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CHAPTER 1 
INTRODUCTION 
 
Earth’s climate system consists of a multitude of diverse components, active on a 
range of temporal and spatial scales, interrelated and subjected to external 
influences from the planetary interior or outer space as well as to the effects of 
human activity. The intricacy of the resulting structure marks it as one of the most 
challenging targets for study in – and beyond – the field of physics, and no current 
scientific technique is able to provide its complete, accurate description. Even so, 
much understanding about weather and climate can be gained through their 
simplified representations. Since analytical solutions do exist for only the most 
minimalistic embodiments of the related dynamics, numerical simulations have 
become the prime research tools in meteorology and climatology. Nevertheless, 
even the most sophisticated state-of-the-art models still fail to deliver a completely 
realistic reproduction of the climate system or its individual components. This 
applies not only to the prognostic simulations, limited in their ability to reliably 
forecast weather by the inherently chaotic nature of the atmosphere, but also to 
their climatic counterparts, struggling to provide a fully satisfactory approximation 
of the complex weave of the processes forming the Earth’s climate. Consequently, 
many of the real-world features are misrepresented or absent in the simulated 
climates, or captured with substantial uncertainty. As illustrated (for instance) by 
the summary assessment by the Intergovernmental Panel on Climate Change 
(STOCKER ET AL. 2013), steady improvement of the performance of the climate 
models has been achieved over the past years, gradually alleviating many of their 
imperfections. Yet, even in their current advanced state, numerical simulations do 
still not offer a completely dependable picture of the climate and other approaches 
are needed to support, complement and validate them. This role is filled in a large 
part by statistical methods, ranging from basic descriptive and exploratory 
techniques to complex nonlinear algorithms for investigation of the variability 
patterns in multidimensional data.  

A substantial part of the knowledge about the climate system comes from 
the study of its direct or indirect manifestations, recorded in the form of univariate 
or multivariate time series. The main role of statistical techniques then consists in 
extraction, refinement and interpretation of the information contained in such 
signals. Obviously, this brief thesis does not attempt to provide a full treatise of 
the extensive array of statistical methods used in the climatic research, or to 
deliver a comprehensive synopsis of their numerous applications to the observed 
and simulated data. Rather, it aims to highlight several specific topics pertaining to 
my past research in the field of statistical climatology, to deliver selected 
examples of the related results, and to connect them in a unifying frame.  
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The thesis has been created as summary, amalgamation and evolution of 
materials published in selected works authored or co-authored by me during my 
research career. Its core is built upon seven stand-alone publications with my 
major participation, provided in the appendices and dealing in a large part (though 
not exclusively) with various applications of regression mappings in the atmo-
spheric and climatic research: 

 
• MIKŠOVSKÝ & RAIDL (2006)   →  (Appendix I, p. 46) 

MIKŠOVSKÝ, J., AND A. RAIDL (2006), Testing for nonlinearity in European 
climatic time series by the method of surrogate data, Theoretical and Applied 
Climatology, 83(1-4), 21-33, doi:10.1007/s00704-005-0130-7. 

• MIKŠOVSKÝ ET AL . (2008)   →  (Appendix II, p. 60) 
MIKŠOVSKÝ, J., P. PIŠOFT, AND A. RAIDL (2008), Global Patterns of Nonlinearity 
in Real and GCM-Simulated Atmospheric Data, in Nonlinear Time Series 
Analysis in the Geosciences: Applications in Climatology, Geodynamics and 
Solar-Terrestrial Physics (Eds.: Donner, R. V., and S. M. Barbosa), Lecture 
Notes in Earth Sciences, 112, 17-34, doi:10.1007/978-3-540-78938-3_2. 

• MIKŠOVSKÝ & RAIDL (2005)   →  (Appendix III, p. 79) 
MIKŠOVSKÝ, J., AND A. RAIDL (2005), Testing the performance of three 
nonlinear methods of time series analysis for prediction and downscaling of 
European daily temperatures, Nonlinear Processes in Geophysics, 12(6), 
979-991. 

• HUTH ET AL. (2015)    →  (Appendix IV, p. 93) 
HUTH, R., J. MIKŠOVSKÝ, P. ŠTĚPÁNEK, M. BELDA, A. FARDA, Z. CHLÁDOVÁ, AND 
P. PIŠOFT (2015), Comparative validation of statistical and dynamical 
downscaling models on a dense grid in central Europe: temperature, 
Theoretical and Applied Climatology, 120(3-4), 533-553, doi:10.1007/ 
s00704-014-1190-3. 

• KRIŽAN ET AL . (2011)    →  (Appendix V, p. 115) 
KRIŽAN, P., J. MIKŠOVSKÝ, M. KOZUBEK, W. GENGCHEN, AND B. JIANHUI (2011), 
Long term variability of total ozone yearly minima and maxima in the 
latitudinal belt from 20°N to 60°N derived from the merged satellite data in 
the period 1979-2008, Advances in Space Research, 48(12), 2016-2022, 
doi:10.1016/j.asr.2011.07.010. 

• MIKŠOVSKÝ ET AL . (2014)    →  (Appendix VI, p. 123) 
MIKŠOVSKÝ, J., R. BRÁZDIL, P. ŠTĚPÁNEK, P. ZAHRADNÍČEK, AND P. PIŠOFT 
(2014), Long-term variability of temperature and precipitation in the Czech 
Lands: an attribution analysis, Climatic Change, 125(2), 253-264, 
doi:10.1007/s10584-014-1147-7. 

• BRÁZDIL ET AL . (2015B)    →  (Appendix VII, p. 136) 
BRÁZDIL, R., M. TRNKA, J. MIKŠOVSKÝ, L. ŘEZNÍČKOVÁ, AND P. DOBROVOLNÝ 

(2015B), Spring-summer droughts in the Czech Land in 1805-2012 and their 
forcings, International Journal of Climatology, 35, 1405-1421, doi:10.1002/ 
joc.4065. 
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Additional materials have also been adapted from the following publications, 
not enclosed within the thesis: 

 
• BRÁZDIL ET AL . (2012A) 

BRÁZDIL, R., M. BĚLÍNOVÁ, P. DOBROVOLNÝ, J. MIKŠOVSKÝ, P. PIŠOFT, L. 
ŘEZNÍČKOVÁ, P. ŠTĚPÁNEK, H. VALÁŠEK, AND P. ZAHRADNÍČEK (2012A), 
Temperature and precipitation fluctuations in the Czech Lands during the 
instrumental period, Masaryk University, Brno, 236 pp., ISBN 978-80-210-
6052-4. 

• MIKŠOVSKÝ & PIŠOFT (2015) 
MIKŠOVSKÝ, J., AND P. PIŠOFT (2015), Attribution of European temperature 
variability during 1882-2010: A statistical perspective, in Global Change: A 
Complex Challenge (Eds.: Urban, O., M. Šprtová, and K. Klem), Global 
Change Research Centre AS CR, Brno, 10-13, ISBN 978-80-87902-10-3 (in 
print). 
 
Finally, to provide a more complete picture of some of the issues discussed, 

selected elements of yet unpublished analyses or those currently under prepara-
tion were also included (and they are designated as such in the text). To facilitate 
identification of the materials with my direct contribution (and with my explicit 
authorship or co-authorship), the respective references are followed by a 
superscript asterisk (*) in the rest of the text. Unless stated otherwise, my 
contribution to these publications was predominant regarding the primary focus of 
this thesis, i.e. implementation of the regression models and their application to 
the individual problems presented throughout this text. 

While the topics covered here vary substantially in terms of methods 
employed, datasets examined, and even the overall purpose of the particular 
analyses, some joint themes can be highlighted. Besides the general subject of 
spatiotemporal relationships, and application of regression mappings for their 
characterization, the motif of manifestations of nonlinearity in the climatic data is 
particularly pervasive in my past research, from attempts to quantify the 
magnitude of nonlinear behavior in the univariate and multivariate series 
(MIKŠOVSKÝ & RAIDL 2005*, 2006*; MIKŠOVSKÝ ET AL. 2008*), to use of nonlinear 
functions for downscaling of large-scale data (MIKŠOVSKÝ & RAIDL 2005*; HUTH ET 

AL. 2015*) or application of regression models connecting the observed variability 
to various climate forcings (BRÁZDIL ET AL. 2012A*; MIKŠOVSKÝ ET AL. 2014*). The 
issue of attribution also permeates through much of my past work, whether 
focused on identification of the factors shaping the temporal variability of basic 
climatic variables such as temperature (BRÁZDIL ET AL. 2012A*; MIKŠOVSKÝ ET AL. 
2014*; MIKŠOVSKÝ & PIŠOFT 2015*), assessment of temporal trends in the ozone 
series (KRIŽAN ET AL. 2011*), or imprints of climate forcings in drought indices 
(BRÁZDIL ET AL. 2015B*).  

Despite the obvious topical diversity of the problems addressed here, and 
the resulting specificity of the conclusions reached, there are some general 
lessons to be learned from the results obtained. This unifying commentary is 
therefore not ordered by individual publications. Instead, the text is structured into 
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several topically focused (though still partly overlapping and interrelated) 
segments. Chapter 2 briefly illustrates the datasets employed to characterize the 
climate system, its dynamics and evolution. Chapter 3 shows selected repre-
sentatives of linear and nonlinear regression mappings, as the primary 
methodological common point of the publications assembled within the thesis. 
The subsequent sections then summarize specific results pertaining to the three 
main categories of problems tackled here: Chapter 4 explores the manifestations 
of nonlinear behavior related to short-term prediction of atmospheric variables; 
Chapter 5 is devoted to description of spatial relationships within and between 
different datasets, with particular focus on the issues of temperature downscaling 
(Chap. 5.1) and an additional example demonstrating approximation of 
temperature data from other concurrently measured records (Chap. 5.2); Chapter 
6 concentrates on assessment of trends in total ozone data (Chap. 6.1) and 
statistical attribution analyses targeting various temperature and precipitation 
series (Chap. 6.2) and series of drought indices (Chap. 6.3). Finally, summarizing 
and concluding remarks are provided in Chapter 7, along with the prospects of the 
related ongoing and future research by me and my collaborators.  
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 CHAPTER 2 
CLIMATIC DATA : OBSERVATIONS & SIMULATIONS  
 
Various measured and simulated time series are the key source of information 
about the climate system and its evolution, but their origins and properties do vary 
substantially. To illustrate the range of datasets used in our past research, some 
of the prominent classes of climatic data are introduced in this section, and a brief 
mention is given to their specific representatives employed in the studies 
discussed in Chapters 4-6 (see individual papers for a more comprehensive over-
view of the data and additional details). 

The basic –  and most traditional –  form of climatic records comes from the 
measurements taken at land-based stations, often established specifically for 
weather observations. The resulting series of meteorological variables such as 
temperature, precipitation totals or air pressure can span several decades, with 
the longest of them covering multiple centuries. Length of these signals makes 
them a valuable source for examining the climate variability at various time scales. 
On the other hand, records of this extent are also prone to presence of non-
climatic breaks and inhomogeneities and they are often in need of quality control 
and homogenization (e.g. BRÁZDIL ET AL. 2012B). In the contributions within this 
thesis, numerous series of daily temperature and pressure from Czech weather 
stations were used, obtained from the observational network maintained by the 
Czech Hydrometeorological Institute (CHMI - http://www.chmi.cz/). Data for the 
downscaling tests targeting European daily temperatures in MIKŠOVSKÝ & RAIDL 

(2005*) were supplied from the European Climate Assessment & Dataset (ECA&D 
- http://eca.knmi.nl/; KLEIN TANK ET AL. 2002). Daily temperatures employed in 
HUTH ET AL. (2015*) were provided by various partners within the CECILIA project 
(Central and Eastern Europe Climate Change Impact and Vulnerability 
Assessment - http://www.cecilia-eu.org/). Monthly temperature and precipitation 
series from several secular Czech weather stations and their areal averages 
(BRÁZDIL ET AL. 2012A*,B) were studied in BRÁZDIL ET AL. (2012A*) and MIKŠOVSKÝ 

ET AL. (2014*), and they also served as a basis for calculation of the drought 
indices analyzed in BRÁZDIL ET AL. (2015B*). 

While the nature of the records taken at individual weather stations makes 
them useful for assessing the local climate, they are not necessarily repre-
sentative of a larger neighborhood of their site of origin. Furthermore, mutual 
comparability of the series of direct measurements may be compromised by 
technical factors, particularly by differences among the measuring and record 
keeping practices of individual data gatherers (such as national weather services). 
For these reasons, composite datasets are often created from the local 
measurements, through interpolation/extrapolation techniques supported by 
various quality-control and homogenization algorithms (e.g. ŠTĚPÁNEK ET AL. 
2011). The resulting data are then typically provided in the form of spatiotemporal 
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fields, often on a regular longitude-latitude geographic grid. Several such gridded 
datasets were employed within this thesis. Gridded versions of daily minimum and 
maximum temperature created within the CECILIA project (ŠTĚPÁNEK ET AL. 2011) 
were used in HUTH ET AL. (2015*). Gridded monthly temperature anomalies from 
GISTEMP (HANSEN ET AL. 2010) and Berkeley Earth (ROHDE ET AL. 2013A,B) 
datasets were utilized in the attribution studies MIKŠOVSKÝ ET AL. (2014*) and 
MIKŠOVSKÝ & PIŠOFT (2015*), along with the series of their continental and global 
means. 

As primarily physical disciplines, meteorology and climatology rely heavily 
on mathematical representations of their respective systems of interest, 
particularly on numerical simulations. Over the past decades, these have evolved 
from simple, low-resolution models into complex, multi-component structures, 
capturing much of the large-scale weather/climate dynamics and its responses to 
external forcings. The current generation of global climate models (GCMs) not 
only serves as the main tool for generating outlooks of climatic future, but 
provides valuable insights into past climate as well. While the GCM-type 
simulations do not follow the historical deterministic trajectory of the climate 
system, they are constructed to preserve its general statistical characteristics – at 
least in theory, as this goal is still just partly fulfilled, and even the best state-of-
the-art simulations suffer from numerous deficiencies (e.g. STOCKER ET AL. 2013, 
CHAP. 9). Outcomes of the HadCM3 model (GORDON ET AL. 2000) were used as a 
source of the simulated geopotential height data for the analysis of nonlinear 
behavior in MIKŠOVSKÝ ET AL. (2008*). 

Being inherently world-wide simulations, GCMs do generally provide 
outputs on a relatively coarse spatial grid. The resolution gap between GCM-
generated data and fine-scale inputs needed in local-oriented studies can then be 
bridged by regional climate models (RCMs): High resolution simulations over a 
geographically limited area, embedded into a global model or other suitable 
source of boundary conditions (such as global reanalysis). Of the numerous 
RCMs in existence, outputs of the RegCM3 (HALENKA ET AL. 2006) and ALADIN-
Climate/CZ (FARDA ET AL. 2010) models were used in our works, and subjected to 
the performance comparison with their statistical downscaling alternatives in HUTH 

ET AL. (2015*). 
The direct climatic measurements (and their gridded versions) provide 

records of the actual climate variability, but are available for just some historical 
periods and locations. GCM simulations can deliver (almost) complete data 
coverage over their integration period, yet they do not track the deterministic 
trajectory of the real climate system, and they suffer from various systematic 
biases. Outcomes of atmospheric reanalyses can be considered a transitory form 
between these two types of data: By assimilating measurements into a numerical 
model-like framework, a reanalysis can provide a formally complete description of 
the state of the atmosphere, while still following the trajectory of past climate in a 
deterministic sense. To study various thermobaric characteristics of the 
atmosphere, two representatives of the modern-era reanalysis products were 
used in several entries to this thesis: NCEP/NCAR reanalysis (providing data 
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since the year 1948; KISTLER ET AL. 2001) and ERA-40 reanalysis (covering the 
period 1957-2002; UPPALA ET AL. 2005). Of particular interest for investigation of 
longer-term climate variations is also the relatively recent 20th Century Reanalysis 
(COMPO ET AL. 2011), providing data from the year 1871 on, though not without 
some notable deviations from the gridded temperature observations, as shown 
below and in Sect. 6.2. 

The range of data characterizing past climate is obviously vast, regarding 
both the general type of the dataset and its specific representative. Often multiple 
options are available as potential analysis inputs when a particular problem is to 
be studied. In theory, data from different sources should conform to the same, 
historical, evolution of the climate system at all relevant spatial and temporal 
scales (or, in the case of GCM/RCM simulations, the general dynamical and 
statistical features should be captured in a realistic manner). In praxis, however, 
differences between individual datasets can be substantial, and so can be 
distinctions between results stemming from their use. Careful selection of the 
inputs and interpretation of the results with regard to the possible data-related 
biases and uncertainties are therefore paramount in the statistical analysis of 
climatic data.  

A simple illustration of the possible contrasts among individual represen-
tatives of atmospheric variables is shown in Fig. 2.1. Temperature anomalies 
characterizing the area of the Czech Republic at monthly and annual time step 
are compared for a series derived directly from the local observations within the 
Czech Republic, two specimen of gridded temperature data and the 20th Century 
Reanalysis. All the signals show a similar (though not completely identical) 
structure at the monthly time scale over the years 1980-2010 (Fig. 2.1a). On the 
other hand, systematic differences appear in the long-term trends, with noticeable 
discrepancy detected especially between the reanalysis and the rest of the 
datasets (Fig. 2.1b). When match of the temperature series provided by various 
data sources is investigated globally, strong regional contrasts emerge –  see the 
correlation-based comparison of a few temperature datasets in Fig. 2.2 and 
notice, for instance, their generally good agreement in Europe, and their rather 
loosened similarity in parts of Africa or South America. These distinctions may 
then translate into deviations between outcomes produced by otherwise identical 
analysis procedures applied to the data from different sources, as seen, for 
instance, from the attribution-focused example in Fig. 6.3.   

In the frame of the topics addressed within this thesis, issues related to the 
problem of inter-dataset differences have been tackled to some (although 
admittedly limited) extent. Possible manifestations of nonlinearity in short-term 
prediction of the (pseudo)observed data were compared for direct meteorological 
measurements and their reanalysis-based counterparts (MIKŠOVSKÝ & RAIDL 

2006*). Reanalysis data were also compared to the outputs of a global climate 
model, in terms of the geographical patterns of nonlinearity detectable from local 
multivariable systems (MIKŠOVSKÝ ET AL. 2008*). Consequences of gridding the 
station-based data were investigated in HUTH ET AL. (2015*), in the context of tests 
of various statistical and dynamical downscaling approaches. The effects of using 
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alternative versions of the input data were also considered in the statistical 
attribution analysis targeting the Czech climatic series (MIKŠOVSKÝ ET AL. 2014*), 
although only a very brief summary of the respective conclusions was then 
included in the paper itself. Some attention to the matter of inter-dataset contrasts 
was then paid in our attribution study MIKŠOVSKÝ & PIŠOFT (2015*), too, and this 
issue will be studied even more closely in the upcoming paper MIKŠOVSKÝ ET AL. 
(2015*). But even from the limited sample of results presented here, it should be 
clear that the problem of data-specific features and uncertainties needs to be 
treated with great care. Questions of whether and when directly measured climatic 
variables can be replaced by their gridded/reanalyzed/simulated counterparts 
(and which specific dataset should be used) must be carefully considered, and 
assessment of the effects of such choice is an important part of the studies 
dealing with spatiotemporal relations and variability in the climate system. 

 
 

 
 
FIGURE 2.1: Time series of monthly (a) and annual (b) temperature anomalies for the area 
of the Czech Republic derived from data obtained from various sources: Mean areal 
temperature created from measurements at 10 Czech weather stations (black:  BRÁZDIL 

ET AL. 2012A*); GISTEMP dataset (green:  HANSEN ET AL. 2010); Berkeley Earth dataset 
(blue:  ROHDE ET AL. 2013A,B); 20th Century Reanalysis (red:  COMPO ET AL. 2011). The 
anomalies are expressed relative to the 1951-1980 period and shown for the years 1980-
2010 (monthly series) and 1882-2010 (annual series).  
 
 
FIGURE 2.2 (�): Local values of Pearson correlation coefficient between time series of 
monthly temperature anomalies from selected global gridded datasets: GISTEMP 
(HANSEN ET AL. 2010); Berkeley Earth (ROHDE ET AL. 2013A,B); MLOST (SMITH ET AL. 
2008); HadCRUT4 (MORICE ET AL. 2012); 20th Century Reanalysis (COMPO ET AL. 2011). 
The correlations were calculated over the 1901-2010 period; grey areas mark regions 
with insufficient amount of data available (more than 10% of missing temperature pairs in 
the analysis period). Adapted from materials to be included in the upcoming paper 
MIKŠOVSKÝ ET AL. (2015*). 
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CHAPTER 3 
(NON)LINEAR REGRESSION TECHNIQUES  
 
A wide range of statistical techniques was used to investigate individual problems 
presented throughout this text, from estimation of elementary descriptive stati-
stics, to dimensionality reduction and clustering algorithms and an assortment of 
statistical significance tests. One particular topic, however, permeates through 
most of the analyses presented here: Application of various forms of linear and 
nonlinear regression, connecting a univariate predictand ���� to one or more 
predictors �����, � = 1,… ,�. Index � distinguishes between individual cases in the 
datasets studied (out of the total of  available), and it mostly pertains to time 
here. While straightforward in their basic purpose, regression mappings can be 
employed to fulfill various objectives, determined by the character of variables 
assigned to the role of predictand and predictors. Within the range of problems 
tackled here, regression was used for predictive tasks (i.e., predictand estimated 
from predictors preceding it in time), approximation of spatial relations (with 
concurrent predictand and predictors originating from different geographic 
locations), trend estimation (matching the target variable against time) or as a 
basis for attribution-seeking models (decomposing predictand into signals asso-
ciated with explanatory variables representing various external and internal 
climate forcings). In this chapter, selected classes of regression models relevant 
to this thesis are very briefly outlined, with regard to their basic structure as well 
as some details concerning their implementation in our works. 

A prominent (and historically dominant) place among the regression 
techniques is held by the multiple linear regression (MLR). The respective 
mapping between predictors and predictand takes a form of a simple weighted 
averaging formula,  

���� = ����� + ���� = �� +�������� + �����
��� 	,																																																																					 �1�	 

with regression coefficients �� calculated to obtain a model of desired properties –
typically one that minimizes the sum of squared regression residuals �, calculated 
as differences between the actual values of � and their regression-based 
estimates ��. This so-called ‘least squares method’ of �� calculation was employed 
in all applications of linear regression here; the specific implementational and pre-
processing details are given in the respective publications. 
 While simple, fast and open to easy interpretation of its outcomes, linear 
regression suffers from an obvious limitation: In its basic form, it is only able to 
capture strictly linear links, embodying direct proportionality between the 
predictors and individual components in the predictand. However, it has been 
shown that linear mappings can be used to approximate dynamics of even 
strongly nonlinear systems, providing that linear models are applied locally for just 
small sections of the phase space or space of predictors (e.g., contributions in 



15 

 

 

OTT ET AL. 1994). This approach, dubbed method of local linear models (LLM) 
here, relies on calculation of the regression coefficients �� individually for each 
instance of �. The coefficients can then no longer be considered globally valid 
constants, but rather �-dependent functions: 

���� = ����� + ���� = ����� +����������� + ����.�
��� 																																																											�2�	

To achieve the local specificity of the regression coefficients, their calculation is 
carried out for just a limited number � ≪  of cases from the calibration part of the 
data, representing situations with the closest resemblance to the one being 
processed (i.e., to the one pertaining to �). The similarity of individual cases can 
be measured by the distance of the respective �-dimensional vectors of pre-
dictors ���� = ������,… , ������, quantified by a suitable metric (often Euclidean). 
The optimum size and structure of the local neighborhood is subject to the 
specifics of the task investigated, including dimensionality of the system studied, 
type of time series involved and their eventual contamination by noise. Details on 
the design of the local linear models employed in our analyses are given in the 
individual papers in the appendices.  

Over the past years, great popularity among the nonlinear regression 
techniques has been attained by various architectures of artificial neural networks 
(NNs) (see, e.g., HAYKIN 1999). The perhaps most prominent of them, multilayer 
perceptron (MLP), was employed in several of our studies, in a form containing a 
single hidden layer, 

���� = ����� + ���� = �� + � �� 	 !��� +��"��
"�� �"���# + ����,																																		�3�%&'(

���  

where �"� and �� represent weights of connections between neurons in the input 
and hidden layer and in the hidden and output layer, respectively, and ��%) 
denotes number of neurons in the hidden layer (and thus specifies complexity of 
the network). Of the possible forms of the (generally nonlinear) transfer function	 , 
either logistic function (MIKŠOVSKÝ & RAIDL 2005*, 2006*) or hyperbolic tangent 
(BRÁZDIL ET AL. 2012A*; MIKŠOVSKÝ ET AL. 2014*; BRÁZDIL ET AL. 2015B*; HUTH ET AL. 
2015*) were applied in the examples here. The learning algorithms (i.e., 
procedures used to calculate weights � from the data available for calibration of 
the network) were based on error backpropagation, either in its basic form or in 
the quasi-Newtonian version.   
 An alternative type of neural networks built around radial basis functions 
(RBFs) (see, e.g., HAYKIN 1999) was also applied in some of our studies. The 
respective mapping can be captured by the formula 

���� = ����� + ���� = *� + � *�	+�‖���� − .�‖� + ����,%/01
��� 																																																	�4� 

with �-dimensional vector .� representing center of the radial function assigned to 
the �-th of �345 neurons in the hidden layer. In our analysis setups, Gaussian-style 
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RBFs were used, +�‖���� − .�‖� = exp�−‖���� − .�‖9/2;9�, with parameter ; 
controlling the width of the radial functions. Simple subsampling of the centers .� 
from the training part of the datasets was typically employed, although more 
sophisticated methods (e.g. pre-processing through clustering algorithms) were 
also tested, but to little effect. The weights *� were then calculated to minimize the 
sum of squared errors, in a fashion analogous to multiple linear regression. 

The above introduced regression techniques do share a common purpose: 
to capture relations between the explanatory variables and the target signal. 
Intuitively, one might expect the nonlinear mappings to be more universal in their 
ability to approximate the respective links, and thus automatically superior to 
linear regression. In reality, such presumption often turns out to be unsupported: 
Despite the inherently nonlinear and deterministically chaotic nature of the Earth’s 
climate system, deviations from purely linear behavior are not always detectable 
in the time series is spawns. Moreover, application of nonlinear algorithms 
typically comes with increased demands on computational power, more difficult 
interpretation of the regression outcomes and more complicated evaluation of 
their statistical significance. The question therefore remains how beneficial non-
linear techniques really are and whether gain from their application outweighs the 
extra demands and interpretational challenges.  

Even in the presence of nonlinearities strong enough to uphold the appli-
cation of nonlinear regression, another important design choice has to be made: 
Selection of the most suitable form of the nonlinear mapping. The three examples 
above, embodied by Equations 2-4, represent different approaches to this 
problem. The method of local linear models builds upon an ensemble of indivi-
dual, formally independent regression functions, pertaining to specific (and 
typically mutually overlapping) segments of the phase space. Multilayer perce-
ptrons, on the other hand, can be considered a global mapping, without a specific 
link of individual neurons to particular states of the system (or vectors of the 
predictors). RBF-based networks form a middle ground between these two 
approaches: While the mapping is formally global, individual hidden neurons are 
associated with specific vectors in the space of predictors, and their activation is 
reduced for inputs more distant from their assigned centers. The general form of 
the regression function is not the only important factor determining the behavior of 
the nonlinear models: Their individuality is subject to the selection of the structure-
defining descriptors (such as the complexity-controlling parameters �, ��%) or �345 above), and finding the optimum setup is as critical as it is nontrivial. Some 
specific aspects of this problem are illustrated in the following chapters and in the 
respective publications in the appendices. 
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CHAPTER 4 
NONLINEARITY IN PREDICTIVE MAPPINGS  
 
Over the past decades, various methods have been developed for assessing the 
presence – and potentially magnitude – of nonlinear and chaotic behavior in 
univariate or multivariate time series. Numerous attempts have also been made to 
apply these techniques in the atmospheric and climatic sciences – see, for 
instance, the overview by SIVAKUMAR (2004) and the references discussed in 
MIKŠOVSKÝ ET AL. (2008*). The emergence of global- or continental-scale datasets 
of climatic data (particularly outcomes of various reanalysis projects) provided an 
opportunity for an even more systematic investigation of this problem, including 
the evaluation of geographic and seasonal patterns of nonlinearity. However, the 
variety of results in the existing studies also demonstrates that degree to which 
deviations from strictly linear behavior manifest depends on a number of factors, 
related to the datasets analyzed as well as tasks performed. Outcomes of 
nonlinearity tests are therefore subject to the choice of the testing criterion, 
reflecting the particular form of nonlinear interaction of interest. Prediction errors 
represent one of the natural choices of the discriminating statistic: Due to their 
relation to the information transfer between consequent states of the climate 
system, tests based on short-term predictive mappings can provide useful 
information about the local properties of the atmosphere, connected to its 
chaoticity and predictability. In this chapter, our experiments pertaining to this 
topic are outlined, published in the papers MIKŠOVSKÝ & RAIDL (2006* - APPENDIX I), 
MIKŠOVSKÝ ET AL. (2008* - APPENDIX II) and MIKŠOVSKÝ & RAIDL (2005* - APPENDIX 

III). Some of the earlier versions of the related materials were also previously 
included in my dissertation thesis (MIKŠOVSKÝ 2004*). 

Our initial attempts at nonlinearity detection were focused on identification 
of rules governing the manifestations of nonlinear behavior in short-term forecasts 
of daily temperature and pressure, as documented in MIKŠOVSKÝ & RAIDL (2006*). 
The tests applied were built upon the method of surrogate data, employing the 
Iterative Amplitude Adjusted Fourier Transform (IAAFT) technique (SCHREIBER & 

SCHMITZ 1996, 2000). Implementation of the respective algorithms from the 
TISEAN software package was used (HEGGER ET AL. 1999; http://www.mpipks-
dresden.mpg.de/~tisean/). Both univariable and multivariable time series were 
investigated for the presence of nonlinearities, using either the method of time 
delays (e.g. PACKARD ET AL. 1980) or the multivariate approach (e.g. KEPPENNE & 

NICOLIS 1989) to reconstruct the phase space of the local climate system (or, 
more accurately, to provide its approximate representation, and a set of predictors 
to enter the predictive regression mappings). Series of daily temperature (mean, 
minimum and maximum) and daily pressure measured at the weather station 
Prague-Ruzyně (Czech Republic) served as predictands, and they were 
complemented by their counterparts provided by the NCEP/NCAR reanalysis. The 
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reanalysis also supplied potential predictors for the multivariable analysis setups, 
with step-wise screening used to identify the best subset of the explanatory 
variables.    

Figure 4.1 provides an illustrative sample of the outcomes of the surrogate 
data-based analysis in MIKŠOVSKÝ & RAIDL (2006*), comparing errors of prediction 
carried out by the method of local linear models for the original data and for an 
ensemble of their IAAFT-randomized versions. It was demonstrated that nonlinear 
behavior does indeed manifest in the predictive mappings, but only in some test 
configurations and in greatly varying degree. Just mild to no detectable nonlinea-
rity (i.e., small difference between the prediction errors in the original data and in 
the surrogates) was indicated for the setups with predictors generated by the 
method of time delays. On the other hand, a distinct nonlinear component was 
typically uncovered in the predictive mappings employing multivariable predictors. 
Nonlinearity was generally stronger for longer signals (30-year-long series) than 
for their shortened (10-year-long) versions. It was also comparably most 
noticeable for the shortest-term prediction (lead time of 1 day), weakening and 
eventually disappearing as the lead time increased. Generally, our results 
suggested that nonlinear behavior manifests more strongly in setups with higher 
amount of information available within the data analyzed, provided that a 
deterministic link between predictand and predictors exists. The information 
content in individual scalar signals seemed insufficient to describe the complex 
dynamics of the local climate system beyond simple linear links, and application of 
nonlinear predictive mappings was thus largely baseless for the univariate 
settings (at least for the particular type of time series studied in our tests).   

While the surrogate data-based tests can deliver statistically well founded 
conclusions about the presence of specific forms of nonlinearity, they are 
somewhat cumbersome and computationally demanding. From the perspective of 
applied time series analysis, a more direct question regarding nonlinear behavior 
may be of interest: What is the actual improvement achieved by application of a 
specific nonlinear mapping over its linear counterpart? This issue was only very 
briefly touched upon in MIKŠOVSKÝ & RAIDL (2006*), but we focused on it more 
specifically in MIKŠOVSKÝ & RAIDL (2005*). Comparison of the short-term predictive 
skill of linear regression and local linear models was carried out for daily 
temperatures across the European region, supplied from the NCEP/NCAR 
reanalysis. Multivariable predictors were used, arranged in a pre-defined 
geographic pattern. In addition to the method of local linear models, MLP and 
RBF neural networks were also applied, to assess the sensitivity of the results to 
the choice of the nonlinear model. Relatively strong nonlinear behavior (i.e., 
superiority of nonlinear methods over linear regression) was generally indicated, 
especially during boreal winter. Distinct geographic variations of nonlinearity were 
found, but just rudimentary explanation of their spatial patterns could be provided. 
Mostly insignificant differences between the predictive skills of individual types of 
nonlinear mappings were found. 
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FIGURE 4.1: Manifestations of nonlinear behavior in univariable and multivariable time 
series. Root mean squared error (RMSE) of NCEP/NCAR daily temperature series (50°N, 
15°E, 1000 hPa level) forecast 1 day ahead is shown, obtained by the method of local 
linear models for the original series (long horizontal line) and 49 instances of the 
corresponding IAAFT-generated surrogates (dots). Individual setups pertain to phase 
space reconstruction by the method of time delays (I), multivariate reconstruction 
employing 1000 hPa temperatures from a region between 60°N, 0°E and 40°N, 30°E (II) 
and multivariate reconstruction employing 1000 hPa temperatures as well as mean sea 
level pressures from the same region (III). Results are shown for approximately 30-year-
long (a) and 10-year-long (b) versions of the series. The embedded rectangle with shorter 
inset horizontal line shows average RMSE for the surrogates and the matching 2σ range. 
Adapted from MIKŠOVSKÝ & RAIDL (2006*), where more details and other related results 
can be found. 
 
 

In MIKŠOVSKÝ & RAIDL (2005*) and MIKŠOVSKÝ & RAIDL (2006*), we focused 
on nonlinearity manifestations within just a geographically limited region, and only 
(pseudo)observed time series were studied (either direct measurements or series 
originating from a reanalysis). In MIKŠOVSKÝ ET AL. (2008*), a global scope of the 
analysis was embraced, and outcomes of the HadCM3 global climate model were 
investigated along with data originating from the NCEP/NCAR reanalysis. The 
primary method of nonlinearity quantification in MIKŠOVSKÝ ET AL. (2008*) was 
based on direct comparison of the 1-day-ahead prediction error achieved by 
multiple linear regression and by the local linear models method, with multi-
variable predictors arranged in a regular pattern, centered on the location of the 
predictand (Fig. 4.2a). The role of predictand was filled by the relative topography 
of the 850-500 hPa layer (i.e., a quantity proportional to the average atmospheric 
temperature between the 850 and 500 hPa pressure levels) and by the geo-
potential height of the 850 hPa level. 

The global nonlinearity patterns in the NCEP/NCAR data revealed a 
distinct contrast between relatively strong (and generally statistically significant) 
nonlinearities in the midlatitudes and largely negligible and insignificant improve-
ment from application of a nonlinear predictive model in the equatorial regions 
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(Fig. 4.2b). Besides this basic latitudinal pattern, areas with the strongest 
manifestation of nonlinearity in the higher latitudes were identified and their 
possible link to the atmospheric zones with intensive synoptic activity was 
discussed. Our analysis also confirmed presence of distinct seasonal variations of 
the results, with nonlinearity typically intensified during the cold part of the year in 
the extratropical regions.  

By comparing the nonlinearity patterns for the NCEP/NCAR reanalysis 
(approximating the actual historical variability of the climate system) and for the 
HadCM3 model (global numerical simulation, generating a trajectory uncorrelated 
with the historical one), we confirmed that the model is capable of reproducing the 
basic character of the observed nonlinearity patterns quite realistically, although 
differences appeared in both the finer details of the structures detected and in 
their magnitude (Fig. 4.2c). Our analysis thus served as an advanced validation 
tool of the GCM and suggested the ability of global climate models to replicate not 
only the elementary statistical characteristics of the climatic data, but also their 
properties related to the nonlinear and chaotic structures. 

Finally, nonlinearity tests based on assessing the ratio between the 
prediction errors from the MLR and LLM methods were also compared to the 
approach employing surrogate data. Quite good match between the respective 
geographic patterns of nonlinearity was found (see Figs. 3a and 6 in MIKŠOVSKÝ 

ET AL. 2008*). This suggests that comparing errors from a linear and nonlinear 
mapping may be used as an alternative to the computationally more expensive 
surrogate-assisted testing (with some reservations, discussed in MIKŠOVSKÝ ET AL. 
2008*). However, such conclusion should not be mistaken for invariance regarding 
the analysis setup: Choice of the specific form of the nonlinear model (and of its 
design parameters) can still affect the results to some extent, which needs to be 
taken into account when interpreting the outcomes of the nonlinearity tests.   
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FIGURE 4.2: Global distribution of estimated regional magnitude of nonlinearity, associ-
ated with prediction of relative topography 850-500 hPa 1 day ahead. Multivariable vector 
of predictors was used, consisting of 9 values of relative topography 850-500 hPa and 9 
values of geopotential height of the 850 hPa level, arranged in a pattern shown in (a) for 
the predictand series located at 50°N, 0°E. Nonlinearity was quantified by a skill score 
defined as << = 1 - �=%%� =�%3⁄ �9, with =%%�  and =�%3  representing root mean squared 
error of the forecast by the method of local models and multiple linear regression, 
respectively (by this definition, << 	 0 pertains to situations with both methods performing 
identically in terms of RMSE, and thus no detectable nonlinearity, while positive values of 
<< indicate nonlinear mapping outperforming its linear counterpart). Results are shown for 
the NCEP/NCAR reanalysis data (b) and for the outputs of the HadCM3 global climate 
model (c), with the forecast mappings calibrated over the 1961-1990 period and validated 
for the years 1991-2000. Adapted from MIKŠOVSKÝ ET AL. (2008*), where more details and 
other related results can be found. 
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CHAPTER 5 
SPATIAL RELATIONS IN CLIMATIC DATA  
 
It is typical for climatic variables characterizing geographically close locations to 
share a portion of their temporal variability, and for the respective time series to 
be connected to some degree. These associations are often studied through 
simple linear correlations, but their nature may also be considerably more 
complex. Regression analysis techniques can be used to identify, extract and 
quantify the inter-variable dependencies; they can also help to reveal and 
describe connections between different datasets (for instance, to estimate station-
specific series from large-scale data available from a reanalysis or global climate 
model). In this section, examples are given of our results related to approximation 
of spatial relations within and among various datasets of climatic data: 
Downscaling of large-scale atmospheric fields (Chap. 5.1; MIKŠOVSKÝ & RAIDL 

2005* - APPENDIX III; HUTH ET AL. 2015* - APPENDIX IV) and estimation of 
temperature measurements from nearby concurrent records (Chap. 5.2).   
 

5.1 STATISTICAL DOWNSCALING OF DAILY TEMPERATURES  
As already mentioned in Chap. 2, spatial resolution of global climate 

models (as well as of global reanalyses) is often insufficient for local-oriented 
studies, and the resolution gap can be bridged by dynamical downscaling (i.e., by 
application of a high-resolution regional climate model embedded into the global 
simulation or reanalysis). As an alternative to such cascade of numerical 
simulations, statistical methods can also be used to approximate the connections 
between large-scale climatic fields and more site-specific data (such as observa-
tions at individual weather stations). Of the various techniques of statistical 
downscaling in existence, we focused on direct mappings between the large scale 
data (predictors) and local measurements or their gridded versions (predictands) 
in our works.  

In MIKŠOVSKÝ & RAIDL (2005*), our main aim was to assess the suitability of 
different forms of empirical regression functions to provide downscaled versions of 
daily temperature. Using NCEP/NCAR reanalysis data as predictors, the four 
regression mappings introduced in Chap. 3 (MLR, LLM, MLP NN, RBF NN) were 
used to generate estimates of daily mean, minimum and maximum temperature, 
recorded at 25 sites across Europe and obtained from the ECA&D database 
(KLEIN TANK ET AL. 2002). A pre-defined pattern of predictors was employed (Fig. 
5.1a). The regression models were calibrated using data from the 1961-1990 
period and then validated for the years 1991-2000, separately for each location. 
Distinct differences between the temperature estimation errors for individual 
stations were found (see the example for daily maximum temperature in Fig. 
5.1b,c, as well as figures and tables in MIKŠOVSKÝ & RAIDL 2005*). No clear 
geographic pattern of the error magnitudes was identified, suggesting a dominant 
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influence of the local specifics of each of the target sites. The analysis also 
highlighted a tendency for stronger nonlinearity during the boreal winter, though 
exceptions from this inclination were detected for some combinations of 
temperature type and location. Downscaling skill of the three nonlinear regression 
techniques (LLM, MLP NN, RBF NN) was found to be mutually similar.     

The problem of daily temperature downscaling was later revisited in HUTH 

ET AL. (2015*), this time to provide a detailed comparison of the performance of 
various dynamical and statistical downscaling methods. The analysis utilized a 
high-resolution dataset of daily maximum and minimum temperature series, 
assembled within the CECILIA project (http://www.cecilia-eu.org/; ŠTĚPÁNEK ET AL. 
2011) and providing both station-specific records and their versions interpolated 
onto a regular grid, for a geographically limited region along the joint borders of 
Austria, Czech Republic, Hungary and Slovakia. In addition to multiple linear 
regression and the three representatives of nonlinear regression (LLM, MLP NN, 
RBF NN), method of analogues (e.g. ZORITA & VON STORCH 1999) was also 
employed and compared to the other downscaling approaches. Predictors were 
supplied from the ERA-40 reanalysis and pre-selected through a step-wise 
screening procedure based on linear regression. Calibration of the regression 
mappings was carried out for the years 1961-1990, and their validation performed 
over the 1991-2000 period. The dynamical downscaling models were represented 
by the ERA-40-driven integrations of the RegCM3 (HALENKA ET AL. 2006) and 
ALADIN-Climate/CZ (FARDA ET AL. 2010) regional climate models.  

In Fig. 5.2, performance of some of the downscaling techniques applied in 
HUTH ET AL. (2015*) is illustrated, through root mean squared errors of estimation 
of winter minimum daily temperature. Superiority of nonlinear regression over 
MLR was once again indicated, though exceptions were detected for some 
combinations of season, location and temperature type. Unlike in MIKŠOVSKÝ & 

RAIDL (2005*), however, RMSE did not serve as the primary validation criterion in 
HUTH ET AL. (2015*). Instead, emphasis was on evaluating the ability of the stati-
stical and dynamical downscaling models to realistically reproduce the extreme 
quantiles of the statistical distributions, their higher moments (skewness, kurtosis), 
autocorrelation structures in the time series, spatial correlations between 
temperatures from different locations and long-term temporal trends in the series. 
As individual sections in HUTH ET AL. (2015*) show, no downscaling technique was 
found to be universally superior to the others. Depending on the type of 
temperature, location, season and validation criterion, the relative skill rank of 
individual downscaling approaches varied greatly: In some cases, statistical 
downscaling techniques out-performed the (arguably more popular) regional 
climate models, but the opposite was also occasionally true. Also, despite the 
relative superiority of nonlinear empirical models over linear regression in terms of 
RMSE, their advantage did not automatically extend to the above mentioned 
validation criteria related to statistical distributions or spatiotemporal correlations. 
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FIGURE 5.1: Results of maximum daily temperature downscaling for 25 European 
locations. A set of NCEP/NCAR reanalysis predictors consisting of the series of 1000 hPa 
level temperature (T1000), mean sea level pressure (MSLP) and 500 hPa level 
geopotential height (h500) was used. The predictors were arranged in a pre-defined 
pattern centered on the grid point closest to the target station, as illustrated in (a) for 
predictand located near coordinates 50°N, 15°E. Outcomes of the analysis are shown for 
boreal winter (b) and summer (c). Root mean squared error (RMSE) of the temperature 
estimate is displayed through the size of the circle at the station’s location, along with the 
ratio of RMSEs obtained by the method of local linear models (LLM) and multiple linear 
regression (MLR) (color of the embedded square). Presence of a central dot indicates 
statistically significant (@ 	 0.05) difference between the series downscaled by LLM and 
MLR methods, according to the paired Wilcoxon test. Adapted from MIKŠOVSKÝ & RAIDL 

(2005*), where more details and other related results can be found. 
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FIGURE 5.2: Root mean squared error (°C) of minimum daily temperature estimates in 
boreal winter (December, January, February), obtained by different methods of dynamical 
(RCM) and statistical (SDS) downscaling, using ERA-40 reanalysis data as inputs. 
Statistical distribution of errors within the target area is displayed in the form of boxplots, 
showing min-max range of the values, their inter-quartile range and median (a). 
Geographic pattern of the errors is visualized for the ALADIN climate model (b), RegCM 
climate model (c), statistical downscaling by multiple linear regression (d) and statistical 
downscaling by the method of local linear models (e). Adapted from the outcomes of the 
analysis presented in HUTH ET AL. (2015*), where more details on the test setup and other 
related results can be found. 
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5.2 ESTIMATION OF DAILY TEMPERATURES FROM OTHER 

CONCURRENT RECORDS 
While the series of meteorological measurements from land-based weather sta-
tions represent one of the basic types of data in the atmospheric research, it is not 
uncommon for these records to be incomplete, interrupted by shorter or longer 
periods of missing values. Often, such gaps need to be filled before a subsequent 
analysis can be performed, and records from other nearby sites are used to do so. 
In this section, outcomes of my experiments with estimating daily temperature 
data from other concurrent measurements are briefly presented, with an emphasis 
again on comparing the performance of linear and nonlinear regression 
techniques. Although these results were not published as a stand-alone paper, 
their sample was included here to demonstrate yet another application of 
regression mappings for approximation of the spatial relations among climatic 
time series. 

The tests were conducted on a dataset comprising daily mean, minimum 
and maximum temperature from 25 Czech weather stations (Fig. 5.3). Linear and 
nonlinear regression was used to generate estimates of each of these tempe-
rature series from the temperature records at the rest of the weather stations and 
from the temperatures and geopotential heights provided by the ERA-40 
reanalysis. The regression mappings employed included multiple linear regre-
ssion, method of local linear models and MLP and RBF neural networks, as 
introduced in Chap. 3. The pool of potential predictors consisted of mean, 
minimum and maximum temperature from the remaining 24 stations, as well as 
ERA-40 series of temperature and geopotential height at the 1000 hPa and 850 
hPa levels from the area bounded by 40°N, 60°N, 0°E and 30°E. A step-wise 
screening procedure based on multiple linear regression was applied to identify 
the 20 most influential predictors, individually for each temperature type and 
location. These were then used as inputs for all four empirical models. The 
regression mappings were calibrated for the years 1961-1990 and validated for 
the 1991-2000 period. Other technical details of the tests were similar to those in 
HUTH ET AL. (2015*). The temperature estimates by different regression models 
were compared mutually and also to the outcomes of inverse distance weighting 
(IDW), one of the most common geostatistical interpolation techniques (e.g. 
JARVIS & STUART 2001).   

Figure 5.4 summarizes root mean squared errors of the temperature 
estimates obtained for individual weather stations and temperature types. On 
average, all nonlinear models outperformed multiple linear regression. Gain from 
considering the nonlinear components of the spatial relations was generally 
strongest for the high-elevation weather stations, which can be considered 
atypical sites in their local geographic neighborhood. At locations with another 
station of similar character situated nearby, differences between outputs of linear 
and nonlinear mappings tended to be smaller, as did total error. Performance of 
RBF neural networks and of the method of local linear models was mutually 
comparable. Multilayer perceptrons, although no worse on average than the other 
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two nonlinear methods, have produced substantially greater dispersion of errors 
relative to linear regression, sometimes even giving less accurate temperature 
estimates than MLR. This intermittent performance loss did not seem to be related 
to MLP’s sensitivity to the initialization of its training procedure (which was found 
to be quite low). Rather, it was traced to the greater vulnerability of the multilayer 
perceptrons to the inhomogeneities in the input data, present in some of the 
series of the station-based measurements. All regression techniques (including 
MLR) distinctly outperformed IDW interpolation. Experiments were also performed 
using ERA-40 series alone as the regression inputs, thus basically employing a 
downscaling-like setup (Fig. 5.4d). Unsurprisingly, the use of reanalysis-only pre-
dictors increased the error of temperature estimation. However, the loosening of 
the predictors-predictand links also resulted in generally greater relative improve-
ment from the application of nonlinear regression models, which now outperfor-
med multiple linear regression by an even greater margin.  

While not shown here, regression models’ ability to realistically reproduce 
statistical distributions of the temperature series was investigated as well. The 
validation statistics included standard deviation of the temperatures, as well as 
their higher statistical moments (skewness and kurtosis). Performance of all 
regression techniques was found to be generally good and mutually comparable 
in this regard, with only mild advantage occasionally indicated for the nonlinear 
mappings. On the other hand, all regression models, linear and nonlinear alike, 
displayed just very limited ability to realistically reproduce the individual long-term 
temporal trends in the temperature series.  

 
 
 
 

 
 
FIGURE 5.3: Locations of the Czech weather stations (maintained by the Czech Hydro-
meteorological Institute; http://www.chmi.cz/) providing data for the experiments with 
estimation of daily temperatures from other concurrent records. Numerical identifiers of 
the stations correspond to their ranks in the elevation-ordered list on the right.  
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FIGURE 5.4: Root mean squared error (RMSE) of daily temperature estimation, carried out 
for 25 Czech weather stations by different regression techniques (multiple linear re-
gression: MLR; local linear models: LLM; RBF neural network: RBF; multilayer perceptron 
neural network: MLP). The results are shown for daily mean (a), maximum (b) and 
minimum (c) temperature computed using temperature series from the other observa-
tional sites and ERA-40 data as predictors, as well as for daily mean temperature 
computed from ERA-40 data only (d). Identifiers of individual stations correspond to their 
numerical IDs in Fig. 5.3. The embedded boxplots show distributions of RMSE achieved 
by the nonlinear regression methods relative to linear regression in the set of all 25 
stations: whiskers represent min-max range of the values, the box encloses values 
between lower and upper quartile, the central line corresponds to the median. Errors of 
temperature estimation by inverse distance weighting interpolation (IDW) are also shown. 
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  CHAPTER 6 
TREND AND ATTRIBUTION ANALYSIS  
 
Among the problems studied by contemporary climatology, a prominent place 
belongs to detection of spatiotemporal variability within the climate system and its 
attribution, i.e. identification of the factors responsible. Particular attention has 
lately been devoted to investigation of the long-term components in the climatic 
series, and distinguishing between their natural and anthropogenic causes. In this 
chapter, several examples of our contributions to the related problems are given, 
including detection of trends in the total ozone data (Chap. 6.1; KRIŽAN ET AL. 
2011* - APPENDIX V), attribution of temporal variability in annual and monthly 
temperature and precipitation series (Chap. 6.2; BRÁZDIL ET AL. 2012A*; MIKŠOVSKÝ 

ET AL. 2014* - APPENDIX VI; MIKŠOVSKÝ & PIŠOFT 2015*) and attribution of temporal 
variability in the series of drought indices (Chap. 6.3; BRÁZDIL ET AL. 2015B* - 
APPENDIX VII). 
 

6.1 TRENDS IN TOTAL OZONE SERIES  
Due to the intense interest in long-term changes in the climate system, estimation 
of magnitude and significance of trends in various observed and simulated series 
has become one of the most common climatological tasks. The problem is often 
approached by simple linear regression, matching the variable of interest against 
time. However, not all long-term components can be treated as strictly linear, and 
more complex characterization may be preferable, or outright necessary. One of 
the possible examples of a more intricate behavior is the evolution of total ozone 
amounts, shaped not only by natural forcings, but also by the impacts of human 
activity. In particular, the effect of man-produced halocarbons has been shown to 
be the cause of the rapid weakening of the ozone layer since the 1970s, with a 
follow-up recovery occurring since the mid-1990s due to the measures introduced 
by the Montreal Protocol. In KRIŽAN ET AL. (2011*), we investigated the presence of 
trends in the series of annual amplitude of total ozone over the 1979-2008 period 
(obtained from the TEMIS database: VAN DER A ET AL. 2010), with special attention 
to their geographical patterns across the northern midlatitudes. Piecewise, two-
segmented linear regression was employed for trend detection, with break point in 
the year 1995. Existence of decreasing trends prior to 1995 and their reversal 
afterwards was confirmed in much of the target area, and discussed with regards 
to the behavior of annual minima and maxima of the ozone amounts. A relation 
was also suggested between the temporal evolution of the ozone characteristics 
and changes in the Brewer-Dobson circulation.  
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6.2 ATTRIBUTION OF TEMPORAL VARIABILITY OF TEMPERATURE 

AND PRECIPITATION  
Of variables defining the state of the climate system, air temperature is perhaps 
the most intensely studied. Yet, despite the concentrated attention aimed at 
various thermal characteristics of the atmosphere, their behavior still remains only 
partly understood. Even variability in a single series of local temperature can be 
quite complicated (as illustrated in Fig. 2.1 for the Czech temperature series), and 
this complexity becomes even more overwhelming when spatial structures are 
taken into account. Identifying and quantifying the effects of individual climate-
forming agents (and their eventual interactions) is a process often approached by 
statistical methods, including various forms of regression mappings (see, e.g., the 
introductory section in MIKŠOVSKÝ ET AL. 2014*). Several examples of our efforts in 
this field are presented here, demonstrating the application of statistical attribution 
analysis to various local and global temperature series and the insights that can 
obtained about the role of individual climate forcings.  

Our first take on the issue of statistical attribution of temperature variability 
was aimed at the series of mean annual Czech temperature over the 1860-2008 
period. The results were published as a part of the monograph BRÁZDIL ET AL. 
(2012A*). The temperature series investigated was created from measurements 
gathered at 10 Czech weather stations, quality-controlled and subjected to a 
homogenization procedure (BRÁZDIL ET AL. 2012A*,B). Motivated by the prior 
attribution studies concerned with identification of the imprints of external and 
internal forcings in the temperature data (particularly by SCHÖNWIESE ET AL. 2010), 
we used multiple linear regression and multilayer perceptron neural network to 
detect temperature components related to the concentration of greenhouse gases 
(GHG), amounts of sulfate aerosols and solar activity, as well as to the phases of 
the Southern Oscillation (SO) and the North Atlantic Oscillation (NAO). Relatively 
prominent slow-variable components correlated with greenhouse gases concen-
tration and sulfate amounts were found, along with a weaker imprint of solar 
activity. NAO proved to be an important driver of the inter-annual temperature 
variability, whereas the component attributed to SO was substantially weaker. 
Attention was also paid to the possibility of nonlinearities in the relations studied: 
Application of MLP neural network instead of basic linear regression resulted in 
just about 2% decrease of total RMSE (using the same set of predictors for both 
regression techniques), and the respective regression-based temperature estima-
tes were found to be almost identical (Fig. 6.1). 

The conclusions in BRÁZDIL ET AL. (2012A*) highlighted some possible 
connections between Czech temperature and climate forcings, both external and 
internal. However, the underlying analysis was somewhat rudimentary, and it 
neglected potentially critical aspects of the attribution problem such as assess-
ment of the statistical significance of the relations, possibility of time-delayed 
responses or seasonal specifics of the links. In MIKŠOVSKÝ ET AL. (2014*), we 
therefore revisited the matter of regression-based attribution analysis in more 
depth. Monthly series of temperature were studied alongside their annual means, 
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and results for the Czech Republic were also compared to their counterparts 
derived from pan-European and global land temperature series (supplied from the 
Berkeley Earth dataset: ROHDE ET AL. 2013A,B). Statistical significance of the 
regression coefficients was tested by the moving block bootstrap (e.g. 
FITZENBERGER 1998). Our results confirmed the existence of a strong formal match 
between the long-term warming trends in temperature and concentration of 
greenhouse gases, and a weaker (and typically statistically non-significant) 
cooling tendency associated with sulfate aerosols. Only weak effects of solar 
activity were detected in any of the temperature series investigated. We also 
found no clear imprint of volcanic activity in the Czech (or European) 
temperatures, in contrast to a distinct temporary post-eruption cooling in global 
land temperature. Of the internal climatic oscillations, NAO was confirmed to be 
one of the dominant sources of shorter-term variability in the European region, 
whereas contributions from the Southern Oscillation, albeit noticeable, were only 
borderline statistically significant. A weakly significant component in the Czech 
temperature was also detected for the phase of the Atlantic Multidecadal 
Oscillation (AMO). Considering the approximate 70-year periodicity of AMO’s 
main cycle, this result brings some interesting implications regarding the longer-
term oscillations in the temperature signals, as further discussed in the concluding 
remarks in Chap. 7. 

In addition to the temperature data, Czech precipitation series and their 
possible relations to the climate forcings were also investigated. The respective 
results in BRÁZDIL ET AL. (2012A*) and MIKŠOVSKÝ ET AL. (2014*) demonstrated that, 
unlike for temperatures, only very small fraction of total variance could be 
explained by any form of the regression model (7% or less, compared to up to 53 
% for Czech annual temperature and 20% for Czech monthly temperature). NAO 
phase was found to be the only predictor contributing a statistically significant 
component to the precipitation series.  

In MIKŠOVSKÝ ET AL. (2014*), too, nonlinear regression models were applied 
in addition to multiple linear regression, in an attempt to reveal (and hopefully 
isolate and quantify) the eventual nonlinear interactions among the predictors and 
temperature/precipitation. None of the nonlinear mappings did, however, clearly 
outperform multiple linear regression in terms of the fraction of variance ex-
plained. Hence, while some of the climate responses to the forcing factors may be 
inherently nonlinear, their combined manifestations in the monthly and annual 
series of temperature seem to be approximated fairly well by purely linear super-
position. This finding facilitates the application of statistical attribution analysis to 
the gridded temperature datasets: The computational costs of nonlinear regres-
sion models would become quite prohibitive for predictands numbering thousands 
or tens of thousands (especially when combined with computationally intensive 
techniques for estimation of statistical significance such as bootstrap), but the 
analysis is still manageable using basic linear regression. In our follow-up work, 
we therefore turned our attention to various forms of gridded temperature data, 
using multiple linear regression alone as the tool for separating components 
associated with individual climate forcings.  
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FIGURE 6.1: Annual mean areal Czech temperature in the 1860-2008 period, observed 
(grey line ) and approximated by multiple linear regression (lighter red line ) and 
multilayer perceptron neural network (darker red line ) from a set of explanatory variables 
representing various external and internal climate forcings, described in BRÁZDIL ET AL. 
(2012A*) and based on the setup by SCHÖNWIESE ET AL. (2010). Adapted from BRÁZDIL ET 

AL. (2012A*). 
 
 

In MIKŠOVSKÝ & PIŠOFT (2015*), we investigated the presence of imprints of 
various climate forcings in the series of gridded monthly temperature anomalies 
throughout the European region, supplied from the GISTEMP (HANSEN ET AL. 
2010) and Berkeley Earth (ROHDE ET AL. 2013A,B) datasets. Multiple linear 
regression in its basic form (Eq. 1) was applied to identify the links between local 
temperature anomalies and selected predictors with established or suspected 
influence on the European weather and climate (Fig. 6.2). Statistical significance 
of the regression coefficients was assessed by moving block bootstrap. While not 
included in MIKŠOVSKÝ & PIŠOFT (2015*), the tests were also carried out for 
temperatures provided by the 20th Century Reanalysis (COMPO ET AL. 2011). This 
allowed for a comparison of the forcing fingerprints in the gridded observations 
and in a reanalysis dataset (which, in the particular case of the 20th Century 
Reanalysis, does not use temperatures from the land-based stations as inputs). In 
Fig. 6.3, our results are summarized in the form of responses of temperature to 
the pre-selected characteristic variations of the predictors, specified in the caption 
of Fig. 6.2. Some of the previously established effects of the climate forcings have 
been confirmed by our analysis. These included the universally strong, yet locally 
variable correlation between the GHG concentrations and the long-term tempe-
rature component, or the presence of a distinct response pattern related to the 
North Atlantic Oscillation. Some interesting outcomes regarding the effects of 
external forcings or teleconnections projected by internal variability modes also 
appeared (such as the association between the Pacific Decadal Oscillation and 
temperatures in Scandinavia). Furthermore, our analysis highlighted some of the 
uncertainties potentially stemming from the choice of the target temperature 
dataset. Of particular interest was the noticeable difference between the compo-
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nents attributed to the greenhouse gases concentration in the GISTEMP and 
Berkeley Earth datasets and in the 20th Century Reanalysis. This contrast, 
symptomatic of the potential problems with the long-term temperature trends in 
the 20th Century Reanalysis (COMPO ET AL. 2013), serves as a cautionary example 
of the specifics of the reanalysis-type data, frequently employed as repre-
sentatives of the real climate, yet often carrying a distinct signature of the 
numerical model involved in their creation and of the selection of its inputs. In our 
ongoing and future research, we will study these issues in greater depth, as 
discussed in the concluding remarks in Chap. 7. 
 
 
 

 
 
FIGURE 6.2: Time series of the explanatory variables employed in the attribution analysis 
in MIKŠOVSKÝ & PIŠOFT (2015*): CO2-equivalent concentration of Kyoto protocol-controlled 
greenhouse gases (GHG), obtained from http://www.pik-potsdam.de/~mmalte/rcps/ 
(MEINSHAUSEN ET AL. 2011) (a); European SO2 emissions adapted from the data by SMITH 

ET AL. (2011) as a proxy for the amounts of anthropogenic sulfate aerosols (b); monthly 
solar irradiance from http://climexp.knmi.nl/data/itsi_wls_mon.dat (WANG ET AL. 2005) (c); 
volcanic aerosol optical depth from http://data.giss.nasa.gov/modelforce/strataer/  (SATO 

ET AL. 1993) (d); Southern Oscillation (SO - e.g. TRENBERTH ET AL. 2002) index (e) and 
North Atlantic Oscillation (NAO - e.g. HURRELL ET AL. 2003) index (f) from CRU 
(http://www.cru.uea.ac.uk/cru/data/pci.htm); Atlantic Multidecadal Oscillation (AMO - e.g. 
ENFIELD ET AL. 2001) index from NOAA (http://www.esrl.noaa.gov/psd/data/ 
timeseries/AMO/) (g); Pacific Decadal Oscillation (PDO - e.g. ZHANG ET AL. 1997) index  
from KNMI Climate Explorer (http://climexp.knmi.nl/data/ipdo_erssta.txt) (h). Green bars 
to the right of individual panels illustrate the size of the characteristic variation ∆�� of the 
predictor, used for calculation of the temperature responses shown in Fig. 6.3: Increase 
of the CO2-equivalent GHG concentration between 1882 and 2010 (+148 ppm); peak 
value of the European SO2 emissions (43 Tg.year-1); increase of the solar irradiance by 1 
W.m-2; Mt. Pinatubo-sized volcanic event; increase of SO, NAO, AMO and PDO indices 
by four times their standard deviation. Modified from MIKŠOVSKÝ & PIŠOFT (2015*). 
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FIGURE 6.3 (�): Geographic patterns of local temperature response (°C) associated with 
various explanatory variables, calculated as a product of the regression coefficient �� 
(computed individually for each grid point by multiple linear regression) and the 
characteristic variation ∆�� of the respective predictor (specified in Fig. 6.2). Monthly 
temperature anomalies from the GISTEMP (HANSEN ET AL. 2010), Berkeley Earth (BERK: 
ROHDE ET AL. 2013A,B) and 20th Century Reanalysis (20CR: COMPO ET AL. 2011) datasets 
were analyzed, for the 1882-2010 period. Statistical significance of the components 
associated with individual predictors was evaluated by moving-block bootstrap (e.g. 
FITZENBERGER 1998) – black dots mark grid points with response statistically significant at 
the 99% confidence level. Modified from MIKŠOVSKÝ & PIŠOFT (2015*) and expanded with 
the 20CR-based results. 
 
 

6.3 ATTRIBUTION OF TEMPORAL VARIABILITY OF DROUGHTS  

While temperature and precipitation totals are among the most basic – and most 
intensely studied – climatic descriptors, more intricate composite characteristics 
are often used to capture effects of the processes within the climate system. 
Drought indices, constructed to describe the degree of wet or dry conditions within 
some locality of interest, are one particular class of such impact-focused 
quantities. In BRÁZDIL ET AL. (2015B*), we examined selected aspects of various 
short- and long-term indices quantifying meteorological droughts in the Czech 
Republic. The analysis focused on spring and summer as the seasons most 
relevant to the drought impacts on agriculture. As a part of this assessment, we 
investigated presence of links between the time series of individual drought 
indices and several explanatory variables related to climate forcings. Attention 
was paid to the possible manifestations of the man-induced changes to the 
atmospheric composition (particularly increasing concentrations of the 
greenhouse gases) and to the effects of natural forcings (solar and volcanic 
activity). Existence of components correlated with the phase of the North Atlantic 
Oscillation, Southern Oscillation or Atlantic Multidecadal Oscillation was also 
assessed. Substantial and statistically significant connection between droughts 
and anthropogenic forcing was found for the indices involving temperature or 
evapotranspiration in their definition. Links to NAO were generally strong and a 
tendency towards drier conditions has been confirmed for the positive NAO 
phase. Possible influence of the Southern Oscillation was found as well, though 
weaker and only statistically significant for some of the indices and seasons. Once 
again, nonlinear regression techniques were used alongside multiple linear 
regression, and, just as it was the case for annual and monthly temperature and 
precipitation, only minor gain from nonlinear attribution models was indicated. 
Feasibility of the linear approach to the attribution analysis was therefore upheld 
in this case, too. 
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CHAPTER 7 
CONCLUDING REMARKS AND FUTURE PROSPECTS  
 
The individual pieces of analysis shown throughout this text have demonstrated a 
few examples of the wide range of possible applications of the regression 
mappings in the atmospheric and climatic sciences. The results achieved, diverse 
in their aims, methods used and datasets involved, can obviously not be summa-
rized by a simple, all-encompassing conclusion. There are, however, a few points 
worthy of mentioning, related to the individual topics here as well as their common 
aspects. Furthermore, some details on the future directions of the related 
research are given in this concluding section, connecting the results presented 
with the expected outcomes of other ongoing studies with my participation. 
 First, our experiments have affirmed that nonlinearity, while inherent to the 
climate system, manifests with varying level of intensity in the climatic time series. 
It would be too daring to try to formulate specific guidelines pinpointing scenarios 
suitable for application of nonlinear regression techniques. Our results as well as 
those of various other studies devoted to this topic have highlighted numerous 
factors potentially affecting the level of observable nonlinearity. Additional 
ambiguity can be brought by technical specifics or imperfections of the data 
themselves, such as the presence of non-climatic inhomogeneities. Still, there 
seem to be some general factors tied to the superiority of the nonlinear approach 
(or lack thereof). In our analyses, nonlinear mappings proved best suited for 
setups with intermediate complexity and enough information provided in the 
signals analyzed to extract the respective relationships. In the absence of 
nontrivial, low-dimensional links between predictors and predictand (for instance 
when forecasting daily temperatures more than a few days ahead), no benefit 
stemmed from the use of nonlinear models. On the other hand, diminished degree 
of detectable nonlinearity was also characteristic of setups with very tight linear 
correlation between the predictand and one or more predictors, when most of the 
information could be transmitted through a purely linear function, leaving only 
small fraction of total variance unexplained and available for the extra contribution 
from a nonlinear mapping. Of the tasks studied in this thesis, superiority of 
nonlinear regression was often indicated for short-term prediction of climatic 
variables at daily time scales, downscaling of daily temperature from large-scale 
reanalysis data or daily temperature estimation from records taken at nearby 
observational sites. Even then, the gain was not automatically guaranteed for 
each individual test configuration. This means that the key problem – identification 
of setups suitable for the application of the nonlinear approach – needs to be 
treated on a case-by-case basis. Occasionally, pointers are available that can 
help to make the decision. In particular, presence of characteristic markers of low-
dimensional deterministic chaos in the data is often an indicator of capturable 
nonlinear links. Reliable detection of relevant low-dimensional chaotic behavior 
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from the (pseudo)observed climatic time series can however be quite challenging, 
at least at the spatiotemporal scales investigated here. Practical conclusions 
about suitability of nonlinear techniques are therefore often easiest to reach by 
direct tests focused on the particular performance criteria of interest, sometimes 
basically resorting to a ‘brute force’ approach. The same then also applies to the 
selection of the best performing type of the regression mapping and its optimum 
configuration.  

While the respective research may be somewhat overshadowed in volume 
by the topics related to the effects of the climate change, interest in manifestations 
of nonlinear and chaotic behavior in the climatic data still persists. In addition to 
the studies focused on region- or phenomena-specific problems, attention is being 
paid to the broader issues of links within the climate system and their geographic 
structures. Elements of our past research in this area were shown here (such as 
the nonlinearity patterns from MIKŠOVSKÝ ET AL. 2008*). Some more recent 
contributions to the related issues then operate with the concept of climate 
networks, allowing for study of generalized climatic teleconnections, and possible 
evaluation of their nonlinearity (e.g. HLINKA ET AL. 2013 and the sources within). 
Attention is also still being devoted to the assessment and quantification of the 
atmospheric chaoticity and predictability (e.g. LI & DING 2011; BADIN & DOMEISEN 

2014). With J. Skořepa, my Ph.D. student, we currently investigate a related 
issue, with foreseeable results about to bring new insights into the matters of 
global and local chaoticity measures, their geographic patterns and their 
representation in various types of climatic data.   

As shown in Chap. 5.1 for various types of daily temperature, statistical 
downscaling tasks do often benefit from the nonlinear approach to the 
construction of the regression functions. However, the gain is not automatically 
assured, and some validation statistics show no systematic improvement from the 
use of a nonlinear regression model, as we demonstrated (HUTH ET AL. 2015*) and 
as was also suggested by other studies with similar focus (e.g. HUTH ET AL. 2008). 
There are, however, additional matters in need of attention. Besides the critical – 
yet occasionally neglected – issue of the predictor selection (e.g. HUTH 2004), 
stability of the downscaling mappings must be carefully verified. This becomes 
particularly crucial when GCM outputs for the future time periods are downscaled, 
with predictors possibly falling outside the range of values typical for the past 
climate, and thus unprecedented in the data employed for calibration of the 
downscaling models. Bearing these caveats in mind, statistical downscaling by 
regression mappings – regardless of the specific methodology – remains a 
valuable tool for bypassing the resolution gap between global climate simulations 
and local-scale data. With further improvement of the spatial step of global climate 
models, and reduction of their still considerable biases, need for statistical 
downscaling (and also for statistical postprocessing, reducing the systematic 
errors in the GCM/RCM simulations – e.g. DÉQUÉ 2007; THEMEßL ET AL. 2012) may 
eventually disappear. Today, however, we are still far from such future, and 
statistical downscaling models do currently represent a viable alternative to their 
dynamical counterparts.  
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In our attribution-centered analyses (BRÁZDIL ET AL. 2012A*; MIKŠOVSKÝ ET 

AL. 2014*; BRÁZDIL ET AL. 2015B*; Chap. 6.2), searching for components associated 
with particular climate forcings in the climatic series at monthly and annual time 
step, only minor gain from application of nonlinear mappings was detected. Even 
in the prior studies concerned with similar problems, and reporting presence of 
nonlinearities, the magnitude of the nonlinear components was rather variable and 
inferiority of linear models not guaranteed for every test setting (PASINI ET AL. 
2006; SCHÖNWIESE ET AL. 2010). The lack of distinct nonlinear components seems 
to also extend to more general links among the climatic time series (e.g. HLINKA ET 

AL. 2014), indirectly implying a predominantly linear character of some of the 
teleconnections considered in the attribution analyses. GCM-based experiments, 
too, have suggested that linear superposition of the forcings may often suffice to 
approximate their combined effects, at least for the external forcing factors (e.g. 
SHIOGAMA ET AL. 2013). Altogether, these pieces of evidence indicate that 
approaching the problem of attribution analysis via linear methods is not 
unreasonable, and linear approximation can be applied without incurring exces-
sive oversimplification. That said, further research into the related matters is still 
highly desirable, especially regarding the potential intricacies of the interactions of 
internal climate variability modes. 

Regarding the problem of attribution, several additional issues ought to be 
taken into account. First of all, statistical attribution analysis only considers formal 
similarities among the series analyzed, oblivious of the underlying physical 
dependencies (or their absence). Dangers of misrepresentation of the outcomes 
of the statistical approach to attribution have been highlighted in the past (e.g. 
BENESTAD & SCHMIDT 2009); we only very briefly touched upon this subject in 
MIKŠOVSKÝ ET AL. (2014*) and BRÁZDIL ET AL. (2015B*), but it is definitely worthy of – 
and in need of – much deeper attention in the future. Another related challenge 
then consists in selection of suitable explanatory variables, which should 
represent all relevant climate-forming factors, but without unnecessarily increasing 
dimensionality of the regression model, and without imposing redundancies. 
Besides the anthropogenic forcings (related especially to the amounts of 
greenhouse gases, but also to the effects of various aerosols – e.g. SKEIE ET AL. 
2011; STOCKER ET AL. 2013, CHAP. 8) and natural external forcings (especially 
variations of solar and volcanic activity – e.g. SCHMIDT ET AL. 2011), internal 
variability modes in the climate system do also shape its temporal evolution and 
should be considered in the attribution analysis. Of particular interest regarding 
the mid- to long-term climatic trends is the natural multidecadal variability, 
manifesting for instance through Atlantic Multidecadal Oscillation (AMO – e.g. 
ENFIELD ET AL. 2001) or Pacific Decadal Oscillation (PDO – e.g. ZHANG ET AL. 
1997). The respective oscillatory phenomena, related mutually as well as to other 
variability modes in the climate system (e.g. WU ET AL. 2011; WYATT ET AL. 2012), 
have been implicated as possible major contributors to longer-term temperature 
variability. In our analyses (MIKŠOVSKÝ ET AL. 2014*; MIKŠOVSKÝ & PIŠOFT 2015*), 
as well as various other recent studies (e.g. ROHDE ET AL. 2013B; ZHOU & TUNG 

2013; CHYLEK ET AL. 2014), a distinct formal link between the AMO phase and 
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local or global temperature has been shown. This relationship needs to be 
interpreted carefully though – the question of AMO’s involvement in the climate 
variability is still open and intensely discussed, regarding the origin of the 
variations observed (e.g. BOOTH ET AL. 2012; ZHANG ET AL. 2013), optimum way of 
their characterization and relations to other forcings (e.g. CANTY ET AL. 2013) and 
implications for the magnitude of the observed trends of temperature (e.g. VAN DER 
WERF & DOLMAN 2014). Final conclusions in these matters are still far from 
established and unlikely to be reached by statistical means alone (due to, in part, 
limited extent of the available records compared to the approximately 70-year 
periodicity of AMO). Numerical modelling perspective may eventually help to 
provide a clearer picture in the future. However, the ability of the current 
generation of climate models to capture the multidecadal oscillations (including 
AMO) is still limited and quite variable among the individual simulations (e.g. BA 

ET AL. 2014). Several of our current and planned research activities hope to further 
contribute to these intensely researched topics. In our upcoming paper MIKŠOVSKÝ 

ET AL. (2015*), a more complex approach to the issue of attribution will be 
embraced, with particular attention to the world-wide spatial fingerprints of 
external and internal forcings in the (pseudo)observed and reanalyzed 
temperature data. In the wake of this study, manifestations of the forcings will also 
be investigated in the historical runs of global and regional climate models, to 
assess the ability of these numerical simulations to reproduce the observation-
based imprints of individual forcings. We also continue the investigation of the 
factors affecting the occurrence of droughts in central Europe, further building 
upon the foundations laid in BRÁZDIL ET AL. (2015B*). Outcomes of the next stage 
of this analysis will appear as a part of the drought-focused volume BRÁZDIL ET AL. 
(2015A*). Results derived from drought indices specific to individual locations 
within the Czech territory will be presented, for all seasons of the year, and 
complemented by a more detailed assessment of statistical significance of 
individual forcing-attributed components. We also recently revisited the issue of 
attribution of temporal variability in the middle atmosphere, with particular focus 
on regression-based identification of the imprints of solar activity in various 
reanalysis datasets. The resulting paper (KUCHAŘ ET AL. 2015*) delivers a detailed 
study of the solar forcing effects on the stratospheric temperature, ozone amounts 
and circulation characteristics (though it should be noted that my contribution was 
rather minor in its preparation, and the paper was therefore not included as a core 
part of this thesis, despite the topical compatibility). 

In Chapter 2, the importance of carefully considering the specific properties 
of the datasets analyzed was emphasized. Here, I would like to accentuate this 
issue once more: Even from the few examples given throughout this text, it should 
be evident that substantial variation in the outcomes (and conclusions) of a given 
analysis may stem from the selection of the input data. This impact may be 
particularly severe in the case of the attribution-focused tasks: Not only do the 
target variables (such as temperature) exist in alternative versions, but multiple – 

and sometimes relatively disparate – options are also often available as represen-
tatives of the explanatory variables (such as the estimates of the levels of solar or 
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volcanic activity – e.g. SCHMIDT ET AL. 2011, 2012). In the aforementioned 
upcoming paper MIKŠOVSKÝ ET AL. (2015*), the issue of the specifics tied to 
different versions of the input data will be investigated more thoroughly, 
particularly regarding various representatives of past temperature. Special 
attention will be devoted to the behavior of the 20th Century Reanalysis – the 
increasingly popular source of climatic data, spanning more than a century, which 
however also exhibits some noteworthy deviations from the datasets based on 
gridded observations (as illustrated in Figs. 2.2 or 6.3). In MIKŠOVSKÝ ET AL. 
(2015*), these contrasts will be studied in more detail and on a global scale, 
including a comprehensive assessment of the specifics tied to the effects of 
individual climate-forming factors. 
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Summary

Using temperature and pressure records from Czech
meteorological stations and NCEP=NCAR reanalysis
series, we tested for the presence of detectable nonlinearity
in univariate and multivariate climatic time series. The
method of surrogate data was utilized for nonlinearity
detection – results of nonlinear prediction for the original
series were compared to the results for series whose
nonlinear structure was randomized. The prediction was
done by means of local linear models in the reconstructed
phase space. None or very weak nonlinearity was found in
the single (univariate) series, and pressure series generally
exhibited stronger nonlinearity than series of temperature
(daily mean, minimum or maximum). Distinct nonlinearity
was found in all tested multivariate systems, especially
when both temperatures and pressures were used simulta-
neously to form the phase space. Nonlinearity tests were
carried out for 30-year and 10-year-long datasets and
nonlinear behavior was generally more apparent in the
longer versions. In addition, the tested systems showed
more substantial nonlinearity when the success of short-
range prediction was used as the discriminating statistic;
with an increase of the prediction time, detectable
nonlinearity became weaker and it disappeared completely
for long-term prediction.

1. Introduction

Time series analysis is a frequent way of dealing
with meteorological signals, both measured and

produced by numerical simulations. Although the
climate system is essentially nonlinear, linear
methods of signal analysis are very common
and the linear analysis techniques (such as spec-
tral methods, linear regression or ARMA mod-
els) often predominate over the nonlinear ones
(artificial neural networks, local or global poly-
nomial fits and others). As the linear approach is
usually less complicated, easier to implement,
and computationally less demanding, the ques-
tion arises whether and where nonlinear methods
have their place in the study of meteorological
signals. The recent development of computers
has answered the problem of the high computa-
tional demands of the usual nonlinear methods
which can now be satisfied by a common per-
sonal computer. Therefore, the issue is: Do
nonlinear methods offer enough benefits in
exchange for their higher demands? Is the inher-
ent nonlinearity strong enough in the climatic
series? The intention of this paper is to show
the results of nonlinearity tests of a few typical
climatic time series and multivariate systems of
series and to decide whether nonlinearity is
detectable, how extensively it is manifested
and, therefore, if the application of nonlinear
methods is appropriate.



While the commonly used nonlinear methods,
e.g. artificial neural networks or methods based
on local models, are generally suitable for deal-
ing with signals of both linear and nonlinear ori-
gin, they are usually more complicated than
their linear counterparts. This is reflected in the
high number of parameters that need to be deter-
mined before the method can be used (such as
weights in the neural network or coefficients of
the local model). Also, due to the higher com-
plexity of nonlinear methods, their application to
a strictly linear series (i.e. series without any
nonlinear component whatsoever) may even pro-
duce worse results than the application of a
purely linear method. It is therefore desirable to
distinguish between linear and nonlinear tasks,
and to match the correct techniques to the nature
of the problem to be solved. Identification of a
time series as linear or nonlinear is very useful
in many scientific disciplines, and so numerous
techniques have been proposed for nonlinearity
testing (see, e.g. Galka, 2000 or Schreiber and
Schmitz, 2000). In this paper, an approach
employing so-called surrogate time series (surro-
gates) is utilized (Theiler et al., 1992). Its prin-
ciple is quite straightforward. First, the original
time series is altered so that its linear structure is
preserved while the nonlinear dependencies are
randomized. Then results of some nonlinearity-
sensitive technique, for instance nonlinear pre-
diction, are compared for the original series
and several surrogate series. If the result for the
original series differs significantly from those for
the surrogates (in the statistical sense), the pres-
ence of nonlinearity is positively established.
Details on the generation of surrogates and their
use are provided in Section 2.3.

The problem with nonlinearity testing of cli-
matic time series has already been addressed by
Palu�ss and Novotná (1994), who compared the
redundancy of the original and surrogate time
series for series of mean daily temperature and
mean daily pressure from Prague-Klementinum,
detecting nonlinearity in the latter and finding the
former to be linear. Palu�ss also detected nonlin-
earity in the bivariate system consisting of
temperature and pressure series from Prague-
Klementinum (Palu�ss, 1996). The nonlinear na-
ture of pressure series was confirmed by Casdagli
(1997) as well, this time for the Australian
records of atmospheric pressure. An example of

a meteorology-related analysis can also be found
in the paper by Schreiber and Schmitz (2000),
where the authors tested for nonlinearity in the
series of monthly values of the South Oscillation
index, comparing results of nonlinear prediction
for the original series and 99 surrogates. Nonlin-
earity was not detected in this case. Yet another
nonlinearity testing procedure was proposed by
Tsonis (2001) and applied to a series of average
hemispheric available potential energy, which
was found to have a significant nonlinear compo-
nent. It is therefore clear that climatic time series,
although originating from an inherently non-
linear system, may exhibit nonlinearity in some
cases and appear linear in others. In this paper,
we have tried to determine if climate nonlinearity
is detectable from the European series of daily
temperature and pressure and how extensively it
is expressed.

2. Methods

2.1 Phase space reconstruction

Phase space reconstruction is applied as the basis
for nonlinearity testing here. Knowledge of the
phase space (PS) structure is of great benefit
when studying any physical system, since an
accurate and unambiguous characterization of
its state can be done. For some simple systems,
the structure of the phase space is known or can
be found without difficulty. In the physics of
the climate, the situation is more difficult. First,
the essential components of the climate system,
atmosphere and ocean, are continuous matter
systems, thus having infinite number of degrees
of freedom. Several attempts to find low-dimen-
sional dynamics of the climate system were
made by a number of authors in the past (see,
e.g. Sivakumar (2004) for overview), but no clear
and definite proof of the global climate attractor
presence has been found. This suggests that such
an attractor may not be present, at least not in the
well-expressed form typical for some low-dimen-
sional systems. Even if it does exist, its detection
may be impossible from the measured time series
due to, e.g. insufficient length of the available
records. In spite of the fact that the exact descrip-
tion is unattainable, major features of the climate
system may still be described by a finite number
of variables with sufficient accuracy. Numerical

22 J. Mik�ssovsk�yy and A. Raidl



models, for example, are based on using a few
characteristic variables in a finite number of grid
points, and they are able to predict weather or
model climate with accuracy unrivalled by any
other available method. However, even though
numerical models’ dimensions are finite, their
value is still quite high as such models generally
have thousands or millions of degrees of free-
dom. Moreover, numerical models, being very
complicated and quite demanding with respect
to the formulation of the initial and boundary
conditions as well as needed computational
power, are too cumbersome and impractical for
some tasks. This is where time series analysis
methods often come into play. Since time series
of many different quantities are plentiful in
meteorology, it is reasonable to try to use them
to construct some kind of finite-dimensional
phase space equivalent. The usability of such a
reconstruction may be limited and restricted to
certain areas or time periods only. It is, however,
possible to capture (some) major features of the
climate dynamics with a low number of variables
in this way.

In the phase space reconstruction (PSR) pro-
cess, vector space is constructed from the avail-
able time series to be an equivalent of the
original phase space, or at least to represent its
practically usable substitute. Here,

ym tð Þ ¼ X1 tð Þ;X2 tð Þ; . . . ; Xm tð Þð Þ ð1Þ
is anm-dimensional vector, describing state of the
system in time t, and Xi(t) is its i-th component.
The form of Xi(t) depends on the reconstruction
technique employed. When just a single time
series is used, the most frequently used method
of reconstruction is the time delay technique
(Packard et al., 1980; Takens, 1981). This uses
the time-lagged values of the scalar predictor time
series x1(t) as elements of ym(t) as follows:

Xi tð Þ ¼ x1 t � i� 1ð Þ�ð Þ; i ¼ 1; . . . ;m: ð2Þ
� is the time delay. In order to use the time delay
method, two scalar values must be determined,
characterizing embedding dimension m and time
distance � between the elements of the vector.
Although there are many methods of their esti-
mation (see, e.g. Abarbanel, 1996 or Kantz and
Schreiber, 1997), the choice can also be done by
identifying the combination of m and � for which
nonlinear prediction produces the best results.

Sometimes more than one series is available
for the reconstruction. Meteorological measure-
ments are typically done at numerous locations,
and several variables are recorded simulta-
neously, hence multiple series xi(t) may be uti-
lized (Keppenne and Nicolis, 1989). This allows
for PS reconstruction where elements of the vec-
tor ym(t) are represented by values of m different
series at the same time t:

Xi tð Þ ¼ xi tð Þ; i ¼ 1; . . . ;m: ð3Þ
We refer to this reconstruction technique as mul-
tivariate PSR. Of course, when the number of the
available series S is higher than the embedding
dimension, S>m, a set of m series has to be
picked from those available. This can be done
either by means of some dimensionality reduc-
tion technique (such as PCA), or by choosing the
best fitting subset of the series (e.g. the one
which can provide the best prediction, as done
in Section 4.1).
Time delay and multivariate reconstruction

techniques can also be combined when the
embedding dimension is greater than the number
of the available series, 1<S<m. The general for-
mula, describing time delay, multivariate and
combined reconstruction methods, is:

Xi tð Þ ¼ xi� i�1ð ÞdivSð ÞS t � i� 1ð Þ div Sð Þ�ð Þ;
i ¼ 1; . . . ;m; ð4Þ

where X div Y stands for integer division of X
by Y.

2.2 Prediction by local linear models

As soon as the PS is approximated by some of
the above described methods, prediction may be
applied. The technique of local models (Farmer
and Sidorowich, 1987; Casdagli, 1989; Sugihara
and May, 1990; Ott et al., 1994) is based on find-
ing the states in the history of the system which
correspond to situations similar to that being pre-
dicted. The similarity of the two vectors in the PS
ym(t) and ym(t

0) can easily be quantified by mea-
suring their distance, e.g. using the Euclidean L2

norm which was applied in the following form
here:

kym tð Þ; ym t0ð Þk ¼ 1

m

Xm
i¼1

jXi tð Þ � Xi t
0ð Þj2

 !1=2

:

ð5Þ
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For each predicted state ym(t), certain number N
of the close (in the sense of minimal distance)
states is found in the phase space. These are
called the nearest neighbors of ym(t) and denoted
ymðt; iÞ; i ¼ 1; . . . ;N; the corresponding times
are denoted t0ðt; iÞ; i ¼ 1; . . . ;N. From the time
evolution of the nearest neighbors, a mapping
is constructed to approximate the system dy-
namics in some local neighborhood of ym(t).
Let the series x(t) be the predictand series. For
some time t and prediction done T time steps
ahead, predicted value in time tþ T is expressed
as a linear function of ym(t):

xPRED t þ Tð Þ ¼ a0 þ
Xm
i¼1

ai tð ÞXi tð Þ: ð6Þ

aiðtÞ; i ¼ 0; . . . ;m represent coefficients of the
local linear models, with a0(t) being the absolute
coefficient. Since an individual mapping is cre-
ated for each predicted state, coefficients ai(t) in
(6) are not time independent and they must be
computed separately for each time t. Their values
can be found by solving

for ai(t) (Xi(t, j) denotes the i-th component of
ym(t, j)). Since mostly N�m, the problem is
overspecified and solvable in the least-squares
sense. The quality of the local fits may be
reduced if the nearest neighbors, close to ym(t)
in time (time correlated states), are used. This
problem can be avoided by excluding all
ymðt�Þ; jt � t�j� tDECOR, from the search for the
nearest neighbors of ym(t) (tDECOR is called de-
correlation time).

The success of the prediction can be enumer-
ated by a single scalar value. Here, we employ
the common root mean square error (RMSE),
defined as:

RMSE x; xPRED
� �¼ 1

K

X
t

x tð Þ�xPRED tð Þ� �2 !1=2
;

ð8Þ

where xPRED(t) is the series of the predicted
values obtained from (6) and summation is per-
formed over all t for which both original and
predicted values exist – number of such cases
is denoted K.

2.3 Philosophy of the method
of surrogate data

The applied technique of nonlinearity testing is
basically the one used by Schreiber and Schmitz
(1996, 2000). The null hypothesis to be accepted
or rejected by the nonlinearity test was: The se-
ries was generated by a Gaussian linear stochastic
process of an arbitrary order with constant coef-
ficients, possibly multivariate, and transformed
by some nonlinear, but static and invertible mea-
surement function. To test this hypothesis, RMSE
of the prediction is computed for the original
series (or multivariate system of series) and
compared to RMSEs obtained for surrogates.
Because the distribution of the surrogates’
RMSEs is generally non-Gaussian, the one-sided

rank-order test (Theiler et al., 1992) was em-
ployed instead of some kind of test using
the standard deviation of surrogates’ RMSEs
(such as t-test or z-test). For testing at the sig-
nificance level of �, 1=� – 1 surrogates are gen-
erated, i.e. 1=� series are used including the
original one. If prediction for the original series
gives lower RMSE than for all the surrogates,
the hypothesis of linear generating process is
rejected, with probability � of false rejection.
We used a set of 49 surrogates here, thus the
probability of false rejection was 2%. Using
more surrogate series would result in higher
confidence at the cost of slower computation –
testing at the 98% confidence level was a com-
promise between the speed and the reliability of
the tests.
Surrogate time series (a.k.a. surrogates) repre-

sent a modification of the original data created

————————————————————

x t0 t; 1ð Þ þ Tð Þ
x t0 t; 2ð Þ þ Tð Þ

. . .
x t0 t;Nð Þ þ Tð Þ

0
BB@

1
CCA ¼

1 X1 t; 1ð Þ . . . Xm t; 1ð Þ
1 X1 t; 2ð Þ . . . Xm t; 2ð Þ
..
. ..

. ..
.

1 X1 t;Nð Þ . . . Xm t;Nð Þ

0
BBB@

1
CCCA:

a0 tð Þ
a1 tð Þ
. . .
am tð Þ

0
BB@

1
CCA ð7Þ
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so that their linear structure is preserved while
nonlinear dependencies are randomized (or, more
generally, data created to represent some null
hypothesis, such as the one above). As discussed
by Schreiber (1998), Schreiber and Schmitz
(2000) and Galka (2000), the generation of sur-
rogates can be done in several ways, from a sim-
ple phase-randomization of the Fourier spectrum
to the application of the simulated annealing
method. Although none of the methods can gen-
erate perfect surrogates in all cases (i.e. surro-
gates with exactly the same distribution of
values and autocorrelation function as the origi-
nal data), some of them can provide a sufficient
degree of accuracy. IAAFT (iterated amplitude
adjusted Fourier transform – Schreiber and
Schmitz, 1996) was utilized here, as a method
of producing satisfactory surrogates while the
computational demands remained moderate.
The method is based on alternating steps of
power spectrum change and distribution adjust-
ments, performed until a randomized series is
obtained with both the distribution of values
and power spectrum as close to the original series
as possible. In the case of multivariate systems,
not just autocorrelations and the distribution of
values have to be preserved, but also cross-corre-
lations. The IAAFT procedure can be modified
for this task as well – again, see Schreiber and
Schmitz (2000). Since the IAAFT surrogates
generation procedure is a part of the skilful
TISEAN program package (Hegger et al., 1999,
downloadable from the web page of the Max
Planck Institute for the Physics of Complex
Systems in Dresden), we utilized it for surrogate
generation here.

One of the potentially treacherous features of
the Fourier transform based surrogate generation
techniques, IAAFT included, is the problem aris-
ing from the possible leap between the first and
the last value of the series. The Fourier transform
assumes periodicity of the processed series, thus
unwanted artifacts may appear in the surrogate
series when the leap is significant. This effect
can be countered by choosing such subinterval
of the studied dataset so that the first-last differ-
ence is minimized (Schreiber and Schmitz,
2000). Since the series used for testing here
(10935 or 3645-day-long) did not cover the
entire 30 or 10 years, we could choose a suitable
subset to minimize the end-to-end difference.

As pointed out by Kugiumtzis (1999), the sur-
rogate generation process may unintentionally
alter the linear structure of the series, and it is
therefore desirable to test whether or not the lin-
ear dependencies in the data were noticeably
changed. In order to find out how the linear struc-
ture of the series was modified in the surrogates
and to avoid false rejection due to the change in
the linear dependencies, we have also computed
results of the strictly linear prediction for original
and surrogate series, employing multiple linear
regression (MLR). Should the results of the
MLR indicate significant change in the linear
structure of the surrogates (when RMSE for the
original series is out of the min–max range of
RMSEs for surrogates), the nonlinearity test
could not be considered conclusive, regardless
of its outcome. Here, all presented examples
passed this test successfully, i.e. the linear struc-
ture of the series remained almost unchanged in
the surrogates.

3. Data

Time series of daily values from two datasets
were used. The first dataset consisted of time
series of various variables measured at the
Czech meteorological stations: mean daily air
temperature (MDT), maximum daily air temper-
ature (MaxDT), minimum daily air temperature
(MinDT) and mean daily pressure (MDP), all
measured 2 meters above ground level. We have
tested data from several stations, but since differ-
ences between the results for different stations
were rather small, only the results for the series
from Prague (station Prague-Ruzyn�ee, 50�60300N,
14�1502800E, altitude 364m) are presented here.
To ascertain the influence of the series length on
the results of the nonlinearity tests, two different
lengths of the series were used. The 10935-day-
long series covered years 1971 to 2000 (1969 to
1998 in the case of the pressure series – only
measurements prior to 1999 were available),
the 3645-day-long series were for the years 1991–
2000 (1989–1998 for pressure series). The num-
bers of days, 10935 and 3645, do not represent
exactly 30 or 10 years. We used these somewhat
shortened sequences because of the surrogate
series generation procedure, where series whose
length satisfies the condition N¼ 2�3�5� were
required, �, �, � being arbitrary integer numbers.
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This restriction permits the use of the FFT algo-
rithm for the Fourier transform.

The second dataset, the NCEP=NCAR re-
analysis (Kistler et al., 2001), does not rep-
resent data directly measured at meteorological
stations. It was created by processing a large
number of existing measurements of various
kinds using a time-invariant data assimilation
system for the entire processed period (from
1948 on). The reanalysis data are available in a
form of values on a regular grid (2.5� � 2.5�).
Here, we used time series of mean daily tempera-
ture at 1000 hPa (T1000) and series of daily mean
sea level pressure (MSLP) from several grid
points (see below). Again, two lengths of the se-
ries were used – 10935 and 3645 days, represent-
ing years 1971 to 2000 and 1991 to 2000,
respectively.

4. Results

Nine typical examples of nonlinearity test out-
comes are shown here, six of them for time delay
PSR from single series and three for multivariate
PSR. Each case was tested for both the 30-year
and 10-year-long versions of the series. The param-
eters of the computation were determined indi-
vidually for each case (see Section 4.1) and they
are shown in Table 1, together with nonlinearity
test results. The individual cases are identified by
roman numerals and lowercase letters indicate
the length of the series (a¼ 10935 days, b¼
3645 days). Decorrelation time was 30 days and
the prediction one day ahead was used, unless
otherwise specified.

4.1 Parameter estimation

Values of three parameters are required before
local linear models in the time delay recon-
structed phase space can be used as a forecast
tool: time delay �, embedding dimension m and
the number of the nearest neighbors utilised N.
We used a combination of the parameters which
produced the best value of RMSE for the original
(‘nonsurrogated’) series. The simplest situation
was for �, as the best results were generally
obtained for � ¼ 1 day, and this value is there-
fore used in all phase space reconstructions here.
The dependence of RMSE on m and N was more

interesting. RMSE usually drops as m increases
due to the improved ability of the local models to
describe the local dynamics, but it starts to rise
again for high values of m. The same behavior
was generally observed for N, with a minimum
located between a region where there are too few
of the nearest neighbors to average out noise and
a region where their too high number is resulting
in severe averaging and, as a consequence, there
is a loss of the ability to distinguish between
different states. In the case of time delay recon-
struction, the minimum of RMSE is typically
very flat and the choice of the proper parameter
values is therefore not critical – and, as demon-
strated below, the test results are quite robust
to perturbations of m or N. An illustration of
RMSE dependence on values of m and N can
be seen in Fig. 1a for prediction of the 3645-
day-long series of daily mean temperature from
Prague one day ahead.
In the case of multivariate PSR, the value of

the time delay was not needed. Instead, the pre-
dictor series xiðtÞ i ¼ 1; . . . ;m had to be chosen
from the available series. We used series of T1000

and MSLP from the grid point 50� N, 15� E
as predictands, and 2� 35 series of T1000 and
MSLP as potential predictors, i.e. the series from
which the predictors were selected. The potential
predictors covered the area between 60�N, 0� E
and 40� N, 30� E in the 5� � 5� grid. A relatively
straightforward approach to the selection of pre-
dictors was used. First, prediction was performed
using a one-dimensional PSR, and all potential
predictors were tested in the role of x1(t). The
one providing the best prediction was fixed as
the first element of ym(t). Then the two-dimen-
sional reconstruction was built (m¼ 2), with all
remaining (not yet used) series tested in the place
of the second element, and, again, the most suc-
cessful candidate was retained. Series after series
were added to the reconstruction in this fashion,
until the increase of the embedding dimension
ceased to lower the resulting RMSE any further.
An example of RMSE dependence on values of
m and N in case of multivariate phase space
reconstruction is given in Fig. 1b. Unlike in the
case of time delay PSR (Fig. 1a), the minimum is
deeper and better expressed.
The values of m and N chosen for the individ-

ual cases and used in the testing are given in
Table 1.
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4.2 Nonlinearity tests

To accept or reject the hypothesis of a linear char-
acter of the series at the 2% level of significance
using a one-sided test, RMSEs of the prediction
for the original series and 49 surrogates were
computed for each case. The results are pres-
ented in Fig. 2 as diagrams which show the
value of RMSE for the original series (long bold
horizontal line) and values of RMSEs for all 49
surrogates (dots). The arithmetic average of the
surrogates’ RMSEs is also displayed (short hor-
izontal line), together with their 2� range. There
are two such diagrams for each tested series or
multivariate system, one for the 10935-day-long
series (denoted a), the other for the 3645-day-
long one (denoted b). The identifiers in the upper
left corner of the diagrams correspond to the IDs
in the first column of Table 1.

The first four cases show the results for the
univariate series from Prague, using the time
delay method of PS reconstruction. Mean daily
temperature (I), minimum daily temperature (II),
maximum daily temperature (III) and mean daily
pressure (IV) series were examined. All the se-
ries exhibit nonlinearity for the longer version of
the series only while the shorter series satisfies
the hypothesis of a stationary linear generating
process. It should also be noted that differences
between results from the original series and sur-
rogates are quite small (see the rightmost column
of Table 1), even when the linearity hypothesis
is rejected by the test. This indicates that
even when nonlinearity is detected, it is very
weak. Tests of the T1000 and MSLP series from
NCEP=NCAR grid point 50�N, 15� E (cases V
and VI) gave very similar results, with weak non-
linearity detected in the longer version of T1000

series and both versions of MSLP series. It
appears that the nonlinearity of the climate sys-
tem is better exhibited in the pressure series, in
contrast to the 10-year-long temperature series
which seemed completely linear. Such outcomes
agree with findings of Palu�ss and Novotná (1994).
Nonlinearity is also more apparent in the longer
series, whereas the shorter versions do not
usually reveal the nonlinear nature of the atmo-
spheric dynamics. This may partially be a result
of the higher discriminating power of the tests for
longer series. However, it should be noted that
the absolute difference between RMSE for the
original series and average RMSE for surrogates
was higher for the longer series than for the
shorter series in most cases.
While the tests on the univariate series indi-

cated very weak nonlinearity at most, the situa-
tion was entirely different for the multivariate
systems. We show results for three cases here –
prediction of T1000 (50�N, 15� E) from multiple
T1000 series (case VII), prediction of MSLP
(50� N, 15� E) from multiple MSLP series (case
VIII) and prediction of T1000 (50

�N, 15� E) from
both T1000 and MSLP series (case IX). For all
three tasks, and for both lengths of the tested
series, substantial nonlinearity was detected.
The most significant contrast between results
from the original series and results from surro-
gates was observed in case IX.
Since the testing was performed for one spe-

cific combination of parameters m and N only,
the questions how much do the results depend
on the values of the used parameters and if their
change could not affect the outcome might be
asked. We have investigated this problem and
found out that the test results are quite robust
with respect to the values of the used parameters.

Fig. 1. RMSE [�C] of predic-
tion 1 day ahead as a function
of m and N for (a) 3645-day-
long series of mean daily
temperature from Prague (time
delay PSR) and (b) 3645-day-
long NCEP=NCAR T1000 series
(multivariate PSR from series of
T1000 and MSLP)
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Two examples can be seen in Fig. 3, where the
results of the tests from cases I b (Fig. 3a) and IX
b (Fig. 3b) are presented for a wider range
of embedding dimensions. The linearity hypoth-
esis was accepted in the case I b when m¼ 9 was
used, and the same result would have been
obtained for any m in the interval 1 to 12. In case
IX b, the null hypothesis of a linear generating
process was clearly rejected, as it would have

been for any m greater than 2. Similar robustness
of the results was also verified for values of N.
Since RMSE of time prediction one day

ahead was used as the discriminating statistic
in all the previous cases, we wondered how the
results would change if the prediction time was
increased. As the atmospheric system shows
typical chaotic behavior at synoptic scales, dem-
onstrated by the divergence of close trajectories

Fig. 2. Results of the nonlinearity tests for nine different cases, each of them in 30-year-long and 10-year-long version of the
series. The long horizontal line represents RMSE of the prediction for the original series, dots are RMSEs for the surrogates.
The grey rectangle with short horizontal line shows arithmetic average of the surrogates’ RMSEs and their 2� range.
Identifiers in the upper left corner of the diagrams correspond to the ones in Table 1
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in the PS, successful deterministic prediction is
possible for just a few days. Therefore the pre-
diction, linear or not, is degraded to essentially
statistical forecast for T beyond some threshold
and the eventual advantage of the nonlinear tech-
niques over the linear ones is lost. To test the said
effect, we performed the nonlinearity test from
case IX b for prediction times T from 1 to 10
days, instead of just one day. Indeed, as seen in
Fig. 4, the detectable nonlinearity disappeared
for T� 5 days. Generally, a suitable statistic is
required if nonlinearity is to be detected – and
the same series or multivariate system of series
may exhibit different degrees of nonlinearity for
different tasks.

5. Discussion

For all the tested univariate series, differences
between results from the original series and
results from surrogates were very small. None-
theless, the hypothesis of a linear stochastic gen-
erating process was rejected for the 30-year-long
versions of the series, in contrast to all but one
10-year-long series. This result could mean that
nonlinearity is present, and it can be more easily
detected from the longer series. It is necessary to
be careful about such an interpretation since the
tested hypothesis assumed a time-independent
generating process. Because the climate system
cannot be considered completely stationary, the
question is what was the actual cause of the
rejection – was it nonstationarity or nonlinearity?
To investigate the possible effect of nonstationar-
ity, we have constructed and tested a synthetic,
completely linear series, mimicking the 10935-
day-long series of mean daily temperature from
Prague (which was tested in case I a, and found
to be nonlinear). The synthetic series was created
as a sum of an output of an AR(4) process with
constant coefficients, periodic signal simulating
the annual cycle and linear trend (which is a
rough approximation of nonstationarity in the
Prague temperature series, with mean daily tem-
perature rising by about 0.3 �C=10 years). Coef-
ficients of the AR model, amplitude of the
periodic component and value of the trend were
chosen in accordance with the properties of the
original measured series. The hypothesis of
the stationary linear generating process was not

Fig. 3. RMSE of prediction 1 day ahead for the original series and 49 surrogates as a function of embedding dimension for (a)
3645-day-long series of mean daily temperature from Prague using time delay PS reconstruction and (b) 3645-day-long series
of T1000 (50

� N, 15� E) using multivariate PS reconstruction from T1000 and MSLP series

Fig. 4. RMSE of prediction for the original series and 49
surrogates as a function of the prediction time (3645-day-
long series of T1000 (50� N, 15� E) using multivariate PS
reconstruction from T1000 and MSLP series – case IX b
in Table 1)
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rejected for the synthetic linear series, therefore
nonstationarity in the form of a linear trend is
probably not responsible for linearity hypothesis
rejection in case I a (or other tested 30-year-long
univariate series). Nonetheless, from the practical
point of view, the problem of (non)linearity of
the tested univariate series is rather academic,
due to very small differences between results
from the original series and results from sur-
rogates (see the rightmost column of Table 1).
Such small differences mean that even if the se-
ries are technically nonlinear according to the
test, the potential gain from the application of
nonlinear methods of time series analysis would
be negligible.

The tests performed indicate that nonlinearity
is expressed very well in the multivariate sys-
tems, although it was slightly less distinct in
the 10-year-long versions than in the 30-year-
long series. Also, the difference between RMSE
for the original series and for the surrogates
was quite large, both in absolute numbers and
compared to standard deviation of the surrogates’
RMSEs. The difference was most significant
for the multivariate system consisting of both tem-
peratures and pressures (case IX). In our experi-
ence, the more information about the analyzed
system introduced into the phase space recon-
struction, the more distinct nonlinearity can be
expected to be observed. A single time series
does usually not provide enough information to
enable the nonlinear character of the climate
system to be distinctly revealed, while use of
multiple series can offer a more complete de-
scription of the system, including its nonlinear
features.

As an illustration of how various nonlinear
methods do actually perform, there is an example
of solving the problems V b and IX b (prediction
of the 3645-day-long T1000 series from the grid
point 50� N, 15� E using either time delay or mul-
tivariate PSR method) by several forecast tech-
niques in Table 2. In addition to prediction by
local linear models, three-layer perceptron neural
network (with 8 neurons in the hidden layer,
trained by the quasi-Newton method) and radial
basis function neural network (150 units in the
hidden layer) were employed (for more detailed
information on neural networks see, e.g. Haykin,
1999). The results are summarized in Table 2
and compared to outcomes of multiple linear

regression (MLR) and persistent prediction (i.e.
prediction made simply by taking xPRED(tþ T)¼
x(t)). The results agree with the findings of the
nonlinearity tests quite well. While there is no
clear difference between the results from the
nonlinear methods and MLR when time delay
PS reconstruction from a single series is used,
the advantage of nonlinear methods is distinct
for multivariate PSR.
The probability distribution functions of tem-

peratures and pressures are different, and in the
case of temperatures, strongly non-Gaussian.
This difference may be viewed as a cause of
increased nonlinearity, observed in the case of
multivariate phase space reconstruction done
from both pressures and temperatures (case IX).
However, the null hypothesis allowed the tested
series to be modified by a nonlinear measuring
function, therefore the difference in shapes of the
distribution should not be a cause of the observed
nonlinear behavior. To prove this, we repeated
the tests from case IX with time series trans-
formed to have zero mean, unit variance and
normal (Gaussian) probability distribution. Rank-
ordering of a series of Gaussian random numbers
(Theiler et al., 1992) was applied for normaliza-
tion of time series. The relative difference be-
tween RMSE for the original series and RMSE
for surrogates remained almost unchanged when
normalized series were used, showing that the
different probability distributions are not a cause
of the observed nonlinearity.

Table 2. RMSE of prediction of the NCEP=NCAR reanal-
ysis T1000 series (grid point 50� N, 15� E) 1 day ahead by
various methods, utilizing either time delay (the second
column) or multivariate (the third column, series of T1000s
andMSLPs used as predictors) phase space reconstruction. 7
years were used as the training set and 3 years as the testing
set (RMSE for the testing set is shown). The results for the
neural networks were obtained as an average of 10 trainings
from random initial weights

Method of prediction RMSE [�C]

Time delay
PSR

Multivariate
PSR

Persistent 2.43 2.43
Multiple linear regression 2.28 1.99
Local linear models 2.28 1.68
Multilayer perceptron NN 2.29 1.70
Radial basis function NN 2.30 1.63
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Finally, two remarks on the applied nonlinear-
ity testing technique. First, although we used a
rank-order test to distinguish between linear and
nonlinear cases, the results would be virtually the
same if we just checked if RMSE for the original
series falls within the 	2� range of RMSE for
surrogates (except for case IV b – consult Fig. 2
where 2� ranges are displayed). Still, despite the
fact that a Gaussian-based test seems to work
quite well, the observed distributions of RMSE
values are indeed not completely Gaussian, as
seen from diagrams in Fig. 2, and the use of
the rank-order test was therefore justified (an-
other kind of nonparametric test, such as the sign
test, could have been used to similar effect).
Second, we would also like to emphasize that
the absolute difference between results from the
original series and surrogates is a quite important
outcome of the nonlinearity test, as well as the
level of significance (whether expressed in multi-
ples of sigma or in some other way). Because the
min–max range of results from surrogates can be
very small for long series, even very small abso-
lute differences between results for the original
and surrogate series can lead to rejection (which
may be technically correct, but the practical
value of such a result is questionable – this is
exactly what happened for all the tested 30-
year-long univariate series). Even worse, such
small differences can just be a result of some
kind of imperfection of the surrogate series (pe-
riodicity artifacts, nonstationarity effects, . . . ),
and they can easily cause spurious rejection.
Keeping an eye on the values of absolute differ-
ence can help to recognize suspicious results, and
to identify situations when nonlinearity is really
noteworthy.

6. Conclusions

Six different univariate series and three multi-
variate systems were tested for nonlinearity, each
of them in a longer (30 years) and shorter (10
years) version. Success of prediction one day
ahead by the method of local linear models in
the reconstructed phase space was used as the
discriminating statistic. The tested multivariate
systems showed substantial nonlinearity for both
lengths of the series – it seems that nonlinear
dependencies in the multivariate series of tem-
perature and pressure are profound and the appli-

cation of nonlinear methods of time series
analysis is generally suitable and recommended.
The situation was different for the univariate

series of daily temperature and pressure. Gener-
ally, the null hypothesis of a stationary linear
generating process was rejected for the 30-year-
long series of temperature (mean, maximum or
minimum alike), whilst the 10-year-long series
appeared linear. The tests also showed somewhat
stronger nonlinearity for the series of atmo-
spheric pressure than in the case of temperature
series. Nonetheless, differences between results
from the original series and surrogates were very
small, regardless of the type of the series or its
length. For the analysis of individual univariate
series, at least the ones we have examined, the
use of nonlinear methods does not seem to be
beneficial.
The influence of the length of the prediction

time on the nonlinearity tests was investigated as
well. The results suggest that nonlinearity is best
expressed when the success of short-range pre-
diction is applied as the discriminating statistic.
With an increase of the prediction time, detect-
able signs of nonlinearity weakened, and they
disappeared completely for long-term prediction.
This implies the dependence of the degree of
observed nonlinearity on the performed task,
not just the series itself.
Hence, climatic time series reflect the non-

linear nature of the climate system in general,
but whether nonlinearity is noticeable depends
on the tested system as well as the method ap-
plied. This is what we would like to emphasize –
nonlinearity as such may be present in the
climate system, but sometimes it remains well
hidden and insignificant from the point of view
of practical time series analysis. Generally, it
appears that nonlinear behavior is more distinct
in longer series and that multivariate systems
show noticeably greater nonlinearity than single
series.
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Prague 8, Czech Republic.

Testing for nonlinearity in European climatic time series 33



60 

 

 

APPENDIX II 
 
 
MIKŠOVSKÝ, J., P. PIŠOFT, AND A. RAIDL (2008), Global Patterns of Nonlinearity in Real 
and GCM-Simulated Atmospheric Data, in Nonlinear Time Series Analysis in the 
Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics 
(Eds.: Donner, R. V., and S. M. Barbosa), Lecture Notes in Earth Sciences, 112, 17-34, 
doi:10.1007/978-3-540-78938-3_2. 
 
© 2008 Springer-Verlag Berlin Heidelberg 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Global Patterns of Nonlinearity in Real
and GCM-Simulated Atmospheric Data
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Abstract. We employed selected methods of time series analysis to investigate the
spatial and seasonal variations of nonlinearity in the NCEP/NCAR reanalysis data
and in the outputs of the global climate model HadCM3 of the Hadley Center. The
applied nonlinearity detection techniques were based on a direct comparison of the
results of prediction by multiple linear regression and by the method of local linear
models, complemented by tests using surrogate data. Series of daily values of relative
topography and geopotential height were analyzed. Although some differences of the
detected patterns of nonlinearity were found, their basic features seem to be iden-
tical for both the reanalysis and the model outputs. Most prominently, the distinct
contrast between weak nonlinearity in the equatorial area and stronger nonlinearity
in higher latitudes was well reproduced by the HadCM3 model. Nonlinearity tends
to be slightly stronger in the model outputs than in the reanalysis data. Nonlinear
behavior was generally stronger in the colder part of the year in the mid-latitudes
of both hemispheres, for both analyzed datasets.

Keywords: Nonlinearity, Reanalysis, Global climate model, Surrogates

1 Introduction

The Earth’s climate system, as well as its atmospheric component, is an in-
trinsically nonlinear physical system. This nonlinearity is generally reflected
in many series of climatic variables such as atmospheric pressure or temper-
ature, but whether it is detectable and how strong it is depends on the type
of the variable [1, 2, 3], geographic area of its origin [2, 4, 5, 6] or length of
the signal [3]. The manifestations of nonlinearity in time series can be studied
in numerous ways, using different statistics or criteria of the presence of non-
linear behavior. The techniques applied so far to meteorological data involve
the calculation of the mutual information or persistence [1, 7, 8], statistics
based on the performance of a nonlinear predictive method [3, 4, 9], non-
linear correlations [10] or the examination of the character of the prediction
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residuals [2, 4, 5]. Tests using some form of surrogate data are frequently
employed [1, 2, 3, 4, 7, 9, 10]. The presence of nonlinearity can also be as-
sessed by comparing the performance of a linear and a nonlinear time series
analysis method. In the atmospheric sciences, such studies are frequently as-
sociated with the application of statistical methods for prediction [6, 11, 12],
or downscaling and postprocessing tasks [6, 13, 14, 15, 16]. Alongside with a
wide spectrum of techniques for the detection of nonlinearity, different authors
studied diverse types of signals, ranging from various variables related to the
local temperature [1, 3, 6, 7, 10, 13, 14, 15, 16] or pressure [1, 2, 3, 4, 5, 7] to
characteristics of larger-scale dynamics such as the mean hemispheric avail-
able potential energy [8]. Heterogeneity of the methods and datasets applied
by different researchers makes it difficult to directly compare the results and
use them to create a consistent global picture of the geographic variations of
nonlinearity. However, it also seems that there are some systematic regulari-
ties in the spatial distribution of nonlinearity or of the related characteristics
[2, 5, 6, 10, 17]. Here, we investigate this matter further, using a comparison of
the results of linear and nonlinear prediction and tests based on the surrogate
data.

A significant portion of the existing studies dealing with the issue of nonlin-
earity in time series focus on the analysis of individual scalar signals, typically
employing time delayed values for the construction of the space of predictors
or phase space reconstruction. Due to the complex behavior the atmosphere
exhibits, and the relatively small size of the available records, the informa-
tion content in a single series is limited and often insufficient for an effective
application of nonlinear techniques. But meteorological measurements are fre-
quently available for more than one variable, and they are carried out at mul-
tiple locations. When a multivariate system is used instead of a single scalar
series, more information about the local state of the climate system can be
obtained. It also seems that multivariate systems exhibit a generally stronger
detectable nonlinear behavior [3]. For these reasons, and because using mul-
tiple input variables is common in many tasks of statistical meteorology and
climatology, we focused on settings with multivariate predictors in this study.
We restricted our attention to just a few of the available variables, defining
the temperature and pressure structure of the atmosphere. The two illustra-
tive cases presented here are based on forecasts of daily values of the relative
topography 850-500 hPa (which is closely related to the temperature of the
lower troposphere) and of the geopotential height of the 850 hPa level (one of
the variables characterizing the structure of the field of atmospheric pressure).
Along with investigating the character of the series derived from actual mea-
surements (NCEP/NCAR reanalysis), attention was paid to the potential of
the global climate model HadCM3 to reproduce the structures detected in the
observed data. This should help to assess whether such simulation is able to
capture not just the basic characteristics of the Earth’s climate, but also the
eventual nonlinear features of the respective time series. The utilized datasets
are presented in Sect. 2, the techniques applied to quantitatively evaluate
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nonlinearity are described in Sect. 3. Section 4 is devoted to the study of the
spatial variations of nonlinearity. Section 5 focusses on the influence of the
presence of the annual cycle in the series and seasonal changes of the detected
patterns. Finally, in Sect. 6, the results are discussed with regard to their pos-
sible physical cause and practical implications. Color versions of the presented
maps of the geographical distribution of nonlinearity (Figs. 3, 5, 6, 8 and 9)
can be accessed at http://www.miksovsky.info/springer2008.htm.

2 Data

Direct atmospheric observations and measurements suffer from a number of
potential problems. Their locations are typically unevenly spaced and cov-
erage of some areas of the Earth is limited. Data from different sources are
often incompatible and sometimes flawed. This restricts the usability of raw
measurements for an analysis such as ours, the goal of which is to derive glob-
ally comparable results. To avoid or reduce the aforementioned problems, we
used a gridded dataset in this study instead of direct measurements – the
NCEP/NCAR reanalysis [18, 19] (hereinafter NCEP/NCAR). The reanalysis
is a dataset derived from measurements at weather stations, as well as in-
puts from rawinsondes, meteorological satellites and other sources. The input
observations are processed by a fixed data assimilation system, including a
numerical forecast model, and the resulting series are available in a regular
horizontal grid of 2.5◦ by 2.5◦. Here, daily values of the geopotential height of
the 850 hPa level (hereinafter H850) and 500 hPa level have been employed in
a reduced 5◦ by 5◦ horizontal resolution, for the period between 1961 and 2000.
From the values of the geopotential heights, the relative topography 850-500
hPa (RT850-500) has been computed. This quantity describes the thickness of
the layer between the 850 hPa and 500 hPa levels and it is proportional to its
mean virtual temperature. According to the classification used by Kalnay et
al. [18], geopotential heights fall into the A–category of variables, thus reflect-
ing the character of actual measurements rather than the specific properties of
the model applied to create the reanalysis. A typical example of the analyzed
series of RT850-500 in the equatorial area and in the mid-latitudes is shown
in Fig. 1.

The recently increased interest in climate change instigated an intensive
development of the models of the global climate. These simulations, to be
reasonably realistic, must describe all key components of the climate system as
well as the connections among them. As a result, the models are very complex
and demanding with respect to the required computational resources. But
despite their sophistication, no model is able to mimic the observed climate
with absolute accuracy. A very important task in climate modeling is therefore
validating the models, i.e., assessing their ability to reproduce the real climate.
The common validation procedures are usually based on the basic statistical
characteristics of the model outputs; here, we focus on the ability of a climate
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Fig. 1: A section of the analyzed data: Time series of daily values of the relative
topography 850-500 hPa in the equatorial area (0◦E, 0◦N) and in the mid-latitudes
(0◦E, 50◦N), for the years 1991 and 1992.

simulation to produce time series with the same nonlinear qualities as the
real climate. For this task, we chose one of the major global climate models,
HadCM3 of the Hadley Centre [20, 21]. The model outputs were used in a
reduced horizontal resolution of 3.75◦ (longitude) by 5◦ (latitude). The model
integration employed here was based on the observed concentrations of the
greenhouse gasses and estimates of past changes in ozone concentration and
sulfur emissions prior to the year 1990, and the emission scenario SRES B2
afterwards [21]. Since we only used the period from 1961 to 2000 for our
analysis, and there is just very little difference among the SRES scenarios in
the 1990s, the specific scenario choice should not be crucial.

Fig. 2: An example of the structure of the pattern of predictors, displayed for the
predictand series located at 0◦E, 50◦N. Black circles mark the positions of the pre-
dictors, the grid illustrates the reduced horizontal resolution of the NCEP/NCAR
and HadCM3 data, used in this study.
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3 Methods

3.1 General Settings

One of the key issues of the multivariate approach to the construction of the
space of predictors is the selection of a suitable set of input variables. Unlike
for some simple low-dimensional dynamical systems, a perfect phase-space
reconstruction is impossible from climatic time series, due to the complexity
of the underlying system. In the case of practical time series analysis tasks,
a finite-dimensional local approximation of the phase space may suffice. To
predict values of a scalar series in some grid point, we used a pre-set pattern
of predictors, centered on the location of the predictand and spanning 30◦ in
longitude and 20◦ in latitude (Fig. 2). A different configuration of predictors
was chosen for each of the two tasks presented: In the case of the RT850-500
forecast, the dimension of the predictor space was N = 18, with 9 values
of RT850-500 and 9 values of H850 in a configuration shown in Fig. 2. For
the forecast of H850, 9 predictors were used, all of which were of the H850
type. Note that, despite the different spatial resolution of the NCEP/NCAR
reanalysis and the HadCM3 model, the selected pattern of predictors could be
applied for both of them directly, without interpolating the data to a common
grid.

All predictors xi(t), i = 1, . . . , N , were transformed to have zero mean
and standard deviation equal to

√
cosϕ, using the linear transformation

xi(t) →
√

cos(ϕ)(xi(t)−xi)/σi (ϕ being latitude of the respective grid point,
xi mean value of the predictor series and σi its standard deviation). Hence,
the predictor’s variance was proportional to the size of the area character-
ized by the corresponding grid point. The presented results were derived from
the outcomes of prediction one day ahead, carried out for grid points located
between 70◦N and 70◦S (the areas closest to the poles were excluded from
the analysis, due to the severe deformation of the applied spatial pattern of
predictors in high latitudes).

3.2 Direct Comparison-Based Approach

Our primary technique of quantification of nonlinearity was based on a direct
comparison of the root mean square errors (RMSEs) of prediction by a linear
reference method, multiple linear regression, and by its nonlinear counterpart,
the method of local linear models. In the case of linear regression, the value of
the scalar predictand y at time t+1 was computed as a linear combination of
the values of individual predictors xi, i = 1, . . . , N , in the previous time step

ŷ(t + 1) = a0 +
N∑

i=1

aixi(t) , (1)

where the coefficients aj , j = 0, . . . , N , were calculated to minimize the sum
of the squared values of the residuals ŷ(t) − y(t).
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Even a nonlinear system can be described rather well when the linear
model is applied locally for smaller portions of the phase space instead of a
global linear approximation. This concept has been successfully utilized for the
construction of forecast models for many different types of time series. Several
related studies are reprinted in [22] and the basic principles of the method of
local models are also described, e.g., in [23]. The dynamics in the individual re-
gions of the input space is approximated by linear mappings based on (1), but
an individual linear predictive model (or a set of coefficients ai, respectively)
is constructed for each value of t. To create such a local model, only a certain
number M of the predictors-predictand pairs, representing the states of the
system most similar to the one at time t, is employed to compute the coeffi-
cients. The similarity of individual states was quantified by the distance of the
respective N -dimensional vectors of predictors x(t) = (x1(t), x2(t), . . . , xN (t))
here, using the Euclidian norm.

To calculate the out-of-sample root mean square error of the prediction,
the analyzed series were divided into two subintervals. The years 1961–1990
were used as a calibration set, i.e., for the computation of the coefficients
of the above described models. These were then tested for the years 1991–
2000. The values of RMSE we obtained for the prediction by multiple linear
regression (RMSEMLR) and local linear models (RMSELM) were compared
by computing

SSLM = 1 − (RMSELM/RMSEMLR)2 , (2)

which will be referred to as the local models’ skill score. Its definition is
based on the commonly used concept of a skill score, described, e.g., in [24].
SSLM vanishes when both methods perform equally well in terms of RMSE
and it equals to one for a perfect forecast by local models (presuming that
RMSEMLR �= 0). The number M of predictors-predictand pairs used for
the computation of the coefficients of the local models is one of the adjustable
parameters of the method of local models. Depending on the specific structure
of the local climate system, different values of M may be suitable to minimize
RMSE. Here, local models constructed with M = 250, 500 and 1000 were
tested for each grid point; the variant giving the lowest RMSE was then used
in the subsequent analysis.

3.3 Surrogate Data-Based Approach

The above described approach yields results which are interesting from a
practical perspective, but, strictly speaking, it only refers to a relation of
two particular techniques, both of which may have their specifics. Another
method, which does not rely on comparing different mappings, exists. It uses
modified series (so-called surrogate series or surrogates), which preserve se-
lected properties of the original signal, but are consistent with some general
null hypothesis. Here, the hypothesis is that the data originates from a linear
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Gaussian process, the output of which may have been modified by a static
monotonic nonlinear filter. The values of a nonlinearity-sensitive statistic are
then compared for the original series and multiple surrogates, and if a sta-
tistically significant difference is detected, the null hypothesis is rejected. It
should be noted that the formal rejection does not necessarily prove the pres-
ence of nonlinearity in the signal, as it can be caused by other reasons, such as
nonstationarity of the series or imperfection of the surrogate-generating proce-
dure. For details see, e.g., [9], where the principles of the surrogate data-based
tests are presented in depth, or [25], where the usability of several methods
of generating surrogates is discussed for various geophysical data.

For each grid point, 10 surrogates were created from the respective multi-
variate system of time series. Prediction by the method of local linear mod-
els was carried out for each of the surrogates and an arithmetic average
RMSE SURR of the resulting RMSEs was computed. A skill score-based vari-
able, analogous to (2), was then calculated using RMSE for the original series
RMSELM and RMSE SURR:

SS SURR = 1 − (RMSELM/RMSE SURR)2. (3)

In order to keep the computational demands at a reasonable level, the sur-
rogate data-based analysis was performed just for M = 250. Also, the years
1991–2000 were used for both calibration and testing of the mappings. The
surrogate series were generated by the iterative amplitude adjusted Fourier
transform [26] in its multivariate form [9]; the program package TISEAN by
Hegger et al. [27] was applied for this task.

4 Spatial Patterns of Nonlinearity

Figure 3a shows the geographical distribution of the local models’ skill score
SSLM, obtained for the NCEP/NCAR RT850-500 forecast. The most promi-
nent feature of the detected pattern is the strong latitudinal variance of nonlin-
earity. Near the equator, just very small and mostly statistically insignificant
difference between the performance of purely linear regression and local linear
models was found. Nonlinear behavior becomes visibly stronger in the mid-
latitudes, and it is more pronounced on average in the northern hemisphere,
where major nonlinearity was detected for all grid points north of circa 25◦N
(Fig. 4). In the southern hemisphere, the strongest nonlinearity was located
in a band approximately between 25◦S and 50◦S. This structure seems to be
well reproduced by the HadCM3 model (Fig. 3b), although the nonlinear be-
havior is slightly stronger in the model data in the northern hemisphere – see
Table 1, columns 1 and 2. The spatial correlation of the SSLM fields for the
NCEP/NCAR and HadCM3 data was evaluated by computing the Pearson
correlation coefficient, after linear interpolation of the HadCM3 data-based
values of SSLM to the 5◦ by 5◦ grid of NCEP/NCAR. For the entire area
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Fig. 3: Geographical distribution of the local models’ skill score SSLM, obtained
for the RT850-500 prediction, using the NCEP/NCAR (a) and HadCM3 (b) data.
Diamonds mark the positions of the grid points where daily errors of prediction by
the method of local models were not statistically significantly lower than for linear
regression at the 95% confidence level, according to the one-sided paired sign test.

between 70◦N and 70◦S, the correlation was 0.91. When just extratropical
areas were taken into account, the resemblance of the SSLM patterns was
stronger in the northern hemisphere than in the southern one (Table 1, col-
umn 3). Similar values of correlation were also obtained when the Spearman
rank-order correlation coefficient was used instead of the Pearson one.

Aside from the dominant latitudinal dependence, the detected nonlinearity
patterns also exhibited a distinct finer structure. As can be seen in Fig. 3a for
the NCEP/NCAR reanalysis data, local maxima of nonlinearity were found
over Europe, North America, East Asia and the northern part of the Pacific
Ocean, and east of the landmasses of the southern hemisphere. The HadCM3
data yielded a very similar pattern (Fig. 3b). After the average latitudinal
structure was filtered out by subtracting the respective latitudinal averages
from the values of SSLM in every grid point, the spatial correlation of the
NCEP/NCAR and HadCM3 SSLM patterns was still rather high, though the
resemblance of both fields was clearly stronger in the northern hemisphere
(Table 1, column 4).
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Fig. 4: Distribution of SSLM in different latitudes, obtained for the RT850-500
prediction (latitude values are positive north of the equator).

Table 1: Regional averages of SSLM, obtained for the RT850-500 prediction in the
case of the NCEP/NCAR (column 1) and HadCM3 (column 2) data and spatial cor-
relations of the NCEP/NCAR and HadCM3 SSLM patterns for the original values
of SSLM (column 3) and after the average latitudinal dependence has been filtered
out (column 4).

SSLM Correlation

Region NCEP/NCAR HadCM3 Original Filtered

25◦N–70◦N 0.29 0.34 0.75 0.60
20◦S–20◦N 0.04 0.06 0.89 0.45
70◦S–25◦S 0.24 0.23 0.55 0.48

When the results of the H850 prediction were applied as a basis for a non-
linearity detection, a somewhat different pattern emerged (Fig. 5). The basic
latitudinal structure with very weak nonlinearity in the equatorial area was
still present, but other details of the detected structure differed from the ones
found for the RT850-500 prediction. In the northern hemisphere, maximum
values of SSLM were located over the northwestern part of the Atlantic Ocean
and the adjacent part of North America, as well as over the northern part of
the Pacific Ocean. Both these maxima were rather well expressed, while the
rest of the northern hemisphere exhibited weaker nonlinearity. In the southern
hemisphere, the maxima of SSLM were less localized. The overall degree of
nonlinearity was lower than for the RT850-500 prediction (Table 2, columns
1 and 2). The similarity of the patterns obtained from the NCEP/NCAR and
HadCM3 data was again very strong, with a value of global spatial correla-
tion of 0.9. The nonlinearity was stronger on average in the HadCM3 outputs
than in the NCEP/NCAR reanalysis. As for the match of the patterns of
SSLM with filtered-out latitudinal dependence, there was still a high positive
correlation, stronger in the northern hemisphere (Table 2, column 4).
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Fig. 5: Same as Fig. 3, for the prediction of H850 instead of RT850-500.

Table 2: Same as Table 1, for the prediction of H850 instead of RT850-500.

SSLM Correlation

Region NCEP/NCAR HadCM3 Original Filtered

25◦N–70◦N 0.10 0.13 0.84 0.85
20◦S–20◦N 0.02 0.03 0.71 0.52
70◦S–25◦S 0.09 0.14 0.75 0.71

As can be seen from Fig. 6, the pattern of nonlinearity obtained for the
RT850-500 prediction by means of surrogate data and expressed through
SS SURR is very similar to the one presented above for the direct comparison
technique (Fig. 3a). To illustrate the distribution of RMSE in the ensemble
of surrogates, a more detailed example of the outcomes is shown in Fig. 7 for
the grid points along the 0◦ meridian. The results for the HadCM3 data are
not shown, but they also confirm the outcomes of the direct comparison of
multiple linear regression and local linear models. Similarly, surrogate data-
based verification of the results derived from the H850 prediction showed no
major differences either.

It should be mentioned that when an identical setting is used for direct
comparison-based and surrogate data-based tests, including an equal size of
the calibration set, SSLM is systematically smaller than SS SURR. The reason
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Fig. 6: Geographical distribution of SS SURR, obtained for the RT850-500 prediction,
using the NCEP/NCAR data. Diamonds mark positions of the grid points, where the
value of RMSE for the original series was not smaller than for all 10 surrogates. This
is equivalent to the non-rejection of the hypothesis of a linear Gaussian generating
process at the confidence level of about 91%, according to the usually applied one-
sided rank-order test, described, e.g., in [9]. Testing at a higher confidence level
would require more surrogates, but even then, the results would be almost identical,
as additional tests have shown for selected individual grid points.

0°E, 50°N

Original series Surrogates

0°E, 25°N 0°E, 0°N

Fig. 7: Left panel : RMSE of the RT850-500 prediction by the local linear models
method and its range for the respective surrogate series, for grid points at 0◦E
(NCEP/NCAR data). Right panels: Values of RMSE (m) obtained for the original
series and individual surrogates in the three selected grid points.

for this difference is related to the behavior of the method of local models
for purely linear series. When the processed signal contains no deterministic
nonlinear component (like surrogates do) and M is smaller than the size of the
calibration set, the method of local models performs slightly worse than linear
regression. Our choice of a shorter calibration set for the surrogate data-based
tests (Sect. 3.3) has actually partly compensated for this shift, because the
magnitude of detected nonlinearity generally decreases with the reduction of
the size of the calibration set.
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Fig. 8: Same as Fig. 3a, for series with removed annual cycle.
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Fig. 9: Same as Fig. 3a, for the DJF (a) and JJA (b) seasons (winter and summer
in the northern hemisphere) instead of the entire year.
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5 Seasonal Variations of Nonlinearity

The annual cycle is among the strongest oscillations in the climate system.
It dominates series of many climatic variables, especially in higher latitudes
(see example in Fig. 1). This also means that the geographical areas with
a well-defined annual cycle coincide to some degree with the regions, where
strong nonlinearity was detected. To assess the possible relationship, we re-
peated some of the tests for the series with removed annual cycle. The removal
was carried out by subtracting the mean climatological annual cycle of the
respective variable, computed for the years 1961–2000 and smoothed by an
11–day moving average. An example of the results is shown in Fig. 8, for the
RT850-500 prediction. As a comparison to Fig. 3a reveals, the values of SSLM

generally decreased after the annual cycle removal. Although this change was
relatively small on average (e.g., the average value of SSLM decreased from
0.29 to 0.23 in the area north of 25◦N, and from 0.24 to 0.21 south of 25◦S),
it was profound in the regions with the highest amplitude of the annual cycle
of RT850-500. For instance, the maximum of SSLM, originally detected over
East Asia and the adjacent part of the Pacific Ocean, disappeared almost
completely. In the southern hemisphere, the changes associated with the an-
nual cycle removal were generally smaller. In the case of the H850 prediction,
the shape of the pattern of SSLM remained practically identical for the an-
nual cycle-free series, though the average degree of nonlinearity also slightly
decreased.

In many situations, the annual cycle cannot be treated as simply an oscil-
lation superposed to the variations at other time scales. Different seasons are
associated with different atmospheric dynamics in many regions, and proper-
ties of the analyzed time series, including their eventual nonlinearity, may thus
periodically vary throughout the year. Because of this, the analysis of climatic
data is often performed separately for different parts of the year, typically sea-
sons or months. We used this approach to investigate the seasonal variations
of SSLM. The results below are shown for the parts of the year corresponding
to climatological winter (December, January and February – DJF) and sum-
mer (June, July and August – JJA) of the northern hemisphere. When the
analysis was carried out for separate seasons, the RMSE of the prediction by
linear regression decreased for most grid points in the annual average. The
performance of the method of local models usually became worse, primarily
due to the reduction of the amount of data available for the calibration of the
mappings. As a result, the average magnitude of nonlinearity decreased some-
what, compared to the situation when the series were analyzed as the whole.
Despite this change, the basic features of the patterns of SSLM were still the
same, as can be seen from an example of the results based on the RT850-500
forecast (Fig. 9). In the equatorial area, the nonlinearity remained very weak
or undetectable in all seasons. In higher latitudes, the patterns retained some
of the basic shape, detected for the year as the whole, but their magnitude
visibly varied with the season. The overall nonlinearity was stronger in the
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DJF season than in JJA in the northern hemisphere, while in higher latitudes
of the southern hemisphere, this variation was reversed and JJA exhibited
stronger nonlinearity than DJF on average (Fig. 10, Table 3, columns 1 and
2). The seasonal changes were stronger expressed in the northern hemisphere.
The seasonal variation was well simulated by the HadCM3 model (Table 3,
columns 3 and 4) and it was also detectable in the results based on the forecast
of H850, for both the NCEP/NCAR and HadCM3 data (not shown).

6 Discussion

All performed analyses revealed a common basic latitudinal structure with
just negligible nonlinearity in the equatorial regions, but generally stronger
nonlinear behavior in the mid-latitudes of both hemispheres. A detailed anal-
ysis of the factors behind the observed patterns might be problematic, because
they do not seem to be a result of a single driving force, but rather their com-
plex combination. There are, however, some possible links worth mentioning.
In the case of the results based on the RT850-500 prediction, there may be
a connection between more pronounced nonlinearity in the mid-latitudes and
the activity of the polar front. The strongest nonlinear behavior over Europe
and North America seems to coincide with the position of the zones where air
masses of different origin often interact. In the southern hemisphere, where
the landmasses are less extensive, areas of the strongest nonlinearity are typi-
cally located rather east of the continents, possibly because of the interaction
of the landmass with the prevailing westerlies. Between approximately 50◦S
and 60◦S, where the amount of land is very small, nonlinearity is weaker
on average. A removal of the annual cycle from the series slightly decreases
the magnitude of detected nonlinearity, but except for the regions where the
annual variation is very strong (East Asia), the effect of the annual cycle pres-
ence does not dominate the results. For the H850 forecast, there appears to
be a certain connection of the areas with strong nonlinearity to the zones of
high horizontal gradient of H850. In the northern hemisphere, such areas are
typically associated with deep stationary cyclones, which are usually present
over the North Atlantic and North Pacific during winter. The match is not
perfect though, and there may be some other factors involved. Altogether, it
seems that nonlinearity tends to be stronger in the regions with more com-
plex dynamics, where strong driving or perturbing factors are in effect. This
hypothesis is supported by the fact that nonlinearity is generally more pro-
nounced during the colder season in the mid-latitudes of both hemispheres,
i.e., in situations when the temperature gradient between the equatorial area
and the polar region is strongest. The fact that the seasonal variations are
more distinct in the northern hemisphere is probably an effect of the uneven
distribution of the continents, resulting in a larger influence of the continental
climate in the northern mid-latitudes.
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Fig. 10: Distribution of SSLM, obtained for the prediction of RT850-500 for the DJF
and JJA seasons in different latitudes (NCEP/NCAR data).

Table 3: Seasonal variations of nonlinearity (expressed by SSLM) in the
NCEP/NCAR and HadCM3 data, for the RT850-500 prediction.

NCEP/NCAR HadCM3

Area DJF JJA DJF JJA

25◦N–70◦N 0.23 0.16 0.27 0.20
20◦S–20◦N 0.01 0.01 0.02 0.02
70◦S–25◦S 0.16 0.20 0.16 0.18

The two presented cases, based on the prediction of geopotential height
and relative topography one day ahead, represent just a fraction of possible
settings. From additional tests, carried out for different predictand-predictors
combinations, it seems that the basic structure with weak nonlinearity in the
equatorial area is typical for most situations. On the other hand, the finer de-
tails of the detected patterns vary, especially with the type of the predictand.
The exact number and geographical configuration of predictors seem to be
less important, as long as they sufficiently characterize the local state of the
atmosphere. Beside the type of the studied variables, we also paid attention
to the sensitivity of the results to the specific details of the tests. It appears
that the results are rather robust to the changes of the size of the source
area of predictors, although a use of a too big or too small area leads to a
general increase of the prediction error and a weakening of detected nonlinear-
ity. The outcomes remain very similar when the input data are pre-processed
by principal component analysis, instead of using the point-wise predictors
directly. The method of eventual normalization of the predictors also does
not appear to be of major importance. The observed patterns of nonlinearity
seem to be rather stable in time, i.e., the specific choice of the analyzed period
does not have any major effect on the outcomes of the tests. The relatively
most distinct changes compared to the presented results were detected in the
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NCEP/NCAR data when the 1960s were chosen as the testing set instead of
the years 1991–2000, especially in the southern hemisphere. This difference
can probably be contributed to the variations in the amount of observational
data, entering the reanalysis, as discussed below. The applied tests were all
based on prediction one day ahead – with an increase of the lead time, non-
linearity quickly weakened and it became undetectable for predictions more
than approximately five days ahead, even in the regions where the nonlinear
behavior was originally strongest. This is in good agreement with the fact
that a deterministic weather prediction is impossible for too long lead times,
regardless of the method.

Most of the patterns of nonlinearity identified in the NCEP/NCAR re-
analysis data were also found in the outputs of the HadCM3 model. From the
perspective of applied nonlinear time series analysis tasks (such as statistical
downscaling carried out by nonlinear methods), the fact that a climate model
is able to reproduce the character of the observed data is encouraging. Still,
from the results obtained for a single representative of global climate models,
it is not possible to infer whether all existing climate simulations do behave
in a similar fashion. It is interesting that the correspondence of the structures
found in the NCEP/NCAR and HadCM3 data tends to be better in the north-
ern hemisphere. Although this fact can at least partially be a consequence of
the specifics of the model’s physics, it might also be contributed to the char-
acter of the reanalysis data. To assess the possible influence of the specific
properties of the NCEP/NCAR reanalysis, we repeated some of the tests for
another commonly used gridded dataset based on observations, the ERA-40
reanalysis [28]. Although some differences were found, the resemblance of the
results from the NCEP/NCAR and ERA-40 data was generally strong in the
northern hemisphere, but somewhat weaker in the southern one. This implies
that caution is needed in interpretation of the model-reanalysis differences,
particularly in the southern latitudes, as they may be a result of a limited
amount of observational data used by the reanalysis (and possibly some other
specifics of the NCEP/NCAR dataset), not just imperfections of the climate
model. This especially applies to the period preceding the era of meteorologi-
cal satellites – e.g., the amount of data entering the NCEP/NCAR reanalysis
is very low before the year 1979 south of approximately 40◦S [19].

We have shown that the direct comparison of prediction by linear regres-
sion and by local linear models yields nonlinearity patterns very similar to
the approach based on the application of local linear models for surrogate
data. A practical advantage of the direct comparison lies in its speed, as there
is no need for multiple realizations of a nonlinear model. This is especially
convenient in the case of an analysis like ours, carried out for thousands of
grid points and repeated for numerous settings. Another benefit of the direct
comparison is that it provides specific information about the potential gain
from employing a nonlinear method; its fundamental drawback is that such
information may only be valid for the combination of the methods applied.
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7 Conclusions

By analyzing the series of selected atmospheric variables, we were able to con-
firm the presence of systematic geographical and seasonal variations of nonlin-
earity. Simple and unequivocal physical explanation of the results beyond the
basic tropics/mid-latitudes and summer/winter contrast may be problematic,
because the finer details of the detected patterns are probably a product of
multiple influences and they are subject to the type of the predictand variable
and some other factors. To find out whether any other general regularities exist
would require a systematic analysis performed for a large number of variables
and pressure levels. Regardless of the exact cause of the detected structures,
their character was simulated fairly well by the HadCM3 model. From the
practical perspective, this finding is rather promising, as it confirms that data
produced by the current generation of global climate models can be utilized
for the study of nonlinear properties of the climate system.
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11. V. Pérez-Muñuzuri, I. R. Gelpi: Application of nonlinear forecasting techniques

for meteorological modeling, Ann. Geophysicae 18, 1349 (2000)
12. B. Tang, W. W. Hsieh, A. H. Monahan, F. T. Tangang: Skill comparisons be-

tween neural networks and canonical correlation analysis in predicting the equa-
torial Pacific sea surface temperatures, J. Climate 13, 287 (2000)

13. A. Weichert, G. Bürger: Linear versus nonlinear techniques in downscaling, Cli-
mate Res. 10, 83 (1998)

14. J. T. Schoof, S. C. Pryor: Downscaling temperature and precipitation: A com-
parison of regression-based methods and artificial neural networks, Int. J. Cli-
matol. 21, 773 (2001)

15. M. Casaioli, R. Mantovani, F. P. Scorzoni, et al.: Linear and nonlinear post-
processing of numerically forecasted surface temperature, Nonlinear Proc.
Geoph. 10, 373 (2003)

16. E. Eccel, L. Ghielmi, P. Granitto, et al.: Prediction of minimum temperatures
in an alpine region by linear and non-linear post-processing of meteorological
models, Nonlinear Proc. Geoph. 14, 211 (2007)

17. W. von Bloh, M. C. Romano, M. Thiel: Long-term predictability of mean daily
temperature data, Nonlinear Proc. Geoph. 12, 471 (2005)

18. E. Kalnay, M. Kanamitsu, R. Kistler, et al.: The NCEP/NCAR 40-year reanal-
ysis project, Bull. Amer. Meteor. Soc. 77, 437 (1996)

19. R. Kistler, E. Kalnay, W. Collins, et al.: The NCEP-NCAR 50-year reanalysis:
Monthly means CD-ROM and documentation, Bull. Amer. Meteor. Soc. 82, 247
(2001)

20. C. Gordon, C. Cooper, C. A. Senior, et al.: The simulation of SST, sea ice
extents and ocean heat transports in a version of the Hadley Centre coupled
model without flux adjustments, Clim. Dynam. 16, 147 (2000)

21. T. C. Johns, J. M. Gregory, W. J. Ingram, et al.: Anthropogenic climate change
for 1860 to 2100 simulated with the HadCM3 model under updated emissions
scenarios, Clim. Dynam. 20, 583 (2003)

22. E. Ott, T. Sauer, J. A. Yorke (eds.): Coping with Chaos: Analysis of Chaotic
Data and The Exploitation of Chaotic Systems (John Wiley & Sons, New York
1994)

23. H. Kantz, T. Schreiber: Nonlinear Time Series Analysis (Cambridge University
Press, Cambridge 1997)

24. D. S. Wilks: Statistical Methods in the Atmospheric Sciences, 2nd edn (Elsevier,
Amsterdam 2006)

25. V. Venema, S. Bachner, H.W. Rust, C. Simmer: Statistical characteristics of
surrogate data based on geophysical measurements, Nonlinear Proc. Geoph.
13, 449 (2006)

26. T. Schreiber, A. Schmitz: Improved surrogate data for nonlinearity tests, Phys.
Rev. Lett. 77, 635 (1996)

27. R. Hegger, H. Kantz, T. Schreiber: Practical implementation of nonlinear time
series methods: The TISEAN package, CHAOS 9, 413 (1999)

28. S. M. Uppala, P. W. K̊allberg, A. J. Simmons, et al.: The ERA-40 re-analysis,
Quart. J. R. Meteorol. Soc. 131, 2961 (2005)



79 

 

 

APPENDIX III 
 

MIKŠOVSKÝ, J., AND A. RAIDL (2005), Testing the performance of three nonlinear methods 
of time series analysis for prediction and downscaling of European daily temperatures, 
Nonlinear Processes in Geophysics, 12(6), 979-991. 
 
© 2005 Author(s) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Nonlinear Processes in Geophysics, 12, 979–991, 2005
SRef-ID: 1607-7946/npg/2005-12-979
European Geosciences Union
© 2005 Author(s). This work is licensed
under a Creative Commons License.

Nonlinear Processes
in Geophysics

Testing the performance of three nonlinear methods of time series
analysis for prediction and downscaling of European daily
temperatures
J. Miksovsky and A. Raidl
Dept. of Meteorology, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Received: 16 June 2005 – Revised: 15 September 2005 – Accepted: 15 September 2005 – Published: 9 November 2005

Abstract. We investigated the usability of the method of lo-
cal linear models (LLM), multilayer perceptron neural net-
work (MLP NN) and radial basis function neural network
(RBF NN) for the construction of temporal and spatial trans-
fer functions between different meteorological quantities,
and compared the obtained results both mutually and to the
results of multiple linear regression (MLR). The tested meth-
ods were applied for the short-term prediction of daily mean
temperatures and for the downscaling of NCEP/NCAR re-
analysis data, using series of daily mean, minimum and max-
imum temperatures from 25 European stations as predic-
tands. None of the tested nonlinear methods was recognized
to be distinctly superior to the others, but all nonlinear tech-
niques proved to be better than linear regression in the major-
ity of the cases. It is also discussed that the most frequently
used nonlinear method, the MLP neural network, may not
be the best choice for processing the climatic time series –
LLM method or RBF NNs can offer a comparable or slightly
better performance and they do not suffer from some of the
practical disadvantages of MLPs.
Aside from comparing the performance of different meth-

ods, we paid attention to geographical and seasonal varia-
tions of the results. The forecasting results showed that the
nonlinear character of relations between climate variables is
well apparent over most of Europe, in contrast to rather weak
nonlinearity in the Mediterranean and North Africa. No clear
large-scale geographical structure of nonlinearity was iden-
tified in the case of downscaling. Nonlinearity also seems
to be noticeably stronger in winter than in summer in most
locations, for both forecasting and downscaling.

Correspondence to: J. Miksovsky
(jiri.miksovsky@mff.cuni.cz)

1 Introduction

Within the last two decades, numerous new methods of time
series analysis have been developed for dealing with non-
linear data (see, e.g. Abarbanel, 1996; Kantz and Schreiber,
1997; Haykin, 1999; Galka, 2000 for an overview), and a lot
of them have found their place in the study of meteorologi-
cal signals (see examples in Sect. 4). But it has also been
shown that application of nonlinear methods does not auto-
matically grant better results than use of their linear coun-
terparts (e.g. Tang et al., 2000), despite the fact that the
meteorological series originate from an inherently nonlinear
system. Application of nonlinearity tests reveals some cli-
matic data sets to appear linear (Palus and Novotna, 1994;
Schreiber and Schmitz, 2000; Miksovsky and Raidl, 2005),
while others may exhibit nonlinear characteristics (Palus and
Novotna, 1994; Palus, 1996; Tsonis, 2001; Miksovsky and
Raidl, 2005). In this paper, our intention was to address
the problem of nonlinearity of the atmospheric time series
from a rather practical point of view and to ascertain the per-
formance of several nonlinear methods of time series analy-
sis for two typical meteorological problems: construction of
temporal (prediction) and spatial (downscaling) mappings at
synoptic time scales. The examined methods included a non-
linear technique which has already become common in the
atmospheric sciences (multilayer perceptron neural network
– MLP NN), as well as methods which are less common, at
least to date – local linear models in the reconstructed phase
space (LLM) and radial basis function neural networks (RBF
NN). Performance of nonlinear methods was compared both
to each other and to the results of multiple linear regression
(MLR). Aside from presenting examples of the obtained re-
sults, including their spatial and seasonal variances, we have
tried to draw conclusions about the tested methods’ disad-
vantages and strong points, as well as the pros and cons as-
sociated with their implementation.
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Fig. 1. The pattern of predictors used in the case of prediction (Pat-
tern A) and downscaling (Pattern B), displayed for the predictand
series located at 50◦ N, 15◦ E. The grid of horizontal and vertical
lines illustrates the full resolution of the NCEP/NCAR reanalysis
data set.

2 Methods

2.1 Choice of predictors

The first problem which needs to be addressed before time
series analysis methods can be applied is the issue of the
structure of the predictor space. The climate system, as
well as its local subsystems, has an infinite number of de-
grees of freedom, meaning that an infinite number of vari-
ables would be required for its state exact description. But
there are methods by which the state can be characterized,
at least approximately and locally, in a relatively low num-
ber of quantities. Techniques referred to as phase space (PS)
reconstruction represent a way of achieving such a descrip-
tion. The most classical method of phase space reconstruc-
tion, time delay reconstruction from a scalar series (Packard
et al., 1980; Takens, 1981), has been applied for analysis
of climatic time series at a number of occasions, from early
attempts to discover some kind of climate attractor (among
many e.g. Fraedrich, 1986; Keppenne and Nicolis, 1989),
to its practical implementations for the forecast of meteo-
rological or hydrological variables (e.g. Abarbanel, 1996;

Pérez-Muñuzuri and Gelpi, 2000; Jayawardena and Gurung,
2000). Many more examples from various climate-related
disciplines can be found in the paper by Sivakumar (2004).
But it also turns out that the information content in a sin-
gle time series is not always sufficient for the climate sys-
tem’s state characterization. This is especially true when the
nonlinear component of the analyzed signal is to be studied
(Miksovsky and Raidl, 2005). Fortunately, meteorological
measurements (or numerical model outputs, reanalyses and
similar data sets) are typically available for several variables
and in numerous locations, which allows for the use of mul-
tivariate phase space reconstruction (Keppenne and Nicolis,
1989). The vector in the reconstructed phase space, char-
acterizing the system’s state in time t (and representing the
vector of predictors), is denoted y(t) here,

y (t) = (X1 (t) , X2 (t) , ... , Xm (t)) , t = 1, . . ., L , (1)

wherem characterizes the dimension of the reconstructed PS
and is usually referred to as the embedding dimension, L is
the length of the series and Xi(t), i=1, . . . , m, are elements
of y(t). For multivariate reconstruction from m scalar series
xi(t), elements of y(t) take the following simple form:

Xi (t) = xi (t) , i = 1, . . ., m . (2)

An important issue is the choice of suitable predictor series,
i.e. specifying which series, and how many, will be used in
the role of xi(t). We used NCEP/NCAR reanalysis series as
potential predictors here, meaning that thousands of series of
different quantities from numerous grid points and pressure
levels were available, whereas only a few predictors were
needed. Choice of predictors is a nontrivial problem and it
can be done in several ways such as using step-wise regres-
sion or reducing the dimensionality of the predictor space by
means of principal component analysis, but no approach can
generally be considered to be the absolutely best one. Also,
use of different sets of predictors may sometimes result in
quite different outcomes, as shown by Huth (2004) for tem-
perature downscaling. We have tested several methods for
predictors selection and decided to utilize a pre-set pattern of
input variables, consisting of values of T1000, MSLP and h500
from different grid points (see Sect. 3 for data sets descrip-
tion). Use of the pre-set pattern is fast and easy to implement;
it does not favor the MLR method like the use of the step-
wise linear regression could and it also gave better results (in
terms of root mean squared error – RMSE) than use of the
principal components as predictors, similarly to the findings
of Huth (2002). Moreover, using the same type and number
of predictors for different tested methods, locations and sea-
sons makes intercomparison of the results easier, because the
composition of the predictor space need not be taken into ac-
count as one of the variables. The patterns used for prediction
(Sect. 4.1) and downscaling (Sect. 4.2) both had dimension
m=14; their structure is shown in Fig. 1.
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2.2 Methods used

Mapping from the predictor vector y(t) to predictand
xPRED(t) (transfer function) can be generally expressed as

xPRED (t) =� (y ( t)) =� (X1 ( t) , X2 ( t) , ..., Xm (t)) . (3)

The exact form of � depends on the mapping construc-
tion technique employed. We tested four methods here, one
linear and three nonlinear. Their brief descriptions are in
Sects. 2.2.1 (multiple linear regression), 2.2.2 (local linear
models), 2.2.4 (MLP neural networks) and 2.2.5 (RBF neu-
ral networks). The respective forms of � are represented by
Eqs. (4), (5), (6) and (8).

2.2.1 Multiple linear regression

Linear methods still represent the most frequently used tool
of time series analysis. They are usually less complicated
than their nonlinear counterparts, with lower demands re-
garding computational power, and, unlike nonlinear meth-
ods, without many parameters to be determined prior to their
application. We used multiple linear regression (MLR) here
as a typical representative of linear techniques. The mapping
had the form

xPRED(t) = v0 +
m∑

i=1
vi Xi (t) , (4)

where vi , i=0, . . . , m, are the regression coefficients.

2.2.2 Method of local linear models

Origin of the method of local models dates back to the sec-
ond half of the eighties and it is associated with research fo-
cused on the problems of chaotic dynamics, strange attrac-
tors and phase space reconstruction. The method was shown
to be suitable for the prediction of low-dimensional chaotic
systems (Farmer and Sidorowich, 1987), as well as simple
physical (e.g. Sauer, 1993) or biological (e.g. Sugihara and
May, 1990) systems. In meteorology, too, its applications
have been demonstrated, for example, for cloud coverage
forecast (Pérez-Muñuzuri and Gelpi, 2000) or rainfall predic-
tion (Sivakumar et al., 2000). A detailed description of the
method and more examples of its application can be found in
the monographs by Abarbanel (1996) or Kantz and Schreiber
(1997).
Since successful phase space reconstruction enables char-

acterization of the system’s state by anm-dimensional vector
like Eq. (1), it is also possible to quantify the similarity of dif-
ferent states, typically by computing the Euclidian distance
of their respective vectors y. In order to construct a mapping
approximating the time evolution from time t or spatial rela-
tion between different variables in time t , a certain number
N of states y(t, j), j=1, . . . , N , is found in the history of
the system as states with the smallest distance to y(t). From
the relation between such states and the corresponding val-
ues x(t, j) of the predictand, a mapping can be constructed

which approximates some local neighbourhood of y(t) in the
phase space by a linear model:

xPRED(t) = v0( t) +
m∑

i=1
vi ( t) Xi ( t) . (5)

Note that, unlike in Eq. (4), coefficients vi(t) are not time-
invariant and they need to be computed separately for each
time t . Computation of m+1 coefficients vi(t) from N pairs
of y(t, j) and x(t, j) is a linear regression problem, solv-
able in the least-squares sense. It should be mentioned that
using a fixed value of the number of nearest neighbors N is
not the only possible way of defining local neighborhood in
the phase space. It is also possible to work with the directly
specified size of the neighborhood (e.g. Hegger et al., 1999),
or to pick an individual value of N for every t , as done by
Jayawardena et al. (2002). Here, however, all local models
were realized using a constant N for the entire analyzed se-
ries.

2.2.3 Artificial neural networks

Neural networks (NNs) have become very popular in var-
ious scientific areas as a convenient tool for many practi-
cal tasks, including time series analysis and data process-
ing. Typical artificial neural network is a complex struc-
ture, consisting of some number of interconnected, simple
signal processing units – artificial neurons (or, shortly, neu-
rons). Neurons typically have several inputs and a single
output; the information received by inputs is processed by
the neuron and the outcome is then transmitted to its neigh-
bors. For data processing tasks, so-called feedforward NNs
are the ones most frequently applied. A typical feedforward
NN consists of several layers of neurons – one, called the
input layer, which receives inputs, then one or more hidden
layers of signal-processing neurons, and finally, an output
layer in which the results are computed to their final form.
The output layer can comprise of one or more neurons (pro-
ducing one or more output values simultaneously), but we
only used single-output networks here. Two different types
of feedforward networks were studied in this paper: Multi-
Layer Perceptrons (MLPs) and Radial Basis Function (RBF)
networks. For more information on NNs, see, e.g. mono-
graphs by Haykin (1999) or Principe et al. (2000).

2.2.4 Multilayer perceptron neural networks

MultiLayer Perceptrons (MLPs) are by far the best known
and most frequently used design of neural networks – to such
an extent that they are sometimes (incorrectly) viewed as be-
ing equivalent to NNs generally. The operation performed
by neurons in the hidden layer of MLP is a weighted sum-
mation. For MLP with one hidden layer and a single neuron
in the output layer, the transfer function can be expressed as

xPRED(t) = v0 +
M∑
i=1

vi f

(
w0i +

m∑
j=1

wjiXj (t)

)
, (6)
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Fig. 2. The schematic structure of multilayer perceptron neural net-
work.

where wji is the weight of the connection between the i-th
neuron in the hidden layer and the j -th neuron in the input
layer, vi is the weight of the connection between the i-th neu-
ron in the hidden layer and the neuron in the output layer, and
M is the number of neurons in the hidden layer (structure of
a MLP network is schematically shown in Fig. 2). Function
f (x), called the activation function, is generally nonlinear.
We used the logistic function,

f (x) = 1
1+ exp (−x)

. (7)

Apparently, the character of the mapping in Eq. (6) is given
by the values of the weights vi and wji , which have to be de-
termined before the network can be used. Values of weights
are computed using examples of input-output pairs from
some training set (supervised learning). The basic learning
technique, backpropagation of errors, is an iterative proce-
dure using values of errors for the training cases to calcu-
late the weights adjustments. The backpropagation technique
exists in several variants, differing in their implementation
complexity, needed learning time, and tendency to be trapped
in a local minimum of the error function instead of reach-
ing the global minimum. We have used the quasi-Newton
method for MLPs training (e.g. Haykin, 1999), with weights
initialized to uniformly distributed random values.

2.2.5 Radial basis function neural networks

In many aspects similar to MLPs, radial basis function neu-
ral networks (RBF NNs – Fig. 3) are feedforward networks
with one hidden layer and one or more neurons in the output
layer. There are two principal differences between MLPs and
RBF networks. First, instead of the weighted summation of
the inputs, performed by the neurons in the hidden layer of
MLPs, RBF networks employ radial basis functions, usually
the Gaussian ones. The transfer function can be expressed as

xPRED(t) = v0 +
M∑
i=1

vi exp

(
−‖y (t) − ci ‖2

2σ 2i

)
, (8)

Input layer Hidden layer Output layer

X1

Xm

1

xPREDΣ

Fig. 3. The schematic structure of radial basis function neural net-
work.

where ci is the position of the centre of the i-th radial basis
function (assigned to the i-th neuron in the hidden layer, i=1,
. . . , M), σi characterizes the width of the i-th RBF, and the
meaning of vi andM is the same as in Eq. (6).
The second major difference between RBF and MLP neu-

ral networks is in the learning algorithm. While weights in
MLPs are determined in some sort of iterative learning pro-
cedure, training of RBF NNs can be done in two separate
phases. First, positions and shapes of the radial basis func-
tions are specified (i.e. ci and σi , i=1, . . . ,M). The simplest
way to do this is to takeM randomly chosen times t1, t2, . . . ,
tM from the training set and use the corresponding vectors in
the input space as centres of RBFs, ci=y(ti), i=1, . . . , M .
A more sophisticated way of setting ci , k-means clustering
(MacQueen, 1967; Haykin, 1999), did not notably improve
the results in our case. Values of σi can be set individually
for each neuron, but in praxis a single value is often used,
σi=σ , i=1, . . . , M , which we followed. As soon as the po-
sitions of RBF centres and sigma are set, finding the values
of weights vi , i=0, . . . , M , is a linear problem which can be
easily solved using the least-squares approach.

2.3 Computation settings

When testing a time series analysis method, it is important
to construct the mapping from one part of the data set, and
then to test its performance on an independent interval. For
neural networks, the former set is usually referred to as a
training set while the latter is called a testing set. We use the
same convention for LLM and MLR methods, too.
All utilized nonlinear methods here need one or more pa-

rameters to be determined before they can be applied (num-
ber of nearest neighbors N for LLM method, number of hid-
den neurons M for both types of neural networks, width of
radial functions σ for RBF networks). The parameters were
chosen to give the lowest RMSE for the testing set (a range
of parameter values was tested and the best performing one
was then used for the actual computation). RMSE depen-
dence on the above mentioned parameters typically had a
broad, flat minimum and so it was relatively easy to pick
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their optimal values. An exception to this rule was observed
for the number of hidden neurons in MLPs, when the depen-
dence of RMSE on M exhibited notable fluctuations, due to
the sensitivity of the results to the initial values of the net-
work’s weights. This was compensated for by repeated train-
ing (see below), but even then the error curve was visibly less
smooth than for RMSE as a function of N or RBF NNs’M .
Optimization of the parameters was done for the entire

year as a whole, not separately for individual seasons. For
different tasks, the number of nearest neighbors for the LLM
method ranged between 200 and 700. As for the MLP neural
networks, the best results were typically obtained with the
number of hidden neurons 8 to 12, but sometimes as high as
20. In the case of RBF NNs, the optimal number of hidden
units was much higher, usually between 200 and 400. The
width of radial functions was set to σ=3.2 (very little sensi-
tivity of the results to its value was observed, so we kept it
fixed for all tasks). Training of neural networks, both MLP
and RBF, was performed 5 times from random initial weights
(or RBF centres’ positions, respectively) and the presented
results are an average of this five-member ensemble. In ret-
rospect, repeated learning was probably not necessary for the
RBF networks, since variance of the results within the en-
semble was quite low. In the case of MLPs, a single realiza-
tion could profoundly misrepresent the performance of the
method, so using an entire ensemble was important to reduce
the effect of sensitivity to the initial values of weights. Input
values for all neural networks were normalized to range [0,1]
by subtracting the minimum of the series and then dividing
the value with the series’ max-min range. MLP networks
were trained for 1500 epochs by the quasi-Newton method.
An important part of the input data is information about

the season of the year. In order to introduce this informa-
tion to the computations, application of the MLR and LLM
methods was done separately for each season. For NNs, we
did perform the training for the entire training set as a whole,
and information about the season was introduced by four ex-
tra neurons in the input layer, each of which was assigned to
one season (the effective dimension of the input space was
therefore m=18 for all neural networks). These neurons’ ac-
tivations were equal to 1 for the season they controlled, and
0 otherwise (i.e. just one of these four neurons was active for
a given time – the one assigned to the corresponding season).
Another possibility of introducing information about the sea-
son would be using sine and cosine of the Julian day (as done
by Trigo and Palutikof, 1999). The usual climatological def-
inition of the seasons was utilized:

Winter = December+ January+ February = DJF,
Spring = March+ April+May = MAM,

Summer = June+ July+ August = JJA and
Autumn = September+ October+ November = SON .

3 Data

The first data set utilized was the NCEP/NCAR reanalysis
by Kistler et al. (2001), obtained from the page of NOAA-

CIRES CDC at http://www.cdc.noaa.gov. It is available for
the years from 1948 on, and it covers an entire world with
reanalysis of several meteorological variables in the regu-
lar 2.5◦×2.5◦ grid, including data for various pressure lev-
els. Series of mean daily temperature at the level 1000 hPa
(T1000) were used here, as well as series of mean sea level
pressure (MSLP) and series of geopotential height of the
500 hPa level (h500).
As for directly measured meteorological series, perhaps

the largest publicly available data set of European tempera-
ture, precipitation and pressure measurements was collected
by Klein Tank et al. (2002) and it is obtainable from the In-
ternet page of the European Climate Assessment and Dataset
(ECA&D – http://eca.knmi.nl/). Measurements from many
different sources were assembled by the authors, so series of
various quality and length are part of ECA&D, and many of
them contain missing values. We used series of daily mean,
minimum and maximum temperature from 25 European sta-
tions – see Table 1 for their list. Many more series can be
obtained from ECA&D – these 3×25 were selected in order
to cover most of Europe with series available for the years
1961 to 2000, or ending not too long before the year 2000,
and containing as little missing values as possible.

4 Results

4.1 Prediction

Forecast of future weather is what most people view as a fun-
damental purpose of meteorology’s existence. And although
today’s weather forecasts are made almost exclusively by
means of numerical models, there are many supplementary
tasks for which time series analysis can be more suitable,
for example, because the available data do not allow for use
of a generally demanding NWF model, because of unsuit-
able spatial or temporal scale or due to a lack of available
computing capacity. It was shown that nonlinear methods
can be applied for tasks like prediction of road temperatures
(Shao, 1998), precipitation forecasting (Waelbroeck et al.,
1994; Hall et al., 1999; Sivakumar et al., 2000), or forecast of
cloud cover (Pérez-Muñuzuri and Gelpi, 2000), although in
some cases nonlinear methods do not seem to be more suit-
able than the linear ones, as demonstrated, for example, by
Tang et al. (2000) for Central Pacific SST forecast.
The gridded NCEP/NCAR reanalysis data set represents

a suitable basis for study of spatial distribution of the pre-
dictive potential of nonlinear methods. First, we performed
the prediction of the T1000 series one day ahead by the LLM
and MLR methods for every grid point in the area between
65◦N, 25◦W and 25◦N, 45◦ E, i.e. for 493 points in total.
Years 1961–1990 were used as the training set, while the test-
ing set consisted of the years 1991–2000. The structure of
the predictor space is demonstrated in Fig. 1a for the grid
point 50◦N, 15◦ E (the pattern was moved to be centered
on the location of the predicted series). Unlike for all the
other computations in this paper, a fixed number of nearest
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Table 1. A list of stations used for downscaling tests. Asterisk (*) marks the stations for which at least one of the series of daily mean,
minimum or maximum temperature did not cover the entire period 1961–2000.

Station Country Latitude Longitude Alt. NCEP/NCAR
(m) nearest grid point

Beograd* Yugoslavia 44◦48′ N 20◦28′ E 132 45◦00′ N, 20◦00′ E
Berlin Germany 52◦27′ N 13◦18′ E 55 52◦30′ N, 12◦30′ E
Bordeaux France 44◦50′ N 00◦41′W 47 45◦00′ N, 00◦00′
Bologna Italy 44◦29′ N 11◦15′ E 60 45◦00′ N, 10◦00′ E
Bremen Germany 53◦03′ N 08◦47′ E 4 52◦30′ N, 10◦00′ E
Brindisi* Italy 40◦38′ N 17◦56′ E 10 40◦00′ N, 17◦30′ E
Eskdalemuir UK 55◦19′ N 03◦12′W 242 55◦00′ N, 02◦30′W
Helsinki Finland 60◦10′ N 24◦57′ E 4 60◦00′ N, 25◦00′ E
Heraklion* Greece 35◦20′ N 25◦11′ E 39 35◦00′ N, 25◦00′ E
Hurbanovo Slovakia 47◦53′ N 18◦12′ E 115 47◦30′ N, 17◦30′ E
Karlsruhe Germany 49◦01′ N 08◦23′ E 114 50◦00′ N, 07◦30′ E
Kremsmuenster* Austria 48◦03′ N 14◦08′ E 383 47◦30′ N, 15◦00′ E
Larissa* Greece 39◦39′ N 22◦27′ E 74 40◦00′ N, 22◦30′ E
St. Petersburg* Russia 59◦58′ N 30◦18′ E 6 60◦00′ N, 30◦00′ E
Linkoeping Sweden 58◦24′ N 15◦32′ E 93 57◦30′ N, 15◦00′ E
Malaga Spain 36◦40′ N 04◦29′W 7 37◦30′ N, 05◦00′W
Marseille France 43◦18′ N 05◦24′ E 75 42◦30′ N, 05◦00′ E
Moskou* Russia 55◦50′ N 37◦37′ E 156 55◦00′ N, 37◦30′ E
Oslo Blindern Norway 59◦57′ N 10◦43′ E 94 60◦00′ N, 10◦00′ E
Oxford UK 51◦46′ N 01◦16′W 63 52◦30′ N, 02◦30′W
Paris France 48◦49′ N 02◦20′ E 75 50◦00′ N, 02◦30′ E
Praha Czech Rep. 50◦05′ N 14◦25′ E 191 50◦00′ N, 15◦00′ E
Tortosa Spain 40◦49′ N 00◦29′ E 48 40◦00′ N, 00◦00′
Utsira Fyr Norway 59◦18′ N 04◦53′ E 55 60◦00′ N, 05◦00′ E
Valentia Observatory* Ireland 51◦56′ N 10◦13′W 9 52◦30′ N, 10◦00′W

Winter Summer

Fig. 4. RMSE (◦C) of 1-day ahead prediction of temperature at the 1000 hPa level (T1000) by LLM method. Three black crosses mark the
positions of the grid points from Table 2.

neighbors was used for all grid points, N=250. The results
are shown in Fig. 4 (RMSE for LLM method) and 5 (RMSE
for LLM method, divided with RMSE for MLR, which we
will call effective nonlinearity, since it quantifies an improve-
ment which can be gained from replacing linear MLR with
the nonlinear method of local models).
The lowest values of RMSE were detected over the

Mediterranean Sea and Atlantic Ocean, and, in summer, in
the Near East. Errors in summer were generally lower than
in winter. The absolute values of the errors coincide well
with values of average interdiurnal temperature change, i.e.
errors were higher in the areas with higher temperature vari-
ability. When the spatial structure of effective nonlinearity

was analyzed, the observed pattern was more complex. In
winter, most of continental Europe appears to be a region of
increased nonlinearity, with the highest differences between
RMSE for the LLM and MLR methods in Western Europe
and Russia. Nonlinearity seems to be rather weak in the mar-
itime areas, as well as in Northern Africa and the Near East.
In summer, nonlinearity is weaker than in winter in most ar-
eas, and there is a clear contrast between the Mediterranean
area (very weak nonlinearity, except for Tunisia and North-
ern Libya) and the rest of Europe (rather stronger nonlin-
earity, especially in Northern France, Belgium and Nether-
lands). This observed pattern bears an interesting resem-
blance to the positions of the climatic zones, as nonlinearity
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Table 2. RMSE (◦C) of 1-day ahead prediction of NCEP/NCAR T1000 series for three different grid points. The values in bold indicate that
the nonlinear method gave better results than multiple linear regression, according to the paired Wilcoxon test at the 95% confidence level.
The values in the first row show RMSE of persistent prediction.

50◦ N, 0◦ E 50◦ N, 15◦ E 40◦ N, 15◦ E
DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

Pers. 2.12 1.8 1.73 1.74 2.73 2.41 2.31 2.31 1.42 1.15 0.99 1.23
MLR 1.75 1.48 1.3 1.5 2.3 1.9 1.65 1.86 1.11 0.98 0.83 0.99

LLM 1.41 1.28 1.07 1.21 1.93 1.57 1.44 1.54 0.96 0.88 0.83 0.88
MLP 1.52 1.35 1.18 1.24 1.9 1.54 1.46 1.57 0.98 0.92 0.81 0.89
RBF 1.39 1.26 1.07 1.15 1.87 1.52 1.38 1.54 0.95 0.87 0.79 0.88

Winter Summer

Fig. 5. Effective nonlinearity for 1-day ahead prediction of temperature at the 1000 hPa level (T1000), i.e. RMSE for LLM method expressed
in % of RMSE for multiple linear regression (lower values indicate stronger nonlinearity). Three black crosses mark the positions of the grid
points from Table 2.

seems to be stronger in the temperate zone and weaker in the
subtropical and tropical areas (various climate classifications
can be found in Essenwanger, 2001).
There is a comparison of 1-day ahead prediction results in

Table 2 for all tested methods and all seasons of the year for
three selected NCEP/NCAR grid points: 50◦ N, 0◦ E (a grid
point which exhibited strong effective nonlinearity in both
summer and winter), 50◦N, 15◦ E (medium nonlinearity in
both seasons) and 40◦N, 15◦ E (medium nonlinearity in win-
ter, very weak in summer). Positions of the respective grid
points are indicated by crosses in Figs. 4 and 5. Aside from
comparing RMSEs, differences between individual methods
were ascertained using the paired Wilcoxon test (e.g. Wilks,
1995), applied at the absolute values of daily errors. The
significance of the differences between errors from the MLR
and nonlinear methods is indicated in Table 2 – values in bold
signal that the nonlinear method was better than MLR at the
95% level of confidence. RBF NN typically gave the best
results of all three nonlinear methods in terms of RMSE, but
the difference of error medians was not significant, accord-
ing to the Wilcoxon test, in most of the tested cases. On
the other hand, nonlinear methods, especially LLM and RBF
NNs, typically gave better results than MLR, both with re-
spect to RMSE and to the significance of the difference of
daily errors.
Visually, there was just little difference between the series

of predictions from all four tested methods. Superiority of
nonlinear techniques in the geographic areas with strong ef-
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Fig. 6. Histogram of the absolute values of the prediction errors
for 1-day ahead prediction of NCEP/NCAR T1000 series at 50◦ N,
15◦ E (whole year).

fective nonlinearity was, however, clearly visible in the dis-
tribution of errors, with residuals close to zero being rela-
tively more frequent for nonlinear methods than for MLR
– see example in Fig. 6. What all methods had in com-
mon was a certain tendency to underestimate high values
of temperature and overestimate the low ones, thus actually
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Table 3. RMSE (◦C) of NCEP/NCAR reanalysis downscaling for four European stations. The values in bold indicate that the nonlinear
method gave better results than multiple linear regression, according to the Wilcoxon test at the 95% confidence level. Underline indicates
that the method performed better than all the other three, according to the Wilcoxon test. The values in the first row for each station show
RMSE obtained by means of mean climatology.

Mean temperature Min. temperature Max. temperature
DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

Praha

Clim. 4.68 3.96 3.44 3.53 4.75 3.45 2.71 3.50 4.81 4.71 4.31 4.07
MLR 1.88 1.29 1.19 1.40 2.27 1.76 1.45 1.85 1.85 1.66 1.52 1.77
LLM 1.73 1.26 1.17 1.28 2.23 1.72 1.44 1.74 1.67 1.66 1.52 1.69
MLP 1.77 1.24 1.20 1.34 2.16 1.70 1.41 1.75 1.72 1.63 1.52 1.68
RBF 1.75 1.22 1.21 1.29 2.18 1.70 1.42 1.72 1.73 1.63 1.52 1.68

Oslo

Clim. 4.67 3.46 2.84 3.38 5.01 3.35 2.71 3.83 4.44 4.24 3.62 3.52
MLR 2.44 1.64 1.33 1.58 2.96 2.00 1.71 2.19 2.54 2.38 1.92 1.97
LLM 2.12 1.65 1.30 1.49 2.69 1.96 1.72 2.09 2.27 2.34 1.88 1.86
MLP 2.13 1.57 1.33 1.50 2.69 1.83 1.67 2.06 2.28 2.31 1.89 1.77
RBF 2.10 1.59 1.32 1.45 2.67 1.84 1.67 2.09 2.26 2.29 1.87 1.74

Oxford

Clim. 3.46 2.86 2.46 2.83 3.78 3.14 2.45 3.44 3.66 3.37 3.40 2.93
MLR 1.54 1.09 1.16 1.23 2.29 1.94 1.61 2.20 1.68 1.61 1.83 1.37
LLM 1.44 1.07 1.15 1.21 2.19 1.81 1.61 2.11 1.55 1.56 1.81 1.33
MLP 1.44 1.06 1.15 1.24 2.18 1.79 1.57 2.13 1.60 1.59 1.79 1.35
RBF 1.43 1.08 1.15 1.22 2.16 1.78 1.58 2.13 1.53 1.55 1.79 1.31

Bordeaux

Clim. 3.75 3.13 2.97 3.25 4.25 3.16 2.72 3.63 3.98 4.25 4.15 3.86
MLR 1.75 1.47 1.45 1.50 2.50 2.38 2.18 2.37 2.26 2.05 1.87 1.87
LLM 1.69 1.42 1.45 1.44 2.40 2.22 2.11 2.21 2.18 2.00 1.88 1.85
MLP 1.72 1.44 1.40 1.45 2.39 2.25 2.07 2.19 2.19 1.97 1.85 1.80
RBF 1.66 1.43 1.40 1.45 2.38 2.26 2.07 2.22 2.16 2.01 1.86 1.81

Fig. 7. Plot of the prediction residuals (the predicted temperature
minus the original observed temperature) against the original tem-
perature for 1-day ahead prediction of NCEP/NCAR T1000 series at
50◦ N, 15◦ E (whole year). Bold line represents the linear fit of the
residuals.

decreasing the variance of the series of predictions compared
to the original one. This kind of behavior was observed for
all seasons, as well as the year as a whole, and it is demon-
strated for the grid point 50◦N, 15◦ E in Fig. 7. The problem
of a deformed distribution of values is commonly encoun-

tered in the context of the application of empirical models in
climate research, particularly in statistical downscaling, and
various strategies have been proposed for handling it, such as
variance inflation or partial randomization (e.g. von Storch,
1999). All results presented here are direct outputs of the
transfer functions, without being subject to any form of ad-
ditional postprocessing.

4.2 Downscaling

Statistical downscaling of large-scale data is another com-
mon task of meteorological time series analysis, and one
in which nonlinear methods are sometimes used. Several
studies have been published devoted to downscaling or post-
processing of temperatures by nonlinear methods, mostly
MLPs (Trigo and Palutikof, 1999; Schoof and Pryor, 2001;
Marzban, 2003; Casaioli et al., 2003) or neural networks
based on RBF functions (Weichert and Bürger, 1998). Here,
downscaling of the gridded large-scale data was done for the
predictand series of daily mean, minimum and maximum
temperatures. NCEP/NCAR reanalysis series were used as
predictors. The pattern of predictors (Fig. 1b) was centered
on the NCEP/NCAR grid point closest to the respective sta-
tion (see the last column of Table 1). Years 1961–1990 were
used as the training set, and years 1991–2000 as the testing
set. In some cases, the testing set was shorter than 10 years
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Fig. 9. Same as Fig. 8, for daily minimum temperature.

because the predictand temperature series was not available
for the whole interval (such stations are marked with an as-
terisk in Table 1). Moreover, some of the series contained
missing values – in those cases, the respective days were ex-
cluded from the computation. The number of missing values
was, however, always very small in comparison with the total
size of the data set, so their presence should not have caused
any major shift in the results.
For all 25 stations from Table 1, results of downscaling

by MLR and LLM methods for daily mean (Fig. 8), mini-
mum (Fig. 9) and maximum (Fig. 10) temperature in win-
ter and in summer are presented. Aside from computing the
relative differences between RMSE for the LLM and MLR
methods, we also tested the statistical significance of the dif-
ference of the medians of the absolute values of daily errors
for the LLM and MLR methods. The testing was done by the
one-sided paired Wilcoxon test, and its outcomes are repre-
sented by different colors of the respective station’s back-
ground in Figs. 8 to 10. Full results for the four stations are
shown in Table 3. Situations when nonlinear method gave
better results than MLR at the 95% level of confidence are
indicated by bold print. To compare the results to outcomes
of a low-skill method, the table also contains RMSE obtained
by means of mean climatology (i.e. when monthly mean val-
ues of the predictand were used in the role of xPRED(t) from
Eq. (3)).
Nonlinear methods generally performed better than MLR,

but there were distinct differences between the seasons –
most profoundly nonlinear behavior was typical for winter,

while in summer, nonlinear techniques seemed to grant just
a very small, if any, improvement in the comparison with
MLR at most stations. This can be easily seen from Fig. 11,
where histograms of the absolute values of downscaling er-
rors are shown for mean daily temperature from Oslo (a sta-
tion, where the contrast between winter and summer was par-
ticularly clear). A tendency was observed in all methods to
underestimate high temperatures and overestimate the low
ones, as in the case of the forecasts in Sect. 4.1.
Situations when one of the methods was superior to all the

others, according to the Wilcoxon test, were rather rare, and
they are marked with an underline in Table 3. None of the
nonlinear methods could be identified as the best one in all
cases, or the majority of the cases. However, when one of
the methods was tested as the best performing one, it was
usually either the method of local models or the RBF neural
network.
Unlike the forecasts studied in Sect. 4.1, results of down-

scaling were influenced by local conditions of individual sta-
tions and by eventual problems with series quality (shorter
length of some series, as well as the fact that the series
in ECA&D were collected from many different sources,
and they may not be mutually as easily comparable as
NCEP/NCAR reanalysis data). Thus, we have not tried to
draw any detailed conclusions about the geographical struc-
ture of errors or nonlinearity based on the behavior of indi-
vidual stations. A few points can be made, nonetheless:
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Fig. 10. Same as Fig. 8, for daily maximum temperature.
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Fig. 11. Histogram of the absolute values of downscaling errors for mean daily temperature from Oslo, Norway, in winter (left) and summer
(right).

– Values of RMSE were higher in winter than in summer
at most stations, for mean and minimum temperatures;
for maximum temperature, almost half of the stations
showed higher values of error in summer. The effec-
tive nonlinearity was typically stronger in winter than
in summer for all three types of temperature. In sum-
mer, nonlinear methods even performed a little worse
than MLR sometimes, and for many stations, the differ-
ence in the medians of errors was not conclusive at the
confidence level of 95%.

– Errors were lower for daily mean temperatures than for
maximum or minimum ones in most locations. This is
not surprising as mean values are already averaged in
time, and therefore smoother. The extreme temperatures
represent values in a single moment during the day,
hence they are more prone to be affected with a noise
component of the atmospheric dynamics, and more dif-
ficult to determine.

– In Sect. 4.1, we pointed out that nonlinearity in the
Mediterranean area seems to be significantly weaker
than for the rest of Europe. Here, a similar rule does
not apply and there is no clear connection between the
geographic position of the station and the degree of ex-
hibited nonlinearity, as even geographically close sta-
tions exhibited quite a different behavior in a number of
cases.

5 Discussion

The presented analyses, carried out for different tasks and
various series, do not identify any of the tested nonlinear
methods to be definitely superior to the others. It is, however,
obvious that in most cases the LLM, MLP NN and RBF NN
methods outperformed multiple linear regression. Applica-
tion of nonlinear methods seems, therefore, to be useful for
meteorological time series analysis at synoptic time scales,
but the issue remains as to which one of them should be
used preferably. Aside from the performance itself, attention
should also be paid to the application properties of the con-
testants. Advantages and drawbacks of individual methods
may be summarized as follows:

– Method of local linearmodels’ advantage is that its use
need not be preceded by the potentially time-consuming
training of weights. On the other hand, the execution
itself takes longer than for the already trained NNs, due
to the search for nearest neighbors, which needs to be
carried out for every processed state. This method is
faster than both types of NNs when applied just once for
a given setting, as we did in order to obtain the results
for Figs. 4 and 5. Its speed also makes estimation of
suitable parameters (specifically, N) by a trial-and-error
technique easier.

– MLPs are the most frequently used nonlinear technique
of the tested ones, which is an advantage by itself, due



J. Miksovsky and A. Raidl: Testing the performance of three nonlinear methods 989

to support in many existing software applications. Their
features are well documented and thoroughly discussed
by a number of authors (among others Haykin, 1999;
Principe et al., 2000). Perhaps the most severe draw-
back of MLPs is the possibility that the learning proce-
dure will end in a local minimum of the error function
instead of reaching the global one. The seriousness of
this problem can be reduced by means of repeated train-
ing or by application of a global minimum search tech-
nique (such as the one used by Casaioli et al., 2003),
but usually at the cost of increased training time. There
is also the possibility of overtraining, when the learn-
ing procedure runs for too long a time, and the network
becomes overoptimized for the description of the cases
from the learning set, thus losing its ability to gener-
alize. None of these problems is unsolvable, but they
cause the application of MLPs to be potentially tricky,
with many nontrivial decisions to be made and the learn-
ing process which needs to be supervised.

– RBF NNs do not suffer from the “local minimum trap”
problem (at least not their form that we used here), be-
cause the supervised optimization of the weights to the
output layer can be treated as a linear problem. Certain
variations of the results can arise from the random se-
lection of the RBF centers, but these were very small in
our case. There is also no need to worry about the net-
work becoming overtrained. Nonetheless, it is still pos-
sible to overfit the network in the sense of too many free
parameters (when too many hidden neurons are used).
Training of RBFNNs is usually faster than that of MLPs
(especially considering the need for repeated training of
MLPs).

Therefore, the RBF NNs and LLM method can offer better
application properties than MLPs in many respects. Consid-
ering their relatively easy implementation, we believe that
these methods can be recommended as a worthy alternative
to MLPs.
The error and nonlinearity maps in Figs. 4, 5 and 8 to 10

offer some insight into the geographic structure of spatiotem-
poral relations between the atmospheric variables, but they
should be interpreted carefully. For prediction (Figs. 4 and
5), the fact that the reanalysis and not measured data was
used may be partly responsible for the character of the ob-
served structures. There is also an issue of selection of the
input variables – the presented results were obtained for one
specific pattern of predictors, and it can be argued that the
maps could change if a different one was used. We repeated
the tests for various sets of predictors, differing in both type
and number of variables used, and although the details of the
maps changed, the basic geographic structure of nonlinearity
seemed quite robust and unaffected by the modification of
the computation settings. There still was an area of distinct
nonlinearity over continental Europe, more apparent in win-
ter than in summer, while over the Mediterranean and North-
ern Africa, nonlinearity was weaker. These results suggest

that the nonlinear character of the climate system is strongly
reflected in the atmospheric time series in the midlatitudes,
and that the relations between them cannot be fully described
by linear mappings. In the tropical areas south of Europe, a
purely linear description seems more sufficient.
Interpretation of the downscaling tests needs to be done

with respect to their possible dependence on the tested sta-
tions’ local conditions. The observed profound differences
between even close stations suggest that conclusions about
the skill and suitability of time series analysis methods, ob-
tained for a limited area or a single station, cannot be au-
tomatically generalized and applied to different locations.
Noteworthy is the seasonal variance of the results, which im-
plies the presence of a strong detectable nonlinear component
in the relations between predictors and predictand in winter,
and a rather linear character of these relations in summer.
It is also interesting that the effective nonlinearity is gener-

ally weaker for downscaling than for forecasting tasks (com-
pare results in Figs. 5 and 8). This does not necessarily mean
that the relations between predictors and predictand are in-
trinsically more linear in the case of downscaling. The reason
for this difference may lie in the fact that while the forecast-
ing tests were done solely on reanalysis data, which are rel-
atively smooth by construction, downscaling predictands are
local measurements. They reflect the situation in just a very
small area, so it is possible for them to contain a stronger
high-dimensional component, which may be nonlinear in its
nature, but has a character of noise and is too complex to be
described by any time series analysis method, even a nonlin-
ear one.

6 Conclusions

Our primary intention was to make a comparison of three
nonlinear methods and to identify the one most suitable for
the analysis of climatic data at synoptic time scales. It turned
out that the most commonly applied nonlinear method, multi-
layer perceptron neural network, may not necessarily be the
best possible choice. The other two tested nonlinear tech-
niques, method of local linear models and radial basis func-
tion neural network, performed equally well, even better in
many cases, they do not suffer from MLPs’ drawbacks, such
as the problem of local minima of the error function or the
danger of overtraining, and their implementation is relatively
easy. We can therefore recommend them as a worthy alter-
native to MLPs.
The constructed maps of the geographical structure of er-

rors and effective nonlinearity revealed profound spatial vari-
ations of the results. In case of prediction, a distinct con-
trast between the temperate zone (stronger nonlinearity) and
the subtropical and tropical zones (weaker nonlinearity) was
found, especially in summer. As for downscaling tests, we
were not able to identify any apparent large-scale geograph-
ical distribution of nonlinearity, probably because the results
for individual stations were influenced by the local condi-
tions at least as much as by the large-scale climate dynamics.
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For both forecasting and downscaling, profound seasonal
dependence of the results was observed, with errors being
larger and nonlinearity being stronger in winter than in sum-
mer in most locations.
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Abstract Minimum and maximum temperature in two re-
gional climate models and five statistical downscaling models
are validated according to a unified set of criteria that have a
potential relevance for impact assessments: persistence (tem-
poral autocorrelations), spatial autocorrelations, extreme
quantiles, skewness, kurtosis, and the degree of fit to observed
data on both short and long times scales. The validation is
conducted on two dense grids in central Europe as follows: (1)
a station network and (2) a grid with a resolution of 10 km.
The gridded dataset is not contaminated by artifacts of the
interpolation procedure; therefore, we claim that using a
gridded dataset as a validation base is a valid approach. The
fit to observations in short time scales is equally good for the
statistical downscaling (SDS) models and regional climate

models (RCMs) in winter, while it is much better for the
SDS models in summer. The reproduction of variability on
long time scales, expressed as linear trends, is similarly suc-
cessful by both SDS models and RCMs. Results for other
criteria suggest that there is no justification for preferring
dynamical models at the expense of statistical models—and
vice versa. The non-linear SDS models do not outperform the
linear ones.

1 Introduction

Global climate models (GCMs) are designed to describe cli-
matic features at large spatial scales and are usually run in
effective resolutions exceeding a hundred of kilometres. For
these reasons, they are not capable of directly providing
regional or even local information. However, it is the regional
and local scales that are needed in climate change impact
studies. The scale mismatch between what GCMs are able to
provide and what is required in the impact studies can be
bridged in several ways. Two of the approaches, which have
been used most commonly, have undergone a rapid develop-
ment during the last decade: regional climate models (RCMs),
also referred to as dynamical downscaling, and statistical
downscaling (SDS).

We use the term ‘statistical downscaling’ consistently with
Benestad et al. (2008). This means that SDS in this paper
refers to the ‘Perfect Prog’ approach (i.e. the approach based
on relationships between observed predictors and observed
predictands) according to the nomenclature used in Maraun
et al. (2010) and does not include weather-generator ap-
proaches and bias-correction methods.

An extremely important task is a comparison of a climate
simulated by a model with reality, that is, validation. The
necessary, but not sufficient, condition for having confidence
in simulated future climates is an evidence of the models’
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ability to simulate present climate conditions. Both the RCMs
and SDS have been validated extensively in terms of basic
characteristics (mean, variability) of two most relevant
climatic variables, temperature and precipitation. However,
there are relatively few studies that have compared relative
merits of RCMs and SDS, as already noted in a review paper
by Fowler et al. (2007). The majority of the comparison
studies (Kidson and Thompson 1998; Murphy 1999; Wilby
et al. 2000; Hellström et al. 2001; Busuioc et al. 2006;
Haylock et al. 2006; Schmidli et al. 2007; Flaounas et al.
2013; Khalili et al. 2013) suggest that the performance of
RCMs and SDS in reproducing daily and monthly tempera-
ture is comparable. In addition to it, validation studies of
RCMs have, to a large extent, been driven by demands of
climate modellers; therefore, validation studies frequently
concentrate on variables relevant for a further development
of RCMs themselves but not directly for climate impacts. On
the other hand, compared with RCMs, SDS models have been
subjected to a muchmore detailed scrutiny as to their ability to
simulate more advanced characteristics, which are directly
relevant for society and/or important for climate impact
models, such as higher-order statistical moments, temporal
and spatial autocorrelations, prolonged extreme events and
periods, etc. (Kalvová and Nemešová 1998; Easterling 1999;
Huth et al. 2000, 2001, 2003, 2008; Busuioc and von Storch
2003; Kettle and Thompson 2004; Bachner et al. 2008;
Rauscher et al. 2010).

There are two broad families of SDS methods (Benestad
et al. 2008) as follows: linear (represented by multiple linear
regression and canonical correlation analysis) and non-linear
(represented by artificial neural networks and also analog-
based and classification methods). Several studies comparing
their performance (e.g., Trigo and Palutikof 1999, 2001;
Schoof and Pryor 2001; Mpelasoka et al. 2001; Coulibaly
et al. 2005; Mikšovský and Raidl 2005; Eccel et al. 2007;
Huth et al. 2008) do not provide a clear answer as to which
family is superior; hence, the relative performance of linear
and non-linear methods is another unresolved issue in the
context of the present study.

SDS models have typically been evaluated according to
their ability to approximate the observed time series. The
ability to reproduce short-term day-to-day time variations
has, however, little to do with the ability to reproduce varia-
tions on long-term decadal time scales, on which the climate
change signal proceeds. In spite of it, only few SDS models
and RCMs have been subjected to a validation of trends or
reproduction of contrasting recent climate states (von Storch
et al. 1993; Busuioc and von Storch 2003; Giorgi et al. 2004;
Kettle and Thompson 2004; Benestad et al. 2007; Lorenz and
Jacob 2010; Bukovsky 2012; Ceppi et al. 2012).

The brief review of recent literature and gaps in our knowl-
edge implies that a validation study comparing RCMs with
both linear and non-linear SDS models, going beyond means

and standard deviations, that is, concentrating on advanced
statistical characteristics and examining long-term trends,
would constitute a step forward in understanding the
downscaling methods. This is what the current study takes
on as its goal: to compare the ability to simulate the advanced
characteristics of climate variables, potentially relevant in
various climate change impact studies, between the
dynamical and statistical downscaling models, that is, to
subject them to the same validation procedure. Fowler et al.
(2007) pose several recommendations for regional climate
change research; we follow at least two of them: a call for a
‘coordinated intercomparison and diagnostics of models (…)
(RCMs, SDS)’ and a wider use of ‘higher-order statistics… to
measure downscaling skill.’

Our analysis concentrates on advanced validation criteria.
We intentionally do not present validation of the first two
statistical moments, mean and variance, for two main reasons.
First, the first two moments are in the focus of the vast
majority of validation studies, so their treatment here would
not be innovative. And second, statistical post-processing
approaches to correct the model outputs towards observed
mean and variance have recently become available, such as
quantile mapping (Déqué 2007; Themeßl et al. 2012).
Moreover, there are approaches to correct the mean and var-
iance, which are directly embedded in the statistical down-
scaling framework, such as variance inflation and noise (both
white and temporally or spatially autocorrelated) addition
(e.g., von Storch 1999; Huth 2002). The criteria we employ
include temporal and spatial autocorrelations, third and fourth
statistical moments (skewness and kurtosis), and extreme
quantiles (5th and 95th) of statistical distributions. We take
advantage of the fact that both the dynamical and statistical
models are driven by reanalysis data in this study, which
means that time series they produce can be directly compared
with observations. Therefore, we include into the set of vali-
dation characteristics also correlations with the observed time
series as a measure of short-term fit to observations, and linear
trends as a measure of changes on longer time scales on which
climate change proceeds. The analysis is carried out on a daily
basis and covers maximum and minimum temperature.

In validation, the outputs of a model are compared with
observations. Whereas the observations are located on an
irregular network of stations, the dynamical model (GCM,
RCM) outputs are provided on a regular grid. (Indeed, SDS
procedures can yield output either at stations or grid points,
depending on what they were trained on.) Dynamical models
thus provide area-aggregated rather than point-specific data,
which makes a direct comparison between station data and
gridded model output less straightforward, especially for var-
iables with a short correlation distance, such as precipitation
(e.g., Skelly and Henderson-Sellers 1996). Therefore, the
validation can be made potentially fairer to dynamical models
if the observations are transformed from stations to a grid. The
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transformation procedure must of course take into account
characteristics specific for each variable; see e.g. Osborn and
Hulme (1998) for precipitation.

This is the approach we take in the current study. We use
the same grid for analyzing observed data, outputs from two
RCMs, and running and evaluation of five SDS models. This
makes a comparison of validation results among individual
models as fair as possible. To get more faith that gridded
observations are not contaminated by artifacts from the inter-
polation procedure, we analyze the station data and SDS
models developed on the station data as well and compare
results based on the two datasets.

2 Datasets and methods

The region of interest covers a part of central Europe along the
joint borders of the Czech Republic, Austria, Slovakia, and
Hungary (Fig. 1). This particular region was selected mainly
because of joint efforts to conduct coordinated climate change
impact studies by the all four countries within its area. The
variables examined are daily maximum and minimum tem-
perature. We intentionally do not deal with daily mean tem-
perature since the formulas for its calculation differ between
countries, and in some countries, they even changed during
the study period. All the temperature data were interpolated
onto the regular grid on which the ALADIN-Climate/CZ
RCM was integrated, which has a 10-km resolution.
Altogether, 832 grid points cover the domain (Fig. 1).

Our task is to find out how well the downscaling models
reproduce fine-scale structures from large-scale information.
Therefore, the downscaling models, both dynamical and sta-
tistical, were driven by ERA-40 reanalysis (Uppala et al.
2005). That is, RCMs were nested into ERA-40 data in both
cases using a double nesting in order to overcome problems of
a resolution jump, with the grid step of the intermediate model
being 25 km. The SDS models were developed and trained on
ERA-40 data. The RCMswere integrated for the period 1961–
2000; the SDS models were trained on the 30-year period
1961–1990, while the period 1991–2000 was used as an
independent sample. All the validation is conducted on the
latter period. The downscaling models are described in more
detail below in Secs. 2.2 and 2.3 and are summarized in
Table 1.

�Fig. 1 Top: analysis domain shown in yellow; dots indicate the available
climatological stations (green/red for stations inside/outside the domain).
Second from top: 10-km grid; red/green dots indicate gridpoints inside/
outside the domain (denoted as a green area). Third from top: elevation of
terrain within the analysis domain (m above sea level). Bottom:
integration domains of RegCM (blue) and ALADIN (green), and the
source area of potential predictors for the SDS techniques with gridpoints
is indicated by red dots
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2.1 Observed data

The original observed data were taken from 165 stations in all
the four participating countries. The station data were quality
checked thoroughly and then subjected to the interpolation
procedure. Here, only a brief description of the interpolation
procedure is provided; for more details, refer to Štěpánek et al.
(2011).

Temperature series at a particular grid point were calculated
from up to six neighbouring (nearest) stations within the
distance of 300 km at maximum, with the allowed maximum
difference in altitude of 500 m. Before applying inverse dis-
tance weighting, data at the neighbouring stations were stan-
dardized relative to the altitude of the base grid point. The
altitudes applied in the calculation of grid point series were
taken from the model of terrain with a resolution of 1 km. The
standardization was carried out by means of linear regression,
taking into account the dependence of values of a particular
meteorological element on altitude, individually for each sta-
tion and each day. Each standardized value was checked if it
did not differ excessively from the original value. For the
weighted average (using inverse distances as weights), the
power of weights equal to 1 was applied. In the case of
temperature, standardized neighbour values outside the 20 to
80 % percentile range were not considered in the calculation
of final values (i.e. a trimmed mean was applied). A similar
procedure was applied to complete and adjust the station
series.

2.2 Regional climate models

2.2.1 ALADIN-climate/CZ

The ALADIN-climate/CZ RCM was developed from
numerical weather prediction model ALADIN, which has
been used at the Czech Hydrometeorological Institute, in the
version run operationally in 2003 and 2004. Compared to its
older versions, an improved radiation parameterization,
developed on the basis of the original by Ritter and Geleyn
(1992), was incorporated. Surface processes are controlled by
the ISBA scheme (Noilhan and Mahfouf 1996), and deep
convection follows the formalism described by Bougeault

(1985). Other improvements included improved semi-
Lagrangian horizontal diffusion scheme and enhancements
in vertical diffusion/turbulence processes. For a more detailed
description, refer to Farda et al. (2010). The integration area
consists of almost 11,000 points (148 in each of 74 latitude
rows, the projection centre being approximately at 48.25° N,
17° E, which almost exactly corresponds to the centre of the
analysis domain) organized in a grid with a constant horizon-
tal resolution of 10 km. For the integration domain, see
Fig. 1d. The model in this setup uses 43 atmospheric levels
in the vertical.

2.2.2 RegCM3

RegCM is one of the RCMs commonly used for climate
simulations in the region of central Europe; for its description,
see Halenka et al. (2006) and the references therein. RegCM3
was implemented with a horizontal resolution of 10 km, on the
grid consisting of 184×164 grid points, with a central point
located at 49.0° N, 15.8° E, and with 23 vertical levels. Its
integration domain is shown in Fig. 1d. For this application,
the RegCM3 simulations were performed using the following
physical parameterizations: SUBEX non-convective precipi-
tation scheme (Elguindi et al. 2007), Grell convective scheme
(Grell 1993), NCAR CCM3 radiation scheme (Kiehl et al.
1996) and BATS surface model (Dickinson et al. 1993). Since
the position of RegCM’s grid was different from that of
ALADIN, the RegCM outputs were interpolated onto the grid
of the ALADIN model during post-processing, using inverse
distance weighting, in order for all the data to be available on a
common grid.

2.3 Statistical downscaling models

Five variants of statistical downscaling models were
employed to represent transfer functions between the ERA-
40 predictors and local minimum or maximum temperature
measurements at the grid points or stations: multiple linear
regression (MLR), two types of local models in the phase
space (locally linear models, LLM, and locally constant
models, LCM) and two architectures of artificial neural

Table 1 List of downscaling
models Abbreviation Type Brief description Location in text

ALA RCM ALADIN-Climate Sec. 2.2.1

REG RCM RegCM3 Sec. 2.2.2

MLR SDS Multiple linear regression Sec. 2.3.1

LLM SDS Locally linear model Sec. 2.3.2

LCM SDS Locally constant model (analog model) Sec. 2.3.2

RBF SDS Radial basis function-based neural network Sec. 2.3.3

MLP SDS Multilayer perceptron neural network Sec. 2.3.3
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networks (radial basis function-based networks, RBF, and
multilayer perceptron, MLP).

2.3.1 Multiple linear regression

To estimate temperature T at the target site by multiple linear
regression (MLR), a weighted average of the predictors
Pi, i=1,…,M was computed as follows:

bT ¼ α0 þ
X
i¼1

M

αi Pi ð1Þ

Coefficientsαiwere determined tominimize the sum of the

squared errors bT−T over the training period of data. MLR is
one of the most commonly used downscaling techniques,
offering easy implementation and high computation speed.
On the other hand, in its basic form, this method lacks skill
to describe even simple non-linear relations between predic-
tors and predictand.

2.3.2 Local models

It has been shown (e.g. contributions in Ott et al. 1994) that
linear mappings can be used to realistically approximate
dynamics of even strongly non-linear systems, providing
that linear models are applied locally for just small
sections of the phase space. Here, a separate linear
mapping in the form of Eq. 1 was created for each
day in the validation part of data. The respective coef-
ficients αi were computed from a set of NL days from
the calibration period when the state of the regional
weather system most resembled the one for the proc-
essed day. The similarity of individual states was mea-
sured by the Euclidean distance of the respective vectors of
predictors, x=(P1,P2,…,PM). This method of locally
linear models (LLM) represents a relatively straightfor-
ward generalization of linear regression, able to take
potential non-linear components of the predictors-
predictand relation into account. NL was set to 500 days
for all computations here (i.e. roughly 5 % of the size
of the training period).

The second employed variant of the local model technique,
the method of locally constant models (LCM), was based on
an even simpler principle: the closest synoptic situation in the
calibration segment of data was identified (again, using
Euclidian distance of the vectors of predictors), and the cor-
responding value of the predictand (here, maximum or mini-
mum temperature) was used as the estimate of downscaled
temperature. In the atmospheric sciences, this approach is
usually recognized as the method of analogues (e.g. Zorita
and von Storch 1999).

2.3.3 Neural networks

Two architectures of artificial neural networks (NNs) were
employed (their detailed description can be found, e.g., in
Haykin 1999). The first one, the radial basis function (RBF)
neural network was built around neurons whose activation
decreases with the distance of the input vector of predictors x
from reference input vectors xn,n=1,…,NR. The respective
transfer function can be expressed as follows:

bT ¼ w0 þ
X
n¼1

NR

wnexp − x−xnk k2= 2σ2
� �� �� �

ð2Þ

Weights wn were optimized to minimize the error for the
training part of the data by the least squares method. Vectors xn
were randomly sub-sampled from the training set. NR

was set to 200, widths of the radial functions were kept fixed
at σ2=50.

The second type of neural network, multilayer perceptron
(MLP), was implemented in a form with a single hidden layer,

bT ¼ w0 þ
X
n¼1

NM

wntanh v0n þ
X
m¼1

M

vmn Pm

 ! !
ð3Þ

where vmn and wn represent weights of connections between
neurons in the input and hidden layer and in the hidden and
output layer, respectively, and NM denotes the number of
neurons in the hidden layer. The training, initiated from ran-
dom values of wn and vmn, was carried out by the error back
propagation procedure run for a pre-determined number of
1,000 epochs. The optimum combination of the network’s
complexity (determined by the number of connections be-
tween neurons) and the number of iterations of the learning
procedure was identified by tests carried out for a few trial
settings. The networks in the applied configuration suffered
from just a mild over learning or under learning, the sensitivity
to the initialization of weights was small, and the presented
results are therefore based on just a single realization of the
MLP NN model.

2.3.4 Settings of SDS models

A crucial issue related to the application of all above-
described forms of downscaling models is the selection of
input variables. The number of potential predictors is large in
the ERA-40 data, but the high correlation between series from
nearby locations makes the actual information content sub-
stantially smaller. Only a small fraction of the available pre-
dictors was thus needed to enter the regression: typically about
10 to 20 predictors were enough to lower the out-of-sample
RMSE close to its absolute minimum. Due to this fact, and to
provide a better mutual comparability of results, all SDS
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models were built with the same number of predictors, 15. A
step-wise procedure based on the multiple linear regression,
adding variables to minimize RMSE in each step, was applied
to identify the suitable structure of input data. The predictors
were drawn from ERA-40 reanalysis series of temperature at
the 850-hPa level, geopotential height of the 500-hPa level,
and relative humidity at the 700-hPa level, in the area bounded
by 40° N, 60° N, 0° E, and 30° E, with a 2.5° step (Fig. 1d).
The selection was performed individually for each combina-
tion of predictand (maximum or minimum temperature) and
target location (i.e. grid point or weather station). While it
would be ideal to carry out the selection of predictors sepa-
rately for individual methods, the numerical demands of non-
linear mappings are too high for repeated computations, and
the same predictor sets were therefore employed in all the five
SDS methods. The mappings were constructed for the year as
a whole, without separating individual seasons or months. All
predictors were used in a normalized form.

2.4 Validation criteria

We subject the downscaling models to the evaluation accord-
ing to the following three groups of criteria: their spatio-
temporal structure, characteristics of their distributions, and
the correspondence of their time series to observations.

The temporal structure is quantified by autocorrelations
lagged by 1 day (we refer to it as ‘persistence’ for simplicity).
The spatial structure is quantified by spatial correlations (here-
after referred to as ‘autocorrelations’). In both cases, the
calculations are conducted for anomalies from the mean an-
nual cycle, and the Pearson correlation is used.

Statistical distributions of downscaled temperature vari-
ables are characterized by their skewness, defined as a stan-
dardized third moment, and kurtosis, defined as a normalized
fourth moment. Both these characteristics are equal to zero for
a Gaussian distribution. Skewness provides a measure of
asymmetry, its negative (positive) value indicating a heavier
left (right) tail of a distribution. Kurtosis is a measure of the
peakedness of a distribution, its negative (positive) values
suggesting a flatter (more peaked) maximum with light
(heavy) tails. We also validate the 5th and 95th percentiles,
corresponding to moderate extremes, which are potentially
relevant in various impact sectors.

Furthermore, we employ two measures of correspondence
between downscaled and observed temperatures. Correlations
measure the fit of models to the reality, focusing on short time
scales; Pearson correlation coefficient is used. On the other
hand, linear trends were calculated in observed and down-
scaled values by regressing seasonal mean values against
time. Their comparison provides information on how well
the models describe a longer-term behaviour of temperature.

All criteria are evaluated for both maximum and minimum
temperatures, for the year as a whole and for winter (DJF) and

summer (JJA) separately and both against the gridded and
station-observed dataset. The RCM outputs are defined
on the gridded dataset only; we decided to avoid their
interpolation onto the station network; therefore, both
ALADIN and RegCM are evaluated against the gridded
observations only.

3 Spatio-temporal structure

3.1 Persistence

Persistence of maximum temperature for the whole year is
mapped for all downscaling models at both networks (gridded
and station-based) in Fig. 2.

First, let us compare the two networks. Obviously, the
gridded data yield more spatial details thanks to its higher
spatial resolution, especially in the areas with complex terrain,
such as Slovakian mountains and foothills in the northeast.
Apart from the finest scale, there is a very good agreement
between the gridded and station-observed dataset: lower
values in the west, with several spots of persistence
values below 0.72; highest values at the northeast and
southeast corners, with an area of decreased persistence
near Bratislava where borders of Slovakia, Austria, and
Hungary connect. A similarly satisfying agreement be-
tween the gridded and station datasets can be seen for
all the SDS models.

The MLR model overestimates persistence over almost all
the domain. There is a tendency to a weaker overestimation by
the LLM, RBF and MLP models; their patterns of persistence
are very similar to each other, with a lack of west–east gradient
seen in the observations. The LCMmodel is unable to capture
the correct level of persistence, severely underestimating it.
The ALADIN RCM generally underestimates persistence,
with the lowest values located in the southwest, whereas
RegCM seems to be closer to the observed values, with an
underestimationmainly in Austria and central Slovakia and an
overestimation in the northwestern part of the domain. In
order to better document the degree of agreement between
the models and observations, differences in persistence be-
tween the models and observations were calculated at all
gridpoints, and their histograms were plotted (Fig. 3).
Clearly, the MLR model overestimates persistence at almost
all gridpoints, while the overestimation by the LLM model
(and, very similarly, by the RBF andMLPmodels, not shown)
is less ubiquitous, although still notable. The general under-
estimation of persistence by the ALADIN RCM and an am-
biguous signal of the RegCM with a prevailing slight overes-
timation, accompanied by a much less frequent, though stron-
ger underestimation, can also be seen. The comparison con-
ducted for station datasets yields very similar results and is not
shown here.
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Persistence values for all the methods are summarized in
box-and-whisker plots in Fig. 4. We discuss results for the
whole year first (Fig. 4 top). For observations, persistence is
slightly lower in the station data; nevertheless, results for the
observed and gridded data agree well with each other, with
persistence for the station data tending to be slightly
lower for all SDS methods. This can be seen as a
supporting argument for considering both the datasets
as equivalent, both representing the real climatic fea-
tures. The LCM model clearly leaves the line: it severe-
ly underestimates the persistence. Other SDS models over-
estimate it, the MLR method exhibiting the highest persis-
tence of all downscaling methods for maximum temperature,
but lowest (together with MLP) for minimum temperature.
Minimum temperature has lower persistence than maximum
temperature; this feature is reproduced by all the models
except for RegCM.

The seasonal analysis (Fig. 4 bottom) suggests that the
general overestimation of persistence is mainly a reflection
of summer conditions when all the models overestimate the
persistence rather strongly, and more so for minimum temper-
ature. The considerably lower persistence of minimum than
maximum temperature in summer is reproduced by the SDS
models, though with much smaller difference (except for the
outlying LCM model), whereas both RCMs incorrectly sim-
ulate summer persistence of minimum temperature higher

than that of maximum temperature. In winter, the persistence
of maximum temperature is well simulated by MLR whereas
being underestimated by all other models; on the other hand,
the persistence of minimum temperature is underestimated by
the ALADIN andMLRmodels while being well simulated by
other models (aside from LCM again).

3.2 Spatial autocorrelations

Spatial autocorrelations were calculated for all pairs of
gridpoints and all pairs of stations. Figure 5 brings an example
of autocorrelations of maximum temperature with the
northwestern-most point (49.78° N, 14.00° E) and station
(Neumětely, 49.85° N, 14.04° E) for the whole year. The
features displayed here are typical of autocorrelations with
other base points or stations. Similarly to persistence, we can
see more details in gridded data in the areas with complex
terrain, except for RegCM. Apart from these fine structures,
differences between the gridded and station datasets are only
very minor again.

In observations, the autocorrelation drops gradually from
the reference grid point/station to values of slightly over
0.70 at the opposite southeastern edge of the domain. The
LCM model manifests a drastic underestimation; all other
SDS models overestimate the autocorrelations, that is, the
decline of autocorrelations with distance is slower than in
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reality, the error being largest for MLR. Concerning the
RCMs, RegCM exhibits a fairly realistic behaviour, while in
ALADIN, the decrease of autocorrelation with distance is too
fast.

In the following, we summarize autocorrelations for all
pairs of gridpoints or stations by plotting the autocorrelation
values against the distance between the sites. Such plots

typically display diffuse clouds of points; therefore, in order
to better visualize the dependence on distance, exponential fits
to the data are added to the plots. First, the observed data are
compared between the gridded and station dataset for mini-
mum temperature and whole year (Fig. 6). Both fitted expo-
nentials are fairly close to each other, with a difference of
about 0.02, which is almost constant across the whole range of
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distances. The same plot for maximum temperature shows an
even closer agreement, the two exponential fits being almost
identical for short distances and differing by a maximum of
0.01 for the longest distances (not shown). Analogically to the
persistence, the high similarity in the autocorrelation plots
between the two datasets allows us to take them as equivalent.
Therefore, we only present results for the gridded dataset here
without any loss of generality.

Figure 7 displays autocorrelation plots for both tempera-
tures, for the whole year (top panels) and the two seasons
(bottom panels). A comparison of the top panels reveals that in
reality, the autocorrelations are slightly lower for minimum
temperature than for maximum temperature. The LCMmodel
underestimates the autocorrelations severely, other SDS
models overestimate them, the LLM, RBF and MLP models
being quite close one to another especially for maximum
temperature. The overestimation is larger for MLR. Of the
two RCMs, RegCM seems to perform slightly better,
overestimating the autocorrelation for minimum temperature
(with a smaller error than the SDS models especially for long
distances) and being almost correct for maximum tempera-
ture. ALADIN underestimates autocorrelations for both
temperature variables.

The bottom panels of Fig. 7 provide an insight into the
seasonality of the performance of the models in terms of
autocorrelations. The LCM model is again an outlier in all
cases; similarly to persistence, its autocorrelations for maxi-
mum temperature in JJA are considerably higher, but still
remain, except for the longest distances below any other
model. In general, RCMs seem to do a better job than SDS
models in simulating autocorrelations. All SDS models over-
estimate the autocorrelations (except for the shortest distances
and except for outlying LCM), MLR being the model for

which the overestimation is strongest in all cases. The perfor-
mance of the LLM, RBF andMLP SDS models is again fairly
similar. In winter, a systematic error is apparent in both RCMs:
ALADIN underestimates, while RegCM overestimates the
autocorrelations. In summer, the RCMs are unable to repro-
duce the diurnal cycle of autocorrelations, while in reality and
in SDS models, the autocorrelations are higher for maximum
temperature; ALADIN makes no difference between them
(the two blue lines in Fig.7d almost coincide) and RegCM
even simulates minimum temperature to autocorrelate more
strongly.

4 Statistical distributions

In this section, we present the validation of several character-
istics of statistical distributions of both temperature variables.
Specifically, we discuss skewness and kurtosis, and also the
5th and 95th percentiles as descriptors of extremes. We dis-
play results for the gridded dataset only because results for the
two datasets are very similar, analogously to the temporal and
spatial autocorrelations, and their presentation would thus be
redundant.

Figure 8 containsmaps for low temperatures (5th percentile
of minimum temperature) in winter and high temperatures
(95th percentile of maximum temperature) in summer. The
observed values clearly reflect terrain features and the eleva-
tion in particular. In winter, extremely low temperatures are
warmest in the lowlands of Lower Austria (easternmost part of
Austria in the analysis domain), while coldest low tempera-
tures are observed in the Slovakian mountains (northeastern
edge of the domain), Czech-Moravian highlands (north-
west of the domain) and in particular in the Bohemian
Forest along the border of Germany. In summer, ex-
tremely high temperatures are hottest in the Hungarian
and Slovakian lowlands, while they are least hot in the hilly
and mountain areas of central Slovakia, Czech Republic and
also along the borders of the Czech Republic with Austria and
Germany.

All the models reproduce the major features of the extreme
temperature patterns. However, their majority simulate the
extremely cold events too warm and extremely warm events
too cool. The only exception is the LCM SDS model for
winter low temperatures and the ALADIN RCM for summer
high temperatures. However, ALADIN exhibits another defi-
ciency in the spatial variability of extreme temperatures: the
low minima in winter are too little spatially variable while the
gradient in the high maxima in summer is considerably exag-
gerated. All these effects can also be seen in box-and-whisker
plots in Fig. 9. The overestimation of the 5th temperature
percentile (that is, the left tail being simulated too short or
light) in winter is much less pronounced in maxima (for which
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the errors generally remain below 1.5 °C) than in minima
(for which the errors are between 1 and 3 °C except LCM). In
summer, SDS models underestimate high summer temperature
quantiles, the error being stronger for maximum temperature;
ALADIN exaggerates regional variations of the 95th percen-
tile, while RegCM underestimates the 95th percentile of max-
imum temperature.

Skewness and kurtosis do not manifest any clear geograph-
ical structure over the domain, their spatial patterns being
more or less chaotic; therefore, displaying maps would be
redundant. We present results of their validation in terms of
box-and-whisker plots only.

Observed minimum temperature is negatively skewed
(Fig. 10), more in winter and less in summer, indicating a
heavier left tail of its distribution. This feature is reproduced
by all the models, RegCM underestimating it (i.e. producing
overly symmetric statistical distributions) in both seasons.
This underestimation is present in minimum temperature out-
puts from ALADIN and MLR in DJF; both models reproduce
minimum temperature skewness correctly in JJA. The

underestimation of the negative skewness by both RCMs in
winter appears to be the cause of too warm 5th minimum
temperature percentiles reported above. LLM, RBF and MLP
models are successful in a correct reproduction of skewness in
both seasons. Observed maximum temperature is skewed
slightly positively in both seasons. No model reproduces this,
most of the models producing skewness near zero. RegCM
outputs exhibit an unrealistically large range of skewness
values in summer.

Kurtosis (Fig. 11) in summer is negative (i.e. the distribu-
tion is less peaked than Gaussian, with thinner tails) for
both minimum and maximum temperatures. This is
more or less reproduced by all the models; only maxi-
mum temperature in RegCM possesses kurtosis of the
opposite sign. In winter, kurtosis is mostly positive for
minimum temperature, which is again reproduced by most
models except ALADIN and MLR. Near-zero kurtosis of
maximum temperature with a tendency towards negative
values is correctly simulated by all the models except LCM
and, in summer, RegCM.

Fig. 7 Dependence of autocorrelation on distance for the gridded dataset.
Dots correspond to individual grid point/station pairs, bold lines are
exponential fits: observed (black), ALADIN (blue), RegCM (green),
MLR (red), LLM (violet), LCM (brown), RBF (orange) and MLP

(yellow). Top left: whole year, minimum temperature; top right: whole
year, maximum temperature; bottom left: DJF, both temperatures; bottom
right: JJA, both temperatures. In the bottom panels, dots are omitted, and
solid (dashed) lines correspond to maximum (minimum) temperature
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5 Fit to observations

Maps of correlations of downscaled temperature series with
gridded observations are presented in Figs. 12 and 13 for
winter and summer, respectively. Equally to the previous
sections, results for station data are almost identical and are
therefore not discussed here. As in most other criteria, LCM is
an outlier among the SDS models, performing much worse
than other models. The seasonality of performance is opposite
between the SDS models and RCMs: while the SDS models
exhibit higher correlations in summer, the RCMs are more
correlated with observations in winter. In general, the perfor-
mance of SDS models and RCMs is comparable in winter
whereas SDS models are much better in terms of the fit to
observations in summer, especially for maximum tempera-
ture, for which correlations exceed 0.95 at some places. One

can note an altitudinal dependency of correlations. SDS
models tend to have better fit to observations in elevated areas,
especially in Slovakian mountains and along the Czech south-
western borders. The opposite is true for RCMs: they tend to
correlate worse in mountainous areas. Continentality also
plays a role, in particular for maximum temperature in both
RCMs in both seasons and in all SDS models in winter: a
tendency for a better performance in a more maritime
(western) area can be observed.

The evaluation of trends in Fig. 14 should be considered as
more or less tentative because only relatively short 10-year
series for the 1991–2000 period are examined. Wintertime
minimum temperature has increased, and this feature is
reproduced by all the models; only RegCM exaggerates the
increase rate by a factor of more than two. On the other hand,
winter maxima almost do not change; however, all the models
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simulate warming of more than 1 °C per decade, except
ALADIN where the warming is less fast. As a result,
most models are not capable of reproducing the ob-
served negative trend in daily temperature range. In
summer, a near-zero trend in minimum temperature, with
a slight tendency to cooling at the majority of stations, is more
or less reproduced by most models, except ALADIN simulat-
ing a ubiquitous cooling of about −1 °C per decade and LCM
simulating slight warming. A decrease of maximum temper-
ature in summer by slightly less than 1 °C per decade is
reproduced by all the models, although most of them slightly
overestimate the cooling.

6 Discussion

A parallel validation against a dense station network and a
regular grid demonstrates that results obtained on the gridded
data bear great similarity (and, in many cases, are almost
identical) to results obtained on the station data. Therefore,
our results confirm that using a gridded dataset as a validation
base is a valid approach and that the gridded dataset is equiv-
alent to station data for the validation criteria employed.

In most of the following text, we leave the LCM SDS
model aside because its performance is considerably inferior
inmany criteria, this issue being discussed briefly in a separate
paragraph.

The fact that both SDS and RCMs were driven by the same
reanalysis data made it possible to quantify the fit of down-
scaled data to observations. A strong seasonality appears in
the correlations of downscaled temperature with observations:
while the performance of RCMs and SDS models is of com-
parable accuracy in winter, SDS models are much more suc-
cessful in reproducing day-to-day temperature variability in

summer. The only previous study that conducted a similar
analysis for temperature we are aware of is Kidson and
Thompson (1998). That study for New Zealand, however,
arrived to somewhat different conclusions: an RCM was
slightly better than an SDSmodel, but only an annual analysis
was performed there. The geographical dependence of the
skill of SDS models agrees with results of previous studies
(e.g. Huth 2002): SDS models tend to perform better where
the locations are influenced by upper-air atmospheric circula-
tion more directly, that is, at higher altitudes in particular.
Although the correlations in RCMs exhibit strong gradients
in mountainous areas, too, the tendency towards a better
performance at higher elevations is weaker than in SDS
models or is completely absent.

The climate change proceeds on time scales much longer
than day-to-day; therefore, the reproduction of long-term be-
haviour of climate elements is also of considerable impor-
tance. The long-term behaviour was characterized by linear
trends; the overall performance of RCMs and SDS models is
of comparable quality in this respect. In light of a strong
tendency to the underestimation of trends, noticed by Lorenz
and Jacob (2010) in the ENSEMBLESRCMs driven by ERA-
40 reanalysis, the most important finding is perhaps that the
downscaling models do not underestimate the amplitude of
trends wherever a non-zero trend is observed in reality. An
opposite is sometimes true: some models exaggerate the mag-
nitude of trends in one season for one temperature variable.
Although the generality of these findings is limited because
the analysis of trends is based on fairly short time series, our
results agree with other studies validating trends in RCMs
(Giorgi et al. 2004; Lorenz and Jacob 2010; Bukovsky 2012;
Ceppi et al. 2012), which also point to an unsatisfactory
reproduction of trends. However, it is not clear if it is the
RCMs that can be blamed for the unsatisfactory reproduction
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of trends. It is equally well possible that a wrong behaviour of
trends is concealed in the driving reanalyses, and RCMs only
transfer it to the surface climate variables.

We present results of two kinds of validation: one for a
whole year and the other for specific seasons (winter and
summer). Their comparison suggests that an annual validation
is likely to conceal seasonal peculiarities and that its interpre-
tation may be misleading. Let us take persistence of minimum
temperature as an example: whereas annual results suggest its
overestimation by all the models, the seasonal validation re-
veals that the overestimation takes place in summer only; in
winter, no model overestimates it. Therefore, we strongly rec-
ommend to conduct the validation studies on a seasonal basis.

It should be emphasized that the SDSmodels were built for
the whole year. It is very likely that SDS models built
separately for each season would lead to further im-
provements in their skill because a better (season-
specific) description of links between large-scale fields and
local climate could be achieved. On the other hand, this may
lead to problems in applications to future climates when
seasonality will change.

It is also of interest to compare the performance of linear
(MLR) and non-linear (LLM, RBF, MLP) SDSmodels. There
is a great deal of similarity between them. Unlike Huth et al.
(2008), we do not observe any superiority of non-linear
methods in reproducing characteristics of temperature distri-
butions: the accuracy of simulation of extremes, skewness and
kurtosis does not differ between the two groups of methods. It
is not clear to us what may be the source of different relative
performances of linear and non-linear methods between this
study and Huth et al. (2008). It may be worth noting that the
linear model yields consistently higher spatial autocorrelations
than the non-linear models, but this does not hold for persis-
tence nor for any other validation criterion. Furthermore, we

may notice that the validation results of the three non-linear
methods are fairly close to each other in most cases.

The overestimation of the 5th percentile by SDS models in
winter is accompanied by the underestimation of the 95th
percentile (not shown); analogously, the underestimation of
the 95th percentile in summer is accompanied by the overes-
timation of the 5th percentile (not shown). The main cause of
this behaviour is the underestimation of the variance inherent
in SDS models if variance is not corrected by inflation or
another tool. The exaggeration of autocorrelations, both tem-
poral and spatial by SDS models, reported in previous studies
(Easterling 1999; Huth 2002; Huth et al. 2008), does not
appear to be ubiquitous. While it is present in spatial autocor-
relations in both seasons, persistence is overestimated in sum-
mer only, but simulated correctly or even underestimated in
winter. The seasonality in the performance of persistence is in
a good accord with the results of Huth et al. (2001). A
commonly suggested remedy to the overestimated persistence
in SDS models is the addition of white noise. In the light
of our results, the noise to be added to downscaled time
series should be spatially uncorrelated, but temporally
correlated; only such a setting may reduce spatial auto-
correlations to realistic values while not further reducing
persistence. Recent SDS studies, going this direction,
introduced combinations of deterministic and stochastic
models, able to correctly reproduce temporal and spatial
autocorrelations (Khalili et al. 2013). Nevertheless, such
targeted models improve one or a few characteristics
only, leaving other characteristics unchanged or even
deteriorating them.

The only SDSmodel not suffering from the underestimated
variance, manifested in systematic errors in the extreme per-
centiles, is LCM. The reason for this behaviour consists in the
fact that it is an analog model, which is able to sample the
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whole range of observed values. However, the sampling in
LCM is not optimal because it does not reproduce correctly
either of the higher-order statistical moments. The strong
underestimation of both measures of autocorrelation by
LCM is a direct consequence of the fact that it is an analog
model: The analogues are selected independently for each day
and for every site; the analog procedure does not contain any
mechanism for keeping the autocorrelations realistic.
Therefore, the analog models cannot be recommended when-
ever the temporal consistency (and also spatial consistency if
the downscaling is conducted at each station (gridpoint) sep-
arately) is an issue.

Deficiencies of RCMs cannot be explained by simple
statistical arguments as those of SDS models. We notice an
overestimation of the 5th temperature percentile by both
RCMs in winter, while in summer, RegCM underestimates
the 95th percentile of maximum temperature, and ALADIN
exaggerates its regional variations for both temperatures. A
usual reason for such a kind of discrepancy, the difference in
the elevation between a model’s grid and station data against
which the model is validated, does not seem to be a main
factor because these differences are rather small for the RCMs
thanks to their high spatial resolution, in which the model
topography approximates the real one fairly well. Deficiencies
in the performance of the RCMs can, in general terms, be
attributed to the formulation of their dynamical cores and
physical parameterizations. Since the two RCMs use different
parameterizations for all major physical processes, it is hardly
possible to trace the differences in their performance to a
specific physical process. The relative lack of correspondence
between observed and simulated temperatures in terms of low
correlations suggests that the boundary forcing in summer is
too weak to keep the simulated climate close to observations,
allowing RCMs to develop their own small-scale climatology
that deviates from reality. The fact that this effect appears in
summer and not in winter, and is stronger in ALADIN than in
RegCM,may facilitate the localization of the cause in the
RCMs’ codes. The underestimation of persistence by an
RCM in winter and overestimation in summer was
reported already almost 20 years ago by Mearns et al.
(1995); RCMs do not seem to have improved in this
respect since then. Smoother fields of persistence and auto-
correlations in RegCM relative to ALADIN, as well as to all
other models and observations, are difficult to interpret since
both RCMs were subjected to the same procedure of double
nesting, with the intermediate models having a 25-km
resolution.

This study investigates differences between the down-
scaling models driven by reanalyzed data, that is, in
current climate conditions. Of course, the structure of
differences will likely be different when the downscal-
ing models are embedded in GCM simulations of current or
future climates.

7 Conclusions

In this study, we validate minimum and maximum tempera-
ture in two RCMs and five SDS models (one of which is
linear, two are non-linear based on artificial neural networks
and two are local models, which in fact are also non-linear,
and one of the local models is effectively an analog model)
according to a unified set of criteria that have a potential
relevance for impact assessments. The validation is performed
for the following three groups of criteria: spatio-temporal
characteristics, characteristics of statistical distributions
(extremes, higher-order moments), and the degree of fit to
observed data. The validation is conducted both on a dense
station network and a regular grid with a high resolution of
10 km in central Europe. Therefore, the innovative value of
this study is fourfold: (1) it provides a mutual comparison
between dynamical and statistical downscaling methods; (2)
concentrates on characteristics that have only rarely been
validated, but which are potentially relevant to impact studies;
(3) the validation is conducted on a very dense network; and
(4) station and gridded datasets are compared as validation
benchmarks.

The validation of downscaling models in terms of various
characteristics of minimum and maximum temperature is
summarized in Fig. 15. One can see that all the models
succeed in some criteria while fail in others. Their perfor-
mance differs between seasons, and to a somewhat lesser
extent, also between minimum and maximum temperature.
Clearly, no model or group of models can be considered
superior (or, alternatively, inferior) to others. And, more spe-
cifically and perhaps more importantly, our results provide no
justification for preferring dynamical models at the expense of
statistical models—and vice versa.

The users of climate change scenarios may wish to see
clear recommendations as to which methods to use and which
methods to condemn. Our result, however, do not allow an

persist autocor extremes skew kurt trends 

ALADIN 

RegCM 

linear SDS 

nonlinear 
SDS 

Fig. 15 Overview of the validation analysis. Each row corresponds to a
model or a group of models; linear SDS includes MLR; non-linear SDS
includes LLM, RBF and MLP. LCM is omitted as an outlier in most
validation criteria. Each column corresponds to one validation criterion.
Every entry of the table consists of four squares: left (right) for DJF (JJA);
top (bottom) for minimum (maximum) temperature. Red (blue) denotes
overestimation (underestimation), dark (light) colour indicating strong
(weak) under-/overestimation. Grey denotes no or negligible error. For
extremes, the underestimation (overestimation) means too small (too
large) amplitude
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unambiguous guidance to be provided, perhaps except an
advice not to use the analog LCM model, which is inferior
in most aspects. It is advisable that climate change impact
studies utilize ensembles of scenarios coming from different
downscaling methods, thereby partially eliminating their
weak points or choosing a downscaling method best fitting
their needs: e.g. in hydrological applications on a spatial scale
of a catchment where spatial structure is relevant, downscaling
models capable of replicating spatial autocorrelations are
recommendable.

Finally, please recall that all results presented here hold for
temperature; for other climate variables such as precipitation,
the outputs and recommendations may be different.
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Abstract

This paper deals with the behavior of the annual cycle of total ozone (ACO3) and its amplitude (O3AMP) in the latitudinal belt from
20�N to 60�N. The prominent feature of the O3AMP spatial pattern is the sharp maximum over the north-east coast of Asia. The spatial
correlation of O3AMP with its highest/lowest value varies with location: in the middle latitudes it correlates predominantly with the values
of annual maxima of total ozone, while in the lower latitudes, there is a strong negative correlation with the values of ACO3 minima.
Regarding temporal evolution of O3AMP we detected distinct negative trend in the period of 1979–1995 which is caused by stronger neg-
ative trend of maxima than the negative trend of minima in ACO3. In the period 1995–2008 we found the positive trend of ACO3 in most
regions due to stronger positive trend of maxima than that of minima in ACO3 in the middle latitudes (especially over the central and
northern Europe and the north-east Asia). In the lower latitudes a weak negative trend of O3AMP was identified and linked to weaker
positive trend of maxima than positive trend of minima in ACO3. The behavior of the temporal trends was linked to the changes in
Brewer–Dobson circulation and to the trends of tropopause pressure.
� 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Annual cycle; Total ozone; Trends in annual cycle; Long-term trends

1. Introduction

Ozone is an important trace gas in the atmosphere.
Chapman (1930) hypothesized that UV radiation plays a
crucial role in ozone photochemistry. The atomic oxygen
is formed by dissociation of oxygen by solar photons. It
is very reactive and thus quickly combines with the molec-
ular oxygen to form ozone. Ozone absorbs UV radiation
and protects the life on the Earth. Ozone is destroyed not
only by absorption of UV radiation but also by reactions

with chlorine, bromine, hydrogen and nitrogen in the
atmosphere (e.g. Mohanakumar, 2008).

The first studies concerning the influence of halocarbons
on total ozone appeared in the first half of the 1970s (Moli-
na and Rowland, 1974; Stolarski and Cicerone, 1974). The
authors pointed out that the man-made ozone depleting
substances (ODS) in the atmosphere could destroy ozone
layer. In the late 1980s, a decreasing trend of total ozone
was observed even in the middle latitudes of both hemi-
spheres (Rowland et al., 1988). Similar results were
obtained by Bialek (2006) who found the negative trend
of total ozone to be strongest in winter/spring and weakest
in autumn for period 1980–2003. This negative trend was
related to increasing of ODS in the atmosphere. In 1985,
the ozone hole over Antarctic region was discovered
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(Farman et al., 1985) as the strongest manifestation of
influence of ODS on ozone layer. This discovery led to
the international effort which resulted in the Montreal Pro-
tocol in 1987 with amendments in the following years. In
the mid-1990s a turnaround of trend in total ozone was
observed in the northern middle latitudes. This change
has a dynamical origin because ODS in the stratosphere
peaked in the late 1990s, not in the mid-1990s (Dhomse
et al., 2006). Due to this change a simple linear trend of
total ozone is not proper from the mid-1990s. A piecewise
linear trend is proposed to be used (Reinsel et al., 2002).
Krzyścin (2011) compared classical regression model,
piecewise regression model and flexible trend model and
he concluded that all models give significant positive trend
in the period 1996–2008 for the total ozone averaged over
the globe in boreal winter.

The annual cycle is a major component of the global
ozone variation. In the middle latitudes we observe a max-
imum of the annual cycle in late winter/early spring and a
minimum in summer/fall. This annual cycle is substantially
affected by the Brewer–Dobson circulation which trans-
ports ozone from the tropics to high latitudes. The
Brewer–Dobson circulation is stronger in the winter hemi-
sphere than in the summer one.

This paper deals with the spatial distribution of annual
cycle of total ozone in latitudinal belt from 20�N to
60�N, the dependence of annual cycle on its annual
extremes, temporal trends of annual cycle of total ozone
and its components and possible links of the detected
trends to changes of temperature at 100 hPa and tropo-
pause pressure. We look for change in trends of annual
cycle of total ozone and its components in the mid-1990s.
Section 2 treats the data and method, Section 3 gives the
main results, Section 4 provides the discussion of the
results and Section 5 summarizes the conclusions.

2. Data and method

Monthly averages of total ozone are taken from the
TEMIS datasets at http://www.temis.nl/protocols/O3glo-
bal.html. More about the TEMIS datasets can be found
in van der A et al. (2010). Monthly means of total ozone
in the period 1978–2008 are available in this database but
we took into account only period 1979–2008 because the
regular satellite observations of total ozone started in Octo-
ber 1978 and we wanted to have observations of total
ozone in each month of the year. The TEMIS ozone data
are available in regularly positioned grid points, spaced
1.5� in longitude and 1� in latitude. Maximum (minimum)
in the annual cycle was computed as maximum (minimum)
from monthly means of total ozone from the given year
and amplitude of annual cycle was determined as difference
between these two extremes.

This paper is done in the framework of cooperation
between the Czech and Chinese Academy of Sciences and
thus we are predominantly interested in distribution and
trends of the amplitude of the annual cycle of total ozone

(ACO3) over Europe and the territory of China. Since
the latitude of the southernmost point of continental China
is about 20�N and the latitude of northernmost point is
about 53�N, we select a belt bounded by 20�N and 60�N.
We did not want to apply any artificial borders, so we per-
formed the analysis for the whole range of longitudes.

In order to identify trends in the values of annual cycle
extremes piecewise linear regression was employed with the
breakpoint in 1995 reflecting the change in the total ozone
trend in the mid-1990s. This procedure was performed not
only for annual cycle of total ozone but also for its yearly
maxima and minima as well as for maxima and minima of
two potential covariates: temperature in the 100 hPa level
and pressure at the tropopause, both of which were
obtained in the 2.5 to 2.5� horizontal resolution from the
NCEP/NCAR reanalysis dataset (Kalnay et al., 1996).
The trend estimation procedure was carried out individu-
ally for each grid point.

3. Results

The geographic distribution of the amplitude of annual
cycle of total ozone (O3AMP) in the latitudinal belt from
20�N to 60�N is shown in Fig. 1a. The lowest values of
O3AMP occur in the subtropics (about 40–60 D.U.). There
is an increase towards higher latitudes where the amplitude
typically exceeds 100 D.U. with strong longitudinal varia-
tion. The highest values are observed poleward of 45�N
near 150�E (Okhotsk Sea region). In this maximum
O3AMP reaches more than 140 D.U. compared to the min-
imum at the same latitude over the northern Atlantic ocean
(less than 100 D.U.).

The amounts of ozone in the maximum of ACO3
(O3MAX) are shown in Fig. 1b. The observed pattern
strongly resembles that of Fig. 1a, i.e., the behavior of
O3AMP is similar to behavior of ACO3 maximum. The low-
est values of O3MAX are observed in low latitudes (about
300 D.U.), and they increase towards the pole as well as
well as their longitudinal variations. The global maximum
is found at about 55�N and 150�E (460 D.U.). The most
profound longitudinal variations of O3MAX (about
80 D.U.) are detected along 55�N with the highest values
observed near the Okhotsk Sea and the lowest ones over
continental Europe and Asia and eastern Atlantic.

The lowest amounts of ozone in the ACO3 minima
(O3MIN) are again observed in subtropical regions
(Fig. 1c). There is an increase with latitude but not so strong
as in the case of O3MAX. The Okhotsk Sea maximum is less
pronounced, broader and shifted eastward. The maximum
over Canada (55�N, 70�W) is better visible in the values of
minima in ACO3 than in the case of its maxima.

Pearson correlation coefficient has been computed to
quantify the strength of the link between O3AMP and values
of its maxima and minima at each latitude (Fig. 2). The
correlation between O3AMP and O3MAX is positive for all
latitudes, within the range from 0.4 at 20�N to more than
0.9 north of approximately 40�N. The correlation is
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statistically significant at the 95% confidence level north-
ward of about 35�N.

The latitudinal dependence of correlation between
O3AMP and O3MIN is more complicated. We observe signif-
icant negative correlations equatorward of 28�N and signif-
icant positive correlations poleward of 42�N. From 28�N
to 42�N the correlation is weaker and statistically insignif-
icant. The maximal positive correlation between these vari-
ables is observed near 45�N with slight poleward decrease
similar to the case of maxima in ACO3. Confidence inter-
vals of the correlation coefficient in Fig. 2 are constructed
using bootstrap resampling; because of strong spatial

autocorrelation in the series, a correction for serially corre-
lated data was applied following the technique of Mudelsee
(2003).

Shape and phase of O3 annual cycle vary with geo-
graphic location. In Fig. 3 we can see months in which
ACO3 maxima (red circles) and minima (blue circles) are
observed in selected grid points. The ACO3 maxima typi-
cally occur in late winter/early spring in the middle lati-
tudes while in the subtropics they are shifted 2–4 months
towards summer. The middle latitudes ACO3 minima are
detected predominantly in fall while the subtropical ones
occur in winter. This temporal pattern is caused mainly
by the Brewer–Dobson circulation which transports ozone
rich air from tropics and leads to accumulation of ozone in
high latitudes in winter. This transport also results in
occurrence of ACO3 minima in subtropical region.

The trend of O3AMP in the period 1979–1995 is shown in
Fig. 4a. The grid points, in which the trend is significant at
the 95% level, are highlighted by dots (blue for the negative
trends, red for the positive ones; testing was done by boot-
strap resampling). The majority of grid points with signif-
icant decrease of O3AMP are located north of
approximately 40�N. The strongest negative trend is
observed over the eastern Asia in the area of the highest
amount of total ozone. Mostly insignificant change of
O3AMP is observed southward of approximately 35�N. A
positive trend of ACO3 can be seen at the majority of
the middle latitudes after the break point in 1995 and it
is statistically significant predominantly over Scandinavia,
central Canada and eastern Siberia (Fig. 4b).

4. Discussion

The highest values of O3AMP are observed at the eastern
coast of Asia due to very high values of total ozone in
O3MAX. We also observe the growth of O3AMP, O3MAX

and O3MIN with latitude. This increase can be explained

Fig. 1. Mean amplitude (a), maximum value (b) and minimum value (c) of the annual cycle of total ozone, for the period 1979–2008 (in Dobson units).

Fig. 2. Longitudinal correlation (vertical axis) of the mean amplitude of
the total ozone annual cycle with the mean values of the annual cycle’s
maximum (full line) and minimum (dashed line), computed for grid points
located at different latitudes (horizontal axis). The shaded areas show the
95% level confidence intervals.
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by the Brewer–Dobson circulation which transports ozone
rich air from low latitudes toward the pole. The circulation
is stronger in the winter hemisphere therefore the ozone
amount is greater in middle latitudes in late winter/early
spring than in summer/fall and thus the latitudinal gradient
of total ozone is stronger in winter than in summer. The
most pronounced feature of spatial distribution of
O3AMP is the strong maximum near the eastern coast of
Siberia. This maximum can be linked to a high value of
ozone in maximum of ACO3, already mentioned by
Dutsch (1973). Holton (1972) stated that when Rossby
waves propagate upward, we observe their westward tilt-
ing, and thus the elevated ozone near the eastern coast of
Siberia is caused by the Aleutian low which is situated east-
ward. The Island low is less pronounced in O3MAX. Lower
values of O3MAX over central Asia and Europe are related
to the presence of anticyclone in winter above Asia and to
asymmetric spatial expansion of polar vortex (WMO,
2002). In summer the elevated values of O3MIN are shifted
to the east, because no vertical propagation of Rossby
waves takes place due to the east winds in the stratosphere
(Charney and Drazin, 1961).

In Fig. 5a the trend of O3MAX during the years 1979–
1995 is shown. There is strong statistically significant
decrease except the subtropical latitudes. In the same per-
iod we observe weaker negative trend of ACO3 minima
which is statistically significant at smaller number of grid
points (Fig. 6a). The decrease of O3AMP is thus observed
due to stronger negative trend in O3 maxima than that of
O3 minima in 1979–1995.

In the period 1995–2008 the trend of O3MAX (Fig. 5b) is
reverted to positive poleward of 40�N and it is statistically
significant mostly in Europe. In central Asia the decrease of
O3MAX continues, but it is weaker in magnitude and not
statistically significant. In subtropical regions there are
insignificant negative trends of ACO3 maxima at majority
of grid points.

After 1995 we observe slight positive trend of O3MIN

(Fig. 6b) which is significant over northern Canada and
in some places in the subtropics. As the result of the evolu-
tions of O3MAX and O3MIN after 1995, the trend of O3AMP

is positive in middle latitudes due to stronger increase of
ACO3 maxima than that of ACO3 minima, but there is a
decrease of O3AMP in the subtropics due to negative trend
of O3MAX and positive trend of O3MIN.

The negative trend of ACO3 maxima in the period
1979–1995 is caused not only by the increasing level of
ozone depleted substances. The influence of stratospheric
dynamics, volcanic aerosols and solar activity must also
be taken into account. Fusco and Salby (1999) found that
the planetary wave activity in the stratosphere decreases in
the period 1979–1990. This phenomenon contributes to the
stable and cold polar vortex which produces more polar
stratospheric clouds and larger ozone loss.

Solomon et al. (1996) pointed out that the large volcanic
eruptions influence the lower stratospheric dynamics by
the absorption and scattering of solar radiations. The Mt.
Pinatubo eruption in 1991 caused low values of total ozone
in the early 1990s (Parrish et al., 1999). These low values have
large impact on trend analysis in the period

Fig. 3. Number of maxima (red) and minima (blue) of the annual cycle of total ozone occurring in individual months during the 1979–2008 period. The
results are shown for grid points located in the center of the shaded discs, with size of the coloured circles on their perimeters proportional to the absolute
frequency of the extremes.

Fig. 4. Temporal trends of the amplitude of total ozone annual cycle in Dobson units per year, computed for the periods 1979–1995 (a) and 1995–2008 (b).
Dots represent grid points with trends statistically significant at the 95% level.
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1979–1995, because they are situated near its end. According
to Hood et al. (1997) the separation of solar and volcanic
effects on total ozone is hard, because in the period 1979–
1995 both large volcanic eruptions occur in solar maxima
(El Chichón in 1982; Mt. Pinatubo in 1991). Steinbrecht
et al. (1998) pointed out that there was upward trend of tro-
popause height in 1967–1997 at the station Hoheinpeissen-
berg which contributes to 25% of the decrease of total
ozone. Similar tendency in the tropopause height was found
at the station Munich (Hoinka et al., 1996).

The trend of O3AMP after 1995 is mainly positive, but
mostly not statistically significant due to high variability
of total ozone in winter and shorter period of observations.
This change in trend of O3AMP is caused by dynamical rea-
sons, because the decline of ozone depleting substances is
too small for such high increase in total ozone after 1995.
(Dhomse et al., 2006) found out that the increasing wave
activity is responsible for majority of total ozone increase
in the late 1990s. The strengthening of the Brewer–Dobson
circulation is expected in the future due to global warming
which enhances ozone recovery in the 21st century accord-
ing to model study of Butchart et al. (2006).

O3MIN in the middle latitudes is controlled predomi-
nantly by solar radiation, because minima are observed
in late summer/early fall. According to Hadjinicolau
et al. (1997) the change during the year is influenced by
variations of ozone in the same year, not by previous years,
and that is why the changes in summer/fall ozone follow
the changes during the winter of the same years. In the
period after 1995 we observe positive trend of ACO3

maxima in middle latitudes and ACO3 minima in the sub-
tropics. Both extremes occur during period with strong
Brewer–Dobson circulation and we may speculate accord-
ing to Butchart et al. (2006) that these positive trends are
caused by the stronger Brewer–Dobson circulation.

The factors contributing to long-term changes in ozone
concentration may also be related to the changes in the
thermobaric field. In Fig. 7, the trend of yearly minima
of temperature at the 100 hPa level is shown for periods
1979–1995 and 1995–2008. We can see that the negative
temperature trend equatoward of 35�N is stronger in the
period after 1995 and thus we observe accelerated cooling
of the subtropics. In the middle latitudes the tendency
toward warming occurs after 1995. Because of the opposite
tendencies in the subtropics and the higher latitudes the lat-
itudinal contrast increases. This phenomenon promotes the
strengthening of Brewer–Dobson circulation after 1995.

In Fig. 8 the trend of yearly maxima of tropopause pres-
sure is compared for the periods 1979–1995 and 1995–2008.
Maxima in tropopause pressure occur in winter when
chemical and dynamical influences on total ozone are the
strongest. We can see the reverse trend of tropopause pres-
sure before and after 1995 at many places over the world.
In Europe, East Asia, north China, subtropical latitudes
in Pacific and in the middle latitudes of Atlantic Ocean
we observe negative trend of tropopause pressure before
1995 and positive one after 1995, while at Northern Can-
ada and central Asia we observe change from positive to
negative trend in 1995. In the same time we observe change
in prevailing values of NAO index from negative to

Fig. 5. The same as Fig. 4, for trends of maximum values of the total ozone annual cycle.

Fig. 6. The same as Fig. 4, for trends of minimum values of the total ozone annual cycle.
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positive ones (Staehelin et al., 2001) and change in the
number of ozone laminae in vertical profile of ozone (Kri-
zan and Lastovicka, 2005; Tarasick et al., 2005).

5. Conclusion

By analyzing the amplitude of annual cycle of O3
(O3AMP), we were able to confirm the existence of distinct
temporal trends, typically different in sign between the peri-
ods 1979–1995 and 1995–2008. In particular, a strong
decrease of O3AMP, observed in most of the middle latitudes
prior to 1995,was followedby an increase in the period 1995–
2008 at themajority of locations. In the tropics, where theO3
annual variations are generally less pronounced, only
weaker and mostly statistically insignificant tendencies were
found. The long-term variations of O3AMP in the middle lat-
itudes are related mostly to the changes in the maxima of the
annual cycle, which undergo similar evolution as O3AMP

throughout the analyzed period. Finally, our analysis sug-
gests that the detected trends can be related to the evolution
of the thermobaric field in the troposphere, especially to the
increasing temperature gradient between the tropics and
higher latitudes, which accelerates the Brewer–Dobson cir-
culation and thus contributes to increase of annual maxima
of total ozone in the middle latitudes since the mid-1990s.
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Krzyścin, J.W. Onset of the total ozone increase based on statistical
analyses of global ground-based data for the period 1964–2008.
International Journal of Climatology, doi:10.1002/joc.2264, n/a, 2011.

Krizan, P., Lastovicka, J. Trends in positive and negative ozone laminae in
the Northern Hemisphere. Journal of Geophysical Research 110,
D10107, doi:10.1029/2004JD005477, 2005.

Mohanakumar, K. Stratosphere Troposphere Interactions: An Introduc-
tion. Springer, Cochin, India, ISBN 978-1-4020-8216-0, 416pp., 2008.

Molina, M.J., Rowland, F.S. Stratospheric sink for chlorofluorome-
thanes, chlorine atom catalysed destruction of ozone. Nature 249, 810–
812, 1974.

Mudelsee, M. Estimating Pearson’s correlation coefficient with bootstrap
confidence interval from serially dependent time series. Mathematical
Geology 35, 651–665, 2003.

Parrish, A., Connor, B.J., Tsou, J.J., Beyerle, G., McDermid, I.S.
Hollandsworth. Microwave ozone and lidar aerosol profile observa-
tions at Table Mountain, California, following Pinatubo eruption.
Journal of Geophysical Research 208, 20201–20208, 1999.

Reinsel, G.C., Weatherhead, E.C., Tiao, G.C., Miller, A.J., Nagatani,
R.M., Wuebbles, D.J., Flynn, L.E. On detection of turnaround and
recovery in trend for ozone. Journal of Geophysical Research 107,
D10, doi:10.1029/2001JD000500, 2002.

Rowland, F.S., Harris, N., Bojkov, R.D., Bloomfield, P.B. Statistical error
analysis of ozone trends – winter depletion in the northern hemisphere,
in: Bojkov, R., Fabian, P. (Eds.), Ozone in the Atmosphere. A.
Deepack, Hamptan, pp. 71–75, 1988.

Solomon, S., Portmann, R.W., Garcia, R.R., Thomason, L.W., Poole,
L.R., McCormick, M.P. The role of aerosol variations in anthropo-
genic ozone depletion at northern midlatitudes. Journal of Geophys-
ical Research 101, 6713–6727, 1996.

Staehelin, J., Harris, N.R.P., Appenzeller, C., Eberhard, J. Ozone trends:
A review. Reviews of Geophysics 39, 231–290, 2001.

Steinbrecht, W., Claude, H., Kohler, U. Correlation between tropopause
height and total ozone: implications for long-term changes. Journal of
Geophysical Research 103, 19183–19192, 1998.

Stolarski, R.S., Cicerone, R.J. Stratospheric chlorine: a possible sink for
ozone. Canadian Journal of Chemistry 52, 1610–1615, 1974.

Tarasick, D.W., Fioletov, V.E., Wardle, D.I., Kerr, J.B., Davies, J.
Changes in vertical distribution of ozone over Canada from ozone-
sondes: 1980–2001. Journal of Geophysical Research 110, D02304,
doi:10.1029/2004JD004643, 2005.

van der A, R.J., Allaart, M.A.F., Eskes, H.J. Multi sensor reanalysis of
total ozone. Atmos. Chem. Phys. Discuss. 10, 11401–11448,
doi:10.5194/acpd-10-11401-2010, 2010.

World Meteorological Organization. Scientific Assessment of Ozone
Depletion. WMO Global Ozone Research and Monitoring Project
Report No. 47, Geneva, 2002.

2022 P. Krizan et al. / Advances in Space Research 48 (2011) 2016–2022



123 

 

 

APPENDIX VI 
 

MIKŠOVSKÝ, J., R. BRÁZDIL, P. ŠTĚPÁNEK, P. ZAHRADNÍČEK, AND P. PIŠOFT (2014), Long-
term variability of temperature and precipitation in the Czech Lands: an attribution 
analysis, Climatic Change, 125(2), 253-264, doi:10.1007/s10584-014-1147-7. 
 
© Springer Science+Business Media Dordrecht 2014 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Long-term variability of temperature and precipitation
in the Czech Lands: an attribution analysis

Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek &

Pavel Zahradníček & Petr Pišoft

Received: 17 December 2013 /Accepted: 4 May 2014 /Published online: 11 June 2014
# Springer Science+Business Media Dordrecht 2014

Abstract Among the key problems associated with the study of climate variability and its
evolution are identification of the factors responsible for observed changes and quantification
of their effects. Here, correlation and regression analysis are employed to detect the imprints of
selected natural forcings (solar and volcanic activity) and anthropogenic influences (amounts
of greenhouse gases—GHGs—and atmospheric aerosols), as well as prominent climatic
oscillations (Southern Oscillation—SO, North Atlantic Oscillation—NAO, Atlantic
Multidecadal Oscillation—AMO) in the Czech annual and monthly temperature and precip-
itation series for the 1866–2010 period. We show that the long-term evolution of Czech
temperature change is dominated by the influence of an increasing concentration of anthro-
pogenic GHGs (explaining most of the observed warming), combined with substantially
lower, and generally statistically insignificant, contributions from the sulphate aerosols (mild
cooling) and variations in solar activity (mild warming), but with no distinct imprint from
major volcanic eruptions. A significant portion of the observed short-term temperature vari-
ability can be linked to the influence of NAO. The contributions from SO and AMO are
substantially weaker in magnitude. Aside from NAO, no major influence from the explanatory
variables was found in the precipitation series. Nonlinear forms of regression were used to test
for nonlinear interactions between the predictors and temperature/precipitation; the nonlinear-
ities disclosed were, however, very weak, or not detectable at all. In addition to the outcomes
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of the attribution analysis for the Czech series, results for European and global land temper-
atures are also shown and discussed.

1 Introduction

As a part of the effort to improve the scientific understanding of the climate system and its
temporal evolution, substantial attention has been paid to the issue of attribution, i.e. identi-
fication of the agents responsible for the variations observed. This problem is often addressed
by means of complex numerical simulations, involving various configurations of general
circulation models (GCMs). While such an approach benefits from physical consistency of
method, the results still carry substantial uncertainty, even with regard to the effects of major
climate forcings (e.g. Stocker et al. 2013, and the references therein). Alternatively, a meth-
odology based on statistical analysis may be used, identifying connections between target and
explanatory variables, and providing information about their significance and strength. Such
statistical techniques do not directly consider the physical reality of interactions within the
climate system; on the other hand, they are capable of revealing relationships that are omitted
or misrepresented due to necessary simplifications in GCM simulations. Compared to GCMs,
statistical models are also computationally less demanding, thus allowing fast recalculation
when investigating different aspects of a given problem.

Statistical attribution analysis is often applied to data on a global scale (e.g. Walter
et al. 1998; Schönwiese et al. 2010; Muller et al. 2013; Rohde et al. 2013). However, the
pan-planetary results cannot simply be downscaled to regional or local levels. Just as the
climate dynamics and manifestations of climate change vary with geographical location,
local responses to external forcings and major climatic oscillations (also referred to as
‘internal forcings’ here) may differ substantially from their global equivalents (e.g. Walter
and Schönwiese 2002; Staeger et al. 2003; Muller et al. 2013). To date, most studies
dealing with statistical attribution analysis have used linear techniques, although several
attempts have also been made to venture further and employ nonlinear mappings. Walter
et al. (1998) demonstrated the potential of neural networks for improving the fraction of
variance explained by various forcing factors in the global temperature signal, as did Pasini
et al. (2006). Schönwiese et al. (2010) revisited this issue and confirmed the presence of
mild nonlinearity. On the other hand, Brázdil et al. (2012a) identified no major nonlinearity
in their preliminary assessment of the influence of the forcing factors on Czech climatic
series.

This paper addresses the effects of climate forcings on the temporal variability of the mean
annual and monthly series of temperature and precipitation for the Czech Lands (recently, the
Czech Republic). Various aspects of attribution in the Czech climate have been studied
previously, including the manifestations of volcanic activity (Písek and Brázdil 2006), the
North Atlantic Oscillation (e.g. Brázdil et al. 2009) and the Southern Oscillation (Brázdil and
Bíl 1998), although generally using data that encompass only a few decades during the modern
instrumental era. Here, a multivariate approach to the problem of attribution of temperature/
precipitation variability to various forcing factors is employed. The studied data span 145
consecutive years, covering the 1866–2010 period, and they are introduced in Sect. 2. While
using multiple linear regression as a primary tool for our analysis, two forms of nonlinear
mappings were also applied (described in Sect. 3, together with details of other methods and
procedures). The results of the attribution analysis are presented and compared with outcomes
for European and global temperatures in Sect. 4. Section 5 discusses the results obtained and
gives concluding remarks.
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2 Data

Central Europe is among the regions with long histories of instrumental meteorological
observations. Several of the records available extend back to the 19th century or even beyond,
although consistency in series of this length is often compromised by non-climatological
factors and homogenization may be required to obtain signals more suitable for analysis of
long-term fluctuations (Brázdil et al. 2012b). Furthermore, even with careful quality control
and pre-processing, individual signals may still contain residual errors and disturbances. For
this analysis, a more robust signal, in the form of mean areal series of annual and monthly
temperature and precipitation in the Czech Lands, is employed, created from homogenized
series of anomalies from 10 (temperature) and 14 (precipitation) weather stations (for more
details see Brázdil et al. 2012a).

To safeguard against the interference of statistical artefacts resulting from our technique of
calculation of the mean areal values, an alternative series characterizing Czech temperature was
adopted from the Berkeley Earth dataset by Rohde et al. (2013) (providing a long temperature
series directly for the Czech Republic, at http://berkeleyearth.lbl.gov/regions/czech-republic).
Additionally, in order to offer a comparison with the results on continental and global scales,
the Berkeley Earth temperature series for Europe and for global land surface were used.

For our attribution analysis, we employed explanatory variables previously shown to
represent natural forcings (related to solar activity and explosive volcanism), anthropogenic
forcings (human-induced changes in the quantities of greenhouse gases—GHGs—and atmo-
spheric aerosols) as well as phases of the major climatic oscillations that potentially influence
weather patterns in central Europe (Southern Oscillation—SO, North Atlantic Oscillation—
NAO, Atlantic Multidecadal Oscillation—AMO). These predictors, introduced below, are
generally considered to be among the major causes of observed climatic patterns and related
to their eventual temporal changes, although many questions still remain concerning the exact
mechanisms of their involvement, and the precise strength of the resulting effects (e.g. Stocker
et al. 2013).

Increasing concentrations of anthropogenic GHGs are recognized as one of the principal
elements driving global temperature increase, particularly during the second half of the 20th
century (Stocker et al. 2013). Here, the effect of GHGs is approximated by a series of annual
means of CO2-equivalent concentrations (hereinafter CO2EQ), representing aggregated radi-
ative forcing of the Kyoto-protocol-controlled greenhouse gases (Meinshausen et al. 2011,
data downloaded from http://www.pik-potsdam.de/~mmalte/rcps/).

Human activity also potentially influences the radiative properties of the atmosphere
through the formation of anthropogenic aerosols, particularly of the sulphate aerosols, which
have been linked to a distinct negative radiative forcing (e.g. Skeie et al. 2011). In similar
fashion to Schönwiese et al. (2010), we approximate the effect of sulphate aerosols by SO2

emissions. Our predictor series (further referenced as SO2) was derived from data published by
Smith et al. (2011) for the European region and extended beyond the year 2005 by the rescaled
values reported by Klimont et al. (2013).

Solar radiation is the predominant source of energy for the climate system, and even small
variations in its intensity can perturb climate equilibrium. Aside from the most prominent 11-
year cycle, other variations may be identified in the past values of solar irradiance, including
long-term changes, such as the intermittent increase of solar activity during the 19th century
and the first half of the 20th century (e.g. Wang et al. 2005). Here, we employ solar irradiance
reconstruction data (SOLAR) after Wang et al. (2005), offset by a constant additive factor to
respect the revised irradiance values reported by Kopp and Lean (2011) (data downloaded
from http://lasp.colorado.edu/sorce/data/tsi_data.htm).
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Major volcanic eruptions have been shown to leave a distinct imprint in the records of
climatic variables, quite apparent in global temperature in particular (e.g. Rohde et al. 2013).
Here, we considered the effects of explosive volcanism through a series of monthly and annual
values of volcanic aerosol optical depth (VOLC) for the northern extra-tropical area, adapted
from data by Crowley et al. (2008), available from http://www.ncdc.noaa.gov/data-access/
paleoclimatology-data/datasets/climate-forcing and documented in more detail by Crowley
and Unterman (2013).

Aside from the above-mentioned external forcing factors, the weather and climate in
central Europe are also influenced by various large-scale oscillations in the climate system.
While these do not constitute climate forcings in the usual sense, they are potentially
responsible for a sizable fraction of observed variance. Three major climatic oscillations
were included in our analysis; their effects are represented by their respective scalar
indices:

Southern Oscillation (SO) is a dominant atmospheric variability mode in the central Pacific
region, but SO-related influences have been reported as extending to the European area as well
(e.g. Brázdil and Bíl 1998; Brönnimann et al. 2007). The monthly values of the SO index in
the 1866–2012 period were downloaded from http://www.cru.uea.ac.uk/cru/data/soi/
(Ropelewski and Jones 1987).

North Atlantic Oscillation (NAO) is a major climatic mode in the northern Atlantic area,
with substantial influence on European weather patterns, particularly during the winter season
(e.g. Brázdil et al. 2009). Monthly values of NAO index for the 1825–2012 period were
downloaded from http://www.cru.uea.ac.uk/cru/data/nao/ (Jones et al. 1997).

Atlantic Multidecadal Oscillation (AMO) is a sea-surface temperature-related climatic
mode with impacts on the weather patterns around the Atlantic area (e.g. Enfield et al.
2001), but also on global temperature (Rohde et al. 2013; Zhou and Tung 2013), marking it
as a potential contributor to the climate of central Europe as well. The monthly values of the
AMO index for the 1856–2012 period were downloaded from http://www.esrl.noaa.gov/psd/
data/timeseries/AMO/ (Enfield et al. 2001).

Mean Czech areal temperature and precipitation series by Brázdil et al. (2012a) date
from the years 1800 and 1804 respectively; the Berkeley Earth series for Czech temper-
ature extends even further into the past, albeit burdened with substantial uncertainty. For
all signals, however, the numbers of source weather stations in the earlier parts of the
19th century are quite low. Further considering the limited availability and/or reliability of
certain explanatory variables during the earlier periods of the instrumental era (particularly
SO and AMO indices), we restricted our analysis to the 1866–2010 period. See Sect. E1
of the Electronic supplement to this paper for more details on the construction of the
series of Czech temperature and precipitation as well as visualization of predictands and
predictors.

3 Methods

Prior to the analysis itself, the predictands were converted to additive anomalies with respect to
the 1951–1980 period (including the removal of the annual cycle from the monthly data), akin
to the Berkeley Earth series. The analysis of Czech temperature was carried out for both the
Brázdil et al. (2012a) and Berkeley Earth (Rohde et al. 2013) versions. Due to high similarity
of the two series (mutual correlations of 0.99 for annual anomalies and 0.975 for monthly
anomalies) and strong resemblance of the outcomes of the attribution analysis, results are
presented for only the Brázdil et al. (2012a) series.
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While basic correlation analysis can highlight the dominant sources of variability in the data
(such as the strong relation between temperature and CO2EQ), it is generally unable to reliably
reveal comparatively weaker, albeit statistically significant, links in the complex interactions of
multiple variables. For this purpose, a multivariate approach is required, able to separate the
contributions from various explanatory variables. Multiple linear regression (MLR) is perhaps
the most common of such techniques. We apply it in its usual form here, with regression
coefficients calculated to minimize the sum of the squared residuals (i.e. differences between
the actual target values and their MLR-based estimates).

As the climate system is inherently nonlinear, it is reasonable to expect this nonlinearity to be
reflected in the records of climatic variables and relations between them. In reality, however, the
presence and magnitude of nonlinear links is highly variable in time and space and often
insignificant from the perspective of time series analysis (e.g. Mikšovský et al. 2008). In order
to test for the presence of nonlinear links between target and explanatory variables, we performed
a regression analysis with two forms of nonlinear mapping: local linear models (LLMs) and
neural networks in the form of multilayer perceptron (MLP). While both these techniques are
capable of capturing connections beyond the direct proportionality considered by MLR, they
differ in their mode of constructing and calibrating the respective transfer function. LLMs,
described in more detail e.g. by Mikšovský et al. (2008), use individual linear mappings for
smaller, potentially overlapping segments of the space of predictors, utilizing the fact that even
complex nonlinear relations can often be linearized for small groups of similar cases. MLPs, on
the other hand, are constructed as global mappings between the predictors and predictand(s), and
can serve as universal approximators of nonlinear functions (e.g. Haykin 1999). Neither LLMs
nor MLP assume a specific form of nonlinearity in the examined system, and they are thus
suitable for the detection of a wide range of deviations from linear behaviour in the data.

By comparing the performance (quantified by root mean squared error, RMSE) of the
regression mappings in the form of LLMs or MLP to MLR, the improvement achieved by
application of nonlinear mappings was measured. The tests were carried out on data divided
into calibration and validation parts, for a wide range of parameters defining the nonlinear
mappings (such as the size of the local neighbourhood for LLMs, or the architecture descrip-
tors for MLP). Even in the most favourable cases, the improvement from application of
nonlinear techniques did not exceed a few per cent of MLR-based RMSE; for most combi-
nations of target variable and time scale, the gain was undetectable. Considering the miniscule
benefits deriving from nonlinear techniques in our analysis, combined with their greater
demands regarding parameter optimization, higher computational requirements and more
complicated interpretation of the outcomes, only the results from MLR and other linear
techniques have been included in this paper.

Statistical significance of the regression coefficients was assessed by means of
bootstrapping (with moving-block modification employed for the monthly data) and it pertains
to a 95 % confidence level. Both annual and monthly series were investigated; the explanatory
series available in annual time-steps (CO2EQ, SO2, SOLAR) were used without temporal
interpolation in the monthly-based analysis, i.e. the annual value was considered representative
of all months of the respective year.

4 Attribution analysis results

Figure 1a summarizes the normalized regression coefficients for the annual temperature in the
Czech Lands. The strong association between temperature and concentration of greenhouse
gases is apparent and statistically significant at a high level, with each unit of ppm increasing
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the temperature by about 0.014 °C. The presence of sulphate aerosols contributes a mild
cooling, but the effect is statistically insignificant. Increase in solar irradiance generates a
minor temperature rise, also insignificant. The imprint of volcanic activity in the temperature
signal is negligible. There is a relationship between the temperature signal and all three
oscillation indices. A strong link, statistically significant, was detected for NAO. The compo-
nents associated with SO and AMO were weaker, with positive regression coefficients at the
edge of statistical significance. Contributions from all seven explanatory variables account for
about 53 % of total variance in the Czech annual temperature signal. The analysis of monthly
series revealed a similar pattern of relative importance for the predictors (Fig. 1b), with a
somewhat lower relative contribution from CO2EQ, which may be ascribed to additional
variability in the monthly series compared to the annual scale. With R2=0.20, the regression
model was able to explain a substantially lower fraction of total variance. The results for the
European temperatures were quite similar to those for the Czech Lands (Fig. 1e and f). This
follows from the similarity of Czech and European temperatures at both annual (mutual
Pearson correlation of 0.93) and monthly (0.88) scales.

Compared to the Czech and European temperature signals, sources of variability are
somewhat different for the global land temperature (Fig. 1g and h). The role of CO2EQ
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Fig. 1 Normalized regression coefficients (i.e. regression coefficients obtained for both the target and explan-
atory variables normalized to zero mean and standard deviation equal to one) between the temperature/
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marks the value of the regression coefficient, the box represents its 95 % confidence interval; coefficients
significantly different from zero are highlighted in green
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becomes even more dominant, although the respective absolute temperature increase drops to
about 0.009 °C per ppm. The contributions from sulphate aerosols (approximated in this case
by the global SO2 emissions after Smith et al. 2011) and solar activity are negligible. In
contrast to the inconclusive effect of major volcanic events on the Czech/European tempera-
tures, their imprint in the global temperature signal is prominent and statistically significant.
The effects of SO and AMO are also well defined; on the other hand, the contribution from
NAO is marginal. As the worldwide spatial averaging suppresses regional effects and reduces
inter-annual variability in the series, the fraction of variance explained by the regression model
rises to 89 % for annual values and 56 % for monthly values.

Most of the predictors considered do not exhibit any statistically significant relation to the
series of Czech precipitation, either annual or monthly. NAO phase was the only factor with a
significant contribution (Fig. 1i and j), confirming the tendency towards anticorrelation
between NAO index and precipitation totals. Even so, the fraction of variance explained by
the model is a mere 7 % for annual totals and 2 % for monthly totals.

No major, stable unexplained component was identified in the temperature or precipitation
regression residuals (for more details, see Sect. E3 of the Electronic supplement).

4.1 Seasonal variations

A substantial contrast between weather patterns during the different phases of the year is
typical of the climate of the mid-latitudes; this may then be reflected in seasonalized local
responses to the predictors. To assess the seasonal variability of the regression outcomes,
analyses of monthly data were carried out separately for the cold (October–March) and warm
(April–September) half-years. While the basic character of the links remained the same as in
the undivided data, some variations in the prominence of individual explanatory variables
emerged. Effects of both GHGs (warming) and sulphate aerosols (cooling) are substantially
more pronounced during the months of the warm half-year in the Czech temperature series
(Fig. 1c and d), with the contribution from sulphates exceeding the threshold of statistical
significance. This can probably be ascribed to a higher impact of factors modifying radiative
balance during the period with more intense solar radiation. The effects of solar and volcanic
activity remain small and statistically insignificant during both seasons. The influence of NAO
is substantially stronger in the cold half-year, while the opposite holds for SO and AMO. For
precipitation, NAO phase remains the only relevant predictor during both warm and cold
seasons, though its effect is stronger during the summer half-year (not shown).

4.2 Time-delayed responses

Due to the complex nature of the processes involved in signal transmission within the climate
system, a response in climatic variables does not necessarily need to be concurrent with the
factors inducing it. This especially concerns predictors representing forcings with faster
variability and projecting teleconnections over longer distances, such as SO (e.g. Tsonis
et al. 2005). To reveal the possible delays in the response mechanisms, relations between
the time-offset values of individual explanatory variables and their respective partial residuals
were analyzed, i.e. residuals from regression mappings involving all predictors except for the
one under investigation. Figure 2 shows the results for Czech monthly temperature and the
four predictors available on a monthly scale: VOLC, SO, NAO and AMO. The correlations for
volcanic activity index showed no distinct extremum, and the values remained well within the
range consistent with the hypothesis of independent processes. For SO andAMO, a localmaximum
was detected at time-lag Δt=0, though just barely above the statistical significance threshold,
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and accompanied by secondary maxima of comparable magnitude. The only variable with
distinctly dominant and statistically significant time-delayed correlation maximum at
Δt=0 was NAO. The experiments with time-delayed predictors were also conducted
for the rest of the target variables, but no significant, unambiguous delayed responses
were detected. All attribution analyses were therefore carried out on series without any
time shift.

5 Discussion and conclusions

Our analysis highlighted the influences of several external and internal climatic forcings in the
series of Czech temperature and precipitation. Since the normalized coefficients in Fig. 1 do
not directly demonstrate the magnitude of individual contributions, the core results are
summarized in Fig. 3 in the form of responses associated with selected representative
variations of the explanatory variables.

Regardless of temporal or spatial scale, the concentration of GHGs proved to be the key
temperature predictor, shaping the long-term variability of the series and providing most of the
observed warming. This dominance is not surprising, considering the role of GHGs in
establishing the radiative balance of the climate system.

As revealed by the conclusions of previous research (e.g. Skeie et al. 2011, and
references therein), the presence of sulphate aerosols generally contributes to negative
radiative forcing, thus cooling the affected area. Indeed, our results suggest a negative
contribution to Czech and European temperature signals from the SO2 emissions, al-
though the link is quite weak and largely statistically insignificant. This ambiguity
should not be surprising, as a single, emission-based scalar series may be insufficient
to represent properly the complexity of aerosol-related mechanisms in the atmosphere.
This may also be the reason for the lack of sulphate-related component in the global
temperature series.

The variations of solar irradiation do not seem to be linked to any major component in the
temperature series. Even so, the warming effect from an increased amount of incoming solar
energy is noticeable in the Czech and European series, in contrast to the global land temperature
signal, which shows almost no solar-related component (as demonstrated previously by Rohde
et al. 2013).
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No systematic imprint of major volcanic eruptions was revealed in Czech or European
temperatures. This finding is consistent with the results of earlier analyses targeting the
manifestations of large volcanic eruptions in central Europe (Písek and Brázdil 2006). The
global temperature, on the other hand, carries a clear pattern of distinct cooling following
prominent volcanic events, as has previously been shown (e.g. Rohde et al. 2013). The reason
for the reduced signature of volcanism in our Europe-based signals may be related to the
generally higher unexplained variability of the series, masking the traces of individual volcanic
events.

Of the internal climatic oscillations investigated, NAO is by far the most influential for both
Czech and European temperatures. This reflects the well-established effects of North Atlantic
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Fig. 3 Response of annual and monthly Czech, European and global land temperature and Czech precipitation
to selected variations in the explanatory variables: change of the CO2-equivalent concentration of GHGs between
1866 and 2010 (+152 ppm); peak value of SO2 emissions during the 1866–2010 period (41 and 131 Tg SO2 per
year for Czech/European and global data, respectively); solar irradiance change between the periods 1866–1876
and 2000–2010 (+0.46 W.m−2); Mt. Pinatubo-sized volcanic event; change of SO, NAO and AMO indices by
double the value of their standard deviation. The error bars illustrate the 95 % confidence intervals of the
response, based on the uncertainty of the respective regression coefficients
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circulation patterns on (central) European weather (e.g. Trigo et al. 2002; Brázdil et al. 2009).
The NAO influence is more pronounced during the cold half-year in which climatic patterns
are predominantly influenced by strongly expressed circulation conditions compared to warm
half-year with stronger radiative effects. The SO (or, more generally, ENSO), a relatively
prominent contributor to the global temperature signal (as shown by numerous prior studies,
such as Tsonis et al. 2005), projects comparatively less explicit influence into the European
area. Even so, the SO-related component in the Czech temperature series was borderline
statistically significant, in line with past studies highlighting the possible teleconnections (e.g.
Brázdil and Bíl 1998; Brönnimann et al. 2007). Similar behaviour was also found for the AMO
index: the relatively strong response in global land temperature (documented by Rohde et al.
2013) was less prominent, although still statistically significant, in the Czech/European data
(though it should be noted that its strength may be subject to the method of AMO index
detrending, which can potentially also affect detection of volcanic forcing – see Canty et al.
2013). Due to its faster temporal variability, NAO influence is comparatively stronger on the
monthly than annual time scale. Effects from SO and AMO, dominated by lower frequency
components, do exhibit only minor differences between time scales, as do contributions from
CO2EQ, SO2, SOLAR and VOLC.

One of the limitations of our methodology stems from the application of linear mappings.
As purely linear transfer functions cannot incorporate relations beyond simple proportionality,
part of the deterministic relations between the analyzed series may remain unresolved. By
employing two representatives of nonlinear regression, we hoped to mitigate this deficiency,
following the prior studies exposing the presence of nonlinearities in analysis setups similar to
ours (Walter et al. 1998; Pasini et al. 2006; Schönwiese et al. 2010). Alas, given the same set of
predictors, none of the employed nonlinear transfer functions was able to provide significantly
better approximation of the target variables than simple linear regression. While this certainly
cannot be interpreted as a proof of an exclusively linear nature for the links studied, it suggests
that nonlinearity may be too weak from the practical perspective of multivariate attribution
analysis, at least for the specific combinations of series analysed here. Hence, in the light of our
results and those of prior studies, the question of the presence, detectability and magnitude of
nonlinearities in the responses to climate forcings remains incompletely answered. Additional
tests, specifically tailored to reveal particular forms of nonlinearity associated with individual
variables or their interactions, and dealing with effects potentially hampering the performance
of nonlinear mappings (such as presence of inhomogeneities in long climatic records or
vulnerability to low signal-to-noise ratios), may bring more definite conclusions.

While interpreting our results, it is necessary to take into account the limitations of the
statistical approach to attribution analysis. Firstly, both predictor and predictand series come
with a certain degree of uncertainty, not directly factored into the calculation of the results. It
should also be considered that in the case of target variables averaged over larger areas
(European and global temperature), different sub-regions may contribute mutually opposite
responses, obscuring the resulting effect. Additional variations of the results may be related to
the choice of predictor series (several of our explanatory variables represent reconstructions
rather than direct measurements, and alternative datasets exist for some of them). Selected tests
were therefore repeated with different variables characterizing solar irradiance and volcanic
activity (using predictors employed by Schönwiese et al. (2010) as well as some of the series
discussed in Schmidt et al. (2012) and its prior version). Only minor changes to the character
and magnitude of the effects of the respective forcings resulted from such modifications. We
also employed alternative versions of the NAO index (obtained from https://www.
climatedataguide.ucar.edu/climate-data; Hurrell 1995), SO index (http://www.cgd.ucar.edu/
cas/catalog/climind/soi.html; Trenberth 1984) and AMO index (http://climexp.knmi.nl/data/
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iamo_ersst_ts.dat; Trenberth and Shea 2006), and although certain differences in the strength of
the respective contributions emerged, their nature seems to be largely unaffected by the choice
of the index variant. Additional tests were carried out separately for the first and second half of
the 1866–2010 period as well, to ascertain the temporal invariance of the predictor-predictand
links. While the information content in our dataset proved insufficient for a reliable sub-period
analysis of components dominated by long-term variability, the outcomes suggest stability of
the statistically significant contributions from faster variable predictors (SO and NAO).

Finally, it should be emphasized once again that regardless of the form of the transfer
function employed, the statistical approach to attribution analysis only considers the formal
similarities among the signals, unaware of the physical reality behind them. In this regard, use
of GCM-based simulations represents a more sophisticated and less restricted alternative,
despite its practical challenges. In the future continuation of our analysis, we therefore intend
to combine our findings with conclusions based on long-term historical runs of GCM/RCM
couples, currently in production.
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ABSTRACT: Drought is an extreme meteorological phenomenon involving serious economic consequences. In the Czech
Lands, it is reflected in significant reductions in agricultural productivity, lack of water for hygiene and industry, and impacts
of forest management. Mean monthly temperature and precipitation series created for the Czech Lands for 1805–2012 were
used to calculate spring (MAM) and summer (JJA) drought indices (SPI-1, SPI-12, SPEI-1, SPEI-12, Z-index and PDSI),
which were then used for further analyses. Fluctuations in drought indices demonstrate an increasing long-term dryness in the
Czech climate, statistically significant for SPEI-12 and PDSI in MAM and JJA (in MAM as well for SPEI-1 and Z-index). A
significant concentration of drought episodes before 1880 may be attributed to a lack of precipitation, whereas the droughts of
recent decades (particularly 2004–2012) are more strongly related to high temperatures. The effects of droughts are reflected
in significant reductions in winter wheat and spring barley yields in the eastern province of Moravia. Regression analysis of
drought forcings discloses the importance of the North Atlantic Oscillation phase and the aggregate effect of anthropogenic
forcing (driven largely by increases in CO2 concentration). Their magnitude of influence varies strongly with the type of
drought index and season of the year. Other factors, such as solar irradiation and the Southern Oscillation phase make only
minor contributions to drought variability. The effects of volcanic activity and the Atlantic Multidecadal Oscillation are even
weaker and statistically insignificant.

KEY WORDS drought; drought indices; fluctuation; trend; forcing; Czech Lands

Received 17 March 2014; Revised 7 May 2014; Accepted 8 May 2014

1. Introduction

Drought is a climatological phenomenon that has impor-
tant impacts on many aspects of human society and affects
many of its more important activities. In agriculture, it
leads to significantly smaller yields of agricultural crops
than in normal years (e.g. Hlavinka et al., 2009; Kolář
et al., 2013). Extended drought dries out commercially
growing timber, forcing forestry managers into prema-
turely felling trees, well before their optimum size is
reached (Brázdil, 1998). Low water levels in rivers and
reduced groundwater reserves lead to problems in the
management of water resources, usually for prolonged
periods of time (e.g. Wilhite and Vanyarkho, 2000).
Furthermore, droughts influence not only human society,
but also lead to deterioration of natural ecosystem func-
tions (Ciais et al., 2005). All these criteria highlight the
importance of drought research in Europe for the future,
especially in the light of anthropogenically exacerbated
climate change (Rowell and Jones, 2006) and also the

*Correspondence to: R. Brázdil, Institute of Geography, Masaryk
University, Kotlářská 2, 611 37 Brno, Czech Republic. E-mail:
brazdil@sci.muni.cz

need for proper and scientifically sound advance planning
of reactions to drought (Wilhite et al., 2007).
Drought may be defined as a negative deviation of

water balance from the climatological norm over a given
area. This implies that drought is a result of deficiency
in precipitation over an extended period of time, whereas
other meteorological elements (such as increased air tem-
perature, global radiation and wind, as well as decreased
air humidity) drive up water demand through increased
evapotranspiration (e.g. Allen et al., 1998), frequently
intensifying the impact of precipitation deficit (e.g.
Zahradníček P, 2014 (pers. comm.)). However, accord-
ing to Lloyd-Hughes (2013), a universal description of
drought requires reference to water supply, demand and
management. With respect to various associated diffi-
culties, he concludes that a workable generalized and
objective definition of drought does not exist.
On the basis of timescales and impacts, droughts may

be divided into four categories: meteorological, agricul-
tural, hydrological and socio-economic (Heim, 2002;
Dai, 2011b). To these, Mishra and Singh (2010) add
groundwater drought. Meteorological drought is signalled
by indicators intrinsic to weather data and precedes the
onset of specific impacts, i.e. additional types of drought.

© 2014 Royal Meteorological Society
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Agricultural drought may be measured in terms of dura-
tion in weeks to 6–9 months, whereas hydrological,
groundwater and socio-economic impacts usually became
apparent over longer time intervals. The socio-economic
importance of droughts is reflected in the great number
of studies devoted to this phenomenon on an international
scale. Noteworthy among these are a global assessment by
Wilhite et al. (2000), while the socio-economic benefits of
drought preparedness are clearly summarized in Wilhite
et al. (2007). This contribution concentrates on meteoro-
logical drought, and partly on agricultural drought, with
SPI representing meteorological drought and Z-index
and 1-month SPEI more representative of short-term
agricultural drought and PDSI with 12-month SPEI repre-
senting the long-term drought events that impact primarily
upon agriculture (and probably upon forestry and water
sources as well).
Droughts may be compared with floods as the most seri-

ous hydrometeorological extremes in the Czech Republic
(Brázdil and Kirchner, 2007). Particular attention to the
study of temporal and spatial aspects of drought in the
Czech Republic burgeoned after the year 2000. Možný
(2004) investigated the intensity of droughts between
1891 and 2003. Blinka (2005) contributed a similar
paper, providing a climatological analysis of droughts
from 1876 to 2002. Dufková and Št’astná (2005) studied
droughts in South Moravia and their influence on soil
erosion. The most comprehensive analysis of droughts
in Moravia, with particular attention to the 1961–2000
period, appeared in A Climatic Atlas of Czechia (Tolasz
et al., 2007) and Selected Natural Extremes and Their
Impacts in Moravia and Silesia by Brázdil and Kirch-
ner (2007), followed by a detailed analysis from Trnka
et al. (2009). Brázdil et al. (2009b) concentrated on the
variability of drought indices in the period 1881–2006
calculated frommean Czech temperature and precipitation
series. Dubrovský et al. (2009) developed and applied
the relative Palmer Drought Severity Index (rPDSI) and
the Palmer Z-index to estimate the effect of changed
climate on drought frequency and established that the risk
is likely to increase sharply in the future as a result of
projected rising temperatures. Potop et al. (2011) used
the Standardized Precipitation Evapotranspiration Index
(SPEI) to study drought variability as recorded at five
lowland stations (1901–2010). Treml (2011) analysed
the most severe drought events in the Czech Republic
in the 1875–2010 period. Most recently, Brázdil et al.
(2013) developed a long-term Czech drought chronology
from AD 1500 onwards, combining information from
documentary data with instrumental records. Drought
trends between 1961 and 2012 were analysed by Trnka M,
2014a, 2014b (pers. comm.), using a high-resolution grid
database. Zahradníček P, 2014 (pers. comm.) studied an
extreme drought occurring between August 2011 and May
2012 with respect to its impacts on agriculture and hydrol-
ogy. Potop et al. (2014) investigated the spatiotemporal
characteristics of drought in the Czech Republic using
SPEI calculated for 184 stations in the 1961–2000 period.

The aim of this article is to analyse the long-term vari-
ability of droughts in the Czech Lands, based on drought
indices calculated from homogeneous long-term instru-
mental data for spring and summer in the 1805–2012
period. The concentration of analysis in spring and sum-
mer follows from the fact that these seasons generally
include the vegetation period and the months during which
drought (or lack of water) is known to have an effect on
the agricultural production (Hlavinka et al., 2009; Trnka
et al., 2012) as well as upon tree growth (Brázdil et al.,
2002; Büntgen et al., 2011) in the Czech Lands.
This study employs data for the first 75 years of the

19th century not previously available, not only extending
the period of instrumental records but also allowing sup-
positions to be made about possible drought trends, and
analysis to be performed for their forcing factors. Basic
temperature and precipitation series and drought indices
calculated from these data appear in Section 2. Section 3
outlines the methods used in this study. Section 4 presents
the results of the analysis of long-term fluctuations of
drought and changes in their recurrence interval; provides
an attribution analysis of their forcings, and describes the
effects of droughts on crop yields. The overall results are
discussed in Section 5 and some conclusions drawn in
Section 6.

2. Data

2.1. Temperature and precipitation series

This study of droughts in the Czech Lands is based on
mean areal temperature and precipitation series calculated
by Brázdil et al. (2012a, 2012b). These were based on
homogenized monthly values recorded at 10 secular
stations for temperature and 14 stations for precipitation.
Series of individual secular stations were further con-
fronted with areal temperature and precipitation means for
the Czech Republic calculated over the 1961–2000 period,
for which the station coverage is the best (268 temperature
and 878 precipitation series). A quantile mapping method
was used to convert original and homogenenous secular
series on the statistical properties of 40-year means. On
the basis of comparison with the 1961–2000 calibration
period, each of the secular series was statistically adjusted
for its entire length. The median value of 10 such adjusted
temperature series (14 series for precipitation) was then
considered as the final mean areal temperature (precipi-
tation) series for the Czech Lands. The series are biased
by the number of stations used because all series were
available from only 1883 for temperature and 1876 for
precipitation. Only two stations (Prague-Klementinum
and Brno) were available back to 1818 for temperatures
and 1828 for precipitation.

2.2. Drought indices

2.2.1. Standardized Precipitation Index

The assessment of meteorological drought starts with
analysis of precipitation. This may be addressed either

© 2014 Royal Meteorological Society Int. J. Climatol. 35: 1405–1421 (2015)
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by analysing precipitation totals in terms of reliabil-
ity (e.g. Laughlin et al., 2003) or by using one of the
many precipitation-based drought indices that have been
developed (e.g. McKee et al., 1993; Byun and Wilhite,
1999). The Standardized Precipitation Index (SPI) is one
of the most widely employed drought monitoring indica-
tors, allowing drought evaluation using only monthly or
weekly precipitation data. Mathematically, SPI is based
on the cumulative probability of a specific rainfall event
occurring at a given station (McKee et al., 1993). The
monthly (or weekly) sums of precipitation at such a
station are usually fitted by means of gamma distribution,
which has been found quite appropriate to precipitation
distribution across most timescales. The fitted cumulative
probability function is then transformed by an inverse
normal function. A low or high probability on the cumu-
lative probability function related to a particular rainfall
total then indicates the likelihood of dry or wet events,
respectively. In summary, SPI can effectively represent the
amount of precipitation over a given timescale in relation
to the median. This enables the user to state whether a
station is experiencing drier than usual conditions relative
to the station climatology. The near-optimum range of SPI
could be approximated by an interval of ±0.9 whereas the
usual range of SPI values is from –3 to +3, with nega-
tive values describing periods of precipitation below the
median. SPI enables the user to assess the occurrence of
short-term (duration of 1 month – SPI-1), medium-term
(from three to 12 months – SPI-3 and SPI-12) and
long-term droughts (12 months and longer). As SPI does
not reflect changes in evaporation or warming, it is a good
descriptor of deficiency in precipitation (a key precursor
of drought), but not of the changes in other water-balance
components. In the light of the latter, more comprehensive
indices were further employed.

2.2.2. Palmer Drought Severity Index and Palmer
Z-index

The Palmer Drought Severity Index (PDSI; Palmer, 1965)
is another approach widely used to quantify drought all
over the world (e.g. Szinell et al., 1998; Lloyd-Hughes and
Saunders, 2002; Ntale and Gan, 2003; Dai et al., 2004;
van der Schrier et al., 2006, 2007; Dai, 2011a). In general,
this index is based on the supply-and-demand concept of
a water-balance equation and thus incorporates antecedent
precipitation, moisture supply and demand at the surface as
calculated according to the Thornthwaite (1948) potential
evapotranspiration (PET) method. It applies a two-layer
bucket-type model for soil moisture computations with
three assumptions related to soil profile characteristics:

(i) the water-holding capacity of the surface layer is set
at a maximum of 25mm,

(ii) the water-holding capacity of the underlying layer has
a maximum value that depends on soil type,

(iii) water transfer into or out of the lower layer only
occurs when the surface layer is full or empty. The
PDSI itself can be described as an accumulative

departure relative to local mean conditions in atmo-
spheric moisture supply and demand at the surface
(Palmer, 1965) and it is considered a good represen-
tation of episodes of prolonged drought.

PDSI calculation includes an intermediate term known
as the Palmer moisture anomaly index (or Z-index), which
is a measure of surface moisture anomaly for a given
month without the consideration of the antecedent condi-
tions so characteristic of PDSI. It is basically the moisture
departure, adjusted by a weighting factor known as the
climatic characteristic. The Z-index can be used to track
drought events on a monthly basis as it responds rela-
tively quickly to changes in soil moisture (Karl, 1986). The
capacity of the Z-index to rank the dryness or wetness of
individual months makes it especially useful as one of the
indicators of short spells of drought.
The original monthly PDSI relied on empirical

constants, soil property assumptions and climate charac-
teristics derived by Palmer (1965) using data from nine
stations in Kansas and Iowa (United States). In the study
in hand, a self-calibrated version of the Z-index and PDSI
(Wells et al., 2004) was used. Wells et al. (2004) modified
the original Palmer model in order to adjust the previously
empirical constants automatically in response to input
data uniquely derived from each studied location. The
self-calibrated PSDI adjusts itself to produce a range of
PDSI values for any location between –4.0 and +4.0 with
drought represented by negative values and mean PDSI
value equal to zero.

2.2.3. Standardized Precipitation Evapotranspiration
Index

The SPEI was introduced by Vicente-Serrano et al. (2010)
to improve the original SPI concept. SPEI uses themonthly
difference between precipitation and PET, a simple cli-
matic water balance (Thornthwaite, 1948), i.e. the same
method as that used in PDSI and Z-index calculations,
and can be calculated at different timescales. The PET
calculation can be made either through physically based
methods (e.g. the Penman–Monteith method, PMM) or
models based on empirical relationships, where PET is cal-
culated with fewer data requirements. While PMM should
be a preferred choice, it requires data (e.g. solar radia-
tion, wind speed and humidity) not available for some of
the sites analysed during the 20th century and completely
absent before the 1920s. Mavromatis (2007) showed that
the use of simple or complex methods to calculate PET
provides similar results when a drought index, such as
the PDSI, is calculated, although concerns exist about
using PDSI for climate projections (Hoerling et al., 2012).
While PMM may be used in SPEI calculations, this con-
tribution follows the original procedure established by
Vicente-Serrano et al. (2010) based on the Thornthwaite’s
(1948) method, requiring only mean monthly tempera-
tures. With a value for PET, the difference between the
precipitation and PET for the given month is calculated,
which provides a simplemeasure of water surplus or deficit

© 2014 Royal Meteorological Society Int. J. Climatol. 35: 1405–1421 (2015)
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for it. The differences are aggregated at various timescales,
following the same procedure as that for SPI. The average
value of SPEI is zero and the standard deviation is one.
SPEI is a standardized variable, and it can therefore be
compared with other SPEI values over time and space. A
SPEI of zero indicates a value corresponding to 50% of
the cumulative probability of precipitation and PET differ-
ence, according to log-logistic distribution.

2.3. Forcing factors

Considering the complex relations between drought char-
acteristics and a number of climatic variables, it may be of
interest to identify the underlying factors responsible for
the observed variability. These may include anthropogenic
forcings (such as human-induced changes in atmospheric
composition) as well as natural ones (variations in solar
and volcanic activity), and also the effects of major cir-
culation modes (such as North Atlantic Oscillation, the
Southern Oscillation and the Atlantic Multidecadal Oscil-
lation). To carry out an attribution analysis, quantifying the
contributions of such external and internal climate forcings
to drought indices, the following six quantities are used as
potential explanatory variables:

(a) Annual CO2-equivalent concentrations (hereinafter
denoted as CO2) representing aggregated radiative
forcing of greenhouse gases (GHGs) and other anthro-
pogenic agents (such as aerosols and tropospheric
ozone) in the 1805–2012 period (Meinshausen et al.,
2011; http://www.pik-potsdam.de/∼mmalte/rcps/).

(b) Annual solar irradiance estimate (SOLAR) in the
1805–2012 period. The data, based on a reconstruction
by Wang et al. (2005), and offset to respect the revised
irradiance values derived by Kopp and Lean (2011),
were downloaded from http://lasp.colorado.edu/
sorce/data/tsi_data.htm.

(c) Monthly series of volcanic aerosol optical depth
(VOLC), adapted for the 1805–2012 period from
data by Crowley et al. (2008), included in the sup-
plementary material of a paper by Schmidt et al.
(2012).

(d) Monthly values for the North Atlantic Oscillation
Index (NAOI), in the version provided by CRU
(http://www.cru.uea.ac.uk/cru/data/nao/; Jones et al.,
1997) for the 1825–2012 period, and extended with
the rescaled series by Luterbacher et al. (1999) for the
early part of the 19th century.

(e) Monthly values for the Southern Oscillation Index
(SOI) for the 1866–2012 period, obtained from
http://www.cgd.ucar.edu/cas/catalog/climind/soi.html
(Trenberth, 1984).

(f) Monthly values of the Atlantic Multidecadal Oscil-
lation Index (AMOI) for the 1856–2012 period. The
data were downloaded from http://www.esrl.noaa.
gov/psd/data/timeseries/AMO/ (Enfield et al., 2001).

The available series of some of these covariates (par-
ticularly SOI and AMOI) do not cover the entire period
studied.While various reconstructions of related quantities

exist for earlier parts of the 19th century, the preliminary
tests found none of them to be compatible enough to
provide a reliable extension (unlike NAOI, where the
match between the index based on instrumental data by
Jones et al., 1997 and the reconstruction by Luterbacher
et al., 1999 was better). The primary target period for
the attribution part of this analysis was therefore set to
1867–2012, starting 1 year after the beginning of the
SOI series. Additional tests for the 1806–2012 period
were carried out as well, but with a reduced number of
explanatory variables.

2.4. Yield levels

To improve the understanding of the relation between
drought intensity and drought impacts, we collated a
unique dataset of spring barley and winter wheat yields
for the south-eastern region of the Czech Lands cov-
ering the periods 1869–1913 and 1961–2012. This is
the longest yield record analysed in the region to date.
The data for the 1869–1913 period was extracted from
annual reports: Mittheilungen der kaiserlich-königlichen
Mährisch-Schlesischen Gesellschaft zur Beförderung
des Ackerbaues, der Natur- und Landeskunde [‘Reports
of the Imperial-Royal Moravian-Silesian Society for
the Improvement of Agriculture, Natural Science and
Regional Geography’]. Despite considerable effort, no
yield data for the period prior to 1869 could be found,
and this year appears, to the best of our knowledge, to
be when official and systematic recording of agricultural
statistics in the region started. The years 1881, 1890 and
1891 lack yield reports. Organizational and/or financial
matters intervened and either the yield statistics for these
years were not collected, or simply not published. Very
little is available for the period between 1913 and 1960,
with only 8 years in the late 1920s and early 1930s giv-
ing district yield data. There is nothing for the periods
covering the two world wars and for a period of 15 years
after World War II. Data for the 1961–2012 period were
compiled from mean annual yields of winter wheat and
spring barley at district level using the archives of the
Czech Statistical Office (year 2000), the Ministry of
Agriculture (2001–2007) and the Chamber of Agriculture
(2008–2012). Original data were extracted, digitized and
quantitatively checked.

3. Methods

The temporal variability of six drought indices was
investigated separately for March–May (MAM) and
June–August (JJA) in the 1805–2012 period. Long-term
trends were described by linear regression against time,
with statistical significance of the trend determined by
t-test at a significance level of 𝛼 = 0.05. Box-plots were
used for comparison of basic statistical characteristics in
non-overlapping 30-year periods.
The extremeness of droughts as characterized by drought

indices was expressed via calculation of the return period
for mean N-year recurrence intervals (N = 2, 5, 10, 20,
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50 and 100 years). First, values of drought indices were
modelled with Gaussian normal distribution and the
suitability of this theoretical distribution was verified with
Shapiro–Wilks goodness-of-fit test. Probability of occur-
rence (p) was then estimated from Gaussian frequency
distribution. Finally, return periods (N) were derived
as an inverse of probability estimates, that is, N = 1/p
(Wilks, 2006).
For the attribution analysis, various linear and nonlinear

regression mappings were tested to provide a transfer
function between drought indices and explanatory vari-
ables. Multiple linear regression (MLR) was chosen as a
primary tool for this task – a stable and robust, although
completely linear technique, approximating the target
quantity by a weighted mean of the explanatory variables.
As even short-term drought characteristics are not nec-
essarily tied to only the concurrent values of predictors,
and time-delayed and time-accumulated responses may
take place in the (local) climate system, several variants
of series with faster temporal variability (VOLC, NAOI,
SOI and AMOI) were prepared as non-weighted means
of values from a sequence of consecutive months, with
starting month ranging from December to June, and
length of the averaging period between three and nine
months. Using a forward stepwise regression procedure,
the version with highest (although not necessarily statis-
tically significant) contribution to the explained variance
was identified for each of the VOLC, NAOI, SOI and
AMOI series. These series, together with annual CO2 and
SOLAR signals, make up the six predictors used as inputs
for the regression. The selection procedure was carried out
separately for each short-term and medium-term drought
index (SPI-1, SPEI-1, Z-index and PDSI), and both target
periods. An example of the resulting set of predictors
is shown in Figure 1. For long-term drought indices
(SPI-12 and SPEI-12), the predictors were averaged from
the 15 months preceding the end of the target period.
The long-term memory components in the PDSI were
first addressed by conducting experiments with predic-
tors derived as weighted means of monthly values, with
weights progressively decreasing for more distant months.
However, such predictors proved inferior to their stepwise
selected alternatives, which were therefore preferred for
the analysis.
The climate system is inherently nonlinear and the same

can be expected for signals characterizing its behaviour.
However, this nonlinearity is not always detectable from
climatic series, and its magnitude varies with location, sea-
son and the matter investigated (e.g. Mikšovský and Raidl,
2006; Mikšovský et al., 2008, and references therein). To
reveal the possible manifestations of nonlinear behaviour
in the relations analysed, results obtained by MLR were
compared with those obtained by the method of local mod-
els (e.g. Mikšovský and Raidl, 2006) and from multilayer
perceptron neural networks (e.g. Haykin, 1999 and refer-
ences therein). Although mild nonlinearity was detected
for some combinations of the target drought index and
time interval, the improvement from application of non-
linear mappings was slight in most cases. This finding is
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Figure 1. Series of predictors used as explanatory variables for theMAM
Z-index; the darker line represents 11-year running means for series with
fast, non-episodic variability (see Section 2.3 and Table 3 for predictor

details and regression results).

consistent with Brázdil et al. (2012a) andMikšovský et al.
(2014), who found no major nonlinearity in the relations
of Czech temperature and precipitation to various external
and internal forcings. For this reason, and in the light of
easier interpretation for the outcomes of linear regression,
only MLR-based results are presented in this article.
The statistical significance of the results of the attribu-

tion analysis was tested through bootstrapping based on ten
thousand randomized versions of the dataset. To consider
the effect of residual autocorrelations in the MLR outputs
(prominent particularly for PDSI), the moving-block vari-
ant of bootstrap was employed.

4. Results

4.1. Long-term fluctuations

Fluctuations in the MAM and JJA drought indices of
the Czech Lands in the 1805–2012 period appear in
Figure 2. Differences in inter-decadal variability between
individual indices follow from their character, reflecting
only precipitation patterns (SPI) or more complex effects
(SPEI, Z-index and PDSI). While SPI indices show no
trend from the 1940s to recent times, decreasing trends
in other indices (increasing dryness) are clearly expressed,
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Figure 2. Fluctuations of MAM and JJA drought indices for the Czech Lands in the 1805–2012 period. Series are smoothed by 10-year Gaussian
filter.

particularly for PDSI. There are also no important differ-
ences between drought indices for MAM and JJA. Posi-
tive insignificant linear trends in 1805–2012 are associated
with SPI. All other drought indices are characterized by
negative linear trends, statistically significant apart from
SPEI-1 and Z-index for JJA (Table 1).
The box plots of MAM and JJA drought indices in

the 30-year periods from 1805–1834 to 1985–2012

that appear in Figure 3 indicate some important features
of drought variability, as well as differences between
indices. While SPI indices reflect the deepest droughts
in 1835–1864, the four remaining indices clearly signal
the driest patterns in 1985–2012, when SPI-12 values, in
particular, are positive. Prevailing wet weather patterns
in 1895–1924 are confirmed by positive values of all
drought indices.
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Table 1. Hundred-year linear trends of selected MAM and JJA drought indices (SPI-1, SPI-12, SPEI-1, SPEI-12, Z-index and
PDSI) for the Czech Lands in the 1805–2012 period. Statistically significant values, at 𝛼 = 0.05, appear in bold. [Correction added
6 February 2015 after original online publication: the values in Table 1 have been corrected to show hundred-year linear trends.]

Season SPI-1 SPI-12 SPEI-1 SPEI-12 Z-index PDSI

MAM 0.01 0.15 −0.20 −0.23 −0.29 −0.54
JJA 0.05 0.16 −0.11 −0.24 −0.12 −0.49
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Figure 3. Box-plots (maximum, 75, 50 and 25% quartiles, minimum) of MAM and JJA drought indices for the Czech Lands in 30-year periods for
1805–2012.

© 2014 Royal Meteorological Society Int. J. Climatol. 35: 1405–1421 (2015)



1412 R. BRÁZDIL et al.

Figure 4. MAM and JJA droughts expressed by SPI-1, SPI-12, SPEI-1, SPEI-12, Z-index and PDSI with a recurrence interval of N ≥ 5 years in the
Czech Lands during the 1805–2012 period.

4.2. Fluctuations and recurrence intervals

Czech series of six drought indices for MAM and JJA in
the 1805–2012 period were further analysed with respect
to threshold values of N-year recurrence intervals (N = 2,
5, 10, 20, 50 and 100). An overview of such indices at
a recurrence interval of N ≥ 5 years appears in Figure 4.
The 5-year return period was based on agro-climatological
studies (e.g. Hlavinka et al., 2009; Trnka et al., 2012)
showing harvests significantly influenced by drought in
approximately 20% of cases over the past 130 years. The
longest sequence of droughts with N ≥ 5 years (Figure 4)
covers 9 years in 2004–2012 for PDSI, with no close simi-
larity in other indices or in other parts of the period studied.
As mentioned above, it appears that drought events around
the generally cooler 19th century should be considered as
a reflection of lower precipitation totals, while in recent
decades the key role is played by increasing temperatures
(Brázdil et al., 2009b, 2012a, 2012b; Trnka et al., 2012).
Figure 5 shows the decadal frequencies of MAM and

JJA droughts expressed by six selected drought indices at
a recurrence interval of N ≥ 5 years during the 1805–2012
period. There exists a clear difference in dominant drought
decades between the indices based only on precipitation
(SPI-1 and SPI-12) and the other more complex indices.
Spring droughts occurred most frequently in 1861–1870
in terms of SPI-12 and in 1941–1950 in terms of SPI-1
whereas the other four indices indicated the highest
frequency in 2001–2012. For PDSI, the 1861–1870
decade was also important, and for SPEI-1 with Z-index
1991–2000 as well. The decadal frequencies of summer

droughts presented a more variable situation. While
1861–1870 dominated for SPI-1, SPI-12 and SPEI-12
(PDSI also important), a clear drought prevalence in
2001–2012 appeared only in PDSI. Although SPEI-1
also gave its highest drought frequency in 2001–2012, it
indicated the same frequency of droughts in 1805–1810;
Z-index did the same, together with the 1805–1810,
1861–1870 and 1991–2000 periods.
The occurrence of decades without drought (Figure 5)

is notable mainly for PDSI as an indicator of long-term
drought. No drought year with N ≥ 5 was recorded
between 1881 and 1910 for MAM and for as long as
1881–1930 for JJA. For the other indices, this did not
occur for longer periods than a decade.
All the above statements may be supplemented by con-

sideration of drought severity in particular years (Figure 4,
Table 2). In terms of 100-year drought, the year 1835 was
exceptional in that MAM and JJA experienced 100-year
(SPI-12 and SPEI-12) or 50-year (PDSI) drought. A sim-
ilar situation was also observed in 2007. Severe drought
in another 6 years was recorded for MAM as well as for
JJA, but without any overlap either season. For short-term
drought, JJA 1842 and JJA 1868 were notable for their
recurrence interval of N ≥ 100 years.

4.3. Attribution of droughts

Table 3 summarizes the results of attribution analysis in
the form of individual regression coefficients between
target and explanatory variables, as well as the percentage
of variance explained as coefficient of determination (R2).

© 2014 Royal Meteorological Society Int. J. Climatol. 35: 1405–1421 (2015)
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Figure 5. Decadal frequencies of MAM and JJA droughts expressed by SPI-1, SPI-12, SPEI-1, SPEI-12, Z-index and PDSI in order of their N-year
recurrence interval (N = 5, 10, 20, 50, 100) for the Czech Lands in the 1805–2012 period.
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Table 2. Years in which at least one drought index of the
six employed – SPI-1, SPI-12, SPEI-1, SPEI-12, Z-index and
PDSI – in the Czech Lands exhibited a recurrence interval of
N ≥ 100 years for MAM and JJA in the 1805–2012 period (for
selected years, drought indices with N ≥ 50 years are also added

in brackets).

Year MAM JJA

1808 SPI-1 –
1832 SPI-1 –
1835 SPI-12, SPEI-12 (PDSI) SPI-12, SPEI-12 (PDSI)
1842 – SPI-1, SPEI-1, Z-index,

SPI-12
1843 SPI-12 –
1852 SPI-1 –
1863 – SPI-1 (SPEI-1, Z-index)
1864 SPI-12 (PDSI) –
1868 – SPI-1, Z-index (SPEI-1)
1904 – SPI-1, SPEI-1 (Z-index)
1911 – SPI-1 (SPEI-1, Z-index)
1946 SPI-1, SPEI-1 (Z-index) –
2003 – SPEI-1, Z-index
2007 Z-index (SPEI-1, PDSI) SPEI-12, PDSI

To provide an easier inter-comparison of the regression
outcomes for different drought indices, the regression
coefficients are presented for the standardized versions of
predictors and predictands, i.e. time series transformed in
linear fashion to zero mean and standard deviation equal
to one.

Of the explanatory variables considered, the most influ-
ential predictor is typically NAO index, the optimum
source period of which usually covers the winter months
preceding the target period, particularly for the spring
drought indices. The NAO-related regression coefficients
are generally statistically significant at the 𝛼 = 0.05 level
and always negative. This implies a tendency towardsmore
substantial droughts during positive NAO-index episodes,
which result in warmer winter weather in Central Europe
(e.g. Wanner et al., 2001; Trigo et al., 2002; Cahynová,
2005; Brázdil et al., 2009a, 2012a).
A further influential explanatory variable was identi-

fied as CO2-equivalent anthropogenic forcing, which is
largely shaped by increasing concentrations of GHG in
the atmosphere. This change is generally considered the
main reason for long-term global temperature increase
(Stocker et al., 2013), particularly prominent in the sec-
ond half of the 20th century. Consequently, the drought
indices most sensitive to temperature (particularly PDSI
and SPEI-12) exhibit a negative trend in this period,
anticorrelated with the CO2 series. The corresponding
regression coefficients are negative and statistically sig-
nificant. Precipitation-based drought indices (SPI-1 and
SPI-12) have only weak and statistically insignificant
relations to the CO2 series, consistent with their lack of
a temperature-related component.
The influence of the Southern Oscillation was much

weaker than that of NAO, although statistically significant

Table 3. Regression coefficients for standardized series of drought indices (rows) and explanatory variables (columns) in the
1867–2012 period.

Index Season CO2 SOLAR VOLC NAOI SOI AMOI R2

SPI-1 MAM 0.015 −0.180 −0.079 −0.338 −0.017 −0.063 0.152
Year Year DJF JFM JFM JFM

JJA −0.016 0.033 −0.075 −0.176 −0.111 0.089 0.072
Year Year DJFM MJJ MAM JFM

SPI-12 MAM −0.048 0.036 −0.044 −0.247 −0.127 0.034 0.072
Year Year 15m 15m 15m 15m

JJA −0.077 −0.003 −0.107 −0.327 −0.174 −0.023 0.123
Year Year 15m 15m 15m 15m

SPEI-1 MAM −0.206 −0.220 −0.063 −0.442 −0.027 −0.061 0.343
Year Year MAM JFM JFM JFM

JJA −0.231 0.051 −0.013 −0.234 −0.087 −0.108 0.083
Year Year JJA MJJ MJJA JJA

SPEI-12 MAM −0.371 0.014 −0.026 −0.308 −0.181 −0.092 0.190
Year Year 15m 15m 15m 15m

JJA −0.410 −0.047 −0.083 −0.355 −0.179 −0.084 0.236
Year Year 15m 15m 15m 15m

Z-index MAM −0.195 −0.192 −0.073 −0.490 −0.016 −0.097 0.364
Year Year DJFMAM JFM JFM JFM

JJA −0.185 −0.005 −0.093 −0.231 −0.123 −0.098 0.093
Year Year DJFMAM JFMAMJJ MJJA JJA

PDSI MAM −0.402 −0.054 −0.080 −0.226 −0.138 −0.096 0.265
Year Year DJF JFM DJFM DJF

JJA −0.395 −0.035 −0.108 −0.197 −0.171 −0.123 0.233
Year Year DJF JFMAMJ DJFMAMJJA JJA

Values statistically significant for 𝛼 = 0.05 are indicated by bold. The abbreviations below the coefficient values indicate the predictor’s source period,
chosen during pre-processing (with 15m indicating 15-month period preceding the end of the target drought period). R2 (coefficient of determination)
shows the fraction of variance explained by the regression mapping.
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links were indicated in some cases. This is not surpris-
ing, considering that the effects of SO on Central Euro-
pean weather are rather limited, if occasionally detectable
(e.g. Brázdil and Bíl, 1998; Brönnimann, 2007; Brönni-
mann et al., 2007). Even so, the prevalence of negative
regression coefficients between various drought indices
and SOI series suggests a possibility of a determinis-
tic link, although of varying strength. However, Piervi-
tali and Colacino (2001), analysing drought events for the
1565–1915 period in Western Sicily, showed that a reduc-
tion in El Niño Southern Oscillation (ENSO) events took
place in periods when many drought events occurred and
vice versa.
The solar irradiance series exhibited a statistically signif-

icant, but relatively weak, relation to some of the drought
indices (SPEI-1, SPI-1 and Z-index) in MAM. While this
may be a sign of an actual physical relation between the
variables in question (with higher irradiation increasing
temperature and reducing drought indices), there exists the
possibility of intermixing between the influences of the
CO2 and SOLAR signals, which share some of their basic
long-term variability (lower values at the start of series and
higher towards the end).
There is no statistically significant relation between the

series of volcanic aerosol optical thickness (VOLC) and
any of the drought indices. Such an outcome is consistent
with the findings of Písek and Brázdil (2006), who iden-
tified no clear and systematic imprint of major volcanic
episodes in the Central European temperature series, and
it confirms the low level of influence of the global vol-
canic activity on the Czech climate, at least in the target
period. However, the systematically negative value of the
respective regression coefficients may suggest the pres-
ence of some deterministic link, perhaps extractable by
other means of statistical analysis.
The AtlanticMultidecadal Oscillation has been shown to

explain a portion of global temperature variance (Rohde
et al., 2013). In this analysis, however, this predictor did
not appear to contribute in a significant way.
Even when R2 was at its highest (SPEI-1 and Z-index in

the MAM target period), just a relatively small fraction of
variance in the drought indices was explained and many
features of the target series remain unresolved (Figure 6).
The lack of skill in the statistical model was at its most
apparent for JJA. This suggests that although some of
the explanatory variables included in this analysis provide
well-defined, statistically significant contributions to the
series of drought descriptors, most of the drought temporal
variability is connected to other factors, probably related
to regional climate/weather and local influences. Such
findings have already been reported by Trnka et al. (2009),
who identified a set of general circulation patterns closely
linked to drought events over the territory.
The tests repeated for the full period analysed

(1806–2012) with just CO2, SOLAR, VOLC and NAOI
predictors gave results qualitatively similar to the full
regression for 1867–2012, but with a lower fraction of
variance explained. This decrease cannot be fully ascribed
to the reduced number of predictors, as it also takes

place when comparing the four-predictor experiments for
the periods 1806–2012 and 1867–2012. The reduction
of model skill for the longer-period setup thus implies
weaker (or different) relations between the target and
explanatory variables in the early periods of the signals,
possibly due to the uncertainties discussed in Section 5.
The potential non-stationarity of the predictor-predictand
relations was also investigated, particularly for NAOI as
the dominant fast-variable predictor. The results indicate
weakened (although mostly still detectable) links to NAO
during much of the 19th century for MAM (similar to the
findings of Todd et al., 2013). More complicated temporal
patterns of NAO influence emerged for JJA, especially
for the short-term drought indices. This can probably be
ascribed to the relatively less pronounced effects of NAO
phase during the Central European summer.

4.4. Droughts and crop yields

The effects of drought on agriculture are reflected mainly
in the reduction of crop yields. There are long series of
yields available for the Czech Lands, facilitating study
and quantification of impacts. The yields show quite
significant temporal changes, with more than fourfold
mean increases between the end of the 19th century and
the end of the 20th century (Figure 7(a) and (d)). This
increasing trend is attributed to technological advances
in agriculture (Trnka et al., 2012). Rather than analysing
absolute yields, we addressed their deviation in individ-
ual years from the four closest years of the record for
which data were available. This allowed us to remove the
‘technological trend’ while retaining information on the
interannual yield variability that is thought to be most
influenced by climate parameters.
Previous analysis of yield records around the station

with the most complete data record (i.e. Brno) confirmed
that the water-balance versus yield relationship is best
estimated by a second-order polynomial (Brázdil et al.,
2009b). This closely represents the nature of the crop
yield–water relationship (Ash et al., 1992) as crop yields
may be inhibited not only through water stress but also
by low global radiation, below-normal temperatures, root
anoxia and higher infestation pressure of fungal diseases,
all factors that tend to be associated with unusually wet
seasons. However, the relationship between water-balance
indicators and yield changes is relatively weak, explaining
less than 15% of yield variability in the case study region
(around the area of the Brno meteorological station). In
the assessment of this relationship for the lowest-yield
quartile, Z-index explained up to 37% of the low-yield
variability for winter wheat and over 68% for spring barley
(Figure 7(c) and (f)). There was no such response for the
other three quartiles. This indicates that lack or surplus of
water is the key factor explaining most of the lowest yields
of spring barley and is quite important for wheat yields
(Figure 7). A similar direct relationship between SPI or
precipitation and crop yields was not confirmed.
The highest influence of drought on Czech national crop

yields may be found in the years 1922, 1934, 1947, 1976,
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Figure 6. MAM and JJA Z-index series (black line), together with its estimate by linear regression model (grey line, with 95% confidence interval
displayed by shading) (a), and contributions from individual explanatory variables (b–g), shown relative to their 1867–1877 means.

1988, 1992, 1993, 2000, 2003, 2007 and 2012. At the level
of regional yields in the Brno area, the years most affected
were 2012 (–40%/–64% spring barley/wheat yield
reduction), 2000 (–49%/–34%), 1993 (–24%/–27%),
2007 (–31%/–14%), 2003 (–17%/–32%) and 1869
(–28%/–19%). Interestingly, the year of 1879 was
extremely wet, leading to yield decreases of 26%/34%.
The years 2000 and 2012 are especially noteworthy.
Decreases in yields do not include thousands of hectares
of crops that had to be re-sown or were not harvested at all.

5. Discussion

Despite the use of homogenized meteorological data in
this study, calculation of drought indices may be slightly
biased by uncertainty in mean Czech temperature and

precipitation series employing the full numbers of ten
stations used from 1883 (temperature) and 14 stations
from 1876 (precipitation). This does not create a prob-
lem for temperature, as there are high spatial corre-
lations between even relatively distant stations. A dif-
ferent situation arises for precipitation totals because
precipitation-forming synoptic processes are of quite lim-
ited territorial extent, as reflected in the fact that spa-
tial correlations decrease sharply with increasing distances
between stations (Brázdil et al., 2012a, 2012b). This may
partly diminish the validity of Czech precipitation series
before 1876.
Precipitation-based drought indices SPI-1 and SPI-12

show slightly increasing linear trends for the Czech Lands
in the long term, although statistically non-significant.
This corresponds to non-significant trends in secular
Czech precipitation series, indicating cyclic features in
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Figure 7. (a) Mean annual yields of spring barley (dots) around the Brno station (Brno-venkov and Břeclav districts) between 1869 and 2012; (b)
yield deviation from four closest years with years affected by extremely dry conditions marked as triangles (cross indicates extremely wet conditions);
(c) relationship between drought intensity expressed as Z-index and yield deviation in 25% of the lowest-yielding years from April to June; (d–f)
as (a–c) but for winter wheat. N.B. Years marked at triangles were characterized by extremely dry conditions in at least two of the growing season

months and a yield deviation of at least 25% compared to the four closest years for at least for one of the crops.

precipitation fluctuations (Brázdil et al., 2012a, 2012b).
In contrast, the four remaining drought indices (SPE-1,
SPEI-12, Z-index and PDSI) show clearly negative linear
trends for MAM and JJA that were mainly statistically
significant. This means that the 208-year Czech series
exhibits a significant tendency to increasing MAM and
JJA dryness. While lack of precipitation was a pri-
mary reason for drought episodes in the greater part of
the 1805–2012 period (see, e.g. frequent droughts in
1861–1870 in Figure 4), recent decades highlight the
importance of significantly increasing temperatures as
causative of medium-term and long-term droughts, doc-
umented in the 1990s and particularly in 2004–2012.
This is largely in agreement with independent studies by
Trnka M, 2014a, 2014b (pers. comm.) that employed a
process-based soil-water-balance model. This indicated
that most of the Czech Republic exhibits a tendency
towards decreasing soil-water content between April and

September, whereas the period from October to March
typically displays a tendency towards increased soil-water
content, particularly at higher altitudes. Trnka M, 2014b
(pers. comm.) conclude that drying trends are strongest
in May (over 44.1% of all Czech territory) followed by
June (36.4%). Drought trends in other months are far less
pronounced. A trend towards lower soil moisture content
was also found in the eastern part of the Czech Republic
during July–September.
In the wider area of Central Europe Dai et al. (2004)

and Dai (2011a) reported the existence of a notable drying
trend since the beginning of the 20th century, which
they linked to increasing temperatures. Lloyd-Hughes
and Saunders (2002) and van der Schrier et al. (2006)
reported only insignificant changes in the areas experi-
encing moderate-to-extreme drought conditions during
the 20th century in Europe as a whole. However, if the
results of the two studies are analysed for only the region
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delimited by 48∘–51∘N and 13∘–18∘E, a drying trend
can be identified. Sheffield et al. (2012) argue that the
simplified model of PET used in PDSI overestimates
increase in global drought as a reflection of temperature
rise. Applying more realistic calculations including avail-
able energy, humidity and wind speed show little change
in drought over the past 60 years (for physical aspects of
PDSI, see Seneviratne, 2012 and for changes in droughts
due to global warming see Trenberth et al., 2014). Nev-
ertheless, calculation of soil moisture content using the
SoilClim model based on the Penman–Monteith method
(Hlavinka et al., 2011) has shown an increased tendency
towards lower soil moisture content (especially from
April to June) during the 1961–2010 period (Trnka M,
2014a, 2014b (pers. comm.)). Moreover, Trnka M, 2014a,
2014b (pers. comm.) reported a decline in measured soil
moisture content and a significant increase in measured
pan evaporation for the same period. Todd et al. (2013)
analysed scPDSI series for three stations in southeast
England. They identified multiple drought-rich periods in
1730–1760 and 1890–present. The latter period shows
an increasing tendency towards more severe droughts, in
agreement with the results of this study.
Sheffield et al. (2009) identified the five top-ranked

drought events for Europe in the 1951–2000 period based
on duration (over three months) and extent: 1959–1961,
1976–1977, 1975–1976, 1951–1952 and 1995–1996.
Although this analysis evaluates droughts over a long
timescale and is limited only to MAM and JJA droughts,
any coincidence with these periods is very weak or even
random (compare Figure 4): MAM – 1976 (SPI-1), 1995
(SPEI-12); JJA – 1976 (all indices except PDSI), 1952
(all indices). This is, firstly, due to inter-model differ-
ences in soil depth and water-holding capacities that
impact soil moisture retention and persistence between
the Sheffield et al.’s (2009) modelling approach and the
indices employed in this study. Secondly, the global cover-
age of the study means that the continental-scale drought
events frequently miss the area of the Czech Lands, as is
depicted in the Sheffield et al.’s (2009) drought episodes
of 1950 and 1951. Finally, the Sheffield et al. (2009)
findings in terms of specific year with particular drought
exposure also differ from the results of Lloyd-Hughes and
Saunders (2002) and van der Schrier et al. (2006), and
absolute agreement between studies using different sets of
modelling approaches, thresholds and assumptions is in
any event unlikely.
Trnka et al. (2013) showed that, given current climate

conditions, 95.5% of the Czech territory is dominated
by quite ‘wet’ soil climate regimes. However, whatever
the differences among global circulation models, these
wet-dominant regimes will be greatly reduced in area or
diminished in intensity under future climate conditions, i.e.
by the year 2100. Such a changed climate will inevitably
and considerably affect the probability of very dry years
(i.e. years when the soil is dry for most of the summer
throughout its profile), increasing it more than tenfold.
The time series of most drought indices carry the

imprints of one or more large-scale climate forcing

factors, although the relative strength and significance of
such influences varies with the type of the index as well
as the season. Of particular prominence is the long-term
component associated with the intensification of radiative
forcing arising out of increases in the concentration of
GHGs. Considering the statistically strong connection
between GHG quantities and Czech temperature, and an
almost non-existent link to precipitation (Brázdil et al.,
2012a; Mikšovský et al., 2014), it is reasonable to assume
that GHG-induced temperature increase represents the pri-
mary transfer mechanism introducing the trend component
to drought indices.
Of the faster-variable forcings, NAO phase is by far the

most influential, with high values of NAO index coinciding
with lowered values for all drought indices. The mech-
anisms underlying the drought–NAO interaction appear
to be linked to variability in Czech temperature (typi-
cally increased during positive NAO phases) and precip-
itation (generally somewhat reduced during positive NAO
phases, at least for the precipitation dataset employed
here). The effects of other forcing factors are substantially
weaker, although this analysis suggests a possible connec-
tion between certain drought descriptors and solar activity
and/or SO phase, in line with prior studies that have indi-
cated their possible influence on European climate (e.g.
Brönnimann, 2007; Brönnimann et al., 2007; Bice et al.,
2012; Gray et al., 2013; Mikšovský et al., 2014).
The employment of drought indices calculated for the

whole territory of the Czech Republic may smooth out
quite important differences between its various parts,
differences that may have significant economic conse-
quences, quite apart from the timing of drought with
respect to existing crop phenophases. For example, grain
production suffers when drought affects the most pro-
ductive regions, such as the Elbe lowland in Bohemia
or southern Moravia. Some spatial differences in precip-
itation distribution with respect to drought indices were
shown by Brázdil et al. (2013). Moreover, Zahradníček
P, 2014 (pers. comm.) documented an interesting case of
dipole structure in droughts, with more-or-less normal pat-
terns in the western part of the Czech Republic (Bohemia)
and severe drought in its eastern part (Moravia) for August
2011–May 2012. Such knowledge has always to be borne
in mind and then carefully applied in impact studies, par-
ticularly in agriculture.
It is a well-established fact that crops change in their

sensitivity to stress at the various stages of their growth
(e.g. Chmielewski and Köhn, 2000). We have therefore
used the response of regional crop yields at district level
as presented by Hlavinka et al. (2009) and Zahradníček
P, 2014 (pers. comm.) as measures of drought index cor-
respondence with drought impacts. Analysis comparing
the relationship between drought indices (i.e. Z-index,
PDSI and SPI with SPEI at various time steps) demon-
strated that most crops (e.g. winter wheat and spring
barley) are susceptible to short-term drought within the
April–June period and they show their closest relation-
ship with Z-index and SPEI-1month.Maize and sugar beet
have a higher sensitivity to drought events between May
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and August, whereas winter oilseed rape and winter rye
(winter crops) also demonstrated particular sensitivity to
water stress in the months before emergence, and during it,
in autumn. This analysis also helped to establish that yield
losses attributable to drought episodes might be consider-
able. Themost severe events involve drops of 30%ormore,
even 65%, at regional level – and even higher when the
increased rate of crop failure (i.e. sown but non-harvested
area) is factored in.
However, in some cases the impact of drought on

regional yield is partly hidden within the statistics,
because the mean yield data do not account for whatever
fraction of sown area is ploughed back and re-sown as a
result of crop failure. In extremely dry years (e.g. 2000
or 2012), drought indicators enable explanation of spatial
variability of yield departures and thus helps, for example,
to assess total damage attributable to a particular drought
event. Hlavinka et al. (2009) showed that the difference
in available soil moisture (expressed in terms of rZ-index)
could explain 65% of yield variability for spring barley
between individual districts, 22% for winter wheat, 43%
for winter oilseed rape, 25% for winter rye, 41% for oat
and 21% for potatoes.
The most recent drought episode, which started in late

summer 2011 and lasted until July 2012, also showed
the importance of autumn drought to winter crops
(Zahradníček P, 2014 (pers. comm.)). The yields of winter
wheat in the south-eastern lowlands of the Czech Republic
were the worst in 15 years (in some regions even as low
as in the early 1900s), mainly due to very dry conditions
all autumn and spring, exacerbated by unfavourable
conditions for over-wintering (low-precipitation leading
to lack of snow cover to protect against intense frosts).
Moreover, there was also a substantial acreage reduction
during autumn and winter 2011/2012; allowing for this
would lower the mean yield by another 10%, making
the 2012 drought in some areas comparatively the worst
drought event in the past five decades, with the sharpest
year-to-year decline in available statistical records.

6. Conclusions

This article presents an analysis of 208 years of droughts
in the Czech Lands and their forcings. In comparison
with other Czech drought studies (e.g. Brázdil and Kirch-
ner, 2007; Tolasz et al., 2007; Brázdil et al., 2009b; Potop
et al., 2011, 2012, 2014; Treml, 2011), it employs the
longest-yet homogeneous instrumental series for calcula-
tion of areal means and attribution analysis of the vari-
ability of drought indices, to investigate the influence
of various forcing factors. This new series has enabled
the calculation of long-term series of six drought indices
for two basic periods – MAM and JJA, generally cov-
ering the vegetation period. The analysis demonstrates
increasing dryness throughout the territory of the Czech
Republic, peaking in 2004–2012, documented by sig-
nificant linear trends in several drought indices. Simi-
lar long periods of drought, but of lower severity, were

also recorded in 1864–1866 and 1869–1874. While the
drought periods of the 19th century were attributed mainly
to low-precipitation totals, the most recent ones were more
related to a significant increase in temperatures.
Regression analysis of factors that may be linked to

the variance in the observed drought indices revealed
that the North Atlantic Oscillation phase and the aggre-
gated effects of anthropogenic forcing (expressed through
CO2-equivalent concentration) are the most prominent
predictors, although the magnitude of their influence var-
ied strongly with the type of target index as well as the
season of the year. Minor contributions were also detected
from solar irradiation and Southern Oscillation phase,
whereas no significant links were found to volcanic activ-
ity and Atlantic Multidecadal Oscillation. This tallies with
the results of Pongrácz et al. (2003) who used a fuzzy
rule-based technique for similar analysis of droughts in
Hungary. Using Hess-Brezowsky circulation pattern types
and ENSO events on monthly PDSI, they refer to their
influence on drought occurrence. However, the ENSO sig-
nal is relatively weak in a statistical sense. The fraction of
MAM and JJA drought index variance in the Czech Lands
explained by the climate forcings and circulation oscilla-
tions under consideration was, however, relatively small,
and the influence of regional and local factors appears to
be dominant in the variability of the drought indices stud-
ied. Furthermore, while this analysis suggests that rela-
tions between drought descriptors and forcings are largely
linear, some indications of nonlinear links were detected,
suggesting a potential for further extension of the attribu-
tion analysis.

Acknowledgements

The authors gratefully acknowledge the support of the
following grants in the preparation of this article: RB,
JM – Grant Agency of the Czech Republic, ref. no.
P209/11/0956; MT – KONTAKT LH11010 and the
‘Building up a multidisciplinary scientific team focused
on drought’ project, ref. no. CZ.1.07/2.3.00/20.0248;
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dopady na Moravě a ve Slezsku (Selected Natural Extremes and
Their Impacts in Moravia and Silesia). Masarykova univerzita, Český
hydrometeorologický ústav, Ústav geoniky Akademie věd České
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Büntgen U, Brázdil R, Dobrovolný P, Trnka M, Kyncl T. 2011. Five
centuries of Southern Moravian drought variations revealed from
living and historic tree rings. Theor. Appl. Climatol. 105: 167–180,
DOI: 10.1007/s00704-010-0373-9.

Byun H, Wilhite DA. 1999. Objective quantification of drought
severity and duration. J. Clim. 12: 2747–2756, DOI:
10.1175/1520-0442(1999)0122.0.CO;2.

Cahynová M. 2005. Vliv Severoatlantské oscilace na sezonní teploty
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