theoretical calculations confirm even the possibility of

resonant (no-phonon) energy transfer between Si quantum

dots [16] following the Förster mechanism. The energy

transfer rate varies as ∼1/R6 where R is the interdot

distance; for a very small R (of the order of nanocrystal

radius) the transfer rate has been shown to increase even

much faster. In this case submicrosecond transfer time

can be possibly achieved.

(ii) Radiative recombination of excitons in the LIG is very

probably involved in the LIG decay because intense PL is

observed in our experiments under 400 nm femtosecond

3
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pumping and the occurrence of a very fast (subpicosecond)

component of Si-ncs luminescence has been evidenced

recently by our group using an independent experimental

set-up [17]. It is very interesting to note in this context

that superradiance of an inhomogeneously broadened

ensemble of semiconductor quantum dots has been

experimentally demonstrated under 1.5 ps quasi-resonant

excitation (i.e. excitation below the barrier bandgap energy

and above the exciton ground state energy of the quantum

dot) quite recently [18]. This effect of cooperative

radiation leads to the enhancement of the exciton radiative

recombination rate and thus to PL decay shortening.

The basic requirement for the onset of the collective

superradiant coupling, namely, a closely spaced ensemble

of nanocrystals, has been met in our samples: we recall

that the mean distance between (5 nm sized) Si-ncs in our

samples with the excess Si concentration of 20 at% can

be estimated to amount to ∼16 nm while Scheibner et al

[18] observed the effect of superradiance in CdSe/ZnSe

quantum dots up to the average interdot spacing of 150 nm.

Nonetheless, even if we admit that a kind of superradiance

occurs in our ensembles of Si-ncs, this effect alone

can hardly explain the striking observation, namely, the

LIG decay shortening with decreasing �. To this end

we invoke the effect of the periodic modulation of the

refractive index by the LIG, which defines a resonant

optical structure that enhances the overlap between the

Si-ncs emission frequencies and the available spectral

density of photon modes. As a result, the spontaneous

radiative lifetime of the nanocrystals can be modified

(Purcell effect [19]). A variation of � can therefore

affect the enhancement of the dipole-field coupling and

cause changes in the radiative lifetime of the LIG as a

function of �.

To assess the magnitude of the Purcell effect the following

simplified model was employed: periodic modulation of

the refractive index with a Gaussian envelope across the

plane of the waveguide (see inset to figure 4)

n(x) = nF +
�n

2

[

1 + cos

(

2πx

�

)

exp

(

−

x2

σ 2

)]

, (1)

where �n stands for the maximum of the induced change

in the refractive index and σ is the (Gaussian) beam width.

The propagation of light waves in this structure was then

calculated using an effective refractive index [20] for the

guided modes in the waveguide. Since the increase in

the dipole moment implies a decrease in τg, figures 2

and 4 display qualitatively the same behaviour. For large

values of � (�35 µm) the effect in figure 4 shows a

tendency to disappear. This agrees with the observation

in figure 3, namely, that decay curves for an LIG with

� = 31 µm and for a probe beam passing through a non-

periodic excited spot (� → ∞) are basically identical.

Estimating the nonlinear susceptibility of Si-ncs (with the

mean diameter of 5 nm) embedded in an SiO2 matrix under

femtosecond pumping to be [21] χ (3)
≈ 0.2 × 10−9 (esu)

≈3 × 10−18 (m2 V−1) we get a nonlinear refractive index

γ = 3χ (3)/4cε0n
2
F ≈ 3×10−12 cm2 W−1. The maximum

Figure 4. Calculated effective dipole moment enhancement for
Si-ncs located at the maximum of the modulation profile as a
function of �. The inset shows a scheme of the structure under
consideration. For computational reasons, the Gaussian pump spot
width was considered σ = 30 µm only. The parameters �n next to
the curves are the amplitudes of the nonlinear refractive index
modulation.

induced refractive index change �n = γ Iexc thus amounts

(for Iexc ∼ 30 GW cm−2) to the orders of 0.01–0.1. This,

referring to figure 4, can result in a substantial increase in

the dipole moment magnitude. Since the first-order signal

dynamics in a four-wave mixing process (as observed in

our experiment) is driven by the speed of deformation of

the cosine-like interference profile, i.e. predominantly by

the maximum dipole enhancement (figure 4), the increase

in the radiative recombination rate due to the Purcell effect

could be quite significant.

(iii) An increase in the (linear) dipole coupling between

the nanocrystals and the optical field can also lead

to an increase in the nonlinear dipole interaction, i.e.

an increase in the stimulated emission rate and the

appearance of optical amplification. Here it is worth

stressing the following facts. The ultrashort blue

pump pulses (∼100 fs, ∼400 nm) from a frequency-

doubled Ti–sapphire system have proved recently to be

very efficient in producing room-temperature positive

optical gain in ensembles of densely arranged Si-ncs.

Experiments using the variable-stripe-length method

[22, 23] yielded values of the gain coefficient as high

as 25 cm−1.

4. Conclusions

In conclusion, we have performed transient LIG experiments

with picosecond resolution in planar waveguides composed

of luminescent Si-ncs. We explain the observed very fast

LIG decay time and its variations with grating period by

a model invoking exciton diffusion and/or enhancement of

the radiative recombination rate in the periodic distribution

of the electromagnetic field amplitude. An additional

contribution to the LIG decay shortening can originate

from possible involvement of stimulated emission in the

waveguide.

4
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Fig. 1. (a) Experimental setup with two possible detection positions: standard (n) and 

waveguiding (w). (b) Propagation and decoupling of substrate modes; (c) sketch for 

derivation of coupling coefficients; (d) measured PL in standard (A) and waveguiding 

geometry (B) and in the waveguiding geometry with a linear polarizer (C,D); (e) 

measured ASE intensity at various spectral positions: at maxima of TE and TM modes 

and at 825 nm; (f) measured SES signal at the same spectral positions.2  

gain: Si
+
 ion implantation,

1,2
 plasma–enhanced chemical vapour 

deposition,
3
 reactive Si deposition,

4
 magnetron sputtering

5
 or others.

6
 

The samples prepared by these methods have a form of a thin SiO2 layer 

(few micrometers thick) doped with Si nanocrystals, located on an 

optically thick Si or silica substrate. The thin “sheet” which contains 

nanocrystals then may reveal waveguiding properties because of the 

refractive index mismatch between the sheet and the SiO2 matrix. 
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The waveguiding property and the “planar” method of fabrication are 

advantageous for integration of components in optoelectronics, however, 

it was found that the characteristics of a photoluminescence (PL) 

emission of the samples are strongly affected by the presence of the 

waveguide
2,7-12

 and depend upon many parameters of the sample 

preparation.
9,13,14

 We have investigated the PL emission of the Si 

nanocrystals embedded in waveguides both theoretically and 

experimentally and we summarize our findings in this chapter. 

Effects connected with waveguiding in the implanted samples were 

firstly discussed in detail by our group
2
 and confirmed by an independent 

observation of the same phenomenon on samples prepared by reactive 

deposition
7
 — in the experiments, photoluminescence from the active 

layer was collected in the “waveguiding” configuration along the layer 

with Si nanocrystals (see Fig. 1a for the experimental setup). Compared 

to a PL spectrum collected in the standard configuration (perpendicular 

to the sample plane), the spectra reveal a disturbance of the wide PL 

band and a narrowing to one or more pairs of modes resolved in linear 

polarization (Fig. 1d). The unusual behaviour of the PL spectra was 

observed in measurements of amplified spontaneous emission (ASE) 

using the variable stripe length (VSL) method
2,15

 where the shape of the 

ASE curves strongly depended on the wavelength of detected radiation 

(see Figures 1e-1f). 

Numerical analysis of the problem shows that the spectrally narrow 

modes are formed very close to the cut-off frequency of the waveguide. 

This fact has led us to the interpretation
8,16,17

 of our observations, namely, 

that the modes are formed by the waves leaking from the waveguide  

core slightly below the critical angle for the total reflection on the 

core/substrate boundary. Another interpretation was given by 

Khriachtchev et al.
7,9,10

 in terms of particular guided modes which are 

spatially delocalized near the cut-off frequency and therefore their losses 

due to absorption in the core are lower than losses of the ordinary guided 

modes. 

In this chapter, we develop a consistent model which predicts the 

observed behaviour and we discuss both hypotheses (delocalization and 

wave leaking) in order to find which of them plays a major role in 

formation of the PL spectra. We then show the consequences of the 
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waveguiding and related effects for spectroscopic measurements, 

applications in optics and optoelectronics, gain measurements and 

construction of a lasing device. After a short introduction to waveguide 

theory in section 2, our model is discussed in more details in section 3. 

Since the original model does not take into account propagation of the 

modes along the waveguiding layer, we present its phenomenological 

extension in section 4, and in section 5 we present numerical calculations 

of the wave propagation in active waveguides. 

2.  Characterization of Waves in Waveguides 

Discussion of propagation of the optical field through passive 

waveguides is usually limited to the discussion of the guided waves, i.e. 

waves (modes) which are spatially confined in the waveguide core. In the 

active devices, however, the sources of photons are located inside the 

guiding layer and therefore the amount of energy coupled to the guided 

modes may be comparable or smaller than the energy coupled to other 

modes. On that account, all waves must be considered when dealing with 

active devices. 

In this section, we review the general theory of planar (slab) 

waveguides.
18–20

 We consider a structure with three layers
a
 of a dielectric 

described by a (generally complex) refractive indices n1 (cladding), n2 

(core) and n3 (substrate), see Fig. 1b; we assume for the sake of clarity 

for the real parts of the refractive indices n2 > n3 > n1. The thickness of 

the core d is comparable with or larger than the vacuum wavelength of 

the optical radiation λ. The cladding and the substrate are optically thick 

and therefore considered to be infinite. The z axis is the propagation axis 

and the x axis is perpendicular to the waveguide layer. 

Electromagnetic field from a source within a waveguide is coupled 

only to the states of a field which are allowed by boundary conditions — 

to the modes of the waveguide. According to the symmetry of the 

                                                 
a The structure with a step-like profile of the refractive index is taken into account for the 

sake of clarity. The theory may be, however, generalized to an arbitrary profile of 

refractive index including a continuous graded profile. Comparison of calculated PL 

spectra with our experimental data has been done considering the real parameters of our 

samples, i.e. graded profile of refractive index across the waveguide. 



 Guiding and Amplification of Light due to Silicon Nanocrystals 271 

waveguide, the intensity of electric field of a TE mode may be written as 
t

zxEytzxE
ω-ie),(ˆ),,( =

�
, where ŷ  is a unit vector in the y direction, 

λω /�2 c=  is the frequency of the mode, c is the light velocity and 

 
z

mmmmmm xxBxxAzxE
β

ββββ αα i
e)]}(exp[)](exp[{),( −−+−=  (1) 

in every layer denoted by the index m (m=1,2,3). The modes are fully 

characterized by the propagation constant β, which may be interpreted in 

terms of the angle of propagation θ 2 (see Fig. 1b) of a ray: 

λθβ /)sin�2( 22n= . A variable 
2/122 ][ )/�2( λβα β mm n−=  determines 

the profile of the mode in the x direction, xm is a coordinate of the 

boundary between the m-th and (m+1)-st layer and the variables A and B 

are constants for every layer and mode, fully determined by the boundary 

conditions and normalization.
20

 The axial system has been adapted by 

rotation in order to ensure yE ˆ||
�

. In our case of a three-layer structure, 

the modes may be resolved into three groups depending on their spatial 

profile in the direction of the x axis, hence depending on the values of the 

coefficients αmβ. Let us consider for instance a lossless structure, i.e. nm 

real. The maximum value of β for propagating waves is clearly λ/�2 2n , 

therefore α2β is always imaginary and the field intensity in the core is 

nonzero. Other α’s, on the contrary, may be real or imaginary.  

For both α1β and α3β imaginary, the mode takes the form of a 

propagating wave in all three layers and it is called the radiation mode. 

In terms of the ray optics, a ray emitted by a source inside the waveguide 

is refracted either to the substrate or to the cladding and only a small 

portion of its energy is reflected back to the core. The energy of the 

mode is therefore radiated from the waveguide core on short distances 

compared to the waveguide thickness d.  

If the coefficients α1β and α3β  are, on the contrary, both real, the 

profile of the mode in the cladding and the substrate given by Eq. (1) 

takes the form of evanescent waves and the mode energy is localized 

predominantly in the core. The mode is bound to the layer with the 

highest refractive index and propagates along the z axis, and it is called 

the guided mode. In terms of the ray optics, a ray is incident on both 

boundaries core/cladding and core/substrate at an angle larger than the 

critical angle for total internal reflection, therefore it is totally reflected 

and its energy cannot leave the core. Near the critical propagation 
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constant βλβ ≤= /�2 3C n , the coefficient α3β is close to zero and thus 

the attenuation of the evanescent wave in the substrate is very weak and 

the wave penetrates into the substrate to depths comparable or even 

larger than the core thickness.
21

  

Substrate radiation modes
b
 (substrate modes) are the last kind of the 

waveguide modes. They are characterized by a real coefficient α1β and an 

imaginary coefficient α3β. The wave may propagate in the substrate but it 

is totally reflected at the core/cladding boundary. The substrate modes 

are very similar to the radiation modes since the energy radiated by an 

emitting nanocrystal to that mode may leave the core on short distances 

in the z direction, however the energy of the modes with the propagation 

constant near the critical propagation constant, i.e. Cββ ≤ , may reside 

inside the core layer at large distances from the source, by orders of 

magnitude larger than the core thickness. The propagation angle θ 2 of 

such mode is near the critical angle for total reflection on the 

core/substrate boundary, thus the reflectivity is slightly below 1 and only 

a small portion of energy is lost during one round-trip of the ray across 

the core layer (cf. Fig. 1b). The angle of propagation of the mode in the 

substrate is near π/2 implying that the mode propagates along the 

core/substrate boundary and in many experiments these modes cannot be 

distinguished from regular guided modes. Since the substrate modes 

propagate mostly outside the core, their characteristics are determined by 

the optical constants of the substrate. Nevertheless, the aforementioned 

substrate modes with Cββ ≈  are affected by the core properties near the 

source. Therefore they behave like guided modes at the distances smaller 

than a characteristic distance
18

 of their leakage to the substrate but at the 

larger distances they behave more like free plane waves in the substrate. 

                                                 
b In our previous publications, substrate radiation modes have been inaccurately denoted 

as “leaky” waves or leaky modes. The label leaky modes should be rather reserved for a 

special sort of unphysical solutions of the wave equation with boundary conditions 

determined by the symmetry of a waveguide.20 
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3. Spectral Filtering of the Modes 

In this section, we present a simple model which explains how the TE 

and TM modes are formed and which types of the waveguide modes take 

part in the spectral filtering process. We consider a large planar 

waveguide with the radiating nanocrystals uniformly distributed in the yz 

plane and therefore the system is assumed to have a full translational 

symmetry in both y and z directions. This model is therefore not able to 

simulate phenomena which arise from the wave propagation (for 

appropriate models, see sections 4 and 5) since the symmetry-breaking 

due to the sample edge is not included in the description, however the 

principle of the peak formation in the PL spectra is best illustrated. 

The main idea of the model follows from the aforementioned fact that 

the substrate modes with the propagation constant slightly below the 

critical value undergo several round-trips in the core before their energy 

leaves the core. Due to the interference effects (similarly to the Fabry–

Perot interferometer),
22

 the nanocrystals couple effectively only to the 

resonant modes, i.e. to the modes whose phase is reconstructed after one 

round-trip. These modes, in addition, refract to the substrate under an 

angle near π/2, therefore they are hardly distinguishable from the guided 

modes in experiments and we observe a superposition of the guided and 

the substrate modes in the PL spectra. Using the detection system with a 

small numerical aperture,
2
 substrate modes with a fixed propagation 

angle are selected (cf. Fig. 1b) and the resonances arise for certain 

wavelengths only. These resonances are then observed as sharp peaks in 

the PL spectra. 

To give a more quantitative description, let us consider nanocrystals 

randomly oriented and randomly located in the waveguide core which 

radiate the optical field with intensity of electric field ( )λ0E  under an 

angle θ 2. The total field at the position of the nanocrystal is evaluated as 

a sum of the field E0, the field after one round-trip in the core, the field 

after two round-trips etc. Mathematically, we express the field as an 

infinite series: 
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where r21 and r23 represent the reflection coefficients at the core/cladding 

and the core/substrate boundaries, respectively, which depend upon the 

propagation angle θ 2. Note that the summation is possible in lossless 

structures only if |r21r23|<1, therefore Eq. (2) is valid only for the 

radiation and the substrate modes, the guided modes (with |r21|=|r23|=1) 

will be discussed hereafter. Function |Einternal(λ,θ 2)|
2
 defined by Eq. (2) 

stands for light intensity in the core of the waveguide and has maxima at 

the resonances for the wavelengths λ for which the condition 

[ ]( ) 0/cos�4iexpIm 222321 =λθdnrr  is fulfilled.  

3.1. Substrate and radiation modes 

Considering only the substrate modes, |r21|=1 and |r23|<1. The more is the 

value |r23| close to unity, the narrower are the peaks in the intensity 

|Einternal(λ)|
2
. Additionally, the peak value increases with increasing |r23| 

and thus the substrate modes are most visible for angles θ 2 approaching 

the critical angle for total internal reflection on the core/substrate 

boundary. For radiation modes, the value |r23| is usually much less than 

unity and thus the spectra of the radiation modes reveal only broad peaks 

with a small peak-valley contrast. 

In experiments, the detector has a nonzero numerical aperture and 

therefore radiation from a nonzero spatial angle is collected. The total 

intensity recorded by the detector is then 
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where the detection angle is given by its mean value α (cf. Figs. 1a-b) 

and ∆α/2 denotes the numerical aperture of the detector. The symbols T23 

and TS stand for the respective transmittances at the core/substrate 

boundary and at the sample edge, which are given by the Fresnel 

formulae. The detection angle α ′  and the propagation angle θ 2 are 

connected by the Snell’s law 
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 αθ ′−= 22
32

22
2 sinsin nn . (4) 

The expression αθ ′d/d 2  in Eq. (3) stands for the angular mode density 

and reflects the fact that the nanocrystals radiate isotropically in the core. 

3.2. Guided modes 

For the guided modes, the field intensity |E0(λ)|
2
 in the core is enhanced 

similarly to Eq. (2), however losses due to radiation at the sample edge 

should be included in order to get a physically correct formula. Such 

derivation is beyond this simple model and therefore we consider that the 

intensity of the electric field is given by the formula 

 ( ) ( ) ( )λθλθλ 022guided ,, EFE = , (5) 

with F(λ,θ 2) being the enhancement factor similar to the factor in 

Eq. (2). The detected intensity is 
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where TG(λ,θ 2) stands for the transmittance of the mode denoted by its 

wavelength λ and propagation angle θ 2 through the sample edge and 

),,( 2 αθλ ′
GD  is the diffraction efficiency from the mode to the 

diffraction angle α ′ . The enhancement factor F(λ,θ 2) has sharp maxima, 

i.e. only the guided modes with well resolved propagation angle are 

allowed by the waveguide, therefore we may simplify
c
 Eq. (6): 
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Decoupling of electromagnetic waves from a dielectric waveguide to free 

space (evaluation of the functions TG(λ) and ),(G αλ ′D ) cannot be 

described simply by the Snell’s law but we must take into account 

diffraction and full boundary conditions. Such approach is, however, 

beyond the scope of this paper, therefore we assess the situation only 

qualitatively. It is well known that diffraction on a slit with aperture 

                                                 
c We consider here for the sake of simplicity one guided mode for all wavelengths, 

however Eq. (7) may be extended to a general case of multimode guiding. 
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width comparable to the light wavelength produces a wide diffraction 

maximum in the Fraunhoffer limit, thus we may conclude that the 

function ),(G αλ ′D  has a broad peak
16

 in the second variable. The 

guided modes, unlike the substrate modes, cannot be distinguished one 

from the other by selecting the angle of detection.  

The magnitude of the transmittance TG may be estimated from the 

Fresnel formulae; we assume that for the angle of incidence at the 

waveguide edge well above the critical value for the total internal 

reflection at the boundary the transmittance is low while for smaller 

angles, the modes are decoupled more effectively. Simple derivation 

gives that the guided modes near the cut-off wavelength are only weakly 

decoupled for n2
2 

– n3
2 

> 1. In waveguides where n2
2 

– n3
2 

< 1, all guided 

modes may be radiated from the waveguide core with high transmittance. 

3.3. All modes together, comparison with experiment 

The total intensity at the detector is 

 ( ) ( ) ( ) ( )λλλλ RGS IIII ++= . (8) 

The symbol IR(λ) denotes the spectrum of the radiation modes which is 

almost flat and always less intense when compared to the spectrum of the 

substrate modes as seen from Eq. (2). Therefore it plays a minor role and 

hence it is not discussed from now on. The detected PL spectrum then 

consists of the two major components which compete with each other: 

the broad spectrum of the guided modes and the spectrum of the 

substrate modes with narrow peaks. Visibility of the respective 

components is determined by the numerical aperture of the detection 

system and mainly by the geometrical properties of the sample since 

these determine the strength of decoupling of the guided modes. 

The spectra of the substrate modes reveal one more property which 

has not been discussed yet. The phase of the reflection coefficient r23 in 

Eq. (2) does not vary with the incident angle θ 2 when considering 

substrate and radiation modes, however the phase of the coefficient r21 

does change from 0 to π in the region of substrate modes (see Fig. 3 in 

Ref. 17). The phase is, in addition, dependent upon the mode polarization 

and therefore the peaks of the TE and TM modes split in the PL spectra. 
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In the three-layer waveguides as discussed in this chapter, the TE mode 

Fig. 2. (a) Photograph 

of the edge of a set of 

implanted layers with 

direction of PL 

indicated by arrows, the 

edge is on the left; (b) 

measured PL from 

samples implanted to 

different  Si-ion flu-

ences (indicated on the 

left) in standard (blue 

line) and waveguiding 

geometry (black line, 

red and green lines 

stand for TE and TM 

resolved polarizations); 

(c) theoretically 

calculated PL spectra; 

(d) comparison of PL 

measured in the 

waveguiding geometry 

for different series of 

implant fluences with 

the PL measured in the 

standard geometry 

(broad band); (e) 

profiles of refractive 

index of the samples 

with indicated implant 

fluences.17  

 
Fig. 3. (a) Measured PL 

spectra with a drop of 

various liquids above 

the excitation spot; (b) 

theoretical PL spectra; 

(c) comparison of 

experimental (points) 

and theoretically 

calculated positions of 

PL maxima for different 

refractive indices of the 

liquids. The sample with 

an implant fluence of 

5·1017 cm−2.24  
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In the three-layer waveguides as discussed in this chapter, the TE mode 

peak is red-shifted with respect to the TM mode peak. The spectral 

positions of the peaks may merge or interchange in the waveguides with 

other profile of the refractive index. 

We compared the predictions of our model with the PL spectra 

measured on samples prepared by Si
+
 ion implantation (for details of the 

experimental set-up and sample preparation, see Refs. 2, 8 and 17). With 

the help of near-IR transmission measurement and the SRIM software,
23

 

we obtained the refractive index profiles of our waveguides (see Fig. 2e) 

which were then used in numerical simulations. The samples with higher 

implant fluences reveal higher peak values of the refractive index. The 

experimental spectra are shown in Fig. 2b and our theoretical simulations 

in Fig. 2c. Fig. 2d shows the PL spectra from another series of samples 

implanted to different fluences where the scaling of the narrow peak 

intensities can be clearly seen — the peak magnitudes follow well the 

spectral course of PL of free nanocrystals (PL measured in the standard 

setup). 

The experimental data in Fig. 2b reveal significant modulation of the 

PL spectra when detecting in the waveguiding geometry. In the standard 

geometry (blue line), only the broad PL spectrum characteristic of Si 

nanocrystals is displayed and its shape is almost independent of the 

density of nanocrystals. Measurements in the waveguiding geometry, on 

the contrary, reveal the two abovementioned distinct linearly polarized 

peaks (black line without resolution of polarization, red and green lines 

represent TE and TM polarization, respectively) which move to longer 

wavelengths with increasing density of nanocrystals, and a broader peak 

centred around 850 nm which is unpolarized and its spectral position 

remains the same in all samples. The broad peak is interpreted as the 

spectrum of the guided modes: for the lowest concentration of 

nanocrystals (implant fluence of 3×10
17

 cm
−1

), our calculations show that 

the cut-off wavelengths are below 600 nm and above 1.5 µm and thus the 

substrate modes are missing in the selected spectral region. The 

interpretation is supported by the fact that the broad peak is not 

polarized, its shape and magnitude are only weakly dependent on 

nanocrystal density (Fig. 2d) and its spectrum is similar to the spectrum 

measured in the standard geometry (absorption cuts the spectrum of the 
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guided modes below 750 nm). The substrate modes are not influenced by 

the absorption since they propagate mostly in the transparent substrate.  

According to Eq. (8) and the subsequent discussion, the theoretical 

spectra represent the sum of the contributions from the two types of the 

modes. We are not able to determine the spectrum of the guided modes 

analytically within this model and thus we treat the experimental PL 

spectrum from the sample with the lowest nanocrystal density as the 

spectrum of the guided modes in all samples. The spectra of the substrate 

modes are then calculated according to Eq. (3) and added to the spectrum 

of the guided modes. Comparison of the resulting theoretical spectra in 

Fig. 2c to the experimental data in Fig. 2b gives an excellent agreement 

indicating a good precision of our model. 

In experiments, we are able to set the detection angle α or the 

numerical aperture of the detector, therefore the angular properties of the 

PL should be discussed. The angle of detection may influence the 

detected spectra in two distinct ways: (1) magnitude of the 

photoluminescence and (2) shape of the spectra. The spectrum of the 

guided modes changes with the angle of detection only slightly,
16

 

therefore we discuss here only the substrate modes which reveal the most 

significant changes. The variance of the peak magnitude of the spectra 

may be evaluated directly from Eq. (3) considering |E0(λ)| = const. and 

considering exact resonance, i.e. Im{r21r23exp[i4πn2dcosθ 2/λ]} = 0 — it 

is plotted in Fig. 4a for several absorption coefficients of the core 

Fig. 4. (a) Theoretical dependence of peak PL intensity on the angle of detection α for 

various absorption coefficients of the core; (b) measured PL spectra at different detection 

angles; (c) numerical simulations of the measurements. The sample with an implant 

fluence of 5×1017 cm−2. 
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material taken at the wavelength of 500 nm. The peak  position of the PL 

magnitude is not constant and shifts towards the larger values of the 

detection angle with increasing absorption coefficient. Besides the 

overall intensity, the PL spectra change also in shape when the angle α is 

varied as seen in our experimental results depicted in Fig. 4b. With 

increasing angle α, the peaks broaden and shift towards longer 

wavelengths. The interpretation is straightforward within our model: 

increase of the angle α implies decrease of the angle θ 2 and therefore 

decrease of the reflection coefficient r23 and, in addition, change of the 

phase of the reflection coefficient r21. The former is responsible for the 

peak broadening while the latter causes a change of the phase matching 

condition and thus the spectral shift of the peaks. Our theoretical 

simulations in Fig. 4c agree with the experimental results in Fig. 4b 

which indicates correct interpretation and modelling. We feel that these 

experiments with detection at different angles can be hardly interpreted 

in terms of delocalized guided modes since there is no reason for the 

guided modes to reveal markedly different spectra in different diffraction 

directions. 

3.4. Differentiation of the substrate modes from the guided modes 

In order to support experimentally our model, we performed a novel 

experiment published in Refs. 17 and 24. The refractive index of the 

cladding layer may be easily modulated for example by dropping a small 

volume of liquid onto the sample. If the refractive index of the whole 

layer is changed, the PL spectra should change due to the obvious change 

of the phase of the reflection coefficient r21. The measured spectra for the 

sample implanted to the fluence of 5×10
17

 cm
−2

 are depicted in Fig. 3a 

and our numerical simulations in Fig. 3b. The theoretically estimated 

dependence of the peak positions and their comparison to the 

experiments are the plotted in Fig. 3c. The guided and the substrate 

modes may be then unambiguously resolved if a small drop of the liquid 

is placed only between the excitation spot and the sample edge. The 

modes with their characteristic spectra form within a short distance from 

the excitation spot where the waveguide is not modified by the liquid. 

The guided modes then pass through a modified waveguide where the 
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cut-off frequency and thus the resonance condition for the delocalized 

modes are shifted. If the model based on delocalized guided modes were 

valid, we would thus expect a shift of the spectral positions of the peaks. 

The substrate modes, on the contrary, are already decoupled from the 

core at the position of the liquid and propagate freely in the substrate and 

therefore the core/cladding boundary cannot influence them. The PL 

spectra are then, in the case of validity of our model of substrate modes, 

expected to remain unchanged when compared to the original spectra 

without any liquid above the sample. The experimental data
17

 prove the 

correctness of the concept of the substrate modes since the spectra do not 

modify when dropping a liquid between the excitation spot and the edge. 

Obviously the active waveguides may be used as sensitive detectors 

of refractive index changes (we estimate their sensitivity up to 10
−5

) 

which may be tuned for particular applications via tailoring the 

preparation parameters as shown in Ref. 25. The spectral region in which 

the detector may work is not limited only to the PL band of 

nanocrystalline silicon as shown experimentally in Ref. 14. The data 

presented therein show that light with a broad spectrum may be coupled 

to the substrate modes from outside. The modes which fulfil the 

resonance condition are then absorbed in the core and the reflection 

reveal dips at the theoretical spectral positions of the PL peaks, which is 

in agreement with our model.  

4. Wave Propagation in Waveguides 

In this section, we introduce an advanced model capable of describing 

the wave propagation in the direction along the waveguide layer. Within 

this theory, we are able to interpret the mechanism of the mode 

formation and we may evaluate the influence of the net optical gain or 

losses on the PL intensity. Although the model is formulated in terms of 

the ray optics (and an approximative description of the wave 

propagation), it gives good qualitative predictions and it is helpful when 

interpreting the experiments. A more subtle but with difficulty 

interpretable model usable for quantitative predictions is introduced in 

section 5. 
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Since we are interested here in wave propagation, we must take into 

consideration the fact that nanocrystals emit generally spherical waves 

and thus the signal recorded by a spatially limited detector decreases 

with the distance from the source as already discussed in Ref. 26 for a 

special case. The real detector collects the signal from a nonzero spatial 

angle as well as the input aperture has a nonzero spatial area and 

therefore there are two limiting cases for which we develop our theory: 

(1) A small detector with a large numerical aperture (NA), typically an 

optical fibre capable of high spatial resolution and small angular 

resolution, and (2) A detector with a small NA thus with a high angular 

resolution. Since the energy density of a spherical wave decreases as 1/r
2
, 

where r denotes a distance from a source, the intensity detected in the 

case 1 by a spatially small detector also decreases as 1/r
2
. In the latter 

case, on the contrary, when the characteristic size of the input lens of the 

detector is much larger than r, the signal would be independent of the 

distance from the source. We therefore denote the coupling coefficient as 

ρ(ζ) in the following text for spherical waves, i.e. for the case 1. The 

positive variable Nz−=ζ  denotes the distance between the excited spot 

and the sample edge, zN being the position of the excited spot at the axis 

z. For detectors with a small NA and high angular resolution, we put 

ρ(ζ)=1. 

We divide the initial discussion into the guided and the substrate 

modes while the radiation modes are omitted for the sake of 

simplification (as discussed above, they play only a minor role). 

4.1. Guided modes 

It was stated above in section 3 that the PL from Si nanocrystals couples 

to the guided modes in the whole spectral region and that the spectrum of 

the guided modes is nearly equal to the spectrum of the PL of the 

unperturbed nanocrystals.
d
 A wave emitted by a nanocrystal at a distance 

ζ from the sample edge is amplified or attenuated depending on the gain 

                                                 
d The spectral intensity of the modes is proportional to the number of the guided modes. 

Therefore the spectral intensity of the light carried out by the modes may reveal jumps at 

distinct wavelengths which correspond to the cut-off wavelengths. 
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and the loss coefficients, and the intensity transmitted through the edge 

takes the form (according to Eq. (6)) 
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where g(λ) and γ(λ) stand for the gain and the loss coefficient, 

respectively, I0(λ)=|E0(λ)|
2
 is the spectral intensity of the PL and ρG(ζ) is 

the coupling coefficient. The dependence of the gain and the loss 

coefficients on wavelength reflects only properties of the material (the 

role of mode delocalization is neglected since our calculations show it is 

small) and we consider in the following that the major portion of the 

energy of guided modes is localized inside the core. 

The coupling coefficient cannot be expressed simply as 1/ζ since the 

detector is outside the waveguide core and the wave refraction at the 

sample edge, illustrated in Fig. 1c, is responsible for a slight 

modification. Considering only rays near the normal incidence in Fig. 1c, 

the intensity radiated to the angle φ2 is I0φ2/2π. After refraction, this 

energy further propagates in the yz plane with divergence given by an 

angle φ0=n2φ2 and at the position of the detector (its distance from the 

sample edge being D), the energy is spread over the arc with length 

φ2(n2D+ζ). In the xz plane, the wave decoupled from the waveguide is 

also divergent, however the distance D is fixed and the divergence 

contributes to the coupling coefficient by a constant term 1/D. It is then 

easy to express the coupling coefficient for the guided modes as 
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ζρ
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G
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Note that this formula is valid only for the spatially small detector, for a 

large detector with small NA we should write ρG(ζ)=1. 

4.2. Substrate modes 

Unlike the guided modes, where we usually cannot resolve the particular 

guided modes by the angle of detection and the PL spectrum is similar to 
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the PL spectrum of unperturbed nanocrystals, the substrate modes reveal 

maxima and minima in the spectra according to the constructive or 

destructive interference, respectively. The shape of the spectra depends 

on the number of internal reflections in the core and thus on the distance 

which the mode propagates. To express the shape of the spectrum 

mathematically, we then modify Eq. (3) in order to account for the 

coupling and Eq. (2) must be adapted to the finite number of reflections. 

The intensity emitted from the substrate then reads 
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Here ( )ζθ ,2N  is the number of reflections of the wave inside the core 

and zR is the distance between two points of reflection on the 

core/substrate boundary (see Fig. 1b). The intensity of radiation which 

remains in the core may be expressed by a formula similar to Eq. (9), 

however we account for the wave leaking by the effective attenuation 

coefficient γeff:
18
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In order to evaluate N, we consider that after N reflections of a ray on the 

core/substrate boundary (see Fig. 1b) the intensity in the core with 

0== γg  may be expressed as [ ]ζγζ eff0

2

232102,S 2exp),( −== IrrINI
N

. 

The number of reflections may be then evaluated in the following way: 
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 2321eff ln/ rrN ζγ−= , (15)    

 eff2321R /ln γrrz −= .  (16) 

The effective attenuation coefficient may be calculated from the 

Poynting vector.
18

 In the case of an asymmetric waveguide with the step-

like profile of the refractive index, the coefficient may be expressed for 

TE waves as 
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with α2,3β defined in section 2 and β=2πn2sinθ2/λ. In structures with 

more complicated profile of the refractive index, the attenuation 

coefficient and the reflection coefficients must be evaluated numerically, 

however Eqs. (13) to (16) remain valid. The coupling coefficient may be, 

after simplifications and considering θ 2 near the critical angle θC, 

evaluated from the geometry of the system as 
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The PL spectrum of the modes radiated to the substrate obviously reveals 

narrow peaks for sufficiently large number of reflections, i.e. after a 

sufficiently long propagation of the mode. The modes which are excited 

near the sample edge undergo only several reflections and their spectrum 

is almost flat. With the increasing propagation length, the resonances 

become better resolved and the spectrum gets narrower as shown in 

Fig. 5. Calculated dependence 

of the PL peak width on the 

length of propagation of the 

substrate mode for several 

angles of detection; inset: 

spectral profiles of PL for 

α=1°.25  
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Fig. 5 where we plot the results of the numerical evaluation of Eqs. (11)-

(13) for the special case of a step-like profile of the refractive index. For 

different profiles, the modes may form at distances differing by orders of 

magnitude as seen when comparing e.g. Refs. 10 and 27. 

4.3. Optical gain 

Our aim in this paragraph is to discover the role of the optical gain in 

waveguiding samples. Let us consider the VSL measurement of the net 

optical gain: a stripe of the length � is optically excited and we detect the 

total light intensity radiated from the sample in the waveguiding setup. 

The PL comes from all excited nanocrystals in the stripe and thus the 

total ASE intensity may be expressed as an integral of Eqs. (9), (11) and 

(14): 

 [ ] ζζαλζαλζαλαλ d ),,(),,(),,(),(

0

3,S2,S2,GASE � ++=
�

IIII . (19) 

The above formula is composed of the respective contributions from the 

guided modes, the substrate modes diffracted from the core and the 

substrate modes refracted from the substrate. The three contributions 

have generally different magnitudes because of different mechanisms of 

decoupling of the associated waves at the sample edge. Since the 

efficiencies of the wave decoupling and the enhancement factor of the 

guided modes (see Eq. (7)) are unknown and depend on the particular 

sample geometry, we separate phenomenologically our discussion into 

two general cases: 1. majority of the guided modes (substrate modes 

cannot be distinguished in PL spectra) and 2. majority of the substrate 

modes. 

1. If the guided modes are dominant, the energy of the radiating 

dipole in a silicon nanocrystal is coupled mainly to the guided modes. 

We may therefore neglect the contributions from the substrate modes and 

evaluate only the integral of Eq. (9). For the detector with a very small 

numerical aperture (i.e. when detecting plane waves, ρ = 1), the 

integration yields the well known formula
15
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where (g–γ) denotes the net gain. The result for a spatially small detector 

with a large NA obviously differs, however the result is not analytically 

integrable. We thus give only the numerical results in Fig. 6a — we 

compare evaluated Eq. (20) with Eq. (19) for the guided modes and the 

small detector for several values of the gain coefficient and the position 

of the detector. In order to give a clear interpretation of the graph, we 

plot in Fig. 6b the strength of coupling ρ(ζ) of the excited elements to the 

detector (the strength of coupling may be directly measured in the 

Shifting Excitation Spot
2
 experiment (SES)). It is obvious from Figures 

6a and 6b that Eq. (20) is valid only in special cases of the detection of 

plane waves by a spatially large detector or by a small detector at the 

 

Fig. 6. Calculated ASE intensity from Eq. (19) as a function of the excited stripe length 

for the guided (a) and the substrate (c) modes; a small detector with a large NA is 

supposed. Coupling coefficients are plotted for comparison for the guided (b) and the 

substrate (d) modes. Scales of the curves are set for better comparison of their behavior. 

Numbers in (a) and (c) mean (gain coefficient in cm-1)/(distance D between the sample 

and the detector in mm). Circles in (a) denote ASE intensity according to Eq. (20) with 

(g–γ)=100 cm-1. 
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distance from the sample edge much larger than the length of the excited 

stripe. In the latter case, however, we may expect experimental 

complications because of the low PL intensity. 

2. If the substrate modes are dominant, we consider that we detect 

ASE emission at the wavelength of one of the modes because at other 

wavelengths the contribution due to the substrate modes is negligible as 

discussed above and then the ASE intensity is modelled according to the 

discussion in the previous paragraph. The dominance of the substrate 

modes is caused by inefficient decoupling of the waves from the core at 

the sample edge and thus the major contribution comes only from the 

third term in Eq. (19). We plot in Figs. 6c-d the ASE intensity and the 

magnitudes of the coupling coefficient for several values of the gain 

coefficient and of the distance of the detector from the sample edge. The 

curves obviously show that Eq. (20) cannot be used for evaluation of the 

net gain in this case. For clear resolution of the net gain, one should use 

the SES method. 

The theory developed in this section fits very well our experimental 

observations in VSL experiments. By choosing proper wavelength, we 

are able to select whether we detect guided or substrate modes and then 

we can directly compare their characteristics in one sample. An 

instructive result published in Ref. 28 means that the guided modes are 

more effectively amplified in the presence of a positive net optical gain 

than the substrate modes, as follows from the theory. We are also able to 

explain the unusual behaviour of the ASE and SES curves presented in 

Figs. 1e-f. The SES curve in Fig. 1f for the guided mode at 825 nm 

decreases monotoneously as the coupling coefficient decreases. The 

curves for the substrate TE and TM modes, however, initially increase 

and for longer distance of the excited spot from the edge they start to 

decrease due to the decrease of the coupling coefficient. The initial 

increase follows from the initial refraction of the waves into the substrate 

— since energy is radiated to the core and we detect the waves from the 

substrate, there is a nonzero propagation length necessary for leakage of 

the energy from the core. The position at which the SES curve reaches its 

peak depends on the detection angle (numerical aperture of the detector) 

as shown experimentally in Ref. 8 and as may be shown using our 

model. 
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5.  Numerical Analysis of the Modes 

Both models presented above are based on assumptions which simplify 

either the real geometry of the problem (consideration of the infinite 

waveguide in section 3) or the level of physical description (simple use 

of rays in section 4). In this section, we present a rigorous model which 

correctly describes propagation of the optical waves along the 

waveguide. The calculations in this section are performed numerically 

because it is impossible to derive the final expressions analytically. 

The structure under description has three layers, two of them being 

infinite (the cladding and the substrate). According to the discussion in 

Ref. 20, the mode spectrum is then composed of discrete guided modes 

and the continuum of the substrate and the radiation modes. Presence of 

the continuum represents an unwanted feature in the numerical 

evaluation and therefore we overcome this problem by considering that 

all the layers are finite and the top and the bottom of the whole guiding 

structure is covered by a medium with reflectivity r=1. The waves 

propagate in the z direction and we consider the edge at the coordinate 

z=0. We assume the infinite structure in the y direction and we consider 

detection of the signal in the limit of Fraunhoffer diffraction (propagation 

of “plane” waves). The thickness of the cladding and the substrate is set 

to 0.6 mm, thus the angular resolution of the pattern diffracted from the 

edge is resolved with precision better than 0.15°. 

The spatial profile of the intensity of electric field is given by Eq. (1) 

for TE modes, i.e. for the waves whose vector of electric intensity lies in 

the y direction — the numerical analysis is performed only for the TE 

waves since the mode splitting is well explained by the simplified 

models and TM modes reveal similar behaviour to TE ones in other 

characteristics. Using the theory of Ref. 20, the calculations have been 

performed in the way briefly summarized in the following. First, the 

allowed propagation modes (i.e. modes with Re β > 0) were found 

numerically — let us assume that the 2×2 transfer matrix for the whole 

structure without mirrors is Tβ and the relation between the field 

coefficients at the two opposite boundaries of the structure is
e
 

                                                 
e The medium with index 0 is an infinitesimally thin layer at the top of the cladding with 

refractive index n0=n1, 
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Fig. 7. (a) Distribution 

of the light intensity at 

wavelength 624.4 nm in 

the sample with 6 µm 

thick core; all modes are 

plotted. The coordinate x 

means depth below the 

sample surface. (b) 

Detailed view of 

decoupling of the 

lowest–order substrate 

mode at long 

propagation distances; 

only substrate modes are 

plotted for clarity. Dark 

blue colour denotes 

minimum intensity, 

maximum intensity is 

dark red. 

Fig. 8. Dependence of 

the light intensity on 

wavelength (horizontal 

axis) and propagation 

distance of the substrate 

modes (vertical axis). 

The waveguide has a 

core 6 µm thick. 
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Boundary conditions imply A0β =B0β and A3β =B3β and the (generally 

complex) coefficients β which fulfil the above constraints were found 

iteratively. The second step consisted in calculation of the field 

distribution at the sample edge. We consider a nanocrystal at the 

coordinates ),( NN ζ−=zx  which is coupled to the waveguide modes. 

The field Erad(x,zN) radiated by the nanocrystal may be decomposed to 

the modes as follows: 
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where [·,·] stands for a scalar product (integral over the x coordinate) and 

the summation goes over all allowed propagating modes. The field 

distribution at the sample edge is then, according to the propagating 

factor in Eq. (1), expressed as 
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In the third step, we calculated the field diffracted from the sample edge 

in the Fraunhoffer limit by performing the Fourier transform on the 

function Erad(x,z=0) and considering field refraction according to Snell’s 

law and Fresnel formulae for simplification. 

In the numerical results presented below, we consider a model system 

with the cladding with refractive index n1=1 and width w1 = 600 µm, the 

substrate with refractive index n3 = 1.46 and width w3 = 600 µm and the 

core has refractive index n2 = 1.8 and its width is d = 6 µm. Formation 

and propagation of the modes is illustrated in Figures 7a and 7b where 

we plotted the distribution of the light intensity in the structure (the 

coordinate x = 0 refers to the core/cladding boundary). The beams which 

leave the core to the right are the substrate modes — we may assign an 

angle of propagation to each of them. It is interesting that obviously they 

are not radiated from the core at one distinct point but they decouple over 

long distances. This property is better visualized in the detailed view in 

Fig. 7b where we may identify the substrate modes which are rapidly 
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decoupled from the core and one mode which decouples at much longer 

distances comparable to 0.5 mm.  

The results depicted in Fig. 7 directly support the model from section 

4 based on the assumption of the gradual decoupling of the waves from 

the core to the substrate. As we have shown, this fact is responsible for 

gradual narrowing of the PL spectra when increasing |zN|=ζ, i.e. when the 

excited spot is moved further from the sample edge. We performed 

calculations in order to confirm this hypothesis and the results are plotted 

in Fig. 8 — the dependence of the PL intensity measured at the angle 

α=2.5º on wavelength λ and distance |zN|=ζ between the nanocrystal and 

Fig. 9. (a), (c) Narrowing of the substrate mode during propagation along the waveguide. 

Spectral profiles of the modes at several distances from the excited spot calculated by the 

numerical model (black lines) and results of the ray model for comparison (gray lines). 

(b), (d) Calculated energy decoupled from the core as a function of the propagation 

distance from the excited spot (solid) and results of the ray model for comparison (dashed 

line). Parameters of the curves denote wavelengths in the vicinity of the resonance of the 

mode (b) and wavelengths of several resonant modes (d). The core thicknes is 6 µm (a), 

(c) and 0.6 µm (b), (d), respectively. 
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the sample edge. The cuts of this graph in the directions of both axes ζ, λ 

are plotted in Figures 9a and 9b. In Fig. 9a, the mode narrowing is 

obvious and we compare these numerical results with the results of the 

model from section 4 (plotted as grey lines). We may conclude that the 

approximate model gives accurate results and is therefore usable as an 

estimate for practical use in evaluation of experiments. The rate of 

energy decoupling from the core is depicted in Fig. 9b for several 

wavelengths around the resonance together with the estimate performed 

according to Ref. 18. Decoupling rate is obviously well estimated by the 

theoretical curve for the resonant mode and thus  the ray model is usable 

also in this case. Graphs similar to those in Figures 9a and 9b are plotted 

in Figures 9c and 9d for the waveguide core with thickness of 0.6 µm 

together with comparison with the simplified model. The energy flow 

from the core to the substrate is more pronounced when compared to the 

waveguide with the wider core. We may interpret this feature in terms of 

ray propagation: as seen from Eqs. (16) and (17), the distance zR between 

the two points of reflection of the ray is proportional to the waveguide 

thickness and therefore the energy loss due to transmission to the 

substrate is faster in thin waveguides. Although qualitative discussion 

well reflects the situation, quantitative comparison in Fig. 9d fails. The 

limitations of the ray model from section 4 are thus clearly seen — it 

gives good numerical predictions only when d>>λ, i.e. when wave 

Fig. 10. (a) Calculated coupling strength of the excited spot  at the distance ζ from the 

sample edge considering a sample with the core thickness of 6 µm for several values of 

gain coefficient at the resonant wavelength 624.4 nm of the substrate mode (cf. Figs. 7, 

8); (b) calculated ASE intensity recorded from the sample with same parameters as in (a). 
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propagation is well described by ray optics. The narrowing of the modes, 

nevertheless, may be roughly estimated by using the ray model also for 

structures with d ~ λ as seen in Fig. 9c. 

We may include small optical losses or optical gain (up to tens cm
-1

) 

into the numerical model in the form of a complex refractive index. We 

present in Fig. 10a the dependence of the intensity of light emitted by a 

nanocrystal and transmitted through the structure with gain or losses on 

the distance of propagation. The detection angle is α = 2.5º, wavelength 

624.4 nm and other parameters equal to those in Fig. 7. By integration of 

the curves in Fig. 10a, we get the ASE intensity depicted in Fig. 10b. 

According to section 4, all the ASE curves seem to have exponential 

behaviour near the origin 0N == zζ , however this is not a consequence 

of the optical gain but the result of the mode leaking. 

We may conclude this section by stating that the approximate models 

are capable of a qualitative description of the mode propagation and 

leaking in the waveguiding structures. They give good quantitative 

results if the waveguide core is wide enough (d>>λ) but one should use 

them only as rough estimates in other cases where numerical calculation 

should be applied in order to get quantitatively correct results. 

6. Conclusions and Acknowledgements 

The results presented in this chapter show that the substrate modes, 

usually considered as an unwanted artificial feature, have properties very 

different from the guided modes of the waveguide. Because of their 

limited lifetime inside the core, they cannot be effectively absorbed or 

amplified and therefore they are hardly controllable. In spectroscopic 

measurements, it appears almost impossible to evaluate the magnitude of 

the net optical gain from the VSL measurements on the substrate modes 

and therefore it is desirable to avoid (by properly designing the core 

parameters) the presence of the substrate modes in most applications 

including optical spectroscopy. The spatial separation of the substrate 

and the guided modes can be exploited in order to filter out the substrate 

modes, e.g. by using a detection with high spatial resolution or using 

techniques for decoupling of the guided waves from the core (by placing 

a prism on the top plane of the sample etc.). 
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The substrate modes may be, however, of importance in nano-silicon 

active optoelectronic devices where light is emitted, guided or amplified. 

Because of usual small optical gain in Si nanocrystals, the intensity of 

the substrate modes may be comparable to or even larger than the 

intensity of the guided modes and they may be then a source of noise. 

Devices must be then constructed in order to avoid wave propagation in 

the substrate — one may use for example absorbing substrate or a special 

geometry of the device in order to physically block the waves. 

Although the substrate modes represent in most cases a parasitic 

feature in waveguiding devices, it appears, however, possible to use them 

in a wide range of applications in nano–optics. They may be used for 

optical sensing profiting from their sensitivity to the refractive index of 

the cladding. Another promising application may be the use of active 

waveguides as simple tunable sources of narrow–line directional optical 

emission and as tunable optical filters. However, further research in this 

direction is needed. 

Financial support through research projects GAAVCR IAA1010316, 
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institutional research plan AV0Z 10100521 (Institute of Physics) is 

greatly appreciated. This work is also a part of the research plan MSM 

0021620834 that is financed by the Ministry of Education of the Czech 

Republic. Thanks are also due to Prof. R.G. Elliman (ANU Canberra) for 
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symmetry of the heavy-hole �hh� band is �6 and the symme-

try of the light-hole �lh� band is �7. The symmetrized wave

functions are then

��6: �1 = �− 1�� = � 3

2 −
3

2� ,

�2 = �1�� = � 3

2 +
3

2� ,
�hh

��7: �3 =
1
	3

��− 1�� + 	2�0��� = � 3

2 −
1

2� ,

�4 =
1
	3

��1�� + 	2�0��� = � 3

2 +
1

2� .
�lh �1�

These wave functions are equal to those given in Ref. 5 for

bulk material except for a different numbering of the states.

The conduction band has �6 symmetry and one finds that the

symmetries of excitons are �6 � ��6 � �7�=�1 � �2 � �3

� �4 � 2�5. The symmetrized exciton wave functions � are

listed below:

�1:�1 =
1
	2

��2� − �1�� ,

�2:�2
�z� = − �i/	2���2� + �1�� ,

�3:�3 =
1
	2

��3� − �4�� ,

�4:�4
�z� = − �i/	2���3� + �4�� ,

�2�
�5:�5

�x� =
1
	2

��1� + �2�� ,

�6
�y� = �i/	2���1� − �2�� ,

�7
�x� =

1
	2

��4� + �3�� ,

�8
�y� = − �i	2���4� − �3�� .

The symbols in parentheses in superscripts of � denote the

spin projection to the coordinate system of the quantum well.

The hh excitons have indices 1, 2, 5 and 6, the others are lh

excitons. Symmetries of biexcitons are given by the formula
7

�1
++

� ��6 � �6�− � ���6 � �7� � ��6 � �7��−

= 2�1 � �3 � �4 � �5, �3�

where �A1 � A2�− denotes the antisymmetric part of a direct

product of representations A1 and A2. Using the same method

as presented in Ref. 7, we construct two-hole wave functions

with appropriate symmetry properties �antisymmetric with

respect to exchange of the two holes and symmetric with

respect to the crystallographic axes�. We multiply these wave

functions by the electron part of the wave function which has

the form ��1���3�−��1���3� and then we project the result on a

basis of two-exciton states. The numbers in superscript dis-

tinguish here between two different electrons. The calculated

biexciton wave functions are

�1:�1
BX = −

1

2	2
��1

A�1
B + �2

A�2
B + �5

A�5
B + �6

A�6
B

+ PAB� ,

�2
BX = −

1

2	2
��3

A�3
B + �4

A�4
B + �7

A�7
B + �8

A�8
B

+ PAB� ,

�3:�3
BX =

1

2	2
��1

A�3
B + �2

A�4
B + �5

A�7
B − �6

A�8
B

+ PAB� ,

�4�
�4:�4

BX = − �i/2	2���1
A�4

B − �2
A�3

B − �5
A�8

B − �6
A�7

B

+ PAB� ,

�5:�5
BX =

1

2	2
��1

A�7
B + �2

A�8
B − �3

A�5
B + �4

A�6
B + PAB� ,

�6
BX = − �i/2	2���1

A�8
B − �2

A�7
B + �3

A�6
B + �4

A�5
B

+ PAB� .

The letters A and B distinguish between the two contributing

excitons, PAB means permutation of the excitons. In these

wave functions, we identify pure lh or hh biexcitons with

symmetry �1 which can be excited by optical fields with

polarizations �+�−. All other biexcitons are mixed—they are

composed of one lh and one hh exciton. The �3 biexciton

transforms like two dipole-active states xx−yy=�+�+

−�−�− and the �4 biexciton as xy=�+�+−�−�−. We can con-

clude that one expects a signature of two mixed biexcitons

when using two �+-polarized pulses for excitation. The �5

biexcitons are not accessible by two-photon absorption �if
the incident beam is perpendicular to the QW plane�.

Without going into details, we present an effective exci-

ton Hamiltonian which has the structure

Ĥ = Ĥe + Ĥh + Ĥe-h + ĤQ, �5�

where the first term stands for electron Hamiltonian, the sec-

ond for the hole Hamiltonian, the third term represents the

electron-hole exchange Hamiltonian, and the last term is a

k-linear term. The particular terms are then expressed using

the method of invariants.
7,10

The k-linear term has contribu-

tions only from the in-plane momentum, therefore we do not

take it into account since we consider excitation perpendicu-

lar to the QW plane. The electron Hamiltonian is a constant,

the hole Hamiltonian introduces lh-hh splitting and we thus

express it as follows:

Ĥh =
�lh

2

Ĵz

2 −
1

4
� . �6�

The symbol Ĵ= �Ĵx , Ĵy , Ĵz� is the operator of the hole’s angu-

lar momentum and we define the electron spin operator �̂

= ��̂x , �̂y , �̂z�. The electron-hole exchange term has the form
9

Ĥe-h = �0Ie � Ih + �11��̂xĴx + �̂yĴy� + �12�̂zĴz + �21��̂xĴx
3 + �̂yĴy

3� + �22�̂zĴz
3 + �3��̂x�Ĵx,�Ĵy

2 − Ĵz
2�
 + �̂y�Ĵy,�Ĵx

2 − Ĵz
2�
� , �7�
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where Ie,h stand for identity operators on a subspace of elec-

trons and holes, respectively. The curly braces �
 stand for an

anticommutator: �Â , B̂
=
1

2
�ÂB̂+ B̂Â�. The Hamiltonian is not

diagonal and therefore there exist some couplings between

the states even for zero wave vector. We do not discuss these

couplings here �see the discussion� and we only give the

energies of the states which diagonalize the Hamiltonian:

E5,7�6,8� = �0 +
1

2�lh −
1

2�12 −
13

8 �22 ± ��−
1

2�lh + �12

+
7

4�22�2
+ 3��11 +

7

4�21 −
1

2�3�2�1/2
,

E3,4 = �0 −
1

2�12 −
1

8�22 � �2�11 + 5�21 +
3

2�3� , �8�

E1,2 = �0 + �lh +
3

2�12 +
27

8 �22 �
3

2 ��21 − �3� .

The biexciton Hamiltonian generally contains electron-

electron exchange, hole-hole exchange, electron-hole ex-

change, and one-particle energies. In the basis of the func-

tions defined above, all interactions of electrons cancel and

thus the electron-electron and electron-hole exchanges are

identically zero matrices. The hole-hole exchange Hamil-

tonian contains 16 terms �see Appendix�. They couple both

�1 states �pure lh and hh biexcitons�. Other than �1 states are

eigenstates of this Hamiltonian.

As we will discuss later, terms which have a high order

in Ĵ j
n correspond to a high order if the exchange interaction is

treated in a perturbational approach. Therefore, it seems to

be sufficient to consider only terms �0, �lh, �11, and �12.

This is similar to bulk material where usually only the iso-

tropic electron-hole exchange interaction is considered and

the cubic term is neglected. The energies of the states then

reduce to

E5,7�6,8� = �0 +
1

2�lh −
1

2�12 ± ��−
1

2�lh + �12�2
+ 3�11

2 �1/2
,

E3,4 = �0 −
1

2�12 � 2�11, �9�

E1,2 = �0 + �lh +
3

2�12.

III. ZINC-BLENDE IN THE †011‡ DIRECTION

The point-group symmetry of such QW is C2v
. The con-

duction band has �5 symmetry as well as both hole sub-

bands. The symmetrized hole wave functions are �1–4 given

in �1�, the only difference is that all have �5 symmetry. Ex-

citons have symmetries 2�5 � �5=2��1 � �2 � �3 � �4� and

taking into account both hole subbands, symmetrized exciton

wave functions are

�1:�1
�z� = −

1
	2

��2� − �1�� ,

�2
�z� = −

1
	2

��3� − �4�� ,

�2:�3
�x� =

1
	2

��1� + �2�� ,

�4
�x� =

1
	2

��4� + �3�� ,

�10�
�3:�5 = − �i/	2���2� + �1�� ,

�6 = − �i/	2���3� + �4�� ,

�4:�7
�y� = �i/	2���1� − �2�� ,

�8
�y� = �i/	2���4� − �3�� .

Exciton states with odd indices are hh and those with even

indexes are lh excitons. The wave functions are equal to the

wave functions presented for the case of the �001� orienta-

tion, they differ only in symmetry and index. Biexcitons

have symmetries 3�1 � �2 � �3 � �4:

�1:�1
BX =

1

2	2
��1

A�1
B + �3

A�3
B + �5

A�5
B + �7

A�7
B + PAB� ,

�2
BX =

1

2	2
��2

A�2
B + �4

A�4
B + �6

A�6
B + �8

A�8
B + PAB� ,

�3
BX =

1

2	2
��1

A�2
B + �3

A�4
B + �5

A�6
B + �7

A�8
B + PAB� ,

�11�
�2:�4

BX = −
1

2	2
��1

A�4
B − �2

A�3
B + �5

A�8
B − �6

A�7
B + PAB� ,

�3:�5
BX = −

1

2	2
��1

A�6
B − �2

A�5
B − �3

A�8
B + �4

A�7
B + PAB� ,

�4:�6
BX = −

1

2	2
��1

A�8
B − �2

A�7
B + �3

A�6
B − �4

A�5
B + PAB� .

Again, the first two biexcitons with �1 symmetry are pure hh

and lh, respectively. All other biexcitons are mixed. The �1

states have the usual structure �+�−. The �3 biexciton is

accessible by two-photon absorption too, but by photons

having polarizations xy=�+�+−�−�−. Other biexciton states

are not accessible by two-photon absorption.

When compared to �6�, the hole part of the exciton

Hamiltonian has one more term:

Ĥh = c0Ih + c1Ĵx
2 + c2Ĵz

2. �12�

This Hamiltonian differs from �6� because it couples hole

subbands via the term proportional to Ĵx
2. This coupling also

causes interaction between exciton subbands what we show

below. The electron-hole exchange Hamiltonian can be ex-

panded into the form

Ĥe-h = �0Ie � Ih + �11�̂xĴx + �12�̂x�Ĵx, Ĵy
2
 + �13�̂xĴx

3 + �21�̂yĴy + �22�̂y�Ĵy, Ĵx
2
 + �23�̂yĴy

3 + �31�̂zĴz + �32�̂z�Ĵz, Ĵx
2
 + �33�̂zĴz

3.

�13�
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This Hamiltonian is block diagonal and couples pairs of the

states with the same spin from the two principal exciton

bands �light and heavy holes�. Because of the simple struc-

ture of the Hamiltonian, its diagonalization is very simple

but the result has many terms which are not given here ex-

plicitly.

Besides the one-exciton contributions, the biexciton

Hamiltonian contains only hole-hole exchange terms because

electron-hole and electron-electron exchange terms are zero

matrices. This Hamiltonian has 25 terms and we give them in

the Appendix. The biexciton Hamiltonian couples all three

states with symmetry �1 while the other states are eigenstates

of the Hamiltonian.

IV. ZINC-BLENDE IN THE †111‡ DIRECTION

The point-group symmetry of such quantum wells is C3v
.

Electrons in the lowest conduction subband have wave func-

tions with symmetry �4 and the hole subbands have symme-

tries

��5: 	1 =
1
	2

�� 3

2 −
3

2� − i� 3

2 +
3

2�� ,

�6: 	2 = �i/	2��� 3

2 −
3

2� + i� 3

2 +
3

2�� ,
� heavy holes

�14���4: 	3 = � 3

2 −
1

2� ,

	4 = � 3

2 +
1

2� .
� light holes

The exciton wave functions then have symmetries �4

� �2�4 � �5 � �6�=�1 � �2 � 3�3. The symmetrized exciton

wave functions are

�1:�1
�z� =

1
	2

�	3� − 	4�� ,

�2:�2 = − �i/	2��	3� + 	4�� ,

�3:�3
�−� = 	3� ,

�4
�+� = 	4� ,

�15�

�5 =
1
	2

�i	1 − 	2�� ,

�6 =
1
	2

�	1 − i	2�� ,

�7
�−� =

1
	2

�	1 − i	2�� ,

�8
�+� =

1
	2

�i	1 − 	2�� ,

with 	1–4 defined by Eq. �14�. Wave functions with indices

1–4 refer to lh excitons and indices 5–8 to hh excitons. The

biexciton wave functions have symmetries 2�1 � 2�3:

�1:�1
BX =

1

2 ��5
A�6

B − �7
A�8

B + PAB� ,

�2
BX = −

1

2	3
��1

A�1
B + �2

A�2
B + 2�3

A�4
B + PAB� ,

�3:�3
BX = −

1

2	2
��1

A�5
B + i�2

A�5
B + 	2�4

A�8
B

+ PAB� ,

�16�
�4

BX =
1

2	2
�− �1

A�6
B + i�2

A�6
B + 	2�3

A�7
B + PAB� ,

�5
BX =

1

2	2
��1

A�7
B + i�2

A�7
B + 	2�4

A�6
B + PAB� ,

�6
BX = −

1

2	2
��1

A�8
B − i�2

A�8
B − 	2�3

A�5
B + PAB� .

The �1 biexcitons are again pure lh and hh states, respec-

tively. The others are mixed having holes from both sub-

bands. The �1 biexcitons can be reached by the usual two-

photon transition with photons which have opposite circular

polarizations or by two photons with parallel linear polariza-

tions. The biexcitons with indices 3 and 4 can be excited by

�+�+ and �−�− photons, respectively. The last two biexcitons

�5 and 6� do not couple to light field via two-photon transi-

tions.

The exciton Hamiltonian has only a constant contribu-

tion from an electron and the contribution from a hole can be

expressed by Eq. �6�. The electron-hole exchange term reads,

for this point-group symmetry,

Ĥe-h = �0Ie � Ih + �11��̂+Ĵ− + �̂−Ĵ+� + �12�̂zĴz + �21��̂+�Ĵ+, Ĵ−
2
 + �̂−�Ĵ−, Ĵ+

2
� + �22�̂zĴz
3 + �3��̂−�Ĵ+,�Ĵ+, Ĵ−



+ �̂+�Ĵ−,�Ĵ+, Ĵ−

� . �17�

We have introduced new operators Ĵ+= Ĵx+ iĴy, Ĵ−= Ĵx− iĴy,

�̂+= �̂x+ i�̂y, and �̂−= �̂x− i�̂y. Although it is possible to ana-

lytically diagonalize the above Hamiltonian, we think it has

no sense since the results would have too complex and in-

convenient structure.

The biexciton Hamiltonian, on the contrary to the �001�-
and �011�-oriented QWs, has nonzero contributions from the

electron-electron and electron-hole exchange terms so one

finds them together with all hole-hole exchange terms in the

Appendix �22 terms in total�. This Hamiltonian is diagonal in

the basis of symmetrized biexciton wave functions except for

the coupling of states 1 and 2 ��1 symmetry, pure lh and hh�.

V. WURTZITE IN THE †001‡ DIRECTION

This quantum well has the same point-group symmetry

C6v
as a bulk material. This point group is very similar to

that C3v
of the zinc-blende QWs grown in the �111� direc-

tion. We then expect similar results, in particular, for the
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structure of the Hamiltonian. Electron wave functions have

�7 symmetry and the hole wave functions have �7 �lh� and

�9 �hh�. The exciton wave functions have symmetries �7

� ��7 � �9�=�1 � �2 � 2�5 � �6:

�1:�1
�z� =

1
	2

��3� − �4�� ,

�2:�2 = �i/	2���3� + �4�� ,

�5:�3
�−� = �3� ,

�4
�+� = �4� ,

�18�
�5

�−� = �1� ,

�6
�+� = �2� ,

�6:�7 = �2� ,

�8 = �1� .

Similar to the C3v
point group, wave functions with indices

1–4 are appropriate for the lh excitons and wave functions

with indices 5–8 for the hh excitons. Only the excitons with

�5 symmetry are dipole active and they are coupled to cir-

cularly polarized light. The symmetrized biexciton wave

functions have the symmetries 2�1 � �5 � �6:

�1:�1
BX =

1

2 ��5
A�6

B + �7
A�8

B + PAB� ,

�2
BX = −

1

2	3
��1

A�1
B + �2

A�2
B + 2�3

A�4
B + PAB� ,

�5:�3
BX =

1

2	2
��1

A�5
B − i�2

A�5
B + 	2�4

A�8
B + PAB� ,

�19�
�4

BX = −
1

2	2
��1

A�6
B + i�2

A�6
B − 	2�3

A�7
B + PAB� ,

�6:�5
BX = −

1

2	2
��1

A�8
B + i�2

A�8
B − 	2�3

A�5
B + PAB� ,

�6
BX =

1

2	2
��1

A�7
B − i�2

A�7
B + 	2�4

A�6
B + PAB� .

The first two biexcitons are pure lh and hh with �1 symme-

try. The �5 biexcitons are not directly accessible by two-

photon absorption and the �6 biexcitons have �−�− and �+�+

orientations of dipoles, respectively �cf. the first two �3 biex-

citons in C3v
�.

Similar to C3v
, the electron Hamiltonian is a constant

and the hole Hamiltonian is expressed by �6�. The electron-

hole exchange term reads

Ĥe-h = �0Ie � Ih + �11��̂+Ĵ− + �̂−Ĵ+� + �12�̂zĴz + �21��̂+�Ĵ+, Ĵ−
2
 + �̂−�Ĵ−, Ĵ+

2
� + �22�̂zĴz
3 + i�3��̂+�Ĵz, Ĵ−
 − �̂−�Ĵz, Ĵ+
� . �20�

The imaginary unit preceding �3 on the last line follows

directly from tables of coupling coefficients.
12

It arises due to

the usage of the unusual anticommutators �Ĵz , Ĵ±
. One can

easily verify that the last term in the above formula is Her-

mitian and has the K+ symmetry with respect to the time

reversal.

The biexciton Hamiltonian for the C6v
point group has

nonzero contributions from all exchange terms. We give

them in the Appendix �22 terms in total�. The biexciton

Hamiltonian has two blocks, one is appropriate for the �1

biexcitons and the other for the �5 and �6 biexciton states.

VI. WURTZITE IN THE †011‡ AND †111‡
DIRECTIONS

The point group appropriate for such quantum wells is

CS. This point group has low symmetry and our results

would have too many terms. Additionally, it is not usual to

fabricate quantum wells from a material having the wurtzite

structure with other than the �001� growth direction of the

QW.

VII. DISCUSSION

In the preceding sections, we used the terms “symme-

trized wave functions,” “coherent spin flip,” and “coupling

of states” without their precise definition. These terms are

explained here and we show what consequences follow from

the above calculations.

The choice of an orthonormal basis of exciton wave

functions for calculations is arbitrary. The exciton and biex-

citon wave functions were, however, expressed considering

their symmetry with respect to the crystal lattice. The reason

is that the resulting Hamiltonian of the electron-hole ex-

change has a simple form. Since photons with wave vector

perpendicular to the QW plane have a well-defined symme-

try, the Hamiltonian of dipole interaction is also very simple

allowing exciton-photon coupling only to four states. This

fact may reasonably simplify discussions of the system’s dy-

namics after optical excitation.

One finds nondiagonal terms in the exciton Hamiltonians

derived above. These coupling terms are responsible for tran-

sitions from one spin state to another—they cause coherent

spin flip or spin beating. Note that this process is coherent

and does not mean any spin relaxation, the spin relaxes if the

phase of an exciton is perturbed by another process, e.g.,

scattering. The dynamics of an exciton after excitation by

polarized light can be viewed as periodical coherent changes

of its spin �spin flips� defined within the basis of symme-

trized wave functions.

Let us calculate the consequence of the coupling of two

states. Our aim here is to determine what is the mean popu-
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lation of some state coupled to a resonantly excited dipole-

active state. Let us assume the states �1� and �2� differ in the

energy by an amount � and their coupling strength is 
. The

Hamiltonian is then

Ĥ = 
 0 



* �
� , �21�

where the asterisk denotes complex conjugate. Let us assume

that the state �1� is coupled to light while the second state is

dipole inactive. The eigenenergies are then

E1,2 =
�

2
�1 ±	1 +

4�
�2

�2 �
� �

�

2
�1 ± 
1 +

2�
�2

�2 �� for �
� � �

�

2
± 
�
�2 +

�2

8�
�
� for �
� � � .� �22�

The first line on the right-hand side refers to the case of

coupling of two nondegenerate states �e.g., light- and heavy-

hole excitons in a narrow QW� and the eigenenergies can be

further estimated to be approximately � and −�
�2 /�, respec-

tively. The second line in the above formula then describes

coupling of nearly degenerate states ��→0� and the

eigenenergies can be estimated to be ±�
�. It is a simple al-

gebraic exercise to derive that the mean populations of the

states are

n̄1,2 =
�
�2

�
�2 + E2,1
2

. �23�

Assuming nondegenerate states and weak coupling, one gets

the mean population of the dipole-inactive level ��
 /��2,

for nearly degenerate states this population is � 1

2
. The latter

result is obvious: When the coupling strength exceeds the

energy difference between the states, we get the well-known

Rabi oscillations in a two-level system and therefore the

mean populations of the levels must be equal. The former

result can be explained using virtual transitions. A weak in-

teraction causes transition between the states. Due to energy

mismatch, this transition is only virtual and the system must

return to the initial state after a time given by the uncertainty

relation between energy and time. The time, for which the

exciton is allowed to be in the dipole-inactive state, is in-

versely proportional to the energy splitting of the states.

Probability of the virtual transition is directly proportional to

the coupling strengths and thus the result n̄2���
� /��2 is

what we expected.

In order to estimate which terms in the Hamiltonians are

the most important, one believes that the strongest contribu-

tions are due to the particle-particle exchange interactions of

the lowest order in the momentum operators. The strongest

contribution then comes from the crystal field, i.e., from the

splitting of the hole subbands. The second strongest contri-

butions come from electron-hole �electron-electron, hole-

hole� exchange interactions of the type �̂kĴ�, etc. The method

of invariants which was used above is well capable for the

derivation of the structure of the Hamiltonian, however,

other theories are needed for the evaluation of the coupling

strengths.

We performed numerical calculations in order to evalu-

ate the admixture of excited lh excitons when hh excitons are

resonantly excited. Based on the procedure described in Ref.

13, we varied the QW width and we calculated the variable

n1 defined in �23�. The results are shown in Fig. 1 for

Ga1−xAlxAs QWs considering x=30% and x=50%. The lh

exciton admixture is negligible for narrow wells, however, it

increases with increasing QW width and it asymptotically

reaches the value of 25% for bulk materials. It is then clear

that variation of the QW width may significantly modify the

behavior of the sample in magnetic fields because of differ-

ent g factors of lh and hh excitons. Phenomena connected

with the band mixing then may be observable in the Faraday

rotation experiments.

In all types of quantum wells under investigation, the

Hamiltonians are not diagonal in the basis of the symme-

trized wave functions. We have found using the bases of

symmetrized wave functions that coupling caused by

electron-hole exchange interaction always mixes heavy-hole

and light-hole excitons with the same spin. For example, in

the zinc-blende �001� QW, states with x polarizations are

coupled and they are not coupled to any other state. It is then

obvious that coupling preserves polarization. The strongest

interaction is always the electron-hole exchange of the low-

est order in the hole operators.

The zinc-blende �011� QW is the only exception from

the above statements. The lowest-order mixing comes from

the hole band structure �it is proportional to the constant c2 in

�12��. QW has the lowest symmetry of the examined struc-

tures and thus one does not expect, for example, conserva-

FIG. 1. Calculation of the admixture of excited lh excitons when a

Ga1−xAlxAs is optically excited resonantly with hh exciton, according to

�23�. We show the results for various QW widths on a short scale �a� and a

long scale �b�.
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tion of circular polarization because the eigenstates are non-

degenerate and linearly polarized. Symmetry considerations

show that there is a significant mixing between the two cir-

cularly polarized states: although it does not come from mix-

ing of the hole subbands, electron-hole interaction causes

mixing of the light-hole positively polarized exciton with

heavy-hole negatively polarized exciton and vice versa.

Based on the above derivation, we can estimate that

when exciting at the heavy-hole exciton resonance by polar-

ized light, the ratio of populations of the light- and heavy-

hole excitons with the same spin will be 3�11
2 /�lh

2 . The cou-

pling between states does not reveal as a strong effect.

Electron-hole exchange interaction in GaAs is of the order of

meV �Refs. 9 and 14� and light-hole/heavy-hole splitting of

10 meV, therefore the admixture of the light-hole excitons is

expected to be of the order of 1%. This amount may, how-

ever, influence measurements such as the Faraday rotation

since the g factors of holes from the two bands may differ. In

the �011�-oriented QW, selection rules for the polarization of

the FWM signal may be relaxed: In four-wave-mixing ex-

periments, response to two-beam excitation with opposite

circular polarizations is mostly forbidden. Due to the lack of

symmetry in the discussed particular case, excitons can

change their spin and thus we expect that the response under

the aforementioned conditions is no more forbidden.

Let us discuss now the biexciton levels. In FWM experi-

ments, one is interested in four-particle correlations since

they are responsible for polarization selection rules. These

correlations are induced mainly by exciton-exciton scattering

and biexciton formation. Using the symmetrized exciton

wave functions given above, full discussion of the scattering-

induced correlations is possible including biexciton forma-

tion which is strongly dependent on the QW symmetry as we

have shown above. It is, however, beyond the scope of this

paper.

According to Ref. 8, we have shown that for all QW

symmetries, biexcitons formed from two electrons and two

holes from the same band have �1 symmetry. However, since

we took into account also mixed biexcitons, we have found

wave functions which are generally dependent on the sym-

metry of the QW. We confirm that at least one of the mixed

biexcitons can be excited by two cocircularly polarized pho-

tons. In addition, our results show that there should be two

biexcitons with �+�+ two-photon selection rule and two

more which are not directly accessible by two-photon ab-

sorption. Knowledge of dipole selection rules for two-photon

excitation of biexcitons is, however, needed for correct dis-

cussion of the results of both pump-probe and FWM experi-

ments.

VIII. CONCLUSIONS

On the basis of the symmetry of a quantum well, we

calculate symmetry-adapted wave functions of excitons and

biexcitons. By the method of invariants, we also express the

Hamiltonians of the excitons and biexcitons and we are able

to extract energies of the eigenstates. The Hamiltonians con-

tain nondiagonal terms which are responsible for coherent

spin flip of excitons and biexcitons �mixing of wave func-

tions� leading to spin beating. These spin-flip processes are

induced by electron-hole exchange within an exciton and

mainly hole-hole exchange within a biexciton.

We compare the results for four different structures: QW

grown in the �001�, �011�, and �111� directions made from

material with zinc-blende structure and QW grown in the

�001� direction made from material with wurtzite structure.

We show that there are different spin-flip channels in those

QW. It was found that the spin is mostly conserved but there

is always coupling between the light-hole and heavy-hole

exciton band. Only in �011� quantum wells which have low

symmetry, one finds that circular polarization is not con-

served what may reveal as a strong effect in four-wave mix-

ing experiments. Based on the obtained results, one can de-

sign a proper setup of an experiment to detect, e.g., mixed

biexcitons using various methods like pump-probe or FWM

experiment.

We calculate numerically the amount of the admixture of

lh excitons when a Ga1−xAlxAs QW is excited resonantly

with the hh exciton. The results show a strong dependence of

the mixing on the QW width and therefore a strong depen-

dence of the spin dynamics in magnetic fields �due to the

difference of g factors of hh and lh excitons�.
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APPENDIX: BIEXCITON HAMILTONIAN

The lists below contain invariant expansion of the biex-

citon Hamiltonian. The number in parentheses in superscript

of an operator denotes a number of a particle which it acts

on.

�1� Td �001�
h-h exchange: Ĵ

x

�2�
Ĵ

x

�4�
+ Ĵ

y

�2�
Ĵ

y

�4�
,

Ĵz
�2�

Ĵz
�4�,

Ĵx
�2��Ĵx

�4�, Ĵy
�4�2

− Ĵz
�4�2


 + Ĵy
�2��Ĵy

�4�, Ĵx
�4�2

− Ĵz
�4�2


 + P24,

Ĵx
�2�

Ĵx
�4�3

+ Ĵy
�2�

Ĵy
�4�3

+ P24,

�Ĵx
�2�, Ĵz

�2�
 · �Ĵx
�4�, Ĵz

�4�
 + �Ĵy
�2�, Ĵz

�2�
 · �Ĵy
�4�, Ĵz

�4�
 ,

Ĵz
�2�

Ĵz
�4�3

+ P24,

Ĵz
�2�2

Ĵz
�4�2

,

�Ĵx
�2�2

− Ĵy
�2�2

��Ĵx
�4�2

− Ĵy
�4�2

� ,

�Ĵx
�2�, Ĵy

�2�
�Ĵx
�4�, Ĵy

�4�
 ,
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Ĵz
�2�3

Ĵz
�4�3

,

Ĵz
�2��Ĵx

�2�, Ĵy
�2�
 · Ĵz

�4��Ĵx
�4�, Ĵy

�4�
 ,

Ĵz
�2�2

�Ĵx
�2�, Ĵy

�2�
 · Ĵz
�4�2

�Ĵx
�4�, Ĵy

�4�
 ,

Ĵz
�2�2

�Ĵx
�2�, Ĵy

�2�
 · �Ĵx
�4�, Ĵy

�4�
 + P24,

�Ĵx
�2�, Ĵy

�2�2

− Ĵz
�2�2


 · �Ĵx
�4�2

, Ĵy
�4�2

− Ĵz
�4�2


 + �Ĵy
�2�, Ĵx

�2�2

− Ĵz
�2�2


 · �Ĵy
�4�, Ĵx

�4�2

− Ĵz
�4�2


 ,

Ĵx
�2�3

Ĵx
�4�3

+ Ĵy
�2�3

Ĵy
�4�3

,

Ĵx
�2�3

�Ĵx
�4�, Ĵy

�4�2

− Ĵz
�4�2


 + Ĵy
�2�3

�Ĵy
�4�, Ĵx

�4�2

− Ĵz
�4�2


 + P24.

�2� Td �011�
h-h exchange: Ĵ

x

�2�
Ĵ

x

�4�
,

Ĵy
�2�

Ĵy
�4�,

Ĵz
�2�

Ĵz
�4�,

�Ĵx
�2��Ĵx

�4�, Ĵy
�4�2



 + P24,

�Ĵy
�2��Ĵy

�4�, Ĵx
�4�2



 + P24,

�Ĵz
�2��Ĵz

�4�, Ĵx
�4�2



 + P24,

Ĵx
�2�

Ĵx
�4�3

+ P24,

Ĵy
�2�

Ĵy
�4�3

+ P24,

Ĵz
�2�

Ĵz
�4�3

+ P24,

�Ĵy
�2�, Ĵz

�2�
 · �Ĵy
�4�, Ĵz

�4�
 ,

�Ĵx
�2�, Ĵz

�2�
 · �Ĵx
�4�, Ĵz

�4�
 ,

�Ĵx
�2�, Ĵy

�2�
 · �Ĵx
�4�, Ĵy

�4�
 ,

Ĵx
�2�3

Ĵx
�4�3

,

Ĵy
�2�3

Ĵy
�4�3

,

Ĵz
�2�3

Ĵz
�4�3

,

�Ĵx
�2�, Ĵy

�2�2


 · �Ĵx
�4�, Ĵy

�4�2


 ,

�Ĵy
�2�, Ĵx

�2�2


 · �Ĵy
�4�, Ĵx

�4�2


 ,

�Ĵz
�2�, Ĵx

�2�2


 · �Ĵz
�4�, Ĵx

�4�2


 ,

�Ĵx
�2�3

�Ĵx
�4�, Ĵy

�4�2



 + P24,

�Ĵy
�2�3

�Ĵy
�4�, Ĵx

�4�2



 + P24,

�Ĵz
�2�3

�Ĵz
�4�, Ĵx

�4�2



 + P24,

Ĵx
�2�2

Ĵx
�4�2

,

Ĵz
�2�2

Ĵz
�4�2

,

Ĵx
�2�2

Ĵz
�4�2

+ P24,

�Ĵx
�2�,�Ĵy

�2�, Ĵz
�2�

�Ĵx

�4�,�Ĵy
�4�, Ĵz

�4�

 .

�3� Td �111�
e-e exchange: �̂

+

�1�
�̂

−

�3�
+ P13,

�̂z
�1��̂z

�3�.

h-h exchange: Ĵ
z

�2�
Ĵ

z

�4�
,

Ĵz
�2�

Ĵz
�4�3

+ P24,

Ĵz
�2�3

Ĵz
�4�3

+ P24,

Ĵ+
�2�Ĵ−

�4� + P24,

�Ĵ+
�2�,�Ĵ+

�4�, Ĵ−
�4�2



 + �Ĵ−
�2�,�Ĵ−

�4�, Ĵ+
�4�2



 + P24,

�Ĵ+
�2�, Ĵ−

�2�2


 · �Ĵ−
�4�, Ĵ+

�4�2


 + P24,

Ĵ+
�2�2

Ĵ−
�4�2

+ P24,

�Ĵz
�2�, Ĵ+

�2�2


 · �Ĵz
�4�, Ĵ−

�4�2


 + P24,

i�Ĵ+
�2�2

,�Ĵz
�4�, Ĵ−

�4�2



 − i�Ĵ−
�2�2

,�Ĵz
�4�, Ĵ+

�4�2



 + P24,

�Ĵ−
�2�3

− Ĵ+
�2�3

� · �Ĵ−
�4�3

− Ĵ+
�4�3

� ,

�Ĵ+
�2�, Ĵ−

�2�
 · �Ĵ+
�4�, Ĵ−

�4�
 ,

�Ĵ+
�2�3

+ Ĵ−
�2�3

� · �Ĵ+
�4�3

+ Ĵ−
�4�3

� ,

Ĵ+
�2��Ĵ−

�4�,�Ĵ+
�4�, Ĵ−

�4�

 + Ĵ−
�2��Ĵ+

�4�,�Ĵ+
�4�, Ĵ−

�4�

 + P24,

�Ĵ+
�2�, Ĵ−

�2�2


 · �Ĵ−
�4�,�Ĵ+

�4�, Ĵ−
�4�

 + �Ĵ−

�2�, Ĵ+
�2�2


 · �Ĵ+
�4�,�Ĵ+

�4�, Ĵ−
�4�



+ P24,

�Ĵ+
�2�,�Ĵ+

�2�, Ĵ−
�2�

 · �Ĵ−

�4�,�Ĵ+
�4�, Ĵ−

�4�

 + P24.

e-h exchange: ��̂
z

�1�
Ĵ

z

�2�
+ P13�+ P24,

��̂z
�1�

Ĵz
�2�3

+ P13� + P24,

��̂−
�1�Ĵ+

�2� + �̂+
�1�Ĵ−

�2� + P13� + P24,
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��̂−
�1��Ĵ−

�2�, Ĵ+
�2�2


 + �̂+
�1��Ĵ+

�2�, Ĵ−
�2�2


 + P13� + P24,

��̂+
�1��Ĵ−

�2�,�Ĵ+
�2�, Ĵ−

�2�

 + �̂−
�1��Ĵ+

�2�,�Ĵ+
�2�, Ĵ−

�2�

 + P13� + P24.

�4� C6v
�111�

e-e exchange: �̂
+

�1�
�̂

−

�3�
+ P13,

�̂z
�1��̂z

�3�.

h-h exchange: Ĵ
z

�2�
Ĵ

z

�4�
,

Ĵz
�2�2

Ĵz
�4�2

,

Ĵz
�2�3

Ĵz
�4�3

,

Ĵz
�2�

Ĵz
�4�3

+ P24,

�Ĵ+
�2�3

+ Ĵ−
�2�3

� · �Ĵ+
�4�3

+ Ĵ−
�4�3

� ,

�Ĵ+
�2�3

− Ĵ−
�2�3

� · �Ĵ+
�4�3

− Ĵ−
�4�3

� ,

Ĵ+
�2�Ĵ−

�4� + P24,

�Ĵ+
�2�,�Ĵ+

�4�, Ĵ−
�4�2



 + �Ĵ−
�2�,�Ĵ−

�4�, Ĵ+
�4�2



 + P24,

i��Ĵ+
�2�,�Ĵz

�4�, Ĵ−
�4�

 − �Ĵ−

�2�,�Ĵz
�4�, Ĵ+

�4�

� + P24,

�Ĵ+
�2�, Ĵ−

�2�2


 · �Ĵ−
�4�, Ĵ+

�4�2


 + P24,

i���Ĵ+
�2�, Ĵ−

�2�2


,�Ĵz
�4�, Ĵ+

�4�

 − ��Ĵ−
�2�, Ĵ+

�2�2


,�Ĵz
�4�, Ĵ−

�4�

� + P24,

�Ĵz
�2�, Ĵ−

�2�
 · �Ĵz
�4�, Ĵ+

�4�
 + P24,

Ĵ+
�2�2

Ĵ−
�4�2

+ P24,

�Ĵz
�2�, Ĵ+

�2�2


 · �Ĵz
�4�, Ĵ−

�4�2


 + P24,

i��Ĵ+
�2�2

,�Ĵz
�4�, Ĵ−

�4�2



 − �Ĵ−
�2�2

,�Ĵz
�4�, Ĵ+

�4�2



� + P24.

e-h exchange: ��̂
z

�1�
Ĵ

z

�2�
+ P13�+ P24,

��̂z
�1�

Ĵz
�2�3

+ P13� + P24,

��̂+
�1�Ĵ−

�2� + �̂−
�1�Ĵ+

�2� + P13� + P24,

��̂+
�1��Ĵ+

�2�, Ĵ−
�2�2


 + �̂−
�1��Ĵ−

�2�, Ĵ+
�2�2


 + P13� + P24,

i��̂+
�1��Ĵz

�2�, Ĵ−
�2�
 − �̂−

�1��Ĵz
�2�, Ĵ+

�2�
 + P13� + P24.
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to include the correct symmetry of the crystal and

symmetry-breaking effects. A Weakly Interacting Boson

Model (WIBM) [24–26] is one of these microscopic theories

and it significantly simplifies the situation by an assump-

tion that excitons are bosons with only fractional fermion

character which leads to Pauli blocking (PB).

In this paper, we propose a simple model for calculation

of the polarization state of the FWM response from a

semiconductor. Similarly, a model calculation of the FWM

response can be found in Ref. [21] and that of a six-wave

mixing evidencing the six-particle Coulomb correlation in

Ref. [27]. These theoretical considerations are based on a

microscopic description of quantum wells (QWs) in the

frame of a two-band model and demonstrate the impor-

tance of high-order Coulomb correlations. Our model,

which is based mainly on symmetry considerations, takes

into account more complicated band structure effects in a

general way. The model is able to state whether the

polarization of the response is stationary or not if we know

the polarization states of three incoming pulses. If the

polarization of the FWM signal is stationary, the model is

able to predict its state. Although we present dependence of

the polarization of the FWM response on the polarizations

of the excitation beams for a particular case of a bulk

hexagonal crystal in Tables 3–6, the general result is

represented by Eqs. (19)–(21). The model is then adapted

for the systems of various symmetries, where e.g. dipole-

forbidden excitonic states contribute to the FWM re-

sponse.

The model takes into account the strong exciton–photon

coupling, therefore we assume polaritons as the elementary

excitations of a crystal. This allows us to describe the

system without using a perturbation theoretical approach

and to determine the optical response to the excitating

optical fields at any arbitrary photon energy: this means

one can equally well work close to resonance or off

resonance.

2. Model

The requirements on our model are the following: it

should give correct predictions of the polarization state of

the FWM signal in any arbitrary FWM direction if we

assume a weak excitation of an intrinsic crystal by three

optical pulses. The polarization states of the excitation

pulses are arbitrary as well as their respective time delays.

We do not require prediction of the dynamics of the

polarization of the FWM signal. The model therefore

states if the polarization of the FWM signal is either non-

stationary or stationary (and gives then the stationary

polarization prediction). The model should be as simple as

possible but must take into account symmetry properties of

the system under investigation (crystal symmetry plus

stationary external fields).

In this work we follow the concept of the WIBM [24,26]

which uses a simplified approach to the interacting

electron–hole system when compared to a rigorous

formulation. According to the WIBM model and Refs.

[28–30], we describe electron–hole pairs as bosons (ex-

citons) with a fractional Fermi character. Every boson

denoted by its spin number and wave vector interacts

weakly with other bosons. The state of a crystal is then

either a vacuum state or an m-boson state. The vacuum

state means that no bosons are excited, the m-boson state

corresponds to m excited bosons. Following Bott et al. [8]

we assign an energetical level to every m-boson state and

the wave function of this state is given by a direct product

of the wave functions of the excited bosons. It has been

shown that the third-order FWM response is due to m-

particle states of m up to two. Therefore, in the following

text, we truncate the system of levels above the two-particle

states.

Excitons are created by absorption of a photon. The

fermionic nature of excitons reveals in PB and exciton–ex-

citon scattering. It is possible to create two excitons with

identical quantum numbers but they interact repulsively

and thus the oscillator strength for the creation of the

second exciton is decreased (in particular, in QWs). The

exciton–exciton scattering is described as an interaction of

two electron–hole pairs and we keep the possibility of

exchange of either electrons or holes between the interact-

ing excitons [21], what is beyond the bosonic approxima-

tion of excitons. Exchange of fermions leads to a change of

the exciton momenta and also of the spin state. Since

dipole active excitons interact strongly with the optical

field, one should rather consider polaritons than excitons

as elementary excitations of the crystal. Then, consistently,

molecules of excitons will be described in terms of Ivanov’s

model of bipolaritons [31,32]. We denote the ‘‘two-

polariton states’’ as to be states from a continuum

composed of two polaritons with well-defined particular

wave vectors in the following. The ‘‘bipolariton states’’ are

then the discrete bound states of two polaritons.

The interactions involved in the model are following:

� Creation of a polariton on the crystal boundary by

absorption of one photon coming from the outside of

the crystal.

� Annihilation of a polariton at the crystal boundary; the

energy is transferred to an outgoing photon.

� PB due to the fractional Fermi character of polaritons.

� Polariton–polariton scattering involving the excitonic

part of the polariton wave function.

We assume here that the interaction with all external fields

is already included in the basis of polariton wave

functions—we assume that this basis diagonalizes the

Hamiltonian in the absence of non-stationary fields. We

furthermore assume that the interaction with impurities,

phonons, etc. causes loss of coherence and does not affect

the polarization state of the FWM signal. In the following,

we develop a mathematical description of the polariton

spin state in the framework of the assumptions listed

above.
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2.1. Polariton spin and creation

In order to minimize the complexity of discussion of the

spin of excitons, we neglect wave vector-dependent

exchange interactions [33]. This is possible if one assumes

a semiconductor with a direct gap at the G point and that

the wave vectors of the excitons are sufficiently small.

Then, the excitonic spin state is determined by the spin of

an electron from a conduction band (we assume it is M

times degenerate at the G point) and the spin of a hole from

a valence band (N times degenerate at the G point).

Excitons can thus be in M �N different spin states.

Following Refs. [33,34], we calculate symmetrized wave

functions of excitons at the G point. We express the

excitonic Hamiltonian in this basis including external

stationary fields. We then diagonalize the Hamiltonian

and find a new set of basis functions jaji, j ¼ 1; . . . ;M �N.

Because of the strong dipole interaction, some of the

excitons interact with photons giving rise to polaritons

which conserve the spin of the exciton contained by the

polariton wave function. We will use a short notation for

these polariton wave functions jajki, j ¼ 1; . . . ;M �N,

characterized by the wave vector k.

Concerning an infinite crystal, polaritons are the

eigenstates of the Hamiltonian describing an excited

electron–hole system. Real crystals are, however, limited

in space and thus polaritons couple to an external

electromagnetic field—an ‘‘external’’ photon can be anni-

hilated while a polariton is created and vice versa. Strength

of coupling between the electromagnetic field and a final

state can be expressed as

f ðk0;kÞ ¼ mSEk0hSjeid½k� qLPBðnk0Þ�, (1)

where k0 and k are the wave vectors of the external

electromagnetic field and a polariton, respectively, Ek0 is

the amplitude of an external electromagnetic field, e and

jSi are the spin vectors of the electromagnetic field and the

polariton, respectively, d is a delta function, mS is the dipole

matrix element for the polariton with the spin S, qLPBðnk0Þ
is the wave vector of a polariton associated with the

appropriate photon wave vector [35] and n is the refractive

index connected with the background dielectric constant of

the crystal. We assume for clarity that the system is not

excited above the fundamental excitonic resonance allow-

ing excitation of the lower polariton branch only.

2.2. Pauli blocking

PB due to the fractional Fermi character of polaritons

and Coulomb scattering [13–15,36] are the main interac-

tions giving rise to FWM, and we describe them separately.

All other interactions are assumed to be too weak in order

to change the polarization state of the FWM signal. They

may be described by spin-independent relaxation times in a

dynamical model. In this subsection, we describe our

approach to the description of PB.

According to the WIBM model, we describe PB by

assuming changes of the strength of coupling between the

electromagnetic field and a two-polariton state compared

to the strength of coupling between the field and a one-

polariton state (1). In order to estimate its strength, we

approximate the dipole matrix elements for transitions

from a one-polariton state with spin S and wave vector K

to a two-polariton state with a new polariton having the

spin S0 and the wave vector k by a photon with the wave

vector k0 and the spin e by the formula:

f ð2Þðk0;kÞ � mS0Ekd½k� qLPBðnk0Þ�

� hS0jei � n
X

j

jhSjejij2hS0jeji
" #

, ð2Þ

where n40 is a coefficient of the blocking, summation in

the last term goes over all orthonormal elements of the

polariton spin basis. The last term ½hS0jei � n
P

j jhSjejij2
hS0jeji� can be directly calculated from the Hamiltonian

given in Ref. [25] (volume normalization is included in n).

2.3. Polariton–polariton Coulomb scattering

Scattering of two polaritons is determined by the

Coulomb interaction (both direct and exchange) of their

excitonic parts. At this point, the excitons must be

decomposed into fermions—to the electron–hole pairs.

Coulomb interaction of two excitons then must be under-

stood as the interaction of four fermions. There are two

possibilities of the elastic scattering process:

ðe1; h1Þk1 þ ðe2; h2Þk2 ! ðe1; h1Þk1þq þ ðe2; h2Þk2�q, (3)

ðe1; h1Þk1 þ ðe2; h2Þk2 ! ðe1; h2Þk1þq þ ðe2; h1Þk2�q, (4)

where the parentheses denote excitons with appropriate

wave vectors in the subscripts and letters ei and hj denote

an electron from the ith exciton and a hole from the jth

exciton, respectively. The vector q is the exchanged

momentum. Interaction (3) is the interaction of two bosons

which change their momenta but their spins are conserved.

Interaction (4) takes explicitly the composite character of

the interacting bosons into account: two incoming excitons

exchange either electrons or holes. Simultaneously with the

exchange of fermions, they exchange momentum and spin.

The exchange of fermions is therefore able to change the

spin state of the contributing bosons.

There are three types of exciton–exciton interactions:

[37]: boson–boson direct scattering, boson–boson exchange

and exchange of fermions. It was shown in Ref. [30] that

the exchange of fermions is the dominant interaction in the

limit of the small wave vectors kj and small exchanged

momentum q. We therefore assume in the following that

only the exchange of fermions is an effective polariton–po-

lariton scattering process unless it is forbidden—in such

case, boson–boson direct scattering must be taken into

account.
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The Hamiltonian for fermion exchange has the form [37]

H
SfS

0
f

SS0 ¼ S
e
exchðSf ;S

0
f ;S;S

0ÞHe
exchðQ;Q0; qÞ

þS
h
exchðSf ;S

0
f ;S;S

0ÞHh
exchðQ;Q0; qÞ, ð5Þ

S
e
exchðSf ;S

0
f ;S;S

0Þ ¼
X

ses0e

X

jhj
0
h

hse; jhjSihs0e; j0hjS0i

�hSf js0ejhihS0
f jse; j0hi, ð6Þ

S
h
exchðSf ;S

0
f ;S;S

0Þ ¼ S
e
exchðSf ;S

0
f ;S

0;SÞ . (7)

The sums are performed over the spin states of electrons

(se, s0e) and holes (jh, j0h). The variables S;S0 and Sf ;S
0
f

denote the initial and the final spin states of the incoming

and the outgoing excitons, respectively. Functions S
e;h
exch

stand for the spin-dependent part of the Hamiltonian while

the operators He;h
exch describe the wave vector-dependent

part of the Hamiltonian: Q and Q0 are the wave vectors of
the incoming excitons and q is the exchanged momentum.

We show results of calculations of the spin part of the

exchange of electrons in Tables 1 and 2 for crystals with

wurtzite structure (the spin basis is defined in Ref. [34]). We

show for clarity only results for dipole active excitons even

though dipole inactive states must be, in addition,

considered throughout all calculations in the model. We

consider linear polarization for the incoming and the

outgoing polaritons with combinations of spins ‘‘X’’ and

‘‘Y’’ (Table 1) or circular polarization with combinations

of spins ‘‘þ’’ ¼ ðX þ iY Þ=
ffiffiffi

2
p

and ‘‘�’’¼ ðX � iY Þ=
ffiffiffi

2
p

(Table 2).

In order to describe correctly Coulomb scattering from

an initial to a final state, one has to clearly distinguish

different scattering channels. Depending on the number of

scattering events, one should discriminate between direct

scattering from the initial to the final state and multiple-

step processes which include one or more intermediate

(two-polariton) states. Outside the bipolariton resonance,

direct scattering is the most important since we assumed

only a weak exciton–exciton interaction. The situation

differs when assuming both the initial and final states

resonant with the bipolariton where the Coulomb interac-

tion causes strong coupling and leads to bipolariton-

mediated scattering. Such processes will be described using

the bipolariton model [31,32, Hamiltonian (3.4) therein].

2.4. FWM signal creation

In order to discuss the FWM signal creation in the

framework of our model, we assume highly directional

excitation pulses with wave vectors k01, k02, k03 and

polarizations f1, f2 and f3, respectively, arriving at the

crystal’s surface at times t1ot2ot3. Although we are going

to build up only an algebraic formalism to study the

polarization of the FWM signal (but not its dynamics), we

need the density matrix formalism in order to explain the

mechanism of the generation of the signal. Then we can

determine which coherences are non-zero after the excita-

tion. Coherences are given as usual by the non-diagonal

elements of the density matrix and populations as the

diagonal elements. We use the notation Rðjai; jbiÞ for a

slowly varying envelope of the coherence between the states

jai and jbi.
We have defined above the system of levels which is

capable for description of any arbitrary state of the

polaritons inside a crystal. This definition is in full

agreement with the usual procedure [8]. In order to

describe the bipolariton-mediated scattering, it is necessary

to include the bipolariton state which is a superposition of

the two-polariton states. It has, on the contrary to general

two-polariton states, a well-defined symmetry.

Now we discuss the evolution of the coherences

connected with the excitation pulses. Before any of the

pulses arive, the crystal is in the ground state and all

coherences are zero. After the impact of the first pulse,

correlations between the ground state and the states with

the wave vectors around k1 ¼ qLPBðnk01Þ are excited. We

have to consider selection rules for spin:

Rðjajk1i; j0iÞ /
i

_
majEk01

hajjf1i. (8)

The action of the second pulse is more complicated—it

creates two types of coherences: one between the ground

state and the two-polariton states and the second (called

the ‘‘spin coherence’’) between two one-polariton states.

The PB affects only the first mentioned coherence and we

can write

Rðjajk1ija‘k2i; j0iÞ / �
majma‘

_
2

Ek01
Ek02

hajjf1iha‘jf2i

�ð1� nha‘jajiÞ, ð9Þ

ARTICLE IN PRESS

Table 2

Same as Table 1 for circular spins of the polaritons

hSfS
0
f jSe

exchjSS0i j þ þi j þ �i j � þi j � �i

hþ þ j 1 0 0 0

hþ � j 0 0 0 0

h� þ j 0 0 0 0

h� � j 0 0 0 1

Table 1

The spin part of the electron exchange between two polaritons, from Eq.

(6) for spins in the direction of the principal axes

hSfS
0
f jSe

exchjSS0i jXX i jXY i jYXi jYYi

hXX j 1
2

0 0 � 1
2

hXY j 0 1
2

1
2

0

hYX j 0 1
2

1
2

0

hYY j � 1
2

0 0 1
2

The rows stand for the initial states and the columns for the final states.
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Rðjajk1i; ja‘k2iÞ /
majm

�
a‘

_
2

Ek01
E
�
k02
hajjf1ihf2ja‘i. (10)

On the level of two-polariton states, polaritons can interact

via Coulomb interaction and can scatter to other two-

polariton states. The spin coherences correlate only one-

polariton states which do not undergo any changes except

dephasing. The polariton–polariton interaction causes (as a

first-order perturbation) creation of coherences:

Rðjajk1 þ qija‘k2 � qi; j0iÞ
/ Sðaj ; a‘; am; anÞRðjamk1ijank2i; j0iÞ, ð11Þ

Rðjajk1 þ qija‘k2 � qi; jaok3iÞ
/ Sðaj ; a‘; am; anÞRðjamk1ijank2i; jaok3iÞ, ð12Þ

i.e. the initial two-polariton state with appropriate wave

vectors and spins scatters to a different two-polariton state

by fermion exchange. The polaritons exchange some

momentum and in general, they can change their spins.

The polariton–polariton interaction should be evaluated

up to an infinite order but according to the above

discussion of polariton–polariton scattering, we use the

first-order perturbation theory (where interaction of the

bosonized polaritons is the perturbation) for metastable

scattering states (which are not resonant with bipolaritons)

because we assume only weak polariton–polariton interac-

tions. For the two-polariton states resonant with a

bipolariton state, we consider the bipolariton-mediated

scattering in addition to the first-order process:

RðjGsk1 þ k2i; j0iÞ
/ Mðaj ; a‘;GsÞRðjajk1ija‘k2i; j0iÞ, ð13Þ

Rðjamk1 þ qijank2 � qi; j0iÞ
/ M

�ðam; an;GsÞRðjGsk1 þ k2i; j0iÞ, ð14Þ

where jGsKi denotes the bipolariton state with a symmetry

Gs and a wave vector K and Mðaj ; a‘;GsÞ stands for the

coupling coefficient between the bipolariton with the sym-

metry Gs and the two-polariton state where the polaritons

have spins aj;‘. The coupling coefficient reflects the spin

structure of the bipolariton [33]. We note that the usage

of the bipolariton model does not make any difference in

the selection rules for the bipolariton creation when

compared to the more traditional giant oscillator strength

model.

Coulomb scattering causes creation of two-polariton

states with a very big spread of the individual wave vectors.

These states decay radiatively and contribute to a

luminescence signal. The highly directional third pulse

can cause induced decay of one polariton from the two-

polariton state and because of wave vector conservation, a

one-polariton state with the wave vector kD ¼ k1 þ k2 � k3
is left in the crystal. Finally, this polariton is radiated as the

FWM signal. The third pulse can also form a two-polariton

state with a polariton with the wave vector k1 and because

of the previous correlation to the state with the wave vector

k2, a scattered two-polariton state jb1k2ijb2k1 � k2 þ k3i is
forced to decay to the one-polariton state jb2k1 � k2 þ k3i
and the FWM signal in the direction k1 � k2 þ k3 is

emitted from the crystal. The initial coherence

Rðjajk1i; ja‘k2iÞ also allows creation of the signal in the

direction �k1 þ k2 þ k3. The coherences responsible for

the FWM signal are thus Rðjajk1ija‘k2i; jamk3iÞ with

cyclic permutation of the indices j; ‘;m and 1; 2; 3. We

can express

RðjajkDija‘k3i; jamk3iÞ
/ m�amE

�
k03
hf3jamiRðjajkDija‘k3i; j0iÞ

þSðaj ; a‘; an; aoÞRðjank1ijaok2i; jamk3iÞ. ð15Þ

The coupling of the radiated FWM signal with the spin f

to the above coherence is then

m�aj hfjajihamja‘iRðjajkDija‘k3i; jamk3iÞ. (16)

Because of possibility of permutation of indices in the

above formulas, the polarization of the FWM signal

induced by Coulomb scattering is independent of the order

of the pulses in time but leads to different directions of

diffraction.

The signal induced by the PB is now calculated

separately. The origin of the signal is in a diffraction of

one of the pulses by a population grating created by the

two other pulses. On the contrary to atomic systems and

OBE, the probability of transition to two-polariton states is

non-zero but its strength is reduced (2) compared to

transitions to one-polariton states.

Let us discuss, as an example, the mechanism of this

contribution to wave mixing in the direction k1 � k2 þ k3.

The first pulse creates polarization with spin f1. The

second pulse creates population grating (of one-polariton

states) if hf1jf2ia0 with the spin

jfGi ¼
X

j

jajihajjf1ihf2jaji. (17)

The last pulse then correlates the one-polariton states with

the ground and the two-polariton states. In the case of

hfGjf3ia0, some of the induced coherences have the wave

vector in the FWM direction k1 � k2 þ k3 and the

amplitude of the FWM signal is then proportional to the

sum of the appropriate coherences. Due to the fractional

Fermi character of polaritons, the sum is non-zero and it

can be shown that the third-order response spin state of the

diffracted polariton is given by

jci ¼
X

j

jajihajjf1ihf2jajihajjf3i (18)

and for the other directions by the cyclic permutation of

indices. Independent of the value of the parameter n, for

t1ot2ot3 and no temporal overlap of the excitation pulses,

the response is zero in the direction kD ¼ k1 þ k2 � k3
since two contributions of the same magnitude cancel each

other.
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2.5. Calculation of the spin

We separate the problem into four subproblems: the

Coulomb scattering channel (direct and exchange part),

the bipolariton channel and the PB channel. We calculate

the polarization state of all four contributions to the FWM

response and finally compare them. If the signals are non-

zero and are not in the same spin state, the conclusion is

that the spin state of the FWM response is not stationary

and labelled ‘‘determined by dynamics’’ (dbd.) similar to

Ref. [18].

As we have seen in the previous discussion, we use a

closed set of wave vectors in order to describe all

coherences which contribute in creation of the third-order

FWM signal. We then restrict ourselves only to the wave

vectors given by the wave vectors of the excitation beams

and the diffracted beams in the FWM direction. Every

beam is then assumed to be represented by a plane wave—

this simplification does not change predictions of the spin

of the FWM signal.

Let us consider the exciton spin basis jaji which

diagonalizes the exciton Hamiltonian including external

fields and various types of exchange interactions and also

let us consider the polarization of the ‘th optical field to be

f‘. At the G point of the reciprocal lattice, there are (in the

absence of external fields) well-resolved dipole-active and

dipole-inactive states, respectively. Including wave vector-

dependent exchange interaction and external fields, the

eigenstates of the Hamiltonian are the admixtures of the

states at the G point and therefore all exciton states can

become dipole-active and therefore their contribution is

included in the model. Then we define jf‘k‘i to be the

superposition of the spin eigenstates which is excited by the

‘th optical field. We can then draw a level scheme depicted

in Fig. 1 which represents the interactions leading to the

FWM signal creation via the scattering process. With the

help of Fig. 1 and Eq. (18), we can derive equations for

determination of the FWM polarization in a compact form

(it can be shown that these equations are equivalent to Eqs.

(13)–(16) and (18)):

jcDkDi ¼ PkD

X

j

Sðaj ;f3;f1;f2ÞjajkDi

for the first�order polariton2polariton scattering, ð19Þ

jcBkDi ¼ PkD

X

j

Mðf1;f2;GsÞM�ðaj ;f3;GsÞjajkDi

for the bipolariton�mediated scattering

ðresonant with the bipolariton GsÞ, ð20Þ

jcFkDi ¼ PkD

X

j

hajjf1ihajjf2ihf3jajijajkDi

for the PB, ð21Þ
Pq is the projection operator of the (polariton) spin to the

spin states of a photon propagating in the direction q. We

get the stationary response only when the allowed states

jakDi and states in the superpositions jf‘k‘i have equal

energies and when all three spins given by the formulas

(19)–(21) are equal. For other than kD diffraction

direction, we find the appropriate formulas by permutation

of indices.

3. Discussion

As we have shown in the previous section, the polariza-

tion state of the FWM response is given by contributions

from three different processes: polariton–polariton scatter-

ing, bipolariton-mediated scattering and phase space

filling. As an example, we calculate polarizations of all

contributions to the FWM signal for an isotropic crystal

with a bipolariton having G1 symmetry. We assume that all

excitation optical fields propagate almost in the same

direction. This example corresponds to a bulk hexagonal

crystal with wurtzite structure (ZnO, CdS, CdSe, GaN)

when the optical beams are parallel to the main axis and we

spectrally resolve only the FWM response from one of

three excitonic series.

The results are summarized in Tables 3–6. We list results

for all combinations of circular and linear polarizations of

the incoming beams and for all three diffraction directions.

We give spins of particular channels in the tables and also

the spin of the overall response. The meaning of the symbol

‘‘dbd.’’ is that the state and dynamics of the resulting spin

of the FWM response depends on material constants and

cannot be determined from symmetry considerations alone.

Table 3 presents calculated polarizations of the FWM

response for three linearly polarized excitation pulses.

Spins of FWM responses for one circularly and two

linearly polarized incoming pulses are listed in Table 4, two

circularly and one linearly polarized pulse give the response

summarized in Table 5 and Table 6 stands for three

circularly polarized excitation pulses. Every cell in the

tables is appropriate for some combination of polarizations

ARTICLE IN PRESS

Fig. 1. Level scheme appropriate for the scattering and bipolariton

channels if the incoming pulses are coupled to polaritons with spins fj .

The full lines represent dipole interactions, dashed lines bipolariton

formation and annihilation and dotted line stands for polariton–polariton

off-resonant scattering path.

T. Ostatnický et al. / Journal of Luminescence 126 (2007) 94–102 99



of the excitation pulses (rows) and diffraction direction

(columns). The symbols in boxes stand for (from left and

top) the polarization coming from the polariton–polariton

scattering channel, G1 bipolariton, PB and the overall

response. Symbols s� denote circular polarizations, X 0

some arbitrary linear polarization and Y 0 linear polariza-

tion perpendicular to X 0. The present model is capable to

predict polarizations of the particular channels but gives no

information about the relative strengths of the responses.

We can, however, state that the response is determined

mainly by the exciton–exciton scatterings (without bipolar-

itons) and PB when working in resonance with excitons or

by the bipolariton channel when bipolaritons are reso-

nantly excited.

Tables 3 and 6 (linear and circular polarizations of the

excitation beams, respectively) do not contain any dbd.

terms due to the symmetry of the considered crystal.

However, in an experimental situation in which one uses

linear polarizations which are not perpendicular one to the

other, responses of the particular channels may have

different polarizations resulting in a non-stationary polar-

ization of the overall response as shown experimentally in

Refs. [1,11].

Looking at the other tables appropriate for mixed

circular and linear polarizations, Tables 4 and 5, we may

observe many dbd. terms caused mainly by polariton–po-

lariton scattering. The reason is that the response of the

direct and exchange scattering have different polarizations

and the overall polarization cannot be evaluated using only

symmetry considerations since the ratio of the strengths of

the direct and exchange scatterings are crystal-dependent.

The tables of results reveal one very interesting fact:

concerning the combination of polarizations XXY and the

diffraction direction k1 þ k2 � k3, one expects Y-polarized

stationary signal. Contrary, for the sþsþs� excitation, we

expect no response in the selected direction. These

expectations are in full agreement with the experimental

results [12] but they were not sufficiently discussed using

OBE. Our model, on the other hand, explains them in a

ARTICLE IN PRESS

Table 3

Polarization of the FWM signal for three linearly polarized excitation

pulses

k1 k2 k3 k1+k2+k3 k1 k2+k3 k1+k2 k3

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

X
′

Y
′

Y
′

0 Y
′

0 Y
′

Y
′

0 Y
′

0 Y
′

0 Y
′

X
′

Y
′

Y
′

X
′

X
′

X
′

0 X
′

0

0 X
′

0 X
′

0 X
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

Y
′

− − −

The meaning of the letters in each box is following: the upper left corner is

the response of the scattering channel, the upper right corner is the

response from the bipolariton channel, the lower left corner is the response

from the Pauli blocking and the lower right corner gives the overall

polarization.

Table 4

Polarization of the FWM signal for two linearly polarized and one

circularly polarized excitation pulses

k1 k2 k3 − k1+k2+k3 k1− k2+k3 k1+k2− k3

X
′

X
′

�
+

dbd. X
′

dbd. X
′

dbd. �
−

X
′

dbd. X
′

dbd. X
′

dbd.

X
′

Y
′

�
+

dbd. X
′

dbd. Y
′

�
+

0

0 dbd. 0 dbd. 0 �
+

Y
′

X
′

�
+

dbd. Y
′

dbd. X
′

�
+

0

0 dbd. 0 dbd. 0 �
+

Y
′

Y
′

�
+

dbd. Y
′

dbd. Y
′

dbd. �
−

Y
′

dbd. Y
′

dbd. Y
′

dbd.

Table 5

Polarization of the FWM response for two circularly and one linearly

polarized excitation pulse

k1 k2 k3 − k1+k2+k3 k1− k2+k3 k1+k2 −k3

�
+

�
+

X
′

dbd. �− dbd. �
−

�
+

0

�
+

dbd. �
+

dbd. �
+

�
+

�
+

�
− X

′
�

−

�
−

�
+

�
+

dbd. X
′

0 �
− 0 �

+
0 dbd.

�
−

�
+

X
′

�
+

�
+

�
−

�
− dbd. X

′

0 �
+

0 �
− 0 dbd.

�
−

�
− X

′
dbd. �

+
dbd. �

+
�

− 0

�
− dbd. �

− dbd. �
−

�
−

Table 6

Polarization of the FWM response for three circularly polarized pulses

k1 k2 k3 − k1+k2+k3 k1− k2+k3 k1+k2 −k3

�
+

�
+

�
+

�
+

0 �
+

0 �
+

0

�
+

�
+

�
+

�
+

�
+

�
+

�
+

�
+

�
−

�
−

�
−

�
−

�
− 0 0

0 �
− 0 �

− 0 0

�
+

�
−

�
− 0 0 0 �

+
0 �

+

0 0 0 �
+

�
+

�
+

�
−

�
−

�
−

�
− 0 �

− 0 �
− 0

�
−

�
−

�
−

�
−

�
−

�
−
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straightforward way. Let us assume a two-polariton state

composed of polaritons with spins XX or sþsþ. Using

Tables 1 and 2 we find that the former can scatter to a two-

polariton pair with spins YY while the latter cannot scatter

to any two-polariton state where both spins are dipole-

allowed (except sþsþ). Thus, the former can be annihilated

by a Y-polarized photon giving the Y response while the

latter cannot be annihilated by a s�-polarized photon and

gives no response in the presented configuration. As the

crucial point of the wave mixing lies in the polariton–

polariton scattering, the spin mixing is due to exchange of

fermions during this process. The composite character of

the polaritons cannot be thus omitted in any model which

deals with the spins of particles.

Our theory may be applied also to crystals with zinc-

blende structure (GaAs, CuBr). FWM polarizations,

summarized in Tables 3–6, are valid also for these crystals

except for the bipolariton response. Besides the G1

bipolariton, there are five more bipolariton states with

symmetries G3;5 [33] which significantly modify the

evaluated polarizations. Bipolaritons with symmetries G3;5

cause, for example, scattering from the two-polariton state

sþsþ to s�s� and thus the combination sþsþs� gives the

s� response in the forbidden direction k1 þ k2 � k3. The

resonant energy of the response then would coincide with

the energy of the G3;5 bipolaritons.

Since we did not verify our results experimentally and we

did not find any relevant experimental study, we use the

existing theory of Lindberg et al. [18] (calculation based on

SBE) in order to demonstrate the accuracy of our model.

We take our data for the FWM direction k1 þ k2 � k3 and

the contribution from the polariton–polariton scattering

from Tables 3–6. The predicted polarizations agree in all

cases with only one exception: combination of incoming

fields X 0Y 0sþ. Our model predicts a definite and stationary

polarization whereas the microscopic model predicts dbd.

in this case. We may explain this discrepancy by the fact

that we consider k1 � k2 � k3 in our tables and therefore

the exchanged momentum in the scattering process is

q � 0. In a general case, exchanged momentum would play

some role in Tables 1 and 2 and would modify FWM

polarizations. In particular, the response to the X 0Y 0sþ

excitation would be dbd. but the other elements remain

unchanged.

We did not discuss so far to which structures the theory

is applicable. The major question is the dimensionality of

the crystal since the recent research is focused mainly on

low-dimensional structures. Besides the PB effect which is

dimension-independent, the wave mixing is due to polar-

iton–polariton scattering during which the sum of the wave

vectors of interacting particles is conserved. This wave

vector conservation is valid for all components of wave

vectors in bulk crystals but only for in-plane wave vectors

in QWs. In addition to the wave vector conservation,

scattering conserves energy. We can therefore approxi-

mately assume that all components of wave vector are

conserved during scattering involving also QWs but not

quantum wires and quantum dots. The theory may thus be

applied to bulk crystals and QWs.

4. Conclusions

We show in this paper that the polarization state of the

FWM response is determined by the symmetries of exciton

eigenstates and by the symmetry of the exciton–exciton

interactions. We then present a model which takes all these

symmetries into account and based on it, we derive simple

algebraic equations by which the polarization of the FWM

response can be determined.

For exciton–exciton interactions, we consider the three

most important effects which take place in FWM experi-

ments. We show that they may differ in the symmetry and

thus they may give different polarizations in the response.

The three respective contributions then interfere in the

overall signal giving either stationary or non-stationary

polarization. The present model is then capable to describe

the stationary polarizations.

Compared to other theories, Eqs. (19)–(21) make the

calculations of the FWM polarization simple and accurate.

The accuracy of the model is supported in Section 3 by the

comparison to a microscopic model [18]. Microscopic

theories require, however, more complex calculations.

Modified OBE, on the other hand, are as simple as the

present model but they do not give the correct predictions

for the signal polarization since dark states are omitted (we

take them explicitly into account) and exciton–exciton

interactions are not described including their symmetry

properties.

As an example, we show the calculations for a wurtzite

crystal without presence of any external fields in Tables

3–6. Besides these sample calculations, the model can be

used for a system of an arbitrary symmetry where the

symmetry of the crystal lattice, external fields and various

types of exchange interactions may be taken into account.

The model is also useful for the reverse problem: how to

set the polarizations of the incoming optical fields to

observe a desired process. Based on the level scheme, the

theory can be extended to a dynamical model which is able

to describe also the dynamics of the polarization of the

response.

We have shown that we can apply the theory to bulk

crystals and QWs. Because of missing wave vector

conservation rule in the structures with lower dimension-

ality, we cannot use the same model for quantum wires and

quantum dots.
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First it involves a more precise quantitative evaluation of the
experimental data as it describes the different nonlinear pro-
cesses that are involved in the excitonic absorption changes
in detail. In particular, the biexcitonic induced absorption is
explicitly evaluated here, while its neglect, in previous pub-
lications, lead to an underestimated exciton absorption
change. Second, using the selection rules for transitions be-
tween different exciton and biexciton states, we confirm
points which were only assumption in the analysis of the
data previously published. For example, the electron and
hole spin relaxation times, which were roughly assigned to
long and short decay times, are identified here without am-
biguity and are clearly distinguished from the spin relaxation
of the whole exciton.

The paper is structured as follows: after this Introduction,
we describe the experimental setup and present typical mea-
sured pump and probe spectra. Then we present a numerical
analysis of the recorded spectra and a dynamical model that
is appropriate to describe the evolution of spins in quantum
wells. In the subsequent sections, we discuss the obtained
relaxation times with respect to the literature and then sum-
marize our results.

EXPERIMENTS

Our sample consists of 30 periods of 10-nm-thick GaAs
QWs, with 200 nm Ga0.4Al0.6As barriers, grown by molecu-
lar beam epitaxy on a GaAs substrate. The sample was
chemically etched over an area of about 3�3 mm2. The
etched part is not supported by any substrate and no strain is
expected, nor is any observed, in the excitonic absorption
lines, for example. Antireflection coatings were deposited on
both sides of the sample. The sample is held at 4 K using a
cold-finger helium-flow cryostat. The transmittance of the
sample is shown in Fig. 2 �solid line� and presents two reso-
nances: the heavy-hole �hh� and light-hole �lh� excitonic op-
tical transitions.

The laser source is a homemade femtosecond titanium:
sapphire oscillator that includes a multipass cavity in order to
reduce the repetition rate and to increase the energy per
pulse.12 The total length of our cavity is about 11.6 m and it

produces 30 fs pulses of 15 nJ at a repetition rate of
13 MHz.

The pump pulses are spectrally filtered through a Fabry-
Perot cavity to a spectral width of 2 meV full width at half
maximum �FWHM�, bringing their duration to 1 ps. Their
temporal profile was characterized by cross-correlation with
unfiltered pulses from the laser �duration 30 fs� and shows a
single-sided exponential decrease. The rising time of the
pump pulse is 150 fs and the falling time is 500 fs. The zero
time delay is chosen as the delay for which the cross-
correlation signal is maximum. Pump pulses are circularly
polarized and resonantly excite only the hh excitonic transi-
tion with total angular momentum +1, that is, excitons
formed with +3/2 heavy holes and −1/2 electrons ��+3/2 ,
−1/2��. Taking into account the pump pulse intensity, the
spot size on the sample, the measured transmission, and the
number of QWs, we estimate that the population density of
photocreated �+1� excitons is about 1010 cm−2 per well.

The broadband linearly polarized probe pulses, 100 times
weaker than the pump, extend over both hh and lh excitonic
transitions. A quarter-wave plate transforms the two circu-
larly polarized components of the transmitted probe beam
into two linearly polarized, mutually perpendicular compo-
nents, which are separated by a linear polarizer cube. The
two beams are then directed at different heights onto the
entrance slit of a spectrometer, and are detected as two dif-
ferent spectra on our two-dimensional charge coupled device
�CCD� camera. In this way, the two circular components of
the transmitted probe are registered simultaneously as a func-
tion of the pump-probe time delay. We estimate that the in-
tensity of one circular component propagating in the direc-
tion of detection of the other circular component is less than
1% of the intensity of the beam. For each time delay, the two
transmitted probe spectra are recorded in the presence and
then in the absence of the pump pulses and two DT spectra
are calculated, one for each probe polarization ��+ and �−�.

The analysis of our results takes into account the fact that
the wave function of an exciton needs to be developed over
the electronic states of two valence and conduction bands. As
a consequence, even if an excitonic transition is selectively
excited by tuning both photon energy and polarization of the
excitation, band filling effects can be seen on a different
excitonic transition if it shares a common electronic band
although such exciton states are not populated.13 For ex-
ample, a hh exciton population with spin −1 can induce an
absorption variation at the +1 lh exciton transition because
they are equally built from electrons in +1/2 valence band
states. Similarly, a dark exciton population with spin +2,
although not optically active, can induce a bleaching of the
hh exciton transition with spin spin +1, as the heavy-hole
+3/2 valence band is shared by the two excitons. Such ef-
fects are specific to pump-and-probe transmission experi-
ments and cannot be observed in luminescence measure-
ments where only optically active exciton populations can
give rise to emission. In our experiments, the spectrally nar-
row, circularly polarized ��+ �, pump pulses are in resonance
only with the hh excitonic transition �Fig. 1�. Thus, immedi-
ately after propagation of the pump pulses through the
sample, only two electronic bands are populated: the hh band
with angular momentum +3/2 and the electron band with

FIG. 2. Transmission spectrum of our sample around the exci-
tonic resonances and over the whole measured spectrum �inset�.
The fitted transmission spectrum is depicted by a dashed line and
corresponding absorption spectra of the two excitonic resonances
and the electron-hole continuum by dotted lines.
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spin −1/2. The broadband probe pulses ��70 meV� cover
the hh as well as the lh excitonic optical transitions. Since
the probe pulses are linearly polarized, all the indicated ex-
citonic transitions �see Fig. 1� are probed simultaneously as a
function of the time-delay �t between the pump and the
probe pulses.

Let us first consider that, after optical pumping, absorp-
tion changes are originating from saturation of the optical
transitions due to populations of electron and hole states.
Then, the transmission change of the probe pulse with polar-
ization �− at the lh optical transition is not sensitive to the
population of hh states with angular momentum +3/2 but it
is sensitive to the population of electrons with spin −1/2 �see
Fig. 1�. In the same way, the �− probe transmission change
at the hh excitonic transition is only sensitive to the popula-
tion of spin +1/2 electrons and −3/2 holes. Note that the last
two bands are not initially populated by the pump pulse and,
therefore, the population of these states results from electron
or hole spin-flip processes.

However, saturation of the excitonic absorption due to a
population of holes in the valence or electrons in the conduc-
tion band, respectively, is not the only source of probe trans-
mission changes. A blueshift of the excitonic lines is also
expected because of Coulomb interactions between
excitons.14,15 Spectral broadening of the absorption lines also
occurs due to exciton interactions. In addition, absorption to
the biexciton ground state is induced for a probe pulse of
�− polarization after optical pumping of hh excitons with a
pump pulse of �+ polarization. All these processes are
clearly visible in DT spectra, as described below, and will be
considered in our interpretation.

In Fig. 3, we show DT spectra for three different time
delays between the pump and probe pulses. At zero time
delay, DT spectra for �+ �solid line� and �− �dotted line�
differ considerably. At the hh exciton line �1.56 eV�, the DT
signal for the �+ probe presents two contributions: absorp-
tion saturation and a blueshift. Absorption saturation due to
state filling is expected after the pump pulse has led to a
population of hh exciton states. The DT signal for the �−
probe is much lower in amplitude and mainly shows a blue-
shift and an important induced absorption just below the hh
exciton resonance �marked by a dotted arrow�. The latter is

attributed to the presence of biexciton states: Since the pump
pulse produced hh excitons with total angular momentum
+1, the probe pulse with �− polarization can be absorbed to
excite hh biexcitons,13 i.e., biexcitons formed by two hh ex-
citons of opposite angular momenta. This transition, ne-
glected in Ref. 2, is allowed and has to be considered if the
carrier spin dynamics is determined through non-degenerate
pump-and-probe measurements.

At the lh exciton resonance �1.569 eV�, mainly a blueshift
of the exciton resonance and an absorption saturation are the
main features that are observed for the �− probe pulse �dot-
ted line�. As we will discuss in the following, the latter can
be explained by the fact that the electron band with spin se
=−1/2 is populated by the pump pulses. The �+ probe re-
veals an induced absorption between the lh and hh reso-
nances and absorption saturation at the lh exciton resonance.
The origin of these effects will be discussed later and will be
attributed to electron spin-flip and biexcitons creation.16,17 In
our experiments, this small induced absorption becomes ob-
servable since we can compare the DT spectra for �+ and �−
probe-pulse polarizations which are measured simulta-
neously.

At longer time delays, DT spectra for �+ and �− probes
become more and more similar, first at the lh, later also at the
hh exciton resonance. This is the signature of different spin
relaxation processes: If the population of electrons with spin
−1/2 equals the population of electrons with spin +1/2, one
expects the same signal amplitude for the �− and �+ probe
polarizations at the lh exciton resonance �see Fig. 3�. Indeed,
it depends only on the electron population: no light holes
have been excited by the pump pulse nor created by further
relaxation because the energy needed cannot be provided at
low temperature. In addition, the heavy hole spin populations
equilibrate with time and, at the hh resonance, DT signals for
the �+ and �− probe again become similar �as shown in Fig.
3�. Thus comparing the DT dynamics at different photon
energies allows us to discriminate exciton- from electron-
and hole-spin relaxation processes.

NUMERICAL ANALYSIS OF THE MEASURED DATA

In this section we describe our fitting procedure for the
DT spectra. We consider four basic changes of both the hh
and the lh absorption lines after optical pumping:3,15,18,19

blueshift, bleaching, broadening, and induced absorption to
biexciton states �DT originating from absorption changes of
the electron-hole continuum or from electron-hole correla-
tions are neglected�. Typical changes in DT spectra resulting
from the particular modifications of the absorption lines enu-
merated above are depicted in Fig. 4. Let us consider that the
absorption coefficient of an unperturbed exciton transition is
described by the function �0�E�= f�E−E0�, where E0 is the
resonance energy. Blueshift of the transition means that, after
optical excitation, the absorption coefficient changes to
��E�= f�E−E0−S�. Bleaching changes the absorption coeffi-
cient to ��E�=Lf�E−E0�, 0�L�1 and broadening is ac-
counted for by ��E�= f��E−E0�R�. Biexciton induced ab-
sorption is then described by a different function. Here, we
suppose that it has a Gaussian shape and that it adds to the

FIG. 3. Measured differential transmittance �DT� spectra. We
present data for three delays �t between pump and probe pulses.
Pump pulses are �+ polarized, probe pulses are either �+ or �−.
The dotted arrows show the positions of the induced absorption due
to exciton-biexciton transitions.
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linear absorption �0�E� while remaining centered at the
exciton-biexciton transition energy EB: ��E�= I exp��E
−EB�2 /�B

2�+�0.
This choice is supported by the fact that the exciton-

biexciton transition is inhomogeneously broadened �because
of wave vector distribution of the hh excitons�. In addition,
the use of a symmetric function reduces the number of free
parameters. For every time delay �t between pump and
probe pulses, we fit the DT spectra for both the �+ and �−
polarizations of the probe pulse. The spectrum of the probe
pulse covers both the hh and the lh exciton resonances and
therefore we fit all four aforementioned features for each
exciton resonance. For each time delay, the fitting procedure
yields 16 values, namely: Slh,hh

± ��t� for blueshifts, Llh,hh
± ��t�

for bleaching, Rlh,hh
± ��t� for broadening, and Ilh,hh

± ��t� for
biexciton induced absorption �its role is important as dis-
cussed in Refs. 19–21�, where the subscripts lh and hh stand
for the light-hole and heavy-hole resonances, respectively,
and the superscripts � and � stand for the polarizations �

+ and �− of the probe pulses. The behavior of these func-
tions will be studied in the next section using a dynamical
model.

Biexcitons require further comments since their spin
structure is very important but was rarely discussed in detail.
Based on symmetry considerations, we have calculated the
spin structure of biexcitons and their selection rules in quan-
tum wells made of cubic materials.22 Like for bulk material
with the same band structure, we find that the biexciton
ground state consists of six different states: one pure hh state
composed of two hh excitons with spins +1 and −1, one pure
lh state formed by two lh excitons with spins +1 and −1, and
four mixed states, which consist of one hh and one lh exci-
ton. �Some of these biexcitons have indeed already been ob-
served experimentally16,17�. Two of the mixed biexcitons
states are not accessible by two-photon absorption. The other
two, however, may be excited by absorption of two cocircu-
larly polarized photons. When a hh exciton �+1� is present in
the sample after optical pumping, absorption of a �− photon
slightly below the hh resonance leads to excitation of the hh
biexciton. It is also possible to absorb a �+ photon below the
lh exciton resonance giving rise to a mixed biexciton. Imme-
diately after optical pumping, we expect therefore to observe
induced absorption at energies below the hh exciton for �−

probe pulses and below the lh exciton for �+ probe pulses as
seen in Fig. 3 �dotted arrows�. The selection rules for transi-
tions between hh excitons and the different biexciton states
are summarized in Fig. 7.

Exciton and biexciton parameters �resonance energy and
width, binding energy� were obtained from the numerical
adjustment of the linear transmission spectra �dashed line in
Fig. 2�. The measured and fitted transmission curves slightly
differ in the region between the exciton resonances. This
difference, however insignificant, is caused by correlations
between lh and hh excitons, which change the DT spectra20

but will not be taken into consideration here.
The biexciton absorption lines are treated as follows:

Concerning the hh biexciton, we fit the DT spectrum at the
hh exciton only up to 1.561 eV for zero time delay between
pump and �− probe pulses. We thus determine the biexciton
parameters �binding energy, spectral width, and absorption
strength Ihh

− �0�� as well as the hh exciton bleaching and blue-
shift parameter �spectral broadening is negligible�. We keep
the resonance energy and spectral width of the biexciton ab-
sorption fixed for all nonzero time delays of the probe. Ihh

− �t�
varies in time since it depends on the �+1� exciton density. It
is more complicated to extract the parameters of the mixed
biexciton since the exciton-exciton correlations modify the
absorption spectra in the same spectral region. As shown in
Fig. 5�c�, these correlation effects can be almost eliminated
when studying the difference of the DT probe spectra of �

+ and �− polarizations. Figure 5�c� also shows the influence
of biexcitons on the DT spectra. The induced absorption ap-
pearing around 1.567 eV is attributed to the mixed biexciton
states. We will now determine the mixed biexciton param-
eters from these curves in a similar way to those of the hh
biexciton.

Because of the absorption of the pump pulses during their
propagation across the large number of quantum wells in our
sample, pump-induced changes are not equal in all quantum

FIG. 4. Spectral shape of DT spectra of an inhomogeneously
broadened absorption line �thick line� that undergoes bleaching
�thick line�, blueshift �dashed line�, broadening �dotted line�, and
biexciton induced absorption �dash-dotted line�.

FIG. 5. Fit �thin line� of DT spectra �thick solid lines� with
�+ probe �a�, �− probe �b�, and their difference �c� at �t=60 ps.
Dotted and dashed lines show the fits without taking hh biexciton
and mixed biexciton states, respectively, into account.
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wells. This propagation effect, which may cause distortions
in DT spectra, is included in our model: the energy distribu-
tion of the excitation field and the absorption spectrum of
each single quantum well are calculated in order to evaluate
the resulting DT spectra of the sample.

Since the spectral broadening of the absorption lines due
to the excitation is negligible �Rlh,hh

± ��t��0�, we keep only
12 free parameters Slh,hh

± ��t�, Llh,hh
± ��t�, and Ilh,hh

± ��t� among
the 16 defined above for each time delay and polarization of
the probe. Although this number remains large we are not
able to fit the spectra with the required accuracy when one of
the effects is not included. Note that the dips below each
exciton resonance reflect induced absorption to a biexciton
state. Dips above exciton resonances are a signature of a
blueshift of the resonances and the combination of such a dip
with a peak in the DT signal identifies a bleaching of the
resonance. Numerical fitting over the whole spectrum of DT
allows us to get results of greater precision. In Fig. 5, we
show the results if hh or mixed biexcitons are not considered,
respectively, by dotted and dashed lines.

The temporal evolution of some parameters extracted in
this way are shown in Fig. 6. The curves are modeled in the
next section. The magnitude of the noise obviously deter-
mines the accuracy of the numerical fit. The small abrupt
signal increase appearing at 45 ps is due to some secondary
pump pulse which arrives delayed at the sample and which
could not be eliminated. The effect of this pulse is included
in our model where it causes no major problem.

DYNAMICAL MODEL

Our goal, here, is to develop a dynamical model suitable
for the description of the spin dynamics of electrons and
holes bound in excitons created by optical pumping. The
system is excited by a spectrally narrow pulse, which popu-
lates only the lowest-lying states, i.e., hh excitons, and tem-

perature is so low that higher energy states cannot be popu-
lated. Therefore populations of lh exciton states will be
neglected in the following. The scheme, which represents the
dynamical model, is depicted in Fig. 7. We use the notation
�jh+se�= �jh ,se� in order to indicate the z-component of the
angular momentum of excitons and of the individual fermi-
ons within the exciton wave function. According to calcula-
tions of the spin structure of excitons and biexcitons,22 we
denote hh excitons by the projection of their angular momen-
tum onto the quantization axis as ±1 �dipole-active states�
and ±2 �dipole-inactive states�. States carrying a dipole mo-
ment are shifted to higher energies with respect to the dipole-
inactive states due to electron-hole exchange interaction,
which is of the order of fractions of meV and which we will
determine below. In Fig. 7, arrows which point from the
ground state �0� to hh excitons denote dipole-active transi-
tions. Arrows which interconnect hh excitons represent spin
relaxation of electrons �± 3

2 , + 1
2 �↔ �± 3

2 ,− 1
2 � �Te being the

time constant�, spin relaxation of holes �+ 3
2 , ± 1

2 �
↔ �− 3

2 , ± 1
2 � �Th�, and spin relaxation of excitons �− 3

2 , + 1
2 �

↔ �+ 3
2 ,− 1

2 ��Tx�. Note that there is no exciton spin-flip be-
tween the dipole-inactive states.10 The rate equations for
heavy-hole exciton populations n j�t� where j denotes the to-
tal angular momentum of the exciton are10

dn+2

dt
= − 	 1

Te
+ +

1

Th
+
n+2 +

n+1

Te
− +

n−1

Th
− . �1a�

dn+1

dt
=

n+2

Te
+ − 	 1

Te
− +

1

Th
− +

1

TX


n+1 +
n−1

TX

+
n−2

Th
+ . �1b�

dn−1

dt
=

n+2

Th
+ +

n+1

TX

− 	 1

Te
− +

1

Th
− +

1

TX


n−1 +
n−2

Te
+ . �1c�

FIG. 6. Dynamics of induced absorption to the hh biexciton
state �a�, induced absorption to mixed biexciton states �crosses� and
hh exciton blueshift �circles� �b� extracted from DT spectra. Fits are
plotted by solid lines, the dashed line in �a� shows the total popu-
lation of hh biexciton states. lh exciton blueshift is not shown since
it is rather stationary and the extracted data do not play a role in the
dynamical model.

FIG. 7. Level scheme, selection rules of optical transitions, and
relaxation channels used in our model for the simulation of
the experimental data. The relaxation channels indicated are
�± 3

2 , + 1
2 �↔ �± 3

2 ,− 1
2 �: spin relaxation of electrons �time constant

Te�, �+ 3
2 , ± 1

2 �↔ �− 3
2 , ± 1

2 �: spin relaxation of holes �time constant
Th�, and �− 3

2 , + 1
2 �↔ �+ 3

2 ,− 1
2 �: spin relaxation of excitons �time con-

stant Tx�.
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dn−2

dt
=

n+1

Th
− +

n−1

Te
− − 	 1

Te
+ +

1

Th
+
n−2. �1d�

The relaxation times Te
± stand for electron spin-relaxation

time. The superscript “�“ indicates relaxation from the
dipole-active states to the dipole-inactive states and “�” for
the reverse transition. �The rates differ as a consequence of
energy splitting between the two types of states.10� Similarly,
Th

± denote hole spin relaxation times and TX stands for the
exciton spin relaxation time. In contrast to Refs. 6 and 10,
we do not consider recombination of excitons. If the charac-
teristic time of radiative recombination even depends on the
localization of excitons, it is slow when compared to the spin
relaxation that we observe here and thus recombination oc-
curs on a longer time scale than that of our experiment. Ac-
cording to Fig. 7, both types of hh excitons may be promoted
to mixed biexcitons by either �+ or �− probe pulses. The
sum of induced absorption strengths denoted as ��++�−� is
proportional to the total number of excitons in the sample,
which is constant as shown in Fig. 6. The simultaneous pres-
ence of �+1� and �−1� excitons �and also of �±2� excitons�
leads to continuous hh biexciton formation �as has been
shown experimentally in23�. The rate equation that describes
the formation of biexcitons reads

d

dt
nBX�t� =

1

TBX

�n+1�t�n−1�t� + n+2�t�n−2�t�� . �2�

The above rate equations �1� are thus extended by nonlinear
terms, which describe the decrease of the population of free
excitons according to Eq. �2�. The constant TBX is the inverse
of the characteristic biexciton formation rate. The reverse
process, leading to the dissociation of a biexciton into two
excitons, is not likely at low temperature, as opposed to the
situation in bulk crystals where polaritons can be created at
any energy.

The spin relaxation of biexcitons has to be included as
well and the way they are involved in our measurements
needs to be examined. Spin relaxation of a hh and lh biexci-
ton population is quite improbable: such a process is not
elastic as it implies a dissociation of the biexciton into two
excitons. Transfers between mixed biexcitons are more likely
as they are quasidegenerated. They arise from the spin-flip of
a hole �hh between ±3/2 states or lh between ±1/2 states�.
Such processes would be different from intraexciton hole
spin flip, which is described in our paper by the time con-
stant Th, because of the difference between the exciton and
biexciton envelope wave functions. In our experiments, the
biexciton generation by collision between two excitons is
taken into account and described by Eq. �2�. It involves only
hh excitons and biexcitons, and no mixed or lh biexcitons
because the pump pulses do not excite the lh transition. As
discussed above, the hh biexciton spin is stable and will not
relax. Moreover, no dissociation of a biexciton into two ex-
citons occurs at low temperature. Thus the biexciton spin
relaxation does not affect the spin dynamics of the whole
system. Biexciton states play, however, a major role in our
measurements: by looking at the exciton-biexciton induced
absorption, biexciton states are used as a probe of the differ-

ent exciton populations and of their spin. The spin relaxation
of the biexcitons which are created in this process may be
ignored because it occurs after the absorption of the probe
pulse.

lh exciton states are missing in the scheme since they are
not directly coupled to hh excitons and they are not excited
by the pump pulses. We include, however, the mixed biexci-
ton states in our model in order to describe the induced ab-
sorption correctly.

Using the above model, we numerically adjust the data
obtained by the procedure described in the previous section.
Concerning the bleaching Llh,hh

± ��t�: the electron and hole
band fillings are determined from the exciton population cal-
culated with the dynamical equations, and the bleaching of
each excitonic transition is deduced in turn.13 The fitted pa-
rameters are

�1� the spin-flip times of electrons, holes, and excitons,
and

�2� the characteristic constant of biexciton formation TBX.

In addition, as a consequence of repulsive exchange interac-
tion, we assume that population of electron and hole states
causes a blueshift of the respective exciton resonances,
which involve at least one particle of the same spin. We also
consider that a simultaneous population of electron and hole
states causes a blueshift of the exciton resonances. Thus the
influence of electrons on the blueshift generally differs from
the influence of holes due to their different effective masses
and density of states. Therefore we define a parameter, which
is a ratio of the strength of the influence of the two types of
particles. In addition, similarly to Ref. 10, we consider that
the relaxation from dipole-active states to dipole-inactive
states is more probable than the reverse due to the lower
energy of dipole-inactive states in quantum wells. We as-
sume that T j

+=�T j
−�j=e ,h�, where �=1/ �1+exp�� /kBT��, �

is the splitting between the states and T is the temperature of
the sample.

We use the five functions from the previous section �Eqs.
�1� and �2�� for the numerical analysis of our data: We intro-
duce strengths of biexciton induced absorption for both hh
and mixed biexcitons and for both polarizations of the probe
pulses. In addition, we consider the difference between blue-
shifts of the two hh-exciton transitions and follow the evo-
lution of the excitonic spins. To fit the experimental data, we
used the simplex method in a six-dimensional space without
any constraints applied to the free parameters. We were able
to repeatedly get the results within 10% of the values pre-
sented below changing randomly the initial values for the fit
and therefore we conclude that the published numbers are
determined with an accuracy better than 10%. The measured
dynamics unambiguously determine the dynamics of the par-
ticular hh exciton states and it is not possible to fit the data
using two sets of parameters which differ considerably �we
are also able to estimate the relaxation times without com-
putations as discussed in the next section�. We tried to use
less parameters but the fits to the curve did not produce sat-
isfactory results.

The numerical fit to the data in Fig. 6 results in the fol-
lowing time constants: Te

−=250 ps �spin relaxation time of
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electrons�, Th
−=30 ps �spin relaxation time of heavy holes�,

TX	100 ps �spin relaxation time of excitons�, and TBX

=120 ps. In addition to these time constants, we conclude
that the influence of electrons on the blueshift is 34% when
compared to that of holes and that the reduction of the relax-
ation rate from dipole-inactive to dipole-active states �when
compared to the reverse process� is �=73%. This corre-
sponds to a splitting between the states of the order of
0.1 meV. The fitted curves are shown in Fig. 6 by solid lines.

DISCUSSION

Although the numerical fitting procedure described above
is complex, one may draw some qualitative conclusions
about the spin dynamics without it, leaving the calculations
to be used to extract numerical values for the relaxation
times. One can clearly resolve induced absorption to hh biex-
citon states for the �− probe in Fig. 3 �marked by a dotted
arrow� for �t=0 ps which shows the presence of a popula-
tion of �+1� hh excitons. During spin relaxation, the negative
dip below the hh exciton resonance �shown in Fig. 6�a��
decreases for the �− probe as the population of hh �+1�
excitons relaxes. This negative dip increases for the �+
probe showing an increase in the population of �−1� excitons.
However, this growth is clearly slower than the relaxation of
the �+1� excitons. Comparison of curves in Fig. 6�a� leads to
the conclusion that exciton spin relaxation is slow: if single
fermion spin relaxation was negligible, the decrease of hh
biexciton induced absorption for the �− probe would be as
fast as the increase of the induced absorption for the �+
probe. Exciton population clearly relaxes to dipole-inactive
states via electron or hole spin relaxation since the overall
induced absorption to the hh biexciton decreases while the
total number of excitons is constant. Therefore the single-
fermion spin relaxation from the �+1� excitons to the dark
states is much faster than the exciton spin relaxation.

Looking at Fig. 3, we see differences between DT spectra
for the �+ and the �− probe and therefore the spins of nei-
ther electrons nor holes are relaxed after �200 ps. This fact
shows us that the spin of one type of fermions relaxes on a
short time scale while the spin of the other type of fermions
and the spin of the excitons relaxes slowly, on the time scale
of hundreds of picoseconds.

The question now is, which spins �that of electrons or
holes� relaxe faster. In order to answer this, one must per-
form a numerical analysis of the different absorption lines in
order to get more quantitative information about the system.
We know, according to the spin structure of biexcitons, that a
relaxation of hole spin from the initial state �+1�= �+3/2 ,
−1/2� to the �−2�= �−3/2 ,−1/2� state is connected with the
bleaching of the hh biexciton induced absorption but not
with a change in the induced absorption to mixed states.
Electron relaxation also causes changes in the induced ab-
sorption to hh biexciton states but, as opposed to hole relax-
ation, it changes also the induced absorption to mixed biex-
citon states for �+ and �− probe polarizations �see Fig. 7�.
Therefore the dynamics of induced absorption to the mixed
biexciton states for the �+ and �− probe polarizations
mainly reflects the electron spin dynamics. Since it is much

slower than the dynamics of �− probe hh biexciton absorp-
tion, we conclude that the fast relaxation is connected with
hole spin. This confirms unambiguously the proposed
attribution2 of the fast and slow relaxation to electron and
holes, respectively.

Our results are indeed very similar to data published by
Bar-Ad and Bar-Joseph:2 The hole-spin relaxation time of
50 ps and that of electrons are thus comparable to our results
of 30 and 250 ps, respectively. This is no surprise since they
studied quantum wells which are very comparable to ours.
Nevertheless, spin relaxation times of both the electron and
the hole strongly depend on quantum confinement, i.e., well
width and barrier height. A comparison with existing experi-
mental data in literature is thus made difficult if we do not
use quantities that characterize the effect of the confinement
on the spin relaxation rate independently of the quantum well
geometry �i.e., width and depth�. Concerning the heavy hole,
spin relaxation is caused by the mixing with the light-hole
band. Lifting the degeneracy at the 
 point due to quantum
confinement slows down the spin relaxation. This effect was
seen by many authors.2,3,7,13,24,25 It is therefore possible to
compare the spin relaxation rate of the heavy hole in GaAs
quantum wells with different well widths and barrier heights
by analyzing Th versus the valence band splitting �Ehh-lh at
k=0, which is easily extracted from the linear absorption
spectrum. Some previous works have shown that Th

���Ehh-lh�
x with x=3.2.25,7 In our sample, �Ehh-lh

=10 meV and Th=30 ps. The spin relaxation rate is almost
one order of magnitude smaller than the value expected from
this power law as also reported by other authors.2,13 The
discrepancy between the latter results and the law mentioned
above evidences that other parameters have to be considered
to understand the hole spin relaxation. For example, exciton
localization can play a nontrivial role: On one hand, the
wave function of an exciton localized on a characteristic
scale �a0 develops in k-space up to k0�a0

−1. The hole-
relaxation rate is then influenced by the mixing of the heavy-
hole and light-hole valence subbands which is no longer zero
for sufficiently large k-values. On the other hand, the local-
ization, by hindering the motion of the exciton center of
mass, prevents the scattering between different spin states. In
order to discuss in detail the consequence of exciton local-
ization on the hole spin dynamics one has to know the exact
geometry of the sample and the entire valence band disper-
sion for the quantum well.

D’yakonov and Kachorovskii have shown that the spin
relaxation of the electron in the conduction band behaves as
E1

2 where E1 is the first electron confined state in the quan-
tum well.26 We have collected in the literature the spin relax-
ation decay rate of the electron, Te

−1, in GaAs/AlGaAs quan-
tum wells with different well widths and barrier aluminum
contents.2,7,25,27 These data, as well as ours, are plotted as a
function of the electron confinement energy E1 in Fig. 8. E1
was calculated using the effective mass theory in the enve-
lope function framework. The experimental data are nicely
adjusted using the expression Te

−1�ps−1�=4.10−3

+1.12.10−6�E1�2.06. This behavior is an indication that a
D’yakonov-Perel-like28 relaxation process is responsible for
the spin relaxation of the electron in most GaAs/AlGaAs
quantum wells.
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We did not discuss the fitted value of the parameter � that
reveals the lowest probability of spin relaxation from dipole-
inactive to dipole-active states yet. Applying Eq. �2.5�10 to
the value determined by our fit, we obtain a splitting between
the states of the order of 0.1 meV, which is a reasonable
value.

CONCLUSIONS

In this paper, we present results of spin-resolved non-
degenerate pump-and-probe experiments on intrinsic GaAs
multiple quantum wells. We analyze differential transmit-
tance spectra and numerically extract the dynamics of the
various changes related to the heavy-hole and light-hole ex-
citon resonances. In order to fit the experimental data, we
propose a model for the relaxation dynamics that takes, in
particular, biexciton states into account.

The extracted time constants show that the spin relaxation
is driven predominantly by the relaxation of the hole spins

�Th=30 ps�. Electrons relax on a much longer time scale
�Te=250 ps� and exciton spin relaxation is negligible. This
result is striking as far as the relaxation of the exciton pseu-
dospin and as a whole is expected to be enhanced in quantum
wells.10,29,30 The comparison with similar work, in which
spin relaxation rates of both individual types of carriers are
measured, reveals that our value of Th is longer as expected
with respect to the valence band splitting �Ehh-lh but stays in
the 5–50 ps range given in the literature. On the other hand,
our value of Te is consistent with previous data if it is con-
sidered with respect to the confinement energy E1 of the
electron in the quantum well. In particular, our results are
very close to those obtained in the work of Bar-Ad and
Bar-Joseph2 who used a sample with characteristics similar
to ours. Moreover, a review of the different experimental
values from the literature reveals a quadratic dependence of
Te with regard to E1 which denotes a D’yakonov-Perel-like
relaxation mechanism for the electron.

The originality of our work lies in the consideration of
three relaxation channels for the spins of electrons and holes
forming excitons and in the numerical adjustment of the dy-
namics of differential transmittance spectra. We take advan-
tage of the presence of different biexciton states to which the
transitions are mutually allowed or forbidden in pump-and-
probe experiments using circularly polarized laser pulses. We
are then able to attribute the extracted time constants to par-
ticular processes using a detailed model calculation. In par-
ticular, we can confirm the attribution of the spin relaxation
times of electrons and holes given by Bar-Ad and
Bar-Joseph.2
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τP ≈ τex.14,15,18 The short τex results in fast depolarization of
the exciton emission within tens of picoseconds in GaAs
single QW14,15 making exciton spin transport over substantial
distances problematic. However, τex is determined by the
strength of the exchange interaction between the electron
and hole. This gives an opportunity to control the depolar-
ization rate by changing the electron-hole overlap, e.g., in
QW structures with different QW widths or with an applied
electric field.14,15

The electron-hole overlap is drastically reduced in CQW
structures. An indirect exciton in CQW is composed from
an electron and a hole confined in different wells (Figure
1b). As a result of the small electron-hole overlap, the
recombination time τr of indirect excitons is orders of
magnitude longer than that of regular direct excitons and is
typically in the range between tens of nanoseconds to tens
of microseconds.19 Long lifetimes of indirect excitons make
possible their transport over large distances.20-23 However,
the ability to travel is required yet insufficient condition for
spin transport. Exciton spin transport over substantial
distances also requires a long spin relaxation time. The small
electron-hole overlap for indirect excitons should also result
to a large τex ∝ τr

2 and in turn τP, thus making possible
exciton spin transport over substantial distances.

We probed exciton spin transport in a GaAs/AlGaAs
CQW structure with two 8 nm GaAs QWs separated by a
4 nm Al0.33Ga0.67As barrier (see sample details in ref 17
where the same sample was studied). The electric field
across the sample was controlled by an applied gate
voltage Vg. The excitons were photoexcited by a continu-
ous wave Ti:sapphire laser tuned to the direct exciton energy,
Eex ) 1.572 eV, and focused to a spot of ∼5 µm in diameter.
The spatial profile of the laser excitation spot was deduced
from the profile of the bulk GaAs emission from the
excitation spot. The excitation was circularly polarized (σ+).

The emission images in σ+ and σ- polarizations were taken
by a CCD camera with an interference filter 800 ( 5 nm,
which covers the spectral range of the indirect excitons. The
spatial resolution was 1.4 µm. The spectra were measured
using a spectrometer with a resolution of 0.3 meV. The
characteristic x-energy spectra and x-y images are shown
in Figure 1c-e. The exciton density n was estimated from
the energy shift as in ref 23. For recent discussions of the
exciton-exciton interaction strength and the exciton density
estimation see refs 24 and 25. We note that the results on
exciton spin transport reported here are practically insensitive
to the interaction strength.

Phenomenological Model for Exciton Spin Transport.

Rate equations combining the exciton spin relaxation equa-
tions14,15 with the drift-diffusion equation23 yield

where D is the exciton diffusion coefficient, µ ≈ D/kBT

mobility, u0 interaction energy estimated by u0 ) 4π2d/ε, nb

) n+1 + n-1, and Λ generation rate of +1 excitons.30 Both
bright and dark exciton states are accounted for in eq 1;
however the fast hole spin flip process allowed the simpli-
fication of the set of four coupled equations for four exciton
spin species to the form of eq 1, which contain only two
bright exciton states n (1.30 n+1(r), n-1(r), and P(r) were
calculated using eq 1 and compared to the experimental data.

Temperature Dependence. Increasing the temperature
leads to the increase of the exciton cloud radius rcloud and
decrease of the circular polarization of exciton emission at the
excitation spot center Pr)0 (Figure 2a,b). The exciton cloud
expansion rcloud ∼ (Dτr)1/2 is determined by the exciton
diffusion coefficient D. The circular polarization of exciton
emission P ) τP/(τP + τr) is determined by the depolarization
time of the emission τP. Therefore, the measurements of rcloud,
P, and τr allow estimating D and τP. D and τP were extracted
from the measured rcloud, Pr)0, and τr

17 via numerical
simulations using eq 1. The obtained temperature depend-
encies for D and τP are plotted in Figure 2c,d. The data show
that (i) the depolarization time of the emission of indirect
excitons reaches several nanoseconds, orders of magnitude
longer than that of direct excitons in single QW,14,15 (ii) the

Figure 1. Diagrams and PL images for excitons. (a) Exciton spin
diagram. (b) Energy diagram of the CQW structure: e, electron; h,
hole. x-y images of the PL intensity of indirect excitons in σ+ and
σ- polarizations for (c) Pex ) 4.7 µW and (d) Pex ) 310 µW; Vg

) -1.1 V, Eex ) 1.582 eV. (e) x-energy images of the PL intensity
of indirect excitons in σ+ and σ- polarizations; Vg ) -1.1 V, Eex

) 1.572 eV, Pex ) 140 µW.

Figure 2. Temperature dependence. Experimental (points) and
simulated (curves) (a) exciton cloud radius and (b) degree of circular
polarization at the exciton cloud center as a function of temperature.
(c, d) Fit parameters, diffusion coefficient D and polarization
relaxation time τP as a function of temperature.
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polarization rapidly decreases with increasing temperature,
and (iii) the decrease of polarization is correlated with the
increase of the diffusion coefficient.

Density Dependence. Increasing the density leads to the
increase of rcloud and decrease of Pr)0 (Figure 3a,b). At low
densities, rcloud is essentially equal to the excitation spot
radius. Similar to the case of temperature dependence, these
measurements of rcloud and P allow estimating D and τP as a
function of density. The measured rcloud and Pr)0 were
simulated using eq 1 with D and τP as fitting parameters.
The obtained density dependencies for D and τP are plotted
in Figure 3c,d. The polarization degree of the exciton
emission and the polarization relaxation time reduce with
increasing density (Figure 3b,d). Similar to the case of
temperature dependence, the decrease of polarization is
correlated with the increase of the diffusion coefficient.
Figure 3e shows τP

-1 vs D for the data in Figure 3c,d.
Spatial Dependence: Exciton Spin Transport. The

polarization at half-width at half-maximum (HWHM) of the
exciton cloud PHWHM is observed up to several micrometers
away from the origin (Figure 4a). This gives a rough estimate
for the length scale of exciton spin transport. Figure 4a,b
also shows PHWHM and the spatially average polarization (P)
calculated using eq 1 with D and τp in Figure 3c,d obtained
from fitting rcloud and Pr)0 data in Figure 3a,b.

Essential characteristics of the exciton spin transport are
presented in Figure 4c-e. Figure 4c shows the measured
PL in σ+ and σ- polarization as a function of the distance
from the excitation spot center r. Figure 4d shows the
corresponding n+1(r) and n-1(r) calculated using eq 1 with
D and τP in Figure 3c,d. The polarization profiles are wider
than the excitation spot that directly shows exciton spin
transport (Figure 4e). The measured and calculated data on
exciton spin transport are in agreement (Figure 4).

The parameters used in the calculations of exciton spin
transport D, τP, and τr were obtained from other experiments,
different from exciton spin transport experiments: D, from
exciton transport; τP, from emission polarization at the
excitation spot center, and τr, from PL kinetics. The
agreement between the calculated and measured data (Figure
4) indicates that the major characteristics of exciton spin
transport are determined by D, τP, and τr. The following
assumptions were made in the model: (i) splitting between
optically active and dark exciton states is small ∆ , kBT,
(ii) hole spin flip is fast τh , τe, τex and ∇[D∇nj +

µnj∇(u0ntotal)] , nj/(2τh), and (iii) conversion of the direct
excitons into indirect excitons is fast τc , τP,d; see ref 30.
The agreement between the experiment and the model (see
Figure 4) indicates that these assumptions are justified and
the model accurately describes exciton spin transport.

Discussion. Spin transport requires the ability of particles
to travel maintaining spin polarization. This, in turn, requires
large τr, D, and τP. Large τr and D are required to achieve
exciton transport over substantial distances since the exciton
diffusion length is determined by (Dτr)1/2, while large τP is
required for maintaining spin polarization during the transport.
Large τr is characteristic for indirect excitons for which it is
orders of magnitude larger than that for regular direct excitons.
Large D is achieved with increasing exciton density (Figure

Figure 3. Density dependence. Experimental (points) and simu-
lated (curves) (a) exciton cloud radius and (b) degree of circular
polarization at the exciton cloud center as a function of excitation
density. (c, d) Fit parameters, diffusion coefficient D and
polarization relaxation time τP as a function of nb ) n+1 + n-1.
(e) 1/τP vs D.

Figure 4. Exciton spin transport. (a) Experimental (points) and
simulated (curve) polarization at HWHM of the exciton cloud
PHWHM as a function of rcloud. (b) Experimental (points) and
simulated (curve) spatially average polarization (P) as a function
of excitation density. (c) PL intensity of indirect excitons in σ+

and σ- polarizations (green and blue curves) as a function of r for
Pex ) 2.3, 45, and 230 µW with estimated densities at r ) 0 of 9
× 108, 2 × 1010, and 4 × 1010 cm -2, respectively. (d) Simulated
n+1(r) and n-1(r) for the same exciton densities as in (c). (e)
Experimental (black curves) and simulated (red curves) PL
polarization as a function of r for the same exciton densities as in
(c, d). The profile of the bulk emission, which presents the excitation
profile, is shown by dotted line. Tbath ) 1.7 K. The simulations in
(a, b, d, e) use D(n) and τP(n) in Figure 3c,d.
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3a,c). This behavior is consistent with the localization-
delocalization transition: Excitons are localized at low
densities due to disorder and delocalized at high densities
when the disorder is screened by repulsively interacting
indirect excitons.23,25 Localized excitons do not travel
beyond the excitation spot while delocalized excitons spread
over the distance ∼(Dτr)1/2. This accounts for the density
dependence of rcloud and D (Figure 3a,c). rcloud and D also
increase with temperature (Figure 2a,c), because of thermal
activation of indirect excitons over maxima of the disorder
potential.

For indirect excitons with a small electron-hole overlap
τex ∝ τr

2 is large, τex . τe, and τP ≈ τe/2 so that the
polarization relaxation is governed by the electron spin
relaxation and, therefore, can be long. Indeed, τP for indirect
excitons at low temperatures and low densities reaches 10
ns (Figures 2d and 3d), much longer than τP for regular
excitons, which is in the range of tens of picoseconds.14,15

This orders of magnitude enhancement of the spin relaxation
time for indirect excitons is achieved due to a small
electron-hole overlap.

However, P and τP for indirect excitons drop with
increasing temperature and density (Figures 2 and 3). For
qualitative understanding of this behavior, we compare the
variations of the polarization relaxation time and diffusion
coefficient. Figures 2c,d and 3c,d show that τP

-1 increases
with D when the temperature or density is varied. This
behavior complies with the D’yakonov-Perel’ (DP) spin
relaxation mechanism26 for which the spin relaxation time
τe,ex

-1
) 〈Ωe,ex

2τ〉, where Ωe,ex is the frequency of spin
precession caused by the energy splitting between different
spin states, τ ≈ mexD/(kBT) momentum scattering time, and
mex exciton mass.

Parts a and e of Figure 4 show that the length scale for
exciton spin transport reaches several micrometers. It is large
enough (i) for studying exciton spin transport by optical
experiments, (ii) for studying spin-polarized exciton gases
in microscopic patterned devices, e.g., in in-plane lattices,25

in which the period can be below a micrometer, and (iii) for
the development of spin-optoelectronic devices where spin

fluxes of excitons can be controlled in analogy to the control
of fluxes of unpolarized excitons in ref 27 (the distance
between source and drain in the excitonic transistor in ref
27 was 3 µm; however, it is expected that the dimensions
can be reduced below 1 µm by using e-beam lithography).
The length scale for exciton spin transport exceeds the length
scale for electron spin transport in metals where it is typically
below 1 µm.28

Estimation of Spin Splitting. The measured dependence
τP

-1(D) can be used to estimate the spin splitting. For the
splitting of electron states caused by the Dresselhaus mech-
anism,29 which is a likely scenario, Ωe ) 2�k/p where k is
the electron wave-vector. For the average thermal k of an
electron in an exciton kT ) (2mexkBT/p2)1/2me/mex, one obtains
τP

-1
) 2τe

-1
) 16�2me

2D/p4 (me is electron mass) and the
measured τP

-1(D) (Figure 3c) leads to the estimate of the
spin splitting constant � ≈ 25 meV Å.

The value of � for 〈001〉 oriented QW can be also roughly
estimated as � ) γc〈kz

2〉 ≈ γc(π/a)2, where a is the extension
of the electron wave function in the QW and γc ≈ 27.5 eV
Å3 is the bulk GaAs Dresselhaus constant.29 For the studied
CQW structure with a confining potential of 8 nm width and
260 meV depth, we obtain � ≈ 20 meVÅ, in agreement with
the experiment.

In conclusion, the spin transport of indirect excitons has been
observed. It originates from a long spin relaxation time and
long lifetime of indirect excitons. The phenomenological model
for exciton spin transport is in agreement with the experiment.
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patterns are controlled by a magnetic field: these data prove

that the pattern of linear polarization corresponds to spin

orientation rather than merely to the orientation of an

exciton dipole. We also deduce trajectories of electron

and hole spin currents from the measured polarization

patterns.

The exciton polarization currents and associated spin

textures are revealed by the polarization pattern of the

emitted light measured by polarization-resolved imaging

[see Figs. 1(d) and 1(e)]. Experiments are performed in an

optical dilution refrigerator. The photoexcitation is non-

resonant and spatially separated so that the exciton polar-

ization is not induced by the pumping light.

The binding energy released at the exciton formation in

the rings and the current filament at the LBS center heat the

exciton gas. The former heating source depletes the exciton

condensate in the rings [27]. The latter is so strong that no

condensate forms in the LBS ring center and the exciton

gas is classical there [27]. Excitons cool down with

increasing distance r away from the heating sources so

that they can approach the condensation temperature at

r ¼ r0 where the condensation is detected by interferomet-

ric measurements [27].

The indirect excitons in a GaAs coupled quantum well

structure (CQW) may have four spin projections on the z
direction normal to the CQW plane: Jz ¼ �2, �1, þ1,

þ2. The states Jz ¼ �1 and þ1 contribute to left- and

right-circularly polarized emission and their coherent su-

perposition to linearly polarized emission, whereas the

states Jz ¼ �2 and þ2 are dark [29]. The electron and

hole spin projections on the z axis are given by Jz, while in-
plane projections of electron and hole spins can be deduced

from the off-diagonal elements of the exciton spin density

matrix, which can be obtained from the measured polar-

ization pattern (see the Supplemental Material [31]). The

exciton states linearly polarized along the axes of symme-

try are generally split due to in-plane anisotropy induced

by the crystallographic axis orientation and strain.

The observed polarization patterns are qualitatively

similar for both sources of cold excitons—the external

ring and LBS ring. A LBS ring is close to a model radially

symmetric source of excitons with a divergent (hedgehog)

momentum distribution [see Fig. 1(b)] and we concentrate

on the polarization textures around the LBS here. All LBS

rings in the emission pattern show similar spin textures [see

Figs. 1(d) and 1(e)].

A ring of linear polarization is observed around each

LBS center [see Figs. 1(d) and 2(a)]. This ring is observed

in the region r < r0 where the exciton gas is classical. The
linear polarization originates from the thermal distribution

of excitons over the linearly polarized exciton states.

Heating of the exciton gas by the current filament reduces

the polarization degree in the LBS center and, as a result,

leads to the appearance of a ring of linear polarization. No

such polarization reduction is observed in the external ring,

consistent with the absence of heating by current filaments

in the external ring area [see Fig. 1(d)].

A helical exciton polarization texture that winds by 2�
around the origin emerges in the LBS area at r > r0 where
the condensate forms (the latter is measured by shift inter-

ferometry); see Figs. 1(d), 2(a), and 2(c). The LBS exhibits

a divergent hedgehog-shaped momentum distribution [see

Fig. 3(d)]. The exciton polarization is perpendicular to

exciton momentum [see Figs. 2(a) and 3(d)]. This produces

vortices of linear polarization which emerge in concert

with spontaneous coherence below the critical temperature
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FIG. 1 (color online). Polarization patterns in exciton emission. (a) Diagram of the CQW: e, electron; h, hole. (b) Schematic of

exciton formation in the external ring (left) and LBS ring (right); excitons (red) form on the boundary of hole-rich (blue) and electron-

rich (green) areas. Exciton transport is indicated by red arrows. (c) A segment of the emission pattern of indirect excitons showing the
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(see the Supplemental Material [31]). The observed radial

exciton polarization currents are associated with spin cur-

rents carried by electrons and holes bound into excitons as

detailed below.

Appliedmagnetic fields bend the spin current trajectories

creating spiral patterns of linear polarization around the

origin [see Figs. 2(a) and 2(c)]. The spiral direction of the

exciton polarization current clearly deviates from

the radial direction of the exciton density current [see

Figs. 2(a) and 2(c)]. The control of the polarization patterns

by amagnetic field shows that they are associated with spin.

Regular patterns are also observed in circular polariza-

tion [see Figs. 1(e) and 2(e)]. A LBS source of excitons

generates a four-leaf pattern of circular polarization [see

Figs. 1(e) and 2(e)]. This pattern vanishes with increasing

temperature (see the Supplemental Material [31]). An

applied magnetic field transforms the four-leaf pattern to

a bell-like pattern of circular polarization with a strong

circular polarization in the center and polarization

inversion a few micrometers away from the center [see

Figs. 2(e) and 2(g)].

Polarization patterns are also observed in the external

ring region [see Figs. 1(d) and 1(e)]. At low temperatures,

the macroscopically ordered exciton state (MOES) forms

in the external ring. The MOES is characterized by a

spatially ordered array of higher-density beads and is a

condensate in momentum space [27]. The polarization

texture in the external ring region appears as the superpo-

sition of the polarization textures produced by the

MOES beads with each being similar to the texture pro-

duced by a LBS [see Figs. 1(d) and 1(e)]. A periodic array

of beads in the MOES [see Fig. 1(c)] creates periodic

polarization textures [see Figs. 1(d) and 1(e)]. The

periodic polarization textures in the external ring region

vanish above the critical temperature of the MOES (see the

Supplemental Material [31]).

Below we present a theoretical model which describes

the appearance of the exciton polarization textures and

links them to spin currents carried by electrons and holes

bound into bright and dark exciton states. This model is

based on ballistic exciton transport out of the LBS origin

and coherent precession of spins of electrons and holes.

The former originates from the suppression of scattering

and the latter from the suppression of spin relaxation in the

condensate of indirect excitons. The states with different

spins are split due to the splitting of linearly polarized

exciton states and SO interaction, which is described by

the Dresselhaus Hamiltonian He ¼ �eðk
e
x�x � key�yÞ for

electrons and Hh ¼ �hðk
h
x�x þ khy�yÞ for holes [21–23]

(ke;h are electron and hole wave vectors given by ke ¼
kexme=ðme þmhÞ and kh ¼ kexmh=ðme þmhÞ, me and mh

are in-plane effective masses of the electron and heavy

hole, respectively, kex is the exciton wave vector, �e;h are

constants, and �x;y are Pauli matrices). In the basis of four

exciton states with spins Jz ¼ þ1, �1, þ2, �2, the co-

herent spin dynamics in the system is governed by a model

matrix Hamiltonian:

Ĥ ¼

Eb � ðgh � geÞ�BB=2 ��b ke�ee
�i� kh�he

�i�

��b Eb þ ðgh � geÞ�BB=2 kh�he
i� ke�ee

i�

ke�ee
i� kh�he

�i� Ed � ðgh þ geÞ�BB=2 ��d

kh�he
i� ke�ee

�i� ��d Ed þ ðgh þ geÞ�BB=2

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; (1)

where Eb and Ed are energies of bright and dark excitons in

an ideal isotropic QW, and �b and �d describe the effect of

in-plane anisotropy resulting in the splitting of exciton

states linearly polarized along the axes of symmetry. The

angle ’ is measured from the x axis. The details of this

model are presented in the Supplemental Material [31].

Exciton propagation out of the origin governed by this

Hamiltonian results in the appearance of a vortex of linear

polarization with the polarization perpendicular to the

radial direction and a four-leaf pattern of circular polariza-

tion in B ¼ 0, as well as spiral patterns of linear polariza-

tion and bell-like patterns of circular polarization in finite

magnetic fields. This model qualitatively reproduces the

main features of the experiment for both linear [see

Figs. 2(a)–2(d)] and circular [see Figs. 2(e)–2(h)]

polarizations.

This model describes the exciton polarization currents

and allows us to deduce the spin currents carried by

electrons and holes bound to excitons as detailed in the

Supplemental Material [31]. Figures 3(b) and 3(c) show

the electron and hole spin textures deduced from the mea-

sured exciton polarization texture [see Figs. 2(a) and 3(a)].

One can see that both the electron and hole spin

tend to align along the effective magnetic fields given by

the Dresselhaus SO interaction BeffðeÞ ¼ ð2�e=ge�BÞ�

ð�ke;x; ke;yÞ, BeffðhÞ ¼ ð2�h=gh�BÞðkh;x; kh;yÞ [see

Figs. 3(e) and 3(f)], consistent with the model. The pat-

terns of Plin corresponding to the simulations in Fig. 3 are

shown in Fig. 2(b).

The model can be improved by including nonlinear

effects. In the Supplemental Material [31], we present

simulations of exciton spin currents using Gross-

Pitaevskii type equations, which treat the excitons as a

coherent field outside the LBS center and include disper-

sion and interaction. In particular, the nonlinear effects

change the momenta and effective magnetic fields for
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propagating excitons. The simulation results are similar to

that within the density matrix approach and are in agree-

ment with the experiment. Nonlinear spin-related phe-

nomena form interesting perspectives for future studies.

In conclusion, long-range spin currents governed by spin-

orbit interaction and controlled by an applied magnetic

field have been observed in a coherent exciton gas.
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Here gh is the heavy hole g-factor, βh is the Dresselhaus constant for heavy holes [2, 3]. Hence,

Hh =

[
− 1

2ghµBB βh(kh,x − ikh,y)
βh(kh,x + ikh,y)

1
2ghµBB

]
=

[
− 1

2ghµBB βhkhe
−iφ

βhkhe
iφ 1

2ghµBB

]
. (4)

Here φ is the angle between the hole wave vector kh and the chosen x-axis. The exciton Hamiltonian is written in the
basis of (+1,−1,+2,−2) exciton states, which correspond to (+3/2,−3/2,+3/2,−3/2) hole states. The hole spin-flip
couples +1 and −2 states and −1 and +2 states. For each of these two couples of states we apply the Hamiltonian
(4), which results in the following hole contribution to the 4× 4 exciton Hamiltonian:

Ĥh =




−ghµBB/2 0 0 khβhe
−iφ

0 ghµBB/2 khβhe
iφ 0

0 khβhe
−iφ −ghµBB/2 0

khβhe
iφ 0 0 ghµBB/2


 . (5)

For the translational motion of an exciton as a whole particle the exciton momentum is given by
Pex = (me + mhh)vex, where me and mhh are in-plane effective masses of an electron and of a heavy hole,
respectively, vex is the exciton speed. Having in mind that the exciton translational momentum is a sum of electron
and hole translational momenta given by Pe,h = me,hhve,h, ve,h being the electron (hole) speed, one can easily see
that vh = ve = vex. Having in mind that Pex = ~kex, Pe,h = ~ke,h we have kex = kh + ke, ke = me

me+mhh
kex,

kh = mhh

me+mhh
kex.

Besides the contributions from electron and hole spin orbit interactions and Zeeman splitting, there may be a purely
excitonic contribution to the Hamiltonian, which is composed from the Hamiltonian for bright excitons written in the
basis (+1,−1):

Hb = EbI − δbσx =

[
Eb −δb
−δb Eb

]
, (6)

and the Hamiltonian for dark excitons written in the basis (+2,−2):

Hd = EdI − δdσx =

[
Ed −δd
−δd Ed

]
, (7)

where I is the identity matrix. The terms with δb and δd describe the splittings of bright and dark states polarized
along x and y axes in the plane of the structure due to the long-range exchange interaction. Such splitting may
appear due to some in-plane anisotropy in the structure induced by strain or monolayer fluctuations of interfaces. We
assume that it induced the splitting of X- and Y -polarized excitons, while it can be easily generalized to the splitting
in diagonal or random axes. Eb − Ed is the splitting between bright +1 and −1 and dark +2 and −2 exciton states
which may be also split due to the short range exchange interaction. Note that Eqs. (6,7) can be simply obtained
from the exciton Hamiltonians written in the basis of (X,Y ) polarizations. E.g. for the bright excitons:

HXY =

[
Eb − δb 0

0 Eb + δb

]
, (8)

Hb = C−1HXY C,

where C = 1√
2

[
1 1
i −i

]
, C−1 = 1√

2

[
1 −i
1 i

]
are the transformation matrices from linear to circular basis and vice

versa [5]. The same reasoning applies to the dark excitons as well. The sum of Hamiltonians (6,7) in the 4× 4 basis
writes:

H0 =




Eb −δb 0 0
−δb Eb 0 0
0 0 Ed −δd
0 0 −δd Ed


 . (9)
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Let us consider the excitons propagating with a wavevector kex. We shall describe them by a spin density matrix
p̂ = |Ψ >< Ψ|, where Ψ = (Ψ+1,Ψ−1,Ψ+2,Ψ−2) is the exciton wave-function projected to four spin states. The
elements of this density matrix ρij are dependent on the distance from the excitation spot r = vext and the polar
angle φ. The elements of the upper left quarter of the density matrix are linked to the intensity of light emitted by
bright exciton states I and to the components of the Stokes vector Sx, Sy and Sz of the emitted light:

ρ11 =
1

2
+ Sz, ρ12 = Sx − iSy, ρ21 = Sx + iSy, ρ22 =

1

2
− Sz. (10)

These expressions can be summarized using the Pauli matrices as

[
ρ11 ρ12
ρ21 ρ22

]
= 1

2 Î + Sσ̂, where Î is the identity

matrix.
The components of the Stokes vector are directly proportional to the polarization degree of light measured in XY

axes, diagonal axes and the circular basis. The circular polarization degree of light emitted by propagating excitons
can be obtained as

ρc = 2Sz = (ρ11 − ρ22)/(ρ11 + ρ22), (11)

the linear polarization degree can be found from

ρl = 2Sx = (ρ12 + ρ21)/(ρ11 + ρ22), (12)

the linear polarization degree measured in the diagonal axes (also referred to as a diagonal polarization degree) is
given by

ρd = 2Sy = i(ρ12 − ρ21)/(ρ11 + ρ22). (13)

The dynamics of this density matrix is given by the quantum Liouville equation:

i~
dρ̂

dt
= [Ĥ, ρ̂], (14)

where the Hamiltonian is composed from the electron, hole and exciton contributions given by Eqs. (3,5,9) as follows:

Ĥ =




Eb − (gh − ge)µBB/2 −δb keβee
−iφ khβhe

−iφ

−δb Eb + (gh − ge)µBB/2 khβhe
iφ keβee

iφ

keβee
iφ khβhe

−iφ Ed − (gh + ge)µBB/2 −δd
khβhe

iφ keβee
−iφ −δd Ed + (gh + ge)µBB/2


 . (15)

The Hamiltonian (15) includes the electron, hole, and exciton contributions. Magnetic field affects the electron and
hole contributions via the Zeeman splitting. Its effect on the exciton contributions, originating from the change of
short and long-range exchange interactions, is neglected in the model. A qualitative agreement with the experiment
justifies this approximation.

Note, that in a similar way one can describe the Rashba effect for electrons and holes on the exciton spin density
matrix. Our estimations show that for the value of bias we use in these experiments the Rashba effect is much
weaker than the Dresselhaus effect [6]. Therefore we limit ourself to the consideration of the Dresselhaus effect for
electrons and holes. In order to make sure that the observed exciton polarization textures are indeed governed by
the Dresselhaus effect, we have performed also the simulations accounting for the Rashba instead of Dresselhaus
mechanism of spin-orbit coupling. These simulations produce exciton polarization patterns qualitatively different
from the experimental data.

An example of how the Dresselhaus effect affects the polarization of propagating exciton

In order to obtain the spatial distribution of Stokes vector components in the cw regime we assume that all excitons
propagate in radial directions from a point-like or a ring-like source. Their polarization state in a point characterized
by the polar coordinates (r, φ) is readily obtained from the elements of the density matrix ρ̂(t, φ) with t = r/vex. The
exciton speed vex governs the spatial scale of the polarization textures.
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Let us consider the simplest example of how the Dresselhaus effect affects the polarization of propagating excitons.
In order to do it, we shall commute both parts in Eq. (14) with the Hamiltonian. As a result we shall have:

i~
d[Ĥ, ρ̂]

dt
= [Ĥ, [Ĥ, ρ̂]]. (16)

Now we take a time derivative from both parts of Eq. (14) and substitute the expression (16) in its right part:

−~
2 d

2ρ̂

dt2
= [Ĥ, [Ĥ, ρ̂]]. (17)

Let us suppose that initially we have an exciton state composed by bright excitons linearly polarized along x-axis and
dark excitons linearly polarized along y-axis. It is described by the density matrix:

ρ̂0 =




1 1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1


 .

How this matrix would evolve in time due to the Dresselhaus effect on the electron spin? Let us assume B = 0 for
simplicity, and calculate the commutator of the Hamiltonian (3)

Ĥe =




0 0 keβee
−iφ 0

0 0 0 keβee
iφ

keβee
iφ 0 0 0

0 keβee
−iφ 0 0


 .

with the density matrix ρ̂0. One can easily see that

[Ĥe, ρ̂0] = 2keβe




0 0 0 − cosφ
0 0 − cosφ 0
0 cosφ 0 0

cosφ 0 0 0


 .

The double commutator in the right part of Eq. (14) can be now found as:

[Ĥe, [Ĥe, ρ̂0]] = 4(keβe)
2




0 cosφe−iφ 0 0
cosφeiφ 0 0 0

0 0 0 − cosφeiφ

0 0 − cosφe−iφ 0


 .

Let us substitute this expression back to Eq. (17) and look at the dynamics of the element ρ12 = Sx − iSy

describing the linear and diagonal polarization degrees of bright excitons. One can easily see that

~
2 d2ρ12

dt2 = −~
2 d2(Sx−iSy)

dt2 = 4(keβe)
2 cosφe−iφ. Separating the real and imaginary parts of this equation, we

find the dynamics of the Stokes vector components: ~2 d2(Sx)
dt2 = −4(keβe)

2 cos 2φ; ~2
d2(Sy)
dt2 = −2(keβe)

2 sin 2φ.

Our initial conditions are: at t = 0, Sx = Sx0 > 0, Sy = 0. One can see that for φ = −π/2, π/2 the polarization does
not change: Sx = Sx0, Sy = 0. For φ = 0, π, we have Sy = 0, while Sx decreases and, eventually, inverts its sign. The
negative Sx corresponds to Y -polarization. For any other value of φ both Sx and Sy change with time. Namely, Sx

decreases, Sy builds up. The sign of Sy is negative (corresponds to the polarization along (1,−1) axis) if 0 < φ < π/2
and π < φ < 3π/2. The sign of Sy is positive (corresponds to the polarization along (1, 1) axis) if π/2 < φ < π and
3π/2 < φ < 2π. This describes a polarization vortex.

In the same way one can show that the Hamiltonian (9) describing the exchange induced linear polarization splitting
converts any linear polarization different from X and Y polarizations to the circular polarization.

Spin currents carried by electrons and holes bound into excitons

It is important to note that the present formalism addresses the spin part of the exciton wavefunction, which is a
product of electron and hole spin functions. E.g. the probability to find the exciton in the spin state +1 is given by



5

a product of probabilities to find an electron in the spin state −1/2 and the heavy hole in the spin state +3/2. The
four component exciton wave-function

Ψ = (Ψ+1,Ψ−1,Ψ+2,Ψ−2, ) =
(
Ψe,−1/2Ψh,+3/2,Ψe,+1/2Ψh,−3/2,Ψe,+1/2Ψh,+3/2,Ψe,−1/2Ψh,−3/2

)
, (18)

where Ψe,+1/2 and Ψe,−1/2 are the components of the electron spinor wave function, Ψh,+3/2 and Ψh,−3/2 are the
components of the heavy hole spinor wave function. We shall normalize exciton, electron and hole wave functions to
1, namely:

Ψ+1Ψ
∗
+1 +Ψ−1Ψ

∗
−1 +Ψ+2Ψ

∗
+2 +Ψ−2Ψ

∗
−2 = Ψe,+ 1

2
Ψ∗

e,+ 1
2

+Ψe,− 1
2
Ψ∗

e,− 1
2

= Ψh,+ 3
2
Ψ∗

h,+ 3
2

+Ψh,− 3
2
Ψ∗

h,− 3
2

= 1. (19)

Now, the exciton spin density matrix is given by

ρ̂ = |Ψ〉 〈Ψ| =




Ψ+1Ψ
∗
+1 Ψ+1Ψ

∗
−1 Ψ+1Ψ

∗
+2 Ψ+1Ψ

∗
−2

Ψ−1Ψ
∗
+1 Ψ−1Ψ

∗
−1 Ψ−1Ψ

∗
+2 Ψ−1Ψ

∗
−2

Ψ+2Ψ
∗
+1 Ψ+2Ψ

∗
−1 Ψ+2Ψ

∗
+2 Ψ+2Ψ

∗
−2

Ψ−2Ψ
∗
+1 Ψ−2Ψ

∗
−1 Ψ−2Ψ

∗
+2 Ψ−2Ψ

∗
−2


 =

=




Ψ
e,− 1

2

Ψ∗
e,− 1

2

Ψ
h,+ 3

2

Ψ∗
h,+ 3

2

Ψ
e,− 1

2

Ψ∗
e,+ 1

2

Ψ
h,+ 3

2

Ψ∗
h,− 3

2

Ψ
e,− 1

2

Ψ∗
e,+ 1

2

Ψ
h,+ 3

2

Ψ∗
h,+ 3

2

Ψ
e,− 1

2

Ψ∗
e,− 1

2

Ψ
h,+ 3

2

Ψ∗
h,− 3

2

Ψ
e,+ 1

2

Ψ∗
e,− 1

2

Ψ
h,− 3

2

Ψ∗
h,+ 3

2

Ψ
e,+ 1

2

Ψ∗
e,+ 1

2

Ψ
h,− 3

2

Ψ∗
h,− 3

2

Ψ
e,+ 1

2

Ψ∗
e,+ 1

2

Ψ
h,− 3

2

Ψ∗
h,+ 3

2

Ψ
e,+ 1

2

Ψ∗
e,− 1

2

Ψ
h,− 3

2

Ψ∗
h,− 3

2

Ψ
e,+ 1

2

Ψ∗
e,− 1

2

Ψ
h,+ 3

2

Ψ∗
h,+ 3

2

Ψ
e,+ 1

2

Ψ∗
e,+ 1

2

Ψ
h,+ 3

2

Ψ∗
h,− 3

2

Ψ
e,+ 1

2

Ψ∗
e,+ 1

2

Ψ
h,+ 3

2

Ψ∗
h,+ 3

2

Ψ
e,+ 1

2

Ψ∗
e,− 1

2

Ψ
h,+ 3

2

Ψ∗
h,− 3

2

Ψ
e,− 1

2

Ψ∗
e,− 1

2

Ψ
h,− 3

2

Ψ∗
h,+ 3

2

Ψ
e,− 1

2

Ψ∗
e,+ 1

2

Ψ
h,− 3

2

Ψ∗
h,− 3

2

Ψ
e,− 1

2

Ψ∗
e,+ 1

2

Ψ
h,− 3

2

Ψ∗
h,+ 3

2

Ψ
e,− 1

2

Ψ∗
e,− 1

2

Ψ
h,− 3

2

Ψ∗
h,− 3

2


 .

(20)
This representation allows us to obtain useful links between the elements of exciton, electron and hole density matrices,
in particular:

ρ̂e = |Ψe〉 〈Ψe| =

[
Ψ

e,+ 1
2

Ψ∗
e,+ 1

2

Ψ
e,+ 1

2

Ψ∗
e,− 1

2

Ψ
e,− 1

2

Ψ∗
e,+ 1

2

Ψ
e,− 1

2

Ψ∗
e,− 1

2

]
=

[
ρ22 + ρ33 ρ24 + ρ31
ρ13 + ρ42 ρ11 + ρ44

]
, (21)

ρ̂h = |Ψh〉 〈Ψh| =

[
Ψ

h,+ 3
2

Ψ∗
h,+ 3

2

Ψ
h,+ 3

2

Ψ∗
h,− 3

2

Ψ
h,− 3

2

Ψ∗
h,+ 3

2

Ψ
h,− 3

2

Ψ∗
h,− 3

2

]
=

[
ρ11 + ρ33 ρ14 + ρ32
ρ23 + ρ41 ρ22 + ρ44

]
. (22)

We know that the components of electron and hole density matrices are linked with the projections of electron and
hole spins as:

ρ̂e =

[
1
2 + Se,z Se,x − iSe,y

Se,x + iSe,y
1
2 − Se,z

]
, ρ̂h =

[
1
2 + Sh,z Sh,x − iSh,y

Sh,x + iSh,y
1
2 − Sh,z

]
, (23)

(here, for the heavy hole we have assigned spin +1/2 to the state +3/2 and spin −1/2 to the state −3/2 accounting
for the orbital momentum of these states of +1 and −1, respectively). Therefore, the z-component of spin polarization
carried by electrons can be expressed as

Se,z = (ρ22 + ρ33 − ρ11 − ρ44)/2, (24)

and the z-component of spin polarization carried by holes can be expressed as

Sh,z = (ρ11 + ρ33 − ρ22 − ρ44)/2. (25)

The in-plane component of electron and hole spins can be extracted from the off-diagonal elements of the density
matrix. Namely, the x-component of electron spin is given by

Se,x = (ρ13 + ρ31 + ρ24 + ρ42)/2, (26)

the x-component of the hole spin is given by

Sh,x = (ρ14 + ρ23 + ρ32 + ρ41)/2, (27)

the y-component of electron spin is given by

Se,y = i(−ρ13 + ρ31 + ρ24 − ρ42)/2, (28)

and the y-component of the hole spin is given by

Sh,y = i(ρ14 − ρ23 + ρ32 − ρ41)/2. (29)
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Effective fields

Spin-orbit effect for electrons and holes can be accounted by introducing an in-plane effective magnetic field:

Heff(e,h) = −
1

2
ge,hµB (Beff σ̂) . (30)

In the case of Dresselhaus Hamiltonian for electrons:

−
1

2
geµBBeff = βe (ke,x,−ke,y) . (31)

For holes the field is collinear to the wave-vector:

−
1

2
ghµBBeff = βh (kh,x, kh,y) . (32)

-15 0 15
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FIG. S1: Simulated polarization patterns. Simulated in-plane exciton polarization in magnetic field B = 0 (a) and 7 T
(b). The lines and the color visualize the orientation of the linear polarization. The polarization plane comes to itself after
rotation by π. Therefore, the color bar extending from −π/2 to π/2 describes the polarization rotation by 2π. For all data in
the paper, magnetic fields are perpendicular to the QW plane.

Simulations

The system is modeled using Eq. (15) and parameters are adjusted to match the experimental data (see Fig. 2 in
the main text). The same set of parameters is used for linear and circular polarizations and for all magnetic fields.
The parameters are βe = 2.7 µeVµm, βh = 0.92 µeVµm, δb = 0.5 µeV, δd = −13 µeV, Eb − Ed = 5 µeV, kex = 15.4
µm−1, T = 0.1 K, ge = −0.01, and gh = +0.0085. Some of the parameters were obtained in earlier studies and some
of them were put as fitting parameters. All fitting parameters were chosen to be consistent with the data published
in earlier studies: βe is consistent with our earlier measurements [6], βh – with the calculated values [2, 3], T – with
the calculated temperature of indirect excitons for the studied structure [7], exciton splittings – with typical exciton
splittings in GaAs structures [8], g-factors – with typical g-factors in quantum wells with ∼ 8 nm width [9], and kex
was taken within the light cone in the structure (we checked that the model leads to qualitatively similar patterns for
various kex).
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The images are presented with spatial averaging over 1.5 µm. The initial exciton state considered by this model
is a ring around the LBS center where the exciton gas is classical. The ring radius is taken 4 µm. On this ring, the
simulations consider the classical exciton energy distribution with T = 0.1 K, kex = 0. No simulations were performed
inside this ring, the polarization in the ring is shown there. Beyond this ring, the exciton gas is coherent and the
simulations consider ballistic exciton transport with coherent spin precession.

Figure S1 (an enlarged version of Fig. 3a,g in the main text) presents simulated patterns of in-plane projection
of the Stokes vector of emitted light which directly maps the pseudospin of bright excitons (see e.g. [10, 11]. The
patterns of light polarization corresponding to these simulations are shown in Fig. 2b in the main text. Figure S1
visualizes a vortex (a) and a spiral (b) pattern of linear polarization in zero (a) and a finite (b) magnetic field. The
simulations produce the observed exciton polarization textures as described in the main text.

THEORY OF EXCITON SPIN CURRENTS: GROSS-PITAEVSKII EQUATIONS

-0.45

0

0.45

-1

0

1

PΣ

Plin

B=0T B=1T B=3T B=5T B=7T

x HΜmL

y
HΜ

m
L

y
HΜ

m
L

a

b

FIG. S2: Gross-Pitaevskii simulation. Spatial distribution of the linear (a) and circular (b) polarization degrees vs magnetic
field. As in the case of the density matrix calculations, the results are spatially averaged over 1.5µm. Parameters: mex = 0.21me,
βe = 10µeVµm; βh = βe/3; δb = 2µeV; δd = 0.5µeV; Eb − Ed = 2µeV; W = 0.2α, αn = 1µeV. The source area was taken
circular with a radius of 1µm.

The spin density matrix theory is convenient for the description of (partially) coherent and (partially) polarized
exciton gases. However, the treatment of non-linear effects in a partially coherent system is a challenging task. An
approach, which we consider in this section is to assume a perfectly coherent condensate of excitons. In this case, the
excitons can be described by a spatially dependent four-component wavefunction, (ψ+1(x), ψ−1(x), ψ+2(x), ψ−2(x)).
The dynamics of the wavefunction can be described by the Gross-Pitaevskii equation:

i~
d

dt




ψ+1(x)
ψ−1(x)
ψ+2(x)
ψ−2(x)


 =

(
Ĥ −

~
2∇̂2

2mex

)



ψ+1(x)
ψ−1(x)
ψ+2(x)
ψ−2(x)


+ αn(x)




ψ+1(x)
ψ−1(x)
ψ+2(x)
ψ−2(x)


+W




ψ∗
−1(x)ψ+2(x)ψ−2(x)
ψ∗
+1(x)ψ+2(x)ψ−2(x)

ψ∗
−2(x)ψ+1(x)ψ−1(x)
ψ+2(x)ψ+1(x)ψ−1(x)


 . (33)

Here Ĥ is the same Hamiltonian (15), although to correctly define the operation of the k−dependent spin-orbit

terms one should replace ke = me

me+mhh
k̂ex and kh = mh

me+mhh
k̂ex where k̂ex = −i∇̂. Note that the Gross-Pitaevskii

equation allows to work with a distribution of wavevectors, and accounts for the dispersion of excitons via the term

−~
2∇̂2

2mex
, where mex is the exciton effective mass. The last two terms in Eq. 33 are nonlinear terms. In the initial

simplified approach presented here we assume a spin-independent scattering rate, α, where each spin fraction scatters
with the total density, n(x) = |ψ+1(x)|

2 + ψ−1(x)
2 + |ψ+2(x)|

2 + |ψ−2(x)|
2. The last term, proportional to W ,

represents a parametric scattering process unique to indirect exciton systems where two bright excitons convert into
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two dark excitons (or vice versa). Note that all non-linear scattering processes conserve the total spin projection of
excitons.

To describe the excitation of our system, we introduce a fixed wavefunction boundary condition along a circular
boundary representing the edges of the classical region around the LBS center. We choose a linearly polarized dark
exciton density at this boundary, assuming that dark excitons have lower energy than bright excitons. We do not aim
to use the Gross-Pitaevskii equation in the hot LBS center where the exiton gas is classical, however, we expect it to
offer a qualitative description of the propagation of coherent excitons away from the LBS source in the region beyond
the LBS center where the exciton gas is coherent. The indirect excitons have a long lifetime and thus we employ an
absorbing boundary condition to allow solution of the problem. The absorbing boundary introduces a loss mechanism
in the system, such that a steady state is reached where the excitons excited at the LBS balance the flow of excitons
away from the studied region (we assume that upon crossing the absorbing boundary excitons never return).

By solving Eq. 33 numerically for the steady state, the linear and circular polarization degrees are calculated
for increasing magnetic fields (Fig. S2). The simulated patterns are qualitatively similar to both the experimentally
measured patterns and the patterns simulated using the spin density matrix theory. We note that the Gross-Pitaevskii
model does not take into account the partial polarization and energy distribution of excitons in the initial state. The
used approximation also does not account for the difference in interaction strength for different exciton states. These
features contribute to the difference between the presented non-linear simulation and experiment.

EXPERIMENT

Experimental setup

detector

sample
!/4 !/2

linear
polarizer

optical dilution refrigerator

FIG. S3: Experimental setup. Schematic of polarization-resolved imaging.

The electric-field-tunable n+ − i− n+ GaAs/AlxGa1−xAs CQW structure was grown by molecular-beam epitaxy.
A sketch of the band diagram of the structure is shown in Fig. 1a. The i region consists of two 8-nm GaAs QWs
separated by a 4-nm Al0.33Ga0.67As barrier and surrounded by two 200-nm Al0.33Ga0.67As barrier layers. The n+

layers are Si-doped GaAs with NSi = 5× 1017 cm−3. The electric field in the z direction is monitored by the external
gate voltage Vg applied between the n+ layers.

The schematic of the polarization-resolved imaging experiment is presented in Fig. S3. The sample is in an optical
dilution refrigerator. Light emitted by the sample is collected and made parallel by an objective inside the refrigerator.
Polarization selection is done by a combination of quarter-wave plate (λ/4), half-wave plate (λ/2), and linear polarizer.
The linear polarizer is aligned such that y-axis polarized emission is transmitted to the detector. The detector is a
combination of an interference filter of linewidth ±5 nm adjusted to the emission wavelength of indirect excitons
λ = 800 nm (due to the interference filter, only the emission of indirect excitons is measured: the contribution of the
weak emission of direct excitons or any other emission, such as low-energy bulk emission, is cut off by the interference
filter), a spectrometer operating in dispersionless zeroth-order mode, and a liquid nitrogen cooled CCD.
Measurements of linear polarization. The quarter-wave plate is aligned so that the fast and slow axis are along the

x- and y-axis. Hence, x- and y-polarized emission Ix and Iy are transmitted unchanged. To measure Iy, the half-wave
plate fast axis is aligned along the y-axis. Then, Iy is transmitted unchanged, and is then transmitted through the
linear polarizer. To measure Ix, the half-wave plate axis is aligned 45o relative to the y-axis. Then, Ix is rotated to
the y-axis and is transmitted through the linear polarizer.

Measurements of circular polarizations. The quarter-wave plate is aligned so that the fast and slow axis are rotated
by 45o with respect to the y-axis. Then, circularly polarized emission Iσ+ and Iσ− are converted to x- and y-polarized
light. This light is then selected as described above.

In all experiments, the photoexcitation is nonresonant (> 400 meV above the energy of indirect excitons) and
spatially separated (the 10 µm-wide excitation spot is > 80 µm away from both the LBS and external ring) so that
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neither the exciton polarization nor coherence is induced by the pumping light.
In this paper, we present the measurements of exciton spin currents and demonstration of control of the spin

currents by magnetic field. Electronic control of exciton spin currents and development of circuit devices exploring
exciton spin currents for information processing form the subject for future studies

Patterns of linear polarization and coherence in the LBS ring region
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FIG. S4: Pattern of linear polarization in the LBS region: temperature dependence. Measured PL intensity in the
region of LBS centered at (105, 75) in Fig. 1c at Tbath = 0.1 (a) and 7 (b) K. (c) PL Intensity profile through the center of the LBS
for Tbath = 0.1 (black) and 7 (red) K. Measured linear polarization of the emission of indirect excitons Plin = (Ix−Iy)/(Ix+Iy)
at Tbath = 0.1 (d) and 7 (e) K. Plin profile (f) vs x through the LBS center and (j) vs azimuthal angle measured from the
y-axis at r = 9 µm from the LBS center for Tbath = 0.1 (black) and 7 (red) K. (g) The exciton coherence degree measured by
shift-interferometry: Interference visibility Ainterf vs. shift δx for the vortex of linear polarization (squares), 18 µm left of LBS
center, and the polarization ring (points), 2 µm left of LBS center for the LBS centered at (80, 105) in Fig. 1c. Tbath = 0.1 K.
Emergence of the vortex of linear polarization and spontaneous coherence at low temperatures: (h) The amplitude of azimuthal
variation of Plin at r = 10 µm from the LBS center and (i) interference visibility Ainterf in the polarization vortex for δx = 2
µm vs. temperature.

The ring of linear polarization vanishes with increasing temperature (Fig. S4d-f). The vortex of linear polarization
vanishes with increasing temperature (Fig. S4d-f,j).

The coherence of an exciton gas is imprinted on the coherence of emission, which is described by the first-order
coherence function g1(δx). In turn, this function is given by the amplitude of the interference fringes Ainterf(δx) in
‘the ideal experiment’ with perfect spatial resolution. In real experiments, the measured Ainterf(δx) is given by the
convolution of g1(δx) with the point-spread function (PSF) of the optical system used in the experiment [12]. Both
for a classical gas and quantum gas g1(δx) is close to 1 at δx = 0 and drops with increasing δx within the coherence
length ξ. The difference between the classical and quantum gas is in the value of ξ. For a classical gas, ξcl is close

to the thermal de Broglie wavelength λdB =
√

2π~2

mT , which is well below the PSF width in the studied temperature

range (ξcl@0.1K ∼ 0.3 µm, the PSF width is ∼ 1.5 µm). Spontaneous exciton coherence with a large coherence length
ξ is observed in the region of the polarization vortex (Fig. S4g, black squares). In contrast, ξ is short in the region
of the polarization ring (Fig. S4g, red circles), which is close to the hot LBS center. Large ξ ≫ ξcl in the region of
the polarization vortex indicates a coherent exciton state with a much narrower than classical exciton distribution in
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momentum space, characteristic of a condensate. Small ξ ∼ 1.5 µm in the region of the polarization ring indicates a
classical exciton state with ξ measuring the PSF width. The coherence measurements are discussed in detail in [13].
With reducing temperature, the exciton spin textures emerge in concert with coherence (Fig. S4h and S4i).

Patterns of circular polarization in the LBS ring region
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FIG. S5: Pattern of circular polarization in the LBS region: temperature dependence. Measured circular polar-
ization of the emission of indirect excitons Pσ = (Iσ+ − Iσ−)/(Iσ+ + Iσ−) in the LBS region at Tbath = 0.1 (a) and 7 (b) K.
(c) The azimuthal variation of Pσ at r = 9 µm from the LBS center for Tbath = 0.1 (black) and 7 (red) K. (d) The ratio of
maximum to minimum in the azimuthal variation of the total emission intensity of indirect excitons Imax/Imin at r = 8µm
from the LBS center vs. temperature. (e) The amplitude of variation of Pσ around the LBS centered at (105, 75) in Fig. 1c,
vs. temperature.

The four-leaf pattern of circular polarization vanishes with increasing temperature (Fig. S5a-c,e). At low tempera-
ture, the flux of excitons from the LBS center is anisotropic: the emission intensity is enhanced along the polarization
direction in the polarization ring (Fig. S6a). To quantify the flux anisotropy, we use the ratio of maximum to min-
imum in the azimuthal variation of the total emission intensity of indirect excitons Imax/Imin at distance r = 8 µm
from the origin. At high temperature, the exciton flux anisotropy vanishes (Fig. S5d). The four-leaf pattern and flux
anisotropy emerge in concert (Fig. S5d and S5e). The four-leaf pattern of circular polarization is associated with a
skew of the exciton fluxes in orthogonal circular polarizations (Fig. S6).

0 10
-10

0

10

0 10

V
�

V
�

V
�

x (Pm)

y 
(P

m
)

x (Pm)

 

0 90 180 270 360

0.5

1.0

T

cb

a

V
�

 

 

P
L 

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

T

PL Intensity (arb. units)

0

1
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emission intensity of indirect excitons at r = 8 µm in σ+ (blue) and σ− (black) polarizations. Angles are measured from the
y-axis. (b,c) Traces of the σ+ (red) and σ− (green) emission peak around θ = 270◦ [see (a)]; The emission image in σ+ (b) and
σ− (c) polarization is also shown.
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Polarization patterns in the external ring region
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FIG. S7: Polarization textures in the region of external ring: temperature dependence. (a,d) Emission of indirect
excitons in the external ring region. Pattern of linear (b,e) and circular (c,f) polarization in the region of external ring.
Tbath = 0.1 (a-c) and 7 (d-f) K. PL intensity (g), Plin (h), and Pσ (i) profiles taken along the external ring (along an axis 9
degrees of vertical positioned at maximum variation) for Tbath = 0.1 (black) and 7 (red) K. PL intensity (j), Plin (k), and Pσ

(l) profiles taken across the external ring (along the x-axis positioned at maximum variation) for Tbath = 0.1 (black) and 7
(red) K. The image in (j) shows the external ring at Tbath = 7 K.

The fragmentation of the external ring vanishes with increasing temperature (Fig. S7a,d,g), consistent with earlier
results [14]. The periodic polarization textures in the region of the external ring vanish with increasing temperature
(Fig. S7b,c,e,f,h,i,k,l).

Both the position of the external ring and the wavelength of the exciton density wave formed in the ring are
controlled by the laser excitation indicating that the exciton density modulation in the MOES is not governed by
defects in the sample. The observation of polarization textures around the MOES beads, which are not associated
with defects, shows that the polarization textures do not arise due to defects.

The role of excitonic effects in the formation of spin textures in the exciton system

The excitonic terms describing the spin precession in the Hamiltonian due to splitting of exciton states are present
for excitons and absent for free electrons and holes. To verify the role of excitonic effects in the formation of spin
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FIG. S8: Importance of the excitonic effects. Simulated Plin and Pσ (a,b) with the excitonic effects [nonzero excitonic
terms in Hamiltonian (15), the values are presented in Section Simulations] and (c,d) without excitonic effects [zero excitonic
terms in Hamiltonian (15), δb = δd = Eb − Ed = 0]. No spin texture forms in the absence of excitonic terms.

textures, we performed the simulations with and without the excitonic terms in the Hamiltonian (15). No spin texture
forms in the absence of excitonic terms, see Fig. S8. Simulations also indicate that at B = 0, a pattern of circular
polarization appears when all the excitonic terms in the Hamiltonian are nonzero, while a pattern of linear polarization
appears when one excitonic term is nonzero.. This shows that the excitonic effects are important for the formation of
spin textures in the exciton system.

SUPPLEMENTAL VIDEOS

The file “movie 1 linear polarization vs magnetic field.gif” contains a movie of the linear polarization data and
simulations presented in Figure 2 of the text, along with exciton spin texture presented in Figure 3 of the text.

The file “movie 2 circular polarization vs magnetic field.gif” contains a movie of the circular polarization data and
simulations presented in Figure 2 of the text.
The file “movie 3 exciton electron hole textures vs magnetic field.gif” contains a movie of the results presented in

Figure 3 of the text.
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momentum, which appears to be very important in the spe-

cific OPO geometry we consider. Moreover, we numerically

evaluate the scattering amplitudes using a microscopic model

which enables us to analyze the polariton pseudospin distri-

butions on the elastic circle for different pump polarizations.

Introduction of the scattering amplitudes angular depen-

dence in the model leads to appearance of new terms in the

Boltzmann equations for the pseudospin components. These

terms are responsible for the occurrence of new, interesting

spin-related phenomena neglected so far, in particular, ap-

pearance of the circular polarization as a result of scattering

of two linearly polarized polaritons and vice versa. In order

to reveal the impact of these terms, we assume that the final

states for polariton-polariton scattering are initially empty.

This allows us to neglect stimulation of polariton-polariton

scattering and consider only the spontaneous processes. We

therefore use the density matrix formalism and a powerful

algebraic analysis rather than the full �Boltzmann� rate equa-

tions given in Ref. 10. This approach enables us to formulate

simple and universal polarization selection rules for

polariton-polariton scattering.

The rest of this paper is organized as follows: Section II

presents our model and polarization selection rules, Sec. III

presents the numerical results for polariton pseudospin dis-

tributions, Sec. IV contains the conclusive remarks.

II. THEORETICAL MODEL

A. Scattering Hamiltonian

We consider a planar semiconductor microcavity in the

strong exciton-light coupling regime. The cavity is pumped

by two cw laser beams, which produce macroscopic popula-

tions of two cavity modes with opposite in-plane wave vec-

tors k1 and k2=−k1. The angle of incidence of the two laser

beams is the same �angle � in Fig. 1�a��. The polaritons

scatter from the pump states to the final states obeying the

momentum and energy conservation rule. In the configura-

tion we consider, the pair interactions may scatter polaritons

only to the states on the elastic circle defined by the in-plane

momentum �k�= �k1�= �k2�. These allowed final states are then

fully identified by the scattering angle � �Figs. 1�a� and 1�b��.
We shall consider the spontaneous polariton polariton scat-

tering from the macroscopically populated pump states to the

empty final states. We neglect depletion of the pump states

due to the scattering and the longitudinal-transverse splitting

�TE-TM splitting� of the exciton-polariton eigenstates is

taken to be zero.

As pointed out in many publications,11–14 excitons are not

ideal bosons due to the fermionic nature of their constituents

�electrons and holes�. This is why also the cavity polaritons

show some fermionic properties. The fermionic effects are

negligible in the low-density limit, but they become impor-

tant as soon as polariton-polariton interactions start playing a

role. Strictly speaking, polariton-polariton scattering needs to

be considered as a result of interactions of four

fermions.3,11,13 It is, however, possible and convenient to use

an effective scattering Hamiltonian for the polaritons having

the total angular momenta s= �1 �which are strongly

coupled to the optical field of the cavity mode�. Using the

above assumptions, one can easily see that such an effective

Hamiltonian would couple the states on the elastic circle

only to the pump states k1 and k2:

HSC =
1

2�
s,q

�V1�k1,k2,q�as,k1+q
+

as,k2−q
+

as,k1
as,k2

+ V2�k1,k2,q�as,k1+q
+

a−s,k2−q
+

as,k1
a−s,k2

� . �1�

Here, as,k is the annihilation operator for a polariton having a

wave vector k and spin s �the band index is omitted here

since we consider only polaritons from the lower dispersion

branch�. The amplitudes V1 and V2 describe scattering of the

polaritons with parallel and antiparallel spins. In general,

V1�V2, as we shall discuss below in detail. The spin depen-

dence of polariton-polariton interactions is at the origin of

many peculiar effects in the polarization dynamics of exciton

polaritons,10,15 including the self-induced Larmor

precession,16 the rotation of linear polarization due to

polariton-polariton scattering17 and the buildup of linear po-

larization of the Bose-Einstein condensates of

exciton-polaritons.18

Considering the scattering on the elastic circle, we define

the wave vectors k3��� and k4��� of the scattered polaritons

according to Fig. 1 �the argument will not be explicitly men-

tioned from now on� and present the exchanged momenta

q=k3−k1 and q�=k4−k1. The Hamiltonian �1� then reads:

HSC = �
s,�

��1���as,k3

+
as,k4

+
as,k1

as,k2
+ ��2���as,k1+q

+
a−s,k2−q

+

+ �2����a−s,k1+q
+

as,k2−q
+ �as,k1

a−s,k2
� , �2�

where the summation over the angle � goes from 0 to � and

we have defined more convenient scattering amplitudes

�omitting the initial momenta in the arguments for clarity�:

�1��� =
1

2 �V1�q� + V1�q��� , �3�

�2��� =
1

2V2�q� , �4�

�2���� =
1

2V2�q�� = �2�� − �� . �5�

The matrix elements of the Hamiltonian �2� for selected

spins of the initial and final states are shown in Table I. They

should be interpreted carefully: the nonzero matrix element

�XX�HSC�XX� �where the bra and ket vectors denote the final

and initial spin states, respectively� expresses only the fact

that in the case of excitation by two X-polarized beams, the

conditional probability of finding the X-polarized polariton in

the direction k3 when we observe another X-polarized polar-

iton in the direction k4 is nonzero �and proportional to the

matrix element squared�. It does not mean, however, that the

final states are X polarized because also the matrix element

�YY�HSC�XX� is nonzero and a Y-polarized component in the

emission is expected to appear as well. Surprisingly, the

emission will not be polarized at all if �2=�2�=0 or �1=0

because both the aforementioned matrix elements have the

same magnitude and the probability of scattering to the states

�XX� and �YY� is equal. We then find that the final states are

in a non–polarized entangled state ��XX�+ �YY�� /	2.
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B. Scattering amplitudes

In order to quantitatively characterize the emission from a

microcavity in the limit of spontaneous scattering on the

elastic circle, we shall evaluate or estimate the amplitudes of

the coefficients �1, �2, and �2�. One can expand:

V1�q,k1,k2��XH�−4 = Vdir�q,k1,k2� + Vexch�q,k1,k2� , �6�

V2�q,k1,k2��XH�−4 = Vdir�q,k1,k2� + Vsuper. �7�

The beta coefficients are then retrieved following the defini-

tions �3�–�5�. XH denotes the Hopfield coefficient describing

the excitonic fraction of polariton states at the elastic circle.

In Eqs. �6� and �7�, the scattering amplitudes were

decomposed11,14 into the exciton direct-scattering part Vdir

and the exchange-scattering parts Vexch, Vsuper. The part Vsuper

is an effective exchange contribution originating in higher-

order processes, which involve virtual excitation of the opti-

cally forbidden exciton states with spins �2 �superex-

change�. Scattering between the optically active polariton

states and the dark excitons has been addressed in detail in

Refs. 19–21.

We performed numerical calculations of the direct scatter-

ing amplitude for exciton-polaritons on the elastic circle us-

ing the microscopic model.22,23 We found that the scattering

amplitudes do not depend on the particular orientation of the

contributing wave vectors and thus we use the notation

q= �q� and k j = �k j� in the following. We also carried out nu-

merical calculations of the exchange term Vexch, which dis-

played a virtually constant behavior for small q. We therefore

consider that both the exchange and the superexchange terms

are constant around the elastic circle. Clearly, the character-

istic scale on which these terms might change is given by the

inverse exciton Bohr radius aB
−1, which is orders of magni-

tude larger than the radius of the elastic circle which we

consider.

The direct term, on the contrary, reveals a strong

dependence on the exchanged momentum for q�aB
−1,

according to Refs. 22 and 23, and provides zero scattering

amplitude for q=0 in the 2D exciton gas limit. The scattering

amplitude varies as �qaB�3 and is estimated as

Vdir�0.1aB
−1� /Vexch
1.5·10−4 giving only a negligible contri-

bution to the overall scattering amplitudes in Eqs. �6� and

�7�. The small amplitude of the direct term is, nevertheless,
caused by compensation of the electron-electron and hole-
hole repulsion by electron-hole attraction, and the direct term
completely vanishes if the effective masses of the fermions
become equal. The different shape of the electron and the
hole wave functions in realistic quantum wells �QWs� cause
the nonzero amplitude of the direct Coulomb interaction. We
show here that this direct term may become orders of mag-
nitude larger in narrow QWs compared to the ideal 2D exci-
ton gas because of the wave function penetration into the
barriers �for the discussion of the effect of charge separation
see Ref. 14�.

We derived an analytical expression for the direct scatter-

ing term amplitude considering a real exciton wave function

in a narrow QW in the integral form �see Appendix� and then

evaluated it numerically. The effect of charge separation on

the amplitude of the direct term is obvious from Eq. �A3�:
the larger difference between the square of the electron and

hole wave function is, the larger value of the scattering am-

plitude. In real, narrow GaAs QWs, coincidentally, the ratio

between the electron and the hole mass is about 1/6, which is

why electrons deeply penetrate into the QW barriers when

the hole are kept localized in the QW layer. The effect of

delocalization is even more pronounced in QWs with low-

band offsets, e.g., InGaAs/GaAs with low In content. The

amplitude of the direct term therefore strongly depends on

the QW width and composition.

We plot the direct term amplitude in the units of the ex-

change interaction amplitude in Fig. 2�a� for the frequently

used GaAs /Al0.3Ga0.7As and In0.04Ga0.96As /GaAs QWs of

the widths 2.5 and 5 nm, respectively. The electron wave

function spreading into narrow QW barriers causes the sig-

nificant increase of the direct scattering amplitude, which

now has a nonzero value at zero exchanged momentum �the

particular wave functions are plotted in the inset of Fig.

2�b��. When inspecting the angular dependence of the spin

and intensity of the scattered signal on the elastic circle, not

only the offset but also the absolute value of the amplitude

variations with the exchanged momentum are important. In

this case, the variations are larger by over two orders of

magnitude in the case of the In0.04Ga0.96As /GaAs QW, as

compared to the GaAs /Al0.3Ga0.7As QW, in the range of

wave vectors up to 2 	m−1.

TABLE I. Matrix elements of the Hamiltonian �3� for selected spin combinations of the incoming and outgoing polaritons. Polarization

state L�
� is defined as the linear polarization rotated by an angle 
 with respect to the X-polarized state and we define �=exp�−i
�. The

notation in the table is as follows: �+�− for the initial state denotes the s=1 polariton in the state k1 and s=-1 polariton in the state k2. Same

for the final states. The matrix element for the �−�+ configuration may be retrieved by permutation of �2 and �2�.

Initial state

Final state

�+�+ �+�− �−�− XX XY YY XL�
�

�+�+ �1 0 0 �1 /2 i�1 /2 −�1 /2 ���1 /2

�+�− 0 �2 0 ��2+�2�� /2 −i��2−�2�� /2 ��2+�2�� /2 ���2+���2�� /2

�−�− 0 0 �1 �1 /2 −i�1 /2 −�1 /2 ��1 /2

XX �1 /2 ��2+�2�� /2 �1 /2 ��1+�2+�2�� /2 0 ��2+�2�−�1� /2 ��1+�2+�2�� · �cos 
� /2

XY −i�1 /2 i��2−�2�� /2 i�1 /2 0 ��1+�2−�2�� /2 0 ��1+�2−�2�� · �sin 
� /2

YY −�1 /2 ��2+�2�� /2 −�1 /2 ��2+�2�−�1� /2 0 ��1+�2+�2�� /2 ��2+�2�−�1� · �cos 
� /2
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A further electron-hole separation may be induced by ap-

plying an electric field in normal to the QW plane direction.

Although the exciton oscillator strength may be reduced in

this case due to the quantum confined Stark effect, the sys-

tem may be kept in the strong coupling regime if the Q factor

of the cavity is high enough. In this case, the direct term and

its variation along the elastic circle are further increased as

one can see from Fig. 2�b�, where we plot the amplitude of

the direct term for the InGaAs/GaAs and GaAs/AlGaAs

QWs considering the electron and the hole centers of mass

spatially separated by 1 nm. The difference between the scat-

tering amplitudes in the two types of III-V QWs we consid-

ered almost vanishes at strong applied bias.

To estimate the magnitude of external electric field

needed for the efficient charge separation, let us consider a

plane capacitor formed by two plates electrically charged

with the density 
. Considering the QW excitons, the charge

density may be estimated as 
=e�1−S� /�aB
2 , where S is the

electron-hole overlap integral, e is the electron charge and aB

is the exciton Bohr radius. The electric field created by one

of the planes and acting upon another one is independent on

the distance between them, EP=
 /2� where � is static di-

electric constant. The electron-hole system is in equilibrium

if the field EP is compensated by an external field of the

same magnitude. This allows estimating of the external field

as E=
e

2��

1−S

aB
2 . Substituting �r=10 and the Bohr radius

aB=10 nm, we obtain E
�1−S� ·30 kV /cm. The reduction

of the electron-hole overlap S due to the spatial separation of

electron and hole centers of mass by 1 nm is, approximately,

30% and 50% in 5 and 2.5 nm wide InGaAs/GaAs QWs,

respectively, and 55% and 85% in 5 and 2.5 nm wide GaAs/

AlGaAs QWs, respectively. These numbers imply the re-

quired external electric field intensities in the range 10–25

kV/cm, depending on the QW composition and width. These

values are in a good agreement with the results of Ref. 24,

which gives an estimate of the same order for CdTe/CdZnTe

QWs.

Finally, the magnitude of the superexchange scattering

channel may be estimated from the T-matrix calculations

published in Refs. 20 and 21. We use the ratio Vsuper /Vexch

=T+−
/T++=−0.28+0.01i for all QWs under consideration.

C. Spin and polarization of the final states

As pointed out above, the Hamiltonian �2� and its matrix

elements in Table I do not directly show either the degree of

polarization or the polarization of the final states themselves.

We therefore develop an algebraic procedure for calculation

of both these quantities from the Hamiltonian �2�. The sys-

tem of interacting polaritons is described by the density ma-

trix 
�t� with an initial condition 
�t=0�=
0. We assume that

the dephasing in the system is strong due to interactions

between polaritons and phonons what allows one to use the

Born-Markov approximation10 for evaluation of the density

matrix dynamics. This procedure yields:

d
�t�
dt

= −
2�

�2
��Ef − Ei��HSC,�HSC,
�t��� , �8�

where Ef,i are the energies of the final and the initial state,

respectively, and the Dirac delta function is responsible for

energy conservation. As we discussed above, the final states

are weakly populated and therefore the system response in an

arbitrary scattering direction is governed only by the popu-

lations of the initial states and the scattering angle � �i.e., no

stimulated scattering�. This assumption allows us to substi-

tute 
�t�=
0 in the right hand side of Eq. �8�. It is also

obvious that we do not need to know the evolution of the

whole density matrix, which is why we fragment it to the

submatrices whose evolution is of particular interest.

We define the 2�2 spin-density matrix 
k for a state with

a wave vector k in the basis of spins ��+ ,�−�. The 4�4 joint

density matrix for the final states is therefore defined as a

direct product 
k3���,k4���=
k3��� � 
k4��� and it fully describes

the spin states of the scattered polaritons. The equation of

motion for this density matrix can be straightforwardly de-

rived from Eq. �8� within the assumptions made:

d
k3���,k4����t�

dt
= −

4�

�2
��Ef − Ei�HB

+���
k1,k2
HB��� , �9�

where the joint density matrix for the initial states is


k1,k2
=
k1

� 
k2
and the Hamiltonian sub-block HB reads:

HB��� =

�1��� 0 0 0

0 �2��� �2���� 0

0 �2���� �2��� 0

0 0 0 �1���
� . �10�

We are interested in the polarization of the radiation emerg-

ing in some definite direction denoted by the wave-vector k3

�see Fig. 1�. The polarization properties of the radiation are

fully described by the pseudospin vector Sk3
. We define the

spin matrix in the usual way10 
k3
=

1

2
Nk3

+Sk3
·�, where Nk3

is the polariton population in the direction k3 and � is the

vector of Pauli matrices. The population and pseudospin

components of the final state may be retrieved by evaluation

FIG. 2. �Color online� Ratio between the direct and exchange-

scattering amplitude considering zero �a� and nonzero �b� applied

voltage perpendicular to the QW plane for real QWs. Nonzero volt-

age is assumed to induce spatial shift of each of the particle wave

functions by 1 nm in opposite directions. Different QW composi-

tions and widths are taken into account. The curve offsets were

removed for clarity, their values are: �a� InGaAs 2.5 nm: 0.22, In-

GaAs 5 nm: 0.089, GaAs 2.5 nm: 0.007, GaAs 5 nm: 0.002, �b�
InGaAs 2.5 nm: 0.27, InGaAs 5 nm: 0.17, GaAs 2.5 nm: 0.30,

GaAs 5 nm: 0.24. Inset: calculated electron �e� and hole �h� wave

functions squared in 2.5 nm wide QW for the two GaAs/AlGaAs

and InGaAs/GaAs compositions.
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of appropriate quantum-mechanical mean values:

Nk3
�t� = �

s

�as,k3

+
as,k3

� = Tr��I � I�
k3���,k4����t�� , �11�

Sx,k3
�t� =

1

2
�

s

�as,k3

+
a−s,k3

� =
1

2
Tr���x � I�
k3���,k4����t�� ,

�12�

Sy,k3
�t� =

i

2
�

s

s�as,k3

+
a−s,k3

� =
1

2
Tr���y � I�
k3���,k4����t�� ,

�13�

Sz,k3
�t� =

1

2
�

s

s�as,k3

+
as,k3

� =
1

2
Tr���z � I�
k3���,k4����t�� .

�14�

The symbol I denotes here the 2�2 unit matrix. Considering

finite lifetime of polaritons � and cw excitation, the steady-

state pseudospin components may be derived as

S j
steady=��dS j /dt�coh, where the “coh” index denotes the co-

herent temporal evolution according to Eq. �9�. Using Eqs.

�9� and �11�–�14�, we obtain the steady-state pseudospin

components:

N3
steady � ��1

2 + ��2�2 + ��2��
2�N1N2 + 8 Re��2��2��

��S1xS2x

+ 8 Re��2
��2��S1yS2y + 4��1

2 − ��2�2 − ��2��
2�S1zS2z,

�15�

S3x
steady � 2�1 Re��2��S1xN2 + 2�1 Re��2�N1S2x

+ 4�1 Im��2�S1zS2y + 4�1 Im��2��S1yS2z, �16�

S3y
steady � 2�1 Re��2��S1yN2 + 2�1 Re��2�N1S2y

− 4�1 Im��2�S1zS2x − 4�1 Im��2��S1xS2z, �17�

S3z
steady � ��1

2 − ��2�2 + ��2��
2�S1zN2 + ��1

2 + ��2�2 − ��2��
2�N1S2z

+ 4 Im��2��2��
��S1yS2x + 4 Im��2

��2��S1xS2y . �18�

Compared to Ref. 10, we obtained several new terms in the

kinetic equations for the pseudospin components. The origin

and the role of these terms are discussed in the next Section.

III. RESULTS AND DISCUSSION

A. Polarization selction rules

Here, we consider the polarization selection rules which

govern polariton-polariton scattering on the elastic circle.

The final state polarizations are analyzed as a function of the

scattering angle. The angle dependence of the scattering am-

plitudes comes from the direct Coulomb scattering term,

while the exchange and superexchange contributions are vir-

tually insensitive to the scattering angle if the radius of the

elastic circle is much less than the inverse exciton Bohr ra-

dius.

The total polarization degree of a polariton quantum state

k3 can be defined as P=2�S3� /N3. Obviously, this quantity

ranges between 0 �nonpolarized state� and 1 �fully polarized

state�. We note that Eqs. �16�–�18� account for the possible

depolarization of the final states with respect to the initial

states. For example, if considering fully colinearly polarized

initial states, we obtain for the total polarization degree of

the final states:

P =
2��1 Re��2 + �2���

�1
2 + ��2�2 + ��2��

2 + 2 Re��2
��2��

. �19�

P is zero if �2=�2�=0 or �1=0 �cf. Table I and the discussion

at the end of Sec. II A� and equals 1 if �2=�2�= ��1 /2. The

ratios �2 /�1 and �2� /�1 determine the degree of polarization

and also the orientation of the pseudospin vector. The ex-

change interaction couples the initial states with colinear po-

larizations to the final states with the parallel and perpen-

dicular linear polarizations with the same probability �see

Table I�. This is why, in this configuration, only the superex-

change term and the direct interaction term affect the polar-

ization degree of the final states. The coefficients �2 and �2�

may be negative if the exchanged momentum is small and

therefore the inversion of linear polarization is often ob-

served in the polariton-polariton scattering experiments.16,17

The effect of depolarization in polariton-polariton scatter-

ing has not been addressed theoretically so far, to the best of

our knowledge. Here, we show that it is indeed a general

feature of polariton-polariton scattering in the spontaneous

regime. This effect limits accuracy of the Gross-Pitaevskii

equations which assume full coherence and polarization in

the system. On the other hand, the depolarization effect is

likely to be reduced if the scattering of polaritons is stimu-

lated by final state populations. In this regime, a selected

polarization is likely to be amplified, so that the total polar-

ization degree increases.

When compared to Ref. 10, we observe the new terms in

Eqs. �16�–�18�. These terms emerge from the fact that we

consider the complex and angle-dependent scattering ampli-

tude V2 and therefore �2��2� and Im �2�0 in general. Ex-

cept for these differences, the results of Ref. 10 in the limit

of spontaneous scattering are fully reproduced. Knowing the

angular dependence of V2 we are able to predict the depen-

dence of the pseudospin components on the scattering angle.

Moreover, we find a new possibility of polarization con-

version as a result of polariton-polariton scattering. In order

to illustrate this, let us consider Eq. �18�. The last two terms

in it describe creation of the circular polarization component

from two incoming polaritons with linear polarizations ro-

tated by 45° with respect to each other. As the states on the

elastic circle with nonzero wave vectors are created, this

means creation of the spin currents with well defined propa-

gation directions. We recall that polariton spin currents may

be generated in microcavities due to the Optical Spin Hall

effect25,26 caused by the TE-TM splitting of exciton-

polaritons and their elastic scattering by a static disorder po-

tential. The effect we propose here does not require either

disorder scattering, or TE-TM splitting but exploits the spe-

cific selection rules in the polariton-polariton scattering.
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Note that the total spin is conserved by the process we con-

sider, because the build up of some degree of circular polar-

ization in one direction is compensated by appearance of an

opposite circular polarization degree in the opposite scatter-

ing direction. Equations �16� and �17� allow for an inverse

process: the creation of linear polarization from one linearly

and one circularly polarized initial state. This process is re-

flected by the elements of the rightmost column in Table I.

We note that the process described above is possible due

to the existence of a nonzero imaginary part of the scattering

amplitude V2. The argument is that V2 contains contributions

in both first and second order of the perturbation theory �di-

rect and superexchange terms, respectively�, which bring dif-

ferent phases, so their sum is a complex number with non-

zero real and imaginary parts.

B. Numerical simulations

The numerical solutions of Eqs. �16�–�18� are plotted in

Figs. 3 and 4. Here we consider a microcavity with a 2.5 nm

wide In0.04Ga0.96As /GaAs or GaAs /Al0.3Ga0.7As QW. We

have fixed Vsuper /Vexch=−0.28+0.01i following the results of

Schumacher et al.20,27

The linear polarization degree of the final states defined as

Px=2S3x /N3 is plotted in Figs. 3�a�–3�d� in the case of colin-

ear �X polarized� and cross-linear polarizations of the initial

states, respectively, as a function of the scattering angle. The

curves in Figs. 3�a� and 3�c� are calculated accounting for the

electron and hole spatial separation due to an applied electric

field for both types of QWs, Figs. 3�b� and 3�d� illustrates the

wave vector dependence of the degree of polarization in the

GaAs/AlGaAs QW.

We observe from Fig. 3�a� that the inversion of the linear

polarization degree in the case of scattering of collinearly

polarized polaritons takes place unless Re �2�0. Without

the strong direct Coulomb interaction, the linear polarization

degree would be Px=2�Vsuper /Vexch� / �1+ �Vsuper /Vexch�2�

52% in the steady-state regime, however the direct inter-

action compensates the effect of the linear polarization rota-

tion and the degree of linear polarization is expected to reach

the value of only 11% in narrow InGaAs/GaAs QWs. The

contrast of the degree of linear polarization around the elastic

circle is of only a few tenths of per cent due to the nearly

quadratic behavior of the direct term amplitude as a function

of the exchanged wave vector �see Fig. 2�a��. The contrast is

increased if the wave vector of incident beams �elastic circle

radius� is increased as shown in Fig. 3�b�.
Figure 3�c� shows nontrivial variations of the degree of

linear polarization as a function of the scattering angle if we

consider excitation by cross-polarized beams �note that the

X-polarized beam is incident at �=180°�. The degree de-

pends very strongly on the particular shapes of the electron

and hole wave functions, and obviously the polarization of

the emitted light may be controlled by the applied voltage.

The dependence of the polarization degree on the elastic

circle radius for a GaAs/AlGaAs QW subjected to the exter-

nal bias is shown in Fig. 3�d�. The elastic circle radius affects

the value of the exchanged wave vector, which governs the

final state polarizations.

The calculations presented in Figs. 3�a�–3�d� show only a

weak variation of the linear polarization degree on the elastic

circle �below one per cent�. However, so far we have ne-

glected the final state stimulation of the polariton-polariton

scattering, which is expected to magnify the polarization

variation. In order to reveal this effect, we have solved the

FIG. 3. �Color online� Linear polarization degree Px in scatter-

ing of colinearly �a–b,e� and cross-linearly �c–d,f� polarized pump

beams as a function of scattering angle. Spontaneous scattering only

is considered in �a–d� while �e–f� display calculations with stimu-

lation of the polariton scattering taken into account. We compare

different QW compositions �a,c,e–f� �circle radius 2 	m−1� and

elastic circle radii for “GaAs �0 nm�” QW �b� and “GaAs �1 nm�”
QW �d�. The numbers in parentheses mean spatial shift of the par-

ticle wave functions due to the applied electric field. Curves in �a,e�
have nonzero offsets which were removed for clarity: �a� GaAs �0
nm�: −52%, GaAs �1 nm�: +4%, InGaAs �0 nm�: −11%, InGaAs �1
nm�: −2%, �e� GaAs �0 nm�: −100%, GaAs �1 nm�: +60%, InGaAs

�0 nm�: −100%, InGaAs �1 nm�: −35%. The QW width is always

2.5 nm.

FIG. 4. �Color online� �a� Degree of circular polarization around

the elastic circle for two different 2.5 nm wide QW compositions

above the stimulated threshold. �b� Dependence of the degree of

circular polarization �DCP� contrast on the elastic circle on the

angle between vectors of linear polarization of the incident beams.
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equations of motion for polariton pseudospin taking into ac-

count the stimulated processes in polariton–polariton scatter-

ing. The results are plotted in Figs. 3�e� and 3�f� for the same

parameters as in Figs. 3�a� and 3�c�. One can see that the

polarization degree as well as its variations strongly increase.

The variations may be as large as several per cent in this

case. We also observe that depolarization takes place even in

the stimulated regime �polarization degree is only 35% in

InGaAs QW�.
The buildup of the circular polarization and generation of

polariton spin currents by linearly polarized optical pumps is

demonstrated in Fig. 4. There the pumps have linear polar-

izations whose planes are rotated by 22° with respect to each

other �at this angle the highest circular polarization degree is

observed, see Fig. 4�b��. In this calculation, we considered

the stimulated scattering regime, in which case the circular

polarization contrast exceeds one per cent. This effect, which

may be cautiously referred to as the intrinsic optical spin

Hall effect, is relatively weak in the model microcavities we

have considered. On the other hand its magnitude depends

on the spatial separation of electrons and holes in the QW

growth direction so that it can be tuned by applying an ex-

ternal bias.

IV. CONCLUSIONS

We have analyzed the polarization selection rules for the

elastic scattering of exciton polaritons in a semiconductor

microcavity in the strong coupling regime. We show that the

polarization of scattered polaritons may be different from the

polarization of pumping light. In particular, linear polariza-

tion may be rotated by 90 degrees and circular polarization

may be builtup from linearly polarized pumping. We show

that when scattered in particular directions the polaritons

lose their polarization and become unpolarized.

Using a microscopic model, we have calculated the scat-

tering angle dependence of the polariton-polariton scattering

amplitudes on the elastic circle. We have shown that the

amplitude of the direct Coulomb scattering process is angle

dependent and reveals the pronounced minima and maxima

as one goes around the elastic circle. The angular depen-

dence is more pronounced in QWs with spatially separated

electron and hole centers of mass. This offers an opportunity

to tune the final state polarization by the external electric

field. On the other hand, the contributions from the exchange

and superexchange polariton coupling mechanisms are virtu-

ally independent of the scattering angle. We have found

terms previously neglected in the pseudospin kinetic equa-

tions arising from the wave vector dependence of the scat-

tering amplitudes and their imaginary components. These

terms are shown to be responsible for a variety of effects. We

have demonstrated that polariton spin currents �circular po-

larization currents� may be generated using linearly polarized

pump beams. This analysis provides a basis for engineering

of spin-sensitive optical logic gates based on exciton polari-

tons.

The demonstrated sensitivity of the direct scattering term

to the QW geometry and to the applied voltage offers the

opportunity to control the polariton-polariton interactions

and their spin selection rules via the microcavity design �e.g.,

introducing coupled QWs or superlattices� and external

fields. We believe that the effects predicted in this paper may

be used in future field-controlled spintronic devices.
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APPENDIX

The direct scattering term is given by the integral:23

Vdir =� 
3
��r1,r1��
4

��r2,r2��V�r1,r1�,r2,r2��

�
1�r1,r1��
2�r2,r2��dr1 . . . r2�, �A1�

where the nonprimed r’s are the electron coordinates and the

primed ones are the hole coordinates. Symbol V stands for

the Coulomb potential and 
’s are the initial and the final

state wave functions with appropriate indices. Note that the

vectors are three-dimensional. We factorize the wave func-

tions as products of the in-plane and z-components as


k�r ,r��=Ne−ik·R������z����z�� where N is the normaliza-

tion constant, k is the in-plane wave vector, R is the center-

of-mass coordinate, � is the relative electron-hole coordinate

and � and �� are the respective wave functions of an electron

and a hole in a QW. Considering ����=exp�−
 /aB� and

�k��aB
−1, we may do a straightforward evaluation, restricting

only to the most important terms:

Vdir�q� 

e2

�aB

aB
2

S

�

4aBq
�� ��2�z1��2�z2� + ��

2�z1���
2�z2� − 2�2�z1���

2�z2��f�q,z1,z2�dz1,2

−
3�qaB�2

4
� ��2�z1��2�z2���

2 + ��
2�z1���

2�z2��2 − �2�z1���
2�z2���2 + ��

2��f�q,z1,z2�dz1,2

−
3�qaB�4

64
� ��2�z1��2�z2���

4 + ��
2�z1���

2�z2��4 − 2�2�z1���
2�z2��2��4 + ��

4� − 3�2��
2��f�q,z1,z2�dz1,2� �A2�
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f�q,z1,z2� = �
0

�
x

	x2 + q2�z1 − z2�2
J0�x�dx . �A3�

Here, e stands for the electron charge, � is the static dielectric constant, S is the normalization surface, J0 is the Bessel function,

� and �� are the respective electron and hole reduced masses. The exchanged wave vector is denoted by q.
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circuits,14 and highly efficient sources of entangled photon
pairs.15

The polarization-controlled X-NOR gate is the only spin-
optronic device concept which has been realized experimen-
tally already.16 It consists of a semiconductor microcavity in
the strong-coupling regime optically excited by two linearly
polarized light beams incident at the opposite oblique angles
�see Fig. 1�a��. The device operates due to elastic polariton-
polariton scattering which changes distribution of the exciton
polaritons on the so-called elastic circle, i.e., the circle in the
reciprocal space corresponding to the constant energy, equal
to the energy of the pump beams. It has been demonstrated
experimentally that polaritons are scattered preferentially at
the right angle in this configuration �i.e., in the directions
which are characterized by in-plane wave vector components
orthogonal to those of the pump beams17�. Moreover, the
scattering only takes place if two pumping light beams are
colinearly polarized. On the other hand, if the polarizations
of two incident beams are orthogonal, the scattering van-
ishes. This surprising experimental observation has been
theoretically reproduced in Ref. 16 using the spin dependent
Gross-Pitaevskii �GP� equations, which describe the en-

semble of exciton polaritons by a single spinor wave func-
tion. Being a powerful tool for numerical modeling of the
coherent polariton dynamics, GP equations account for
polariton-polariton scattering in all orders assuming contact
interactions described by two phenomenological constants �1
and �2 which characterize the scattering of polaritons with
parallel and antiparallel spins, respectively. GP equations do
not provide information on the probabilities and polarization
selection rules of each individual scattering act and, while
the agreement between simulation and experiment is excel-
lent, the physical reasons of the unusual characteristics of the
polariton X-NOR gates remained obscure.

The goal of this paper is to describe the most important
features of polariton logic gates in terms of the spin- and
angle-dependent scattering of exciton polaritons. We show
that the peculiar nonuniform distribution of the polaritons on
the elastic circle observed in Refs. 16 and 17 is due to the
diffraction of scattered polaritons on the grating created by
two pump pulses.

II. POLARITON X-NOR GATE IN THE SPONTANEOUS

SCATTERING REGIME

Polarization selection rules in the course of polariton-
polariton scattering have been analyzed in our recent
publication.18 We have shown that a single spontaneous scat-
tering act of two identically linearly polarized exciton polari-
tons results in two weakly polarized polariton states having
their preferential polarization in the plane orthogonal to the
polarization plane of two initial states. This small preferen-
tial polarization of the final states may be amplified in the
case of stimulated scattering. On the other hand, no signifi-
cant angular dependence of the scattering amplitudes has
been found for the realistic microcavity structures within this
model. This result is in apparent contradiction with the
experiments17 and the Gross-Pitaevskii model.16 Having in
mind that the GP equations implicitly account for polariton-
polariton scattering in all orders, the only possible explana-
tion of this contradiction is that the experimentally observed
strong angular dependence of the scattered polariton popula-
tion is due to the processes involving two or more polariton
scattering events.

To start we note that there is no process which could
break the cylindrical symmetry of the microcavity potential
acting upon exciton polaritons under weak excitation �i.e., if
pump-induced blueshift of the excited states is small com-
pared to the disorder potential in the sample�; however, when
the pump power is sufficiently large, the pump beams them-
selves provide the symmetry-breaking effect. This effect can
be described as an appearance of a pump-induced transient
grating on which the polaritons diffract from the elastic
circle �EC� to off-branches19 shifted in the reciprocal space
by the grating vector ��k1−k2�, where k1,2 are the in-plane
wave vectors of excitation beams �see Fig. 1�a��. The transi-
tions to the off-branches do not conserve energy so that they
must be accompanied by processes which restore the energy
conservation within time inversely proportional to the energy
mismatch, according to the uncertainty relations. There is a
rich variety of processes which may restore the energy con-
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FIG. 1. �Color online� �a� Scheme of the polariton dispersion in
the two-dimensional reciprocal space and scattering of counter-
propagating polaritons �denoted as “Excitation”� forming scattered
pairs on the elastic circle �“EC scattering”� and their further diffrac-
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Lines denote the pair of interacting polaritons and arrows with the
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Level scheme for visualization of the virtual processes. Numbers
refer to the states in �b�.
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servation, including scattering back to elastic circle, phonon
scattering, polariton decay by tunneling of a photon through
Bragg mirrors �photon would have energy of a polariton on
the EC and wave vector of the off-branch state�, or return of
polaritons to their initial states. The retarded return processes
influence the phase of the involved polariton so that the in-
terference of polaritons coming back from the virtual states
with other polaritons is not necessarily constructive. In this
paper, we show that the diffraction of the virtual states is
responsible for modulation of the polariton population on the
elastic circle even though this effect is weak compared to the
direct scattering from the pump states to the states on the
elastic circle.

We distinguish between EC scattering and diffraction
throughout the paper. We define EC scattering as a wave
vector conserving elastic-scattering process for a pair of po-
laritons. In particular, the resonant scattering of pump polari-
tons to the states at the elastic circle is EC scattering. The
diffraction is scattering of a single exciton polariton on a
diffraction grating formed by two pump beams which leads
to the change of the polariton wave vector by ��k1−k2�.
When we refer to both processes together, we shall use the
term scattering.

The system reveals a rich variety of possible pair interac-
tions which populate real or virtual states and contribute to
the overall dynamics. There are, nevertheless, several pro-
cesses in the limit of weak polariton-polariton interactions,
which are more probable than others: these are �1� resonant
processes �scattering around the EC� and �2� virtual pro-
cesses, enhanced by the large conjoint population of the in-
volved states. The strongest transitions from one to the other
pump beam are stimulated due to their large macroscopic
populations. The exchanged wave vector is ��k1−k2� in this
case and therefore this group of processes represents the dif-
fraction.

In order to describe the system dynamics in the spontane-
ous EC scattering regime �i.e., considering low population of
the EC�, we consider a polariton pair and investigate its evo-
lution, accounting for the background populations n1,2 of the
pump beams. Considering only those single-polariton states
which may be populated by a single EC scattering or
diffraction,20 single polaritons may occupy only states 1–12
depicted in Fig. 1�b�. All the two-polariton states allowed by
the dynamics may be denoted as follows: the initial state is
A= �1,2�, where the numbers in parentheses denote the con-
tributing single-polariton states, the final EC scattered state
�for a fixed scattering angle �� is E= �3,4�. These states on
the EC are coupled to the virtual states B−D ,F−K by dif-
fraction, see description of levels in Fig. 1�c�. The states D, J

and K are virtual off-branch states. Their relative influence
on the scattering of polaritons depends on the scattering
angle. The state D and, in many cases, one of the states J and
K or sometimes even both of them can be neglected as they
have a little influence on the population of the elastic circle.
On the other hand, for specific scattering angles one of the
states J or K may lie close to the EC and play a more im-
portant role in its population, consequently. In the numerical
calculation we always keep the states D, J, and K in consid-
eration. According to the Fig. 1�c�, diffraction of e.g., single-
polariton state 3 may be regarded as scattering of the states

1 ,3→2,7 or 2 ,3→1,9 and therefore it leads to efficient
coupling of the state E to G and H. Note, however, that there
is no state �1,1� in the level scheme. To clarify this point, we
need to consider both the polariton pair and the background
population—wave vector conservation requires that the tran-
sition �1,2�→ �1,1� is accompanied by the increase of the
population of state 2 by 1 polariton, making the initial and
the final-state equivalent. Clearly the states A−D form a
group coupled by diffraction and also all states within the
second group E−K are coupled by diffraction. These two
groups are then coupled by EC scattering as depicted in Fig.
1�c�. The relevant effective Hamiltonian for the first group
�A−D� accounting only for diffraction reads as

HA−D =�
0 VD VD 0

VD �	11 0 VD

VD 0 �	11 VD

0 VD VD 2�	11

� , �2�

where we denote �	11 the energy mismatch between the
single-polariton state 11 and the EC which can be evaluated
as �	11=4�2k0

2
/m� in parabolic approximation, where k0 is

the EC radius and m� is the polariton effective mass �in the
presence of strong excitation field, parabolic approximation
may be altered by a more proper dispersion accounting for
the Bogoliubov renormalization19,21�. The effective Hamil-
tonian for the group �E−K� has the following form:

HE−K =�
0 VD VD VD VD 0 0

VD �	8 0 0 0 VD 0

VD 0 �	8 0 0 VD 0

VD 0 0 �	7 0 0 VD

VD 0 0 0 �	7 0 VD

0 VD VD 0 0 2�	8 0

0 0 0 VD VD 0 2�	7

� ,

�3�

where �	7,8=2�2k0
2�1
cos �� /m�. We calculate the effec-

tive coupling VD as the Hamiltonian matrix element
	�f�H���i
, where �i,f are the initial and the final states,
respectively, and H� is the microscopic diffraction
Hamiltonian relevant for the selected group of states.
Let us take for instance the transition E→H. In this case,
the part of microscopic Hamiltonian which applies is
H�=V�a7

+a2
+a3a1+H.c.� and the initial and final states are

�i = a3
+a4

+�n1,n2
 , �4�

�f = a7
+a4

+�n1 − 1,n2 + 1
 , �5�

where �n1 ,n2
 is a state created by pump beams with mean
numbers of polaritons n1,2 in the states 1 and 2, respectively.
Considering n1,2�1, we finally obtain VD=V�n1n2.

Coupling of the states, according to the above Hamilto-
nians, is depicted in Fig. 1�c� by vertical lines. As we stated
before, the two groups of states shown in this figure are
coupled by EC scattering �whose amplitude is V�. Note that
not only the states A and E are coupled, we must take into
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account also EC coupling of the virtual states. The coupled
states are connected by horizontal lines in Fig. 1�c�. The
corresponding EC coupling Hamiltonian is

HEC = V���A
 + �D
��	E� + 	J� + 	K�� + �B
�	F�

+ 	H�� + �C
�	G� + 	I�� + H.c.� . �6�

Population of the polaritons scattered to a fixed angle � is
defined by Ntot���=2�

�=E
K n����, where n� are the individual

populations of the states E−K and the prefactor “2” arises
due to the two-particle nature of the states. This definition
includes both contributions from the EC states and diffracted
polaritons lying on the off-branches. To account only for the
states on the EC, the definition should be revised

NEC��� = 2nE + �
�=F

I

n�. �7�

We evaluate the population NEC��� within the second-order
perturbation theory for the EC scattering. On the other hand,
we account for the diffraction by exact diagonalization of the
appropriate Hamiltonians due to the large coupling terms. All
states are then divided to the groups, whose kinetics is
treated nonperturbatively while the intergroup interactions
are expanded to perturbation series. It is then straightforward
to diagonalize the particular group Hamiltonians:
Ha−d=T�0�HA−DT�0�+

and He−k=T���HE−KT���+
, where T�m� are

the relevant transformation matrices. By this diagonalization,

we define a new set of eigenenergies �	a , . . . ,�	k, eigen-
states �a
=�

�=A
D Ta,�

�0� ��
 etc. as a linear combination of the
original states. The EC populations may be then redefined as
NEC���=�

�=e
k n����P����, factor P���� being a number of

the polaritons from the state ��
 lying on the EC �cf. Eq. �7��,

P���� = 2�T
�,E
����2 + �

j=F

I

�T
�,j
����2. �8�

Applying the standard second-order perturbative approach,
we obtain the steady-state population of, e.g., a final state f

in the form

n f =
2

�2 �
�=a

d
��HEC� f ,��2


2 + �	 f − 	��2n�, �9�

where 
 is the polariton dephasing rate. Considering further
the initial condition nA=n1=n2, and nB−D=0, we obtain after
transformation na−d= �Ta−d,A

�0� �2nA and the EC scattering
Hamiltonian is transformed as �Hec��,j =�m,nT

�,m
��� �HEC�m,nT j,n

�0�

�the last term comes from the Hermitian conjugate of a real
matrix�. Substituting this expression to the above equation
and considering explicit form �6� of the EC scattering Hamil-
tonian, we finally obtain

NEC��� =
V2n1

�2 �
j=a

d

�
�=e

k
�T j,A

�0��2P����

�	 j − 	��2 + 
2 �
�m,n�

�T j,m
�0�

T
�,n
����2,

�10�

�m,n� � 
�A,E�;�A,J�;�A,K�;�B,F�;�B,H�;�C,G�;�C,I�;�D,E�;�D,J�;�D,K�� . �11�

The above equation is the illustrative result considering only
one circular polarization and resonant scattering on the EC.
In reality, however, one usually deals with both polarizations
and the polariton population distributed in the whole recip-
rocal space. To account for all possible final states, we sim-
ply let the state E be anywhere in the reciprocal space and
directly apply the equations above. Considering the spin,
each polariton may carry an angular momentum �1
and therefore we redefine polariton states as, e.g.,
�A��
= �1� ,2��. Each of the two-polariton states A to K
is then split to four levels having different spin configura-
tions of the participating polaritons. Coupling strengths be-
tween the states are no more equal but depend on the spin
configuration of the initial and final states and the spin-
dependent populations of the initial states n1� and n2�.

In the numerical calculation we take the polariton effec-
tive mass of m�=10−5me, where me is a free-electron mass,
the in-plane momentum of the pump beams k0=0.9 �m−1

and the dephasing rate 
=0.2 ps−1. We calculated the distri-
butions of polariton populations in the k-space, using the
second-order perturbation theory without stimulation of the
EC scattering, keeping scattering amplitudes V1,2 �scattering
of polaritons with parallel or antiparallel spins,

respectively18� constant around the EC and considering vari-
ous combinations of polarizations of the excitation beams.
The result for cocircular polarizations is shown in Fig. 2�a�.
Clearly the polariton population is distributed in the vicinity
of the EC with the radius 0.9 �m−1 and is further modulated
depending on the scattering angle. Note, however, that this
modulation is due to the coupling to the virtual states by
diffraction on the pump-induced grating. The evaluated po-
lariton population N�k=k0 ,�� on the EC is depicted in Fig.
2�b�, and Fig. 2�c� shows its wave-vector dependence for
three fixed values of the scattering angle.

It follows from Fig. 2�b� that the polariton population
depends on the spins of interacting polaritons and the spin
structure of the excitation beams. Scattering of cocircularly
or linearly polarized beams demonstrates preferential spon-
taneous scattering to the angles around 90°, while counter-
circularly polarized beams are preferentially backscattered.
According to Fig. 2�c�, diffraction also causes variations of
the radial distribution of the polariton density around the EC.

In the case of the linear copolarized excitation beams the
scattering is accompanied by inversion of the linear polariza-
tion, as it was noticed in Refs. 8, 16, and 18. The inversion of
polarization results from the interplay of first-order
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polariton-polariton exchange interaction between the copo-
larized components in the circular spin basis and the second-
order exchange process between countercircularly polarized
components via dark states.22 The second-order exchange
process is comparable in magnitude to the first-order ex-
change process, due to the high density of intermediate dark
states characterized by the excitonlike dispersion. The polar-
ization degree of the scattered states may be estimated from
the T matrix for polariton-polariton interaction.23 Note, how-
ever, that the calculation of Schumacher et al. comprises a
two-dimensional approximation of the exciton gas and there-
fore the use of the T matrix itself may result in an overesti-
mation of the polarization degree because of the neglect of
the direct-scattering channel.18 Using the algebra of Ref. 18
and considering TR

+−
/TR

++=−0.28 from Ref. 23, we find for
the degree of linear polarization

�� =
2TR

+−
/TR

++

1 + �TR
+−

/TR
++�2 � − 52%. �12�

The negative sign here means that the polarization plane of
the final states is rotated by 90° with respect to the polariza-
tion of the pump beams. Compared to the experimental data
of Ref. 6, the polarization degree we obtain is 2.5 times
higher. In the real experiment, the final linear polarization
degree could have been reduced due to the self-induced Lar-
mor precession of polariton pseudospins, neglected in our

model. If the pumps are linearly crosspolarized the scattering
results in a depolarized signal around the EC as discussed in
Ref. 18 while only a small polarization degree resulting from
the weak direct-scattering term is expected.

Preferential scattering to the 90° direction shown in Fig.
2�a� may be qualitatively explained in terms of the above
simplified model with levels A−K ascribed to one circular
polarization. As noted in the beginning of this section, po-
laritons may remain in the virtual state for a limited time
inversely proportional to the virtual state detuning from the
EC. Clearly the larger time polaritons are in the virtual state,
the larger influence of the diffraction is and the larger �nega-
tive� modulation of the coupling strength is. Scattering is
therefore the least influenced by diffraction if the virtual
states are separated from the EC by the largest amount of
energy, what is actually the case of scattering to the angle
�=90°. If ��0 or 180°, on the contrary, small energy sepa-
ration of the levels F ,G or H , I from the level E causes
relatively high population of the virtual off-branch states and
therefore large reduction of the coupling strength between
the initial state and the states on the elastic circle.

III. POLARITON X-NOR GATE IN THE STIMULATED

REGIME

The above discussion of the regime of spontaneous scat-
tering proves our assumption that the excitation causes the
symmetry breaking resulting in the modulation of the
polariton-polariton scattering amplitudes. In the spontaneous
regime this modulation is rather weak and hardly can be
experimentally detected. However, the effect can be drasti-
cally amplified in the stimulated regime. Stimulation pro-
vides also the dramatic increase of linear polarization degree
of the scattered beams which may achieve almost 100%.

For the analysis of the stimulated scattering case we shall
operate with the spin-density matrix of the system using the
first-order Born-Markov approximation. Consider the par-
ticles which can scatter from initial states 1 and 2 to final
states 3 and 4 on the EC. The appropriate part of the inter-
action Hamiltonian can be written as Hscatt=H++H− where

H+ = V1�a1+
+ a2+

+ a3+a4+ + a1−
+ a2−

+ a3−a4−�

+ V2�a1+
+ a2−

+ a3+a4− + a1−
+ a2+

+ a3−a4+�

+ V3�a1+
+ a2−

+ a3−a4+ + a1−
+ a2+

+ a3+a4−� , �13�

and H−= �H+�+. Scattering amplitudes are denoted V1−3 here,
V1 describing the spin triplet configuration and V2,3 describ-
ing the singlet configuration. In order to account for the dif-
fraction on the transient grating, we do not further introduce
the virtual states in the Hamiltonian but rather consider V1−3
as effective scattering amplitudes defined as

V j��� =
NEC���

NEC� ���
Ṽ j��� , �14�

where N��� and N���� come from Eq. �10� as the popula-
tions coupled and uncoupled to the virtual states, respec-
tively. The decoupling of the EC scattering and the diffrac-
tion present in the Eq. �14� is valid as long as we may
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consider that diffraction on the grating formed by pump
beams is the strongest process in the system. We therefore
require n1,2�n3,4 otherwise the large population of the states
on EC would introduce a new efficient diffraction channel
and the approximation of Eq. �14� would break. The condi-
tion is satisfied in the experiment of Ref. 16. The bare scat-

tering amplitude Ṽ j��� can be estimated using microscopic
calculations,22,24 considering the amplitude of the direct scat-
tering in real three-dimensional structures.18 The second-
order exchange processes do not contribute to the Hamil-
tonian in the basis restricted to the bright states only,
however the Hamiltonian presented above may be regarded
as an effective one with the scattering amplitudes which give
a correct form of the scattering T matrix within the chosen
Born-Markov approximation. The second-order processes
therefore may be accounted for in the scattering amplitudes
V2,3.

The Liouville–von Neumann equation for the density ma-
trix ̺ of the system reads as ��=1�

�t̺ = − �
−�

t


Hscatt�t�;�Hscatt�t��;̺�t���� . �15�

In the Born-Markov approximation one replaces t� by t and
retains only energy-conserving terms which yields

�−1��E��t̺ = 2�H+
̺H− + H−

̺H+� − �H+H− + H−H+�̺

− ̺�H+H− + H−H+� �16�

where the term �−1��E� ensures the conservation of energy.
For time evolution of the mean values of any arbitrary op-

erator Â , 	Â
=Tr�̺Â� one has

�t	Â
 = Tr�̺�H−;�Â;H+��� + Tr�̺�H+;�Â;H−��� . �17�

This formula can be used for calculation of temporal dynam-
ics of the occupancies and pseudospins defined as

N j = Tr
̺�a j,+
+

a j,+ + a j,−
+

a j,−�� , �18�

Sx,j = Re Tr
̺a j,+
+

a j,−� , �19�

Sy,j = Im Tr
̺a j,+
+

a j,−� , �20�

Sz,j =
1

2
Tr
̺�a j,+

+
a j,+ − a j,−

+
a j,−�� . �21�

The resulting explicit formulas are listed in the Appendix.
Figure 2�d� shows the resulting distributions of polaritons on
the EC in the stimulated regime under different excitation
conditions �the pump beams are subtracted�. One can see that
the colinear excitation exceeds 98.5% spin inversion slightly
above the threshold �the spin inversion further increases with
increasing pump power� and a strong emission in the 90°
direction with full width at half maximum of 50°, in accor-
dance with the experimental data of Ref. 16. Crosslinear ex-
citation, on the other hand, for the same excitation intensity
yields the scattering signal which is more that one order of
magnitude weaker and is almost unpolarized.

In order to explain why the polariton-polariton scattering
and polarization inversion under colinear pump is stronger
by orders of magnitude than the scattering with crosslinearly
polarized beams, we plot the intensity dependence of the
polariton population and the maximum polarization degree in
Figs. 3�a� and 3�b�. The gate performance in Fig. 2�d� is
plotted for the pump intensity of 1.12 �in the units corre-
sponding to the horizontal scale in Fig. 3�. The stimulation
threshold is reached for the colinear but not crosslinear
pumps, which is why the scattered signal is so much differ-
ent in the two cases. The gate may therefore operate only
within the interval of pump intensities between the two
stimulation thresholds for colinear and crosslinear pump po-
larizations.

The initial degree of polarization at very low pump power
is about −40% in the present calculation, which is far below
the experimentally observed value6 −�15–20�% and also be-
low our theoretical prediction −11% for the narrow InGaAs
QWs.18 There is no contradiction with our previous
publication18 as here we consider an 8-nm-wide QW while
the QW of 2.5 nm width has been considered in Ref. 18. As
the QW width determines the magnitude of the direct-
scattering term, the linear polarization degree of the scattered
polaritons in an 8-nm-wide QW is much higher compared to
a 2.5-nm-wide QW. Considering further complex polariza-
tion dynamics in the case of the excitation geometry of Ref.
6, we find that the theoretical estimation and experimental
data are fully compatible.

Figure 3�b� illustrates another interesting feature of the
stimulated scattering on the EC. Although the polarization
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FIG. 3. �Color online� �a� Pump intensity dependence of the
polarized polariton population on the EC. The polariton population
at the scattering angle 90° under different pump and detection con-
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for the colinear excitation. �b� Pump intensity dependence of the
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degree in the spontaneous regime of scattering of crosslin-
early polarized polaritons does not exceed 0.1%, stimulation
causes the polarization amplification, which is essential for
operation of future spin-optronic devices.

The use of approximation �14� simplifies the calculations
significantly and also allows one to understand the physical
origin of the population modulation on the EC observed in
experiments. We verified the accuracy of Eq. �14� by a nu-
merical calculation. For this purpose, we have derived the
kinetic equations for the polariton system on the elastic circle
in the stimulation regime accounting for the diffraction in the
microscopic Hamiltonian and thus without simplifying as-
sumption of Eq. �14�. We have used the same approach as in
Sec. II; i.e., we have considered the same states involved in
the dynamics, the diffraction �restricted to the first diffraction
maxima only� has been accounted for nonperturbatively and
the EC scattering has been considered within the Born-
Markov approximation. Considering cocircular excitation for
simplicity, we obtain in this way the results depicted in Fig.
3�c� using the same input parameters for the exact and sim-
plified calculations. One can see that even though there is
some small difference between the curves, the approximate
model still gives very good predictions.

IV. CONCLUSIONS

We have analyzed the most efficient channels of
polariton-polariton scattering on the elastic circle in terms of
multiwave mixing. We show that the multiple polariton scat-
tering processes are responsible for changes in the scattering
probability of the order of few percents in the linear regime.
The increase in the excitation intensity leads to a drastic
increase in this modulation due to the final-state bosonic
stimulation. The multiple polariton scattering process can be

conveniently represented as a combination of the polariton
scattering with a subsequent diffraction to the off-branch
states by a polarization grating created by two pump pulses.
The polaritons from off-branch states then go back to the
elastic circle, so that the energy is conserved.

This scenario explains preferential scattering of the po-
laritons at 90° in the case of colinearly polarized light beams.
In this case, none of the intermediate off-branch states is
close in energy to the elastic circle polaritons so that destruc-
tive interference caused by virtual diffraction processes is
suppressed.

We show that the polarization degree of the scattered po-
laritons strongly depends on the pump intensity and that the
final polarization degree may be strongly amplified above the
stimulation threshold. This feature opens a possibility of con-
struction of a spin-optronic transistor with a smooth depen-
dence of the output polarization on the polarization of the
gate input. The results of this work may be applied for opti-
mization of the design of polariton logic gates by considering
various spin configurations or introducing more control
beams.
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APPENDIX

We define the scattering probabilities as W j = �V j�2 and
W j�=V jV�

�=W12
R +iW12

I . Following Eq. �17� and definitions
�18�–�21�, we obtain the following equations of motion for
the different pseudospin components. Polariton population

d

dt
N3 = N11 + N12 + N22 + N13 + N23 + N33,

N11 =
W1

2
��N1N2 + 4S1zS2z��N3 + N4 + 2� − �N3N4 + 4S3zS4z��N1 + N2 + 2��

+ 2W1��N1S2z + S1zN2��S3z + S4z� − �S1z + S2z��S3zN4 + N3S4z�� ,

N12 = 4W12
R ��N1 − N3�S2 · S4 + �N2 − N4�S1 · S3� + 8W12

I ��S1z − S3z�S2 � S4 + �S2z − S4z�S1 � S3� ,

N22 =
W2

2
��N1N2 − 4S1zS2z��N3 + N4 + 2� − �N3N4 − 4S3zS4z��N1 + N2 + 2��

− 2W2��N1S2z − S1zN2��S3z − S4z� − �S1z − S2z��N3S4z − S3zN4�� ,

N13 = 4W13
R ��N1 − N4�S2 · S3 + �N2 − N3�S1 · S4� + 8W13

I ��S1z − S4z�S2 � S3 + �S2z − S3z�S1 � S4� ,

N23 = − 4W23
R ��N1 + N2 + 2�S3 · S4 − �N3 + N4 + 2�S1 · S2� + 8W23

I ��S1z − S2z�S3 � S4 + �S3z − S4z�S1 � S2� ,
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N33 =
W3

2
��N1N2 − 4S1zS2z��N3 + N4 + 2� − �N3N4 − 4S3zS4z��N1 + N2 + 2��

− + 2W3��N1S2z − S1zN2��S3z − S4z� − �S1z − S2z��N3S4z − S3zN4�� .

Z component of the pseudospin

d

dt
S3z = Z11 + Z12 + Z22 + Z13 + Z23 + Z33,

Z11 =
W1

2
��N1S2z + S1zN2��N3 + N4 + 2� − �N1 + N2 + 2��N3S4z + S3zN4��

+
W1

2
��N1N2 + 4S1zS2z��S3z + S4z� − �S1z + S2z��N3N4 + 4S3zS4z�� ,

Z12 = 4W12
R �S1z − S3z�S2 · S4 + 2W12

I �N1 − N3�S2 � S4,

Z22 = −
W2

2
��N1S2z − S1zN2��N3 + N4 + 2� − �N1 + N2 + 2��N3S4z − S3zN4��

+
W2

2
��N1N2 − 4S1zS2z��S3z − S4z� − �S1z − S2z��N3N4 − 4S3zS4z�� ,

Z13 = 4W13
R �S2z − S3z�S1 · S4 + 2W13

I �N2 − N3�S1 � S4,

Z23 = 4W23
R �S3z − S4z�S1 · S2 + 2W23

I �N3 + N4 + 2�S1 � S2,

Z33 =
W3

2
��N1S2z − S1zN2��N3 + N4 + 2� + �N1 + N2 + 2��N3S4z − S3zN4��

+
W3

2
��N1N2 − 4S1zS2z��S3z − S4z� + �S1z − S2z��N3N4 − 4S3zS4z�� .

Y component of the pseudospin

d

dt
S3y = Y11 + Y12 + Y22 + Y13 + Y23 + Y33

Y11 = −
W1

2
�N4�N1 + N2 + 2� − N1N2�S3y − 2W1�S4z�S1z + S2z� − S1zS2z�S3y + 2W1�S2yS1 · S4 − S2xS1 � S4� ,

Y12 = W12
R �N2�N3 + N4 + 2� − N3N4 + 4S2zS4z�S1y − 4W12

R S3yS2 · S4 + 2W12
I �S2z�N3 + N4 + 2� + S4z�N2 − N3��S1x,

Y22 = −
W2

2
�N4�N1 + N2 + 2� − N1N2�S3y + 2W2�S4z�S1z − S2z� − S1zS2z�S3y + 2W2�S1yS2 · S4 + S1xS2 � S4� ,

Y13 = W13
R �N1�N3 + N4 + 2� − N3N4 + 4S1zS4z�S2y − 4W13

R S3yS1 · S4 + 2W13
I �S1z�N3 + N4 + 2� + S4z�N1 − N3��S2x,

Y23 = − W23
R �N3�N1 + N2 + 2� − N1N2 + 4S1zS2z�S4y + 4W23

R S3yS1 · S2 + 2W23
I �S1z�N2 − N3� − S2z�N1 − N3��S4x,

Y33 = −
W3

2
�N4�N1 + N2 + 2� − N1N2�S3y − 2W3�S4z�S1z − S2z� + S1zS2z�S3y + 2W3�S2yS1 · S4 + S2xS1 � S4� .

X component of the pseudospin

d

dt
S3x = X11 + X12 + X22 + X13 + X23 + X33
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X11 = −
W1

2
�N4�N1 + N2 + 2� − N1N2�S3x − 2W1�S4z�S1z + S2z� − S1zS2z�S3x + 2W1�S2xS1 · S4 + S2yS1 � S4� ,

X12 = W12
R �N2�N3 + N4 + 2� − N3N4 + 4S2zS4z�S1x − 4W12

R S3xS2 · S4 − 2W12
I �S2z�N3 + N4 + 2� + S4z�N2 − N3��S1y ,

X22 = −
W2

2
�N4�N1 + N2 + 2� − N1N2�S3x + 2W2�S4z�S1z − S2z� − S1zS2z�S3x + 2W2�S1xS2 · S4 − S1yS2 � S4� ,

X13 = W13
R �N1�N3 + N4 + 2� − N3N4 + 4S1zS4z�S2x − 4W13

R S3xS1 · S4 − 2W13
I �S1z�N3 + N4 + 2� + S4z�N1 − N3��S2y ,

X23 = − W23
R �N3�N1 + N2 + 2� − N1N2 + 4S1zS2z�S4x + 4W23

R S3xS1 · S2 − 2W23
I �S1z�N2 − N3� − S2z�N1 − N3��S4y ,

X33 = −
W3

2
�N4�N1 + N2 + 2� − N1N2�S3x − 2W3�S4z�S1z − S2z� + S1zS2z�S3x + 2W3�S2xS1 · S4 − S2yS1 � S4� .
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absorbs laser light only if its energy is tuned to the laser

energy. This tuning can be achieved and controlled by the

application of an electric field across the cavity �in the direc-

tion normal to the cavity plane�. An electric field affects the

exciton energy and oscillator strength due to the quantum

confined Stark effect, which leads to the shift of the TPEPMs

as well. Electric fields to control the local TPEPM energy

selectively can be produced by applying a potential differ-

ence relative to the structure’s back contact to one or more of

the four metallic segments.

Figure 1�b� shows the response of the polariton density to

the intensity of a circularly polarized cw optical pump. The

different curves represent the cases of different detunings

between the optical pump photon energy and the lowest

TPEPM energy �we define the detuning as that measured in

the low-density regime rather than defining a renormalized

detuning�. By varying the electrical potential applied to a

segment the detuning in its locality can be varied and a par-

ticular response as represented by the curves in Fig. 1�b� can

be selected �an increase in the applied electric field causes an

increased redshift of the TPEPM energy as shown in Fig.

1�d�; see also discussion below�. We consider a device with

the initial condition that all segments have the same applied

potential and hence the same detuning �0. Illuminating the

whole system by a broad area optical pump, each segment is

initially in a low polariton density state of the TPEPM �given

by the intersection between the vertical gray line and the

lower branch of the �red� solid curve in Fig. 1�b��.
A signal in the structure can be triggered by lowering the

potential applied to the first segment so that the local detun-

ing is reduced to the value �1, corresponding to the �green�
dashed S-shaped curve in Fig. 1�b�. We expect the change in

the potential to cause a major increase in the polariton den-

sity �given by the point where the vertical gray line intersects

the �green� dashed curve�. Furthermore, polaritons have a

particularly light effective mass, which allows them to

propagate over micron-scale distances during their short life-

time. The high population of polaritons in the first segment

thus begins to spread, tunneling across the narrow gap into

the second segment. As a result the increasing polariton

population in the area just inside the second segment

switches to the upper branch of the �red� solid S-shaped

curve in Fig. 1�b�. This switching effect continues across the

whole segment and indeed across segments later in the chain.

In analogy with biological neurons, the signal is carried as a

propagating change in the state of the system along the chan-

nel. While the signal of a biological neuron is encoded as a

switch in the relative concentrations of charged ions across

the axon membrane, a polariton neuron encodes the signal as

a switch in the local polariton density. Note that just as bio-

logical neurons do not rely on charged ions traveling down

the whole length of the neuron, the same is the case with

polaritons in polariton neurons. Therefore, the signal can

propagate substantially further than the distance a single po-

lariton can be expected to travel—in fact the signal is able to

propagate to the edge of the cw optical field.

Exciton redshift due to an applied electric field. Before

presenting theoretical modeling of our proposed device, we

give details on how the exciton redshift can be related to an

applied electric field. Although excitons localized in the

quantum well are electrically neutral, their components

�electrons and holes� have opposite electric charges and

therefore interact with the electric field. As a result, an ap-

plied electric field leads to distortion of the exciton wave

function and to the change in the exciton energy and the

exciton oscillator strength.15–17 To determine the exciton en-

ergy, we use the model of Ref. 16 with a separable exciton

trial wave function of the form

��r�e,r�h,ze,zh� = ���r�e,r�h��e�ze��h�zh� , �1�

where the unperturbed exciton in-plane wave function is

���r�e,r�h� =� 2

�aB
2

exp�−
	r�e − r�h	

aB


 , �2�

in which aB is the two-dimensional exciton Bohr radius and

r�e,h are the in-plane components of the electron and hole

spatial coordinates. The wave functions �e and �h describe

the electron and hole wave function behaviors in the direc-

tion normal to the quantum well plane �the spatial coordi-

nates are denoted as ze and zh for electrons and holes, respec-

tively�. The appropriate Hamiltonian for the problem is
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FIG. 1. �Color online� �a� Schematic diagram of a semiconduc-

tor microcavity with metallic electrodes used to realize an electri-

cally controlled polariton neuron. A strip of metal on the surface is

divided into four segments, which are individually connected to an

electrical supply �not shown� allowing the polariton potential to be

changed in each segment. Note that the diagram is not to scale; in

reality the lateral size of the metal strip is larger than the height of

the structure. �b� Dependence of the polariton density on the optical

pump intensity for different values of the detuning ��1��0��2�
between the optical pump photon energy and the lower polariton

energy. The detuning can be changed in the different segments by

varying the applied electric potential. For a pump intensity close to

the vertical gray line, switching between the different curves can

have a major effect on the polariton density. �c� Dispersion relation

for cavity polaritons �blue dashed curve� and hybrid TPEPM �green

solid curve�. The lowest-energy hybrid state is redshifted by several

meV with respect to the lowest polariton mode in the vicinity of

metal overlay, providing localization of exciton-polaritons in the

channels below the metallic segments. �d� Redshift of the ground

TPEP modes �solid curve� and exciton modes �dashed curve�.
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H =
pe

2

2me�ze�
+

ph
2

2mh�zh�
+ Ve�ze� + Vh�zh�

− eFze + eFzh −
e2

��	ze − zh	2 + 	r�e − r�h	2�
, �3�

where the particle momenta are denoted by operators pe,h,

their masses �depending on the particle position either in the

well or in the barrier� are me,h, and the quantum well confin-

ing potentials are Ve,h. The electron charge is e, the intensity

of the applied external electric field perpendicular to the

quantum well plane is F, and the dielectric constant of the

structure is �. Using the trial wave function of Eq. �2� and

Hamiltonian �Eq. �3��, we solved the static Schrödinger

equation iteratively, obtaining the electron and hole wave

functions from which the exciton energy Eex and relative

oscillator strength f rel are calculated according to the follow-

ing equations:

Eex = ��	H	�� , �4�

f rel =


 �e�z��h�z�dz


 �e�z�F=0�h�z�F=0dz

. �5�

Here, the wave functions unperturbed by an external electric

field are denoted by the subscript “F=0.”

Device modeling. Returning to the device proposed in Fig.

1, Fig. 2 shows the results of modeling the triggering of a

propagating signal, following a change in the electric poten-

tial applied to the first segment. The spatial effects present in

the system have been fully accounted for by using the Gross-

Pitaevskii equation18,19 for the polariton field ��r� , t�,

i�
���r�,t�

�t
= �ÊLP −

i�

2	
+ W�r�,t����r�,t�

+ 
	��r�,t�	2��r�,t� + f�r�,t� . �6�

Here, we neglect the polarization degree of freedom, assum-

ing that the optical excitation f�r� , t� is circularly polarized.

The energy of the pump can be accounted for by the inclu-

sion of an oscillatory factor e−i�t in the time dependence. ÊLP

is the kinetic-energy operator, which should account for the

nonparabolic dispersion of polaritons. The eigenvalues of

ÊLP can be written in reciprocal space as

ELP�k�� =
EC�k�� + EX�k��

2
−

1

2
��EC�k�� − EX�k���2 + �2, �7�

where � is the Rabi splitting and EC and EX are the bare

cavity photon and exciton energies, respectively, for which

we take parabolic dispersion relations characterized by effec-

tive masses mC and mX. Returning to Eq. �6�, 	 represents the

polariton lifetime and 
 represents the strength of polariton-

polariton interactions. W�r� , t� is the potential experienced by

polaritons, which is spatially dependent due to the metallic

structure built into the microcavity design, and is time de-

pendent because of the changes in potential applied to the

metallic segments.

Equation �6� can be solved numerically with the initial

condition ��r� , t=0�=0. In our calculations we used the fol-

lowing parameters, typical for state-of-the-art GaAs-based

microcavities:7 �=10 meV, mC=3
10−5m �m is the free-

electron mass�, mX=0.22m, 	=3 ps, �0=0.5 meV, �1

=0.4 meV, and �2=0.8 meV. It was assumed that the metal

strip causes a 5 meV redshift of the TPEPM beneath it with

respect to the lowest-energy exciton-polariton mode else-

where.

In Fig. 2 it is apparent that the signal propagates across all

four segments. The signal propagation observed in Fig. 2 is

dependent on maintaining the potential bias in the second,

third, and fourth segments so that the detuning remains as

�0. If we were to switch the potential in the third segment so

that the local detuning had the substantially larger value of

�2, corresponding to the �blue� dotted curve in Fig. 1�b�, the

signal would not be able to propagate between the second

and fourth segments. The results of modeling this case are

shown in Fig. 3 and demonstrate that the device can behave

as an electro-optic transistor in which the optical signal is

electrically controlled. The whole device can be reset by

temporarily applying a potential corresponding to a detuning

of �2 to all segments.

Other functionalities are also straightforward to produce

using polariton neurons. Signals can be duplicated by split-

ting channels or combined in OR logic gates simply by com-

bining channels.8 Polariton neurons are also able to link mul-

tiple elements in a circuit together, a facility not afforded by

many other optical logic element concepts. Without requiring

external optics �other than a single broad excitation field� a

polariton neuron-based optical circuit fits comfortably into a

single compact microcavity. Typically each element in the

optical circuit functions on a time scale of 100–200 ps cor-

0ps 40ps

80ps 120ps

160ps 200ps

FIG. 2. �Color online� Response of the polariton intensity in the

microcavity plane when the potential in the first segment is altered

such that the pump-polariton detuning is changed from �0

=0.5 meV to �1=0.4 meV. Initially the intensity in the first seg-

ment increases. Polaritons then propagate into the second region

where there is a switching to the higher intensity state allowed by

bistability. The polariton signal continues to a distance limited by

the extent of the optical pump �which has a 40 �m half-width at

half-maximum in the x direction in the calculation�.
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responding to a repetition rate of 5–10 GHz. The power re-

quirements are also favorable; the high strength of exciton-

exciton interactions makes it possible to achieve the

nonlinear regime needed for bistability with relatively low

optical power. For example, a power of 2.8 mW has been

used to achieve bistability in GaAs-based microcavities.13

Future samples, perhaps based on GaN, are expected to op-

erate at even lower powers, partly due to the increased

exciton-exciton interaction strength and partly due to higher

cavity Q factors.

We have shown how the electrical sensitivity of optical

bistability in semiconductor microcavities could be used to

construct a new generation of electro-optical devices with

compact size and low power consumption. Although we have

focused on fully integrated electro-optical logic circuits, it is

also possible to imagine using the electrical control of polar-
iton intensity as the basis of bistable memory devices, which
could switch on time scales on the order of the polariton
lifetime ��3 ps� and have long memory lifetimes, at least as
long as the laser coherence time. In another application, a
suitably patterned metallic structure could provide the spatial
control to produce an array of bistable elements acting as a
spatial light modulator. It is also worth noting that spatial
phase coherence can be naturally attained from the spatial
coherence of the laser, suggesting that microcavities could
also find application in phase array optics.

An important new functionality of polariton integrated
circuits may be achieved by taking advantage of the polar-
ization degree of freedom of exciton-polaritons.20 The polar-
ization multistability �i.e., coexistence of right-circularly,
left-circularly, and linearly polarized stable states12� makes
possible the realization of schemes with encoding above bi-
nary logic. A theoretical proposal for all-optical polariton
polarization switches8 has been recently demonstrated
experimentally.14

In conclusion, until recently, semiconductor microcavities
have been considered almost exclusively for applications in

solid-state optical sources.6,21 However, now it is apparent

that they are extremely promising as the basis of devices

with applications in ultrafast information processing. Indeed,

it is clear that we have only just begun to appreciate the

potential of cavity plasmon–exciton-polariton systems.
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FIG. 3. �Color online� The same situation as in Fig. 2 but a

potential is also applied to the third segment, such that the pump-

polariton detuning there is �2=0.8 meV, and blocks the signal

propagation along the polariton neuron.
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hole �HH�-like LP by LO-phonon emission �the relaxation

rate is limited by the weak electron-hole exchange interac-

tion�. At the MP bottleneck region strong exciton-photon

coupling mixes both LH and HH excitons rendering LO-

phonon emission the strongest energy relaxation mechanism.

The presence of the MP bottleneck provides a polariton res-

ervoir from which LP states can be effectively populated by

LO-phonon emission.

We excite resonantly to the ELH, record photolumines-

cence from the ground state of the LP branch and tune the

energy difference between the three polariton branches by

scanning the excitation spot across the wedged cavity LP

�Fig. 1�a��. At each detuning the excitation intensity is scaled

for the reflectivity of the stop-band to accurately control car-

rier excitation density. The detuning dependence of the

ground polariton state is shown in Fig. 1�a�. The open mark-

ers correspond to the LP emission energy in the linear re-

gime. Their size is scaled with the LO phonon transition rate,

discussed later. The MP bottleneck energy is indicated by the

dot-dash line. The calculated angular dispersion for the opti-

mum detuning ��4 meV� is shown in Fig. 1�b�, where the

MP relaxation bottleneck region is one LO-phonon energy,

ELO, above the LP ground state.

Time-integrated photoluminescence from the LP ground

state is recorded with �3° collection angle and is spectrally

resolved using a 1200 grooves/mm grating in a 55 cm spec-

trometer coupled to a cooled charge coupled device. A non-

linear increase in the photoluminescence intensity by 102 at

threshold is observed with increasing excitation density �Fig.

2�a��. Polariton lasing occurs at threshold as the polaritons

collapse to a single state. Self interaction results in a blue-

shift in the photoluminescence by �3 meV �Fig. 2�b�� and

an increase in coherence causes a collapse of the linewidth

�Fig. 2�c��.
18

Under pulsed excitation the blueshift in the LP

evolves with time. This information is lost in time-integrated

measurements and the dominance of polariton lasing results

in an artificially large jump in mode energy upon reaching

threshold �Fig. 2�b��. These observations are in accordance

with previous reports on polariton lasing.
19

Figures 2�d� and

2�e� show snapshots of the LP dispersion in the linear regime

and at threshold, respectively.

As discussed above, by changing the cavity-exciton de-

tuning �D�, the energy gap between the MP bottleneck and

the LP ground state can be tuned through the ELO resonance.

This leads to a detuning dependence of the LO phonon tran-

sition rate W�D�, which is maximum at resonance. The tran-

sition rate W�D� can be found from the slope S of the power

dependence in the linear regime �left of the dashed line in

Fig. 2�a��. A greater slope indicates an increased transition

rate: S�D�� P
LP

2 �D�W�D�, where PLP�D� is the photon

Hopfield coefficient of the k=0 LP ground state. Figure 3

shows experimental �black dots� data for the detuning depen-

dence of S�D�. It can be seen that the slope is almost two

orders of magnitude greater when the LO phonon resonance

condition is met, at a detuning of �4 meV, compared to the

off-resonance condition of +4 or �13 meV. The black line in

Fig. 3 is a theoretical fit calculated using Fermi’s golden rule

for the relaxation rate W�D�, assuming that the MP bottle-

neck occurs 2 meV below the LH exciton and that the polar-

iton line broadening is 1.3 meV �taken from Fig. 2�c��.
The stimulation threshold T is also dependent on W�D�.

An increased transition rate means that the ground state is

populated more efficiently, allowing the macroscopic popu-

lation required for stimulation and lasing to occur at reduced

pump powers. Experimental data for the detuning depen-

dence of the threshold to polariton lasing is shown in Fig. 3

��red� squares�. The stimulation threshold is assumed to have

the form T�D�=�+� /W�D�, where � and � are constants

chosen to best fit the experimental data. It shows that the

threshold is a minimum at the detuning where the LO pho-

non transition is on resonance ��4 meV�, 50% lower than

the off resonance case. The �red� line is a fit to the data based

on the simple model and assumptions described earlier.

Further studies are performed with the pump laser tuned

to be nonresonant. In this case we find similar trends to those

under resonant excitation. The optimum detuning remains at

�4 meV, where the lowest threshold and highest slope are

achieved. Interestingly the threshold �scaled with the absorp-

tion coefficient� is similar for both excitation configurations,

suggesting that LO phonons mediated relaxation mecha-

nisms are present in both pumping schemes. However, the

slope of the power dependence in the linear regime is about

three times lower compared to resonant excitation. We sug-
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gest that under nonresonant excitation, a smaller proportion

of the injected carriers collect at the MP bottleneck and un-

dergo LO phonon relaxation. In this case, it is likely that

more carriers undergo LA phonon relaxation to the LP, which

would not be desirable for electrical injection.

Using an LO phonon transition to reduce the polariton

stimulation threshold may prove significant in the develop-

ment of electrically pumped polariton lasers. Two parameters

have been hindering the realization of such devices: the ef-

ficient population of ground polariton states and the persis-

tence of strong coupling under high carrier injection condi-

tions. We propose a design for an electrically injected

polariton laser where carriers are injected at or above the ELO

resonance. LO-phonon mediated relaxation will dominate

over LA-phonon, bypassing the bottleneck effects that have

prevented the operation of electrically pumped polariton la-

sers to date. Key to the implementation of the above scheme

is to design structures at the appropriate detuning so that the

MP bottleneck is one ELO above the ground polariton state.

Carriers should be injected at, or above the MP branch en-

ergy, e.g. via resonant tunneling from a nearby QW, allowing

the MP bottleneck to provide a reservoir from which LO-

phonon scattering to the ground polariton state can occur.

Whereas in a GaAs QW microcavity the MP branch offers a

resonant state at one ELO above the ground state, in InGaAs

QW microcavities such state is only accessible at very nega-

tive detuning, rendering GaAs the material of choice for

electrical injection in III-V microcavities. Finally our obser-

vation of a reduced lasing threshold both under resonant and

nonresonant excitation suggests that the density of states of

the MP branch is sufficiently large to act as a reservoir of

carriers that efficiently feed the ground state during polariton

lasing.

In conclusion, we have achieved a 50% reduction in the

polariton stimulation threshold in a two-dimensional GaAs

microcavity by using LO phonons to efficiently relax polari-

tons from the MP bottleneck to the LP ground state. We have

studied the LO phonon transition rate using power depen-

dences in the linear regime and found that relaxation is more

efficient when carriers are injected resonantly with the LH

compared to nonresonant injection. We suggest that this

mechanism could be used to overcome the relaxation bottle-

neck which hinders electrically injected polariton lasers. Fi-

nally we propose a design that uses LO-phonon relaxation to

bypass the relaxation bottleneck in an electrically injected

polariton laser.
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polarization splitting in microcavities, which is

responsible for the suppression of HQV in cer-

tain areas of the sample. Thus, in different parts

of the sample the polariton fluid has a different

topology.

To fully characterize a vortex in a polar-

iton condensate, one needs two winding num-

bers, (k,m), one for the polarization angle and

one for the phase. One can express the order

parameter of the condensate in the linear xy

basis as

ylinðrÞ ¼
ffiffiffi

n
p

eiqðrÞ
cos hðrÞ
sin hðrÞ

� �

ð1Þ

where q(r) is the phase of the coherent polar-

iton fluid and h(r) is the polar angle that char-

acterizes the orientation of the electric field of

polaritons, i.e., the polarization angle. Vortices

are described in this notation by rotation of the

phase and the polarization as hðrÞ→ hðrÞþ 2pk

and qðrÞ → qðrÞ þ 2pm where k,m can take

integer or half-integer values with ðk þ mÞ ∈ ℤ.

Four types of half vortices are described by

winding numbers ðk,mÞ ¼ T
1
2
,T 1

2

� �

. To reveal

the specific phenomenology of HQVs with

respect to the integer vortices, it is conve-

nient to analyze the circularly polarized com-

ponents of the order parameter, which can be

expressed as

ylinðrÞ ¼
ffiffiffi

n
p

2
eiðqðrÞ − hðrÞÞ 1

i

� �

þ eiðqðrÞ þ hðrÞÞ 1

−i

� �� �

ð2Þ

One can see that for hðrÞ → hðrÞ þ p and

qðrÞ → qðrÞ þ p a zero rotation takes place for

one circular polarization and a full 2p rotation is

achieved for the other circular polarization. This

means that if one were to detect a half vortex, it

would be easiest when looking in s
+ and s

–

polarizations simultaneously. Then HQV would

be observed as a full vortex in one polarization

and no vortex in the other one. A signature for the

phase vortex is a forklike dislocation in the inter-

ference pattern (4, 18). In the case of full phase

vortices, the forklike dislocations are expected

to be seen in the same place in both circular

polarizations, whereas in the case of HQV the

fork appears only in one of the circular polar-

izations. In the circular basis, one can write the

order parameter of HQV in cylindrical coordi-

nates as

yk,mðr,fÞ ¼
ffiffiffi

n

2

r

eimf
½ f ðrÞ þ sgnðkmÞ gðrÞ�⋅e−ikf
½ f ðrÞ − sgnðkmÞ gðrÞ�⋅eikf

	


ð3Þ

with r ¼ r
a
being the relative distance from the

vortex core in vortex radii and f being the an-

gular coordinate. The form of the two radial den-

sity functions f and g is known (12) and will give

zero density for one circular polarization ( f – g)

and a finite density for the other polarization

( f + g), as it is expected for the simplistic image

of a full vortex in one circular polarization and no

singularities for the other circular polarization.

An important feature of polariton condensates

is the presence of polarization splitting induced

by the structural anisotropy and stationary dis-

order. This splitting pins the polarization vector

of the condensate to a given crystal axis. It is

theoretically predicted that HQVs still exist in this

case but the spatial distribution of the polariton

vector field is modified. Similarly to the vortices

in multicomponent quantum Hall systems (19),

the polariton half vortices acquire “strings” [or

solitons; figure 16.1 in (6)], whereby the polar-

ization angle rotates by p (20). The width of the

string is given by ℏ=
ffiffiffiffiffiffiffiffiffiffiffi

2m∗e
p

, where m* is the ef-

fective mass of polaritons and e is the energy of

the polarization splitting. HQVs remain the lowest-

energy topological defects if this width is greater

than or comparable to the excitation spot radius.

However, when this length becomes comparable

to the vortex core size (a ≈ ℏ=
ffiffiffiffiffiffiffiffiffiffiffi

2m*m
p

, where m

is the chemical potential), the excitation of HQVs

would require too much energy, and the integer

phase vortices (0, T1) become elementary topo-

logical excitations. For a realistic vortex core size

on the order of ~2 mm and the polariton mass

m* ≈ 10−4me, pairs of HQVs will be replaced by

integer phase vortices for polarization splittings

e ≥ 100 meV. [Two close pairs of HQVs are

shown in (21), figs. S2 and S3].

The situation in real microcavity samples is

additionally complicated by the fact that the po-

larization splitting e fluctuates as a function of

the coordinate in the plane of the cavity. This is

why the HQVand integer phase vortices may co-

exist within the same condensate. The underly-

ing mechanisms for the polarization splitting are

thought to be the different penetration depths in

the distributed Bragg reflectors (microcavity mir-

rors) for transverse electric and transverse mag-

netic polarizations (22) and the intrinsic anisotropy

of the microcavity (23, 24). The anisotropy is ex-

pected to be the product of a number of param-

eters, including the alloy concentrations, the wedge,

quantum well width fluctuations, and the built-in

strain. Splittings vary from zero to several tenths

of meVs. All HQVs that we observed in this sam-

ple were at regions where the splitting was less

than our experimental resolution (≈ 20 meV).
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Fig. 2. (A and B) Polariton densities in real space at the frequency of the condensate for s+ and s
–

polarizations, respectively. It is easily seen that at the position of the vortex core (0,0), which is indicated
by the red cross for s+ polarization and the blue cross for the s– polarization, there is a local minimum for
s+ polariton density and a local maximum for the s– density. (C) Density profiles along the x direction for
the two polarizations and (D) the corresponding density profiles along the y direction. Experimentally
measured polariton density behaves in excellent agreement with the theoretical prediction [Eq. 3 and
(21)]. This behavior is also evident from the fact that half vortices must be fully circularly polarized at the
centers of their cores.
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The sample we studied is the same CdTe/

CdMgTe microcavity that was used in our previ-

ous experiments cooled down to ~10K by a liquid

helium flow cryostat (4). We used continuous-

wave monomode nonresonant optical excitation.

Detection was performed by means of the

modified Michelson interferometer in the mirror-

retroflector configuration with active stabiliza-

tion (4) completed by a lambda quarter and a

Wollaston prism. This allowed for polarization-

resolved interferometry in s+ and s– polarizations

simultaneously, which facilitated the identifica-

tion of half vortices (21). All spectral studies

were performed using a monochromator with

≈ 20 meV resolution. The output of the interfer-

ometer could be sent to the entrance slits of the

spectrometer through a polarizer, allowing for

spectrally and polarization-resolved interferome-

try images to be acquired. The HQV were ob-

served only at the excitation powers exceeding

the condensation threshold. Once a good candi-

date was found, we performed a number of

preliminary “test experiments” to verify unam-

biguously the persistence of the vortex for all

possible detection configurations. The two most

reliable tests were to change the overlap condi-

tions at the output of the interferometer by shifting

the mirror arm image with respect to one reflected

from the retroreflector and to rotate by p the

orientation of the fringes, making sure that for all

orientations the singularity of the vortex is always

clearly observable (4). We took care to verify the

mutual coherence of the two cross-circular po-

larization components by means of polarization

mixing interferometry in order to eliminate the

possibility of having two independent conden-

sates in the two polarizations. In all cases, we

observed excellent mutual coherence properties

with good contrast in the interference fringes

between the two circular polarization components

(21). The appearance of half vortices was quite

rare; that is, one out of six regions with no po-

larization splitting was exhibiting a HQV.

Once the HQV was identified, the interfero-

metric image was being sent on the entrance slits

of the spectrometer. Then we performed an op-

tical tomography experiment (25) for s+ and s–

polarized images, which provided us with the full

set of polarization-resolved interferograms in real

space for all frequencies within the observable

spectral window. Figure 1, A and B, shows the

reconstructed interferogram coming from the fre-

quency of the polariton condensate for the po-

larizations s+ and s–, on which we have added

a red circle centered at the vortex core to help

the reader locate the singularity. The singularity

(forklike dislocation) is clearly visible for the s+

polarization, whereas on the same position in real

space for the s– polarization we observe straight

fringes. The interference patterns gave us access

to the phase of the coherent polariton fluid. To

extract the phase, we assumed that the reference

field coming from a region of the condensate

without a vortex has a flat phase profile. Figure 1,

C and D, shows the phase of the polariton fluid in

real space calculated from the interferograms.

The phase has distinguishable characteristics only

where there is enough signal intensity, whereas at

the regions with no signal we get a noisy phase

with no distinguishable features. The position of

the HQV in the phase map is highlighted by

circles. In s+ polarization, the phase rotates by 2p

as one goes around the core. This behavior of the

phase is clearly seen within an area of a few

micrometers’ size. In the same region for the s–

polarization, there are no observable singularities

and the phase is homogeneous. Figure 1, E and F,

shows the phase as a function of the azimuthal

angle as one goes around the core along the cir-

cles of different radii (shown by color). For the

radius of 1mm, the phase changes monotonously

in s+ polarization, decreasing by 2p as one makes

a full round. Contrary to this, for the same radius

in s– polarization, we observe a quasi-flat phase

profile indicating the lack of any singularity. For

larger radii, the phase dependence on the azimuth-

al angle becomes strongly nonlinear, whereas the

total phase shift as one goes around the core

remains –2p for one and 0 for the other po-

larization. Distortion of the phase profile at the

large radii may be indicative of the existence of

nearby regions with substantial vorticity but can

also be indicative of formation of a string.

We note that the specific HQV shown in

Fig. 1 is characterized by the winding numbers

ðk,mÞ ¼ þ 1
2
,− 1

2

� �

, while we have observed also

the three remaining types of HQVs in different

locations on the sample (21). On the basis of

measurements we have done, we believe that

four possible types of HQVare realized with ap-

proximately the same probability in our sample.

Using the same tomographic technique of spec-

trally resolved real space imaging as before, we then

probed only the density of polaritons in the con-

densate state (Fig. 2, A and B). Locating the vortex

in real space and looking at the density close to its

core, we observed that a local minimum for one po-

larization coincides with a maximum for the other

one, as Fig. 2, C and D shows. The widths of these

minima/maxima coincide with the theoretical vor-

tex core size a. This behavior is another signature

of HQVs, as one can see from Eq. 3. The theory

(12) predicted that at the center of the HQV the

condensate should be fully circularly polarized, and

this is exactlywhatwe observe in Fig. 2, C andD).

The HQVwe observed here are pinned by the

disorder to specific locations on the sample. This

is confirmed by the behavior of the interferomet-

ric images as a function of the pumping power.

Increasing the excitation intensity, we modify

the effective disorder potential acting upon the

polariton condensate by changing the polariton-

polariton repulsion strength. When the pumping

is strong, we screen the disorder potential so that

HQV get unpinned and disappear from the inter-

ferometry image of a specific spot on the sample.

This is what we observed at the excitation power

exceeding the threshold pumping by a factor of

4.5. Above this power, the forklike dislocation in

s
+ polarization disappears (21).

The stationary disorder fixes the winding num-

bers of the pinned vortices, so that repeating the

experiment we find HQVs with the same wind-

ing numbers in the same locations. This is also

true for the integer vortices. Handedness of each

pinned vortex is dependent on the direction of

polariton fluxes propagating in the disorder land-

scape during formation of the condensate, as the

modeling based on the Gross-Pitaevskii equation

showed (4, 26).

This experimental work provides direct evidence

of half-quantum vortices in a spinor condensate,

by means of polarization-resolved interferometry,

phase imaging, and spectrally resolved real space

density imaging.
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double 1m long monochromator with ~20�eV resolution. The setup is depicted in Fig. 

S1. We have added a �/4 before the interferometer at 45q with respect to the polarization 

analyzer which in this case was a Wollaston prism with 20q polarization splitting angle, 

to allow for simultaneous polarization resolved interferometry in 1
+
 and 1æ polarizations. 

The polarization resolved interferograms were sent simultaneously on two different 

regions of the same CCD camera and thus the images of the two polarizations were 

recorded at once. The four different kinds of HQVs are shown in Figs. S2 and S3. On the 

upper panels one has the raw data and on the lower panels we provide only the fringes, 

having removed numerically the CW part of the interferograms. In Fig. S2 (A,B) one can 

see a close pair of � � 1 1
, ,

2 2
k m

§ · � �¨ ¸
© ¹

 and � � 1 1
, ,

2 2
k m

§ � �¨
© ¹

·
¸  HQVs being in the red 

circle and blue box respectively. In Fig. S3 (A,B) there is another pair of 

� � 1 1
, ,

2 2
k m

§ · � �¨ ¸
© ¹

and � � 1 1
, ,

2 2
k m

§ � �¨
© ¹

·
¸  HQVs in the orange circle and pink box, 

respectively.  

For the spectrally resolved studies, we have replaced the CCD of Fig. S1 with the 

double monochromator and the Wollaston prism has been replaced with a normal 

polarizer. The optical tomography is then performed by shifting the lens L and acquiring 

one spectrally resolved image for each lens displacement. For the figures shown in the 

paper, we acquired ~100 slices.  

Mutual coherence of the two circular polarization components 

In order to rule out the possibility of having two independent condensates, one in 

one circular polarization carrying a full vortex and another one in the other polarization 

with no vortex, we have performed an additional interferometric experiment to probe the 

mutual coherence between the two polarizations. In this way we probe that the two 

polarization components are coming from the same two component spinor condensate. 

For this purpose we have built a modified polarization-mixing Mach-Zehnder 



interferometer as depicted in Fig. S4. The two polarization components are sent through 

the two independent arms of the interferometer and in order to achieve interference at the 

output, one of the two components is rotated by means of a half wave plate in order to 

become co-polarized with the other component. The interference then reveals whether the 

two components are mutually coherent. In this experiment we provide two figures where 

a half vortex is imaged by two independent methods, the polarization resolved 

interferometry as in Fig. S5 (A), and the polarization mixing interferometry as in Fig. S5 

(B). As seen in this figure, when making the two polarizations interfere, we clearly see an 

interference pattern which proves that the two polarizations are mutually coherent. The 

half vortex is easily distinguishable as a fork like dislocation at the top left corner and no 

forklike dislocation (straight interference fringes) at the symmetric position with respect 

to the autocorrelation point, the coordinates of which are extracted from Fig. S6.  

 

Simulation of the interference patterns 

All the observed interference patterns of HQVs are reproduced by the present 

theory for both experimental setups. We have considered a single vortex or a pair of 

vortices in a polariton fluid generated by a Gaussian laser beam with a half-width of 

10�m. The winding numbers are denoted in the corresponding figure captions. We used 

Eq. (3) and the definitions of the radial functions f and g from (S3) in order to calculate 

the complex electric field amplitudes  and  of a single vortex, emerging in each of 

the respective circularly polarized components. The resulting intensity of light in the 

experimental configuration of Fig. S1 is then expressed as: 

�E �E

� � � � � �
2

0 0( , ) , exp i ,x yI x y E x y K x K y E x x y yr r r
ª º � � � �¬ ¼ � ,                  (S1) 

where we use the coordinate system relevant to the real image on the sample,  is 

the effective position of the inversion centre of the retro-reflector in terms of the sample 

coordinates and  is the wave vector which determines the inclination of the 

),( 00 yx

),( yx KK



beams from the respective interferometer arms. In order to simulate the interference 

pattern of a sample with two vortices, we approximated the electric field in plane of the 

sample by a weighted superposition of the fields of two spatially separated single HQVs: 

rrr �
�

�
 2

21

1
1

21

2 EEE
AA

A

AA

A
,      (S2) 

where  is the particular circular component of the electric field emerging from the 

vortex  and the symbols  in the weighting functions denote distances from the 

cores of the vortices 1 or 2, respectively. Weighting of the electric field components in 

Eq. (S2) ensures continuity of the overall electric field and its derivatives. 

rjE

1 j 2, 2,1A

The calculated interference patterns produced by the interferometer in both Figs. 

S2 and S3 for the two circular polarizations are shown in Fig. S7 (A,B). The simulated 

interference fringes in the geometry shown in Fig. S5 (B) are plotted in Fig. S8 (A). One 

can see that the experimental images of Fig. S5 (B) are reproduced and the vortex is 

clearly identified. The calculated plot in Fig. S8 (B) shows the profile of the intensities of 

two circularly polarized components of the polariton field at the HQV core, which 

appears to be in excellent agreement with the experimental data as well. 

 

Pumping power dependence 

The observed half vortices show a strong dependence on the excitation intensity. Below 

the condensation threshold they do not exist and they usually appear when the 

condensation threshold is crossed. Then they tend to disappear at high power above 

threshold. The HQV shown in the main part of the paper gets unpinned when the 

excitation intensity crosses a value of roughly 4.5 times the condensation threshold 

(P§4.5�Pth). In Fig. S9 (A,B) we show the interferograms for excitation powers 2.5 times 

above the condensation threshold (P=2.5�Pth) and 5 times above the threshold (P=5.0�Pth). 

The forklike dislocation in 1
+
 polarization is clearly distinguishable for P=2.5�Pth  (Fig. 



S9 A), but it totally disappears at P=5.0�Pth (Fig. S9 B), demonstrating unpinning of the 

half vortex due to the screening of the static disorder potential. 

 

Vortex formation 

It has been shown (S4) that the vortices are formed spontaneously above the condensation 

threshold as a result of the mutual action of the non-uniform pumping and decay of 

polaritons. In a disorder free sample one would expect formation of vortex-antivortex 

pairs in each of the circular polarizations. These pairs are nothing but the HQV bound 

pairs [(-1/2,+1/2),(+1/2,-1/2)] and [(-1/2,-1/2),(+1/2,+1/2)] (S3). Simulations performed 

using the spin-dependent Gross-Pitaevskii equations showed that vortices in the opposite 

circular polarizations are separated and pinned to specific locations due to the combined 

effect of the disorder and spin-dependent polariton-polariton interactions (S5). 

Propagation of the polariton fluxes at the early stage of formation of the condensate 

determines the winding numbers of the pinned vortices. Pinned vortices whose winding 

numbers do not vary in a large number of experimental realizations indicates that their 

formation dynamics is nearly identical in different experiments, and stochastic 

fluctuations of the order parameter are negligible for the determination of the steady state 

in the presence of vortices in our structure. 
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Fig. S2: Simultaneous imaging of both polarization components for the identification of 

half vortices. (A): Raw interferometric data and (B): interference fringes after removing 

numerically the CW part of the raw data interferogram. In this figure two independent 

HQVs are clearly distinguishable, one with winding numbers � � 1 1
, ,

2 2
k m

§ � �¨
© ¹

·
¸  in the 

red circle and one with winding numbers � � 1 1
, ,

2 2
k m

§ � �¨
© ¹

·
¸  in the blue box.  
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Fig. S3: Simultaneous imaging of both polarization components for the identification of 

half vortices at a different position on the sample showing another close pair of HQVs. 

(A): Raw interferometric data and (B): interference fringes after removing numerically 

the CW part of the raw data interferogram. In this figure two independent HQVs are also 

clearly distinguishable only here with winding numbers � � 1 1
, ,

2 2
k m

§ · � �¨ ¸
© ¹

 and 

� � 1 1
, ,

2 2
k m

§ � �¨
© ¹

·
¸ in the orange circle and in the pink box respectively.  
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Fig. S5: (A): A half vortex observed with the standard method of simultaneous imaging 

of the interference patterns of the two polarization components. (B): The same HQV 

observed by means of polarization mixing interferometry. The half vortex shown in (B) is 

clearly observed as a forklike dislocation in the red circle and no forklike dislocation in 

the blue circle. The centers of the blue and red circles in both (A) and (B) are placed 

symmetrically with respect to the autocorrelation point. This experiment clearly 

demonstrates that the two polarization components are mutually coherent and that we can 

use whichever method facilitates our observations. 
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Fig. S6: Interference pattern below the condensation threshold as seen at the output of the 

Mach Zehnder polarization mixing interferometer. The autocorrelation point can be 

easily determined since it is the only place where the modulation of intensity caused by 

interference can be seen. Its size is defined by the response function of the microscope 

objective and the thermal de Broglie wavelength of polaritons. Here it is on a submicron 

scale. Note that the luminescence below threshold is not polarized thus we had to add a 

plate polarizer before the �/4 to be able to see the interference at the autocorrelation 

point.  
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Fig. S7: Numerical simulation of the interference pattern in each of the circular 

polarizations for pairs of HQVs. (A): Simulated interferogram of a pair of HQVs with the 

same relative core coordinates as in figure S2. The quantum numbers are 

� � 1 1
, ,

2 2
k m

§ · � �¨ ¸
© ¹

 and � � 1 1
, ,

2 2
k m

§ � �¨
© ¹

·
¸  in the circle and box respectively. The 

singularities behave identically to the experimental data.   (B): Simulated interferogram 

of a pair of HQVs with the same relative core coordinates as in figure S3. The quantum 

numbers are here � � 1 1
, ,

2 2
k m

§ · � �¨ ¸
© ¹

 and � � 1 1
, ,

2 2
k m

§ · � �¨
© ¹

¸  in the circle and box 

respectively.
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Fig. S8: (A) Simulated fringes emerging from interference of the two opposite circular 

components of the luminescence. The HQV with � � 1 1
, ,

2 2
k m

§ · � �¨
© ¹

¸  is situated at the 

coordinates (7,7) where a forklike dislocation is seen. (B) The calculated polariton field 

intensity across the vortex core in the direction of the y axis in two circular polarisations. 

At the center of the vortex the minimum in V �  polarisation coincides with the maximum 

in V �  polarisation. 
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Fig. S9: Interference patterns for two excitation powers. In (A) the excitation was at a 

power 2.5 times higher that the condensation threshold whereas in (B) the excitation 

power was 5 times above the threshold. In panel (A) the half vortex is clearly shown by 

the red circles (forklike dislocation for sigma plus and straight fringes for sigma minus), 

whereas in panel (B) where the excitation power is high, in the same circles the 

interference pattern has changed with the most striking feature being the vanishing of the 

forklike dislocation. This clearly indicates the vortex unpinning from that specific 

location. 

 





effective refractive index of the cavity [16] determined
from the cavity dispersion by averaging over the cavity
mode and Bragg mirror. The resulting TE–TM splitting
of the GaAs cavity increases with the incidence angle
(equivalent to the in-plane k-vector), as shown in the in-
set of Fig. 1. Experimental points plotted (empty circles)
verify the theoretical calculation of the TE–TM splitting.
The sample is a λ GaAs microcavity with 27 (top) and

24 (bottom) distributed GaAs/AlAs reflector pairs. The
measured cavity mode dispersion (Fig. 1) has a linewidth
of 10 μeV (at normal incidence) and a corresponding cav-
ity photon lifetime of 30 ps. Measurements are taken with
the sample held in a cold-finger cryostat at 10K to tune
the cavity resonance into the transparent region of GaAs,
approximately 30meV below the 1 s excitonic resonance.
Further to previous studies with strongly coupled micro-
cavities, we excite a large cone of angles around normal
incidence to the sample with a lens of large numerical
aperture (NA ¼ 0:4) [Fig. 2]. This alternative approach,
used earlier to investigate polariton propagation [17],
allows direct population of all states resonant to the
excitation, which due to the nearly isotropic in-plane po-
lariton dispersion correspond to a given k-vector magni-
tude, forming a ring in momentum space. The sample is
illuminated using a cw Ti:sapphire laser (<1:5nm line-
width). The linear polarization of the excitation is ad-
justed to either the x or y direction using a half-wave
plate. The excitation photon energy determines the reso-
nant in-plane wave vector k on the ring. The photons
across the elastic ring acquire different phase shifts as
they propagate in various directions. The degree of cir-
cular polarization

ρc ¼
Iσþ − Iσ−

Iσþ þ Iσ−
; ð2Þ

where Iσþ and Iσ− are the measured intensities of the
circularly polarized components of the transmission,
reveals a separation of spin-polarized photons in the
empty GaAs cavity in momentum space. Figure 3 shows
ρc, obtained upon illumination of the sample, with ener-
gies resonant to the cavity mode with a large numerical
aperture at four different x-polarized incident photon
energies. A fourfold symmetry is apparent in each case.
Rotation of the polarization plane of the incident beam
results in inversion of the polarization of the observed
anisotropic polarization flux (not shown).

As previously discussed, the TE–TM splitting defines
the effective birefringence for the cavity. The photon
lifetime dictates how long the light experiences the bire-
fringence and defines the total retardation. The total re-
tardation in our system is measured to be close to π=2, as
in a quarter-wave that, using the cavity lifetime of 30ps,
yields a TE–TM splitting around 70 μeV, close to the the-
oretical upper limit of about 100 μeV (inset in Fig. 1).

Simulations of the anisotropic polarization flux are
undertaken with wave optics, the results of which are
shown in Fig. 4(b). The incident laser beam is decom-
posed into a superposition of TE- and TM-polarized plane
waves whose transmission through the sample is calcu-
lated using transfer matrix formalism. Applying Eq. (2)
gives k-space images of the circular polarization degree.
For the simulations, the incident light is considered to be
a Gaussian beam in k-space of the form:

E0xðkÞ ¼ exp½−k2=σ2�; ð3Þ

where the Gaussian width is σ ¼ 1:9 μm−1. In the cylind-
rical coordinate system, we decompose the initial elec-
tric field intensity to its TE and TM components:

Fig. 1. Calculated bare cavity mode dispersion versus angle.
Filled circles correspond to experimental points. Inset: LT split-
ting, derived from Eq. (1), versus angle forΔ ¼ −2meV, plotted
with experimentally measured points (empty circles).

Fig. 2. (Color online) Setup collects transmission in momen-
tum space. The incident beam is always linearly polarized and
at normal incidence.

Fig. 3. (Color online) (a)–(d) Measured circular polarization degree ρc in momentum space. The color scale is linear in intensity.
The incident beam is x-polarized at energies corresponding to (a) 5°, (b) 10°, (c) 15°, and (d) 20°.
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ETEðk;ϕÞ ¼ E0xðkÞ sinðϕÞ;

ETMðk;ϕÞ ¼ E0xðkÞ cosðϕÞ: ð4Þ

Then we use the standard transfer matrix method to
determine the TE and TM transmission coefficients
tTE;TMðkÞ and perform a backward transformation to
the x–y coordinate system:

Exðk;ϕÞ ¼ ETMðk;ϕÞtTMðkÞ cosðϕÞ

þ ETEðk;ϕÞtTEðkÞ sinðϕÞ;

Eyðk;ϕÞ ¼ −ETMðk;ϕÞtTMðkÞ sinðϕÞ

þ ETEðk;ϕÞtTEðkÞ cosðϕÞ: ð5Þ

We calculate the intensities of the circular components
as Iσþ;σ− ¼ jEx � iEyj

2, and the corresponding circular
degree of polarization is given by Eq. (2).
Exchanging the half- and quarter-wave plates to illumi-

nate with circularly polarized light and resolve the line-
arly polarized transmission yields polarization anisotropy
in two orthogonal linear polarizations, and a fourfold
symmetry in the carriers’ spin is again achieved (not
shown).
In conclusion, we have observed the optical spin Hall

effect in a pure photonic cavity. Photons are distributed
uniformly around the elastic circle and develop an aniso-
tropic polarization flux due to the TE–TM splitting of the

cavity mode. Their behavior can be described by a the-

oretical model based on classical wave optics. These

results show that the optical spin Hall effect can be ob-

served in planar microcavities in the absence of an

excitonic resonance. However, there are spin effects in

microcavities in which the excitonic part of polaritons

is essential, such as the Zeeman splitting used in the pro-

posed optical Berry-phase interferometer [18].
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tween polaritons, but are interference patterns created
by scattering from the defect. Moreover, we show that
the appearance/disappearance of these features for differ-
ent in-plane kinetic energies is reproduced in the linear
regime and thus does not provide evidence of an inter-
acting quantum fluid. Therefore, the previous reports
of the observation of dark-solitons [15–18] and half-dark-
solitons [19] which were based on these features have to
be reconsidered.
The investigated sample is a bulk λ GaAs microcav-
ity surrounded by 27 (top) and 24 (bottom) distributed
GaAs/AlAs Bragg reflector pairs. The sample is held
in a cold-finger cryostat at a temperature of 15K and
is illuminated by a narrow linewidth single-mode con-
tinuous wave laser, tuned to the resonance of the cavity
at about 1.485 eV. The measurements were performed
in transmission configuration. The phase was measured
using a shearing Mach-Zehnder interferometer (see [20],
S1 [21–24]). Our experiments were performed in the lin-
ear regime, facilitated by the large negative detuning of
−29meV of the cavity photon mode from the exciton res-
onance at 1.514 eV, resulting in a small exciton fraction
of the polariton of about 1%. To verify the linear regime,
we studied the excitation density dependence of our re-
sults with both a Gaussian and half-Gaussian excitation
beam (see [20], S2). We find that they are independent
of both the shape of the beam and the excitation density
over a range of four orders of magnitude and they persist
at polariton density as low as 2.3×102 cm−2, seven orders
of magnitude lower than the lasing threshold observed in
standard microcavities [25].
The real space intensity and interference of a polariton
wave propagating across a defect are shown in Fig. 1.
The experimental results show the presence of two dark
notches in the intensity pattern along with a π phase shift
visible in Fig. 1(b) as paths of vortices merging in succes-
sion with alternating topological charge ±1. Simulations
of the measurements using the realistic experimental pa-
rameters are shown in Fig. 1(c) and Fig. 1(d).
Solitons are predicted to appear in polariton microcavi-
ties as the result of the nonlinearity due to the polariton-
polariton interactions [26]. Since our experiments are in
the linear regime, it is important to understand how the
nature and the size of the defect affects the formation pro-
cess of these soliton-like features. In a recent study [27]
of the structural and optical properties of GaAs/AlAs
microcavities grown by molecular beam epitaxy it was
shown that the most common point-like defects (PD)
were characterized by a circular or elliptical shape [28],
due to Gallium droplets emitted occasionally during the
growth [29, 30]. The presence of the defect has the effect
of modifying the effective thickness of the cavity layer,
which typically results in an attractive potential for the
cavity mode inside the defect [28]. Consequently, the
wavevector of the photonic mode in the region of the de-
fect is higher than in the rest of the cavity.

Figure 2. Experimental interference (a),(c) and intensity
(b),(d) showing the transition between the regime where the
soliton features are well defined (1.485 eV) to a regime where
they vanish (1.487 eV). The intensity profiles (e),(f) calcu-
lated along the blue dashed line, 20µm away from the defect,
confirm that the dark notches disappear when the energy of
the excitation beam is increased. The two arrows indicate the
positions of soliton-like fingerprints.

The polariton scattering by the defect depends on the
wavevector mismatch between the polaritons outside and
inside the defect at the energy of excitation. When the
energy shift of the defect photon mode with respect to
the unperturbed cavity mode is large enough to make the
coupling between them inefficient, the defect behaves like
a hard scatterer and the spatial intensity distribution is
similar to the complementary case of a single-slit diffrac-
tion [31]. In our case, however, there is a finite transmis-
sion through the defect, producing dark and bright traces
with a more complicated phase pattern. As it has been
shown by Berry et al. [32, 33], wavefronts resulting from
interference can contain dislocation lines. In the case of a
scattered beam, dislocations are composed of phase shifts
at positions where the amplitude of the electromagnetic
wave and thus the intensity vanishes, representing nodes
of the wave. It is worth mentioning that nonlinearities
are negligible close to nodes also in the nonlinear regime,
and phase dislocations at zero intensity (i.e. at the dark
notches) are features of both linear [34, 35] and nonlin-
ear waves. In our case, the analogy between linear and
nonlinear waves goes beyond the mere observation of the
same features and is effectively more profound. Indeed,
as shown in [20] S4, the intensity, the phase jumps as
well as the relative depth of the dark-notches in the lin-
ear regime satisfy the same mathematical expression as
in the quantum fluid case [15–18]. In particular, also in
our linear system the relative depth of the dark-notches
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ton dispersion. For polaritons excited resonantly with a
given energy, this results in an increase of the polariton
wavevector with decreasing density along the polariton
propagation. Specifically in non-resonantly excited ex-
periments [36], this blueshift is dominated by the exci-
ton density in the reservoir at high wavevectors. The
interaction with the exciton reservoir is not a polariton-
polariton interaction within the condensate which could
provide the non-linearity needed for the formation of soli-
tons, but instead represents an external potential sculpt-
ing the polariton energy and gain landscape.
In a different experiment, we address the observation
of half-soliton fingerprints, which requires polarization-
resolved measurements. The intensity images [Fig. 3(a)
and (b)] are measured using an excitation linearly po-
larized parallel to the y-direction. The interferograms
[Fig. 3(c) and (d)], are obtained by selecting the same po-
larization for the excitation and reference beam (see [20],
S1 for details). The signature of an oblique dark half-
soliton (ODHS) is a notch in only one circular polariza-
tion component [19, 37]. We excite the sample with a
linearly polarized beam and detect the two circular po-
larization components (σ

−
, σ+) separately. The mea-

surements are performed with the same excitation en-
ergy (1.485 eV) and negative detuning (−29meV) as in
the previous case. The measured intensity and the in-
terferogram for the σ

−
component are given in Fig. 3(a)

and Fig. 3(c) respectively. The images show the presence
of a σ

−
soliton fingerprint, indicated by the blue arrows,

that is absent in the σ+ component [Fig. 3 (b), (d)]. The
same applies to the σ+ counterpart, where a half-soliton
fingerprint is observed only on the right side of the image.
By calculating the degree of circular polarization, given
by Sc = (Iσ+

−Iσ
−

)/(Iσ+
+Iσ

−

), with Iσ+
and Iσ

−

being
the measured intensities of the two components, we mea-
sure the pseudospin state inside the cavity [Fig. 4]. Here,
if we look at the same position where the soliton features
have been observed [Fig. 3], indicated by the black dot-
ted lines in Fig. 4 (a), we note the presence of a pair
of oblique traces with opposite circular polarization, re-
sembling the predictions and observations attributed to a
polariton superfluid [19, 37]. The high degree of circular
polarization that we observe is due to the polarization
splitting of transverse electric and transverse magnetic
optical modes (TE-TM splitting) [38] (see [20], S7). The
latter gives rise to the optical spin Hall effect [39] that
has been observed in both polariton [40] and purely pho-
tonic microcavities [41]. In our simulations [Fig. 4 (b)] a
linearly polarized incoming beam propagates along the
y-direction and is scattered by a defect positioned at
25µm away from the excitation spot, inducing the for-
mation of two traces propagating in oblique directions.
The detected field is a superposition of the incoming lin-
early polarized wave and the scattered wave. The TE-
TM splitting of the optical mode in a photonic cavity
is responsible for an anisotropy in the polarization flux,

as previously shown on the same sample in Ref. [41].
Here the same values of the TE-TM splitting have been
used to perform the simulations. The polaritons scatter
from the defect with wavevectors of equal modulus but
in different directions both in the real and momentum
space. Because of the birefringence induced by the TE-
TM splitting, polaritons propagating in different direc-
tions experience different polarization rotation and shift.
Polaritons traveling to the right gain a σ+ component
while polaritons traveling to the left gain a σ

−
compo-

nent. The anisotropy of the effect manifests itself in the
intensity pattern, where it is possible to observe the fea-
tures of an oblique soliton in one circular component and
not in the other.

Figure 4. Experimental (a) and simulated (b) circular Stokes
parameter showing half-soliton features. The two black dot-
ted lines correspond to the position of the dark notches
present in Fig. 3(a) and (b).

In conclusion, we have shown that the previously re-
ported experimental signatures of oblique dark-solitons
and half-solitons in polariton condensates can be ob-
served in the case of polaritons propagating in the linear
regime. We find that these features are the result of the
interference of the incoming wave with the waves scat-
tered by the defect. Moreover, the intensity, the phase
jumps and the relative depth of the dark-notches satisfy
the same analytical expression as in the polariton quan-
tum fluid. In the case of the polarized counterpart (i.e.
half-soliton-like features) the intrinsic TE-TM splitting of
the cavity dispersion gives rise to oblique straight traces
with opposite polarization.
Our results clarify that phase vortex lines in polariton
propagation together with dark notches of constant
relative depth in the intensity patterns, used as finger-
prints of oblique-dark solitons and half-solitons in the
literature, are present in the linear propagation regime.
Consequently, these features are necessary but not suf-
ficient evidence to identify solitons. We believe a more
reliable criterion for identifying dark-solitons, based on
the definition of solitons (i.e. solitary non-spreading
wave), would be the size of the observed features which
is determined by the healing length of the condensate
(see [20], S4 for details).
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In the microcavity polariton literature, the observation of dark-solitons has been claimed using both a Gaussian
excitation beam [1, 2] and half-Gaussian excitation beam [1, 3]. We have used both excitation shapes and find that
they do not affect the observed structure significantly.

Polariton density. The polariton density inside the cavity has been estimated from the number of photons
transmitted through the sample and detected on the CCD camera. For a microcavity, in fact, the polariton popula-
tion is proportional to the detected intensity. At the lowest excitation density of 3.8W/cm2, the polariton density
inside the microcavity is estimated to be Dpol = 2.3 × 102 cm−2, seven orders of magnitude lower than the lasing
threshold observed in standard microcavities [4]. The density of polaritons have been estimated by using the following
formula:

Dpol = Φhv × τ, (1)

where Φhv = 2.3×1013 cm−2 s−1 is the flux of photons transmitted through the sample and τ = 10 ps is the polariton
lifetime. The flux of photons Φhv has been calculated as:

Φhv =
Cpx × αphe

t×QE × Apx × ηobj × ηlens
, (2)

where Cpx = 7186 is the maximum pixel counts corrected for the background, αphe = 7.3 is the number of photoelec-
trons per count (determined from the shot-noise), t = 10 s is the integration time, QE = 0.3 is the quantum efficiency
of the CCD camera at the wavelength used in the experiment and Apx = 0.1225 µm2 is the real-space area of a single
CCD pixel on the sample, ηobj = 0.7 and ηlens = 0.9 are the assumed intensity transmission factors due respectively
to the objective (Obj2) and the lens (L2) used in the experiment (see Fig. S1).

The investigated sample has a large negative detuning of -29meV of the cavity photon mode from the exciton
resonance (1.514 eV), resulting in an exciton fraction of the polariton mode of less than 1%. The interaction energy
scales with the excitonic content, and can be estimated using Eq. (9) in [5]. For the highest density used (1.1 ×

108 cm−2), we find a renormalization energy of 33 neV, using the bulk exciton binding energy of 4.2meV, a Rabi
splitting of 5meV, the bulk GaAs exciton Bohr radius of 14 nm, and an excitonic fraction of 1%. The parameters
used here are approximate values, and the resulting renormalization is an order of magnitude estimate. However,
since it is three orders of magnitude lower than the polariton linewidth, it is sufficiently accurate to predict that it
has a negligible effect on the polariton dynamics, consistent with the experimental observation.
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In the above formula, cs represents the speed of sound in the BEC, which is directly proportional to the density of
the condensate [6]. Equation 3 dictates the conditions that have to be satisfied in order to identify dark-solitons in
BECs. In particular, when δ tends to π:

1. ns

n → 1, i.e. the dark-soliton becomes deeper (ns = nd)

2. vs
cs

→ 0, i.e. the velocity of the dark-solitons tends to zero.

Furthermore, due to the repulsive interactions within the BEC, the width of the dark-soliton tends to the healing
length ξ of the condensate [6, 7]:

ξ →

(

2nMg
~2

)−1/2

.

Here M is the atomic mass, g is the atom-atom interaction and ~ is the Planck constant divided by 2π.
As in the atomic BECs, also in the case of polariton condensates equation 3 has been used to identify dark-

solitons [1, 2, 8, 9]. However, in all the previous works the healing length condition which is related to the width of
the soliton has been neglected. This aspect will be discussed in the last part of this section.

Here we evaluate the conditions 1 and 2 in the linear regime.

Depth and velocity of the dark-notch. In our case, as for the polariton quantum fluid, dark-notches are
characterized by a minimum of the intensity (nd) at their center compared to the surrounding polaritons (n).
Consequently, we can evaluate the depth (ns) of a dark-notch in the same way as in the quantum fluid case:

ns = n− nd (4)

and calculate the relative depth of the dark-notch (ns

n ) at different distances from the defect, where the phase shift δ
is close to π.

Fig. S5 (c) shows the relative depth (ns

n ) of the dark-notch for the left notch of Fig. S5 (a). The depth of the dark-
notch has been determined by fitting the line profile of the notch with an inverse Gaussian distribution at different
distances from the defect. The intensity of the surrounding polaritons (n) has been estimated from the maximum
intensity along the red dotted line in Fig. S5 (a). The fitting (red line) and the quantities n, ns and nd are shown in
Fig. S5 (c).

Similar to the case of a quantum fluid, in our linear system the relative depth of the dark-notch remains approxi-
mately constant up to 42 µm as shown in Fig. S5 (d), which corresponds to a close to π phase shift in the interferogram
(Fig. S5b). It is worth noticing that the ratio ns/n oscillates around the mean value of 0.87 and it reaches the max
value of 0.91 at 24 µm away from the defect, similar to the critical value of 0.9 reported in the literature [8, 9] for the
formation of “vortex streets”.

Moreover, at longer distances, at about 50 µm away from the defect we observe a decrease of the relative depth
of the dark-notch together with a decrease of the phase shift. In agreement with equation 3, when the dark-notch is
deeper (ns/n tends to one in the equation 3) the ratio vs/cs decreases.

These observations show that a similar trend as in the polariton quantum fluid can be observed also in the lin-
ear regime.

Equivalent of the Mach number. In the case of a polariton quantum fluid it has been shown that different
hydrodynamic regimes are connected to the Mach number (M ), which is the ratio between the local flow velocity
vflow and the local speed of sound cs [1, 2, 8, 9]:

M =
vflow
cs

. (5)

Dark-solitons in polariton microcavities have been claimed to appear for M > 1, with values depending on the
nature of the obstacle [1, 2, 8, 9]. In our linear system there is no sound, i.e. no linear dispersion range. However,
we can evaluate the equivalent of the Mach number in our system, namely taking (

vflow

cs
) from the measured values

of ns/n (Fig. S5 d) and using the geometrical relation [1, 2, 8, 9]:

vs = vflow sin(α) (6)
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Figure S5. Experimental real space intensity (a) and interference (b) patterns showing the two “dark-soliton fingerprints”.
These images are the same as Fig. 1 (a) and (b) of the main manuscript but plotted over a larger y-axis range. (c) Horizontal
intensity profile calculated along the blue dashed line in (a), 22 µm away from the defect. The inverse Gaussian fit is also
shown (red line) together with the quantities n (black arrow), ns (green arrow) and nd (red arrow). (d) Dark-notch depth (ns

n
)

calculated from (a) at different distances from the defect. As in the polariton quantum fluid case, the depth of the dark-notch
is stable up to 42 µm.

where vflow is the velocity of the polariton flow along the y-direction and α is the aperture angle of the oblique-dark
notch with respect to the flow direction. In our case α is measured to be 16.3◦.

By combining equations 3, 5 and 6 we can estimate the equivalent M of the quantum fluid case:

M =

√

1−
ns

n

1

sin(α)
(7)

In our case the ratio ns

n varies between 0.91 and 0.63 (measured respectively at 24 µm and 57 µm from the defect
(see Fig. S5 d), which corresponds to a variation of M from a minimum value of 1.07 to a maximum value of 2.17.
Dark-solitons have been predicted to appear in polariton microcavities when M ≥ 1.02 [10]. This analysis shows
show that the condition on the Mach number to observe dark-solitons can be satisfied along the whole path of the
dark-notch in the linear regime.

Therefore, M > 1 together with the constant relative depth of the dark-notch (ns

n ) and related phase shifts in
the interferograms are conditions necessary but not sufficient to identify dark-solitons, since these conditions can be
observed also in the linear regime.

Healing length condition. Equation 3, initially proposed for atomic BECs [6], has been used also in polari-
ton microcavities to identify dark-solitons [1, 2, 8, 9]. However, in all the previous works, the healing length condition
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which is related to the width of the soliton has been neglected even though it represents a direct application of the
definition of a soliton.
A soliton, in fact, is a solitary wave that preserves its shape while propagating through a dispersive medium [11, 12].
This feature can be considered as universal fingerprints since has been observed in all the physical systems where
solitons have been studied [13]. To the best of our knowledge the formation of “oblique” dark-solitons, although
predicted for both the atomic [14] and polariton condensates [10], has been experimentally reported only for po-
lariton condensates [1, 2, 8, 9]. On the other hand, in atomic BECs, only single “straight” dark-solitons have been
experimentally observed [6].

The above healing length condition specifies that solitons propagating in a condensate of homogeneous density are
characterized by a constant width (i.e. non-spreading wave) which is given by the healing length ξ of the condensate [6].
When the excitation density is increased, the FWHM of the dark-notch should scale as n−1/2, proportional to the
healing length of the condensate.
We compare in Fig. S6 the measured width of the dark notch in our linear system with the expected scaling C/n1/2

using the measured intensity as function of distance. We find that the healing length condition is not respected by
this data in the linear regime, indicating that it is suited to discriminate dark solitons from linear propagation. We
therefore propose to use the healing length condition to verify dark soliton formation, which should be fulfilled over
a range of polariton excitation densities to exclude coincidental matches with specific scattering patterns in linear
propagation.
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Figure S6. The blue circles show the measured FWHM of the left notch in Fig. S5 a) at different distances from the defect.

The red triangles show C/n1/2 proportional to the healing length using a suitable chosen constant C. The density n has been
calculated by averaging the intensity of the left and right sides of the left dark-notch in Fig. S5 a).



9

S5. THEORY FOR THE CAVITY MODE SCATTERING BY A POINT DEFECT

The classical theory of electromagnetism is used in order to calculate the distribution of electric and magnetic fields
inside the cavity in the presence of a disk-shaped defect and illumination of the cavity by a monochromatic laser beam.
As already mentioned in the manuscript, the choice of such a model is justified by the fact that we operate in the
linear regime with a polariton dispersion dominated by the cavity mode. In the model, we consider the propagation
of two-dimensional photons with a quadratic dispersion in the microcavity plane, as shown in Fig. S7. A quadratic
dispersion is found for all planar microcavity polaritons for small in-plane momenta plane. In our case, the large
negative detuning provides a large range over which the dispersion is to a good approximation quadratic, covering all
the relevant excitation wavevectors used.

The field distribution in a bare cavity obeys Maxwell’s equations for the electric field E(x, y, z, t) and magnetic
field H(x, y, z, t). Symmetry of the planar cavity allows one to separate the solutions as follows:

E(x, y, z, t) = Eω(x, y)χ(z) exp[−iωt]

H(x, y, z, t) = Hω(x, y)ξ(z) exp[−iωt]

The subscript ω denotes that the in-plane components of the fields depend on the energy of radiation while the normal
components χ(z) and ξ(z) are independent of energy under consideration of small in-plane wave vector k‖:

k‖ ≪
ncavω

c

where ncav is the refractive index of material of the cavity and c is the vacuum speed of light. The normal components
χ(z) and ξ(z) of the fields can be estimated inside the cavity where the most of light energy is concentrated: χ(z) ∝
ξ(z) ∝ cos(ncavω0z/c) where ω0 is the cavity resonance frequency at normal incidence. The in-plane wave vector then
can be deduced as

k‖(ω) =
ncav

c

√

ω2 − ω2
0
.

The cavity defect is given by a change of the Bragg mirror composition by the presence of additional GaAs due to
the Ga droplet formation during the growth process [15, 16]. The presence of the defect has the effect to modify the
effective thickness of the cavity layer, resulting in a red-shift of the photonic dispersion inside the defect [17]. As a
result, the resonance frequency inside the defect shifts from ω0 to ω′

0 with respect to the bare cavity and accordingly
the in-plane wave vector k‖ to k′‖ , with k′‖ > k‖ (Fig. S6). The energy shift of the cavity mode represents an

attractive potential in the two-dimensional polariton propagation.
Besides the change of the resonance condition, also the normal components of the fields vary the spatial distribution

and become χ(z) → χ′(z) and ξ(z) → ξ′(z). In our model, however, we assume that these changes are small (the
relative change of the cavity energy considered in our case is only about 0.1%) and therefore we neglect them. Within
this approximation, the solution of the problem of light propagation through a cavity with arbitrarily shaped defect
is reduced to the solution solely in the xy plane because boundary conditions are independent of the position on the
axis z. First we find two basis sets of solutions of Maxwell’s equations for the bare cavity and the perturbed cavity.
We denote these sets as Ecav

ω,j,m, Hcav
ω,j,m and E

def
ω,j,m, Hdef

ω,j,m respectively. Here the index j stands for polarization (TE
or TM) and m is the discrete index of the mode in the expansion.
The two respective sets of fields defined above are local solutions of Maxwell’s equations outside and inside the

defect area. In order to solve the whole problem of scattering, we have to find a solution on the boundary between
the bare cavity and the defect where the in-plane wave vector is not continuous. Here we assume that the boundary
behaves like an ordinary boundary between two dielectrics, i.e. we require continuous tangent components of all fields.
Let us write the fields in the bare cavity and in the defect area in the following form:

E
cav

ω = Eincident +
∑

j,m

ccavj,mE
cav

ω,j,m (8)

H
cav

ω = Hincident +
∑

j,m

ccavj,mH
cav

ω,j,m (9)

E
def

ω =
∑

j,m

cdefj,mE
def

ω,j,m (10)

H
def

ω =
∑

j,m

cdefj,mH
def

ω,j,m (11)
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Figure S7. Theoretical dispersion inside (red) and outside (blue) the defect. The presence of the defect has the effect to modify
the effective thickness of the cavity layer, resulting in a red-shift of the photonic dispersion inside the defect. Consequently, for
a fixed energy, the wavevector of the photonic mode in the region of the defect is higher than in the rest of the cavity (k′ > k).
The black dashed line indicate the excitation energy used in the experiment.

The coefficients ccav and cdef are finally set so that the boundary conditions are fulfilled. If the basis sets are chosen
properly, the solution is unambiguous. For the case of a circular defect, it is convenient to use the basis of fields
in cylindrical coordinates [18] whose boundary conditions reduce to simple algebraic equations for the unknown
coefficients. Once the coefficients are known, the spatial field distribution is evaluated using the definitions above,
performing the summation on right hand side. To include the TE–TM splitting in cylindrical coordinates, it suffices
to discriminate between the in-plane wave vectors k‖,TE and k‖,TM and the same inside the defect.

S6. DEPENDENCE OF THE SOLITON-LIKE FEATURES ON THE SCATTERING GEOMETRY

The observed features depend on the shape and size of the defect and the direction and polarization of the incoming
polariton wave relative to the defect. For an elliptical defect, the phase and amplitude of the scattering depend on
the direction of the incoming wave. Also the polarization contributes to the anisotropy of the effect because for a
given absolute polarization direction a different angle of incidence corresponds to a different polarization relative to
the defect.

Fig. S8 shows an example of the beam incident on the defect at an angle in the experiment. We use the same
parameters of Fig. 1(c) and Fig. 1(d) of the manuscript to perform the simulations, but we change the direction of
the incoming beam. In the previous case (Fig. 1 of the manuscript), the excitation beam is polarized orthogonal to
the incidence direction, while in Fig. S8 the beam direction has a 28 degree angle to its polarization (y), and gen-
erates a phase dislocation only in the upper dark line but not in the lower one, as indicated by the arrow in Fig. S8(c).

Moreover, we have investigated the case of a larger defect. The number of dark lines increases with increasing
defect size, allowing the formation of quadruplet solitons-like features. This is confirmed by the simulations shown
in Fig. S9(b) and Fig. S9(d). Once again we refer to the simulations shown in Fig. 1 of the manuscript to simulate
high-order dislocations. In particular, Fig. S9(b) and Fig. S9(d) have been calculated by using the same parameters
as Fig. 1(c) and Fig. 1(d) of the manuscript except for increasing the radius of the defect from 3µm to 5µm.
In Fig. S9(a) and Fig. S9(c) the experimental observation of a high order soliton-like features is shown in both

intensity and phase. In the case of a bigger defect, it is possible to note how the wave appears to bend around the
edges of the defect.
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Figure S8. Experimental (a),(c) and simulated (b),(d) real-space intensity and interference pattern showing soliton-like finger-
prints generated by the interaction of the beam with a defect. Unlike Fig. 1 of the manuscript, the phase shift is only present
in correspondence of the upper soliton-like feature as indicated by the light blue arrow in (c).

Figure S9. Experimental (a),(c) and simulated (b),(d) real-space intensity and interference pattern showing higher-order soliton
features generated by the interaction of the beam with a defect bigger than the one present in Fig. 1 of the manuscript.

S7. HALF-SOLITON-LIKE FEATURES CAUSED BY TE-TM SPLITTING

In our simulations a linear y-polarized incoming beam, propagates along the y-direction and is scattered by a
defect positioned at 25µm away from the excitation spot, inducing the formation of two traces propagating in oblique
directions. In the case of half-soliton features in the circular polarisation basis, we found that the birefringence in
the scattering by the defect is due to the intrinsic TE-TM splitting of the polariton dispersion. This is confirmed by
the simulations shown in Fig. S10 where the scattered field, produced by the wave hitting the defect, is calculated in

absence, Fig. S10(a), or in presence, Fig. S10(b) of the TE-TM splitting. In the latter case we use ~k‖L/~k‖T = 1.004
which is the same value that has been used in reference [19] for the same sample. In order to simplify the theoretical
discussion, we consider the TE-TM splitting constant across the whole cavity including the defect and no additional
splitting in the defect is considered.
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Figure S10. Simulated circular Stokes parameters showing half-soliton features. The images have been calculated by considering
a beam hitting a circular defect in absence (a) and in presence (b) of the TE-TM splitting.
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