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1 Preamble

The presented habilitation thesis is based on ten selected papers I have published
during the period of years 2010–2014. The timeliness of the works was not, however,
the main criterion for the selection of the publications. Instead, I attempted to choose
such studies which would well illustrate one particular topic of my recent research.
These studies concern with a statistical-mechanical description of phase transitions
and critical phenomena of continuous model systems that experience an influence
of an external field, generated by confining walls. Although it is quite common in
the theory of phase transitions to formulate the problems in terms of magnets, I
will use the language of fluids throughout the thesis as I also do in my works. As
the focus is on phase behaviour driven by the presence of a (solid) confinement, we
study interfacial phase transitions that are not present and should be distinguished
from bulk phase phenomena. I have studied the interfacial phenomena of the model
systems in the framework of the statistical physics and in particular using the two
following statistical-mechanical treatments. A microscopic approach, represented by
the classical density functional theory (DFT) regarded nowadays as a standard tool
in the statistical physics of liquids that provides a general framework for calculating
density profiles, correlation functions and phase behaviour of model fluids defined by a
given effective Hamiltonian. The only input to the theory is the interaction potential
between fluid particles and the potential between fluid and wall particles. Although
DFT can also be applied for modelling of complex systems, such as polymer solutions
and polymer melts, colloidal dispersions and colloidal liquid crystals, the focus in
the presented papers is on simple atomic systems. It is not only because it is for
this class of models that DFT approximations are successfully developed but also
because the main concern of the presented works is on general, fundamental aspects
of a given model system, for which a selection of a particular fluid model is largely
irrelevant. The second approach is a field-theoretical treatment based on a coarse-
grained interfacial Hamiltonian model. In this case, rather than ρ(r), the equilibrium
density profile of the fluid, one attempts to find a solution for the local interface
position `(x) separating two coexisting fluid phases, stabilised by a presence of the
wall. This mesoscopic approach considerable simplifies the problem and the great
advantage of this approach is its mathematical tractability which often allows for
analytic predictions. There exist well-developed mathematical methods that can be
used to determine approximately or even exactly the partition function corresponding
to a given model. This is, of course, at the cost of sacrificing a contribution of the
microscopic degrees of freedom that may play a crucial role especially in the cases
of strongly inhomogeneous systems. The combination of the two methods both of
which have its pros and cons and which complement each other proved to be very
fruitful in addressing the questions such as: What kind of phase transitions does the
given system exhibit? What is the order of the transitions? What is the equilibrium
structure of the fluid? What are the values of the pertinent critical exponents? Are
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the fluctuation effects important (or even dominant) or is a description based on
a mean-field theory sufficient? What is the effect of the system geometry and the
microscopic features of the system constituents? What is the relation between phase
behaviours in different geometries? What is the effect of the range of the inter-
molecular forces and what are the universality classes?
Although the phase behaviour of fluids adsorbed at a planar wall (wetting) or con-

fined between two parallel walls (capillary condensation) is nowadays well understood,
our understanding of the behaviour of fluids in systems of non-planar symmetries is
still developing and a microscopic insight in this field is almost entirely lacking. One
of the main motivations to pursuit such systems is the fact that the perfectly flat,
structure-less walls, as commonly considered to be a model of solid substrates, are
idealized. In fact, a fluid upon adsorption encounters geometrically and energetically
heterogenous walls. It has been recognized that corrugation and roughness of the ad-
sorbing surfaces can have a significant influence on their wettability and may induce
entirely novel phenomena and fluctuation regimes.
Prior examining an influence of a geometrical heterogeneity of surfaces on their

wettability it is necessary to understand the nature of the interfacial properties of fun-
damental non-planar objects, such as sphere, wedge-like cavity, edge-shaped structure,
groove etc. It reveals that all of these geometries have some very specific features in
terms of phase phenomena they induce. Furthermore, there exist hidden symmetries,
or so called covariances, which relate local adsorption properties in different confin-
ing geometries. For more complex but still rather simple geometries, there may exist
appealing interplay between these phenomena which eventually gives rise to very rich
phase behaviour of the adsorbed fluid. The presented thesis describes my contribution
to this intriguing field of the current research.
Attempting to make the text of the thesis self-contained, I start with a very brief

overview of bulk critical phenomena (section 2) which is followed by a concise intro-
duction to the theory of wetting transitions on planar surfaces (section 3). Regarding
the latter, there has been no attempt to give a comprehensive review of this topic
which has enormously grown over the last three decades. There are several classic
textbooks or sections in monographs devoted to this subject1. In section 4, I give
a brief description of the classical density functional theory. The main part of the
thesis is section 5 which is devoted to interfacial phenomena in non-planar confining
geometries that have been studied in the selected papers. The final part of the thesis
form the enclosed publications.

1See, e.g., D. E. Sullivan and M. M. Telo da Gama, in Fluid Interfacial Phenomena, edited by
C. A. Croxton (Wiley, New York, 1985); S. Dietrich, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, New York, 1988), Vol. 12.; M. Schick, in Liquids
and Interfaces, edited by J. Chorvolin, J. F. Joanny, and J. Zinn-Justin (Elsevier, New York, 1990).
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2 Bulk Critical Phenomena

Bulk phase transitions and critical phenomena occur in macroscopic systems where
no confining walls and other external fields exist (or can be neglected). In figure 1 we
sketch a P-T diagram where the lines represent the loci of points where two distinct
phases coexist. When such lines are crossed during a thermodynamic process, the
system undergoes first-order phase transition, characterised by a non-zero value of a
latent heat which is adsorbed or released as the system transforms from one phase
to another. The liquid-vapour line terminates at the critical point beyond which no
distinction between the two phases can be made. This means that the coexistence
line can be bypassed in a path connecting two distinct fluid phases. This contrasts
with the solid-liquid and solid-vapour transitions since in these cases two phases of
different symmetry are involved. The phenomena that occur near the critical point
are called critical phenomena and can be characterised by strong fluctuation effects
and by a power-law divergence of several physical quantities. The order parameter is
a measure of the degree of order across the boundaries in a phase transition system.
For the liquid-vapour system the order parameter is the density difference between
the two phases, ρL−ρV , so that its value is zero above the critical temperature Tc and
non-zero below. Instead of the critical temperature itself it is often more convenient
to consider the reduced temperature t = (Tc − T )/Tc. The critical behaviour of a
given system can be characterised by a set of critical exponents which quantify the
singularities of the free-energy at the critical point as follows:

Figure 1: Temperature-pressure phase diagram of a simple substance. All the transi-
tions are discontinuous except at the critical point (C).
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• Specific heat: Cv ∝ |t|−α as t→ 0 at ρ = ρc;

• Density difference: ρL − ρV ∝ tβ as t→ 0;

• Isothermal compressibility: χT ∝ |t|−γ as t→ 0;

• Critical isotherm: ρL − ρV ∝ |P − Pc|1/δ as P → Pc at t = 0;

• Correlation length: ξ ∝ |t|−ν as t→ 0;

• Density-density correlation function: G(r) ∝ 1
rd−2+η at t = 0.

The concept of the critical point was introduced in 1869 when Andrews presented
his experimental results on carbon dioxide. Soon after, van der Waals formulated first
microscopic theory for fluid phase behaviour in which the critical point was included.
Almost simultaneously, the critical point2 was introduced in the theory of ferromag-
nets proposed by Weiss. These advances revealed a very interesting similarity between
fluids and magnets; when the pressure is taken as the analogue of magnetic field H
and the pressure difference as the analogue of magnetization M , the critical expo-
nents for magnets can be defined in complete analogy to those for the liquid-vapour
critical point. One of the most remarkable features of the van der Waals and Weiss
theories is that they result in the same set of critical exponents. A more general view
on the subject was later on provided by Landau’s theory of critical phenomena, which
also allowed an inclusion of small (Gaussian) fluctuations, an extension known as the
Ornstein-Zernike theory. All these theories belong to the same class of mean-field
(MF) theories and, as a result, predict identical, so called classical critical exponents
that, however, do not match with the experiments. This is because the mean-field
character of the theories underestimates (or neglects completely) critical fluctuations
that turn out to play a dominating role near the critical point.
The behaviour of equilibrium systems with many degrees of freedom is generally

governed by laws of statistical mechanics. It means that all physics of such systems
can be obtained from suitable derivatives of the partition function

Z = Tre−βH , (1)

where H is the Hamiltonian of a given system and β = 1/kBT is the inverse tem-
perature with kB being the Boltzmann constant. Generally, a computation of Z is a
formidable task which becomes hopeless for any realistic Hamiltonian. Fortunately,
an inherent feature of critical systems, so called universality, can be exploited. The
universality principle tells us that the behaviour of a critical system is largely insen-
sitive to the details of the model and is governed solely by the system dimensionality,
the nature of the order parameter and the range of the interactions. Therefore, even
2For magnets, the critical point or critical temperature is often termed as Currie point and Currie

temperature, respectively.
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very simple models can be exploited to determine the values of the critical expo-
nents for a wide range of fluids and magnets belonging to the same universality class.
Especially fruitful turned out the studies of the famous Ising model, a model for a fer-
romagnet on a lattice, which nowadays serves as a metamodel in the theory of phase
transitions and critical phenomena and which is usually defined by the Hamiltonian

H = −J
∑
〈ij〉

SiSj −H
∑

i

Si , (2)

where J is the interaction parameter and where it is assumed that the degrees of
freedom Si = ±1 interact only on neighbouring sites. Using the transfer matrix
method, the model can be solved exactly for the dimension d = 1 to show that there
is no phase transition at any finite temperature. In 1944 L. Onsager famously solved
the Ising model in two dimensions for the quadratic lattice in a zero field and found
non-classical critical exponents. Most importantly, the partition function was found
non-analytic at Tc so that an expansion of the type used by Landau was invalidated
and so the whole class of the mean-field theories.
In the next few decades, an enormous effort of the frontal theoretical physicists

has been made to formulate a satisfactory theory for critical phenomena that would
incorporate the influence of the fluctuations from the scratch, which turned out to
be an extremely non-trivial task. In particular, it was found out that the critical
exponents are not independent but they appear to satisfy several exponent equalities,
such that they can be parameterized in terms of only two values. As first shown by
Widom (1965), the existence of the exponent relations can be explained by scaling
properties of the free energy near the critical point. This Widom’s hypothesis also
explains the phenomenon of data collapse when the plotted data are expressed in
reduced units. The origin of the scaling has been heuristically explained by Kadanoff
(1966) who introduced the block-spin idea that have been further elaborated and
completed by Wilson (1971) who formulated the famous renormalization-group (RG)
theory. The importance of RG theory is not only in its capability of estimating
the critical exponents by proper treatment of the fluctuations but it also provides a
natural framework in which the origin of scaling and universality can be understood.
It also explains the onset of the upper critical dimension, d∗, above which the effect
of the fluctuations is not essential and MF treatment is thus correct.
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3 Interfacial Phase Transitions: Planar Geometry

Consider a planar wall3 onto which some amount of liquid is poured. From a macro-
scopic viewpoint the wetting properties of the wall can be characterised by the contact
angle θ at which the liquid drop meets the wall. If θ > 0, the system is in a partial
wetting regime and the liquid forms a hemispherical cap4. Balancing the net force per
unit length acting along the boundary line between the three phases, the equilibrium
contact angle is given by Young’s equation

γwv = γwl + γ cos θ , (3)

in terms of the tensions of the wall-vapor, wall-liquid and liquid-vapour interfaces. If
adsorption properties of the wall are strong enough, the system can exhibit wetting
transition at a wetting temperature Tw at which the wall surface becomes completely
wet and θ = 0. Eq. (3) then becomes Antonow’s equation:

γwv = γwl + γ , (4)

Figure 2: Phase diagrams of a first order (left) and a continuous (right) wetting
transition. Also shown are representative thermodynamic paths on diagrams below.

Alternatively, the wetting transition can be viewed as an intrusion of the liquid
layer into the wall-vapour interface. The partial wetting regime corresponds to a
finite value of the liquid film thickness `π or, equivalently, the surface adsorption (or
coverage) Γ. The film thickness (or adsorption) serves as the natural order parameter
for the wetting transition, at which `π (or Γ) diverges (in the absence of gravity).
There are two possible ways how this divergence can be realized:
3The wall is typically assumed to be of a solid material although this assumption is not necessary

at this point.
4If not stated otherwise, we will implicitly consider only hydrophilic walls, such that θ < π/2. In

the opposite case, the wall is called to be dried (i.e., wetted by the vapour) which is just a reverse
phenomenon to wetting.
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• Firstly, as the wetting temperature is approached from below, i.e., as T → T−
w ,

along the bulk liquid-vapour coexistence line, such that the chemical potential µ =
µ0(T ), where µ0(T ) is the saturation chemical potential at a given temperature. This
transition can be either discontinuous, i.e. first-order wetting (figure 2, left panel,
path No. 4) or continuous – usually called critical wetting (figure 2, right panel, path
No. 3). Clearly, the free energy is non-analytic at Tw in both cases and its singular
part which is defined as

fsing = γwv − (γwl + γ) (5)

vanishes at Tw according to
fsing ∼ t2−αs , t > 0 , (6)

where t ≡ (Tw − T )/Tw. For further purposes, it is useful to note that by combining
(3) and (5) we obtain

fsing ≈ −
γθ2

2
(7)

near Tw where the contact angle is small.

The value of the critical exponent α determines the order of the transition. From
Eqs. (3) and (6) it follows that

1− cos θ ∼ t2−αs , t > 0 . (8)

Now, the derivative of the contact angle with respect to the temperature,

d cos θ

dT
∼ t1−αs , (9)

must be continuous at Tw for critical wetting (no latent heat) and therefore αs < 1.
For first-order wetting, there is a latent heat at the transition, cos θ is therefore
discontinuous at Tw and αs = 1. For critical wetting we also define the critical
exponent βs which characterises the divergence of the film thickness (or adsorption)
as T approaches Tw:

`π ∼ t−βs . (10)

• Secondly, as the temperature Tw < T < Tc is fixed and the coexistence line is ap-
proached from below (the lines Nos. 2 and 3 in the left panel and the line No. 2
in the right panel of figure 2). Within this process, the thickness of the liquid layer
diverge as µ→ µ−0 according to the power-law

`π(δµ) = δµ−βco
s , (11)

where δµ = µ0 − µ. This continuous divergence of the liquid film is called complete
wetting. For the singular part of the free energy, we have by analogy with Eq. (6):

fsing ∼ δµ2−αco
s , δµ > 0 . (12)
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For the first-order wetting transitions, the singularity in the surface free energy at Tw

extends above Tw and below µ0 to a pre-wetting line which is the locus of coexistence
between two distinct phases with thin and thicker wetting layers. This line terminates
at its own critical temperature Tsc and approaches the coexistence line tangentially
at Tw as δµ ∼ (T − Tw)

3
2 .

In general, the surface critical exponents depend on the range of the fluid-fluid
and wall-fluid interactions. Our main focus will be on models where the interaction
between molecules is long-ranged (decaying as a power-law at infinity), with a par-
ticular emphasis on the most relevant case where the particles interact via van der
Waals (dispersion) forces.
Wetting phenomena (in d dimensions) can be studied using the interfacial Hamil-

tonian model in terms of the height `(x) of the liquid-gas interface (i.e., the local
wetting film thickness)

Hπ[`] =
∫

dx
[
γ

2
(∇`)2 +W (`)

]
, (13)

where x denotes the (d − 1) coordinates parallel to the wall. The first term in the
integral is the energy cost of an undulation of the interface due to thermal fluctuations
that are assumed to be small (|∇`| � 1). The second term, W (`), represents effective
interaction of the interface with the wall and is called binding potential. For the long
range interactions, the binding potential has the asymptotic form:

W (`) =
a(T )

`p
+
b(T )

`q
+ · · · ; ` > 0 , (14)

where p = 2 and q = 3 for (non-retarded) van der Waals forces in three dimensions5.
This binding potential is appropriate as far as two-phase coexistence is concerned,
i.e, for µ = µ0; this is the case of first-order or critical wetting. For complete wetting,
we have µ < µ0, and the energy cost for the presence of the metastable liquid must
also be included:

W (`) = δµ(ρl − ρg)`+
a(T )

`p
+ · · · ; ` > 0 . (15)

If the interfacial fluctuations are neglected, `(x) = const, and the equilibrium
wetting configuration is given simply by minimising the binding potential. The system
is wet if the minimum corresponds to ` infinite which requires a(T ) > 0. There are
two mechanisms by which this global minimum can shift to a finite value of `. The
first mechanism can occur as a(T ) changes its sign with b(T ) positive. If a(T ) < 0, the
binding potential approaches zero asymptotically from below, which means that the
minimum is at finite value of ` ∼ a−1; the wall is not wet. However, as a(T ) → 0, the
film thickness grows continuously and eventually diverges at Tw for which a(Tw) = 0
and b(Tw) > 0. Clearly, this mechanism corresponds to critical wetting. Note that
5The coefficient a(T ) is often termed the Hamaker constant.
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as a(T ) changes its sign at the wetting temperature, a ∼ t. From this it follows
that βs = 1 and upon substituting into (14) and (12) we get αs = −1 for van der
Waals forces.6 The second mechanism is realized if b(T ) < 0 (or if the coefficient of
a higher-order term in the expansion (14) is negative) and a(T ) > 0, in which case
the binding potential exhibits two minima at ` finite and ` infinite. In this case, Tw

corresponds to the temperature below which finite ` minimum becomes the global
minimum. This is the case of a first-order wetting. This mechanism is pertinent
for systems in which the only forces that are long range are those between fluid and
wall atoms; in this case a(T ) remains always positive. For complete wetting, the
term linear in ` prevents from unbinding of the interface for any positive value of
δµ = µ0 − µ. The wall thus becomes completely wet only in the µ → µ0 limit with
the associated critical exponents αco

s = 4/3 and βco
s = 1/3 for van der Waals forces.7

Note that all terms beyond the `−p order are irrelevant for complete wetting.
The MF analysis can be complemented by the OZ approximation to obtain further

critical exponents related with the structure of the interface. The OZ theory corre-
sponds to the functional Taylor expansion of Hπ[`] up to second order in fluctuations
δ`(x) = `(x)− `π around the mean value of the interface height 〈`〉 = `π. From this
it follows that the transverse correlation length, defined by the OZ theory as

γξ−2
‖ ≡ d2W (`)

d`2

∣∣∣∣∣
`=`π

(16)

behaves as
ξ‖ ∼ t−ν‖ , (critical wetting) (17)

with ν‖ = 5/2 for critical wetting and

ξ‖ ∼ δµ
−νco

‖ , (complete wetting) (18)

with νco
‖ = 2/3 for complete wetting.8

The MF theory is no longer correct when the fluctuation effects become important.
The upper critical dimension where the MF theory ceases to hold, can be determined
using the Ginzburg criterion. The contribution of the fluctuations to the surface free
energy can be estimated as

f f
s ≈ kBT/ξ

d−1
‖ ∼ t(d−1)ν‖ . (19)

If compared with (6), we obtain the hyper-scaling relation

2− αs = (d− 1)ν‖ (20)
6More generally: αs = (2− 2p)/(q − p) and βs = 1/(q − p).
7More generally: αco

s = (p + 2)/(p + 1) and βco
s = 1/(p + 1).

8More generally: ν‖ = (q + 2)/(2(q − p)) and νco
‖ = (p + 2)/(2p + 2).
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and, similarly, for complete wetting:

2− αco
s = (d− 1)νco

‖ . (21)

The hyper-scaling relations are only valid for the MF critical exponents for d = d∗

and therefore

d∗ =
3q + 2

q + 2
(critical wetting) (22)

and

d∗ =
3p+ 2

p+ 2
(complete wetting) . (23)

For van der Waals forces, d∗ = 11/5 for critical wetting and d∗ = 2 for complete
wetting. These results are important because they tell us that the MF theory of
wetting is exact in d = 3 for long-range forces.
Although the MF theory of wetting is exact in the most relevant case of a three-

dimensional system with long-range forces,9 it is nevertheless desirable to account for
the effect of fluctuations in systems of lower space dimensions. As we will see later
on, this may occur to be very useful for a description of other interfacial phenomena
that can be effectively mapped onto wetting phenomena at reduced dimensions. To
properly include the fluctuations, exact transfer-matrix or approximate RG techniques
have often been employed but much about their influence can be learnt from the simple
arguments that I will demonstrate for dimension d = 2.
Fluctuations in ` decays in a distance of ξ‖ and thus for the first term in Eq. (13)

we have
γ

2
(∇`)2 ∼ `2

ξ2
‖
. (24)

The fluctuations become important when ` ∼ ξ⊥ where

ξ⊥ =
√
〈`(x)2〉 − `2π (25)

is the perpendicular correlation length or roughness. The transverse and correlation
lengths are related through the wandering exponent as ξ⊥ = ξζ , so that

γ

2
(∇`)2 ∼ `2

ξ2
‖
∼ `−τ , (26)

with τ = 2/ζ − 2. Adding this interaction term due to fluctuations to the binding
potential with long-range forces (14), we obtain an effective potential:

Weff(`) =
a(T )

`p
+
b(T )

`q
+
c(T )

`τ
; ` > 0 . (27)

9For systems with short-range forces d∗ = 3 for both critical and complete wetting. In this case,
the critical singularities are αs = 0, βs = 0(ln) and ν‖ = 1 and f co

s = δµ ln δµ, βco
s = 0(ln) and

νco
‖ = 1/2.
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Thus beside the two first energy terms that describe a direct interaction between the
interface and the wall, we also have a competing term which includes an entropy loss
due to the wall presence accounting for the restricted number of possible fluctuations
of a bound state compared to an unbound state. The last term in (27)) is therefore
repulsive, hence c(T ) > 0 and it can be shown that τ = 2 for d = 2. Depending on
the values of p and q relative to τ , we obtain three scaling regimes for critical wetting:

1. τ > q: Mean-field regime. Since the critical exponents for critical wetting are given
by the first two terms in the binding potential, the fluctuation term has no effect and
the MF theory is exact in this regime.

2. p < τ < q: Weak-fluctuation regime. Now the fluctuation term is second largest and
the critical exponents (that are now dimension-dependent) are not correctly predicted
by the MF theory. However, the critical temperature which is given by the leading
order term, is still given correctly by the MF theory and the critical exponents can
be be obtained from the MF theory by replacing q → τ ; in particular, βs = 1/(τ −p).

3. τ < p < q: Strong-fluctuation regime. In this regime, the fluctuation term is dom-
inating and even the location of the wetting temperature is not correctly given by
MF theory. For d = 2 when ` is a function of a single coordinate, the transfer-matrix
method can be employed which transforms the statistical mechanical problem to the
eigenvalue problem for the Schrödinger equation:(

1

γβ2

d

d`2
+W (`)

)
ψn(`) = Enψn(`) , (28)

to determine P (z) = |ψ0(z)|2, the probability to find the interface at a height z.

For complete wetting, the situation is simpler, since only the leading order term
in the binding potential is important for the critical exponents. This can be viewed
from the fact that the binding potential (15) can be formally obtained from (14) by
taking a = δµ and p = −1. As the leading order term is thus always lower than
τ , there is no strong-fluctuation regime for complete wetting. For a fixed dimension
d < 3, there is a marginal value p∗ = 2(d− 2)/(3− d) of the exponent p, such that:

1. p < p∗: Mean-field regime. The MF theory is valid and the critical behaviour is
determined by minimization of W (`).

2. p > p∗: Weak-fluctuation regime. For systems with shorter-range forces than those
corresponding to p∗ fluctuation effects dominate. According to the RG theory, βco

s =
(3− d)/(d+ 2).
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4 Density Functional Theory (DFT)

The interfacial model introduced in the previous section is a well established the-
oretical tool which provides us, often analytically, with a description of interfacial
phenomena in terms of the interface height `(x), a natural order parameter for un-
binding processes such as the wetting and related transitions. For more intricate
geometries and/or in cases when the inhomogeneous fluid structure due to a strong
wall-fluid interaction or finite-size effects becomes important, the mesoscopic picture
provided by the interfacial model may occur less satisfactory and the problem may
call for more microscopic approaches based on many-body molecular Hamiltonians.
A very powerful approach to microscopic structure of inhomogeneous fluids is a

(classical) density functional theory (DFT)10 which is now regarded as a standard
tool in statistical physics of liquids. The fluid is said to be inhomogeneous if one-
body density (or density distribution) ρ(r) is spatially varying. This is, of course, the
case of all systems with confining walls and non-homogeneous external fields. The
one-body density is defined as

ρ(r) =

〈
N∑

i=1

δ(r− ri)

〉
(29)

where N is the number of particles and 〈· · ·〉 denotes the ensemble average. Within
DFT the effect of the walls is included via the external field V (r) the walls exert. The
DFT formalism establishes that for a given chemical potential µ and temperature T
(β = 1/kBT ) and given inter-particle interaction u(ri− rj) there is a unique intrinsic
free energy functional F [ρ] of the density distribution ρ(r) (and not of V (r)) and so
is of the same form for any external potential. The equilibrium density distribution
for the system in a given external field V (r) is then obtained by minimizing the grand
potential functional constructed from the Legendre transform of F [ρ]:

Ω[ρ] = F [ρ] +
∫

drρ(r)(V (r)− µ) , (30)

with respect to all possible functions ρ(r). This leads to the Euler-Lagrange equation:

δΩ[ρ]

δρ(r)

∣∣∣∣∣
ρ(r)=ρeq(r)

= 0 ⇔ µ =
δF [ρ]

δρ(r)
+ V (r) (31)

Moreover, for the equilibrium density profile ρ(r) = ρeq(r) the grand potential func-
tional reduces to the thermodynamic grand potential Ω.
An important feature of DFT is that it satisfies a number of the so called sum

rules, i.e., the exact statistical mechanical relations between correlation functions and
10DFT has been originally developed as a quantum mechanical treatment for the ground state of
inhomogeneous many-electron systems in 1960’s. Its classical or statistical-mechanical version was
formulated by Evans in 1979.
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macroscopic thermodynamic quantities, which makes the direct link between micro-
scopic correlations and physical properties of the macroscopic system. Particularly
useful is the pressure sum rule relating the bulk pressure with the external field of
the wall

βp =
∫

dzρ(z)
d

dz
exp [−βV (z)] (32)

and the Gibbs adsorption theorem which connects the excess adsorption with the
surface tension:

Γ ≡
∫

dz(ρ(z)− ρb) = −
(

dγ

dµ

)
T

, (33)

where ρb is the bulk density. In both cases, a planar symmetry of the wall-fluid
interface was assumed but a generalization of the theorems to other geometrises is
straightforward. In DFT, these sum rules are also often used as a check of numerical
consistency.
Thus far, the DFT formalism has been exact and thus the exact determination of

Ω[ρ] is equivalent to the full evaluation of the grand partition function:

ZµV T =
∑
N

eβµN

N !Λ3N

∫
ΠN

i=1drie
−βUN , (34)

where
UN(r1, r2, . . . , rN) = Φ(r1, r2, . . . , rN) +

∑
i

V (ri) , (35)

is the total potential of N particles including both the inter-particle interaction Φ and
the external field V and Λ is the thermal de Broglie wavelength. This is, therefore,
not surprising that there are no free energy functionals known exactly except for the
toy one-dimensional models. However, the strength of DFT is that on searching a
suitable approximation for F [ρ] the well established methods from statistical physics
of homogeneous fluids can be used as a guide, which makes the task much easier
compared to a direct treatment of the partition function. Also note that the density
distribution can be much more easily obtained from Eq. (31) than from Eq. (29).
In modern approaches, it is common to develop DFT approximations for particular

classes of fluid models (rather than constructing generic approximations). Typically,
the total free energy functional is split into an ideal part

Fid[ρ] =
1

β

∫
drρ(r)

[
ln(ρ(r)Λ3)− 1

]
(36)

which is known exactly, and an excess part Fex[ρ] which accounts for the interactions
between the particles. For simple fluids the inter-particle potential Φ is pairwise ad-
ditive and the interaction between the particles only depends on the distance between
their centers. This is, e.g., the case of the well-known Lennard-Jones potential

uLJ = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
, (37)
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where the parameters ε and σ are then often used as the energy and length units.
In the spirit of van der Waals theory, the excess term of the free energy is treated

in a perturbative manner, and is separated into a contribution modelling the repulsive
hard-sphere (HS) core and a contribution from the attractive part ua(r) of the fluid-
fluid intermolecular potential. This is treated most commonly in mean-field fashion:

Fex[ρ] = FHS[ρ] +
1

2

∫ ∫
drdr′ρ(r)ρ(r′)ua(|r− r′|) , (38)

where FHS[ρ] is the excess free energy functional of the hard-sphere fluid, with an
appropriately chosen diameter.
Over the last three decades a number of approximative functionals for FHS[ρ] has

been proposed. Arguably the most successful one, however, is the one produced by
Rosenfeld within his Fundamental Measure Theory (FMT). The theory is based on
the ansatz that the free energy functional for hard spheres (or a hard-sphere mixture)
can be expressed in the form

Fhs[ρ] =
1

β

∫
drΦ({nα}) . (39)

in terms of a set of weighted densities

nα(r) =
∫

dr′ρ(r′)ωα(r− r′) . (40)

Here, the six weight functions are given by

ω3(r) = Θ(R− |r|) , (41)

ω2(r) = δ(R− |r|) , ω2(r) =
r

r
δ(R− |r|) , (42)

ω1(r) = δ(R− |r|) , ω1(r) =
r

r
δ(R− |r|) , (43)

ω0(r) = δ(R− |r|) , (44)

and the function Φ({nα}) can be determined from dimensional analysis and from
requirements that the low- and high-density limits are obeyed exactly, which leads to

Φ = −n0 ln(1− n3) +
n1n2 − n1 · n2

1− n3

+
n3

2 − 3n2n1 · n2

24π(1− n3)2
. (45)

In the limit of homogeneous fluid, this result is equivalent to the compressibility
Percus-Yevick equation of state, although modified FMT versions of even more accu-
rate underlying equation of state are now available. Importantly, the FMT functional
satisfies the sum rules, Eqs. (32) and (33) (in contrast to some alternative approxi-
mative free energy functionals).
It is well known that the original Rosenfeld’s functional provides an excellent

description of the short-range correlations and satisfies the exact thermodynamic
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conditions at planar walls and corners11. However, the entire class of functionals
that are only based on the set (40) fails to describe the hard-sphere crystal and can
produce spurious divergences for highly packed systems beyond the planar geometry.
These problems have been fixed by Tarazona12 who suggested to increase the set of
weighted densities (40) by a tensor density with Cartesian components:

Tij(r) =
∫

dr′ρ(r + r′)
r′ir

′
j

R2
δ(R− |r′|) . (46)

The free-energy density is then given by

Φ = −n0 ln(1− n3) +
n1n2 − nv1 · nv2

1− n3

(47)

+
3

16π

nv2 ·T · nv2 − n2n
2
v2 − Tr[T3] + n2Tr[T2]

(1− n3)2
,

where T is the matrix corresponding to (46).
Finally, it is important to see how DFT relates with the mesoscopic interfacial

model described in the previous section. For concreteness, consider complete wet-
ting at a planar wall-gas interface. If the undersaturation δµ is sufficiently small, a
thick wetting layer forms at the wall. Adopting a coarse-graining of the microscopic
Hamiltonian according to the sharp-kink approximation for the density profile, such
that:

ρ(z) =


0 ; z < 0 ,
ρl ; 0 < z < ` ,
ρg ; z > ` ,

(48)

the complicated structure of the density distribution is reduced on a simple step-wise
expression with a single free parameter ` determining the location of the liquid-vapour
interface separating the (metastable) liquid of a density ρl and the bulk phase of a
density ρg. Upon substituting Eq. (48) into Eqs. (30) and (38), the excess grand
potential per unit area can be written in the form13

Ωex(`)

A
≡ Ω(`) + pV

A
= δµ(ρl − ρg)`+ γwl + γ +W (`) . (49)

Here, the first term on the r.h.s. is the cost of the free energy for the presence of the
metastable liquid,

γwl = −1

2
ρl

2
∫ ∞

0
dzΨ(z) + ρl

∫ ∞

0
dzV (z) , (50)

γ = −1

2
(∆ρ)2

∫ ∞

0
dzΨ(z) , (51)

11A. Malijevský and A. O. Parry, J. Phys.: Condens. Matter 25, 305005 (2013).
12P. Tarazona, Phys. Rev. Lett. 84, 694 (2000); Physica A 306, 243 (2002).
13The grand potential of the bulk phase is Ω = −pV , where V is the accessible volume and p is
the bulk pressure.
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are identified to be the surface tensions of the wall-liquid and liquid-gas interfaces,
respectively, and the remaining term

W (`) = ρ+
l ∆ρ

∫ ∞

`
dzΨ(z)−∆ρ

∫ ∞

`
dzV (z) (52)

yields the binding potential. The function Ψ(z) is the potential of a fluid semi-infinite
slab at a point a distance z away:

Ψ(z) = 2π
∫ ∞

z
dz′

∫ ∞

0
dρ ρ ua(

√
ρ2 + z′2) , (53)

where it is assumed that only the attractive part of the potential contributes. Fur-
ther details on the sharp-kink approximation and the more elaborate soft-interface
approximation can be found in appendices B and C of Paper I.

18



5 Interfacial Phase Transitions: Non-Planar Ge-
ometry

This section is devoted to interfacial phenomena that occur in systems exhibiting other
than planar symmetry. There is, of course, no intention to provide a comprehensive
review of studies dealing with this topic. Instead, this part, split into five paragraphs,
is only based on the ten selected papers illustrating my contribution to this field.

5.1 Interfacial Phenomena at Spherical Surfaces

The effective potential (i.e., the coarse-grained excess grand potential per unit area)
for complete wetting on a planar is given by formula (49), with

W (`) =
a(T )

`2
+ · · · (54)

for systems with long-range van der Waals (dispersion) forces in d = 3 (cf. Eq (14)).
Since the upper critical dimension for complete wetting for such systems is d∗ = 2, the
influence of interfacial fluctuations is not essential and the MF theory holds exactly.
The minimization of the interfacial potential with respect to ` leads to the well known
asymptotic result14

`π ∼ δµ−
1
3 , (55)

as δµ→ 0+.
Following Paper I, let us now consider complete wetting at a spherical wall of a

radius R. Since the areas of the wall-liquid and liquid-gas interfaces are now different,
the interfacial potential becomes

Ωex(`;R)

4πR2
= δµ(ρl − ρg)`+ γwl(R) + γ(R + `)

(
1 +

2`

R

)
+W (`;R) , (56)

where we have assumed that `� R and expanded to first order in `/R. The compar-
ison between (49) and (56) reveals that in contrast with the planar symmetry, there
is now an `-dependence in the term associated with the liquid-gas surface tension.
Therefore, while the contribution of the surface tension is irrelevant for complete wet-
ting on a planar wall, it does play an important role for a spherical interface. In the
limit of large R, the minimization of (56) leads to

`eq =

(
A

δµ(ρl − ρb) + 2γ(∞)/R

) 1
3

, (57)

from which it can be seen that `eq is finite even at bulk coexistence δµ = 0. When
the sharp-kink approximation (SKA) is employed (see Appendix B of Paper I),
14For systems with short-range forces the divergence is logarithmic.
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the leading order curvature correction to the surface tension is predicted to be non-
analytic:

γSKA(R) = γSKA(∞)

(
1− 2

9

ln(R/σ)

(R/σ)2
+ · · ·

)
, (58)

where we have adopted the Lennard-Jones potential for the fluid model.
In Paper I we have shown that the predictions of the SKA are fully satisfactory

when compared with the direct numerical DFT solutions for complete wetting on
a planar wall. However, for a spherical geometry, the prediction quality of SKA
has been found to be limited. Namely, although SKA determines satisfactorily the
functional form of the asymptotic behavior of the film thickness in the R→∞ limit,
there is a significant quantitative disagreement in `eq with DFT results. The source of
the deviation is the presence of the Laplace pressure that is not described accurately
within SKA.
As shown in Paper I, the quality of the interfacial potential can be substantially

improved if the assumption of the sharp liquid-gas interface is replaced by a less
restrictive approximation in which the interface is treated as a continuous function of
the density distribution. Using this so called soft-interface approximation (SIA) the
leading curvature correction to the liquid-gas surface tension has been found to be
linear:

γSIA(R) = γSIA(∞)

(
1− 2δ

R
+O

(
ln(R/σ)

(R/σ)2

))
, (59)

where the amplitude of the first-order correction is known as the Tolman length.
Using numerical DFT we have then shown that there is a correspondence between
adsorption on a planar and a spherical wall, such that density profiles for a spherical
wall at a two-phase coexistence δµ = 0 are almost identical to those on a planar wall
with δµ = 2γ(∞)/R(ρl − ρg) for large R, according to Eq. (57), with the surface
tension determined by SIA. Moreover, SIA revealed a significant improvement in the
prediction of the film thickness as a function of the wall curvature over the results
based on SKA. This is due to overestimation of the liquid-gas surface tension within
SKA, which in turn underestimates the interface growth with R.
Some inherent limitations of SKA also exhibit themselves in the lack of broadening

of the interface at high temperatures. As a consequence, as the bulk critical temper-
ature is approached from below, the surface tension is predicted to vanish linearly
according to SKA, i.e.,

γSKA ∼ tµ , (60)

with µ = 1 as t = (Tc − T )/Tc → 0, in disagreement with mean-field (Landau-
type) theory. In contrast, SIA, which relaxes the assumption of the interface rigidity,
provides the expected mean-field behavior µ = 3/2.
From a comparison of Eqs. (58) and (59) it follows that the value of the Tolman

length is zero according to SKA. In contrast, SIA predicts a negative value of the
Tolman length with the magnitude corresponding to a fraction of the Lennard-Jones
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parameter σ.15 This prediction is consistent with the value of Tolman’s length deter-
mined in Paper II using a new simulation method to calculate the surface tension of
small liquid drops applied for the Lennard-Jones fluid. After stabilizing a small drop
of liquid in an NV T ensemble, the near spherical shape of the droplet was virtually
perturbed by performing a coordinate transformation x → x

√
1 + ξ, y → y

√
1 + ξ

and z → z/(1 + ξ) of the Cartesian system, with ξ � 1. Since the transformation
conserves the volume of the system, the resulting change in the free energy corre-
sponds to the change in the interfacial area and is thus directly associated with the
surface tension:

γ =

(
∂F

∂A

)
NV T

. (61)

The change in the free energy due to this isothermal, constant-volume deformation
can be expressed in terms of the Boltzmann factor of the corresponding change in
configuration energy ∆U :

∆F = −kBT ln
〈
exp

(
−∆U

kBT

)〉
= 〈∆U〉 − 1

2kBT

(
〈∆U2〉 − 〈∆U〉2

)
+ · · · (62)

where the averages are taken over the reference (unperturbed) system. The surface
tension is then obtained by extrapolating ∆F/∆A to ∆A→ 0.
Now, to first-order in ∆U , the change in the free energy is ∆F ≈ 〈∆U〉. This

leading order term is associated with the so-called virial expression for the tension,
which is equivalent to the expression for the surface tension via the mechanical route
from the pressure tensor components. The second-order term in (62) represents the
Gaussian fluctuations; importantly, for the spherical interfaces it reveals that this
term is comparable in magnitude to, but of opposite sign than, the first-order term.
This strikingly contrasts with the case of planar interfaces, for which the second-order
term is already negligible. These results thus demonstrate inadequacy of the mechan-
ical route to the surface tension for spherical (curved, in general) interfaces (although
frequently used in molecular dynamics simulation studies) neglecting the important
influence of fluctuations. While the mechanical route predicts a monotonous decrease
of the surface tension with curvature corresponding to δ > 0, our results suggest non-
monotonic behaviour of the surface tension with a corresponding weak maximum and
the Tolman length δ ≈ −0.2σ.
The reason behind the failure of the mechanical route to the surface tension has

been further analyzed in Paper III, where other alternative approaches have also
been reviewed and examined. The paper highlights potential pitfalls and limitations
of some of the approaches and in particular stresses out an inherent problem of the
15The value of δ has been found to be rather insensitive toward a (reasonable) choice of the test
function approximating the density distribution of the liquid-gas interface. The most natural choice
is hyperbolic tangent, which corresponds to the exact MF solution but cubic or linear approximations
give similar results.
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mechanical route which is related to an ambiguity in the definition of the local quan-
tities that depend on particle interactions (such as the local pressure). The overview
of the methods is complemented with the new results based on purely mechanical
(newtonian), thermodynamic and statistical-mechanical treatments. In particular, it
is argued that the new non-local mean-field DFT proposed for the Lennard-Jones
fluid allows for a direct and unambiguous description of the interfacial properties of
drops of an arbitrary size and provides the prediction for the Tolman length which is
consistent with the simulation results presented in Paper II.

5.2 Wedge Filling

lw

α

lπ

xz

Figure 3: Schematic picture of the cross section of a right angle wedge with a tilt
angle α = π/4. Far from the apex, the wetting layer is of thickness `π. However, the
height of the meniscus above the apex is `w. At a filling transition `w changes from
microscopic to macroscopic.

Another example of a non-planar substrate geometry is a wedge structure formed
by two identical infinite planar walls that meet at an opening angle π−2α where α is
the tilt angle with respect to the horizontal plane (see figure 3). Suppose the wedge
is in contact with a bulk vapour phase at temperature T < Tc and chemical potential
µ. Macroscopic arguments16 dictate that at bulk coexistence, µ = µ0, the wedge is
completely filled by liquid (`w becomes macroscopically large) for all temperatures
T > Tf where Tf is the filling temperature given implicitly by the simple condition

θ(Tf ) = α , (63)

where θ(T ) is the contact angle of a sessile drop on a flat surface. Note that (63) is
consistent with and generalizes the condition for wetting transition θ(Tw) = 0 and
implies that Tf < Tw, as the contact angle decreases with temperature. Thus, the
16E. H. Hauge, Phys. Rev. A 46, 4994 (1992).
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corresponding filling transition which occurs at Tf may be viewed as an interfacial
geometry-induced unbinding transition in a system with broken translational invari-
ance.
In Paper IV, the filling transitions in a right-angle wedge (α = π/4) involving a

long-range wall-fluid interaction were studied using a microscopic model within the
density functional theory. Our DFT analysis showed that the filling transition is first
order if it occurs far below the critical point but is continuous if Tf is close to Tc

even though the walls still show first-order wetting behaviour. For this continuous
transition the distance of the meniscus from the apex grows as

`w ∼ (Tf − T )−βw , (64)

as T → T−
f , with the critical exponent estimated to be βw ≈ 0.46.

This value of the critical exponent can be compared with the mean-field value
obtained from the Hamiltonian for a widely open wedge (assuming tanα ≈ α)

Hw[`] =
∫

dx
∫

dy
[
γ

2
(∇`)2 +W (`− α|x|)

]
, (65)

where `(x, y) is the local height of the liquid-vapour interface relative to the hor-
izontal. Exploiting the translation invariance of the model along the wedge, the
Euler-Lagrange equation for the equilibrium profile `(x) is:

γ
d2`

dx2
= W ′(`− α|x|) , (66)

where the prime denotes differentiation w.r.t. `. This equation, subject to the bound-
ary conditions ˙̀(0) = 0 and `(x) → `π + α|x| for |x| → ∞, has the first integral:

γα2

2
= W (`w)−W (`π) . (67)

As T → Tf , the meniscus unbinds from the wedge bottom, i.e. `w → ∞ and the
first term on the r.h.s. becomes vanishingly small. Using Eq. (7) the result given by
Eq. (63) is then immediately recovered. Furthermore, from Eq. (67) it follows that

W (`w) =
γ(α2 − θ2)

2
∼ α− θ(T ) as T → Tf . (68)

Thus, at a critical filling transition the MF value of the order parameter critical
exponent is simply determined by the leading-order decay of the binding potential
W (`) = A/`p + · · · by expanding the r.h.s. of Eq. (68) to first order at Tf , which
yields βw = 1/p. Recall that this result is completely different to the corresponding
critical exponent for critical wetting βs = 1/(q − p) determined by both leading and
next-to-leading order terms of the binding potential. For systems with van der Waals
forces p = 2 and thus βw = 1/2 (βs = 1 ) which is in a good agreement with our DFT
result.
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Figure 4: Contour of the meniscus as obtained from microscopic DFT. Also shown
(dashed line) is a circular meniscus of Laplace radius R = γ/(δµ(ρl − ρg)).

The main conclusion of this work is that it is possible to induce critical (contin-
uous) interfacial transitions even at walls exhibiting themselves first-order wetting
transitions by changing the wall geometry, which has been demonstrated for a realis-
tic microscopic model involving dispersion interactions. It should be emphasised that
for planar walls the critical wetting is a very rare phenomenon and in fact it has not
been observed on solid substrates as yet. Moreover, the influence of interfacial fluctu-
ations for wetting transitions in three dimensions is deemed to be hardly appreciable.
Therefore, the wedge structure is found to be a promising candidate for a substrate
for which an observation of interfacial critical phenomena is experimentally accessible.

Paper V complements these findings by investigating complete filling transition
which refers to, in analogy to complete wetting, the continuous divergence of the
adsorption (or `w) as µ → µ0 for T > Tf . If, furthermore, θ = 0, the binding
potential is of the form (15) and if substituted into Eq. (67) we obtain17

`w ≈
γ(secα− 1)

δµ(ρl − ρg)
+

secα

1− βco
s

`π + · · · (69)

The first term in (69) is universal, i.e., it does not depend on the nature of the inter-
actions. This leading order term can be derived using purely macroscopic concept:
17C. Rascón and A. O. Parry, Phys. Rev. Lett. 94, 096103 (2005).
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a meniscus that grows at the wedge corner must have a circular cross-section with
radius R = γ/(δµ(ρl − ρf )), as determined by the Laplace pressure difference across
the interface. Figure 4 shows that this macroscopic argument is fully consistent with
the microscopic DFT results and thus remains valid even on a microscopic scale. Fur-
thermore, the height `w then follows from the condition that the meniscus must meet
each side of the wedge at the correct contact angle18. Figure 5 reveals, however, that
this macroscopically predicted value of the interface height above the wedge corner
as a function of δµ is systematically below the DFT results.
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2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4

 

 

l w / σ

( µ- µs a t ) / ε

e f f e c t i v e  H a m i l t o n i a n

m a c r o s c o p i c

Figure 5: DFT results (symbols) for the divergence of the meniscus filling height `w,
shown in comparison with the macroscopic expression given by the leading-order term
in Eq. (69) (dashed curve) and the interfacial Hamiltonian prediction (solid curve)
which includes the next-to-leading order correction.

From Eq. (69) it follows that the interfacial Hamiltonian theory extends these
macroscopic results by predicting a presence of non-universal next-to-leading order
singular term; this contribution depends on the nature of divergence of `π at a planar
wall-gas interface, which in turn depends on the range of intermolecular forces (recall,
βco

s = 1/(p+1)). When the non-universal correction is taken into account, one obtains
a remarkably good agreement between the microscopic DFT results and Eq. (69), as
shown in figure 5 for a right-angle wedge19.

18For general value of the contact angle, the first term would be γ(sec α cos θ−1)
δµ(ρl−ρg) .

19The results in figure 5 correspond to the model of short-range interactions, for which βco
s = 0

and `π ∼ − ln(δµ).
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5.3 Complete Wetting on an Edge-Shaped Wall

In Paper VI, I studied complete wetting near an edge of a three-dimensional solid
substrate (see figure 6) interacting with the fluid atoms via van der Waals forces. The
curvature of the liquid-vapour interface dictates that the local height of the interface
above the edge `E must remain finite at any subcritical temperature, even at bulk
coexistence δµ = 0, when a macroscopically thick film develops far from the edge.
Thus, the influence of the edge is in some sense opposite to that of a wedge substrate,
which promotes liquid adsorption. We now pose the question what is the equilibrium
value of `E and what is the asymptotic form of `E(δµ) as the chemical potential
approaches the coexistence δµ → 0+, such that complete wetting transition takes
place far from the edge.

Figure 6: A sketch of the model of an edge-shaped substrate. The height of the
liquid-gas interface is denoted as `, the thickness of the layer far from the apex as `π
and the height of the interface above the apex as `E. The sketch is projected to the
x-z plane of the Cartesian coordinates.

The system has been studied using the following interfacial Hamiltonian model

He[`] =
∫

dx
[
γ

2
(f ′(x))2 +W (`(x))

]
, (70)

where `(x) is thickness of the liquid-gas interface measured vertically and f(x) =
`(x) − tanα|a| denotes the local height of the liquid-gas interface relative to the
horizontal (x axis). In Eq. (70), the translation symmetry along the y-axis is assumed
so that He[`] is the effective Hamiltonian per unit length.20

20It should be noted that in contrast to Hw[`] considered in the previous subsection (Eq. (65)),
the small-angle approximation was not adopted here.
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The mean-field analysis of this model shows that the equilibrium height of the
interface above the edge at coexistence is given by

`0E = `(δµ = 0) =

√
2a

γ tan2 α
, (71)

where a(T ) is the Hamaker constant defined by the binding potential of the corre-
sponding planar wall W (`) = a/`p + · · ·. Furthermore, `E(δµ) has been shown to
approach the coexistence value according to

δ` = `E(0)− `E(δµ) ∼ δµβco
E (72)

as δµ→ 0+. The new critical exponent for complete wetting on an edge βco
E depends

on the range of the molecular interaction, such that βco
E = p/(p + 1) and is related

to the exponent αco
s (defined by Eq. (12)), according to β

co
s = 2 − αco

s . For systems
with van der Waals forces, βco

E = 2/3. In contrast, the next-to-leading term in (72)
has been found to be universal and scales linearly with δµ, regardless of the nature
of the molecular interactions.

Figure 7: Schematic of the finite-wall model of a linear dimension L in the x-z pro-
jection. Translation invariance is assumed along the y-axis. The chemical potential
is now fixed to its saturation value µ = µ0(T ) and we wish to know how the result
given by Eq. (71) for an unbounded wall is affected by the finite value of L.

I further considered a finite-wall model of a square cross-section of a linear di-
mension L (see figure 7) and ask what is the equilibrium value of the height of the
liquid-vapour interface above the edge at bulk coexistence. The asymptotic (L→∞)
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result is now subject to finite-size scaling of some scaling function F reflecting the
competition between L and the correlation length ξ||. For L finite, the leading-order-

term in Eq. (72) modifies to δµ2−αco
s F

(
L
ξ||

)
∼ δµ2−αco

s F (Lδµ
νco
|| ) which is required to

remain finite even when δµ→ 0. This implies

`E − `E(L) ∝ L
αco

s −2

νco
|| + L

− 1
νco
|| + · · · (73)

where all the powers in the expansion depend on the details of the molecular interac-
tions and can be expressed in terms of the critical exponents characterising wetting
on a planar wall. In particular, for the van der Waals forces we obtain

`E − `E(L) ∝ L−1 +O(L−
3
2 ) . (74)

The analysis of both edge-shaped models have been further complemented with
the microscopic DFT results (based on the fundamental measure theory) obtained
numerically. The DFT results of the film height above the edge have been shown to
be fully consistent with the predictions given by Eqs. (72) and (74).

5.4 Phase Transitions in a Capillary Groove and Grooved
Surfaces

It is well known that in a slit pore formed by two parallel infinite walls a distance
L apart, the fluid condensates at the chemical potential µcc < µ0(T ) which is well
approximated by the macroscopic Kelvin equation

µcc(L) = µ0 −
2γ cos θ

(ρl − ρg)L
+ · · · (75)

This capillary condensation is a first-order transition and corresponds to a shift of
the ordinary bulk liquid-vapour transition due to finite size effects and the interaction
of the fluid with the walls. Imagine now that we cap the slit pore at one end. How
does the symmetry breaking in one dimension changes the condensation scenario?
The problem of the groove condensation was tackled in Paper VII using a micro-

scopic DFT and the effective Hamiltonian based on the sharp-kink approximation. It
has been shown that for temperatures greater than the wetting temperature a single
meniscus separating capillary-liquid from capillary-gas forms near the groove bot-
tom (as also dictated by macroscopic arguments) and continuously unbinds from the
groove bottom as µ tends to µcc from below where the groove becomes completely
filled with liquid. The process in this regime has thus strong analogy to complete
wetting on a planar wall. In contrast to the latter, however, the transition occurs at
µcc(L) (capillary coexistence) rather than at µ0 (bulk coexistence). Furthermore, the
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analysis based on the sharp-kink approximation (see figure 8)) reveals, that the rise
of the meniscus has the asymptotic form

`C ∼ (µcc(L)− µ)−1/4 , (76)

where µcc(L) = µ0 − 2γ
(ρl−ρ)(L−3`π)

satisfies the modified Kelvin equation with the
microscopic correction due to wetting layers at the side walls. The meniscus unbinding
can thus be characterised by the critical exponent βC = 1/4 and the process is
therefore somewhat slower than complete wetting for which βco

s = 1/3.
It has also been shown that in analogy to pre-wetting the rise of the meniscus can

exhibit a finite jump. However, in contrast to pre-wetting, which is the genuine first-
order transition, the transition associated with the meniscus jump must be necessarily
rounded owing to its pseudo-one-dimensional nature.

Figure 8: A schematic picture illustrating the sharp-kink approximation used for the
capped capillary (groove) of width L and height D appropriate above the wetting
temperature (such that the walls are wet). Vg denotes the volume filled by capillary
gas. The side walls are coated with wetting layers of thickness `π which is assumed
to be the same as for a single planar wall.

For temperatures below the wetting transition, however, the situation becomes
different. The condensation process is now discontinuous in agreement with the
macroscopic arguments according to which there exists a metastable extension of
the condensation branch terminating at a spinodal point µsp. Within this macro-
scopic picture, two circular corner menisci develop for µ < µcc of Laplace radii that
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grow continuously as the chemical potential increases. Note that the situation is
pertinent to a previously discussed complete filling at two right-angle wedges. The
spinodal µsp > µcc corresponds to the chemical potential at which the two menisci
merge; beyond this point, no continuous process is thermodynamically stable and the
groove becomes completely filled.
This macroscopic scenario was compared with microscopic DFT in the subsequent

Paper VIII. Interestingly, although the formation of two corner menisci (for T < Tw

and µ < µsp) was not confirmed for microscopically narrow grooves, the location of the
spinodal was still found in a surprisingly good agreement with the prediction based
on the macroscopic arguments and leading to the so called complementary Kelvin
equation.
In Paper VIII we also studied an inverse process to groove condensation, i.e.,

groove evaporation realized as µcc is approached from above. In contrast to the groove
condensation, the groove evaporation was found to be always continuous regardless
of the temperature, such that the height of the meniscus from the top of the groove
(a distance D from the groove bottom) decreases according to the power-law

D − `z ∼ (µcc(L)− µ)−βE , (77)

with a different critical exponent than that for groove condensation. The macroscopic
arguments complemented by direct calculations based on the effective Hamiltonian
(sharp-kink approximation), dimensional analysis and microscopic DFT calculations
showed that βE = 1/3 for dispersion forces, i.e., same as the one for complete wetting
on a planar wall.
The analogy between groove evaporation and complete wetting was found to be

even much stronger. The further analysis of the model revealed a relation between
the distance of the meniscus from the open top `E = D− ` and the film thickness on
a planar wall:

`E(µ− µcc) = `π(µ0 − µ) , (78)

which is an example of a covariance law, revealing hidden symmetry between inter-
facial phenomena at different geometries.
The final remark belongs to the effect of fluctuations. The mean-field analysis

neglects the long wavelength, interfacial, fluctuations of the meniscus, the most dom-
inant of which arise from those in the height of the meniscus along the groove. Owing
to a reduced effective dimensionality of the groove, the fluctuation theory of menis-
cus unbinding is analogous to that of two dimensional complete wetting but with a
line tension, resisting the undulations of the meniscus, which is τ ≈ γL. Therefore,
the relevant effective Hamiltonian that accounts for the fluctuations in the meniscus
height along the groove is now of the form

Hg[`] =
∫
dy

γL
2

(
d`(y)

dy

)2

+W (`)

 . (79)
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Using Eq. (26), the relation21 ξ2
⊥ = kBTξ/τ and the fact that ξ⊥ ≈ ` when fluctuations

become important, we obtain the following estimation for the fluctuation term:

γL ˙̀2 ≈ γL
ξ2
⊥
ξ2
‖
≈ (kBT )2

ξ2
⊥γL

≈ (kBT )2

`2γL
. (80)

Since the binding potential for the groove evaporation reads

We ≈ (µ− µcc)(ρl − ρg)L(D − `) +
a(T )L

(D − `)2
, (81)

the repulsive term, which is of the order of (D − `)2, is marginal because it is of
the same order as the effective fluctuation term (80). This implies that the value of
the exponent βE = 1/3 is not altered by fluctuation effects. The only influence of
the fluctuations is that the Hamaker constant becomes renormalized by a factor of
1 +O((βγL2)−1), which is only important in the immediate vicinity of the capillary
critical point.
For groove condensation, the appropriate binding potential is of the form

Wc ≈ (µ− µcc)(ρl − ρg)L`+
a(T )L2

`3
(82)

and the repulsive term becomes irrelevant. Thus, for continuous condensation, the
mean-field power-law divergence `C ≈ ((µcc − µ)/L)−

1
4 will eventually cross-over to

`C ≈ (L2µcc−µ)−
1
3 as µ→ µcc, changing the mean-field critical exponent βMF

C = 1/4
to the true value βC = 1/3. However, a simple matching of these power laws shows
that the size of the asymptotic regime is negligibly small since it scales as L−11. Thus,
the mean-field description of the continuous capillary condensation is exact except
for extremely close vicinity of the capillary-coexistence curve µ = µcc.

The model of a single capillary-groove has been extended in Paper IX to a model
of a grooved substrate. Within this model, we consider a semi-infinite solid slab into
which a one-dimensional array of infinitely long rectangular grooves is etched (see
figure 9). By investigating the effect of the size and distribution of the grooves, as
well as different paths leading to a completely wet surface, a rich variety of different
wetting morphologies were found. The main findings can be summarised as follows:

1. It is possible to distinguish between four different wetting morphologies that can
be characterised as: i) empty grooves, ii) filled grooves, iii) a formation of liquid
21R. Lipowsky and M.E. Fisher, Phys. Rev. B 36, 2126 (1987).
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Figure 9: Sketch of the grooved substrate model.

Figure 10: Four possible wetting regimes of a grooved substrate model.

bulges and iv) completely wet surface (see figure 10). These regimes are separated
by first-order transitions, including the novel bounded wetting which separates the
configurations ii) and iii). The nature of this transition is discussed and it is ar-
gued that the infinite periodicity of the system assures the transition to survive the
capillary-wave fluctuations.

2. Owing to the first-order nature of these transitions, they all have off-coexistence
extensions terminating at their own critical points. These transitions are analogues of
pre-wetting on a planar wall. Here again, the infinite lateral periodicity of the system
is crucial in that these transitions and not artifacts of the mean-field analysis. This is
in contrast with a pre-filling transition in a single groove or in a single wedge, where
the transition must be necessarily rounded when all the fluctuations are properly
considered.

3. The wetting transition of the grooved substrate was found to occur in a considerably
higher temperature than that for a flat wall. This result is important as it challenges
the classical Wenzel law which states that surface roughness enhances wetting. To
support this finding, an importance of considering an interplay of various interfacial
phenomena occurring at planar walls, grooves, edges and wedges was highlighted as
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well as the need to account for microscopic effects due to molecular interactions;
all these aspects are ignored in the macroscopic arguments leading to Wenzel’s and
related phenomenological laws. Since for macroscopically corrugated surfaces the solid
texture does indeed amplify wetting, it was concluded in a subsequent study22 that
there must exist a crossover between two length-scale regimes that are distinguished
by opposite response on surface roughening.

5.5 Wetting Properties of a Heterogeneous Groove

Capillary condensation in a single groove (capped capillary) appears to be even more
intriguing if the interaction of the fluid atoms with the bottom wall and the side
walls is different. The model of this heterogeneous groove, studied in Paper X,
reveals some unexpected behaviour in the case when both types of the wall are in a
complete wetting regime (i.e., the considered temperature is greater than respective
wetting temperatures of both walls). Within a sharp-kink approximation, the binding
potential appropriate for a heterogeneous groove of a width L reads

Wcap(`) = δµ(ρl − ρg)`+
a2 − a1

`2
+

3a1L

`3
+ · · · , (83)

where a1 and a2 are the Hamaker constants for the side and bottom walls, respectively.
Note that the complete wetting regime requires that both a1 and a2 are positive. We
can now identify three wetting scenarios determined by a relative strength between a1

and a2. i) For a1 = a2, i.e., in the case of a homogenous groove mentioned previously
in the context of Paper VIII, the meniscus is repelled by a term decaying as ∼ `−3

which results to a continuous unbinding of the meniscus according to ` ∼ δµ−
1
4 (cf.

Eq. (76). ii) If a1 < a2, the meniscus repulsion is controlled by a term of O(`−2),
which leads to a continuous meniscus growth according to ` ∼ δµ−

1
3 , as for complete

wetting on a planar wall. iii) Finally, and most interestingly, if a1 > a2, i.e., if the fluid
interaction with the side walls interaction is stronger than with the the bottom wall,
the mismatch between the Hamaker constant leads to an interfacial attraction which
bounds the meniscus to a finite distance even at the capillary phase boundary µ = µ−cc.
Since the groove must be completely filled for µ = µ+

cc, the transition is turned to be
first-order, even though the transition would be continuous in a homogenous groove
made up of either type of the wall.
It is important to note that the conclusion regarding the case iii) only applies if the

bottom wall with the Hamaker constant a2 spans the whole lower space. The simple
dimensional analysis shows that if the wall spans only the space below tho groove
(i.e., of a finite width L), the transition remains continuous, such that ` ∼ δµ−

1
4 .

The case iii) (a1 > a2) has remarkable repercussions: as the fluid state remains in
the partial wetting state, it is possible – in analogy with Young’s equation (3) – to
22A. Malijevský, Does surface roughness amplify wetting?, J. Chem. Phys. 141, 184703 (2014).
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define a capillary contact angle:

γwg(L) = γwl(L) + γ(L) cos θcap , (84)

valid for µ = µcc. Here, the capillary surface tensions γwg(L), γwl(L) and γ(L) are the
surface free energies between groove bottom and capillary gas, groove bottom and
capillary liquid and capillary gas and capillary liquid, respectively, per unit area of
the groove bottom. For sufficiently wide grooves, the meniscus cross-section is near
circular and thus γ(L) ≈ π/2γ.
Therefore, somewhat counter-intuitively, if the attraction of the bottom wall is

weaker than the attractive strength of the side walls, a liquid-vapour interface of a
non-zero capillary contact angle forms in the groove even though θcap = 0 for the
grooves of either material.
Apart from controlling the capillary contact angle by tuning the difference a2−a1,

we can also ask under what conditions the capillary wetting transition (i.e., vanishing
of θcap) occurs for fixed parameters a1 and a2, as the groove width varies along the
capillary coexistence line µ = µcc. In order to account for the meniscus fluctuations
along the groove, we adopted the interfacial Hamiltonian

Hcap[`] = L
∫

dy

γ(L)

2

(
d`(y)

dy

)2

+Wcap(`)

 (85)

where `(y) is the local height of the fluctuating meniscus. The problem can be mapped
onto a two-dimensional critical wetting and the corresponding partition function can
be determined exactly using the transfer-matrix method from the Schrödinger equa-
tion (28) for a marginal value p = 2 of the asymptotic decay of the binding potential
(cf. Eq. (27)), belonging to the so called intermediate fluctuation regime.23 The
analysis shows that the capillary contact angle can vanish in two ways:

• In the limit of macroscopically wide groove, in which case the interfacial fluctuations
become negligible. In this mean-field regime, the capillary contact angle vanishes
according to

θcap(L) ∼ L−1 , (86)

as L→∞.

• For a sufficiently narrow groove. As L decreases, the effective stiffness parameter
Lγ(L) reduces and at some small value of the groove thickness L = Lw, the fluc-
tuations become strong enough to allow the meniscus to tunnel out of the potential
barrier represented by Wcap. For the potential given by Eq. (83) with a positive
next-to-leading interaction term, the situation of this fluctuation dominated regime
23R. Lipowsky and T. M. Nieuwenhuizen, J. Phys. A: Math. Gen. 21, L89 (1988).
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belongs to the third class of the intermediate fluctuation regime characterized by
essential singularities and the capillary contact angle then vanishes as

θcap(L) ∼ e
− 2πLw√

L2−L2
w ; L→ Lw , (87)

where the critical value of the groove width is given by

Lw =
kBT

2
√
πγ(a2 − a1)

. (88)
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We study the equilibrium of a liquid film on an attractive spherical substrate for an intermolecular interaction
model exhibiting both fluid-fluid and fluid-wall long-range forces. We first reexamine the wetting properties of
the model in the zero-curvature limit, i.e., for a planar wall, using an effective interfacial Hamiltonian approach
in the framework of the well known sharp-kink approximation (SKA). We obtain very good agreement with
a mean-field density functional theory (DFT), fully justifying the use of SKA in this limit. We then turn our
attention to substrates of finite curvature and appropriately modify the so-called soft-interface approximation
(SIA) originally formulated by Napiórkowski and Dietrich [Phys. Rev. B 34, 6469 (1986)] for critical wetting
on a planar wall. A detailed asymptotic analysis of SIA confirms the SKA functional form for the film growth.
However, it turns out that the agreement between SKA and our DFT is only qualitative. We then show that the
quantitative discrepancy between the two is due to the overestimation of the liquid-gas surface tension within
SKA. On the other hand, by relaxing the assumption of a sharp interface, with, e.g., a simple “smoothing” of
the density profile there, markedly improves the predictive capability of the theory, making it quantitative and
showing that the liquid-gas surface tension plays a crucial role when describing wetting on a curved substrate.
In addition, we show that in contrast to SKA, SIA predicts the expected mean-field critical exponent of the
liquid-gas surface tension.

DOI: 10.1103/PhysRevE.84.021603 PACS number(s): 68.08.Bc, 05.20.Jj, 71.15.Mb, 05.70.Np

I. INTRODUCTION

The behavior of fluids in confined geometries, in particular,
in the vicinity of solid substrates, and associated wetting
phenomena are of paramount significance in numerous tech-
nological applications and natural phenomena. Wetting is
also central in several fields, from engineering and materials
science to chemistry and biology. As a consequence, it
has received considerable attention, both experimentally and
theoretically, for several decades. Detailed and comprehensive
reviews are given in Refs. [1–4].

Once a substrate (e.g., a solid wall) is brought into contact
with a gas, the substrate-fluid attractive forces cause adsorption
of some of the fluid molecules on the substrate surface,
such that at least a microscopically thin liquid film forms on
the surface. The interplay between the fluid-fluid interaction
(cohesion) and the fluid-wall interaction (adhesion) then
determines a particular wetting state of the system. This state
can be quantified by the contact angle at which the liquid-gas
interface meets the substrate. If the contact angle is nonzero,
i.e., a spherical cap of the liquid is formed on the substrate,
the surface is called partially wet. In the regime of partial
wetting, the cap is surrounded by a thin layer of adsorbed

*andreas.nold09@imperial.ac.uk
†a.malijevsky@imperial.ac.uk
‡s.kalliadasis@imperial.ac.uk

fluid which is of molecular dimension. Upon approaching the
critical temperature, the contact angle continuously decreases
and eventually vanishes. Beyond this wetting temperature one
speaks of complete wetting and the film thickness becomes
of macroscopic dimension. The transition between the two
regimes can be qualitatively distinguished by the rate of
disappearance of the contact angle, which is discontinuous
in the case of a first-order transition or continuous for critical
wetting.

From a theoretical point of view, it is much more convenient
to take the adsorbed film thickness �, rather than the contact
angle, as an order parameter for wetting transitions and related
phenomena. An interfacial Hamiltonian is then minimized
with respect to � as is typically the case with the (mesoscopic)
Landau-type field theories and (microscopic) density func-
tional theory (DFT)—where � can be easily determined from
the Gibbs adsorption, a direct output of DFT.

In this study, we examine the wetting properties of a
simple fluid in contact with a spherical attractive wall by
using an intermolecular interaction model with fluid-fluid
and fluid-wall long-range forces. The curved geometry of the
system prohibits a macroscopic growth of the adsorbed layer
(and thus complete wetting), since the free-energy contribution
due to the liquid-gas interface increases with the film thickness
�, and thus for a given radius of a spherical substrate there must
be a maximum finite value of � [1,5,6]. For the mesoscopic
approaches, the radius of the wall R is a new field variable that

021603-11539-3755/2011/84(2)/021603(17) ©2011 American Physical Society
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introduces one additional �-dependent term to the effective
interface Hamiltonian of the system, compared to the planar
geometry, where the only �-dependent term is the binding
potential between the wall-liquid and liquid-gas interfaces.
Furthermore, for a fluid model exhibiting a gas-liquid phase
transition, such as ours, it has been found that two regimes of
the interfacial behavior should be distinguished: R > Rc, in
which case the surface tension can be expanded in integer pow-
ers of R−1 and R < Rc, where the interfacial quantities exhibit
a nonanalytic behavior [7]. Moreover, for an intermolecular
interaction model with fluid-fluid long-range interactions,
there is an additional R−2 ln R contribution to the surface
tension in the R > Rc regime [8]. These striking observations
actually challenge all curvature expansion approaches. In
addition, a certain equivalence between a system of a saturated
fluid on a spherical wall and a system of an unsaturated fluid
on a planar wall above the wetting temperature has been
found [5,8]. Somewhat surprisingly, DFT computations con-
firmed this correspondence at the level of the density profiles
down to unexpectedly small radii of the wall [8].

Most of these conjectures follow from the so-called sharp-
kink approximation (SKA) [1], based on a simple piecewise
constant approximation of a one-body density distribution of
the fluid, i.e., a coarse-grained approach providing a link
between mesoscopic Hamiltonian theories and microscopic
DFT. The simple mathematical form of SKA has motivated
many theoretical investigations of wetting phenomena, as it
makes them analytically tractable. At the same time, SKA
appears to capture much of the underlying fundamental physics
for planar substrates (often in conjugation with exact statistical
mechanical sum rules [9]).

However, as we show in this work, SKA is only qualitative
for spherical substrates, even though the functional form of the
film growth can still be successfully inferred from the theory
[8]. We attribute this to the particular approximation of the
liquid-gas interface adapted by SKA. In particular, since the �-
dependent contribution to the interface Hamiltonian due to the
curvature is proportional to the liquid-gas surface tension, the
latter plays an important role compared to the planar geometry.

More specifically, the curved geometry induces a Laplace
pressure whose value depends on both film thickness and
surface tension, and so the two quantities are now coupled,
in contrast with the planar geometry where a parallel shift of
the liquid-gas dividing surface does not influence the surface
contribution to the free energy of the system. We further
employ an alternative coarse-grained approach, a modification
of the one originally proposed by Napiórkowski and Dietrich
[10] for the planar geometry, which replaces the jump in
the density profile at the liquid-gas interface of SKA by
a continuous function restricted by several reasonable con-
straints. We show that in this “soft-interface approximation”
(SIA) the leading curvature correction to the liquid-gas surface
tension is O(R−1), rather than O(R−2 ln R), in line with
the Tolman theory. Once a particular approximation for the
liquid-gas interface is taken, the corresponding Tolman length
can be easily determined. Apart from this, we find that the
finite width of the liquid-gas interface significantly improves
the prediction of the corresponding surface tension when
compared with the microscopic DFT computations, which

consequently markedly improves the estimation of the film
thickness in a spherical geometry.

In Sec. II we describe our microscopic model and the
corresponding DFT formalism. In Sec. III we present results
of wetting phenomena on a planar wall obtained from our
DFT based on a continuation scheme that allows us to trace
metastable and unstable solutions. The results are compared
with the analytical prediction as given by a minimization of
the interface Hamiltonian based on SKA. We also make a
connection between the two approaches by introducing the
microscopic model into the interfacial Hamiltonian. In Sec. IV
we turn our attention to the main part of our study, a thin
liquid film on a spherical wall. We show that SKA does
not account for a quantitative description of the liquid-gas
surface tension which plays a significant role when the
substrate geometry is curved. We then introduce SIA and
present an asymptotic analysis with our approach. Comparison
with DFT computations reveals a substantial improvement
of the resulting interface Hamiltonian, even for very simple
approximations of the density distribution at the liquid-vapor
interface, indicating the significance of a nonzero width of
the interface. We conclude in Sec. V with a summary of our
results and discussion. Appendix A describes the continuation
method we developed for the numerical solution of DFT. In
Appendix B we show derivations of the surface tension and the
binding potential for both a planar and a spherical geometry
within SKA. Finally, Appendix C shows derivations of the
above quantities, including Tolman’s length, using SIA.

II. DFT

A. General formalism

DFT is based on Mermin’s proof [11] that the free energy of
an inhomogeneous system at equilibrium can be expressed as
a functional of an ensemble averaged one-body density, ρ(r)
(see, e.g., Ref. [12] for more details). Thus, the free-energy
functional F[ρ] contains all the equilibrium physics of the
system under consideration. Clearly, for a three-dimensional
fluid model one has to resort to an approximative functional.
Here we adopt a simple but rather well established local density
approximation,

F[ρ] =
∫

fHS[ρ(r)]ρ(r) dr

+ 1

2

∫∫
ρ(r)ρ(r′)φ(|r − r′|) dr′ dr, (1)

where fHS[ρ (r)] is the free energy per particle of the hard-
sphere fluid (accurately described by the Carnahan-Starling
equation of state), including the ideal gas contribution. The
contribution due to the long-range van der Waals forces is
included in the mean-field manner. To be specific, we consider
a full Lennard-Jones (LJ) 12-6 potential to model the fluid-fluid
attraction according to the Barker-Henderson perturbative
scheme

φ(r) =
{

0, r < σ

4ε
[(

σ
r

)12 − (
σ
r

)6]
, r � σ,

(2)

where for the sake of simplicity the LJ parameter σ is taken
equal to the hard-sphere diameter.

021603-2



WETTING ON A SPHERICAL WALL: INFLUENCE OF . . . PHYSICAL REVIEW E 84, 021603 (2011)

The free-energy functional F[ρ] describes the intrinsic
properties of a given fluid. The total free energy, including
also a contribution of the external field, is related to the grand
potential functional through the Legendre transform

�[ρ] = F[ρ] +
∫

ρ (r) [V (r) − μ] dr, (3)

where μ is the chemical potential and V (r) is the external field
due to the presence of a wall W ⊂ R3,

V (r) =
{∞, r ∈ W

ρw

∫
W

φw(|r − r′|) dr′ elsewhere,
(4)

consisting of the atoms interacting with the fluid particles via
the LJ potential φw (r), with the parameters σw and εw, and
uniformly distributed throughout the wall with a density ρw:

φw (r) = 4εw

[(
σw

r

)12

−
(

σw

r

)6]
. (5)

Applying the variational principle to the grand potential
functional, Eq. (3), we attain the Euler-Lagrange equation:

δFHS[ρ]

δρ(r)
+

∫
ρ(r′)φ(|r − r′|) dr′ + V (r) − μ = 0, (6)

where FHS[ρ] denotes the first term in the right-hand side
of Eq. (1). In general, the solution to Eq. (6) comprises
all extremes of the grand potential �[ρ] as given by
Eq. (3) and not just the global minimum corresponding
to the equilibrium state. Here we develop a pseudo arc-
length continuation scheme for the numerical computation
of Eq. (6) that enables us to capture both locally stable and
unstable solutions and thus to construct the entire bifurcation
diagrams for the isotherms (details of the scheme are given in
Appendix A).

The excess part of the grand potential functional (3) over
the bulk may be expressed in the form

�ex[ρ(r)] = −
∫

{p[ρ(r)] − p(ρb)} dr

+ 1

2

∫∫
ρ(r)[ρ(r′) − ρ(r)]φ(|r′ − r|)dr′ dr

+
∫

ρ(r)V (r) dr, (7)

where ρb is the density of the bulk phase and

−p(ρ) = ρfHS(ρ) + αρ2 − μρ (8)

is the negative pressure, or grand potential per unit volume,
of a system with uniform density ρ and α ≡ 1

2

∫
φ(|r|)dr =

− 16
9 πεσ 3. In particular, the equilibrium value of the excess

grand potential (7) per unit area of a two-phase system of liquid
and vapor in the absence of an external field, yields the surface
tension between the coexisting phases, γlg . The prediction of
γlg as given by the minimization of Eq. (7) agrees fairly well
with both computations and experimental data, as shown in
Fig. 1.

B. Translational symmetry: Planar wall

If the general formalism outlined above is applied on a
particular external field attaining a certain symmetry, it will

 0
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FIG. 1. Plots of surface tension as a function of dimensionless
temperature, T/Tc. Solid line: numerical DFT results of our model
scaled with ε/kB = 119.8 K and σ = 3.4 Å; triangles: computa-
tional results by Toxvaerd for a 12-6 LJ fluid using the Barker-
Henderson perturbation theory [13] with the Percus-Yevick solution
[14] for the hard-sphere reference fluid and using the exact hard-
sphere diameter [15]; circles: Monte Carlo simulations by Lee and
Barker [16]; squares: experimental results for argon by Guggenheim
[17]; dashed line: fit of experimental results to equation γ (T ) =
γ0(1 − T/Tc)1+r by Guggenheim [17]. The resulting coefficients are
γ0 = 36.31 dyn/cm and r = 2

9 .

adopt a significantly simpler form. In the next section we will
formulate the basic equations resulting from the equilibrium
conditions obtained from the minimization of Eq. (7), for
a spherical model of the external field, i.e., a system with
rotational symmetry. But prior to that, it is instructive to discuss
the zero-curvature limit of the above model, corresponding
to an adsorbed LJ fluid on a planar wall, a system with
translational symmetry.

For a planar substrate W = R2 × R− in Cartesian coordi-
nates, the density profile is only a function of z, so that the
Euler-Lagrange equation reads

μHS [ρ(z)] +
∫ ∞

0
ρ(z′)�Pla(|z − z′|) dz′

+V∞(z) − μ = 0 (∀z ∈ R+), (9)

where μHS[ρ] = ∂[fHS(ρ)ρ]
∂ρ

is the chemical potential of the hard-
sphere system. A fluid particle at a distance z from the wall
experiences the wall potential:

V∞(z) = ρw

∫
W

φw

(√
x ′2 + y ′2 + (z − z′)2

)
dx ′ dy ′ dz′

=
{∞, z � 0

4πρwεwσ 3
w

[
1

45

(
σw

z

)9 − 1
6

(
σw

z

)3]
, z > 0.

(10)

�Pla(z) in Eq. (9) is the surface potential exerted by the fluid
particles uniformly distributed (with a unit density) over the
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x-y plane at distance z:

�Pla(z) =
∫∫

φ(
√

x2 + y2 + z2) dy dx

= 2π

∫ ∞

0
φ(

√
z2 + r2) r dr

= −6

5
πεσ 2 ×

{
1, z < σ
5
3

(
σ
z

)4 − 2
3

(
σ
z

)10
, z � σ.

(11)

In the framework of DFT, the natural order parameter for
wetting transitions is the Gibbs adsorption per unit area:

�∞[ρ (z)] =
∫ ∞

0
[ρ(z) − ρb] dz. (12)

C. Rotational symmetry: Spherical wall

If the external field is induced by a spherical wall, W =
{r ∈ R3 : r ≡ |r| < R}, the variational principle yields

μHS[ρ(r)] +
∫ ∞

R

ρ(r ′)�Sph(r,r ′)dr ′

+VR(r) − μ = 0 (∀r > R), (13)

where �Sph(r,r ′) is the surface interaction potential per unit
density generated by fluid particles uniformly distributed on
the surface of the sphere Br ′ centered at the origin at distance r ,

�Sph(r,r ′) =
∫

∂Br′
φ(|r − r̃|) d r̃

= r ′

r
[�Pla(|r − r ′|) − �Pla(|r + r ′|)] (14)

(see also Appendix B 1). The wall potential in Eq. (4) for the
spherical wall, W = {r ∈ R3 : r ≡ |r| < R}, is

VR(r) = ρwεwσ 4
wπ

3r

{
σ 8

w

30

[
r + 9R

(r + R)9
− r − 9R

(r − R)9

]

+ σ 2
w

[
r − 3R

(r − R)3
− r + 3R

(r + R)3

] }
. (15)

Replacing the distance from the origin r by the radial distance
from the wall r̃ = r − R, one can easily see that the external
potential (15) reduces to the planar wall potential (10), for
R → ∞. Analogously to the planar case, we define the
adsorption �R as the excess number of particles of the system
with respect to the surface of the wall:

�R[ρ(r)] =
∫ ∞

R

(
r

R

)2

[ρ(r) − ρb] dr. (16)

III. WETTING ON A PLANAR SUBSTRATE

In this section we make a comparison between the nu-
merical solution of DFT and the prediction given by the
effective interfacial Hamiltonian according to SKA for the
first-order wetting transition on a planar substrate. More
specifically, we consider a planar semi-infinite wall interacting
with the fluid according to Eq. (10) with the typical parameters
ρwεw = 0.8ε/σ 3 and σw = 1.25σ that correspond to the class
of intermediate-substrate systems [18] for which prewetting
phase transitions can be observed. We note that wetting on

planar and spherical walls is a multiparametric problem, and
hence a full parametric study of the global phase diagram is a
difficult task, beyond the scope of this paper.

A. Numerical DFT results of wetting on a planar wall

Figure 2 depicts the surface-phase diagram of the consid-
ered model in the (�μ,T ) plane, where �μ = μ − μsat is the
departure of the chemical potential from its saturation value.
The first-order wetting transition takes place at wetting tem-
perature kBTw = 0.621ε, well below the critical temperature
of the bulk fluid kBTc = 1.006ε for our model. The prewetting
line connects the saturation line at the wetting temperature
Tw and terminates at the prewetting critical point, kBTpwc =
0.724ε. The slope of the prewetting line is governed by a

-0.02

 0

 0.02

 0.04

 0.06

 0.62  0.64  0.66  0.68  0.7  0.72

 0.0001

 0.001

 0.01

 0.1

 1

 0.01  0.1  1

(a)

(b)

FIG. 2. (a) Deviation of the chemical potential from its saturation
value at prewetting (crosses), and at the left (open squares) and
right (filled squares) saddle nodes of bifurcation as a function of
temperature. The dashed line marks the locus of the chemical potential
at saturation for the given temperature, �μ = 0. The solid line is a
fit to −�μpw(T )/(kBTw) = C[(T − Tw)/Tw]3/2, where the wetting
temperature is kBTw = 0.621ε and the prewetting critical temper-
ature is kBTpwc = 0.724ε. The resulting coefficient is C = 0.77.
(b) Scaled prewetting phase diagrams for different systems. The
circles are DFT calculations for an attractive wall with σw =
1.25σ and ρwεw = 0.8ε/σ 3 (open circles) and ρwεw = 0.75ε/σ 3

(filled circles). Experimental data [21]: filled squares, methanol
on cyclohexane [22]; open triangles, H2 on rubidium [23]; filled
triangles, He on caesium [24]; and open squares, H2 on caesium [25].
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Clapeyron-type equation [19], which, in particular, states that
the prewetting line approaches the saturation line tangentially
at Tw with

d(�μpw)

dT

∣∣∣∣
T =Tw

= 0, (17)

in line with our numerical computations. Schick and Taborek
[20] later showed that the prewetting line scales as −�μ ∼
(T − Tw)3/2. In Ref. [21], this power law was confirmed
experimentally, such that

−�μpw(T )

kBTw

= C

(
T − Tw

Tw

)3/2

, (18)

with C ≈ 1
2 . A fit of our DFT results with Eq. (18) leads

to a coefficient C = 0.77, in reasonable agreement with the
experimental data (see Fig. 2).

Figure 3 depicts the adsorption isotherm in terms of the
thickness of the adsorbed liquid film � as a function of �μ

for the temperature kBT = 0.7ε in the interval between the
wetting temperature Tw and the prewetting critical temperature
Tpwc. � can be associated with the Gibbs adsorption through

� = �R[ρ]

�ρ
, (19)

for both finite and infinite R, where �ρ = ρsat
l − ρsat

g is the
difference between the liquid and gas densities at saturation.

The isotherm exhibits a van der Waals loop with two turning
points depicted as B and C demarcating the unstable branch.
Points A and D indicate the equilibrium between thin and
thick layers, corresponding to a point on the prewetting line in
Fig. 2. The location of the equilibrium points can be obtained
from a Maxwell construction. Details of the numerical scheme
we developed for tracing the adsorption isotherms are given in
Appendix A.

B. SKA for a planar wall

For the sake of clarity and completeness we briefly review
the main features of SKA for a planar geometry (details are
given in Ref. [1]).

Let us consider a liquid film of thickness � adsorbed on
a planar wall. According to SKA the density distribution is
approximated by a piecewise constant function

ρSKA
� (z) =

⎧⎨
⎩

0, z < δ

ρ+
l , δ < z < �

ρg, z > � ,

(20)

where ρg is the density of the gas reservoir and ρ+
l is the density

of the metastable liquid at the same thermodynamic conditions
stabilized by the presence of the planar wall, Eq. (10) and
δ ≈ 1

2 (σ + σw). The off coexistence of the two phases induces
the pressure difference

p+(μ) − p(μ) ≈ �ρ�μ, (21)

where p+ is the pressure of the metastable liquid and p is
the pressure of the gas reservoir, and where we assume that
�μ = μ − μsat < 0 is small.
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FIG. 3. (a) �-�μ bifurcation diagram for kBT = 0.7ε for a wall
with ρwεw = 0.8ε/σ 3 and σw = 1.25σ . �μ is the deviation of the
chemical potential from its saturation value, μsat. The prewetting
transition, marked by the dashed line, occurs at chemical potential
�μpw = −0.022ε. The inset subplots show the density ρσ 3 as a
function of the distance z/σ from the wall. (b) Excess grand potential
�ex/ε as a function of �μ/ε in the vicinity of the prewetting
transition.

The excess grand potential per unit area A of the system
then can be expressed in terms of macroscopic quantities as a
function of �

�ex(�; μ)

A = −�μ�ρ(�− δ) + γ SKA
wl (μ)

+ γ SKA
lg + wSKA(�; μ), (22)

where γ SKA
wl and γ SKA

lg are the SKAs to the wall-liquid and
the liquid-gas surface tensions, respectively, and wSKA(�) is
the effective potential between the two interfaces (binding
potential). In the following, we will suppress the explicit μ

dependence of these quantities.
The link with the microscopic theory can be made if the

contributions in the right-hand side of Eq. (22) are expressed
in terms of our molecular model, which, when summed up,
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give the excess grand potential (7), where we have substituted
the ansatz (20):

γ SKA
wl = −ρ+2

l

2

∫ 0

−∞

∫ ∞

0
�Pla(|z − z′|) dz′ dz (23)

+ ρ+
l

∫ ∞

δ

V∞(z) dz

= 3

4
πεσ 4ρ+2

l + π

90δ8

(
σ 6

w − 30δ6
)
σ 6

wρwεwρ+
l ,

γ SKA
lg = −�ρ2

2

∫ 0

−∞

∫ ∞

0
�Pla(|z − z′|) dz′ dz

= 3

4
πεσ 4�ρ2, (24)

wSKA(�) = �ρ

(
ρ+

l

∫ ∞

�−δ

∫ ∞

z

�Pla(z′) dz′ dz

−
∫ ∞

�

V∞(z) dz

)
(25)

= − A

12π�2

⎛
⎝1 + 2 + 3 δ

�

1 − ρwεwσ 6
w

ρ+
l εσ 6

δ

�
+ O

(
(δ/�)3

)⎞
⎠ ,

where we considered the distinguished limit δ � �. A is the
Hamaker constant given by:

A = 4π2�ρ
(
ρ+

l εσ 6 − ρwεwσ 6
w

)
. (26)

We note that the Hamaker constant is implicitly temperature
dependent and that the attractive contribution of the potential
of the wall enables the Hamaker constant to change its sign.
Hence, in contrast with adsorption on a hard wall, where
the Hamaker constant is always negative, there may be a
temperature below which its sign is positive (large ρl) and
negative above. Clearly, complete wetting is only possible for
A < 0.

Making use of only the leading-order term in Eq. (25), the
minimization of Eq. (22) with respect to � gives

�ρ�μ − A

6π�3
≈ 0. (27)

Hence, at this level of approximation the equilibrium thickness
of the liquid film is

�eq ≈
(

A

6π�ρ�μ

)1/3

. (28)

When substituted into Eq. (22), the wall-gas surface tension to
leading order reads

γ SKA
wg = γ SKA

wl + γ SKA
lg +

(
− 9A

16π

)1/3

|�ρ�μ|2/3. (29)

Equation (28) can be confirmed by a comparison against
numerical DFT (see Fig. 4). We observe that the prediction
of SKA becomes reliable for |�μ| < 0.01ε, corresponding
to a somewhat surprisingly small value of the liquid film,
� ≈ 5σ . Beyond this value, the coarse-grained approach loses
its validity, and also, the prewetting transition is approached,
both of which cause the curve in Fig. 4 to bend (see also Fig. 3).

 5

 10

 20

 40

10-4 10-3 10-2

FIG. 4. Ln-ln plot of the film thickness as a function of deviation
of the chemical potential from saturation, �μ, for kBT = 0.7ε and
wall parameters ρwεw = 0.8ε/σ 3 and σw = 1.25σ . The crosses are
results from DFT computations. The solid line is the analytical
prediction in Eq. (27) obtained from SKA.

It is worth noting that the only term in Eq. (22) having an �

dependence and thus governing the wetting behavior, is the
term related to the undersaturation pressure and the binding
potential, wSKA(�). Clearly, γlg does not come into play in
the planar case since the translation of the liquid-gas interface
along the z axis does not change the free energy of the system.
The situation becomes qualitatively different if the substrate
is curved. Nevertheless, at this stage we conclude in line with
earlier studies, that SKA provides a fully satisfactory approach
to the first-order wetting transition on a planar wall.

IV. WETTING ON A CURVED SUBSTRATE

A. SKA for the spherical wall

For the spherical geometry, SKA adopts the following form:

ρSKA
R,� (r) =

⎧⎨
⎩

0, r < R + δ

ρ+
l , R + δ < r < R + �

ρg, R + � < r < ∞ .

(30)

The corresponding excess grand potential now reads

�ex(μ,R,�)

4πR2
= −�μ�ρ

(R + �)3 − R̃3

3R2
+ γ SKA

wl (R)

+ γ SKA
lg (R + �)

(
1 + �

R

)2

+ wSKA(�; R),

(31)

where R̃ = R + δ. Within this approximation, the liquid-vapor
surface tension becomes (see also Appendix B)

γ SKA
lg (R) = γ SKA

lg (∞)

{
1 − 2

9

ln(R/σ )

(R/σ )2
+ O

(
(σ/R)2

)}
(32)

and an analogous expansion holds for γ SKA
wl (R). The ln(R/σ )

(R/σ )2

correction to γ SKA
lg (∞) is due to the r−6 decay of our model.

We note that short-range potentials lead to different curvature
dependence of the surface tension, a point that has been
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discussed in detail in Refs. [7,8,26]. Interestingly, the O(σ/R)
correction to the surface tension, as one would expect from the
Tolman theory [27], is missing. It corresponds to a vanishing
Tolman length within SKA, as we will explicitly show in the
following section. Although the value of the Tolman length is
still a subject of some controversy, it is most likely that its value
is nonzero, unless the system is symmetric under interchange
between the two coexisting phases [28]. This observation has
been confirmed numerically in Ref. [8] from a fit of DFT
results for the wall-gas surface tension in a nondrying regime
for the hard-wall substrate. Thus, the linear term was included
by hand into the expansion (32) [8].

Finally, the binding potential within SKA for the spherical
wall yields

wSKA (�; R) = wSKA(�; ∞)

(
1 + �

R

)
, (33)

where terms O
(
(δ/�)3,δ/R,

ln(�/R)
(R/�)2

)
have been neglected.

B. SIA for the spherical wall

As an alternative to SKA, Napiórkowski and Dietrich [10]
proposed a modified version of the effective Hamiltonian, in
which the liquid-gas interface was approximated in a less crude
way by a continuous monotonic function, the SIA. Applied
for the second-order wetting transition on a planar wall, SIA
merely confirmed that SKA provides a reliable prediction for
such a system. Formulated now for the spherical case, the
density profile of the fluid takes the form

ρSIA
R,� (r)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, r < R + δ

ρ+
l , R + δ < r < R + � − χ

2

ρlg(r − R − �), R + � − χ

2 < r < R + � + χ

2

ρg R + � + χ

2 < r < ∞.

(34)

Thus, a nonzero width of the liquid-vapor interface, χ , is
introduced as an additional parameter. The density profile
ρlg(·) in this region is not specified, but the following
constraints are imposed:

ρlg

(
− χ

2

)
= ρ+

l and ρlg

(
χ

2

)
= ρg, (35)

with an additional assumption of a monotonic behavior of the
function ρlg(r). An illustrative example of ρSIA

R,� (r) is given
in Fig. 5. The corresponding excess grand potential takes the
form

�ex

4πR2
= −�μ�ρ

(R + �)3 − R̃3

3R2
+ γ SIA

wl (R)

+
(

1 + �

R

)2

γ SIA
lg (R + �) + wSIA (R,�) , (36)

taking R + � as the Gibbs dividing surface (so that � is a
measure of the number of particles adsorbed at the wall).

gas

liq

χ χ

FIG. 5. Sketch of the density profile according to SIA for a certain
film thickness �. A piecewise function approximation is employed so
that except for the interval (R + � − χ/2,R + � + χ/2) the density
is assumed to be piecewise constant.

The binding potential (see also Appendix C 3) is obtained
from

wSIA (R,�)

= ρ+
l

∫ ∞

R+�−χ/2

[
ρ+

l − ρSIA
R,� (r)

]
�R+δ (r)

(
r

R

)2

dr

−
∫ ∞

R+�−χ/2

[
ρ+

l − ρSIA
R,� (r)

]
VR(r)

(
r

R

)2

dr, (37)

where �R(r) = ∫ R

0 �Sph(r,r ′)dr ′—see Appendix B 1 for the
explicit form of the last expression.

The wall-liquid surface tension remains unchanged com-
pared to that obtained from SKA, Eq. (24). However, the
liquid-gas surface tension now reads (see Appendix C 1)

γ SIA
lg (R) = −

∫ R+χ/2

R−χ/2
{p[ρlg,R(r)] − pref}

(
r

R

)2

dr

+ 1

2

∫ ∞

0

∫ ∞

0
ρlg,R(r)[ρlg,R(r ′) − ρlg,R(r)]

×�Sph(r,r ′)
(

r

R

)2

dr ′ dr, (38)

where pref is the pressure at saturation.
From now on, we neglect the curvature dependence of χ and

ρlg,R (·), as they would introduce higher-order corrections not
affecting the asymptotic results at our level of approximation.
This is also in line with previous studies which show that the
Tolman length only depends on the density profile in the planar
limit [28]. Then Eq. (38) can be written as

γ SIA
lg (R) = γ SIA

lg (∞)

[
1 − 2δ∞

R
+ O

(
ln(R/σ )

(R/σ )2

)]
, (39)

where δ∞ is the Tolman length of the liquid-gas surface
tension, as given by (Appendix C 2)

δ∞ = 1

γ SIA
lg (∞)

∫ χ/2

−χ/2
{p[ρlg(z)] − pref}z dz. (40)
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The Tolman length is independent of the choice of the dividing
surface. We also note that an immediate consequence of
Eq. (40) is that within SKA the Tolman length vanishes.

The equilibrium film thickness then follows from setting
the derivative of Eq. (36) with respect to � equal to zero:

1

4πR2

d�ex

d�
= −�μ�ρ

(
1 + �

R

)2

+ 2

R

(
1 + �

R

)

× γ SIA
lg (R + �) +

(
1 + �

R

)2 dγ SIA
lg

d�

∣∣∣∣
R+�

+ρ+
l

∫ R+�+χ/2

R+�−χ/2
ρ ′

lg(r − R − �)�R+δ(r)

×
(

r

R

)2

dr −
∫ R+�+χ/2

R+�−χ/2
ρ ′

lg(r − R − �)

×VR(r)

(
r

R

)2

dr. (41)

The last two terms of Eq. (41) are of the form

∫ χ/2

−χ/2
ρ ′

lg(r)fI,II(R + � + r) dr, (42)

with fI(r) = ρ+
l �R+δ(r)( r

R
)2 and fII(r) = VR(r)( r

R
)2. Since

ρlg(r) is monotonic, i.e., ρ ′
lg does not change sign, the mean

value theorem can be employed such that

∫ χ/2

−χ/2
ρ ′

lg(r)fI,II(R + � + r) dr

= −�ρfI,II(R + � + ξI,II), (43)

for some ξI,II ∈ (−χ/2,χ/2), where we made use of∫
ρ ′

lg(r)dr = −�ρ. Substituting Eq. (43) into Eq. (41) and
setting the resulting expression equal to zero, we obtain

�μ = 1

�ρ

(
2γ SIA

lg (R + �)

R + �
+ dγ SIA

lg

d�

∣∣∣∣∣
R+�

)

− ρ+
l �R+δ(R + � + ξI)

(
1 + ξI

R + �

)2

+VR(R + � + ξII)

(
1 + ξII

R + �

)2

. (44)

So far, there is no approximation within SIA. Equation (44)
can be simplified by appropriately estimating the values of
the auxiliary parameters ξI and ξII. To this end, we employ
a simple linear approximation to the density profile at the
liquid-gas interface, taking −ρ ′

lg(r)/�ρ ≈ 1/χ in Eq. (43).
Furthermore, we expand fI,II in powers of �/R,σ/�,

fI (R + � + r) = − 2πρ+
l εσ 6

3 (� + r − δ)3

[
1 + � + r + 3δ

2R

+O

((
σ

�

)6

,

(
�

R

)2)]
, (45)

fII (R + � + r) = −2πρwεwσ 6
w

3 (� + r)3

[
1 + � + r

2R

+O

((
σ

�

)6

,

(
�

R

)2)]
, (46)

where we assumed the distinguished limits r,δ,σ � � � R.
Inserting Eqs. (45) and (46) into Eq. (43) yields for ξI,II:

ξI,II = −χ2

6�

[
1 + O

(
δ

�
,
�

R
,

(
χ

�

)2)]
. (47)

From Eq. (44), we obtain to leading order,

ρ+
l �R+δ(R + � + ξI)

(
1 + ξI

R + �

)2

= − 2π

3�3
ρ+

l εσ 6

[
1 + O

(
δ

�
,
�

R
,

(
χ

�

)2)]
, (48)

VR(R + � + ξII)

(
1 + ξII

R + �

)2

= − 2π

3�3
ρwεwσ 6

w

[
1 + O

(
�

R
,

(
χ

�

)2)]
. (49)

Finally, substituting Eqs. (48) and (49) into Eq. (44), we have
to leading order

�ρ�μ − 2

R
γ SIA

lg (∞) ≈ A

6π�3
, (50)

and hence, to leading order the equilibrium wetting film
thickness is

�SIA
eq ≈

(
A

6π
(
�ρ�μ − 2γ SIA

lg,∞
/
R

))1/3

. (51)

We note that this asymptotic analysis can be extended beyond
Eq. (51), by including terms O(δ/�), O(�/R), and O((χ/�)2).
The latter occurs due to the “soft” treatment of the liquid-vapor
interface and is thus not present in SKA.

In Fig. 6 we compare two adsorption isotherms (kBT =
0.7ε) corresponding to wetting on a planar and a spherical
wall (R = 100σ ). The two curves are mutually horizontally
shifted by a practically constant value, in accordance with
Eq. (50). This implies that the curve for the spherical wall
crosses the saturation line �μ = 0 at a finite value of �,
and eventually converges to the saturation line as �μ−1

from the right, thus the finite curvature prevents complete
wetting. The horizontal shift corresponds to the Laplace
pressure contribution, �μ = 2γ SIA

lg (∞)/ (�ρR), as verified
by comparison with the numerical DFT (Fig. 7). All these
conclusions are in line with SKA. However, the difference
between SKA and SIA consists in a different treatment of
γlg(∞) [compare Eqs. (B4) and (C2)]. This is quite obvious,
since the softness of the interface influences the free energy
required to increase the film thickness. We will discuss this
point in more detail in the following section.
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FIG. 6. Isotherms and density profiles for a planar wall (dashed
lines) and a sphere with R = 100σ (solid lines) at kBT = 0.7ε and
with wall parameters ρwεw = 0.8ε/σ 3 and σw = 1.25σ . To directly
compare the planar to the spherical case, the film thickness instead
of adsorption is used as a measure. The subplots in the inset depict
the density ρσ 3 as a function of the distance from the wall z/σ

and (r − R)/σ for the planar and the spherical cases, respectively.
The points A and A′ are at the prewetting transitions. Points B,B ′

and C,C ′ correspond to the same film thickness. B is at saturation,
whereas C is chosen such that the film thickness � is 20σ .

C. Comparison of SKA and SIA

We now examine the repercussions of the way the liquid-gas
interface is treated on the prediction of wetting behavior on a
spherical surface. As already mentioned in Sec. IV B, the linear
correction in the curvature to the planar liquid-gas surface
tension, ignored within SKA, is properly captured by SIA.
Furthermore, the presence of the Laplace pressure suggests
that the liquid-gas surface tension plays a strong part in the
determination of the equilibrium film thickness. This contrasts
to the case of a planar geometry, where the term associated with
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FIG. 7. Numerical verification of Eq. (50). The film thickness �

is fixed and corresponds to the adsorption �R = 3.905/σ 2. The solid
line corresponds to the analytical result, �μ − 2γ SIA

lg (∞)/ (�ρR) =
Cε, where γ SIA

lg (∞) = 0.524ε/σ 2 (see Table I). The symbols denote
the numerical DFT results.

TABLE I. Planar surface tensions (Eq. (C2)), Tolman lengths
(Eq. (40)), and the corresponding parameters for temperature kBT =
0.7ε according to a given auxiliary function approximating the
density distribution of the vapor-liquid interface. The parameters
are from auxiliary function minimization. The surface tension given
by numerical DFT computations is γlg = 0.517ε/σ 2 and ρ̄ = (ρl +
ρg)/2. Note that in the tanh case, the interface width is implicitly
determined by the steepness parameter α.

Auxiliary function ρlg(z) γ SIA
lg (∞) Argument δ∞

ρ̄ − �ρ z

χ
0.544ε/σ 2 χ = 4.0σ −0.07σ

ρ̄ − 3
2 �ρ z

χ
+ 2�ρ( z

χ
)3 0.532ε/σ 2 χ = 5.4σ −0.09σ

ρ̄ − �ρ

2 tanh (αz/σ ) 0.524ε/σ 2 α = 0.66 −0.11σ

the liquid-gas surface tension has no impact on the equilibrium
configuration.

To investigate this point in detail, we will first compare the
approximations of γlg as obtained by the two approaches. For
this purpose, we start with SIA for a given parametrization
of the liquid-gas interface. As shown in Table I, we employ
linear, cubic, and hyperbolic tangent auxiliary functions, where
the latter violates condition (35) negligibly. The particular
parameters are determined by minimization of a given function
with respect to the corresponding parameters. In Table I we
display the planar liquid-gas surface tension associated with
a particular parametrization and the Tolman length resulting
from Eq. (40) for the temperature kBT = 0.7ε. In all three
cases the surface tension is close to the one obtained from
the numerical solution of DFT and also, the predictions of
the Tolman length are in reasonable agreement with the most
recent simulation results [29–31], with thermodynamic results
[32] as well as with results from the van der Waals square
gradient theory [33].

It is reasonable to assume that from the set of considered
auxiliary functions, the tanh approximation is the most realistic
one, although the numerical results as given in Table I suggest
that it is mainly the finite width of the liquid-gas interface,
rather than the approximation of the density profile at this
region, that matters. To illustrate this, we show in Fig. 8 the
dependence of the surface tension on the steepness parameter
α, determining the shape of the tanh function. Note that the
limit α → ∞ corresponds to the surface tension as predicted
by SKA, γ SKA

lg,∞ = 1.060ε/σ 2, for kBT = 0.7ε. Such a value
contrasts with the result of SIA, which corresponds to the
minimum of the function, and yields γ SIA

lg,∞ = 0.524ε/σ 2, in
much better agreement with the numerical solution of DFT,
γ DFT

lg,∞ = 0.517ε/σ 2.
Asymptotic analysis of the film thickness in Eq. (50)

reveals that the film thickness for large but finite R remains
finite even at saturation with � ∼ R1/3 in line with earlier
studies, e.g., Refs. [5,8]. From Eq. (50) one also recognizes
a strong dependence of � on the planar liquid-gas surface
tension. In Fig. 9 we present the SIA and SKA predictions
of the dependence on � as a function of the wall radius. The
comparison with the numerical DFT results reveals that for
large R, SIA is clearly superior, reflecting a more realistic
estimation of the liquid-gas surface tension. For small values
of R (and �) we observe a deviation between DFT and the
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FIG. 8. Plot of a dimensionless planar liquid-gas surface ten-
sion for the liquid-gas interface approximation ρ(z) = ρl+ρg

2 −
�ρ

2 tanh (αz/σ ) for kBT = 0.7ε as a function of the steepness
parameter α. The upper dashed line is the surface tension obtained
from SKA, whereas the lower dashed line displays the surface tension
obtained from numerical DFT.

SIA results. This indicates a limit of validity of our first-order
analysis and the assumption of large film thicknesses.

The occurrence of the undersaturation pressure and the
Laplace pressure on the left-hand side of Eq. (50) suggests a
certain equivalence between the two systems of a planar and a
spherical symmetry once the sum of the two pressures is fixed.
In Fig. 10 we test this equivalence on the level of a density
profile, where DFT results corresponding to the planar and the
spherical case are compared, such that �ρ|�μ| = 2γ

j

lg(∞)/R,
with j = {SIA,SKA}. A high value of γlg(∞) as given by SKA
must now be compensated by a fairly large R. As we have seen
in Fig. 6, the high value of R means that the saturation line

 10

 20

 40

102 103 104 105

FIG. 9. Film thickness at saturation (�μ = 0) as a function of
the wall radius. The symbols correspond to the numerical DFT
results. The dashed line shows the prediction according to Eq. (51),
where γ SIA

lg (∞) = 0.524ε/σ 2 (see Table I). The dashed-dotted line
corresponds to Eq. (51) where γ SKA

lg (∞) = 1.060ε/σ 2 is used instead
of γ SIA

lg (∞). The wall parameters are ρwεw = 0.8ε/σ 3 and σw =
1.25σ at kBT = 0.7ε.
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FIG. 10. Density profiles of the fluid adsorbed at the spherical
walls of radii R = 104.1σ (dashed) and R = 210.6σ (dashed-dotted)
in a saturated state and at the planar wall (solid line) in an
undersaturated state, �μ = −0.015ε. The wall radii correspond to the
equality 2γ

j

lg,∞/R = �ρ|�μ| for j = SIA (dashed) and j = SKA
(dashed-dotted). kBT = 0.7ε and the wall parameters are ρwεw =
0.8ε/σ 3 and σw = 1.25σ .

�μ = 0 is crossed by the adsorption isotherm at large �, in
agreement with the result depicted in Fig. 9. However, for
a given R, � as obtained by SKA is underestimated, which
follows from Eq. (51) with γlg(∞) = γ SKA

lg (∞), which is
also consistent with the physical observation that high surface
tension inhibits growth of the liquid film.

Note that these results are not in conflict with the previous
study in Ref. [8], where the SKA has been applied for drying
on a spherical hard wall and very good agreement was obtained
with DFT computations. This is because in Ref. [8] the “exact”
(i.e., obtained from DFT computations) liquid-vapor surface
tension was implemented into SKA with a view to verify the
correctness of its functional form. Here, we show that the
coarse-grained effective Hamiltonian approach is capable of a
quantitatively reliable prediction of the adsorption phenomena
on a spherical wall (for a sufficiently large R), if the restriction
of the sharp liquid-gas interface is dropped. However, the price
we have to pay is one more parameter (compared to SKA) that
steps into the theory.

V. SUMMARY AND CONCLUSIONS

We have reexamined the properties of a well known coarse-
grained interfacial Hamiltonian approach, originally proposed
by Dietrich [1] for the study of wetting phenomena on a planar
substrate and based on SKA. SKA relies on approximating the
density profile by a piecewise constant function and has proved
to provide significant insight into interfacial phenomena as it is
mathematically tractable and gives reliable results for a wide
spectrum of problems. This theory is phenomenological in
its origin, but a link with a microscopic DFT can be made,
which allows one to express all the necessary quantities in
terms of fluid-fluid and fluid-substrate interaction parameters.
Comparison with numerical DFT reveals that SKA provides a
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fully satisfactory approach to the theory of complete wetting
on a planar surface.

One of the aims of this study was to demonstrate that for
a spherical geometry the prediction quality of SKA regarding
interfacial properties and wetting characteristics is limited.
More specifically, we demonstrated that SKA satisfactorily
determines the functional form of the asymptotic behavior of
the film thickness for large radii of the substrate but leads
to a significant quantitative disagreement in the prediction of
the adsorbed film thickness when compared against numerical
DFT. The source of the deviation is the presence of the
Laplace pressure that is not quantitatively captured within
the framework of SKA. This contribution originates in the
dependence of the free energy of the liquid-gas interface on a
position of a dividing surface, a property that is absent in the
planar case.

We then showed that the properties of the effective inter-
facial Hamiltonian approach can be substantially improved
if SKA is replaced by SIA, where the assumption of the
sharp liquid-gas interface is replaced by a less restrictive
approximation in which the interface is treated as a continuous
function of the density distribution. We demonstrated that
SIA allows for mathematical scrutiny as it is still analytically
tractable, e.g., it provides the curvature expansion of the
surface tensions (nonanalytic in the wall curvature) with the
leading-order term proportional to σ/R. Moreover, it allows
one to express the corresponding coefficient, the Tolman
length, in a fairly simple manner and the values it predicts
for the Tolman length are in reasonable agreement with the
latest simulation results.

This is in contrast with SKA, where the linear term in
the surface tension expansion is missing, i.e., the Tolman
length vanishes. This observation is in full agreement with
the conclusion of Fisher and Wortis [28], since SKA treats
the fluid in a “symmetric” way, and thus the Tolman length
must disappear as for the Ising-like models. In other words,
according to SKA, the surface tension of a large drop is
equivalent to the one of a bubble, provided the density profiles
of the two systems are perfectly antisymmetric in the planar
limit. This is no more true for SIA, due to the asymmetry of
the “local” contributions to the surface tension, i.e., the first
term on the right-hand side of Eq. (38).

Furthermore, comparison with our numerical DFT revealed
that the SIA results of the film thickness as a function of
the wall radius offer a significant improvement to the ones
obtained from SKA. This follows from the fact that the surface
tension of the planar liquid-gas interface according to SKA
is overestimated, which in turn underestimates the interface
growth.

It should be emphasized that all the theoretical approaches
we have considered in this work are of a mean-field character,
i.e., they do not properly take into account the interfacial
fluctuations (capillary waves) at the liquid-gas interface.
However, for our fluid model of a power-law interaction, these
fluctuations are not expected to play any significant role, since
the upper critical dimension associated with the considered
system is d∗

c = 2 [34]. Nevertheless, what one has to take into
account in order to obtain the correct critical behavior, is the
broadening of the interface at the critical region. Evidently,
this feature is not provided by SKA. Consequently, within
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FIG. 11. Plot of liquid-gas surface tension vs t = 1 − T/Tc. The
squares are the result of SIA, where a simple linear interpolant has
been used to model the interface density profile. The surface tension
has been obtained by minimizing the grand potential with respect to
the interface width χ . The solid line is a fit to γlg(∞)σ 2/ε = Ct3/2,
where the resulting coefficient is C = 3.4. The inset shows a plot of
the interface width χ/σ over t . The solid line is a fit to χ = Cχ t−α ,
where Cχ = 2.0 and α = 0.57.

SKA the liquid-gas surface tension vanishes as t = 1 − T
Tc

[5].
In contrast, SIA provides the expected mean-field behavior
γlg(∞) ∼ t3/2, as it is able to capture the interface broadening
near the critical point (see Fig. 11).

The SIA developed here can be naturally extended by
“softening” the wall-liquid interface in an analogous way
as done for the liquid-vapor interface. However, such a
modification would have presumably only negligible impact
on the prediction of the thickness of the adsorbed liquid
film, since the contribution to the excess free energy from
the wall-liquid surface tension has no � dependence and the
change of the binding potential is expected to be small. On
the other hand, it may be interesting to find the influence of
this refinement on quantities such as the density profile at
contact with the wall. Howerver, for this purpose a nonlocal
DFT (e.g., Rosenfeld’s fundamental measure theory) would be
needed [8,35,36].

We also note that despite our restriction to a model
of spherical symmetry, our conclusions should be relevant
for general curved geometries and should capture some
of the qualitative aspects of wetting on nonplanar sub-
strates. Of particular interest would be the extension of
this study to spatially heterogeneous, chemical, or topo-
graphical substrates. Such substrates have a significant ef-
fect on the wetting characteristics of the solid-liquid pair
(e.g., Refs. [37–42]).
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APPENDIX A: NUMERICAL METHODS

For our computations we employ dimensionless values. We
use σ and ε as the characteristic length and energy scales,
respectively.

1. Density profile

To obtain the equilibrium density profiles, the extremal
conditions (9) and (13) for the planar and the spherical case,
respectively, must be solved numerically. As both cases are of
dimension one, the same numerical method can be applied and
we restrict ourselves to presenting the numerical method for
the planar wall, W = R2 × R−.

The domain R normal to the wall is restricted to an interval
of interest [z0,zN ] with boundary conditions ρ(z) = 0 for z <

z0 and ρ(z) = ρg for z > zN . z0 ∈ (0,1) is typically chosen
to be 0.6. This can be done due to the repulsive character of
the wall. The interval [z0,zN ] is then divided in a uniform
mesh, zi = z0 + i�z with i = 0, . . . ,N , where �z = (zN −
z0)/N is the grid size. Subsequently, the integral in Eq. (9) is
discretized using a trapezoidal rule inside the domain [z0,zN ],
whereas the analytical expression

�Pla (z) =
∫ ∞

z

�Pla(z′) dz′

=
{(− 16

9 π + 6
5π z

σ

)
εσ 3, if z < σ

4πεσ 3
[

1
45

(
σ
z

)9 − 1
6

(
σ
z

)3
]
, if z � σ

is used for the integral outside that interval. Hence, we obtain a
system of N + 1 nonlinear equations with {ρi, i = 0, . . . ,N}
as unknowns, namely,

gi(ρ0, . . . ,ρN ) := μHS (ρi) +V∞(zi) − μ+ρg�Pla (zN − zi)

+�z

2

N−1∑
j=1

(2 − δj0 − δjN )ρj�Pla(|zj − zi |) = 0, (A1)

where δij denotes the Kroenecker delta, which we have used
in order to take into account the grid size at the boundaries.

This system of equations is solved using a modified Newton
method, where each step �ρ is rescaled with a parameter λ

such that ρn+1 = ρn + λ�ρ is bounded in (0,6/π ) in order to
avoid the singularity of Eq. (8). Note that we have made use
of the vector notation ρ := (ρ0, . . . ,ρn)T . In each Newton step
n, the linear system of equations

J · �ρ = g(ρn) (A2)

has to be solved, where the elements of the Jacobian matrix J
are given by

Jij = ∂gi

∂ρj

= δijμ
′
HS(ρi) + �z

2
(2 − δj0 − δjN )�Pla(|zj − zi |).

(A3)

2. Adsorption isotherms

Solving Eq. (A1) will only give one density profile ρ

for each chemical potential μ. However, in the case of a
prewetting transition, there can be multiple solutions for
the same chemical potential. From these solutions, only
one is stable, whereas the other solutions are meta- or
unstable (see also Sec. III A). In order to compute the full
bifurcation diagram of the set of density profiles over the
chemical potential, a pseudo arc-length continuation scheme
is developed similar to the one employed by Salinger and
Frink [43].

More specifically, we introduce an arc-length parametriza-
tion such that (μ(s),ρ(s)) with s ∈ R is a connected set of
solutions of condition (A1), and where we have included the
chemical potential μ as an additional variable:

g(μ,ρ)
!= 0. (A4)

The main idea of the continuation scheme is to trace the set of
solutions along the curve parametrized by s.

Assume that a point (μn,ρn) at position sn on the curve is
given, where n is the step of the continuation scheme being
solved for. First, the tangent vector ( dμ

ds
,
dρ

ds
) at position sn is

computed. This is done by differentiating g(s) := g(μ(s),ρ(s))
with respect to s. From Eq. (A4), it is known that g is a constant
equal to zero on the curve of solutions [μ(s),ρ(s)]. Hence, the
differential d g

ds
vanishes:

d g
ds

=
(

∂ g
∂μ

J
)

·
(

dμ

ds
dρ

ds

)
= 0, (A5)

where J is the Jacobian as defined in Eq. (A3) and

∂gi

∂μ
= −1 + dρg

dμ
�Pla(zN − zi). (A6)

The second term takes into account that ρg for the density at
z > zN depends on the chemical potential. In our computa-
tions, we have approximated ∂gi

∂μ
by −1. Equation (A5) is the

defining equation for the tangent vector (μn
T ,ρn

T ) = ( dμ

ds
,
dρ

ds
).

We remark that this homogeneous system of linear equa-
tions leaves one degree of freedom, as we only have N + 1
equations, but N + 2 variables, (μT ,ρT ). An additional equa-
tion is then used to maintain the direction of the tangent vector
on the curve of solutions:

(
μn−1

T

(
ρn−1

T

)T ) ·
(

μn
T

ρn
T

)
= 1,

where (μn−1
T (ρn−1

T )T ) is the tangent vector of the previous
iteration.

In a second step, an additional equation for a point at the
step size θ away from (μn,ρn) and in the direction of the
tangent vector (μn−1

T (ρn−1
T )T ) is set up. For this purpose

we introduce a scalar product, which takes into account
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the discretization of the density profile into N intervals of
length �z:

〈(μ1,ρ1)|(μ2,ρ2)〉

:= μ1μ2 + · · · + �z

2

N∑
j=0

(2 − δj0 − δjN )ρ1j ρ2j . (A7)

The norm with respect to this scalar product is defined as

‖(μ,ρ)‖ := 〈(μ,ρ) | (μ,ρ)〉1/2. (A8)

The curve of solutions (μ(s),ρ(s)) is now parametrized by the
arc length with respect to the norm given above, such that,∫ sn+θ

sn

∥∥∥∥
(

dμ

ds
,
dρ

ds

)∥∥∥∥ ds = θ. (A9)

Linearizing the norm around sn and making use of the
approximate tangent vector (μT ,ρT ) at sn, one obtains〈(

μn
T ,ρn

T

)∣∣(μ(sn + θ ) − μ(sn),ρ(sn + θ ) − ρ(sn))
〉 = θ,

(A10)

where we have made use of the normalized tangent vector such
that

‖(μn
T ,ρn

T )‖ = 1. (A11)

Inserting (μn+1,ρn+1) for (μ(sn + θ ),ρ(sn + θ )) into
Eq. (A10) leads to the additional equation for the next point
on the curve of solutions:

Kn(μn+1,ρn+1)

:= 〈(
μn

T ,ρn
T

)∣∣(μn+1 − μn,ρn+1 − ρn
)〉 − θ

!= 0. (A12)

For a geometric interpretation of Eq. (A12), see Fig. 12.
To obtain (μn+1,ρn+1), Eq. (A12) is solved together with

Eq. (A4). This is done using a Newton scheme. In each Newton
step, the following system of linear equations is solved:(

μn
T (ρ̄n

T )T

∂g
∂μ

J

)
·
(

�μm

�ρm

)
=

(
Kn (μn,m,ρn,m)

g(μn,m,ρn,m)

)
, (A13)

where we are considering the nth step of the continuation
scheme and the mth step of the Newton method, such that

θ

FIG. 12. Sketch of one iteration step of the continuation scheme.
xn and xn+1 are consecutive points of the iteration, where x = (μ,ρ).
xT is the tangent vector at xn. By following the curve of solutions in
the direction of the tangent vector, the pseudo arc-length continuation
scheme is able to trace the curve of solutions through turning points
with respect to the parameter μ.

�μm:=μn,m+1 − μn,m and �ρm:=ρn,m+1 − ρn,m. Further-
more, we have made use of

ρ̄n
T ,j := �z

2
(2 − δj0 − δjN )ρn

T,j .

Finally, Eq. (A13) is solved using a conjugate gradient method,
where the Jacobian (A3) of the system is approximated
by introducing a cutoff of five molecular diameters for the
intermolecular potential �Pla.

APPENDIX B: SURFACE TENSION AND BINDING
POTENTIAL IN SKA

1. Surface tension

According to Gibbsian thermodynamics, the surface ten-
sion is the free-energy cost to increase an interface by unit
area, i.e., the excess free energy (excess grand potential for an
open system) per unit area with respect to the corresponding
uniform phases. Within SKA, the liquid-vapor surface tension
can be obtained from Eq. (7), with

ρ(r) =
{
ρA, r ∈ VA

ρB, r ∈ VB,
(B1)

where VA ∩ VB = 0 and VA ∪ VB = R3. The convenience of
the expression for the excess grand potential as given by Eq. (7)
becomes evident now, as for ρA = ρl , ρB = ρg , and no external
field, only the second term in Eq. (7) matters. One then gets
an immediate result for the liquid-gas surface tension,

γ SKA
lg = �ex

A = − (ρl − ρg)2

A I (VA,VB), (B2)

where

I (VA,VB) ≡ 1

2

∫
VA

∫
VB

φ(|r1 − r2|) dr1 dr2. (B3)

For the surface tension of a planar interface we have VA =
Vz<0 and VB = Vz�0 such that

I (Vz<0,Vz�0)

A = 1

2

∫ 0

−∞

∫ ∞

0
�Pla(|z − z′|) dz′ dz,

with �Pla defined by Eq. (11). Thus, for the liquid-gas surface
tension we obtain

γ SKA
lg (∞) = −�ρ2

2

∫ 0

−∞

∫ ∞

0
�Pla(|z − z′|) dz′ dz

= 3

4
π�ρ2εσ 4. (B4)

In the case of a spherical symmetry, i.e., a drop of liquid of
radius R, VA = {r ∈ R3 : |r| < R} and VB = {r ∈ R3 : |r| �
R}, the surface tension becomes

γ SKA
lg (R) = −�ρ2 I (Vr<R,Vr�R)

4πR2

= −�ρ2

2

∫ ∞

R

∫ R

0

(
r

R

)2

�Sph(r,r ′) dr ′ dr

= −�ρ2

2

∫ ∞

R

(
r

R

)2

�R (r) dr

= γlg(∞)

(
1 − 2

9

ln(R/σ )

(R/σ )2
+ O

(
(σ/R)2

))
, (B5)
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where �ρ = ρl − ρg and �Sph(r,r ′) ≡ ∫
∂Br′

φ(|r − r′|)dr′ can
be advantageously expressed in terms of �Pla:

�Sph(r,r ′)

=
∫ 2π

0

∫ π

0
φ(|r − r′|)r ′2 sin ϑ ′ dϑ ′ dϕ′

= 2πr ′2
∫ π

0
φ(

√
r2 − 2rr ′ cos ϑ ′ + r ′2) sin ϑ ′ dϑ ′

= π
r ′

r

∫ (r+r ′)2

(r−r ′)2
φ(

√
t) dt

= π
r ′

r

[∫ ∞

(r−r ′)2
φ(

√
t) dt −

∫ ∞

(r+r ′)2
φ(

√
t) dt

]

= 2π
r ′

r

[∫ ∞

0
φ(

√
(r − r ′)2 + u2)u du

−
∫ ∞

0
φ(

√
(r + r ′)2 + u2)u du

]

= r ′

r
[�Pla(|r − r ′|) − �Pla(|r + r ′|)], (B6)

and for r > R,

�R(r) ≡
∫ R

0
�Sph(r,r ′) dr ′ = πεσ 4

3r

⎧⎪⎨
⎪⎩

σ 8

30

[
r+9R

(r+R)9 − r−9R
(r−R)9

] + σ 2
[

r−3R
(r−R)3 − r+3R

(r+R)3

]
, R + σ < r

− 26
15

r
σ

− 9
5σ 2 [R2 − (r − σ )2] + 27

10 + σ 8

30
r+9 R

(r+R)9 − σ 2 r+3 R

(r+R)3 , r < R + σ.

(B7)

Note that expression (B5) gives a vanishing Tolman’s length.

2. Binding potential

The binding potential of a system possessing two interfaces
is the surface free energy per unit area of the system minus the
contribution due to the surface tensions of the two interfaces.
It expresses an effective interaction between the interfaces
induced by the attractive forces. If, analogously to the analysis
above, we define three disjoint subspaces VW , VA, and VB ,
such that VW ∪ VA ∪ VB = R3, the density distribution of the
wall-liquid-gas system within SKA is

ρ(r) =
⎧⎨
⎩

0, r ∈ VW

ρl, r ∈ VA

ρg, r ∈ VB,

(B8)

which when substituted into Eq. (7) gives for the excess grand
potential:

�ex = −�μ�ρVA − ρl
2I (VW,VA) − ρ2

gI (VW,VB)

− (�ρ)2I (VA,VB) +
∫
VA∪VB

V (r)ρ(r)dr. (B9)

We now rearrange the terms in Eq. (B9), such that

�ex(�)

A = −�μ�ρ
VA

A + γ SKA
wl + A′

A γ SKA
lg + wSKA(�),

(B10)

where A = ∫
∂VW

dS is the surface of the wall and A′ =∫
∂(VW ∪VA) dS is the surface of the liquid-gas interface. We

obtain

γ SKA
wl = 1

A

(
−ρl

2I (VW,VA ∪ VB) + ρl

∫
VA∪VB

V (r) dr
)

,

(B11)

γ SKA
lg = − 1

A′ (�ρ)2I (VW ∪ VA,VB), (B12)

and the binding potential wSKA involving the remaining
contribution

wSKA(�) = 1

A

(
2ρl�ρI (VW,VB) − �ρ

∫
VB

V (r) dr
)

.

(B13)

Having obtained the expressions of I (X,Y ) for systems pos-
sessing translational or spherical symmetry, we can evaluate
the binding potential in the planar case by making use of Vw =
R2 × (−∞,δ], VA = R2 × (δ,�) and VB = R2 × [�,∞):

wSKA(�)

plane= �ρ

(
ρl

∫ ∞

�−δ

∫ ∞

z

�Pla(z′) dz′ dz −
∫ ∞

�

V∞(z) dz

)

= − A

12π�2

⎛
⎝1 + 2 + 3 δ

�

1 − ρwεwσ 6
w

ρ+
l εσ 6

δ

�
+ O

(
(δ/�)3

)⎞
⎠ . (B14)

In the spherical case we make use of Vw = {r ∈ R3 : |r| �
R + δ}, VA = {r ∈ R3 : R + δ < |r| < R + �}, and VB =
{r ∈ R3 : |r| � R + �} to obtain

wSKA (�; R)
sphere= wSKA (�; ∞)

(
1 + �

R

)
, (B15)

where we have neglected terms O
(
(δ/�)3,δ/R,

ln(�/R)
(R/�)2

)
.

APPENDIX C: SURFACE TENSION, BINDING POTENTIAL,
AND THE TOLMAN LENGTH IN SIA

1. Surface tension

The surface tension of a planar liquid-gas interface in SIA

ρlg,∞(z) =
⎧⎨
⎩

ρl, z � −χ/2
ρlg(z), |z| < χ/2
ρg, z � χ/2,

(C1)
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is obtained by substituting Eq. (C1) into Eq. (7) with V (r) = 0,

γ SIA
lg (∞) = �ex[ρlg,∞]

A

= −
∫ χ/2

−χ/2
{p[ρlg,∞(z)] − p[ρref(z)]}dz

+ 1

2

∫ ∞

−∞

∫ ∞

−∞
ρlg,∞(z)[ρlg,∞(z′) − ρlg,∞(z)]

×�Pla(z,z′)dz′ dz, (C2)

where ρref(z) denotes the density of a given bulk phase,
i.e., ρref(z) = ρl�(−z) + ρg�(z) such that at saturation
p[ρref(z)] ≡ pref = const. We note that in the above approx-
imation the contribution due to the excess local pressure is
generally nonzero (in contrast to SKA).

In the spherical case, the density profile is

ρlg,R(r) =
⎧⎨
⎩

ρl, r � R − χ/2
ρlg(r − R), |r − R| < χ/2
ρg, r � R + χ/2,

(C3)

and the surface tension of a liquid drop of radius R is

γ SIA
lg (R) = �ex[ρlg,R]

4πR2

= −
∫ R+χ/2

R−χ/2
{p[ρlg,R(r)] − pref}

(
r

R

)2

dr

+ 1

2

∫ ∞

0

∫ ∞

0
ρlg,R(r)[ρlg,R(r ′) − ρlg,R(r)]

×�Sph(r,r ′)
(

r

R

)2

dr ′ dr. (C4)

2. Tolman length

Here we calculate the Tolman length as given by SIA by
a direct comparison of Eqs. (C2) and (C4). We first compare
the second terms of Eqs. (C2) and (C4). For this purpose we
define

hR(r,r ′) ≡ ρlg,R(r)[ρlg,R(r ′) − ρlg,R(r)]
(C5)

and h(r,r ′) ≡ ρlg,∞(r)[ρlg,∞(r ′) − ρlg,∞(r)],

and making use of Eq. (B6) we can express the double integral
in Eq. (C4) as

σ 2

ε

∫ ∞

0

∫ ∞

0
hR(r,r ′)�Sph(r,r ′)

(
r

R

)2

dr ′ dr

= σ 2

ε

∫ ∞

−R

∫ ∞

−R

h(r,r ′)[�Pla(|r − r ′|)

−�Pla(|2R + r − r ′|)]
(

1 + r ′

R

) (
1 + r

R

)
dr ′ dr

= σ 2

ε

∫ ∞

−R

∫ ∞

−R

h(r,r ′)�Pla(|r − r ′|)

×
(

1 + r ′

R

) (
1 + r

R

)
dr ′ dr + O

(
(σ/R)2

)
= σ 2

ε

∫ ∞

−R

∫ ∞

−R

h(r,r ′)�Pla(|r − r ′|)

×
(

1 + r + r ′

R

)
dr ′ dr + O

(
ln(R/σ )

(R/σ )2

)

= σ 2

ε

∫ ∞

−∞

∫ ∞

−∞
h(r,r ′)�Pla(|r − r ′|)

×
(

1 + r + r ′

R

)
dr ′ dr + O

(
ln(R/σ )

(R/σ )2

)
. (C6)

Comparison with the double integral in Eq. (C2) then yields

σ 2

εR

∫∫ ∞

−∞
h(r,r ′)�Pla(|r − r ′|)(r + r ′) dr ′ dr

+O

(
ln(R/σ )

(R/σ )2

)

= σ 2

εR

∫ ∞

−∞

∫ ∞

−∞
r[h(r,r ′) + h(r ′,r)]�Pla(|r − r ′|) dr ′ dr

+O

(
ln(R/σ )

(R/σ )2

)

= − σ 2

εR

∫ ∞

−∞

∫ ∞

−∞
r[ρlg,∞(r ′) − ρlg,∞(r)]2

×�Pla(|r − r ′|)dr ′ dr + O

(
ln(R/σ )

(R/σ )2

)
.

In the following, we focus on the asymmetry of the model due
to the contribution of the pressure, but for simplicity we assume
that the density profile is symmetric. In this case, the integrand
in the above expression is antisymmetric with respect to the
reflection transformation r → −r and r ′ → −r ′ and the term
O(σ/R) vanishes.

For the difference of the first terms of Eqs. (C4) and (C2)
we obtain

−σ 2

ε

∫ ∞

0
{p[ρlg,R(r)] − pref}

(
r

R

)2

dr

+ σ 2

ε

∫ ∞

−∞
{p[ρlg,∞(z)] − pref} dz

= −2σ 2

εR

∫ χ/2

−χ/2
{p[ρlg,∞(z)] − pref}z dz

+O
(
(σ/R)2)

, (C7)

yielding a Tolman length

δ∞ = 1

γ SIA
lg (∞)

∫ χ/2

−χ/2
{p[ρlg(z)] − pref}z dz. (C8)

Note that in line with [28], the Tolman length does not depend
on the choice of the dividing surface.

3. Binding potential

The extension of the expression for the binding potential,
Eq. (B15), as given by SKA is rather straightforward. We
consider the density distribution as follows:

ρ(r) =

⎧⎪⎨
⎪⎩

0, r ∈ VW

ρl, r ∈ VA

ρlg(r), r ∈ VAB

ρg, r ∈ VB,

(C9)
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for VW a sphere of radius R + δ, for VW ∪ VA a sphere of
radius R + � − χ/2, and for VW ∪ VA ∪ VAB a sphere of
radius R + � + χ/2 and VW ∪ VA ∪ VB ∪ VAB = R3. Such
a model is relevant for the study of wetting on a spherical
(R finite) and on a planar (R → ∞) wall. It should be
noted that in contrast to SKA, this density distribution is
not piecewise constant, due to the position dependent part of
ρ(r) in the region VAB . Furthermore, we define the following
operators:

[XY ] ≡ −1

2

∫
X

∫
Y

[ρ(r) − ρ(r′)]2φ(|r − r′|) dr′ dr,

[XY ]wl ≡ −1

2

∫
X

∫
Y

[ρwl(r) − ρwl(r′)]2φ(|r − r′|) dr′ dr,

[XY ]lg ≡ −1

2

∫
X

∫
Y

[ρlg(r) − ρlg(r′)]2φ(|r − r′|) dr′ dr ,

with ρwl(r) ≡ ρlχR3\VW
(r) and ρlg(r) ≡ ρlχVW ∪VA(r) +

ρlg(r)χVAB
(r) + ρgχVB

(r), where χX(r) is the characteristic
function of a subset X. Using this convention, the wall-
liquid and liquid-gas surface tensions can be respectively
expressed as

γwl = 1

A

(
[VWVA] + [VW (VAB ∪ VB)]wl +

∫
ρwl(r)V (r)dr

)

γlg = 1

A

(
[VABVB] + 1

2
[VABVAB] + [VA(VAB ∪ VB)]

+ [VW (VAB ∪ VB)]lg −
∫
VAB

{p[ρlg(r)] − pref} dr
)

,

where A = 4πR2. When this is subtracted from the surface
grand potential (7), which can be written as

�ex

A = 1

A

(
[VWVA] + [VW (VAB ∪ VB)]

+ [VA(VAB ∪ VB)] + 1

2
[VABVAB] + [VABVB]

−
∫
VAB

{p[ρlg(r)] − p[ρref(r)]} dr +
∫

ρ(r)V (r) dr
)

,

(C10)

one obtains for the binding potential:

wSIA = 1

A

(
[VW (VAB ∪ VB)] − [VW (VAB ∪ VB)]wl

− [VW (VAB ∪ VB)]lg +
∫

V (r)[ρ(r) − ρwl(r) dr]

)
.

In spherical coordinates, the binding potential reads

wSIA =
∫ R+δ

0

∫ ∞

R+�−χ/2

(
r

R

)2

ρl[ρl − ρ(r ′)]

×�Sph(r,r ′)dr ′ dr

+
∫ ∞

R+�−χ/2
[ρ(r) − ρl] VR(r)

(
r

R

)2

dr. (C11)
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[29] J. G. Sampayo, A. Malijevský, E. A. Müller, E. de Miguel, and

G. Jackson, J. Chem. Phys. 132, 141101 (2010).
[30] B. J. Block, S. K. Das, M. Oettel, P. Virnau, and K. Binder,

J. Chem. Phys. 133, 154702 (2010).
[31] A. E. van Giessen and E. M. Blokhuis, J. Chem. Phys. 131,

164705 (2009).
[32] L. S. Bartell, J. Chem. Phys. B 105, 11615 (2001).
[33] E. M. Blokhuis and J. Kuipers, J. Chem. Phys. 124, 074701

(2006).

021603-16

http://dx.doi.org/10.1103/RevModPhys.81.739
http://dx.doi.org/10.1103/RevModPhys.81.739
http://dx.doi.org/10.1016/S0378-4371(97)00618-3
http://dx.doi.org/10.1103/PhysRevB.36.5628
http://dx.doi.org/10.1063/1.1819316
http://dx.doi.org/10.1063/1.1819316
http://dx.doi.org/10.1103/PhysRevE.71.011602
http://dx.doi.org/10.1103/PhysRevB.34.6469
http://dx.doi.org/10.1103/PhysRev.137.A1441
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1063/1.1701689
http://dx.doi.org/10.1063/1.1696308
http://dx.doi.org/10.1063/1.1696308
http://dx.doi.org/10.1063/1.1676556
http://dx.doi.org/10.1063/1.1681303
http://dx.doi.org/10.1063/1.1724033
http://dx.doi.org/10.1103/PhysRevB.26.5112
http://dx.doi.org/10.1103/PhysRevB.26.5112
http://dx.doi.org/10.1103/PhysRevB.27.4288
http://dx.doi.org/10.1103/PhysRevB.46.7312
http://dx.doi.org/10.1088/0034-4885/64/9/202
http://dx.doi.org/10.1103/PhysRevLett.69.1220
http://dx.doi.org/10.1103/PhysRevLett.69.1220
http://dx.doi.org/10.1007/BF00754739
http://dx.doi.org/10.1007/BF00754739
http://dx.doi.org/10.1103/PhysRevLett.69.937
http://dx.doi.org/10.1007/BF02403917
http://dx.doi.org/10.1007/BF02403917
http://dx.doi.org/10.1063/1.2193158
http://dx.doi.org/10.1063/1.2193158
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1103/PhysRevB.29.6252
http://dx.doi.org/10.1063/1.3376612
http://dx.doi.org/10.1063/1.3493464
http://dx.doi.org/10.1063/1.3253685
http://dx.doi.org/10.1063/1.3253685
http://dx.doi.org/10.1021/jp011028f
http://dx.doi.org/10.1063/1.2167642
http://dx.doi.org/10.1063/1.2167642


WETTING ON A SPHERICAL WALL: INFLUENCE OF . . . PHYSICAL REVIEW E 84, 021603 (2011)

[34] R. Lipowsky, Phys. Rev. Lett. 52, 1429 (1984).
[35] M. C. Stewart and R. Evans, J. Phys.: Condens. Matter 17, S3499

(2005).
[36] E. M. Blokhuis and J. Kuipers, J. Chem. Phys. 126, 054702

(2007).
[37] L. W. Schwartz and R. R. Elley, J. Colloid Interface Sci. 202,

173 (1998).
[38] C. M. Gramlich, A. Mazouchi, and G. M. Homsy, Phys. Fluids

16, 1660 (2004).
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Test-area deformations are used to analyze vapor-liquid interfaces of Lennard-Jones particles by
molecular dynamics simulation. For planar vapor-liquid interfaces the change in free energy is
captured by the average of the corresponding change in energy, the leading-order contribution. This
is consistent with the commonly used mechanical �pressure-tensor� route for the surface tension. By
contrast for liquid drops, one finds a large second-order contribution associated with fluctuations in
energy. Both the first- and second-order terms make comparable contributions, invalidating the
mechanical relation for the surface tension of small drops. The latter is seen to increase above the
planar value for drop radii of �8 particle diameters, followed by an apparent weak maximum and
slow decay to the planar limit, consistent with a small negative Tolman length. © 2010 American
Institute of Physics. �doi:10.1063/1.3376612�

It is striking that though almost a century has passed
since Gibbs formulated his thermodynamic theory of curved
interfaces, there is still widespread controversy about the de-
pendence of the surface tension on the curvature �size of a
drop� and the validity of the mechanical route to the surface
tension.1–3 The formal approach of Gibbs is intimately con-
nected with the relations of Laplace, �p=2�s /Rs, and Tol-
man, ��R� /��=1−2�� /R+. . ., for drops of radius R. Here,
�p= pl− pg is the pressure difference inside �l� and outside
�g� the drop, �s=��Rs� is the interfacial tension associated
with the surface of tension Rs, �� is the value for the planar
gas-liquid surface, and the Tolman4 length �� is defined rela-
tive to the radius of the equimolar surface Re as ��

=limRs→��Re−Rs�.
There are three basic routes to the definition of the

tension:1 Thermodynamic �Gibbs and Tolman�, mechanical
�Laplace and Young�, and statistical mechanical �density
functional and related theories�. The thermodynamic and me-
chanical routes are macroscopic theories, so there has been
much debate about their applicability to small systems such
as nanoscale liquid drops or bubbles. One key question is
whether the mechanical relations based on the pressure virial
�formulated in terms of the appropriate tensorial compo-
nents� that make use of the concept of the bulk pressure of
the coexisting states are appropriate at these length scales for
curved surfaces.

While the Laplace equation essentially defines the ratio
�s /Rs, the first-order form of Tolman’s theory is appropriate

only for sufficiently large drops. One can view �� as the
leading-order correction to the tension of a planar surface.
Despite its fundamental role in studies of interfacial proper-
ties of curved surfaces and theories of nucleation, there is
still much controversy as to even the sign of ��. Microscopic
statistical mechanical approaches including square gradient
theories �SGTs�,5,6 curvature expansions of the planar
interface,7,8 and density functional theories �DFTs�, including
local9–11 and nonlocal12–14 treatments, have led to conflicting
views on the magnitude and sign of ��, as well as the cur-
vature dependence of the surface tension. The widely ac-
cepted view from this body of work is that ���0 and that
there is a small maximum in �s�R� as the drop radius is
decreased, then followed by a sharp decrease. This is sup-
ported by studies on the penetrable sphere model15 �which
can be solved exactly at the mean-field level at zero tempera-
ture� where one finds a negative Tolman length ���=−� /2�,
with � the molecular diameter.

By contrast, the vast majority of computer simulation
studies suggests that ���0. In most simulations of liquid
drops, the mechanical route to the interfacial tension is em-
ployed, usually involving an integration of the gradient of
the normal component of the pressure tensor from the center
of the drop to the bulk vapor phase.16–19 In this case one
predicts a monotonous decrease in the surface tension with
increasing curvature �decreasing drop radius� from the planar
limit �infinite radius�; this would correspond to ���0
throughout. As was pointed out early on by Schofield and
Henderson,2 there are fundamental problems in employing
local pressure tensors and the associated definition of the
internal pressure for microscopic �high curvature� drops.

a�Author to whom correspondence should be addressed. Electronic mail:
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This leads to a mismatch in the free energy of the formation
of a drop determined via the mechanical and thermodynamic
routes as observed in simulation.20 Macroscopic thermody-
namic routes based on a combination of the Laplace and
Tolman relations have been employed16 but also suffer from
the ill-definition of the internal pressure and density of the
liquid. One can estimate the interfacial tension from the free
energy change accompanying a volume deformation of
spherical surfaces using a virial-like expression;21 these re-
sults for the surface tension are in disagreement with those
obtained from the direct mechanical route. Recent grand ca-
nonical simulations22 and a thermodynamic analysis of large
drops based on the Laplace–Tolman relations23 both now ap-
pear to suggest a small negative ��, which is consistent with
the findings of DFT.

The aim of this paper is to use a new method for the
calculation of the surface tension of small liquid drops in
molecular simulation, highlighting the role played by the
fluctuations in the energy of deformation. The method relies
on the thermodynamic definition of the surface tension and is
thus free from the inconsistencies associated with the appli-
cation of the mechanical route. A variant of the test-area
�TA� method24 is used where small virtual perturbations are
made in the box dimensions of systems with interfaces to
obtain the change in free energy associated with the corre-
sponding change in surface area. For a fluid drop of radius R,
the change in the Helmholtz free energy F is expressed ther-
modynamically as1

dF = − SdT − pgdVg + pldVl + �dN + �dA + CdR , �1�

where S is the entropy, Vg,l are the vapor and liquid volumes,
T is the temperature, � is the chemical potential, N is the
number of particles, A is the interface area, and C is the
conjugate variable for R. The surface tension of a drop is
given by

� �F

�A
�

NVT

= �s, �2�

where the minimal interfacial tension �s defines Rs and cor-
responds to taking C=0. The change in free energy �F due
to a virtual change in area �A can be expressed as the aver-
age of the Boltzmann factor of the corresponding change in
configurational energy �U,24

�F = − kT ln�exp�−
�U

kT
�	 �3�

=
�U� −
1

2kT
�
�U2� − 
�U�2

+
1

6�kT�2 �
�U3� − 3
�U2�
�U� + 2
�U�3 . �4�

The averages are over configurations of the unperturbed ref-
erence system. In Eq. �4� �F is expressed as a perturbation
series to O�
�U3��, where the first-order average of the
change in energy is �F1= 
�U�, the second-order energy
fluctuation term is �F2=−�
�U2�− 
�U�2 / �2kT�, and the
third-order contribution is denoted by �F3. The full Boltz-

mann form, Eq. �3�, is employed in, e.g., the test-particle
approach for the chemical potential,25 or the volume pertur-
bation method for the pressure26 and the pressure tensor.27

The tension is obtained as the change in free energy per
unit area for infinitesimal perturbations to O�
�U3��,

� = lim
�A→0

�F

�A
= lim

�A→0
��F1

�A
+

�F2

�A
+

�F3

�A
� . �5�

The leading term, �F1= 
�U�, corresponds to the mechanical
work involved in changing the area of the interface, which
can be directly associated with the so-called virial expression
for the tension28 �expressed in terms of averages of the ap-
propriate components 	 of the virial, 
x	�dU /dx	��, at the
Hookean linear-response level�. The corresponding entropic
contribution due to the deformation is28 T�S= �
U�
�U�
− 
U�U� / �kT�.

In the case of a planar interface, it is well known that the
interfacial tension can be obtained formally from the virial
expression,1,28 i.e., entirely from the leading-order contribu-
tion of Eq. �5�. This is exemplified for a planar vapor-liquid
interface of Lennard-Jones �LJ� particles �of diameter � and
well depth 
, truncated and shifted TS at rc=2.5�� as shown
in Fig. 1. A planar interface is first stabilized during an NVT
molecular dynamics �MD� simulation of the inhomogeneous
system with a liquid slab in the center of a box

FIG. 1. TA deformations of a planar liquid-vapor interface of the LJ-TS
fluid. MD simulations of N=749 particles in a periodic box of dimensions
Lx=Ly =7.885� and Lz=6Lx at T�=kT /
=0.8 over 3�106 timesteps. The
deformations correspond to changes in the box dimensions �particle coordi-
nates� of Lx�=Lx

�1+�, Ly�=Ly
�1+�, and Lz�=Lz / �1+��. �a� The contributions

�F1 /�A and �F2 /�A to the change in free energy per unit area �in units of

 /�2� ��A�0, +; �A��0, �; and average, ��. The interfacial tension
��=��2 /
 is obtained by extrapolation to �A�=�A /�2=0. �b� The distribu-
tion P��U� of the change in energy �relative to its average in units of 
�
scaled at the maximum peak height for different relative deformations �A�.
The width �standard deviation, ��U� is depicted in the inset.
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separated by two vapor regions. The change in configura-
tional energy due to small test changes in the dimensions of
the box such that the interfacial area is increased or de-
creased at fixed overall volume is then computed to estimate
the various contributions in Eq. �5�; the limit of infinitesimal
deformations is obtained by extrapolation to �A→0. From
Fig. 1�a� it is clear that only the leading mechanical term
�F1 /�A contributes to the interfacial tension of a planar
interface, confirming the validity of the pressure-tensor route
in this case. The fluctuation term �F2 /�A is very small by
comparison and does not contribute to the tension in an ap-
preciable way; this is also true for the third-order term. In
Fig. 1�b� we plot the distribution P��U� of the change in
configurational energy �relative to 
�U�� for different area
perturbations; the distribution is well represented by a
Gaussian, the width of which ���U� decreases to zero
with �A→0, consistent with a very small �F2 /�A
�1�10−6
 /�2.

The overall physical picture is fundamentally different
for a nanosized spherical drop of liquid in contact with its
vapor. Once the drop has been stabilized, its size can be
characterized from the density profile ��r� as a function of
the distance r from its center by calculating the Gibbs divid-
ing surface Re

3= ��v−�l�−1�drr3d��r� /dr, corresponding to an
area of A=4�Re

2. Virtual perturbations from the equilibrium
spherical drop geometry are made with test changes in the

dimensions of the simulation cube: Two of the Cartesian axes
are decreased �or increased� in length, and the third is in-
creased �or decreased� such that the overall volume remains
constant. The perturbed states correspond to ellipsoidal drops
of prolate �or oblate� shape, which always have larger sur-
face areas than the original drop, �A�0. This essentially
corresponds to the longest P2 �Legendre polynomial�
capillary-wave oscillations possible for the drop;3 the
capillary-wave surface tension is equivalent to the thermody-
namic one at least to leading order in curvature O�1 /R�.
Averages are then accumulated over very long runs of
�1.5�109 timesteps, corresponding to microsecond runs for
typical molecular parameters. The term �F1 /�A is more
than two orders of magnitude larger in the case of the drop
than for the planar interface system of comparable size �cf.
Figs 1�a� and 2�a��. The most significant difference is the
large contribution from the second-order energy “fluctua-
tion” term �F2 /�A for the drop, which was negligible for
the planar interface; this term is now comparable in magni-
tude to, but of opposite sign than, the first-order term. The
third-order terms remain essentially negligible. As a result,
both the first- and second-order terms contribute to the sur-
face tension of the drop. A thermodynamic characteristic of
the drop is thus the nonvanishing �and large� fluctuation
term, which is clearly an indication of an additional entropic
contribution. This can be seen in the distribution of the
change in configurational energy for different TA perturba-
tions �Fig. 2�b��. The data are again well described as Gaus-
sians, but though the width now appears not to vanish in the
limit �A→0 its variance of course does, i.e., lim�A→0 ��U

2

=0 and where in this case lim�A→0 �F2 /�A�0. The fact
that lim�A→0 �F3�0 for both the planar and curved systems
suggests symmetrical Gaussians.

The dependence of the surface tension computed from
ellipsoidal deformations as a function of the drop size �for
systems with N=749 to 11 334� is depicted in Fig. 3. Here
the tension is computed for Re rather than Rs though �e=�s

to O�1 /R2�. The behavior obtained with our thermodynamic
TA approach does not support the findings obtained from a
standard pressure-tensor route �e.g., the recent MD data of

FIG. 2. TA ellipsoidal deformations of a spherical drop of LJ-TS liquid of
radius 
Re�=5.55� in coexistence with its vapor. MD simulations of N
=749 particles in a periodic box of dimensions Lx=Ly =Lz=20� at T�=0.8
over 1.5�109 timesteps. The deformations correspond to changes in the box
dimensions �particle coordinates� of Li�=Li

�1+�, Lj�=Lj
�1+�, and Lk�

=Lk / �1+�� �where i, j, and k denote any of the Cartesian axes�. �a� The
contributions �F1 /�A, �F2 /�A, and �F3 /�A to the change in free energy
per unit area �in units of 
 /�2� �prolate, +; oblate, �; and average, ��. The
tension ��=��2 /
 is obtained by extrapolation to �A�=�A /�2=0. �b� The
distribution P��U� of the change in energy scaled at the maximum peak
height for different relative deformations �A�; the width ��U is depicted in
the inset. The Gaussians for the planar interface are shown dotted �note the
very small scale in comparison�.

FIG. 3. The surface tension of spherical drops of LJ-TS fluids with average
radii 
Re /��=5.55, 6.12, 8.04, 11.7, and 14.6 at T�=0.8 from TA ellipsoidal
deformations ���, compared with the values from the mechanical route
�Ref. 19� ���, and the data of Thomson et al. �Ref. 16� ���, El Bardouni
et al. �Ref. 21� ���, and Schrader et al. �Ref. 22� �continuous curve�; the
planar limit is shown dotted. The predictions of FMT �Ref. 14� are depicted
in the inset �dashed curve�.
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Vrabec et al.19�. This is in line with the concerns of Schofield
and Henderson,2 and others8,20,29 about the inadequacy of the
mechanical route for very small systems. For drops larger
than Re�8 we observe values of the surface tension which
appear to be slightly larger than the planar limit, ��R����;
because the tension has to converge to �� when R→�, this
suggests a nonmonotonic behavior of the tension with in-
creasing curvature and a corresponding weak maximum. Our
values are consistent with the data point reported by El Bar-
douni et al.21 estimated from the surface free energy change
and with the small maximum observed by Schrader et al.22

using a Landau free energy approach in the canonical en-
semble �though the authors do not comment explicitly on this
point�. The calculations of the tension of curved interfaces
from curvature corrections, SGT, and DFT �which have been
brought into question because of their failure to reproduce
existing simulation data� are now supported by our data. In
the inset of Fig. 3 we compare the TA data for the surface
tension of drops with those from a nonlocal DFT using fun-
damental measure theory �FMT� ;14 a maximum is predicted
with FMT at Re�10.

Three main conclusions can be gleaned from our study.
First, there is clearly a large fluctuation contribution to the
interfacial tension of nanoscale spherical drops �and most
likely other curved surfaces� in addition to the underlying
first-order �mechanical� contribution, which fully describes
the planar interface. Such contributions from fluctuations in
the energy are not found in the planar limit to any significant
degree �at least for the conditions examined here away from
the cricial region�. Second, our results do not therefore sup-
port the validity of a mechanical �pressure-tensor� route to
the interfacial tension for surfaces of high curvature such as
small drops. This is in line with the warning of Blokhuis and
Bedeaux8 that the use of a mechanical approach in this con-
text “is still a matter of concern” and that it is “advisable not
to use the pressure-tensor whenever this can be avoided.”
Our data are not consistent with the monotonic dependence
of the surface tension with curvature obtained from a me-
chanical treatment. As well as contributions in 
x	�dU /dx	��,
the correct “virial” expression for the surface tension would
have to contain terms in averages of the type 
x	�dU /dx	��
�
x��dU /dx��� and 
x	x��dU /dx	��dU /dx���, which would
involve up to four-body correlations for pairwise additive
potentials. This suggests that there are additional contribu-
tions to the change in the entropy due to the deformation of
small drops involving quadratic terms in �U: 
�U2�, 
�U�2,

U�U2�, 
�U�
U�U�, 
U�
�U2�, and 
U�
�U�2. As a final
point, the rise in the surface tension above that of the planar
limit after a certain drop size would be consistent with a
negative Tolman length. Our data for the larger drops suggest
a value of �� /��−0.2�0.3. Though the statistical uncer-

tainty is large, our finding supports the exact mean-field pre-
dictions for the penetrable sphere model15 and is consistent
with the latest accurate value of −0.10�0.02 determined
from the Laplace relation for a large N=100 000 particle
system.23

We are very appreciative to Jim Henderson for useful
discussions. J.G.S. acknowledges financial support from the
CONACYT of Mexico for a Ph.D studentship, A.M. from
the GACR �Grant No. IAA200760905� and GAAS �Grant
No. IAA400720710� of the Czech Republic, and E.d.M.
from the DGI �Grant No. FIS2007–66079–C02–02� and the
Junta de Andalucia �Grant No. P07–FQM02884� of Spain.
We also acknowledge funding from the EPSRC of the United
Kingdom �Grant No. EP/E016340�.

1 J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity �Oxford
University Press, Oxford, 1982�.

2 P. Schofield and J. R. Henderson, Proc. R. Soc. London A379, 231
�1982�.

3 J. R. Henderson, in Fluid Interfacial Phenomena, edited by C. A. Crox-
ton �Wiley, New York, 1986�.

4 R. C. Tolman, J. Chem. Phys. 17, 333 �1949�.
5 A. H. Falls, L. E. Scriven, and H. T. Davis, J. Chem. Phys. 75, 3986
�1981�.

6 R. Guermeur, F. Biquard, and C. Jacolin, J. Chem. Phys. 82, 2040
�1985�.

7 E. M. Blokhuis and D. Bedeaux, Physica A 184, 42 �1992�.
8 E. M. Blokhuis and D. Bedeaux, J. Chem. Phys. 97, 3576 �1992�.
9 D. J. Lee, M. M. Telo da Gama, and K. E. Gubbins, J. Chem. Phys. 85,
490 �1986�.

10 D. W. Oxtoby and R. Evans, J. Chem. Phys. 89, 7521 �1988�.
11 K. Koga, X. C. Zeng, and A. K. Shchekin, J. Chem. Phys. 109, 4063

�1998�.
12 T. V. Bykov and X. C. Zeng, J. Chem. Phys. 117, 1851 �2002�.
13 Z. Li and J. Wu, Ind. Eng. Chem. Res. 47, 4988 �2008�.
14 A. Malijevský and G. Jackson �unpublished�.
15 S. J. Hemingway, J. R. Henderson, and J. S. Rowlinson, Faraday Symp.

Chem. Soc. 16, 33 �1981�.
16 S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton, R. A. R. Chantry,

and J. S. Rowlinson, J. Chem. Phys. 81, 530 �1984�.
17 M. J. P. Nijmeijer, C. Bruin, A. B. van Woerkom, A. F. Bakker, and J. M.

J. van Leeuwen, J. Chem. Phys. 96, 565 �1992�.
18 Y. A. Lei, T. Bykov, S. Yoo, and X. C. Zeng, J. Am. Chem. Soc. 127,

15346 �2005�.
19 J. Vrabec, G. K. Kedia, G. Fuchs, and H. Hasse, Mol. Phys. 104, 1509

�2006�.
20 P. R. ten Wolde and D. Frenkel, J. Chem. Phys. 109, 9901 �1998�.
21 H. El Bardouni, M. Mareschal, R. Lovett, and M. Baus, J. Chem. Phys.

113, 9804 �2000�.
22 M. Schrader, P. Virnau, and K. Binder, Phys. Rev. E 79, 061104 �2009�.
23 A. E. van Giessen and E. M. Blokhuis, J. Chem. Phys. 131, 164705

�2009�.
24 G. J. Gloor, G. Jackson, F. J. Blas, and E. de Miguel, J. Chem. Phys. 123,

134703 �2005�.
25 B. Widom, J. Chem. Phys. 39, 2808 �1963�.
26 R. Eppenga and D. Frenkel, Mol. Phys. 52, 1303 �1984�.
27 E. de Miguel and G. Jackson, J. Chem. Phys. 125, 164109 �2006�.
28 J. Lekner and J. R. Henderson, Mol. Phys. 34, 333 �1977�.
29 H. Reiss and D. Reguera, J. Phys. Chem. B 108, 6555 �2004�.

141101-4 Sampayo et al. J. Chem. Phys. 132, 141101 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1063/1.442557
http://dx.doi.org/10.1063/1.448389
http://dx.doi.org/10.1016/0378-4371(92)90157-L
http://dx.doi.org/10.1063/1.462992
http://dx.doi.org/10.1063/1.451627
http://dx.doi.org/10.1063/1.455285
http://dx.doi.org/10.1063/1.477006
http://dx.doi.org/10.1063/1.1485733
http://dx.doi.org/10.1021/ie070578i
http://dx.doi.org/10.1039/fs9811600033
http://dx.doi.org/10.1039/fs9811600033
http://dx.doi.org/10.1063/1.447358
http://dx.doi.org/10.1063/1.462495
http://dx.doi.org/10.1021/ja054297i
http://dx.doi.org/10.1080/00268970600556774
http://dx.doi.org/10.1063/1.477658
http://dx.doi.org/10.1063/1.1322031
http://dx.doi.org/10.1103/PhysRevE.79.061104
http://dx.doi.org/10.1063/1.3253685
http://dx.doi.org/10.1063/1.2038827
http://dx.doi.org/10.1063/1.1734110
http://dx.doi.org/10.1080/00268978400101951
http://dx.doi.org/10.1063/1.2363381
http://dx.doi.org/10.1080/00268977700101771
http://dx.doi.org/10.1021/jp036929y


Paper III

39



IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 24 (2012) 464121 (28pp) doi:10.1088/0953-8984/24/46/464121

TOPICAL REVIEW

A perspective on the interfacial properties
of nanoscopic liquid drops
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Abstract
The structural and interfacial properties of nanoscopic liquid drops are assessed by means of mechanical,
thermodynamical, and statistical mechanical approaches that are discussed in detail, including original developments at
both the macroscopic level and the microscopic level of density functional theory (DFT). With a novel analysis we show
that a purely macroscopic (static) mechanical treatment can lead to a qualitatively reasonable description of the surface
tension and the Tolman length of a liquid drop; the latter parameter, which characterizes the curvature dependence of
the tension, is found to be negative and has a magnitude of about a half of the molecular dimension. A mechanical slant
cannot, however, be considered satisfactory for small finite-size systems where fluctuation effects are significant. From
the opposite perspective, a curvature expansion of the macroscopic thermodynamic properties (density and chemical
potential) is then used to demonstrate that a purely thermodynamic approach of this type cannot in itself correctly
account for the curvature correction of the surface tension of liquid drops. We emphasize that any approach,
e.g., classical nucleation theory, which is based on a purely macroscopic viewpoint, does not lead to a reliable
representation when the radius of the drop becomes microscopic. The description of the enhanced inhomogeneity
exhibited by small drops (particularly in the dense interior) necessitates a treatment at the molecular level to account for
finite-size and surface effects correctly. The so-called mechanical route, which corresponds to a molecular-level
extension of the macroscopic theory of elasticity and is particularly popular in molecular dynamics simulation, also
appears to be unreliable due to the inherent ambiguity in the definition of the microscopic pressure tensor, an
observation which has been known for decades but is frequently ignored. The union of the theory of capillarity
(developed in the nineteenth century by Gibbs and then promoted by Tolman) with a microscopic DFT treatment allows
for a direct and unambiguous description of the interfacial properties of drops of arbitrary size; DFT provides all of the
bulk and surface characteristics of the system that are required to uniquely define its thermodynamic properties. In this
vein, we propose a non-local mean-field DFT for Lennard-Jones (LJ) fluids to examine drops of varying size. A
comparison of the predictions of our DFT with recent simulation data based on a second-order fluctuation analysis
(Sampayo et al 2010 J. Chem. Phys. 132 141101) reveals the consistency of the two treatments. This observation
highlights the significance of fluctuation effects in small drops, which give rise to additional entropic (thermal
non-mechanical) contributions, in contrast to what one observes in the case of planar interfaces which are governed by
the laws of mechanical equilibrium. A small negative Tolman length (which is found to be about a tenth of the
molecular diameter) and a non-monotonic behaviour of the surface tension with the drop radius are predicted for the LJ
fluid. Finally, the limits of the validity of the Tolman approach, the effect of the range of the intermolecular potential,
and the behaviour of bubbles are briefly discussed.

(Some figures may appear in colour only in the online journal)
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1. Introduction

The study of inhomogeneous systems presents a much
more significant challenge than that of homogeneous fluids.
By definition the non-uniformity of the number density
throughout the sample adds a mathematical complexity to
the theoretical description—the correlation functions become
multivariable functions and, within a variational formalism,
the thermophysical functions become functionals of the
single-particle density, so that the partial derivatives relating
the equilibrium properties with a particle density must be
replaced with the corresponding variational expressions. At
the level of a formal physical description, a more fundamental
issue arises: the thermodynamic quantities that are familiar in
studies of uniform fluids cannot always be defined uniquely in
the inhomogeneous region. The interface between vapour and
liquid phases or two liquid phases are ubiquitous examples of
non-uniform systems. The study of two bulk phases separated
by a planar interface (and stabilized by an arbitrary weak
external field) does not present a particular problem, since the
non-uniqueness in the definition of the local variables (such
as the pressure tensor or the position of the interface) does
not give rise to an ambiguity in the measurable quantities
(such as the surface tension). The situation is not, however,
as straightforward for systems exhibiting spherical symmetry,
such as small liquid drops (liquid surrounded by vapour) or
gas bubbles (vapour surrounded by liquid), and our goal in this
paper is to provide a critical discussion of the most popular
methodologies for treating the interfacial properties of such
systems.

There are three general routes to the determination of
interfacial properties of small fluid droplets or bubbles: these
involve the choice of a mechanical, a thermodynamical,
or a statistical mechanical description. The first successful
mechanical description dates back to the beginning of
nineteenth century, when Young [1] and Laplace [2] derived a

relationship for the difference in pressure p between a phase
α on one side of a curved interface and the surrounding phase
β. For a macroscopic system their simple relation can be
expressed as

pα − pβ =
2γ
R
, (1)

where γ is the surface tension playing the role of the restoring
force acting against changes in the area of the interface,
and R is the radius of the drop or bubble; though Young’s
paper predates Laplace’s more thorough derivation by a few
months, the expression is more commonly referred to as the
Laplace equation probably because Young only describes the
dependence of curvature in words and not as an explicit
formula [3]. Both derivations rely on macroscopic definitions
of the quantities pα , pβ , and R which are all considered to
be uniquely defined. In particular, one assumes that both
phases behave in the same way as the corresponding bulk
phase. However, when one considers smaller and smaller
drops, the surface contributions propagate progressively into
the interior of the drop so that the density profile becomes
highly structured (as we will show later in our paper), and the
concepts of the ‘bulk’ density of the liquid, the scalar pressure,
and the radius of the drop lose their unique characteristics; for
an in-depth review of the problematic issues associated with
spherical surfaces see the excellent account by Henderson [4].

A natural extension of the concept of the scalar pressure
to non-uniform systems is the introduction of a second-rank
tensor P(r), a local quantity related to the force between
the interacting molecules at a point r. In the absence of
external fields, the sum of all forces P(r) · n̂ dA acting on the
infinitesimal area dA, where n̂ is the unit vector normal to the
particular element of area, must balance:∫

A
P(r) · n̂ dA = 0. (2)

As is customary, Gauss’s divergence theorem can be
employed to re-express the surface integral as one in the
divergence of the pressure tensor over the entire volume
V . The resulting equilibrium condition must apply to each
infinitesimal element so that a microscopic mechanical
treatment then relies on the simple condition of mechanical
equilibrium at every point in the system [3]:

∇ ·P(r) = 0. (3)

It is clear, however, that equation (3) cannot be used to define
the pressure tensor uniquely because any tensor P′(r) which
differs from P(r) by a curl still satisfies the equilibrium
condition (3). Even though the surface tension, which for a
planar interface can be obtained from the pressure tensor as

γ =

∫
[Pn(z)− Pt(z)] dz, (4)

where Pn(z) = pbulk and Pt(z) are the normal and tangential
components of P(r) relative to the interface, is invariant to the
particular form chosen for the local pressure tensor, the first
moment of the difference between the two components,

γ zs =

∫
z[Pn(z)− Pt(z)] dz, (5)
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is not [3, 5, 6]. The latter defines the so-called surface of
tension zs, i.e., the surface at which the surface tension is
deemed to act; the surface of tension plays a crucial role in
the determination of the curvature dependence of the surface
tension, as will be discussed in the subsequent discussion.

The first thermodynamic expression relating bulk
thermodynamic properties to those associated with a liquid
drop (at the same temperature T) is the familiar Kelvin
equation [7]

ln
pv(R)

psat
v
=

2γ∞
ρlkBTR

, (6)

where pv(R) is the vapour pressure of a drop of radius R, psat
v

is the saturation pressure, γ∞ is the surface tension associated
with the planar interface, ρl is the number density of the
liquid, and kB is the Boltzmann constant. The thermodynamic
route to spherical interfaces was developed by Gibbs [8–10]
and Tolman [11–13] (with further developments by Buff [6],
Koenig [14], Hill [15], and Kondo [16] amongst others).
According to Gibbs [8], the curvature corrections become
essential only for very small droplets, with the conjecture that
the surface tension decreases monotonically on decreasing the
radius of the droplet. From another perspective the Thomsons
(father and son) [17] suggested that one should allow for
the possibility of a non-monotonic behaviour (actually a
minimum in the surface tension with decreasing radius
followed by one or more maxima), while Bakker [18] insisted
on the invariance of the surface tension of the droplet with
its radius. Tolman [13], who can be considered as one of the
main proponents of the Gibbsian view, put forward a rigorous
theory for the dependence of the surface tension on the
radius of the drop based purely on thermodynamic arguments
(essentially assuming that high-frequency, short-wavelength,
capillary-wave terms and elastic deformations from spherical
geometry are negligible, as one would expect at the level of
leading order in curvature [4]):

γ (R) = γ∞

(
1

1+ 2δ/R

)
. (7)

Here, γ (R) is the surface tension of the droplet of arbitrary
radius R, and δ = Re − Rs is the difference in the distance
between the surface of tension Rs (where the tension acquires
its minimum) and the Gibbs equimolar dividing surface Re
(where the excess superficial density of particles effectively
vanishes); the so-called Tolman length corresponds to the
value of δ(R) in the limit of the planar interface δ =

limR→∞δ(R) = ze − zs, with the appropriate distances from
the interfacial plane now represented by ze and zs. According
to the Gibbs–Tolman view of a decrease in the surface tension
with decreasing radius, the Tolman length would thus be a
positive quantity, δ > 0. It is important to realize that while
for planar interfaces the choice of dividing surface is arbitrary,
it is a ‘necessity, not merely a convenience’ for systems with
curved interfaces [3]. Owing to the phenomenological origin
of thermodynamic approaches of this type, the description
is expected to become increasingly inappropriate when one
attempts to represent smaller and smaller droplets, as was
pointed out early on by Farkas [19], by Guggenheim [20], and

by Tolman himself [13]. Though Tolman also incorporated
higher-order terms in the radius dependence of the tension,
it is questionable to what extent these are meaningful (or even
physically relevant) for very small droplets; this is because,
to higher order in curvature, the value of the surface tension
becomes dependent on the choice of the dividing surface [3,
4]. Before proceeding we should, however, acknowledge that
the description of curvature deformations for non-spherical
geometries beyond a first-order correction are in common use,
particularly in treating complex fluids with low tensions such
as surfactant aggregates and membranes (e.g., see [21–24]);
this introduces additional complications which are beyond the
scope of our paper.

Apart from the aforementioned issues with a mechanical
or thermodynamical treatment of curved interfaces, neither
of the approaches provide us with a direct link between the
microscopic (intermolecular interactions and local structure)
and macroscopic (thermodynamic) properties of the fluid.
This is possible with a full statistical mechanical description
of the non-uniform fluid. Classical density functional theory
(DFT) provides one with a very powerful tool for the
description of inhomogeneous systems [25–27]. In a purely
mechanical or thermodynamical approach one manipulates
local many-body quantities such as the force, local energy,
local pressure etc to describe the interfacial properties, but
these can often be ill-defined as there is no unique way
of assigning contributions from the intermolecular forces
to a particular element of space [28]. By contrast, in a
DFT treatment the full partition function (and therefore
thermodynamic potential) of the system is formulated
explicitly in a spatially dependent form in terms of the
singlet density, which is a well-defined one-body function,
allowing for a unique description of the thermodynamic
properties. Such an approach is, however, still not entirely
straightforward for inhomogeneous systems characterized by
curved interfaces [4, 29], and care has to be taken with the
precise route that one employs to compute the interfacial
properties. In its original form, the DFT is formulated in the
grand canonical ensemble in which an isolated finite-size drop
of liquid is unstable with respect to its vapour. This leads one
to an inevitable key question: How does one stabilize a drop
of fluid of finite size? Assuming that a stabilized drop can
then be examined to determine the equilibrium density profile
by minimizing the appropriate functional, one then has to
establish a unique and consistent methodology for the desired
thermodynamic and interfacial quantities from a knowledge
of structure of the fluid.

The system of an isolated drop of liquid surrounded by
its vapour (or the inverse case of an isolated bubble of vapour
in a liquid) is ubiquitous and has been studied extensively by
experiment, theory and molecular simulation since the early
description of Young and Laplace. Experimental evidence
of the effect of the system’s size and the curvature on
the surface tension is scarce, as the variation from the
macroscopic (planar) value is directly measurable for only
very small dimensions. Early indications of curvature effects
were obtained by Reinold and Rücher [30] from experiments
on thin films of soap solutions, the thickness of which can
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be estimated from the colour: the surface tension was found
to be constant down to a thickness of ∼50 nm, followed
first by a decrease with decreasing thickness and then by an
inferred increase. Though this led to the Thomson view of the
possibility of a non-monotonic behaviour for the tension [17],
such an analysis should be made with particular care owing
to the inherent difference between aqueous solutions of
amphiphilic compounds (surfactants which will accumulate
at the interface to differing degrees, and lead to a decrease
in tension) and fluid drops of pure substances. At the turn of
the twentieth century, Weber [31] also detected evidence of
size effects on interfacial properties in his experiments of the
contact angle in oil–water systems, though again the findings
are difficult to interpret in such mixtures. In the more recent
analyses of experimental data for the effect of curvature in
fluid systems, the Tolman relation is often employed at leading
order in curvature, together with the measured vapour and
liquid densities and the surface adsorption, to estimate the
surface tension: for example, in the case of a drop of water
the surface tension is found to remain essentially constant
(within a few per cent) for radii down to ∼10 nm, and to
decrease rapidly thereafter [32]. However, as has already
been emphasized, for small drops one is at the limit of the
applicability of macroscopic thermodynamic approaches, and
any tautological conclusions of this kind should be viewed
with some scepticism. This having been said, a macroscopic
treatment continues to be employed without reservation to
this day, e.g., see the work of Xue et al [33]. The surface
force apparatus was used early in its development by its
pioneers to provide a direct measure of the interfacial forces
of curved surfaces at the microscopic level: Fisher and
Israelachvili [34–36] investigated the limit of validity of
the Laplace and Tolman relations (using the corresponding
Kelvin macroscopic thermodynamic description of the vapour
pressure of curved interfaces) for a meniscus of hydrocarbon
fluid between mica spheres/cylinders; notwithstanding some
complications due to impurities, the Kelvin relation is
found to be valid for menisci with radii down to ∼4 nm
(corresponding to about 10 diameters of typical small
molecules), with a marginal possible improvement in the
description of the data for a Tolman-like leading-order
dependence of the tension with curvature. We should note
however that the analysis of Fisher and Israelachvili at very
high curvature (small radii) was brought into question in
a later study by Christenson [37], and the effect has now
been found to be very sensitive to differences in the structure
and polarity of the molecules [38]. A more recent lattice-gas
Monte Carlo study of the atomic force microscope experiment
has also indicated that there is a lower limit in the size of the
system (corresponding to radii of about 2 nm) below which it
is no longer possible to stabilize a meniscus of fluid [39]. Our
overall understanding is not helped by the analysis of data
for the deformation of fluid interfaces obtained from small
angle x-ray and neutron scattering experiments, which for the
vapour–liquid interface of water and organic molecules [40,
41] is consistent with a negative Tolman length, δ < 0, while
in the case of surfactant monolayers [42, 43] the data supports
the original Gibbs–Tolman picture with δ > 0; care should

again be taken with the analysis for the more complex systems
comprising amphiphilic compounds.

The body of work on molecular simulation of
vapour–liquid drops and bubbles, though extensive, is under-
standably not as sizeable as that for its planar counterpart
(see [44] for a recent review of the latter). In one of the first
continuum studies of liquid drops carried out a few years
before the better known work of Binder and co-workers [45,
46] with lattice-gas models, Rusanov and Brodskaya [47]
examined drops of truncated Lennard-Jones (LJ) particles
inside a spherical hard cavity by molecular dynamics (MD)
simulation, calculating the pressure tensor of the system.
Rusanov and Brodskaya showed that one cannot obtain a
uniform value of the tensorial components of the pressure
in the centre of small drops (bringing into question the
validity of the macroscopic mechanical definition, though
admittedly the uncertainty in the computed values is large),
and instead calculated the tension from the Laplace relation
with the pressure of the liquid interior obtained in a
thermodynamically consistent way from a bulk system with
an equivalent chemical potential. In agreement with the
Gibbs–Tolman view, the tension was found to decrease with
decreasing drop radius. Powles et al [48, 49] also simulated
drops of LJ fluid (essentially for the full range of the pair
interaction) in coexistence with its vapour using standard
periodic boundary conditions and determined the tension and
Tolman length from the Kelvin thermodynamic relation. In
their well cited paper, Thompson et al [50] reported values
of the surface tension of shifted and truncated LJ drops
within soft-wall cavities and with dynamic walls (tied to
the centre-of-mass of the drop) obtained by MD simulation
from both mechanical (pressure-tensor) and thermodynamic
(Tolman and Laplace) routes; Thompson et al recognized
the problems associated with the use of such approaches to
determine the surface tension for small drops, and highlighted
the inadequacy of the Laplace and Kelvin relations for drop
radii smaller than about 10 molecular diameters. These early
simulation studies all appear to confirm the Gibbs–Tolman
view of a decrease in the surface tension with decreasing drop
size, corresponding to a positive value of the Tolman length,
δ > 0; one should stress, however, that only relatively small
systems were examined, and the Tolman length is certainly
expected to depend on the system size and on the range of the
interactions (as we show later in our paper).

There have since been a number of computer simulation
studies of liquid drops [51–79] and bubbles [80–89]; here
we refer to some of the representative work where new
findings relevant to our current study are reported, making
no attempt to provide a full review of all the literature on
curved interfaces of mixtures, nucleation, cavitation, and other
non-equilibrium processes. In one of the first large-scale
simulation studies, Nijmeijer et al [52] showed that due to
statistical scatter there is a large uncertainty in the sign of the
Tolman length; the main finding being that its value is close
to zero, a conclusion supported by one of the latest simulation
studies [79]. The small absolute value of the Tolman length
is generally supported by the more recent simulation data
(e.g., [53, 55, 62, 78]) for drops of up to ∼8 × 105 LJ
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particles, corresponding to radii of almost 100 diameters [62].
It is also apparent that the fluid drops experience marked
fluctuations in shape and size, particularly in the case of large
systems, as has been shown by Arcidiacono et al [61] and
Salonen et al [64]. With a thermodynamic approach based
on a linear response of the free energy to small volume
perturbations, El Bardouni et al [55] reported some values
of the tension for spherical and cylindrical surfaces that are
larger than the planar limit (corresponding to δ < 0), though
the uncertainty is such that they concluded that the tension
is essentially curvature independent. This is not the case in
the studies carried out by Vrabec et al [63], who used the
conventional mechanical (pressure-tensor route) and found
that the surface tension decreased sharply and monotonically
with decreasing drop radius (δ > 0). In related studies of
nucleation in fluids, ten Wolde and Frenkel [54] and Neimark
and Vishnyakov [67] have shown that erroneous nucleation
barriers result from the use of pressure tensors (mechanical
route), and that the Tolman equation is not valid for clusters
with radii below four molecular diameters [67]. More recently,
Binder and co-workers [68, 69, 73, 76, 78] have employed a
thermodynamic analysis with a Landau free energy and grand
canonical Monte Carlo approach to determine the surface
free energy and interfacial tension for drops of varying size,
finding that the curvature corrections cannot be described with
the simple Tolman relation for small drops. These authors also
find that the interfacial tension increases above that of the
planar interface, albeit very marginally, for drops with radii
larger than about 8 molecular diameters, which points to a
small and negative Tolman length. Though this finding is in
contradiction with the large body of work based on a purely
mechanical analysis of the simulation data, it is consistent
with the earlier study of El Bardouni et al [55], with a
thorough analysis based on the Laplace relation for very large
drops [71], and with the use of test-area deformations [72]. We
shall return to this interesting feature later in our discussion.

In the case of bubbles within a fluid, Park et al [82]
have used the mechanical expression for the normal and
tangential components of the pressure tensor and the Laplace
relation to estimate the tension and Tolman length of LJ
particles; they find that though the tension of the bubble is
now greater than that of the planar interface, the Tolman
expression for the first-order curvature correction does not
quantitatively reproduce the calculated surface tension of the
bubble, possibly due to an inconsistency in the calculation of
the Tolman length. By contrast, in their recent study of very
small LJ bubbles, Matsumoto and Tanaka [85] determined the
vapour pressure with an empirical equation of state (rather
than via the pressure-tensor route), finding that the surface
tension is independent of the radius of the bubble (which
corresponds to δ = 0), and confirming the validity of the
Laplace relation for radii down to ∼1.7 nm (in terms of the
LJ parameters for argon). However, the latest estimates of the
Tolman length for bubbles by Block et al [73] now suggest a
small negative Tolman length (corresponding to about a tenth
of the molecular diameter) as in the case of liquid drops.

In view of the disparate findings reported in the various
simulation studies of fluid drops and bubbles it would not be

unfair to say that there is still no clear consensus regarding
the curvature dependence of the surface tension and the sign
of the Tolman length. Different (essentially macroscopic)
routes are employed to analyse the data for the interfacial
properties, the validity of which are in question for small
systems. To add to the confusion, the treatment of the range
of the intermolecular potential (long-ranged, versus truncated
or truncated and shifted potentials) has been the bane of
the calculation of the surface tension for planar interfaces
(particularly in approaches employing a mechanical route
because of the discontinuous nature of the forces), leading to
general conclusions which are in apparent conflict; see the
paper by Trokhymchuk and Alejandre [90] and references
therein. The contradictory findings for curved interfaces are
most certainly also compounded by the treatment of the range
of the potential, as Lei et al [62] have demonstrated for
large liquid drops, reiterating the fact that the surface tension
and Tolman length are very sensitive to the value of the
intermolecular potential cutoff that is employed.

The full armoury of phenomenological thermodynamic
approaches and the more sophisticated statistical mechanical
theories have been employed to describe the interfacial
properties of systems with curved interfaces, including
mean-field, square-gradient (generalized van der Waals),
capillary-wave, density functional, and fundamental measure
theories [91–160]. In the following discussion we will
again not focus on studies of nucleation or criticality,
which represent entire fields in themselves. The general
conclusions that can be drawn from the theoretical studies
are as inconclusive as those gleaned from direct molecular
simulation. As we have already mentioned, using his
macroscopic thermodynamic approach, Tolman [13] found
a monotonically decreasing surface tension with decreasing
drop radius, corresponding to δ > 0, which was of the order
of 0.1 nm; if one extends the concept of the Tolman length
to a function δ(R) = Re − Rs of the drop radius then a
non-monotonic dependence of the surface tension with the
radius can be obtained [150].

Hemingway et al [108] have compared thermodynamic,
mechanical, and statistical mechanical routes for the
vapour–liquid surface tension and Tolman length of the
penetrable-sphere model. This provides evidence of the
consistency between the thermodynamic and statistical
mechanical routes (though it cannot be considered as a proof),
while in the case of a mechanical treatment the value of
the Tolman length depends on the choice of local pressure
tensor (as demonstrated by Schofield and Henderson [5] and
later by Blokhuis and Bedeaux [125]). One can formulate
a form of the local pressure tensor that gives a unique
expression for the surface of tension in the case of systems
with spherical symmetry, as shown by Baus and Lovett [120,
124, 126], but the expressions are much more complicated and
there are issues in their implementation to liquid drops [124,
128]. Sampayo et al [72] have also shown that a virial
relation only corresponds to the leading-order term in the
free-energy change due to the deformation of small drops, and
that there are additional contributions from the second-order
(fluctuation) term with a magnitude which is comparable to
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the first-order contribution. Lekner and Henderson [104] have
demonstrated that the first-order contribution to the change
in free energy accompanying a change in the interfacial area
captures the entire mechanical contribution that one would
obtain for the difference in the appropriate components of the
pressure tensor (cf the Irving–Kirkwood [94] expression in the
case of a planar interface). It is therefore clear that first-order
mechanical routes which rely on pressure tensors are to be
avoided for small drops as they do not incorporate the large
contributions due to thermal fluctuations. The main advantage
of the penetrable-sphere model is that it can be solved exactly
at the mean-field level at zero temperature where Hemingway
et al [108] find a negative Tolman length, δ = −σ/2, with σ
the molecular diameter. It is not clear that the relation will still
hold at higher temperatures; the main problem with such an
approach is the lack of knowledge of a good approximation for
the direct correlation function for generic fluid models [108].

The square-gradient theory (SGT), which belongs to
a class of more general density functional theories [25],
is rooted in van der Waals’ [92] original treatment for
fluid interfaces (and in the earlier work by Rayleigh [91]),
which was rediscovered and popularized by Cahn and
Hilliard [99]. Before we discuss the findings of microscopic
SGT approaches, we should briefly mention the related
phenomenological treatment referred to as capillary-wave
theory. As Henderson [4] has pointed out, an analogy
with hydrodynamics can be made to examine the surface
tension of a fluid as the restoring force due to thermally
excited surface waves; frequent use of a capillary-wave
description has be made to describe planar interfaces [100,
102, 103] and to represent liquid drops [5, 108]. The bare
capillary-wave surface tension corresponds to the equilibrium
(infinite wavelength contribution) thermodynamic surface
tension in the case of a planar interface and also to that
of a spherical interface at the level of leading order in
curvature [4, 121]. This means that the surface tension of
the system is required as an input if one wants to employ
capillary-wave approaches to describe interfacial systems.
One of the first to use SGT to examine curved interfaces and
liquid drops were Falls et al [107]: they approximated the
so-called influence parameter by using the low-density limit
of the direct correlation function (as the Mayer function of
the pair potential) to get the density profile for the drop, and
calculated the surface tension from the Irving–Kirkwood [94]
pressure-tensor expression; a monotonic decrease of the
surface tension with decreasing drop radius was predicted
(corresponding to δ > 0 throughout), as obtained by
Tolman [13] thirty years earlier. The same was found by
Hooper and Nordholm [113] with a similar generalized van
der Waals approach. Guermeur et al [115] also employed
SGT in a similar way to Falls et al [107], but using a
density-dependent influence parameter, and computed the
surface tension from an extended Laplace expression: by
contrast, these authors found a non-monotonic dependence of
the surface tension, which increases from below the value of
the planar interface as the drop radius is increased, becomes
larger than the planar value and exhibits a maximum at about
10 molecular diameters, then decaying slowly to the planar

limit, corresponding to a small positive δ∞. The same overall
behaviour as that observed by Guermeur et al [115] has now
been found in more recent studies with variants of the SGT
approach (e.g., see Refs. [130, 132, 138, 141]).

Further controversy has surrounded attempts to include
higher-order curvature corrections in the expansion of the
surface tension, i.e., to add terms beyond the first-order
Tolman correction. Strictly speaking, Tolman’s original
expression [13],

log [γ (R)/γ∞] =
∫ R

∞

2δ/r2
[
1+ δ/r + 1/3(δ/r)2

]
1+ 2δ/r

[
1+ δ/r + 1/3(δ/r)2

] dr,

(8)

does involve higher-order contributions, which after neglect-
ing the terms O(δ/r), and treating δ as a constant, leads
to the compact relation (7). Tolman himself did not put a
firm reliance on his expression when considering very small
droplets. He questioned two assumptions leading to his final
expression: firstly, that δ in equation (8) is a constant for
any drop radius; and secondly, the anticipation of a bulk
liquid behaviour in the centre of the drop. Interestingly,
Tolman suggested that the thermodynamic concepts should be
replaced by ‘a more detailed molecular mechanics’ treatment
for very small droplets.

When generalizing the description to highly curved
interfaces it is tempting to extend Tolman’s theory to higher
order with a formal expansion of the surface tension in powers
of curvature. Helfrich [21] introduced such an expansion
for the surface tension of general curved surfaces to second
order in the curvature, which for a spherical interface can be
expressed as

γ (R) = γ∞ + 2κC0
1
R
+ (2κ + 2κ)

1

R2 , (9)

where C0 is the so-called spontaneous curvature, κ is the
rigidity constant of bending, and κ is the rigidity constant
associated with the Gaussian curvature (which is 1/R2 in
the case of a sphere) characterizing the energy penalty for
topological changes of the surface. The original expansion of
Helfrich [21] is a general form of a second-order surface free
energy and its derivation was motivated by the ultimate goal
of describing the elasticity of lipid bilayers that make up cell
membranes. It is wildly recognized as the basic formalism for
the description of the mechanical behaviour of biomembranes
and liquid crystalline phases. Clearly, by including the
second-order term in the Helfrich expansion one takes the step
from pure thermodynamics (Tolman’s approach) to the theory
of elasticity: while in the Gibbs–Tolman concept γ is viewed
as an excess (over the respective bulk phases) interfacial free
energy per unit area, it is the force acting against the distortion
of the surface in the phenomenological Helfrich approach.

Fisher and Wortis [111] have used a curvature expansion
of the density and chemical potential with a Landau free
energy (of square-gradient form) to examine the Tolman
length. Using an Ising-like model they showed that δ = 0 is a
general result for models characterized by a symmetrical order
parameter (density) profile, a conclusion also arrived at by
Rowlinson [128]. In the more general case of an asymmetric
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fluid treated at the van der Waals level δ ∼ −0.02σ , which
complements the exact results for the penetrable-sphere model
(for which Hemingway et al [108] found the exact result δ =
−σ/2 in the zero-temperature limit) as the Landau approach
is a mean-field theory applicable in the vicinity of the critical
point. For another typical application of the Helfrich curvature
expansion within a density functional theory the reader is
directed to work of Romero-Rochin et al [122].

Blokhuis and co-workers [127, 137, 149] have examined
the thermodynamic properties of curved interfaces with
curvature expansions of the free energy in a series of
enlightening papers. Making use of the Helfrich curvature
expansion, van Giessen et al [137] found negative Tolman
lengths for liquid drops at all temperatures, and demonstrated
that the sign of the Tolman length is very sensitive to
the details of the free energy. A negative value of the
Tolman length has also been predicted on the basis of purely
thermodynamic expansions by Bartell [142] and by Blokhuis
and Kuipers [149], proposing a simple relation between the
Tolman length and the isothermal compressibility κl of the
liquid at two-phase coexistence, δ ≈ −κlγ .

Controversies associated with the use of curvature
expansions, and in particular the relevance of the second-order
correction to the surface tension, follow from the fact that
the second-order term is proportional to the area of the
interface and does not therefore contribute to the overall free
energy, i.e., it just leads to a shift of the thermodynamic
potential and cannot thus play any role in the restoring
force acting against the surface distortion. There is also
evidence of a non-analyticity in the curvature expansion of
the free energy [4, 101, 128, 135, 144, 145, 155, 156],
which suggests that the expansion of the surface tension in
R−1 is generally inappropriate beyond the leading-order term.
Studies of fluids in contact with hard spherical substrates lead
to the conclusion that there is a non-analytical contribution
of the ln R form [135, 144, 145, 156]; though such a system
is clearly not the same as a free liquid drop one may
expect a curvature dependence of this type for particles with
long-ranged interactions, particularly in the vicinity of the
critical point, but this would be very difficult to identify in
practice.

It was recognized early on that the most promising route
to understanding the intricacies of curved surfaces, and liquid
drops in particular, would involve a rigorous microscopic
statistical mechanical treatment. Classical density functional
theory has amply proved to be a powerful tool for the
description of the interfacial properties of fluids [25], and is
therefore a particularly appropriate approach. One of the first
applications of DFT for liquid drops was by Lee et al [116]
who employed a mean-field perturbation theory in the
canonical ensemble with a local density approximation (LDA)
for the hard-core reference term (MF-DFT). As will be
reinforced later in our paper, the advantage of the canonical
ensemble is that one can study ‘stable’ equilibrium droplets
to provide the thermodynamic and structural properties of the
system [110, 112]. Lee et al [116] evaluated the interfacial
tension of the drop using a combination of the Laplace and
Tolman relations, with the pressure tensor at the centre of the

drop as the corresponding value of the internal liquid pressure
(obtained locally by identifying the tangential component of
the pressure as the negative of the grand potential). This
approach leads to a monotonically decreasing dependence
of the surface tension from the planar limit with increasing
curvature, and correspondingly a positive Tolman length;
though the extrapolated value for the planar limit of the
function δ(R) appears to tend to zero, the corresponding
error bar is large. In the subsequent work of Talanquer
and Oxtoby [131] with a similar MF-DFT approach, a
small negative value of the Tolman length was obtained
by extrapolation, but again a near monotonic decrease of
the surface tension with curvature was found. Both the
Lee et al [116] and Talanquer and Oxtoby [131] studies
were carried out in the canonical ensemble, where it is
straightforward to stabilize the drop in a finite-sized system.
By contrast, Oxtoby and Evans [118] studied the nucleation
of liquid drops with MF-DFT in an open system (grand
canonical ensemble), and determined the barrier of nucleation
from the maximum in the grand potential as a function of the
supersaturation (drop radius). The predictions of the MF-DFT
for the barrier in the grand potential were compared with
those obtained with classical nucleation theory (CNT) (which
requires the planar vapour–liquid tension as input): the barrier
height obtained from MF-DFT was lower than the value
obtained from CNT in the case of small drops, and was seen
to increase above it as the drop size was increased. As there
is a direct link between the barrier in the grand potential
(work of drop formation) and the surface tension, this finding
of Oxtoby and Evans [118] implies that the tension of the
drop rises above that of the planar limit (which would thus
be consistent with a maximum in the surface tension and
a negative Tolman length). In a subsequent paper Zeng and
Oxtoby [123] extended the treatment for the more realistic
Lennard-Jones potential, and good agreement is found for the
condensation nucleation rates of nonane.

For the sake of a mathematical convenience, Oxtoby
and Evans [118] applied the Sullivan hard-core Yukawa
model [105]. The advantage of using such a model is that the
Euler–Lagrange equation corresponding to the minimization
of the grand potential functional can be written down
in the form of a differential equation that is easier to
solve than the integral equation obtained from the standard
variational approach. In contrast to the original Sullivan
study of a planar interface, however, the boundary conditions
for the spherical geometry are much less obvious for
the liquid phase. The Sullivan MF-DFT model was also
adopted by Hadjiagapiou [129] and, following a mechanical
(pressure-tensor) route, a non-monotonic dependence of
the surface tension as a function of the drop radius was
found. This is consistent with the findings of Oxtoby and
Evans [118], but in contradiction with those of Lee et al [116].
However, the surface tension reported by Hadjiagapiou [129]
is higher than that of the planar surface over the whole range
of radii considered, and δ(R) = Re−Rs < 0 is found to decay
almost linearly with increasing drop radius, which is rather
surprising particularly in view of its magnitude (δ ∼ 10 for
R = 50σ ).
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Instead of using a mechanical approach that suffers from
the ambiguity of the definition of the pressure tensor, Koga
et al [136] have undertaken a very clear and thorough DFT
study of both the Lennard-Jones and Yukawa models within
the LDA, analysing the surface properties of the liquid drop on
the basis of the Gibbsian thermodynamic theory of capillarity.
In qualitative agreement with the work of Hadjiagapiou [129],
Koga et al obtained a non-monotonic behaviour for the surface
tension and a negative Tolman length, but the functional
dependence found for δ(R) is very different: there is a rapid
increase in δ on decreasing R for R . 10σ , with a change in
sign from negative to positive, suggesting a rapid decrease of
the surface tension below its limiting planar value for drops
corresponding to a few molecular diameters. For R & 10σ
the length δ(R) decays very slowly to its asymptotic value
(Tolman length) reaching a magnitude of about one tenth of
the molecular diameter. However, the authors still consider
the sign of the Tolman length to be elusive and suggest that
this merits further investigation.

All of the DFT studies mentioned thus far follow a
local treatment of the reference free energy, neglecting
the short-range correlations in density and subsequent
inhomogeneities which may be important in the case of
small drops. A weighted density approximation (WDA) can
be used to incorporate these correlations in the free-energy
functional. The first to employ this type of non-local DFT
were Bykov and Zeng [140, 143, 148], using the WDA-DFT
of Tarazona [161] combined with the generalized formula
for the surface tension and Tolman length of Blokhuis and
Bedeaux [127]. A non-monotonic curvature dependence and
negative Tolman length were found by Bykov and Zeng,
though rather surprisingly the difference between the WDA
and the LDA treatment was rather small. In more recent
work Li and Wu [154] have used a non-local DFT, the
fundamental measure theory (FMT) of Rosenfeld [162], to
treat the hard-core reference perturbation term, together with
a quadratic expansion of the attractive contribution to the free
energy where the direct correlation function is described with
the mean-spherical approximation (MSA). In contrast to the
findings of a number of the other DFT studies (cf [129, 136,
140, 143]), Li and Wu [154] reported a monotonic decrease in
the surface tension with increasing curvature, a feature that is
consistent with the early LDA-DFT work of Lee et al [116].
However, unlike Lee et al, the Tolman length calculated by
Li and Wu is negative, which appears to be inconsistent with
the behaviour observed for the curvature dependence of the
surface tension. In more recent calculations with a similar
FMT–DFT [72, 73, 78] a non-monotonic dependence of the
surface tension with curvature was found, and the Tolman
length was calculated to be small but negative.

It is useful at this stage to summarize the rather muddled
state of play of the work involving DFT calculations:
the non-monotonic behaviour and weak maximum in the
surface tension observed with varying drop radius in the
latest FMT–DFT studies [72, 73, 78] are in line with
the findings of much of the other work employing the
extension of the Sullivan model to a spherical geometry within
LDA-DFT [118, 129, 136] and non-local WDA-DFT [140,

143, 148] approaches, and with the latest simulation data [68,
72, 73], but are in contradiction with the results of the DFT
studies by Lee et al [116], Li and Wu [154], Zhou et al [159],
and Corti et al [157]. In the case of bubbles, the FMT–DFT
calculations of Binder and co-workers [73, 78] lead to the
expected monotonic decay of the surface tension from the
planar limit as the radius of the bubble is decreased; this
corresponds to a negative Tolman length as obtained for
drops. We should note that Binder and co-workers perform
their variational analysis in the grand canonical ensemble,
which involves locating a saddle point in the free-energy
surface. As Oxtoby and Evans [118] have pointed out, such an
approach requires a specific numerical procedure. An analysis
in the canonical ensemble is simpler as this involves the
minimization of the free-energy functional [116]. We will
discuss full details of our analysis of the curvature dependence
of the interfacial properties of both drops and bubbles with
a FMT–DFT treatment in the canonical ensemble in later
sections of our current paper.

It is apparent that the collective conclusions of the large
body of theoretical work on the curvature dependence of the
surface tension and the sign and magnitude of the Tolman
length is still a matter of controversy. This is also true of
the conclusions drawn from the corresponding simulation
studies. In our paper we return to the main question of
the curvature dependence (monotonic or non-monotonic) of
the surface tension, the sign of the Tolman length, and
the applicability of the Tolman equation. We will show
that it is not just a matter of choosing the appropriate
simulation methodology (pressure-tensor route, free-energy
calculation etc) or theoretical approach (SGT, LDA-DFT,
FMT–DFT etc), but that the specific analysis of the interfacial
properties, including the density profile and excess free
energy, is of key importance. We start by making some
general observations regarding purely mechanical approaches
(section 2), where we show how the surface tension and
Tolman length can be represented with a classical Newtonian
picture. In section 3 we revisit the main developments of
the Gibbsian theory for the thermodynamics of spherical
interfaces, and discuss the key features of the Tolman
approach. A novel generic expansion of the thermodynamic
relations in terms of the curvature of the drop is also developed
in this section. The more detailed molecular-level statistical
mechanical approaches are discussed in section 4, including
the pressure-tensor (mechanical) routes to the surface
properties and density functional theories. The specific details
of a non-local (FMT) approach in the canonical ensemble
are then described. The numerical calculations with our
FMT–DFT for drops and bubbles are presented in section 5,
and a detailed analysis of the theoretical results is made from
the macroscopic mechanical and thermodynamic perspectives
in order to assess the applicability of the various routes to the
interfacial properties of systems with curved surfaces.

2. Mechanical approach

A mechanical treatment of interfacial properties dates back
to the beginning of the nineteenth century, when an
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understanding of the behaviour of matter relied entirely
on Newtonian classical mechanics. It was therefore natural
to explain phenomena such as a capillary rise from a
mechanical perspective, based on the assumption of a
uniform distribution of molecules interacting via strong
and short-ranged (compared to gravity) attractive forces.
This followed from the observation that the height and the
curvature of the meniscus of a liquid in a small capillary
is independent of a thickness of the material making up
its walls. A crude mechanical treatment of matter, though
unsuitable for a description of interfacial properties of very
small droplets, can still provide some insight on the link
between intermolecular forces and the macroscopic properties
of liquids based on the exclusive application of Newtonian
physics.

The existence of a surface tension at a liquid interface was
recognized in the earliest studies of interfacial phenomena.
In the following development of a entirely mechanical
expression for the surface tension, we generalize the formal
approach of Laplace [2], Dupré [164], Maxwell [165],
Rayleigh [91] and others (as exposed so beautifully by
Rowlinson and Widom, see [3] and references therein) for
the work associated with the separation of two planar liquid
surfaces to form a spherical cavity. This allows us to obtain
purely mechanical expressions for the surface tension and the
Tolman length of liquid drops. A molecular concept of the
surface tension can be established on the basis of a mechanical
equilibrium condition assuming the existence of pairwise
additive attractive interactions u(r) between molecules, where
the integral

8 = 1
2ρ

∫
dr u(r) = 2πρ

∫ d

0
dr r2u(r), (10)

is taken to express the mean-field cohesive energy per particle.
Here, we further assume that u(r) is only a function of the
radial distance and negligible beyond a certain cutoff distance
d (so that u(r) = 0 for r ≥ d) which is small compared to the
size of the system. Furthermore one assumes that the number
density ρ is constant, i.e., that correlations between particles
are neglected (mean-field approximation). The latter requires,
in particular, that the integral in equation (10) is taken in
the isotropic part of the liquid, at least within the range of
u(r). A superficial particle (one at the interface between the
liquid and its vapour, the density of which is neglected in
our current development) lacks some portion of the cohesive
energy compared to a particle in the interior due to a lower
number of neighbours and is therefore in a state of higher
potential energy. This, in turn, means that in the absence of
an external field the liquid will strive to minimize its surface
area. The surface tension γ can then be defined as the work
that has to be done to increase the area of a liquid surface by
unit area,

δW = γ δA, (11)

or, alternatively, as the restoring force per unit length acting
against an increase in surface area.

The radius of a mechanically stable liquid drop can be
determined directly from the principle of virtual work. Let pl

Figure 1. Sketch illustrating the variables for the calculation of the
surface tension γ (R) of a drop with a static mechanical approach.

and pv be the (scalar) pressures of the (interior) liquid and
the (exterior) vapour phases, respectively. The work necessary
to bring about the change in volume due to an infinitesimal
isotropic expansion is

δWV = (pv − pl)AδR, (12)

where A = 4πR2 is the area of the unperturbed surface and δR
represents the displacement of the surface towards the vapour
phase. Such an expansion of the drop leads also to an increase
in the surface area by an amount δA = 8πRδR, producing a
corresponding surface contribution to the work δWA. The total
work due to the virtual volume expansion in the drop radius is
therefore given by

δW = δWV + δWA = 4πR2(pv − pl)δR+ 8πRγ δR. (13)

In (mechanical) equilibrium the work has to be zero from
which one immediately obtains the Laplace relation (1).

By employing a simple static molecular model a link
between the surface tension and the intermolecular forces
can be made. To this end, we calculate the work required
to separate a drop of liquid of radius R from a bulk liquid
(i.e., the formation of a vacuum cavity of radius R + d in a
uniform liquid with a liquid drop of radius R at its centre) by
calculating

δW =
∫ d

0
F(`) d`, (14)

where F(`) is the force between two concentric spherical
surfaces a distance ` apart (see figure 1). In the following
development we assume d � R. This type of approach has
also been used by Fowler [163] to represent the surface
tension of a perfectly sharp vapour–liquid interface. Now we
set out to calculate the work needed to unbind the molecules
in the outer layer from the drop. The radial (and the only
non-zero) component of the force between the drop and the

9
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molecules that are at a distance ` from the drop surface (see
figure 1) can be obtained from

Fr(`) = −4πρ2
∫ d

`

dr (r + R)2
∫ r+2R

r
ds f (s)s2

×

∫ cos−1
[

r2
+2rR+s2
2s(r+R)

]
0

dθ sin θ cos θ
∫ 2π

0
dϕ, (15)

where f (s) = − du(s)
ds is the force between two molecules a

distance s apart, cos θ f (s) is the projection of the force in
the radial direction, and φ is the azimuthal angle in the usual
spherical coordinate system.

After integration over the angular variables one obtains
the following expression:

Fr(`)

4π2ρ2 = −

∫ d

`

dr(r + R)2
∫ r+2R

r
dsf (s)

×

[
s2
−
(r2
+ 2rR+ s2)2

4(r + R)2

]
= −

∫ d

`

dr
∫ d

r
ds f (s)[r2s+ 2rsR+ 2sR2

− s3
].

(16)

We proceed by expressing the force as an expansion to leading
order in the curvature (1/R) about the planar limit:

Fr(`) ≡ 4π2R2ρ2
(

F0 +
1
R

F1 +O
(

1

R2

))
, (17)

where the reference planar term is

F0 = −2
∫ d

`

dr
∫ d

r
ds su(s)

= 2`
∫ d

`

ds su(s)

+ 2
∫ d

`

dr r
d
dr

∫ d

r
ds su(s)

= 2`
∫ d

`

dr ru(r)− 2
∫ d

`

dr r2u(r), (18)

and the leading-order curvature correction is

F1 = −2
∫ d

`

dr r
∫ d

r
ds su(s)

= `2
∫ d

`

dr ru(r)−
∫ d

`

dr r3u(r). (19)

After substituting equations (17)–(19) into equation (14)
and integrating by parts, one can express the work done in
creating a cavity around the drop of liquid as

W =
∫ d

0
Fr(`) d` = 4π2R2ρ2

∫ d

0

[
F0(`)+

1
R

F1(`)

]
d`

= 4π2R2ρ2
(

W0 +
1
R

W1

)
, (20)

where

W0 = 2
∫ d

0
d` `

∫ d

`

dr ru(r)− 2
∫ d

0
d`
∫ d

`

dr r2u(r)

= −

∫ d

0
d` `2 d

d`

∫ d

`

dr ru(r)+ 2
∫ d

0
d` `

∫ d

`

dr2 ru(r)

= −

∫ d

0
d` `3u(`), (21)

and

W1 =

∫ d

0
d` `2

∫ d

`

dr ru(r)−
∫ d

0
d`
∫ d

`

dr3 ru(r)

= −
2
3

∫ d

0
d` `4u(`). (22)

The expression W0 for the planar limit was already know
to Laplace [2] and Dupré [164], but to our knowledge the
first-order curvature correction W1 has not been developed in
this manner before. The surface tension corresponds to the
work per unit area, γ (R) = W

8πR2 , since two surfaces with

areas 4πR2 and 4π(R+ d)2 ≈ 4πR2 have been created:

γ (R) = −πρ2
[

1
2

∫ d

0
d` `3u(`)+

1
3R

∫ d

0
d` `4u(`)

]
+ O

(
1

R2

)
≡ γ∞

(
1−

2δ
R

)
+O

(
1

R2

)
, (23)

where

γ∞ = −
1
2πρ

2
∫ d

0
d` `3u(`) (24)

is the surface tension of a planar interface, and the coefficient
proportional to the first-order curvature correction,

δ = −

∫ d
0 d` `4u(`)

3
∫ d

0 d` `3u(`)
, (25)

is effectively a mechanical representation of the Tolman
length, which will be defined on thermodynamic grounds
and discussed in detail in section 3. The expression for the
planar contribution is of course identical to the one obtained
when two planar liquid surfaces are separated from each
other (e.g., see the derivation by Rowlinson and Widom [3]).
Our expression for the Tolman length is different from that
obtained by Kirkwood and Buff [93] or by Schofield and
Henderson [109]. The Tolman length in our equation (25) is
expressed as the ratio of the fourth and third moments of the
pair potential energy. Following a pressure-tensor route for
the surface tension and the surface of tension, Kirkwood and
Buff [93] obtained a relation for the Tolman length which is
proportional to the ratio of the fifth and fourth moments of the
corresponding pair virial (force). Our expression (25) yields a
Tolman length which is always negative, while that obtained
by Kirkwood and Buff is of roughly the same magnitude but is
always positive. For a square-well potential of range 1.5σ we
find δ ∼ −0.4σ , where σ is the hard-core diameter, and in the
case of the (full) Lennard-Jones potential δ =− 2

3σ (where the
integration is carried out from σ up to infinity in both cases).
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We shall return to the issue of the sign of the Tolman length
later in the discussion.

3. Thermodynamic approach

It is evident that the properties of liquids are highly
dependent on temperature. This feature is ignored within a
purely mechanical perspective, such as the one described in
section 2, where the molecules are presumed to be at rest in
positions of minimum potential energy. By the last quarter
of the nineteenth century, Boltzmann [166] had developed
his kinetic theory of gases, a molecular theory based on
Newtonian mechanics, revealing that the temperature of the
system is related to the mean-square velocity of the chaotic
motion of the particles. As a result, a dynamic, rather than
a static view of molecular systems began to be accepted.
Boltzmann’s theory provided a dramatically new insight into
the behaviour of fluids, but remained essentially inapplicable
until the advent of computers and the development of
numerical molecular dynamics techniques. It is now fully
accepted that mechanics itself describes only a part of
the physics of fluids, that directing a system towards its
energetic minimum, but not its counterpart which demands
a maximization of its entropy. Within a strict thermodynamic
treatment of the interfacial properties of liquids one abandons
the molecular picture, describing matter as structureless,
providing instead general relations between its macroscopic
properties. The thermodynamic description of finite systems,
such as a drop of liquid nucleating in a fluid, is far less obvious
and cannot be properly handled when the dimension becomes
truly microscopic. However, the concept of the surface tension
and the related characteristics of the surface can be rigorously
formulated within the Gibbsian thermodynamic approach
without any restrictions, as will be briefly summarized in
section 3.1.

3.1. Theory of Gibbs

We consider a one-component system containing a liquid
drop surrounded by its vapour. In section 2 we implicitly
assumed that such a system could be characterized by a
parameter R, representing the radius of the drop. However,
such a division of the system into two physical subsystems,
one corresponding to the liquid and one to the vapour phase,
is not evident unless the interface is perfectly sharp, which is
never the case. In order to avoid this problem, Gibbs [8–10]
introduced a mathematically rigorous theory where one relies
on a formal definition of a dividing surface separating the
system into two hypothetical uniform subsystems. Thus, the
volume V of the entire system is expressed as a sum of
volumes of the two subsystems

V = Vl + Vv, (26)

with the liquid volume expressed as Vl =
4
3πR3. Any surface

variable is now defined as the excess of the variable X of the
entire system over the sum of the corresponding variables in
the two bulk subsystems:

Xs ≡ X − Xl − Xv, (27)

where Xl and Xv are the properties of the liquid and vapour
systems, respectively, at the same thermodynamic conditions
as the system of interest. The latter condition is the key
to the thermodynamic treatment of interfacial systems. With
this division of space in hand, one can define the surface
adsorption per unit area as

0(R) =
1

A(R)
(N − Nl − Nv) =

Ns(R)

A(R)
, (28)

where one refers to a given choice of radius R which also
defines the dividing surface.

In terms of thermodynamics, the mechanical model
adopted in section 2 corresponds to an adiabatic process with
the internal energy playing the role of the thermodynamic
potential being minimized by an appropriate compromise
between the volume and the surface corresponding to a
force balance (cf equation (13)). If the processes are carried
out at fixed temperature, which is both experimentally
relevant and computationally more convenient, the relevant
thermodynamic potential is a free energy. For a one-
component liquid drop, the choice of R defines the liquid and
the vapour volumes, Vl and Vv, and the total differential of the
Helmholtz free energy can be expressed as

dF = −pl dVl − pv dVv + S dT + µ dN + γ dA+ C dR, (29)

where pl and pv are the scalar pressures of the uniform liquid
and vapour systems corresponding to a given equilibrium
chemical potential µ, and C is the conjugate variable to R.
In equation (29) the use of the general equilibrium conditions
T = Tl = Tv and µ = µl = µv has been made implicitly.
Equation (29) can be integrated over the whole spherical
surface at fixed R and T [3]

F = −plVl − pvVv + γA+ µN (30)

and, from equation (27), the surface free energy can be
identified as

Fs = γA+ µNs, (31)

so that, when referred to a given dividing surface R, the
surface tension can be expressed as

γ (R) =
Fs

A
− 0. (32)

In other words the surface tension is the surface free energy
per unit area, providing there is no net adsorption 0 = 0. In a
one-component system the choice corresponding to vanishing
adsorption is the equimolar or Gibbs dividing surface: R = Re.

In an open or inhomogeneous system it is more
convenient to use the grand potential defined as the Legendre
transform � = F − µN. In terms of the grand potential the
surface tension is given by

γ (R) =
�s

A
, (33)

regardless of the choice of the dividing surface.
As the dividing surface is fixed by convention, the free

energy for fixed N,V , and T or the grand potential for fixed
µ,V , and T cannot depend on this formal choice (nor can any
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other thermodynamic quantity, such as pl, pv, µ or T). If, for a
given drop, we take the formal derivative of equation (30) with
respect to R and compare it with equation (29), one obtains a
generalized Laplace relation,

pl − pv =
2γ (R)

R
+

C

A
, (34)

(cf equation (1)), with an explicit form for the conjugate
variable:

C =
∂γ (R)

∂R
A. (35)

The dividing surface Rs for which C = 0, i.e., the one for
which the macroscopic Laplace relation (cf equation (1)) is
satisfied, is commonly referred to as the surface of tension
at which the tension acts [3]. This requires that the formal
derivative of the surface tension with the position of the
surface be at an extremum:

∂γ (R)

∂R

∣∣∣∣
R=Rs

= 0. (36)

The generalized Laplace equation can be re-written as
d

dR [R
2γ (R)] = R21p, and on integrating from the surface of

tension Rs to another dividing surface R, one obtains [3, 108]:

γ (R)

γ (Rs)
= 1+

(
R− Rs

R

)2 Rs + 2R

3Rs
. (37)

From equation (37) it follows that γ (R) is at a minimum at
the surface of tension, and that, for R ≈ Rs, γ (Rs) differs from
γ (R) by terms of order 1/R2

s .

3.2. Theory of Tolman

Gibbs’ theory for the surface tension is based on a definition
of the dividing surface which is taken to separate the two
coexisting phases and to which the surface tension and the
other superficial quantities are referred. There are two useful
definitions of the dividing surface: the equimolar (or Gibbs)
dividing surface Re, defined by 0(Re) = 0, and the surface of
tension Rs, defined by equation (36). Tolman [13] extended
the general thermodynamic theory of Gibbs, exploiting the
Gibbs–Duhem relation to obtain a thermodynamic expression
for the curvature dependence of the surface tension. More
specifically, Tolman expressed the adsorption in terms of the
difference in the two dividing surfaces δ = Re − Rs. The
adsorption relative to the surface of tension can be written
in terms of the appropriate integrals over the number density
profile ρ(r) as

0(Rs) =
1

4πR2
s

[∫ Rs

0
(ρ(r)− ρl)r

2 dr

+

∫
∞

Rs

(ρ(r)− ρv)r
2 dr

]
=

∫ 0

−Rs

[ρ(r + Rs)− ρl]
(

1+
r

Rs

)
dr

+

∫
∞

0
[ρ(r + Rs)− ρv]

(
1+

r

Rs

)
dr. (38)

Now, if the equimolar dividing surface is a distance δ from the
surface of tension, Re = Rs+δ, the adsorption 0(Re) at Re can
be expressed as

0(Rs + δ) =

∫ δ

−Rs

[ρ(r + Rs)− ρl]
(

1+
r

Rs

)
dr

+

∫
∞

δ

[ρ(r + Rs)− ρv]
(

1+
r

Rs

)
dr = 0.

(39)

After combining equations (38) and (39), one obtains [13]

0(Rs)

ρl − ρv
= δ

[
1+

δ

Rs
+

1
3
δ2

R2
s

]
, (40)

which relates a microscopic property of a drop characterized
by the Tolman length δ, to thermodynamic quantities that can
be obtained directly from Gibbsian thermodynamics. Indeed,
if the Gibbs adsorption equation at constant temperature
(which follows from equations (29) and (30)),

dγ = −0 dµ, (41)

is combined with the Gibbs–Duhem relations (dpi = ρidµ for
i = l, v, at constant T), one obtains

dγ = −
0

ρl − ρv
d(pl − pv). (42)

By describing the pressure difference 1p = pl − pv with the
Laplace equation one can write

dγ (R) = −
0

ρl − ρv
d(2γ (R)/R). (43)

This leads to a differential equation for γ (r) in terms of the
radial integration variable r:

dγ (r)
γ (r)

=

2
r2

0
ρl−ρv[

1+ 2
r

(
0

ρl−ρv

)] dr. (44)

Using equation (40) and integrating the last expression from
the plane surface (r = ∞) to R one finds

ln
γ (R)

γ∞
=

∫ R

∞

2
r2

0
ρl−ρv[

1+ 2
r

(
0

ρl−ρv

)]dr, (45)

which with the help equation (40) at lowest order, i.e., 0 =
δ1ρ leads to the Tolman equation:

γ (R) = γ∞

(
1−

2δ
R

)
+ H.O.T. (46)

In the considerations leading to equation (46) one assumes
that δ is a constant, so that the Tolman length can be expressed
in the planar limit, such as

δ = lim
Rs→∞

(Re − Rs) ≡ ze − zs, (47)

where the ze and z now define the corresponding perpendicular
distances from the interfacial plane.

The extension of equation (46) beyond the first-order
correction in curvature is still a matter of controversy. In
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his derivation, Tolman [13] obtained terms of order 1/R2

and 1/R3, cf equation (8), but neglected them and expressed
doubts about their physical relevance taking into account the
macroscopic origin of his approach. On the other hand, in
his phenomenological theory, cf equation (9), Helfrich [21]
included a 1/R2 ‘elastic’ contribution, which he related to
the surface rigidity. The relevance of the 1/R2 contribution
has been questioned [111, 128] owing to the fact that it
corresponds only to a constant term in the free energy (in three
dimensions) and as a consequence cannot contribute to the
restoring force acting against surface deformations. Instead,
there is some evidence [101, 135, 144, 145, 155, 156] for the
existence of non-analytic terms, such as ∼ln R, which are still
a matter of some debate.

3.3. Curvature expansion

We have already showed in section 2 that the Tolman length
can be represented within a primitive purely mechanical
standpoint. In the following sections we will show how a
statistical mechanical treatment can be used to provide a
reliable and physically consistent estimate of δ. Prior to this,
a procedure is proposed for the determination of the Tolman
length from a purely macroscopic thermodynamic basis by
assuming the analyticity of thermodynamic quantities in the
curvature c ≡ R−1 of the drop. We start by considering a
thermodynamic state in a metastable region on the vapour
side of the phase diagram, i.e., a supersaturated vapour
with a chemical potential which is slightly higher than
the saturation value. The chemical potential, density and
other thermodynamic functions of such a system can be
characterized in terms of the radius of the critical nucleus,
R = 1/c, and we can thus develop a Taylor expansion about
the planar limit as

µ(c) = µ(0)+ µ′(0)c+ 1
2µ
′′(0)c2

+ · · · (48)

ρi(c) = ρi(0)+ ρ′(0)c+ 1
2ρ
′′(0)c2

+ · · · , i = l, v,

(49)

where ′ denotes the derivative with respect to the curvature,
d
dc , and (0) the reference saturation value. As the state is
supersaturated with µ(c)−µ(0) > 0 and ρi(c)−ρi(0) > 0, it
follows that the sum of the first-order terms on the right-hand
sides of equations (48) and (49) must be positive.

The free-energy density f ≡ F/V of both phases is
then expanded up to second order in density, making use
of equations (48) and (49), and the thermodynamic relation
∂f /∂ρ = µ:

f (ρi(c)) = f (ρi(0))+
∂f

∂ρi

∣∣∣∣
0

[ρi(c)− ρi(0)]

+
1
2
∂2f

∂ρ2
i

∣∣∣∣∣
0

[ρi(c)− ρi(0)]2 +O((ρi(c)− ρi(0))3)

= f (ρi(0))+ µ(0)[ρi(c)− ρi(0)]

+
1
2
∂µ

∂ρi

∣∣∣∣
0
[ρi(c)− ρi(0)]2 +O((ρi(c)− ρi(0))3)

= f (ρi(0))+ µ(0)[ρ′i(0)c+
1
2ρ
′′

i (0)c
2
]

+
1
2
∂µ

∂ρi

∣∣∣∣
0

[
ρ′i(0)c+

1
2
ρ′′i (0)c

2
]2

+O(c3)

= f (ρi(0))+ cµ(0)ρ′i(0)

+ c2 1
2

[
∂µ

∂ρi

∣∣∣∣
0
(ρ′i(0))

2
+ ρ′′i (0)µ(0)

]
+O(c3).

(50)

Likewise, using the formal thermodynamic identity
relating the pressure and chemical potential to the free energy,
both the liquid and vapour pressure can be expressed as the
corresponding expansions about their saturation values up to
second order:

pi(c) = µ(c)ρi(c)− f (ρi(c))

= [µ(0)+ µ′(0)c+ 1
2µ
′′(0)c2

]

× [ρi(0)+ ρ′i(0)c+
1
2ρ
′′

i (0)c
2
]

− f (ρi(0))− cµ(0)ρ′i(0)

− c2 1
2

[
∂µ

∂ρi

∣∣∣∣
0
(ρ′i(0))

2
+ ρ′′i (0)µ(0)

]
+O(c3)

= µ(0)ρi(0)− f (ρi(0))

+ c
[
µ(0)ρ′i(0)+ µ

′(0)ρi(0)− µ(0)ρ′i(0)
]

+ c2
[
µ′(0)ρ′i(0)+

1
2µ
′′(0)ρi(0)+ 1

2µ(0)ρ
′′

i (0)

−
1
2
∂µ

∂ρi

∣∣∣∣
0
(ρ′i(0))

2
−

1
2
ρ′′i (0)µ(0)

]
+O(c3)

= p(0)+ cµ′(0)ρi(0)

+ c2
[
µ′(0)ρ′i(0)+

1
2
µ′′(0)ρi(0)−

1
2
∂µ

∂ρi

∣∣∣∣
0
(ρ′i(0))

2
]

+ O(c3). (51)

The pressure difference 1p = pl − pv can thus be obtained in
compact form as

1p = cµ′1ρ + c2
[
µ′1ρ′ +

1
2
µ′′1ρ −

1
2
∂µ

∂ρl
ρ′2l

+
1
2
∂µ

∂ρv
ρ′2v

]
+O(c3), (52)

where the explicit dependence on the curvature has been
dropped bearing in mind that all of the terms that are retained
correspond to saturation and 1ρ = ρl − ρv. Expression (52)
can be compared to the combination of the Laplace and the
Tolman relations, cf equations (1) and (46), 1p = 2γC −
2γ δC2. On equating the first-order terms we obtain

µ′1ρ = 2γ, (53)

implying that µ′′ = −2γ /(1ρ)21ρ′. One should note that
equation (53) is consistent with the Laplace relation to first
order (i.e., for γ (c) = γ (0)), as can be seen by combining
equation (53) with the Gibbs–Duhem equation and integrating
the resulting differential equation from the planar limit to
some finite curvature.

An examination of the second-order terms leads to

2γ
1ρ

1ρ′ −
γ

1ρ
1ρ′ −

1
2
∂µ

∂ρl
ρ′

2
+

1
2
∂µ

∂ρv
ρ′

2
= −2γ δ, (54)
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and using equation (53) we find that

∂µ

∂ρi
=
µ′

ρ′i
=

2γ
1ρρ′i

,

finally arriving at

2γ
1ρ

1ρ′ −
γ

1ρ
1ρ′ −

γ

1ρ
1ρ′ = −2γ δ,

where the terms on the right-hand side are seen to cancel,
implying that δ = 0.

One therefore reaches the interesting conclusion that
despite the fact that Tolman’s theory is constructed
purely on thermodynamical grounds, a purely macroscopic
thermodynamic treatment yields a trivial solution with
a vanishing Tolman length: this implies that in the
thermodynamic limit, the Gibbs dividing surface corresponds
to the surface of tension. One can regard this apparent
paradox as a consequence of Tolman’s theory only providing
relations between thermodynamically observable quantities,
which although well defined at the macroscopic scale, their
differences are of microscopic dimensions, and so beyond
the scope of a thermodynamical treatment. It is interesting to
note that Wortis and Fisher [111] also find that δ = 0 in their
analysis of symmetrical interfaces with a Landau free energy
of the square-gradient form; the interfaces are symmetrical
by construction in our purely thermodynamic curvature
expansion. It is rather ironic, however, that a non-zero and
physically reasonable representation of the Tolman length is
obtained with the purely mechanical treatment developed in
section 2, despite the fact that the interface is assumed be a
sharp symmetrical step (see also the discussion in [156]). In
order to obtain any useful information from the Gibbs–Tolman
theory one therefore has to adopt a molecular (microscopic)
approach.

4. Statistical mechanical approach

Statistical mechanical approaches of inhomogeneous systems
are generally based on determining the response to changes
in the external conditions. In contrast with the approaches
discussed in sections 2 and 3, statistical mechanics allows for
a microscopic treatment where molecular-level detail can be
taken into account in a formal manner.

In this section we outline the common statistical mechan-
ical routes for inhomogeneous systems. These routes are not
independent and it is important to highlight the important
interrelationships. One approach (usually referred to as the
‘mechanical’ route) relies on the mechanical definition of the
surface tension as the stress transmitted across a strip of unit
width normal to an interface. This leads to an expression for
the surface tension in terms of components of the microscopic
stress tensor (negative of the pressure tensor), and can thus
be viewed as a microscopic-level description of the theory
of elasticity. A second approach, the so-called ‘virial’ route,
leads to an expression for the surface tension which is based
on the isochoric–isothermal change in free energy due to an
increase in the interfacial surface by unit area. A third, the
‘compressibility’ route, relies on a calculation of the change

in free energy arising from an increase in surface area caused
by density fluctuations. Finally, we present a ‘thermodynamic’
route which allows for the determination of the surface
tension directly from Gibbsian thermodynamics as presented
in section 3.1. With this disparate variety of methodologies
that are at our disposal for a statistical mechanical description
of interfacial systems it is therefore not altogether surprising
that there is little convergence in the findings for even the most
basic of properties.

4.1. Mechanical (pressure-tensor) route

Let us consider a spherical drop in a fixed volume V for a
system of particles interacting via a pairwise potential u(rij)

(although this assumption is not restrictive) and calculate the
instantaneous force on the drop. The force is related to the
flux of linear momentum density through the volume, FαV(t) =∫

V dr Jα(r, t), where Jα(r, t) can be expressed as

Jα(r, t) = ∇βσαβ(r, t) (55)

when no fields are considered. The common implicit
summation notation of Einstein is used, if not otherwise
stated. The stress tensor σαβ(r, t) incorporates the change in
momentum due to particles crossing the boundary of V ,

σ
αβ

k (r, t) = −
∑

i

pαi pβi
mi

δ(r− ri), (56)

where δ(r− ri) is the Dirac delta function, and the configura-
tional part of the stress induced by the intermolecular forces
is

∇
βσαβc (r, t) = − 1

2

∑
i

∑
j6=i

∇
α
i (rij)[δ(r− ri)− δ(r− rj)].

(57)

σ
αβ
c itself is not given uniquely, but in general can be

expressed as [109]

σαβc (r, t) =
1
2

∑
i

∑
j6=i

rαij
u′(rij)

rij

∫
Cij

dlβ δ(r− l̂), (58)

where u′(rij) = du (rij)/drij, for an arbitrary contour Cij
joining ri and rj.

Defining the pressure tensor as the negative of the time
average of the stress tensor

pαβ(r) = −〈σαβ(r, t)〉, (59)

and noting that the average of the left-hand side of
equation (55) is zero at equilibrium, one obtains the
differential conservation law

∇
βpαβ(r) = 0, (60)

in the absence of external fields. It should also be pointed
out that the substitution of equations (56) and (57) into
equation (60) and the use of the equipartition theorem leads
to the first equation of the BBGKY hierarchy [3].

From equation (57) it follows that the components of
the pressure tensor depend on the choice of the contour
joining the two interacting particles; hence there is an infinite
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number of ‘acceptable’ definitions for the pressure tensor.
This ambiguity can thus be attributed to specifying the portion
of the intermolecular forces that act across an elementary
area [94]. As has been discussed at length by Rowlinson [28],
the problem with the uniqueness of the definition of the
pressure tensor is just a particular case of the more
general problem with the local definition of any many-body
thermodynamic quantity; the only exception is the chemical
potential as neatly captured by the potential distribution
theorem [167]. Difficulties associated with the local definition
of thermodynamic quantities do not reveal themselves for
uniform systems, where any possible ambiguities average
to zero, but they become relevant for systems with broken
symmetry.

Before discussing the repercussions of the arbitrary
nature of the definition of the pressure tensor, it is worth
noting that the ambiguity may also be understood from a
different viewpoint. According to Noether’s theorem [168],
conservation laws are reflections of the continuous symmetry
of a given system. In our system we assume translational
and rotational symmetry of the intermolecular potential: the
former has been used in the derivation of equation (57) [109].
Thus, equation (60) may be viewed as a consequence of
the symmetry of the Hamiltonian of the system defining the
conserving current (through Stoke’s theorem). If there are
no further constraints set on pαβ , then a class of third-rank
tensor, the ‘superpotentials’ qαβδ , which are antisymmetric in
the last two indices, generate an infinite number of pressure
tensors differing by ∇δqαδβ , all satisfying the condition
embodied in equation (60). One can take advantage of the
non-uniqueness in the definition of pαβ to cast the tensor
in a symmetric form which allows for a definition of the
angular momentum. The non-uniqueness of the closely related
quantity, the energy–momentum tensor, is a well known issue
in field theory and, in particular, in general relativity, where
the search for the local components of the energy–momentum
tensor is sometimes referred to as ‘looking for the right answer
to the wrong question’ [169]4.

In spherical symmetry, the pressure tensor possesses two
independent components:

P(r) = Pn(r)erer + Pt(r)(eθeθ + eφeφ), (61)

where er, eθ , and eφ are the unit basis vectors, and Pn and
Pt are the normal and transverse components, respectively.
Upon substitution of equation (61) into the condition of a
mechanical stability, equation (60), one obtains [3]

d
dr
(riPn(r)] = ri−1

[(i− 2)Pn(r)+ 2Pt(r)], (62)

for all values of i. In particular, for i = 0

1p =
∫
∞

0
dr

2
R

[Pn(r)− Pt(r)] . (63)

The integration of equation (62) over the interface gives rise to
expressions for 1p and, using the Laplace relation, it allows
4 See the analogy between consequences of the equivalence principle
(leading to the difficulty of a local definition of the gravitational energy)
and the non-uniqueness of the distribution of the potential energy of two
interacting particles in an inhomogeneous system.

one to determine the ratio γs/Rs, though it would be preferable
to determine γs and Rs independently of each other; the latter
would provide information on the curvature dependence of
surface tension through the Tolman relation (47). To this
end, based on a consideration of the force acting on a flat
radial strip and the moment about the centre of the drop, the
following expressions can be obtained [3]:

γ (Rs)Rs =

∫
∞

0
[plv(r)− Pt(r)] r dr (64)

and

γ (Rs)R
2
s =

∫
∞

0
[plv(r)− Pt(r)] r2 dr, (65)

where plv(r) = pl2(Rs − r) + pv2(r − Rs), with 2

representing the Heaviside step function. In the planar limit
these expressions simplify to [93]

γ∞ =

∫
∞

−∞

[Pn(z)− Pt(z)] dz (66)

and

zs =
1
γ∞

∫
∞

−∞

[Pn(z)− Pt(z)]z dz, (67)

which are equations (4) and (5) repeated here for convenience.
The first explicit form of the local pressure tensor for a planar
liquid–vapour interface was proposed by Irving and Kirk-
wood [94], who also pointed out its inherent non-uniqueness.
As an appropriate contour joining the two interacting particles
they chose a straight line, and obtained the normal and
tangential components of the pressure tensor as

PIK
n (z) = kBTρ(z)−

1
2

∫
dr12

z2
12

r2
12

u′(r12)

×

∫ 1

0
dα ρ(2)(r12, z− αz12, z+ (1− α)z12)

(68)

and

PIK
t (z) = kBTρ(z)−

1
4

∫
dr12

x2
12 + y2

12

r2
12

u′(r12)

×

∫ 1

0
dα ρ(2)(r12, z− αz12, z+ (1− α)z12).

(69)

From equation (60) it immediately follows that the normal
component is constant for the planar interface Pn(z) = p.
Evidently, this condition has to be satisfied by any pressure
tensor regardless of the choice of contour. Harasima [98]
subsequently suggested a different, asymmetric path, dividing
the vector rij into parallel and normal components with
respect to the interface:

PH
t (z) = kBTρ(z)

−
1
4

∫
dr12

x2
12 + y2

12

r2
12

u′(r12)ρ
(2)(r12, z, z+ z12).

(70)
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Furthermore, Harasima [98] showed that the integral∫
znPt(z) dz (71)

is invariant to the choice of pressure tensor for n = 0, but not
for the higher moments.

If we return back to equation (62), it follows that for i= 2,

1p =
2

R2
s

∫
∞

0
drr [plv − Pt(r)] , (72)

i.e., the first moment of plv − Pt is invariant to the choice
of contour in the definition of Pt, but not the higher
moments [109]. Therefore, with a mechanical route based on
a microscopic definition of the pressure tensor one is unable
to determine zs or Rs uniquely and cannot therefore provide
a consistent way of obtaining the curvature dependence of
the surface tension. In general, γ (Rs) and δ determined from
equations (64) and (65) or equations (66) and (67) differ from
those obtained from the Gibbs–Tolman theory.

Equation (65) was originally derived by Buff [97], who
calculated the work accompanying a differential increase in
the area of a spherical segment, keeping the dividing surface
constant. In an open system, the associated work can be
identified with the change in the grand potential, so that
equation (65) may be re-written as

1� = −

∫
Pt(r) dr, (73)

according to which the transverse component of the pressure
tensor plays the role of the grand potential density. This
expression has been used frequently (e.g., in the LDA-DFT
studies of Lee et al [116]) since the calculation of Pt
allows for a determination of all of the thermodynamic and
interfacial properties, including the surface tension of the
drop. However, expression (73) involves the second moment
of Pt, and thus depends on the choice of pressure tensor.
A thermodynamically consistence grand potential requires
relation (73) to be invariant with respect to the choice of
pressure tensor, in essence corresponding to a tautological
definition of the pressure tensor such that its transverse
component corresponds to the negative of the grand potential
functional. Thus, the problem can be recast as the need of
finding the grand potential of a given molecular model. In
section 4.3 we show that it can be obtained more directly using
the compressibility route.

4.2. Virial route

A virial route within a statistical mechanical framework is
based on a generalization of the mechanical formulae for
the work needed to deform a system. This route provides
a definition of surface tension as the isochoric–isothermal
change in the free energy (or the grand potential in an open
system) during a formation of a unit area of surface. Note
that such a treatment is often denoted as a thermodynamic
definition of surface tension, since it stems from the
thermodynamic expression

γ =

(
∂F

∂A

)
NVT

. (74)

However, here we associate ‘thermodynamic’ with the route
based on a determination of the free energy of the entire
system, such as provided by DFT (cf section section 4.4).
On the other hand one should not confuse virial approaches
with those stemming from mechanical expressions based on
the forces acting between the particles (cf section 4.1).

The canonical partition function in the limit of zero
external field can be expressed as

Z(N,V,T) =
33N

N!

∫
5i dri exp

[
−

U({ri})

kBT

]
. (75)

If the system is perturbed by a transformation r′ = r+ξ(r), the
partition function of the deformed system acquires the form:

Z′(N,V,T) =
33N

N!

∫
5i dri det

(
∂r′αi

∂rβi

)
exp

[
−

U({r′i})
kBT

]
.

(76)

The associated change of free energy to first order in ξ is

(1F)NVT =

〈
−kBT

N∑
i

∇ · ξ(ri)+

N∑
i

ξ(ri)∇iU

〉
.

(77)

A link between the mechanical and virial route can
be made at first order, if we introduce the configurational
pressure tensor pαβc (r) = −〈σαβc (r, t)〉 from equation (57) and
substitute it into (77). After some algebra one obtains

1F = −
∫

dr pαβ(r)∇βuα(r), (78)

corresponding to the well known ‘stress–strain’ expression
from the theory of elasticity. Considering now a class of
deformations with zero divergence, so that the change of the
free energy at first order is associated solely with the change
of area [109], then (78) leads to equation (63).

MacLellan [95] used the virial route to derive the
following expression for the surface tension of the planar
vapour–liquid interface:

γ =
1
2

∫
∞

−∞

dz1

∫
dr12

(
x2

12
∂2u12

∂z2
12

− z2
12
∂2u12

∂x2
12

)
× ρ(2)(r1, r2), (79)

first derived by Kirkwood and Buff [93] from the mechanical
route, cf equation (66). Later, Lekner and Henderson [104]
reduced equation (79) to a simpler three-fold integral.
Notwithstanding the growing complexity of the corresponding
algebra, one can go beyond first order in ξ (cf [44],
where the so-called test-area method for the planar interface
was developed; within this treatment one can in principle
determine terms of arbitrary order in the interfacial free
energy). Recently, a free-energy expansion due to a
perturbative deformation has been applied to spherical liquid
drops including the higher-order terms [72], where the change
in the free energy can be expressed as
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1F = 〈1U〉 −
1

2kBT
[〈1U2

〉 − 〈1U〉2]

+
1

6(kBT)2
[〈1U3

〉 − 3〈1U2
〉〈1U + 2〈1U3

〉〉]

+ O(1U4). (80)

The first term in the average of the deformation energy has
been shown [72, 104] to be equivalent to that obtained from
the mechanical route (cf the Kirkwood–Buff expression [93]).
The perturbation contributions determined numerically by
molecular dynamics simulation of Lennard-Jones fluids
revealed that the second-order terms of the free-energy
expansion do not contribute in any appreciable way in the
case of the planar vapour–liquid interface. This supports
the consistency between the mechanical and virial routes
to surface tension for a planar geometry. It turns out,
however, that the second-order term in equation (80) becomes
comparable in magnitude (but of opposite sign) to the
leading-order term for small drops [72]. This is a clear
consequence of the enhanced effect of fluctuations in
nanoscale drops when compared to the planar vapour–liquid
interface. Attempts to describe the interfacial behaviour of
a microscopic drop by means of the mechanical route or
first-order virial expressions are therefore clearly invalidated.
A thorough analysis of the specific role of the energetic
fluctuations on the thermodynamic properties of small drops
and bubbles will be the subject of future work.

4.3. Compressibility route

The virial route to surface tension leads to a statistical
mechanical expression involving the gradient of the inter-
molecular potential and the pair correlation function. As
shown in section 4.2, the standard stress–strain formulae
follow from the first-order change in free energy due to a
deformation of the area and lead to the mechanical expression
of Kirkwood and Buff [93]. Triezenberg and Zwanzig [102]
obtained an alternative result in terms of the one-body
density and the direct correlation function. This expression
can be derived formally as a functional Taylor expansion in
the intrinsic free energy up to second order in the density
distortion due to an external field [102]:

1F =
∫

dr δρ(r)
δF
δρ(r)

+
1
2

∫
dr
∫

dr′ δρ(r)δρ(r′)
δ2 F

δρ(r)δρ(r′)
+ · · ·

=

∫
dr δρ(r)[µ− ϕ(r)] +

kT

2

∫
dr

×

∫
dr′δρ(r)δρ(r′)

[
δ(r− r′)
ρ(r)

− c(r, r′)
]
+ · · · ,

(81)

where F represents the intrinsic free-energy functional. From
equation (81) the ‘compressibility’ form of the surface tension
for a planar vapour–liquid interface can be obtained as [102]

γ = 1
4 kT

∫
dz1 ρ

′(z1)

∫
dr2 ρ

′(z2)(r
2
12 − z2

12)c(r12, z1, z2),

(82)

where ρ′(z) = dρ/dz denotes the gradient of the density
profile (which characterizes the compressibility of the
system). Schofield [106] has shown that this expression
is equivalent to the one of Kirkwood and Buff [93], cf
equation (66).

Hemingway et al [108] extended the result to spherical
interfaces, where one finds

γ =
πkT

2

∫
∞

0
dr1

∫
∞

0
dr2ρ

′(r1)ρ
′(r2)

×

∫
∞

|r1−r2|

dr12r12[r
2
12 − (r1 − r2)

2
]c(r12, r1, r2).

(83)

Expression (83) has been assessed for the penetrable-
sphere model [3, 108], where an approximation for c(r1, r2)

is available at the mean-field level, and a consistency between
the compressibility route and the thermodynamic expressions
for γ and δ (cf equations (1), (46), and (47)) was found. In
the zero-temperature limit the model is solvable exactly and
in this case the value of the Tolman length is δ = −σ/2.

A connection with the mechanical route can again be
made by expressing 1ρ(r) in terms of the strain field and by
introducing the pressure tensor. Schofield and Henderson [5]
showed that equation (81) reduces to

1F = −
∫

dr pαβ [∇βξ(r)α − 1
2∇

β(ξγ (r)∇γ ξα(r))]

−
1
2

∫
dr1pαβ∇βξα(r)+O(ξ3). (84)

From this expression one can see that the compressibility
route captures terms up to second order in ξ, which can
be interpreted as capillary wave fluctuations, whereas in
the first-order virial expression, cf equation (78), these
fluctuations are absent.

4.4. Thermodynamic route—DFT

As we have seen in section 4.3, an expansion of the intrinsic
free-energy functional up to second order gives rise to an
expression for the interfacial tension in terms of the direct
correlation function. Unfortunately, good approximations for
c(2)(r1, r2) are generally not forthcoming, and this puts limits
on the applicability of the method. On the other hand, accurate
and well tested approximations for the full free-energy
functional are now available that enable one to determine
the thermodynamic properties of the entire (inhomogeneous)
system. Following Gibbsian thermodynamics as described
in section 3.1, the surface tension can be obtained from
equation (33), but now expressed specifically in terms of the
surface of tension Rs:

γ (Rs) =
�+ plVl + pvVv

4πR2
s

. (85)

Here, pl and pv are the scalar pressures of two hypothetical
bulk phases corresponding to a bulk liquid and a metastable
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supersaturated vapour, characterized by the temperature T and
chemical potential µ; the departure of the chemical potential
from its saturation value is denoted by δµ ≡ µ − µs > 0.
Expression (85) only provides a formal relation between
γ (Rs) and Rs, and in order to obtain a complete solution of the
curvature dependence of the surface tension an independent
route to either is required; a knowledge of Rs would enable
the determination of the Tolman length. Separate expressions
follow directly from equation (85) when expressed in terms of
a general dividing surface radius R, such that dγ (R)

dR |R=Rs = 0,
which implies

Rs =

(
31�
2π1p

)1/3

(86)

and

γ (Rs) =

(
31�(1p)2

16π

)1/3

, (87)

where again 1p = pl − pv, and 1� = � + pvV is the work
associated with the creation of the liquid drop.

A DFT approach is based on the construction of a
functional of the one-body density, which exhibits a minimum
at equilibrium that can be associated with the thermodynamic
grand potential [25]. In the absence of an external field, the
grand potential functional is of the form

�[ρ(r);µ] = F[ρ(r)] − µ
∫

dr ρ(r). (88)

The intrinsic free-energy functional F[ρ(r)] can be written as
a sum of the ideal and excess F ex contributions as

F[ρ(r)] = kBT
∫

dr ρ(r)[log33ρ(r)− 1] + F ex
[ρ(r)],

(89)

where 3 is the de Broglie wavelength. Variations of F ex with
respect to density distribution provide correlation functions of
arbitrary order.

For a thermodynamically stable state the second
variation δ�

δρ(r)δρ(r′) must be positive, so that the solution of
equation (88) is stable with respect to small perturbations.
For a macroscopic two-phase system this scenario is realized
only for a planar (δµ = 0) interface; here, however, we are
concerned with a drop in a thermodynamically metastable
state (δµ > 0), which is unstable with respect to a uniform
liquid and thus δ�

δρ(r)δρ(r′) < 0. As a consequence, a drop
placed in an open system with a radius which is smaller than
the so-called critical radius will evaporate, while larger drops
will grow in an unbounded manner, resulting in the complete
condensation of the system. In order to stabilize the drop, we
consider a closed system, characterized by a finite number
N of particles, with the free energy as the thermodynamic
potential. As an alternative one could consider a weak
spherically symmetric external field φext(r), eventually taking
the limit φext(r)→ 0. The constraint of fixing the total number
of particles prevents the unlimited growth of the drop as
this would lead to a depletion in the vapour phase and thus
to a decrease in the undersaturation. In our current work,

the attractive part of the intrinsic free-energy functional is
approximated as a perturbation from a hard-sphere reference
fluid at the mean-field level:

F[ρ(r)] = kBT
∫

dr ρ(r)[log33ρ(r)− 1] + Fhs[ρ(r)]

+
1
2

∫
dr
∫

dr′ ρ(r)ρ(r′)uatt(|r− r′|). (90)

Our model thus consists of a hard-sphere repulsive core
giving rise to Fhs in equation (90) and an attractive
term represented with a truncated Lennard-Jones potential
according to Weeks–Chandler–Andersen [170] perturbation
theory:

uatt(r) =


−ε r ≤ rmin,

4ε
[(σ

r

)12
−

(σ
r

)6
]

rmin < r < rc

0 r > rc,

(91)

with rmin = 21/6σ , and rc = 2.5σ is taken as the cutoff
distance in our calculations.

For the hard-sphere contribution to the free-energy
functional we employ the approximation proposed by
Rosenfeld [162] in his fundamental measure theory:

Fhs[ρ(r)] = kBT
∫
8({nα}), (92)

where the free-energy density 8({nα}) can be expressed in
terms of weighted densities defined as

nα(r) =
∫

dr′ρ(r)′wα(r− r′) α = {0, 1, 2, 3, v1, v2}.

(93)

Here, w3(r)=2(r̃−r), w2(r)= δ(r̃−r), w1(r)= w2(r)/4π r̃,
w0(r) = w2(r)/4π r̃2, wv2(r) = r

r δ(r̃ − r), and wv1(r) =
wv2(r)/4π r̃; the hard-sphere radius is set to r̃ = σ/2. An FMT
treatment is deemed necessary for small drops because of the
large density oscillations, which can be present particularly
in the central liquid region at the lower temperatures,
corresponding to higher density states.

The general expressions given by equation (93) can be
simplified significantly for some particular geometries. In the
case of a perfectly spherical drop, the density varies only in
the radial dimension r, so that the calculation of the integrals
in equation (93) reduces to a problem of one-dimensional
quadrature:

n3(r) =
π

r

∫ r+r̃

|r−r̃|
dr′ r′[r̃2

− (r − r′)2]ρ(r′),

n2(r) =
2π r̃

r

∫ r+r̃

r−r̃
dr′ r′ρ(r′),

nz
v2(r) =

π

r2

∫ r+r̃

|r−r̃|
dr′ r′(r̃2

+ r2
− r′2)ρ(r′)

nx
v2(r) = ny

v2(r) = 0.

(94)

The equilibrium density profile is found by minimizing
the free-energy functional, equation (89), which leads to the
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following Euler–Lagrange equation:

kBT log33ρ(r)+
δFhs[ρ(r)]
δρ(r)

+

∫
dr′ρr′uatt(|r− r′|) = 0,

(95)

subject to the constraint∫
dr ρ(r) = N. (96)

Equations (95) and (96) can be solved self-consistently from

ρ(r) =
N exp[c(1)(r)]

4π
∫ rd

0 dr r2 exp[c(1)(r)]
, (97)

where is c(1)(r) = − δFex[ρ(r)]/kBT
δρ(r) is the single-particle direct

correlation function. The latter can be separated into repulsive
and attractive contributions as

c(1)(r) =
∑
α

c(1)α (r)+ c(1)att (r), (98)

where c(1)α (r) = ∂8
∂nα
⊗wα(r) has the same form as nα(r) with

ρ(r) replaced by ∂8
∂nα

, and

c(1)att (r > rc) = −
2π
r

∫ r+rc

r−rc

dr′ r′ρ(r′)ξ(r, r′), (99)

c(1)att (r < rc) = −
2π
r

∫ rc−r

0
dr′ ρ(r′)r′ξ̃ (r, r′)

−
2π
r

∫ rc+r

rc−r
dr′ r′ρ(r′)ξ(r, r′), (100)

with ξ(r, r′) =
∫ rc
|r−r′| dr′′ r′′uatt(r′′)/kBT and ξ̃ (r, r′) =∫ r+r′

|r−r′| dr′′ r′′uatt(r′′).
In section 5 we present the findings of calculations with

our non-local FMT–DFT for liquid drops of varying size.
A detailed analysis of the density profiles, the coexistence
densities of the vapour and liquid regions, the curvature
dependence of the vapour–liquid tension, and the Tolman
length is undertaken, making appropriate comparisons with
existing work wherever possible.

5. Numerical results

In this section we present an analysis of the interfacial
properties of small liquid drops surrounded by vapour
for a one-component system. If not stated otherwise, the
description is obtained with the FMT–DFT described in
section 4.4 in the canonical ensemble for a Lennard-Jones
12-6 WCA potential truncated at rc = 2.5σ (cf equation
(91)) by solving equation (97) using a standard Picard
iteration method. In order to represent the non-local
functional for the hard-sphere reference potential, a modified
version of Rosenfeld’s FMT based on the highly accurate
equation of state for hard-sphere fluid mixtures proposed by
Boublı́k [172] is used (see [173] for details).

All the quantities are expressed in reduced units: r∗ =
r/σ , R∗ = R/σ , ρ∗ = ρσ 3, T∗ = kBT/ε, and γ ∗ = γ σ 2/ε,
where σ and ε are the size and energy parameters of the
Lennard-Jones potential.

5.1. Structure of a microscopic drop

In figure 2 we present density profiles obtained from our non-
local mean-field DFT for three temperatures T∗ = 0.7,T∗ =
1, and T∗ = 1.2 (corresponding to reduced temperatures: Tr =

T∗/T∗c = 0.526, 0.752, and 0.902, respectively). The latter
temperature is already rather close to the critical point of the
bulk vapour–liquid coexistence, T∗c = 1.33. One can highlight
several general characteristic features of the structure of a
liquid drop from these profiles. At a temperature close to the
triple point, which in this case occurs at T∗t ∼ 0.6, the structure
inside the drops exhibits strong undamped oscillations which
extend from the surface to the centre of the dense liquid.
This type of highly correlated structure in the dense interior
of the drop cannot be accurately described with a traditional
square-gradient treatment (e.g., the work of Falls et al [107],
Guermeur et al [115], and the more recent papers [130, 132,
138, 141]) or local DFTs (e.g., the studies by Lee et al [116],
Oxtoby and co-workers [118, 123, 131], Hadjiagapiou [129],
and Koga et al [136]). Note that it is the non-local character
of our density functional, (cf equation (92)), which enables
one to capture this type of fine structure. These oscillations
can also be observed to a lesser degree on the liquid side
of a planar vapour–liquid interface [175], but in the case of
a spherical interface both the amplitude and range of the
oscillation is significantly enhanced. It is clear that there is
a strong inhomogeneity in the density of small drops at low
temperatures, and any assumption of a uniform liquid region
would evidently be unrealistic. In particular, one should note
that the density at the centre of the drop depends on the
amplitude and wavenumber of the almost periodic density
profile at r = 0, and on the size of the drop. At the intermediate
temperature of T∗ = 1, the oscillations almost vanish and the
density profiles become monotonically decaying functions.
This means that in the temperature interval T∗FW ∈ (0.7; 1)
there is a crossover between an oscillatory and monotonically
decaying density profile corresponding to a Fisher–Widom
line [174, 175]; the construction of the Fisher–Widom (FW)
diagram is beyond the scope of the present paper. Another
salient feature is that the density ρ(0) in the centre of the
drop remains somewhat higher than that of the saturated liquid
density and is nearly independent of the size of the drop up to
some value of the drop radius where a sudden decrease in ρ(0)
occurs. For the highest value of the temperature considered
here, we observe a very diffuse interface between the drop
and the vapour; as a consequence any approximation based on
the assumption of a sharp interface would presumably lead to
quantitatively unreliable results as one approaches the critical
point. Nonetheless, we stress that a Gibbsian thermodynamic
treatment involving the mapping of the system into two
uniform regions separated by a well-defined dividing surface
is free of any ambiguity and thus fully applicable regardless
of the drop size. The density in the centre of the drop is
clearly rather sensitive to the size of the drop; for a drop of
intermediate size corresponding to the system with N = 800
at T∗ = 1.2 the density at the centre of the drop is essentially
the same as that of bulk system, so that the vapour–liquid
coexistence crosses the bulk binodal curve at this point.
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Figure 2. Density profiles of liquid drops of Lennard-Jones fluid as
predicted with our non-local canonical mean-field FMT–DFT (cf
section 4.4) for three temperatures and system sizes. The system
size is controlled by fixing the number of particles inside a spherical
container of fixed radius d = 10σ . The horizontal lines denote
saturation densities of the bulk vapour and liquid phases for the
corresponding temperature.

In order to shed further insight into the structure of the
liquid drop, we depict in figure 3 the dependence of the
liquid density on the drop radius, taken as that corresponding

Figure 3. The density in the centre of the liquid Lennard-Jones
drop ρ(0) and the liquid density of the corresponding hypothetical
bulk phase ρl(T, µ) as a function of the drop radius obtained with
our canonical mean-field FMT–DFT (cf section 4.4). The LJ system
is at a temperature of T∗ = 1.

to the Gibbs dividing surface Re. Two definitions are
commonly considered to represent the liquid density of a
microscopic drop. In one, the density at the centre of the
drop ρ(0) is frequently interpreted as the liquid density in
computer simulation studies. In the other common choice,
a thermodynamic definition of the liquid density ρl(T, µ) is
taken, i.e., one corresponding to that of a hypothetical bulk
phase with the same chemical potential and temperature as
the system containing a drop. For relatively large radii, the
two definitions of the liquid density practically coincide and
exhibit a monotonic curvature dependence in line with that
predicted from the Laplace equation (see figure 3). However,
below a drop radius of R∗e ∼ 10σ a striking difference between
the curvature dependence exhibited by these two densities
becomes apparent. While ρl(T, µ) remains monotonic, ρ(0)
exhibits a maximum and its value eventually drops below the
bulk saturation density. The presence of the maximum reflects
the non-monotonic curvature dependence of the surface
tension, as will be shown in the subsequent discussion. Two
opposing effects thus determine ρ(0) at small R: the linear
increase of the capillary pressure with curvature due to the
factor 1/R in the Laplace equation; and the decrease of the
surface tension for small R (the latter is a surface contribution
∼ R2 that becomes dominant for sufficiently small R). On the
other hand, the thermodynamic definition of the liquid density
is merely controlled by the value of the chemical potential,
i.e., by the measure of the extent of supersaturation. Following
an isotherm from the binodal to the spinodal (the limit of
thermodynamic stability), the critical radius of the metastable
drop decreases while the corresponding liquid density must
increase.

The difference between the thermodynamic definition ρl
and ρ(0) is also apparent from an inspection of figure 4, where
we compare the vapour–liquid phase coexistence behaviour
for systems of different size, with stabilized drop radii ranging
from 3σ to 26σ . The vapour branches of the finite systems
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are shifted towards higher densities in all cases, in a manner
commensurate with the corresponding curvature of the drop
(cf the upper panel of figure 4). Evidently, the vapour pressure
and thus the density of a drop must be larger than the
saturation pressure, and the difference is described by the
Kelvin relation (6). If the density of the drop is defined
thermodynamically as in the lower panel of the figure 4, there
is a similar shift of the whole of the coexistence envelope
to the right. In all cases the vapour is supersaturated so
that δµ > 0 and as a consequence the density of the liquid
phase must also be higher than the saturation value. When
the density of a liquid drop is associated with the value ρ(0)
of the density profile at the centre of the drop, the scenario
is quite different. For a sufficiently small drop, ρ(0) may
decrease below the saturated liquid density, as has already
been observed in figure 2. For the smallest system (N = 300)
shown in the upper panel of figure 4, the liquid branch crosses
the binodal at T∗ ∼ 0.95, since at these conditions the drop is
sufficiently small. We should note that the ‘critical point’ of
the drop (if one is able to define the instability of the drop in
this way) is always lower than that of the bulk fluid.

5.2. Surface tension and Tolman length

5.2.1. Surface tension. One of the most advanta-
geous features of DFT is that once the solution of the
Euler–Lagrange equation, equation (97), for the density
profile which minimizes the grand potential � (or free
energy F) is known, the surface tension of the drop can be
obtained directly from equation (33) (or (32)), since � (or
F) is a direct output of the theory. In this way, a direct
thermodynamic route to the determination of the curvature
dependence of the surface tension and Tolman length can be
followed, without the necessity to determine ill-defined local
thermodynamic functions. We should note however that the
use of a local thermodynamic route within a DFT treatment
has been commonplace (e.g., see [116, 154]). Alternatively,
a knowledge of the equilibrium density profile allows one
to calculate the Tolman length by making use of the ratio
γ (R)/γ∞ according to the Tolman relation, equation (46).

In figure 5 we compare the description with our canonical
mean-field FMT–DFT (cf section 4.4) for the curvature
dependence of surface tension with the recent simulation
data obtained from canonical [72] and grand canonical [68]
simulation. The most important observation that can be
gleaned from figure 5 is that, according to both our DFT
and the simulation data, the surface tension of the LJ drop
is characterized by a maximum between R ∼ 5σ and 10σ .
This finding is clearly inconsistent with studies reporting a
monotonic curvature dependence of the surface tension. In
particular, one should single out any mechanical treatment
based on the computation of the pressure-tensor components
(e.g., equation (64)), including the majority of the simulation
studies which follow the mechanical approach originally
presented by Thompson et al [50]. As can be seen in
figure 5, the surface tension obtained by Vrabec et al [63]
from a very thorough molecular dynamics study following
the mechanical route is in contradiction with the latest

Figure 4. The vapour–liquid coexistence phase diagrams in the
density–temperature plane obtained for Lennard-Jones drops with
our canonical mean-field FMT–DFT (cf section 4.4). In the upper
panel, the liquid density is defined as the density ρ(0) in the centre
of the drop, while in the lower panel, the liquid density ρ(T, µ) is
determined according to the theory Gibbs for a corresponding
hypothetical bulk phase. The phase behaviour of three finite systems
is complemented with that for the essentially infinite planar
vapour–liquid interface. The reduced radius of the container is
denoted as d?.

simulation data (and our DFT prediction): not only is the
curvature dependence of the tension seen to be monotonic
throughout, but the numerical values are up to 25% lower
than the more recent calculations following a thermodynamic
route [68, 72, 73]. As was mentioned in section 1, predictions
with square-gradient and density functional theories have
suggested both monotonic (e.g., [107, 116, 154]) and
non-monotonic (e.g., [115, 136, 149]) curvature dependences
for the surface tension. It is however surprising to note that
the most sophisticated study to date [154] (FMT–DFT that
goes beyond a mean-field approximation for the attractive
contribution) suggests a monotonic dependence of the surface
tension with curvature; this is inconsistent with our DFT
results and the latest simulation studies (most likely due
to the use of classical nucleation theory as a connection
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Figure 5. The deviation of surface tension γ (R) from the planar
limit γ∞ for Lennard-Jones drops as a function of the drop radius
corresponding to the Gibbs dividing surface. The prediction of our
canonical mean-field FMT–DFT following the thermodynamic
route (continuous curve) are compared with the simulation results:
test-area deformations in the canonical ensemble, Sampayo
et al [72] (circles); grand canonical ensemble, Schrader et al [68]
(dashed); molecular dynamics simulation following the mechanical
route, Vrabec et al [63] (squares). The LJ system is at a temperature
of T∗ = 0.8.

to the surface tension which is known to break down for
small drops [118]). The fact that γ (R) > γ∞ over the whole
region of R beyond the maximum suggests a negative Tolman
length, an observation which is again in conflict with the
predictions from a mechanical treatment. On the other hand,
for drop radii below the maximum in the surface tension,
the surface tension steeply decreases below its planar limit.
It can thus be supposed that the radius corresponding to
the maximum of γ (R) sets a limit to the validity of the
Tolman relation, which, in view of the definition of δ∞, leads
to a monotonic behaviour for the curvature dependence of
γ (R). This can be assessed with a direct calculation of the
Tolman length using equation (47) with the equimolar surface
(obtained directly from the density profile) and the surface
of tension (cf equation (86)). A comparison of the curvature
dependence of the surface tension as obtained directly from
the Gibbs–Tolman theory (cf equation (46)) is made in figure 6
for Lennard-Jones drops at a temperature of T∗ = 1. It
is seen that the difference between the two approaches is
nearly indistinguishable beyond R > 10σ , i.e., almost over the
whole range of radii where γ (R) is monotonic. For smaller
drops with radii below the maximum, the descriptions with
the full DFT and Gibbs–Tolman approach start to deviate
dramatically, with an increase in the respective absolute slopes
but in opposite directions. On the one hand, this supports the
consistency of a thermodynamic treatment for large drops;
on the other, such an analysis highlights the limit of validity
of the Gibbs–Tolman treatment, which is a macroscopic
thermodynamic approach. It is important to reiterate that our
DFT predictions are in a qualitative disagreement with the
results based on a mechanical approach (i.e., one relying
on the pressure tensor), where a monotonically decreasing
dependence of the surface tension with drop size is obtained
(the latter corresponding to a positive Tolman length).

Figure 6. The surface tension of Lennard-Jones drops as a function
of drop radius corresponding to the surface of tension. The
continuous curve denotes the results from a direct determination of
the surface tension with our canonical mean-field FMT–DFT (see
section 4.4), while the dotted curve is obtained from the Tolman
equation (cf equation (46)). The planar value of the surface tension
for planar vapour–liquid interface is indicated by the dashed line.
The LJ system is at a temperature of T∗ = 1.0.

A consequence of the non-monotonic behaviour obtained
for the surface tension is that the assumptions leading
to the derivation of the Tolman equation must fail when
the radius of the drop is of order of the range of the
intermolecular potential. One possible route beyond the
Tolman equation is to extend the curvature correction to
the planar surface tension by including higher-order terms.
Alternatively, one can relax the assumption of a constant
value of δ in the Tolman equation [136, 138, 150] and
determine the curvature dependent δ(R) from equation (40).
The curvature dependence of δ(R) obtained from our
FMT–DFT (equations (46) and (86)) is displayed in figure 7
for truncated Lennard-Jones drops of various size at T∗ =
0.8, for which the Tolman length is determined to be δ =
limR→∞δ(R) = −0.0708σ ; this value is completely in line
with the FMT–DFT estimates of Block et al [72]. We observe
a steep increase of δ(R) at small values of R, and an analysis of
the data suggests a dependence of the form δ(R) = δ∞+a/R2,
which indicates that δ(R) ' δ∞ for R > 10σ . The lack of a
term in 1/R for δ(R) supports the view of Rowlinson [128]
that terms in 1/R2 should not contribute to the surface tension
of a fluid as they do not give rise to a restoring force on
deforming the interface; the term in 1/R3 (corresponding to
terms in 1/R2 for δ) would of course contribute to the surface
tension. One should note that terms in ln R/R2 for the surface
tension have been attributed to the long-ranged potentials in
the studies of wetting on spherical substrates [135, 145, 155];
such a logarithmic dependence in γ (R) has not been identified
from our FMT–DFT calculations for the free drops of particles
interacting via the truncated LJ potential. When our simple
quadratic curvature dependence for δ(R) is introduced in
equation (8) and integrated, the resulting surface tension is
in remarkably good agreement with the values obtained from
our FMT–DFT with the direct thermodynamic route over the
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Figure 7. Upper panel: the curvature dependence of
δ(R) = Re − Rs of Lennard-Jones drops obtained from our
canonical mean-field FMT–DFT with equation (40). Lower panel:
surface tension as a function of radius Re corresponding to the
Gibbs dividing surface. The symbols represent calculations with the
Gibbs theory (cf equation (85)), the dashed line to the Tolman
equation (46) and the full curve to the modified Tolman equation
with δ∗(R∗) = δ∗ + a/R∗2 and a = 1.527 33. The value of the
planar limit of the surface tension is denoted by the dotted line. The
LJ system is at a temperature of T∗ = 0.8.

whole range of radii. This numerical analysis should not,
however, be taken as an extension of the original theory of
Tolman, as one cannot establish the physical relevance of the
correction term and, in particular, one is unable to predict the
value of the constant a. Nevertheless, empirical approaches of
this type could be useful in, e.g., representing the curvature
dependent surface tension for use in extended nucleation
theories.

Throughout our computations we have considered a
molecular model with Lennard-Jones attractive interactions
truncated at a distance r∗c = 2.5 from the centre of the
particle. One may ask how the range of the attractive
forces affects the interfacial properties of small drops of
liquid. In figure 8 we plot the curvature dependence of the
surface tension for drops of LJ particles with different cutoff
distances that are frequently used in simulation studies. The
corresponding planar values of the bulk vapour–liquid surface
tension increase with rc: a larger cutoff implies stronger

Figure 8. Upper panel: the curvature dependence of the surface
tension of liquid drops obtained with our canonical mean-field
FMT–DFT for Lennard-Jones particles with different values of the
cutoff of the potential. The arrows indicate where γ (R) = γ∞. The
values for the planar limit of the surface tension are denoted by the
dotted lines. Lower panel: the values of the planar vapour–liquid
surface tension γ∞ corresponding to LJ systems with different
cutoffs. The state corresponds to a temperature of T∗ = 0.8 in all
cases.

cohesion and thus a higher value of the surface tension,
as is also apparent from figure 8. Qualitatively, however,
the non-monotonic behaviour of the surface tension with
curvature remains unchanged. It is perhaps just worth noting,
however, that the radius below which γ (R) < γ∞ (indicated
by the arrows in figure 8) increases with increasing rc. We
recall that such a crossover occurs when the surface effects
begin to dominate the forces in the interior volume, i.e., when
no ‘bulk’ fluid region can be assigned inside the drop. In this
case even particles in the centre of the drop ‘feel’ the interface,
a scenario that becomes increasingly true for longer ranged
interactions.

For completeness, we now undertake a brief final analysis
of a bubble of gas enclosed by a liquid reservoir, where
δµ < 0, which is the antipodal system to a drop of liquid.
The mean-field FMT–DFT approach described in section 4.4
is again employed to determine the density profiles of the
bubble and the interfacial properties such as the curvature
dependence of the surface tension and the Tolman length.
This is equivalent to the recent DFT study reported by Block

23



J. Phys.: Condens. Matter 24 (2012) 464121 Topical Review

Figure 9. Comparison of the curvature dependence of the surface
tension of a drop and a bubble obtained with our canonical
mean-field FMT–DFT. The value of the planar limit of the surface
tension is denoted by the dashed line. The LJ system is at a
temperature of T∗ = 1.0 in both cases.

et al [73]. As shown in figure 9, the curvature dependence
of the surface tension for a bubble is of a qualitatively
different form to that of a liquid drop, since in this case the
dependence is monotonic, such that γ (R) < γ∞ for all R.
Taking into account that the curvature is now negative R < 0
for a bubble, this is consistent with a negative value of the
Tolman length as for the liquid drop; however, in the case
of bubbles δ(R) remains negative throughout. This general
result is supported by the findings of the recent simulation by
Block et al [73]. Nevertheless, in other quite recent simulation
studies employing a mechanical route to analyse the data it
has been reported that the surface tension increases slightly
as the radius decreases [89], or that no curvature effects for
bubbles can be detected [85]. We believe that this qualitative
discrepancy is again due to the inadequacy of a mechanical
route to the surface tension.

6. Summary and conclusion

The purpose of our paper has been to give a comprehensive
and up-to-date review of the different approaches to
the description of structure and interfacial properties of
microscopic liquid drops and gas bubbles, complemented
with novel mechanical and thermodynamic developments, a
thorough analysis, and detailed calculations. This includes a
state-of-the-art description with a non-local density functional
theory, which, in our opinion, is the most direct and rigorous
way to understanding and describing the properties of
nanoscale drops and bubbles of arbitrary size as the approach
enables one to represent the marked inhomogeneities of the
system. Following a historical introduction, we started our
analysis with a purely mechanical approach, treating the
fluid as a static ensemble of interacting particles distributed
uniformly within the liquid phase (of the drop), while the
density of the surrounding gas is neglected; the interface is
thus perfectly sharp in this case (often referred to as the

Fowler approximation [163]). Such an approach is clearly
rather crude, but, as we show, a simple representation can
be developed for the vapour–liquid surface tension as the
work per unit area needed to separate the liquid drop from
the rest of the fluid. In this type of macroscopic mechanical
description the surface tension of the spherical interface turns
out to be proportional to the third moment of the pair potential
energy; the expression is consistent with that obtained for
the planar limit by Laplace and Rayleigh in the nineteenth
century (cf [3]). In addition we develop a novel analytical
expression for the Tolman length, as the ratio of the fourth and
third moments of the pair potential; the latter measure which
characterizes the curvature dependence of the interfacial free
energy is found to be negative from this static mechanical
perspective, with a magnitude for typical intermolecular
models of simple fluids of about a half of the molecular
size. We then turned our attention to a purely (macroscopic)
thermodynamic approach that sacrifices the molecular view
but now incorporates the concept of entropy. Macroscopic
thermodynamic approaches, as originally introduced by Gibbs
and then elaborated by Tolman and others, lead to a
mathematically rigorous description of a liquid drop but, as
shown in the last part of section 3, cannot in themselves be
used to determine the curvature dependence of the surface
tension, either directly (which would require a knowledge of
the free-energy density of the entire inhomogeneous system),
or from the determination of the surface of tension. The latter
is found to coincide with the Gibbs dividing surface so that the
surface tension takes on its value in the planar limit γ (R) =
γ∞ for any R, which would correspond to a Tolman length
of zero (δ = 0), rendering the Tolman theory inapplicable.
In order to make progress, the microscopic methods of the
statistical mechanics are clearly required.

There are essentially two ways of defining the surface
tension within a statistical mechanical treatment. One
approach relies on a mechanical definition of the surface
tension as the stress transmitted across a strip of unit length
normal to the interface. In this way, a connection between
the macroscopic theory of elasticity and the components
of a microscopic pressure tensor is made to determine
the surface tension. Beyond the planar limit, however, one
encounters conceptual difficulties with this approach, due to
arbitrary nature of the definition of the pressure tensor. This
lack of uniqueness was already appreciated by Irving and
Kirkwood [94] and by Harasima [98], and later analysed in
a detail for curved interfaces by Schofield and Henderson [5],
who attributed this arbitrariness to the fundamental problem
of the local definition of thermodynamic functions depending
on two- or higher-body interactions (with the exception
of the chemical potential). Surprisingly, these warnings are
still often ignored and a mechanical treatment relying on
a calculation of the surface tension via the pressure tensor
is frequently adopted. There are two main reasons for the
ill-advised popularity of a mechanical treatment: first of all,
any problems related to the non-unique definition of the
microscopic pressure tensor are apparent only beyond the
planar limit, and secondly, the use of this route is tempting in
simulation studies as one requires a knowledge of the forces
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between two interacting particles in molecular dynamics
simulation, and thus the components of the pressure tensor
can be obtained easily.

The alternative route is based on the thermodynamic
definition of the surface tension as the isochoric–isothermal
change in the free energy per unit area due to the deformation
of the interface. Within this approach one only deals with
transformations of the partition function, so that any problems
related with the pressure tensor inherent in the mechanical
route can be avoided. Nevertheless, a consideration of
first-order changes in surface area leads to an expression
involving the gradient of the potential energy and the
correlation function, which for a pairwise interaction gives
an identical ‘stress–strain’ relation to that obtained with the
mechanical route. By incorporating an auxiliary external field
(the magnitude of which is eventually taken to zero) the
second-order changes in surface area can be analysed in two
ways: as a calculation of the magnitude of the external field
needed to bend the surface; and as the change in the free
energy accompanying an increase in surface area caused by
capillary-wave density fluctuations. Both methods lead to
identical formulae involving the one-body density distribution
function and the direct correlation function. These expressions
are not exact, but sound arguments provide support for their
adequacy up to first order in curvature and, in particular,
its consistency with the thermodynamic expression for the
Tolman length.

From a more general point of view, the statistical
mechanical expressions relating the macroscopic properties of
fluids to a given microscopic model can be divided into the
so-called virial and compressibility approaches. Expressions
involving the direct correlation function clearly correspond to
the latter, as commonly implemented in a standard statistical
mechanical treatment of fluid systems. The use of the term
‘virial’ can however lead to some confusion. It is important
to realize that what is often referred to as the virial route
is actually only its first-order formulation, stemming from
the virial theorem of Clausius [176]. This is the case with
the common microscopic representations of the mechanical
approach, which amount to a first-order change in free energy
per unit area implicit in the thermodynamic approach, and
which have been shown to be valid for homogeneous bulk
systems. On the other hand the virial route is not in principle
restricted to a first-order representation, even though the
resulting extension to higher order in the deformation leads
to expressions involving three- and higher-body correlation
functions. Nevertheless, these higher-order terms can be
extracted from simulation data for the distribution of the
change in free energy associated with the deformation of
the interface [72]: the second-order (fluctuation) term in
the expression for the free-energy change turns out to be
of the same order of magnitude as the first-order term for
nanoscale drops. This clearly emphasizes the fact that the
use of a first-order virial expression, such as that resulting
from a standard mechanical treatment, neglects important
contributions due to fluctuations. This will be the subject of
a separate detailed study [171].

All the painful scrutiny and inconsistency of a mechanical
(or virial) treatment can be avoided with the help of

density functional theory (DFT), a thermodynamic path
closely related to that of the compressibility route. Instead
of determining the direct correlation function, however,
one simply minimizes the grand potential functional to
find the equilibrium density profile, and then all of the
thermodynamic properties of the inhomogeneous system that
are required for a Gibbs–Tolman thermodynamic description
are available. In our current paper we have demonstrated
the capability and tractability of DFT in providing an
unambiguous description of the density profile and interfacial
properties of liquid drops and gas bubbles. Using a non-local
mean-field DFT in the canonical ensemble together with
a consistent Gibbs–Tolman thermodynamic analysis we
come to the following conclusions for liquid drops: the
curvature dependence of the vapour–liquid interfacial tension
of nanoscopic drops is non-monotonic, rising over the value
for the planar limit, and then decaying slowly to this limit as
the radius of the drop is further increased; this is consistent
with a negative Tolman length, which we estimate to be
about a tenth of the molecular diameter; the non-monotonic
behaviour of the surface tension is reflected in the behaviour
of the density at the centre of the drop, which is seen to
cross the saturation values of the bulk system at higher
temperatures; our analysis supports the validity of a first-order
curvature dependence of the surface tension as predicted by
the Tolman theory for drops with microscopic radii down
to about 10 diameters (below which such a macroscopic
approach is not expected to be valid); for smaller drops it
appears that an additional curvature dependence of the 1/R3

form is required in the Tolman treatment of the surface tension
in order to reproduce the full DFT results. The findings for
nanoscale bubbles of vapour in a bulk liquid are more widely
accepted: the curvature dependence of the surface tension is
monotonic, remaining below the planar limit for all bubble
radii; this again corresponds to a negative Tolman length,
which indicates that as expected the tension acts on the liquid
side of the interface.

Regarding the particular choice of density functional
(local or non-local, mean-field etc), it is not fully clear what
impact a given approximation has on the interfacial properties
of microscopic drops. It is apparent, however, that to first
order in the curvature of the drop the qualitative conclusions
are rather insensitive to the particular form of free-energy
functional. There now appears to be some consensus in the
most recent DFT studies that the magnitude of the Tolman
length is of the order of a tenth of a molecular diameter and
of a negative sign. It is likely, however, that in attempts to go
beyond a first-order curvature correction, the non-local nature
of the density functional will play a significant role. In studies
of more complex fluids, such as charged particles, polymer or
surfactant solutions that may exhibit self-assembly, one would
also expect that a non-local DFT which goes further than a
mean-field treatment of the attractive perturbation term will
provide a more appropriate description.
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We present results of a microscopic density functional theory study of wedge filling transitions, at a

right-angle wedge, in the presence of dispersionlike wall-fluid forces. Far from the corner the walls of the

wedge show a first-order wetting transition at a temperature Tw which is progressively closer to the bulk

critical temperature Tc as the strength of the wall forces is reduced. In addition, the meniscus formed near

the corner undergoes a filling transition at a temperature Tf < Tw, the value of which is found to be in

excellent agreement with macroscopic predictions. We show that the filling transition is first order if it

occurs far from the critical point but is continuous if Tf is close to Tc even though the walls still show first-

order wetting behavior. For this continuous transition the distance of the meniscus from the apex grows as

‘w � ðTf � TÞ��w with the critical exponent �w � 0:46� 0:05 in good agreement with the phenome-

nological effective Hamiltonian prediction. Our results suggest that critical filling transitions, with

accompanying large scale universal interfacial fluctuation effects, are more generic than thought

previously, and are experimentally accessible.

DOI: 10.1103/PhysRevLett.110.166101 PACS numbers: 68.08.Bc, 64.60.F�, 68.03.Cd

There is now direct experimental evidence for the ther-
mal excitation of the gravity stabilized capillary-wave-like
fluctuations at the interface between coexisting fluid
phases [1]. Over the last few decades theory has predicted
that such fluctuation effects are particularly important at
certain types of interfacial phase transitions such as critical
wetting [2–6]. Wetting refers to the unbinding of a fluid
interface from a solid substrate (or another fluid interface)
on approaching a temperature Tw, at which the contact
angle � vanishes. The order of these transitions is deter-
mined by the subtle interplay between wall-fluid and fluid-
fluid intermolecular forces and also interfacial fluctuations.
The original macroscopic argument for wetting transitions
had predicted that the transition would be first order, and
should necessarily occur on approaching the bulk critical
temperature Tc [7]. Model calculations soon revealed that
the location and order of the transition are more general
than this. In particular, Nakanishi and Fisher showed that,
for systems with short-ranged forces, the transition should
change from first order to continuous, if the surface forces
are weakened and Tw approaches Tc [8]. While this has
been fully tested in Ising model studies [9], this scenario is
altered by the presence of long-ranged, dispersionlike
intermolecular forces. In order to see continuous (now
referred to as ‘‘critical’’) wetting transitions one requires
a fine tuning of the range and strengths of the solid-fluid
and fluid-fluid forces [2,10]. Consequently while there are
many examples of first-order wetting, there are no unam-
biguous experimental examples of critical wetting for
solid-fluid interfaces, although the transition has been
seen in a few binary mixtures [5].

One way around this, which would allow one to see the
strong influence of interfacial fluctuations on a continuous
phase transition, is to consider fluid adsorption in a linear
wedge for which there is an analogous transition referred to
as filling [11–15]. This transition is far more common in
nature than the wetting transition and was first studied
experimentally almost 40 years ago [16] although the order
of the transition was not considered. Recent phenomeno-
logical effective Hamiltonian models have predicted that
fluctuation effects are enhanced compared to wetting and
also that the requirements that the transition can be con-
tinuous are more relaxed [17–19]. While this has been
studied extensively in the Ising model [20–24], the more
realistic case of long-ranged forces has not been studied in
detail. In this Letter we present the results of a study of
filling in the presence of dispersion forces, based on a
microscopic classical density functional theory (DFT).
The latter has been instrumental in developing our under-
standing of inhomogeneous fluids but is most usually
applied to systems in which the equilibrium density
depends on only one coordinate [25–28]. Here we use a
two-dimensional DFT to study filling transitions and com-
pare with the predictions of thermodynamic arguments and
effective Hamiltonian theory. We find that close to Tc the
filling transition is continuous even though the walls of the
wedge themselves still exhibit first-order wetting. This
result allows us to check interfacial Hamiltonian predic-
tions for the critical behavior and offers strong encourage-
ment that continuous filling transitions may be found in
the laboratory similar to experiments on complete wedge
filling [29].
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Consider a wedge geometry formed by two identical
infinite planar walls that meet at an opening angle 2c in
contact with a bulk vapor at the chemical potential �,
tuned to saturation � ¼ ��

sat at a temperature T < Tc.
The wedge may be thought as being a missing link between
a planar wall (c ¼ �=2) and a capillary slit (c ¼ 0) and
shows a phase transition (filling) which is distinct from
wetting and capillary condensation. Far from the apex the
thickness of the liquid wetting layer ‘� is the same as for a
planar wall. However near the apex, the thickness of the
meniscus can be much greater. Macroscopic arguments
dictate that the wedge is completely filled above a filling
transition temperature Tf which occurs when the contact

angle of a liquid drop satisfies [11–14]

�ðTfÞ ¼ �

2
� c : (1)

The wedge filling transition corresponds to the change
from microscopic to macroscopic adsorption, as T ! Tf,

and may be first order or continuous (critical filling) cor-
responding to the discontinuous or continuous divergence
of the adsorption. Because Eq. (1) is an exact requirement,
the filling transition is ubiquitous in nature for all fluids
that form drops with a finite contact angle.

Within classical DFT the equilibrium density profile is
found by minimizing the grand potential functional
�½�� ¼ F½�� þ R

dr�ðrÞ½VðrÞ ���, where VðrÞ is the

external potential [30]. We consider a right angle wedge
(c ¼ �=4) so that the potential VðrÞ ¼ Vðx; zÞ is a
function of Cartesian coordinates x, z > 0 and is transla-
tionally invariant along the wedge. Here F½�� is the
intrinsic free energy functional of the fluid one-body
density �ðrÞ, which can be split into ideal and excess
parts. Modern DFT often divides the latter into a hard-
sphere part Fhs½�� and an attractive contribution Fa½�� ¼
1
2

RR
dr1dr2�ðr1Þ�ðr2Þuaðr12Þ where uaðrÞ is the attractive

part of the fluid-fluid potential. We take this to be a
Lennard-Jones (LJ) potential uaðrÞ¼�4"ð�=rÞ6Hðr��Þ
which is truncated at rc ¼ 2:5�, where � is the hard-
sphere diameter and HðxÞ is the Heaviside function. For
Fhs½��we use Rosenfeld’s fundamental theory which accu-
rately models packing effects if the density is high close to
the walls [31,32]. The external potential arises from a
uniform distribution of wall atoms, with density �w, which
for r > � interact with the fluid atoms via the LJ potential
�wðrÞ ¼ �4"wð�rÞ6, leading to

Vðx; zÞ ¼ �w

�
1

z3
þ 2z4 þ x2z2 þ 2x4

2x3z3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p þ 1

x3

�
; (2)

where �w ¼ �ð1=3Þ�"w�w�
6. There is a hard-wall repul-

sion if x, z < �. Infinitely far from the wedge apex, the
potential close to either surface recovers that of a planar
wall, e.g., Vð1; zÞ ¼ 2�w=z

3. The functional�½�� is mini-
mized numerically on an L� L grid where the lateral
dimension of our box is L ¼ 50� and the grid has a

discretization size 0:05�. To mimic the bulk boundary
conditions we impose �ðL; zÞ ¼ ��ðzÞ and �ðx; LÞ ¼
��ðxÞ where ��ðzÞ is the equilibrium profile for a planar
wall-fluid interface with ��ðLÞ fixed to the bulk gas density
�g. In our model DFT kBTc=" ¼ 1:414 and temperature is

expressed either in fractions of Tc or in dimensionless units
T� ¼ kBT=".
We have considered a variety of wall strengths and

present results for "w ¼ 1:2", "w ¼ ", and "w ¼ 0:8".
For each, we first considered the planar wall with the
potential V�ðzÞ ¼ 2�w=z

3 and determined the density pro-
file ��ðzÞ and surface tensions 	wg, 	wl, and 	 of the wall-

gas, wall-liquid and liquid-gas interfaces, respectively.
From Young’s equation cos� ¼ ð	wg � 	wlÞ=	 we deter-

mined �ðTÞ for each of these systems (see Fig. 1). Each
system exhibits a wetting transition, with Tw determined
from the crossing of 	wg and 	wl þ 	. These occur at Tw ¼
0:83Tc, Tw ¼ 0:93Tc and Tw ¼ 0:99Tc as "w is reduced.
The wetting transitions are all first order; that is, the
thickness of the liquid layer ‘� jumps from a microscopic
to macroscopic value at Tw. This is to be expected since the
wall-fluid potential is long ranged but the truncated LJ
fluid-fluid interaction is effectively short ranged [2]. This
prohibits critical wetting, which is important for our study.
Also, as expected, the strength of the first-order transition
decreases as Tw approaches Tc. This is apparent when one
determines the interfacial binding potential Wð‘Þ corre-
sponding to the excess grand potential of a wetting film
constrained to be of thickness ‘. The global minimum of
this determines the equilibrium film thickness ‘�. This is
shown in Fig. 2 for the case "w ¼ 0:8" close to the wetting
temperature and shows an activation barrier, characteristic
of first-order wetting, at ‘B � 10�. For comparison the
barrier for the binding potential for "w ¼ " is an order of
magnitude larger and located at ‘B � 4�.

FIG. 1 (color online). Variation of the contact angle with T for
different wall strengths. The intersection with the dashed line at
� ¼ 45� is the thermodynamic prediction for Tf.
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According to the thermodynamic prediction Eq. (1), the
location of the filling transitions can be determined from
the intersection of the contact angle curves with c ¼ �=4
and gives Tf ¼ 0:76Tc, Tf ¼ 0:90Tc, and Tf ¼ 0:97Tc as

"w decreases in strength. To check this we set � ¼ ��
sat

and minimize �½�� to a global or local minimum �,
starting from different high density and low density con-
figurations. For first-order filling these will converge to
different equilibrium profiles, corresponding to micro-
scopic and macroscopic adsorptions, which coexist at Tf.

This is what is found for the two strongest walls as illus-
trated in Fig. 3 where we plot the excess grand potential
�ex ¼ �þ pV per unit volume as a function of T. The
values for Tf obtained are in near exact agreement with

the thermodynamic predictions and differ from them
only due to the limitations of numerical discretization
and finite size. In Fig. 4 we show the coexisting density
profiles �ðx; zÞ, corresponding to macroscopic (left) and

microscopic (right) states, for "w ¼ ". From these we can
determine the thickness ‘w of the meniscus above the
wedge apex defined as the distance from the origin to a
point on a diagonal where �ðx; xÞ ¼ ð�l þ �gÞ=2. The

macroscopic meniscus is nearly flat (as it should be since
we are at bulk coexistence) and meets each wall at the
correct contact angle � � �=4. Of course the size of this
macroscopic state is limited by our numerical grid and
scales with the system size L. For the microscopic con-
figuration the meniscus thickness ‘w is larger than the
wetting layer thickness ‘� but of the same order as the
distance of the activation barrier ‘B � 4� for the corre-
sponding binding potential for the wetting transition. This
is precisely the expectation for first-order filling from
effective Hamiltonian theory [18]. Both microscopic and
macroscopic profiles show layering behavior close to the
apex.
For the weakest wall strength "w ¼ 0:8", however, both

initial coverages converge to a unique phase indicating that
the transition, which is of course rounded by the finite size
of our system, is continuous. A plot of the adsorption � ¼RR
dxdzð�ðx; zÞ � �gÞ vs T is shown in Fig. 5 and shows a

dramatic but continuous increase in the adsorption near the
anticipated T�

f � 1:38. A cross section of the density
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FIG. 2. Binding potential functionWð‘Þ for "w ¼ 0:8" close to
a first-order wetting transition at T�

w ¼ 1:4 showing an activation
barrier at ‘B � 10�. In the inset we show the binding potential at
a lower temperature close to T�

f � 1:38 for which the activation

barrier is still present. In both cases the results correspond to a
bulk coexistence.

FIG. 3 (color online). Location of a first-order filling transition
for "w ¼ ". Here V is the available volume which is the length of
the wedge multiplied by ðL� �Þ2.
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FIG. 4 (color online). Coexisting macroscopic (left) and mi-
croscopic (right) density profiles at a first-order filling transition
for "w ¼ ".

FIG. 5. Temperature dependence of the adsorption in the
wedge with the weakest wall interaction "w ¼ 0:8". The inset
shows the log-log plot of the adsorption vs the scaling field
Tf � T. The slope of the straight line is �0:92.
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profile along the diagonal �ðx; xÞ for T � Tf is also shown

(see Fig. 6). This indicates that the order of the filling
transition is changed near the vicinity of Tc. Support for
this comes from the two sources. First, near Tf the menis-

cus height ‘w � 22� is considerably larger than the loca-
tion of the activation barrier ‘B � 10� associated with the
wetting binding potential (see the inset in Fig. 2). This is
not at all expected for first-order filling [18]. Second,
we can compare quantitatively with predictions for
critical filling. If the transition is critical then in an infinite
wedge we expect that ‘w � ðTf � TÞ��w with � / ‘2w
owing to the triangular shape of the meniscus. Effective
Hamiltonian theory predicts that the critical singularities
depend on the power law describing the dominant wall-
fluid or fluid-fluid interaction which we may write more
generally as VðzÞ � 1=zpþ1. The critical behavior falls into
two regimes with �w ¼ 1=p for p < 4 and �w ¼ 1=4 for
p > 4 [18]. Thus we anticipate �w ¼ 1=2 in our model
since p ¼ 2. The inset in Fig. 5 shows a log plot of the
adsorption for T < Tf, in which we use an unfitted estimate

of the filling temperature T�
f ¼ 1:38 obtained from Eq. (1).

This gives �w ¼ 0:46� 0:05 in good agreement with the
predicted value.

The presence of a critical (or at least effectively critical)
filling transition when Tf is close to Tc, when the walls still

exhibit first-order wetting, and in the presence of realistic
long-ranged interactions is the main new result of our
Letter, and is we believe encouraging for experimental
studies. To date there have only been detailed laboratory
studies of complete filling in linear wedges corresponding
to the approach to coexistence when the walls are com-
pletely wet (� ¼ 0) [29]. However the observation of
critical filling would be more interesting because fluctua-
tion effects are much stronger. For example, we expect that
beyond mean-field level, capillary-wave fluctuations do

not alter the divergence of ‘w � ðTf � TÞ�1=2 but do

lead to a universal interfacial roughness (width) 
? �
ðTf � TÞ�1=4 which is much bigger than for complete fill-

ing and also critical wetting [18]. These fluctuations are not

captured by the present DFT and consequently the density
profiles will be broader than predicted here. However our
DFT should be otherwise extremely accurate regarding the
location of the transition, its order, and the adsorption. The
observed change in order from first order to continuous
filling has only been partially anticipated by the previous
effective Hamiltonian theory. This had been predicted on
the basis of a simple interfacial model, valid only for
shallow wedges, but the proposed mechanism required
that both the wall-fluid and fluid-fluid forces be of the
same range. Then it was noted that even for first-order
wetting, the filling transition would be continuous if it
occurs at a temperature below which the activation barrier
forms in the binding potential Wð‘Þ [18]. However in the
present DFT study a small activation barrier is still present
at Tf (see the inset in Fig. 2), indicating that the prediction

of the simple, shallow wedge, effective Hamiltonian theory
is not completely correct. Nevertheless we believe that the
substantial reduction in the size of the barrier as T
approaches Tc plays a prominent role in the change of
order of the filling transition. Finally it would be interest-
ing to know if the change in order occurs via a tricritical or
critical end point and also what happens for more acute
wedges with stronger wall potentials.
In this Letter we have presented our results of numerical

studies of first-order and critical filling transitions in a
rectangular wedge using a nonlocal density functional
theory. This is the first time that filling transitions have
been studied using modern microscopic DFT in the pres-
ence of long-ranged wall-fluid interactions, and the results
show that close to the bulk critical temperature the wedge
filling transition may be continuous even though the walls
themselves exhibit first-order wetting.
A. M. acknowledges a support from the Czech Science
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[28] A. Nold, A. Malijevský, and S. Kalliadasis, Phys. Rev. E

84, 021603 (2011).
[29] L. Bruschi, A. Carlin, and G. Mistura, Phys. Rev. Lett. 89,

166101 (2002).
[30] R. Evans, Adv. Phys. 28, 143 (1979).
[31] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
[32] R. Roth, J. Phys. Condens. Matter 22, 063102

(2010).

PRL 110, 166101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

19 APRIL 2013

166101-5

http://dx.doi.org/10.1103/PhysRevLett.52.2303
http://dx.doi.org/10.1103/PhysRevLett.52.2303
http://dx.doi.org/10.1039/df9480300016
http://dx.doi.org/10.1039/df9480300016
http://dx.doi.org/10.1073/pnas.63.2.292
http://dx.doi.org/10.1073/pnas.63.2.292
http://dx.doi.org/10.1016/0021-9797(86)90199-2
http://dx.doi.org/10.1103/PhysRevA.46.4994
http://dx.doi.org/10.1103/PhysRevE.60.4027
http://dx.doi.org/10.1103/PhysRevE.60.4027
http://dx.doi.org/10.1073/pnas.63.2.292
http://dx.doi.org/10.1073/pnas.63.2.292
http://dx.doi.org/10.1103/PhysRevLett.83.5535
http://dx.doi.org/10.1103/PhysRevLett.83.5535
http://dx.doi.org/10.1103/PhysRevLett.85.345
http://dx.doi.org/10.1103/PhysRevLett.85.345
http://dx.doi.org/10.1088/0953-8984/24/18/182202
http://dx.doi.org/10.1103/PhysRevLett.90.136101
http://dx.doi.org/10.1103/PhysRevLett.90.136101
http://dx.doi.org/10.1103/PhysRevE.68.031601
http://dx.doi.org/10.1103/PhysRevE.68.031601
http://dx.doi.org/10.1088/0953-8984/17/9/005
http://dx.doi.org/10.1088/0953-8984/17/9/005
http://dx.doi.org/10.1103/PhysRevLett.87.196103
http://dx.doi.org/10.1103/PhysRevLett.89.286101
http://dx.doi.org/10.1103/PhysRevLett.89.286101
http://dx.doi.org/10.1209/epl/i2003-00545-8
http://dx.doi.org/10.1209/epl/i2003-00545-8
http://dx.doi.org/10.1063/1.450352
http://dx.doi.org/10.1088/0953-8984/2/46/001
http://dx.doi.org/10.1103/PhysRevE.71.011602
http://dx.doi.org/10.1103/PhysRevE.71.011602
http://dx.doi.org/10.1103/PhysRevE.84.021603
http://dx.doi.org/10.1103/PhysRevE.84.021603
http://dx.doi.org/10.1103/PhysRevLett.89.166101
http://dx.doi.org/10.1103/PhysRevLett.89.166101
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1103/PhysRevLett.63.980
http://dx.doi.org/10.1088/0953-8984/22/6/063102
http://dx.doi.org/10.1088/0953-8984/22/6/063102


Paper V

41



IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 25 (2013) 305005 (11pp) doi:10.1088/0953-8984/25/30/305005

Density functional study of complete,
first-order and critical wedge filling
transitions
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Abstract
We present numerical studies of complete, first-order and critical wedge filling transitions, at a
right angle corner, using a microscopic fundamental measure density functional theory. We
consider systems with short-ranged, cut-off Lennard-Jones, fluid–fluid forces and two types of
wall–fluid potential: a purely repulsive hard wall and also a long-ranged potential with three
different strengths. For each of these systems we first determine the wetting properties
occurring at a planar wall, including any wetting transition and the dependence of the contact
angle on temperature. The hard wall corner is completely filled by vapour on approaching bulk
coexistence and the numerical results for the growth of the meniscus thickness are in excellent
agreement with effective Hamiltonian predictions for the critical exponents and amplitudes, at
leading and next-to-leading order. In the presence of the attractive wall–fluid interaction, the
corresponding planar wall–fluid interface exhibits a first-order wetting transition for each of
the interaction strengths considered. In the right angle wedge geometry the two strongest
interactions produce first-order filling transitions while for the weakest interaction strength,
for which wetting and filling occur closest to the bulk critical point, the filling transition is
second-order. For this continuous transition the critical exponent describing the divergence of
the meniscus thickness is found to be in good agreement with effective Hamiltonian
predictions.

(Some figures may appear in colour only in the online journal)

1. Introduction

Wetting transitions and related fluid interfacial phenomena
have been extensively studied over the past few decades
(see, for example, the excellent review articles [1–5]).
The vast majority of early theoretical studies focused
on fluid adsorption on idealized planar substrates, or
between parallel plates [6, 7] or around spheres and
cylinders [8–11], in which the equilibrium density profile is
one-dimensional and depends only on the coordinate normal
to the substrate. More recently, however, there has been
considerable interest in adsorption and wetting at micro-
patterned surfaces in which the substrate is non-planar [12]

or is chemically heterogeneous [13]. This work has been
motivated mainly by improvements in surface lithography
and related techniques, which now allow the controlled
fabrication of the tailored substrates which are central to
the development of microfluidics. At a more fundamental
level, however, such studies have revealed new examples of
interfacial phase transitions and fluctuation effects, as well
as surprising connections between adsorption in different
geometries [14–21].

A particularly simple and important example of a
non-planar substrate is a wedge geometry formed by two
identical infinite planar walls that meet at an opening angle
2ψ = π − 2α, where α is the tilt angle with respect to the

10953-8984/13/305005+11$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. Schematic picture of the cross-section of a right angle
wedge for which α = π/4. Far from the apex, the wetting layer is of
thickness `π . However, the height of the meniscus above the apex is
`w. At a filling transition `w changes from microscopic to
macroscopic. The Cartesian coordinates x and z used in our analysis
are shown.

horizontal plane (say). In figure 1 we schematically show a
section of a three-dimensional wedge where the walls meet at
a right angle corresponding to α = π/4. The wedge geometry
may be thought as being a missing link between the very well
studied examples of a planar wall (α = 0) and a capillary-slit
(α = π/2) and shows a phase transition which is distinct
from wetting and capillary condensation. Let us suppose that
the substrate is in contact with a bulk vapour at chemical
potential µ, tuned to saturation µ = µ−sat, and at a temperature
T less than the bulk critical temperature Tc. Gravity is
ignored. Macroscopic arguments, which have been discovered
independently by several authors [22–25], dictate that the
wedge is completely filled with liquid when θ < α, where
θ(T) is the contact angle defined for a macroscopic sessile
drop on a flat surface. However, for θ > α the adsorption
of liquid at the wedge is microscopic. The wedge filling
transition corresponds to the transition from microscopic to
macroscopic preferential adsorption of liquid, at a filling
temperature Tf, which satisfies the exact condition

θ(Tf) = α. (1)

Since the contact angle usually decreases with tem-
perature it follows that Tf < Tw, where Tw is the wetting
temperature at which the contact angle vanishes. In other
words, wedge filling precedes wetting, i.e. the wedge can
be completely filled with liquid even though the walls are
only partially wet. In figure 2 we show two possible phase
diagrams illustrating first-order and continuous wedge filling
transitions. In each case the filling transition refers to the
change from microscopic to macroscopic adsorption as T →
Tf along the coexistence line µ = µ−sat. In figure 2(a) we
suppose this transition is first-order, while in figure 2(b)
we suppose it is continuous (critical filling). In the latter
case the equilibrium height `w of the meniscus above the
wedge bottom diverges continuously in this limit. For the
case of first-order filling, a pre-filling line (shown as dotted),
corresponding a thin–thick transition extends above Tf and off
coexistence, analogous to the pre-wetting line which is also
shown. However, unlike pre-wetting, the pre-filling transition

Figure 2. Schematic phase diagrams for wetting and filling at a
wedge–vapour interface; (a) first-order wetting and filling
transitions, (b) continuous wetting and filling transitions. If the
wetting transition is weakly first-order the filling transition may be
continuous (critical), in which case the pre-filling line (dotted) is
absent.

is necessarily rounded since it is pseudo-one-dimensional and
thus the pre-filling line does not end in a genuine critical
point. Both phase diagrams also show the complete filling
transition, which corresponds to the continuous divergence of
the meniscus height as µ→ µ−sat for T > Tf.

Over the past decade, effective interfacial Hamiltonian
models have been used extensively to study the order of
wedge filling transitions and have shown how these are
sensitive to the range of the intermolecular forces and also
interfacial fluctuation effects [26–37]. These turn out to be
rather subtle issues. For example, while in open wedges (small
α) the order of the transition is qualitatively the same as that
of the underlying wetting transition, the critical exponents
which characterize three-dimensional critical filling are quite
different from those of critical wetting, and fluctuation
effects are much larger. For acute wedges, on the other
hand, effective Hamiltonians predict that the order of the
filling transition may be different from that of the wetting
transition [28, 36]. While some of these predictions have
been verified in computer simulations [38, 39], exact Ising
model calculations [31, 32] and simple square-gradient
mean-field theory [36], to the best of our knowledge
the filling transition has not been studied using modern
microscopic classical density functional theory (DFT) [40]
or for systems with realistic long-ranged intermolecular
forces. DFT has proved an invaluable tool in the study
of inhomogeneous fluids, including interfacial properties,
wetting, layering and capillary condensation transitions. As
mentioned above, studies of such transitions are simplified
because the density profile is one-dimensional. The purpose
of this paper is to apply modern DFT to the study of the wedge
filling transition, for which of course the density profile is
two-dimensional. In this way our work complements recent
studies of condensation in capped capillaries [41, 42]. A
preliminary account of some of our results has appeared
earlier [45].
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In our work we use Rosenfeld’s fundamental measure
theory (FMT) [43, 44] combined with a simple mean-field
treatment of the attractive part of the intermolecular
interaction, which is taken to be a cut-off Lennard-Jones
potential. We consider a right angle wedge and two different
types of wall–fluid interaction, which allow us to address
the following points and compare with effective Hamiltonian
theory. (1) For a purely hard wall, for which the contact angle
θ = π , we study predictions for universal critical singularities
for the complete wedge filling (of gas). In this case the
complete filling occurs at the wedge–liquid interface as µ→
µ+sat. (2) We consider walls with long-ranged wall–fluid
interactions, which leads to a finite contact angle and a
wetting transition at which the contact angle vanishes. The
wetting transition is always first-order but the strength of it is
weakened the closer the transition occurs to the bulk critical
temperature. In this way we can see if the order of the filling
transition can change and be different from the order of the
underlying wetting transition. If this is the case we wish
to extract the critical exponents and compare with effective
Hamiltonian predictions.

Our paper is organized as follows. We start with a
description of our model DFT, the intermolecular forces,
the wedge geometry and boundary conditions used. We first
consider the case of complete wedge filling occurring at the
interface between a hard wall wedge and a bulk liquid. We
check that our numerical results satisfy exact sum-rules for
a planar hard wall, using the full 2D code, and then extract
the equilibrium meniscus shape and excess adsorption for
the right angle wedge geometry and compare with effective
Hamiltonian predictions for critical exponents and critical
amplitudes. We then add an attractive long-ranged wall–fluid
potential and first determine the contact angle and wetting
transition temperature for a planar wall–gas interface. For the
corresponding wedge geometry we determine numerically the
location and order of the filling transition and compare with
the thermodynamic and effective Hamiltonian predictions. We
finish with a summary of our results and discuss some open
questions.

2. Density functional theory and model interactions

In this section we describe our model and outline the main
features of the microscopic DFT that have been used in this
work.

Within classical density functional theory [40], the
equilibrium density profile is found by minimizing the grand
potential functional

�[ρ] = F[ρ] +
∫

drρ(r)[V(r)− µ], (2)

where µ is the chemical potential and V(r) is the external
potential. Here F[ρ] is the intrinsic free energy functional
of the fluid one-body density, ρ(r), which can be split into
ideal and excess parts. Following the spirit of van der Waals,
modern DFT often further divides the latter into a hard-sphere
and an attractive contribution

Fex[ρ] = Fhs[ρ] +
1
2

∫∫
drdr′ρ(r)ρ(r′)ua(|r− r′|), (3)

where ua(r) is the attractive part of the fluid–fluid interaction
potential. In our analysis we take this to be a truncated
Lennard-Jones-like potential

ua(r) =


0; r < σ,

−4ε
(σ

r

)6
; σ < r < rc,

0; r > rc,

(4)

which is cut-off at rc = 2.5 σ , where σ is the hard-sphere
diameter. The hard-sphere part of the excess free energy is
approximated by the FMT functional [43],

Fhs[ρ] =
1
β

∫
dr8({nα}), (5)

where8 is a function of six weighted densities nα(r), and β =
1/kBT is the inverse temperature. Rosenfeld’s FMT accurately
captures short-range correlations and thus the functional (3)
should describe strong packing effects for liquid adsorption at
the surface of the wall and near the apex.

The confining wedge is treated as an external field, V(r),
exerted on the fluid atoms. The potential is assumed to be
translationally invariant along the wedge which is formed
from two semi-infinite planar slabs (walls) that meet at a
right angle, so that α = π/4. We will consider two types of
wedge–fluid interaction. One is a purely hard wall wedge,
whose potential is simply

Vhw(x, z) =

{
∞; x < σ or z < σ,

0; elsewhere,
(6)

where the x and z Cartesian coordinates run parallel to the left
and right hand side walls respectively (see figure 1).

The second wall potential is long-ranged and is assumed
to arise from a uniform distribution of wall atoms, with a
one-body density ρw. These interact with the fluid atoms via
the Lennard-Jones potential

φw(r) = −4εw

(σ
r

)6
; r > σ. (7)

After integrating φw(r) over the whole depth of the wall,
the potential of the wedge can be expressed as

VLJ(x, z) =

{
∞; x < σ or z < σ,

Ṽ(x, z); elsewhere,
(8)

with

Ṽ(x, z) = αw

[
1

z3 +
2z4
+ x2z2

+ 2x4

2x3z3
√

x2 + z2
+

1

x3

]
(9)

and

αw = −
1
3πεwρwσ

6. (10)

Notice that infinitely far from the wedge apex, the potential
close to either surface recovers that of a planar wall
V(x,∞) = 2αw/x3 or V(∞, z) = 2αw/z3. Minimization of
(2) leads to an Euler–Lagrange equation, which is solved
numerically. This is done on an L × L Cartesian grid, where
the lateral dimension of our box size is L = 50σ and the grid

3
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has discretization size 0.05 σ . To mimic the bulk boundary
conditions we impose that ρ(L, z) = ρπ (z;L) and ρ(x,L) =
ρπ (x;L), where ρπ (z;L) is the equilibrium profile for a
planar wall–fluid interface with ρπ (L;L) fixed to the bulk
density. The latter is, for the sake of numerical consistency,
determined from the full 2D DFT. Once the equilibrium
density profile is found, the corresponding grand potential
is calculated from (2). From this, all the thermodynamical
properties of the system can be determined. For the most
part we express our temperature scale in fractions of the bulk
critical temperature kBTc/ε = 1.414 or in dimensionless units
T∗ = kBT/ε where more convenient. Similarly, densities are
written in dimensionless units ρ∗ = ρσ 3, as are wetting film
thicknesses `∗ = `/σ and distances z∗ = z/σ , etc.

3. Numerical results

3.1. Complete filling at a hard wall wedge

As described in the introduction, the complete filling
transition refers to the continuous divergence of the meniscus
height `w on approaching two-phase coexistence when the
contact angle θ < α. Effective Hamiltonian studies predict
that this transition is dominated by the geometry of the wedge
and displays universal critical properties [12]. For example, at
leading order the meniscus height is predicted to diverge as

`w ≈
γ (secα cos θ − 1)

δµ1ρ
(11)

where γ is the surface tension of the liquid–gas interface and
1ρ = ρl − ρg is the difference between the bulk densities.
The power-law dependence on δµ = |µ − µsat| is universal
and is independent of the range of the intermolecular forces
and fluctuation effects. This universal behaviour can be
understood very simply using macroscopic concepts [12].
As coexistence is approached, the meniscus that grows at
the wedge corner must have a circular cross-section with
radius R = γ /δµ1ρ, as determined by the Laplace pressure
difference across it. The height `w then follows from the
condition that the meniscus must meet each side of the wedge
at the correct contact angle. Notice that the amplitude of
the divergence vanishes at the filling phase boundary θ = α,
consistent with the requirement that the adsorption becomes
microscopic for T < Tf.

A particular case of complete wedge filling occurs when
the walls are completely wet, θ = 0, or completely dry, θ = π
(if one studies the wedge–liquid interface). In this case there
are also singular next-to-leading order contributions to the
divergence, such that [16]

`w ≈
γ (secα − 1)
δµ1ρ

+
secα

1− βco
s
`π + · · · (12)

where `π ≈ δµ−β
co
s is the thickness of the complete wetting

layer at a planar wall–vapour interface (or wall–liquid in
the case of drying). The character of this next-to-leading
order correction therefore does depend on the range of the
intermolecular forces, since these determine the wetting layer

Figure 3. Density profile of a liquid near a planar hard wall for
T = 0.92 Tc and ρ∗b − ρ

∗

l = 10−6. Notice the presence of a thick
drying layer of vapour whose density is close to that of the bulk gas.
The density is lower at the wall, consistent with the pressure
sum-rule.

thickness. For systems with short-ranged forces, recall that
`π ≈ −ξb ln δµ, where ξb is the correlation length of the bulk
phase adsorbed at the wall, i.e. βco

s = 0. Strictly speaking this
is a mean-field result but, in three dimensions (which is the
upper critical dimension for short-ranged forces), interfacial
fluctuation effects do not alter this in any significant way,
altering only the amplitude by a factor 1 + ω/2, where ω =
kBT/4πγ ξ2

b is the wetting parameter [1]. For long-ranged
intermolecular potentials, on the other hand, the exponent
βco

s = 1/(p+ 1), with p = 2, 3 for non-retarded and retarded
dispersion forces, respectively [1]. The critical amplitude
of the correction term is similar to that describing the
well-known Derjaguin correction to the Kelvin equation for
capillary condensation in a slit geometry [46]. Only for the
case of short-ranged forces does the correction term have
a simple geometrical interpretation arising from the wetting
layer along the walls far from the apex.

In this section we test the effective Hamiltonian
prediction (12) for the case of complete drying by vapour
at a right angle hard wall wedge. We suppose the wedge is
in contact with a bulk liquid at chemical potential µ > µsat.
Then, as coexistence is approached from above a bubble
of low density vapour forms at the corner, whose height
from the apex should be described by equation (12). In our
calculations we fix the temperature to T = 0.92 Tc, for which
bulk coexistence occurs at µsat = −3.965 11ε. As a check of
our 2D DFT numerical algorithm, we first studied the planar
hard-wall–liquid interface. In this case, we fixed the particle
density at z = L to a bulk density ρb, which is slightly higher
than the density of the liquid at saturation, ρl = 0.431 48 σ 3.
In figure 3 we display a typical equilibrium density profile
ρ(z) showing a fairly thick drying layer of low density vapour.
For comparison the bulk density of gas at this temperature is
ρg = 0.1 σ 3. The density near the wall falls and, at contact,
ρw ≡ ρ(σ) should be exactly given by the sum-rule p =
kBTρw, where p is the bulk pressure. The measured value
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Figure 4. Plot of the film thickness `∗π = `π/σ of the adsorbed
layer of gas at a hard wall versus the over saturation, measured on a
log scale, for T = 0.92 Tc. The slope of the straight line determines
the bulk gas correlation length.

of the contact density with this grid size determines the bulk
pressure with an error less than 0.01%.

From the equilibrium density profile we determine
the adsorption 0 =

∫ L
σ
(ρ(z) − ρb)dz, and from this the

film thickness according to the standard definition `π =

|0|/1ρ. In figure 4 we show the dependence of `π on
the supersaturation. This is in excellent agreement with the
expected logarithmic divergence for this cut-off LJ fluid, and
allows us to identify the bulk correlation length of the gas
phase ξgas

b = 1.11 σ . This agrees with the value obtained
independently from the decay of the density for the wall–gas
interface.

We now turn our attention to the hard wall wedge
geometry, corresponding to the external potential (6), and
numerically study the interface with a bulk liquid for different
chemical potentials approaching bulk coexistence. In figure 5
we show four different 2D density profiles ρ(x, z) for values
of the chemical potential progressively closer to saturation.
For the values of the chemical potential chosen, one can see
qualitatively that far from the wedge apex the adsorption of
gas is rather small, corresponding to thin drying films only
a few σ thick. These are indicative of the planar wall–liquid
interface. In contrast, even for the largest value of the chemical
potential the geometry enhanced preferential adsorption of
vapour at the apex, via the formation of a meniscus, is clearly
apparent. Upon approaching saturation, the distance `w of the
meniscus from the apex increases, and diverges as µ→ µsat.
This divergence is far stronger than the logarithmic increase
of the drying film at a planar wall.

In figure 6 we show a numerically determined meniscus
shape corresponding to the loci of the local mid-point
interfacial density, where ρ(x, z) = ρb+ρl

2 , for the case where
ρb = ρl+0.003/σ 3. The shape of the meniscus is very nearly
circular, as can be seen from comparison with the green
circle, which has the Laplace radius R = γ /δµ1ρ = 36.3 σ
for this particular chemical potential. This gives us some

Figure 5. Fluid density profiles near a hard wedge in contact with a
bulk liquid at temperature T = 0.92 Tc. The bulk density differences
(δρ ≡ ρb − ρl) from top left to right bottom are: δρσ 3

= 0.01,
0.008, 0.005, and 0.003, respectively.

Figure 6. Contour of the meniscus between the vapour and liquid
phases in a hard wedge at temperature T = 0.92 Tc and bulk density
ρb − ρl = 0.003/σ 3. Also shown for comparison is a circular
meniscus of Laplace radius R = γ

δµ1ρ
.

confidence that even for the present small system sizes the
predictions of macroscopic and effective Hamiltonian theory
are still valid. Finally, and most importantly, the numerically
determined divergence of the filling height, `w, is shown
in figure 7 (symbols). The dashed curve is the macroscopic
theoretical expression which corresponds to just the first term
in (12). For T = 0.92 Tc, this corresponds to the curve `w =

0.092 63 σε/δµ. The shape of this is very similar to the
numerical results for the film thickness but lies systematically
below it. The solid curve is the theoretical result now allowing
for the next-to-leading order correction in (12)—which recall
is logarithmic for the present cut-off LJ fluid. We emphasize,
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Figure 7. Numerical results (symbols) for the divergence of the
meniscus filling height `w, shown in comparison with the
macroscopic expression `w =

γ (secα−1)
δµ1ρ

(dashed curve) and the
effective Hamiltonian prediction (12) (solid curve) which includes
the logarithmic next-to-leading order correction.

since the agreement is so good, that this is not a fit and
there are no adjustable parameters. Effective Hamiltonian
theory therefore gives an excellent quantitative description
of complete filling at a hard wall wedge. One simplifying
feature of the hard wall in contact with a vapour wetting or
drying layer, of course, is that there are no packing effects to
worry about. Filling by liquid is potentially more complicated
because of such effects. We turn to this in the next section in
the context of the filling transition itself.

3.2. Filling with long-range wall–fluid forces

In this section we go beyond the pure hard wall wedge and
turn on the long-range wall–fluid attraction. We consider three
different interaction strengths; (i) εw = 1.2 ε, (ii) εw = ε

and (iii) εw = 0.8 ε. For each of these we first consider
the corresponding planar wall–fluid interfaces and determine
the temperature dependence of the contact angle θ(T) from
the wall–gas and wall–liquid surface tensions using Young’s
equation cos θ = (γwg − γwl)/γ . Each of these systems
exhibits a wetting transition by liquid at a wall–vapour
interface. As expected, these transitions are first-order, since
the wall–fluid and fluid–fluid forces have different ranges.
In figure 8 we show the numerically determined value of
the wetting temperatures using both the 1D and 2D DFT
calculations. The crossing of the wall–gas tension γwg and
summed tensions γwl+γ gives consistent values of T∗w = 1.18
(or Tw = 0.83 Tc), T∗w = 1.31 (or Tw = 0.93 Tc) and T∗w = 1.4
(or Tw = 0.99 Tc) for the cases (i)–(iii), respectively. For
the strongest wall–fluid interaction, εw = 1.2 ε, the wetting
transition is strongly first-order, as can be seen from the
crossing of the free energy branches. To further emphasize
this we have determined numerically the interfacial binding
potential W(`) representing the excess free energy of a
wetting film constrained to be of thickness `. For εw = ε this
is shown at the upper panel of figure 9 for a temperature close

Figure 8. Determination of the wetting temperature Tw from the
intersection of the wall–gas tension γwg and summed tensions
γwl + γ . Results obtained from 1D calculations (in red) are
compared with those of the 2D calculation (in black).

to Tw. As can be seen there is a clear activation barrier located
near `B ≈ 4σ .

For the weakest wall–fluid potential εw = 0.8 ε, where
Tw is very close to the bulk critical temperature, the transition
is weakly first-order, as can be seen from the near tangential
meeting of the surface tensions. This is more apparent when
one numerically determines the interfacial binding potential
for T ≈ Tw for this interaction strength (see lower panel
of figure 9) by minimizing the grand potential subject to
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Figure 9. Interfacial binding potentials W(`), in dimensionless
units, as a function of the adsorbed film thickness. The upper panel
corresponds to εw = ε and for a temperature close to T∗w = 1.32.
Notice the presence of a prominent activation barrier at `B ≈ 4 σ . In
the lower panel we show the binding potential for εw = 0.8 ε, also
close to its wetting transition at T∗w = 1.4. In this case, the activation
barrier is an order of magnitude smaller and situated further from
the wall at `B ≈ 10 σ . In the inset we show the binding potential at a
lower temperature which is close to the filling temperature
T∗f ≈ 1.38 for this same system. Notice that an activation barrier is
still present. In all cases the results correspond to a bulk coexistence.

a constraint of fixed film thickness [47]. This function still
exhibits an activation barrier, but this is an order magnitude
smaller than for the εw = ε case and its location near `B ≈

10 σ is far further from the wall. In the inset we show
the binding potential at a lower temperature (at the filling
transition), which we will return to later.

A plot of the contact angles as a function of temperature
for each of the wall strengths is shown in figure 10, where
the intersection with α = π/4 gives, from the thermodynamic
prediction (1), the theoretical value of the filling transition in
a right angle wedge. These are T∗f = 1.075 (or Tf = 0.76 Tc),
T∗f = 1.275 (or Tw = 0.90 Tc) and T∗f = 1.375 (or Tw =

0.97 Tc) for interaction strengths (i)–(iii) respectively.
We now turn our attention to the numerical analysis

of the equilibrium density profiles and phase behaviour
in the wedge geometry. Our first task is to numerically
determine the location of any filling transition and compare

Figure 10. Variation of the contact angle with temperature for three
different wall strengths. The intersection with the dashed line at
θ = 45◦ is the thermodynamic prediction for the filling temperature
for each system.

with the above theoretical predictions for the three different
wall–fluid interaction strengths. To this end we sit at bulk
coexistence µ = µsat and minimize the grand potential �[ρ]
to a global or local minimum �, starting from two different
initial configurations: a high density liquid and a low density
vapour. If the system exhibits a first-order filling transition
then we can expect that in the vicinity of Tf these initial
configurations will converge to different equilibrium profiles,
corresponding to microscopic and macroscopic adsorptions of
liquid, respectively. These will have identical grand potentials
at the filling transition. Obviously finite-size constraints limit
the size of the macroscopic liquid layer, the size of which
scales with the box area L2. If, on the other hand, the filling
transition is continuous there will be a unique equilibrium
phase. In this case a plot of the total adsorption versus
T will have no hysteresis loop but should still show a
dramatic continuous increase near Tf. Plots of the excess
grand potential �ex

= � + pV per unit length of the wedge
obtained in this manner are shown in figures 11 and 12.
For the two strongest interaction strengths there are two
separate branches of the free-energy, indicating a first-order
filling transition. The crossing of the free energies yields
filling temperatures T∗f = 1.085 and T∗f = 1.278 for εw =

1.2 ε and εw = ε, respectively, which are close to the
theoretical predictions obtained from θ(Tf) = π/4. The slight
discrepancy between the values is a consequence of the
finite-size limitations of our numerical analysis. In figure 13
we show the coexisting density profiles, corresponding to
microscopic (lower panel) and macroscopic (upper panel)
states, at the filling temperature for wall interaction strength
εw = ε. Notice that the macroscopic meniscus is nearly flat,
as it should be since we are at bulk coexistence and the
interface must meet the walls at a contact angle equal to π/4.
Notice that for the microscopic configuration the thickness
`w of the adsorbed layer is larger than the wetting layer
thickness (far from the apex) but of the same order as the
distance of the activation barrier `B for the corresponding
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Figure 11. Location of a first-order filling transition from the
crossing of two separate free energy branches corresponding to
microscopic and macroscopic adsorptions in the wedge geometry
for εw/ε = 1.2. Here V is the available volume, which is the length
of the wedge multiplied by (L− σ)2.

Figure 12. Location of a first-order filling transition from the
crossing of two separate free energy branches corresponding to
microscopic and macroscopic adsorptions in the wedge geometry
for εw = ε.

binding potential for the wetting transition, see inset of
figure 9. Both microscopic and macroscopic profiles show
layering behaviour close to the apex. Also shown in figure 14
is a metastable configuration for T < Tf, representing a
macroscopic adsorption of liquid with a concave meniscus.
This curvature is necessary in order that the meniscus meets
each wall at the correct contact angle.

Most interestingly, for the weakest wall strength εw =

0.8 ε we have found that there is only a single branch to the
equilibrium grand potential, i.e. both high and low density
initial coverages converge to a unique equilibrium phase. This
means that either the filling transition is continuous (critical),
or so weakly first-order that the present L × L finite-size
grid is not large enough to see the jump in the adsorption.
A plot of the adsorption 0 =

∫∫
dxdz(ρ(x, z) − ρb) versus T

is shown in figure 15. As is evident, there is indeed a dramatic
but continuous increase in the adsorption near the anticipated
T∗f ≈ 1.38, indicating that a continuous filling or possibly

Figure 13. Coexisting density profiles for wedge–vapour interfaces
at a first-order filling transition for wall strength εw = ε
(corresponding to T∗f = 1.28). The upper panel shows the
macroscopic configuration, in which the meniscus is far from the
wall and meets each wall at the contact angle. The lower panel
shows the coexisting microscopic configuration, in which the
interface is tightly bound to the apex.

Figure 14. Example of a metastable configuration corresponding to
a macroscopic meniscus with negative curvature at a temperature
T∗ = 1.2 which is below the filling temperature (T∗f = 1.28).

finite-size rounded weakly first-order filling transition is
taking place. Strong evidence that this a genuine critical
filling transition comes from two sources. Firstly, consider
the unique density profile at T = Tf shown in figure 16.
The thickness of the meniscus `w is much larger than the
length-scale `B ≈ 10 σ associated with the wetting activation
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Figure 15. Plot of the adsorption (in reduces units) as a function of
temperature for the wedge model with the weakest wall interaction,
εw = 0.8 ε. The adsorption increases sharply but continuously in the
vicinity of the filling temperature, indicating that the transition is
continuous.

Figure 16. Density profile for the weakest wall interaction,
εw = 0.8 ε, near the filling temperature.

barrier. If finite-size rounding was an issue we would expect
that `w < `B, or at least that these length-scales would be
comparable. We also emphasize here that even though we
are quite close to the bulk critical temperature (recall, Tf ≈

0.975 Tc), the bulk (liquid) correlation length is still of the
order of σ and is much smaller than the overall meniscus
size. This is also clear in figure 16, where the width of the
interface separating liquid from gas is much smaller than `w.
This clearly indicates that the mean-field character of our DFT
should not play any significant role regarding the location
and the order of the transition. Secondly, we can compare
with effective Hamiltonian theory for the meniscus thickness
`w and adsorption at critical filling. This predicts that, in an
infinite wedge, these diverge as [28]

`w ∼ (Tf − T)−βw , 0 ∼ (Tf − T)−2βw, (13)

where the adsorption is simply the square of the film
thickness owing to the triangular shape of the meniscus.
The mean-field value of the critical exponent βw = 1/p and,
incidentally, is not altered by interfacial fluctuation effects

Figure 17. Log–log plot of the adsorption versus the scaling field
Tf − T for the weakest wall interaction strength, εw = 0.8 ε. The
slope of the straight line is −0.92.

in three dimensions provided p < 4, see [28]. In our model
p = 2, so we should expect that if the filling transition
is continuous the adsorption increases as 0 ∼ (Tf − T)−1

on approaching the filling temperature. In our final figure
(figure 17) we show a log–log plot for the growth of the
adsorption for T < Tf, in which we use the numerical estimate
of the filling temperature T∗f = 1.38. From this we estimate
βw = 0.46 ± 0.05, which is in a reasonably good agreement
with the effective Hamiltonian prediction.

4. Discussion

In this paper we have presented our results of numerical
studies of complete, first-order and critical filling transitions
in a rectangular wedge using a non-local density functional
theory. To the best of our knowledge this is the first
time that filling transitions have been studied using modern
microscopic DFT and our work complements earlier effective
Hamiltonian, square gradient and simulation studies. For
the case of complete filling the results of the DFT confirm
effective predictions for leading and next-to-leading order
critical exponents and amplitudes to a remarkable accuracy.
However, we believe our most important finding is that close
to the bulk critical temperature the wedge filling transition
is continuous even though the walls themselves exhibit
first-order wetting. Crucially this occurs in the presence
of realistic long-ranged wall–fluid interactions (and for a
cut-off LJ fluid), which is the system that is most accessible
experimentally. To end our paper we discuss this in more
depth.

The change from first-order to critical filling occurs in
the vicinity of the bulk critical temperature. In this region
we can reasonably expect that universal properties arise due
to the scaling behaviour associated with bulk and surface
criticality. In fact, for systems with short-ranged forces there
are predictions for the universal shift of Tw and Tf from Tc
which depend only on the half opening angle ψ = π/2−α as
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follows [34]:

Tc − Tw

Tc − Tf
= R3(ψ)

1/11 , (14)

where the universal amplitude Rd(ψ) depends only on the
dimension d and the tilt angle and 11 is the surface gap
exponent [48]. At mean-field level, and for a right angle
wedge the prediction of Landau square-gradient theory is
R3(π/4) = 0.518 (and recall 11 = 1/2). If we naively
assume that this scaling holds for our model, which recall
has long-ranged wall–fluid interactions, this predicts that the
filling temperature for the wall strength εw = 0.8 ε is T∗f =
1.364. This is remarkably close to our numerical value T∗f =
1.375 and is indicative that some scaling is present.

Finally, we mention that a possible change in the order
of the filling transition had been predicted by effective
Hamiltonian theory [28]. However, the mechanism originally
proposed for this does not quite apply to the present DFT
model. In the original effective Hamiltonian description,
which applied only to rather shallow wedges, the mechanism
arose because it was noted that the filling temperature Tf
may be below the surface spinodal temperature Tspin at which
the activation barrier in the wetting binding potential is first
formed. However, this mechanism is only possible if the
wall–fluid and fluid–fluid forces have the same range, since
it requires that the Hamaker constant controlling the large
distance algebraic decay of W(`) changes sign at Tspin. In
the present model, with cut-off LJ fluid–fluid forces and
long-ranged wall–fluid forces, no such spinodal temperature
exists and an activation is always present. This is shown
explicitly in the inset of figure 9, which shows the binding
potential at the filling temperature Tf. From this we can
conclude that the change in order is a more general feature
of filling transitions that occur close to the bulk critical
temperature, where the ‘short-range’ properties occurring on
the scale of the large bulk correlation length can compete
with long-range dispersion forces. This is in keeping with
the general expectation that long-ranged forces become less
important near the bulk critical point. The observation in our
model system that critical wedge filling is possible even if
the walls exhibit first-order wetting, is encouraging that such
continuous interfacial transitions can be seen experimentally.
This would be particularly interesting, because fluctuation
effects are far stronger for critical filling than for critical
wetting. For example, for the present case of long-ranged
forces (with p = 2), for which `w ≈ (Tf − T)−1/2, the
interfacial roughness (rms width) is predicted to diverge,
due to capillary-wave-like fluctuations, with a universal
power-law ξ⊥ ≈ (Tf − T)−1/4 which is independent of the
range of the forces [28]. Of course such fluctuation induced
interfacial roughness is not present in our mean-field DFT
and in reality the density profiles ρ(x, z) will be broader
near the interface than calculated herein. However, this is a
minor defect of the mean-field DFT analysis, which should
be completely reliable as regards the location of the filling
transition, its order and also the determination of the exponent
βw.

We believe our predictions are testable in the laboratory.
For the case of complete wetting there have already been

impressive experiments by Mistura and co-workers [49],
who have verified the leading power-law and amplitude
in equation (11). Repeating these experiments with more
precisely manufactured wedges would allow one to look at the
more subtle next-to-leading order behaviour, similar to that
described here. Unfortunately, the materials used so far have
precluded the study of fluids which exhibit partial wetting,
which is of course necessary to see the filling transition. At
the moment it appears more likely to us that this transition can
be seen at the micron scale using colloid polymer mixtures,
similar to studies of wetting and capillary condensation [50].

Our work can be extended in a number of ways.
Obviously larger system sizes with finer grids would allow
us to probe the critical regime for continuous filling with
greater accuracy. Varying the tilt angle, interaction strengths
and range of the forces would also be very informative
and would allow us to see whether the filling transitions
for the stronger potentials, where Tf is further from Tc, are
turned continuous. Generalizing our analysis to asymmetric
wedges with competing potentials at each wall would also
be straightforward. Finally, at low temperatures it would be
very interesting to see if one could induce corner crystalline
structure near the wedge apex and defects due to the
competition between the lattice directors and the geometrical
confinement. We hope that this work stimulates further 2D
and 3D DFT studies of adsorption at structured surfaces and
experimental investigations of wedge filling.
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1. Introduction

It is well known that the adsorption properties of solid sub-
strates strongly depend on the substrate geometry. In particular, 
the nature of pertinent surface phase transitions on non-planar 
substrates may qualitatively differ from those on planar walls. 
The surface geometry can have a profound influence on the 
location of the phase transitions, their order, and the values 
of the critical exponents, and it can even induce entirely new 
interfacial phase transitions and fluctuation effects [1–8]. 
Recent theoretical studies also have revealed new examples of 
surprising connections between adsorption in different geom-
etries [9, 10]. These findings are not only interesting in their 
own rights but also have useful and far-reaching consequences 
for applications that require the design of modified surfaces, 
whose adsorption properties can be sensitively controlled at 
the nanoscale. Indeed, recent advances in nano-lithography 
have opened up an entirely new area of research with exciting 

implications for modern technologies [11–13] that address 
the properties of fluids that are geometrically constrained to 
a molecular scale. Examples of the products of this sort of 
innovation include self-cleaning materials [14], responsive 
polymer brushes [15] or ‘lab-on-a-chip’ devices [16].

A prerequisite to these applications is a detailed descrip-
tion of fluid adsorption on structures of the most fundamental 
non-planar geometries. This paper focuses on the adsorption 
of a simple fluid near a substrate edge. In the simplest case of 
a single edge, the substrate geometry can be characterised by 
an internal angle ϕ < π, where two semi-infinite planes meet.
This (convex) object should be distinguished from a (concave) 
linear wedge model, because the fluid behaviours on these two 
substrates are strikingly different. While the wedge geometry 
promotes fluid condensation and shifts the temperature where 
macroscopic coverage occurs below the wetting temperature 
Tw of a corresponding planar wall [5, 6], the presence of the 
substrate edge implies that the height of the liquid–vapour 
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interface above the edge ℓE remains finite at any subcritical 
temperature, even when the interface far from the edge ℓπ 
unbinds from the wall. This suppression occurs because of 
the surface free energy cost, that must be paid for interface 
bending above the edge, similarly to adsorption on a spherical 
wall where the growth of an adsorbed film is restricted by the 
Laplace pressure arising from the curved liquid–vapour inter-
face [17, 18].

A proper understanding of how the presence of the edge 
affects the wetting properties of the wall is important to 
obtain a comprehensive picture of adsorption on structured 
(or sculpted) surfaces. Recently, theoretical and experimental 
studies have shown that a planar wall etched with an array 
of rectangular grooves exhibits more adsorption regimes than 
the simple flat wall [10], [19–24]. A recent density functional 
(DFT) study [24] revealed that hydrophilic grooved surfaces 
experience the wetting transition at temperature T > Tw, which 
is in contrast with the predictions based on macroscopic 
approaches, such as the Wenzel model, predicting that sur-
face corrugation promotes the surface's wetting properties 
[12]. Furthermore, the regimes that are characterised by the 
formation of a laterally inhomogeneous film with the interface 
pinned at the groove edges and followed by a discontinuous 
unbending [25] of the interface have been observed. In these 
cases, the presence of the groove edges plays a crucial role 
and the explanation of these phenomena is incomplete without 
our knowledge of what occurs in the immediate vicinity of an 
isolated edge.

A study by Parry et al [26] provides a description of the 
adsorption near an edge that focuses on the limit of ϕ → π and
shows a connection between complete wetting near a shallow 
edge and critical wetting on a planar wall. Here, motivated 
by the previously mentioned studies of rectangular grooves, 
we adopt a model with a long-range wall-fluid potential and 
fix the internal angle to ϕ  =  π/2. We seek for the depend-
ence of the local height of the adsorbed liquid film above 
the edge ℓE on the chemical potential offset from saturation  

δμ ≡ μs(T)−μ when the bulk coexistence is approached from
below, δμ  →  0+. To this end, we consider two substrate
models, as schematically pictured in figure 1. Using Model 1, 
the effective Hamiltonian theory reveals that

Oδμ δμ δμ− +βℓ (0) ℓ ( ) ~ ( ) ,E E E
co

 (1)

as δμ  →  0+ with a non-universal critical exponent
β = +p p/( 1)E

co , where the parameter p characterises a decay 
of the binding potential far from the edge W (ℓ) ∼ ℓ−p (for
δμ = 0). In the most relevant case of (3D) non-retarded van der
Waals forces p = 2, whence β = 2 / 3E

co . In contrast, the next-
to-leading term in equation (1) scales linearly with δμ, regard-
less of the nature of the molecular interaction. We confirm this 
prediction by the numerical solution of a microscopic DFT. 
However, for small δμ, the requirements on the system size
become rather challenging. Therefore, as an alternative, we also 
consider Model 2 with a finite wall of a square cross-section 
with a linear dimension L and use scaling arguments to relate 
the height of the interface above the edge ℓ(L) with the wall size:

O− +− −( )L L Lℓ ℓ ( ) ~ ,E E
1 3

2 (2)

where all powers now depend on the molecular model and 
can be expressed in terms of the critical exponents char-
acterising wetting on a planar wall. This prediction is also 
confirmed by the DFT, whose implementation for Model 2 is 
rather straightforward.

We conclude this section by briefly recalling some proper-
ties of complete wetting on a planar wall for 3D systems with 
long-range forces (see, e.g., [27]) that are relevant for our pur-
poses. We fix the temperature to a value between the wetting 
temperature Tw and the bulk critical temperature Tc and con-
sider the limit δμ → 0+. The mean thickness of the wetting layer 
ℓπ(δμ) is driven by the effective interaction (binding potential)
between the wall surface and the liquid–vapour interface:

δμ ρ= Δ + + ⋯−W B(ℓ) ℓ ℓ p (3)

Figure 1. Left: a sketch of model 1 in the x–z projection. The liquid film thickness above the edge of the substrate is ℓE, while far away 
from the edge the film thickness approaches the value ℓπ corresponding to an adsorbed layer above a planar wall. Right: a sketch of model 
2 in the x–z projection. The liquid film thickness above each of the four edges of the substrate is ℓE(L), which now depends on the linear 
dimension of the wall L. In both cases, the wall is assumed to be infinitely long along the Cartesian y-coordinate.
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where B > 0 is the Hamaker constant and Δρ = ρl − ρv is the
difference between the liquid density and the vapour density 
at the bulk coexistence. The global minimum of W (ℓ) is at the 
finite value of ℓπ for any δμ > 0, but as δμ → 0+, ℓπ continu-
ously diverges. The singularity of W (ℓπ) at δμ = 0 can be char-
acterised by the set of critical exponents, in particular [28]:

δμ β = +π
β− pℓ ~ , 1 / ( 1),s

s
coco

 (4)

ξ δμ ν~ = + +ν− p p, ( 2) / (2 2) ,coco
 (5)

δμ α~ = + +α−f p p, ( 2) / ( 1) ,sing
2

s
cos

co

 (6)

where ξ‖ is the transverse correlation length, and fsing denotes
a singular part of the surface free energy. We recall that the 
upper critical dimension for complete wetting is du  <  3 for 
any finite value of p, so that the expressions (4)–(6) are also 
valid beyond the mean-field approximation in our three- 
dimensional model [28].

The remainder of the paper is organised as follows. In sec-
tion 2, we describe our DFT model. An effective Hamiltonian 
theory and the finite-size scaling arguments are presented in  
section 3, and their predictions are compared with the DFT in 
section 4. The results are summarised and discussed in section 5.

2. Density functional theory

In the classical density functional theory [29], the equilibrium 
density profile minimises the grand potential functional

F ∫ρ ρ ρ μ= + −Vr r rΩ[ ] [ ] d ( ) [ ( ) ], (7)

where μ is the chemical potential, and V r( ) is the external 
potential. The intrinsic free energy functional F ρ[ ] can be sep-
arated into an exact ideal gas contribution and an excess part:

∫ρ β ρ ρ ρ= Λ − +−F F[ ]r r r[ ] d ( ) ln( ( ) ) 1 [ ] ,1 3
ex (8)

where Λ is the thermal de Broglie wavelength and β = 1/kBT
is the inverse temperature. As is common in the modern DFT 
approaches, the excess part is modelled as a sum of hard-
sphere and attractive contributions where the latter is treated 
in a simple mean-field fashion:

F F ∫∫ρ ρ ρ ρ= + ′ ′ − ′ur r r r r r[ ] [ ]
1

2
d d ( ) ( ) ( ) ,ex hs a

 
(9)

where ua(r) is the attractive part of the fluid-fluid interaction 
potential.

Minimisation of (7) leads to an Euler–Lagrange equation

F ∫δ ρ
δρ

ρ μ+ + ′ ′ − ′ =V ur
r

r r r r( )
[ ]

( )
d ( ) ( ) .hs

a (10)

The fluid atoms are assumed to interact with one another 
via the truncated (i.e., short-ranged) and non-shifted Lennard-
Jones-like potential

⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

σ

ε σ σ=

<

− < <

>

u r

r

r
r r

r r

( )

0; ,

4 ; ,

0; ,

a

6

c

c

 (11)

which is cut-off at rc  =  2.5σ, where σ is the hard-sphere
diameter.

The hard-sphere part of the excess free energy is approxi-
mated using the FMT functional [30],

F ∫ρ
β

= Φ αnr[ ]
1

d ({ }),hs (12)

which accurately takes into account the short-range correla-
tions between fluid particles. From the number of various 
FMT versions (see, e.g., [31]), we have adopted the original 
Rosenfeld theory.

The wall atoms, which are assumed to be uniformly dis-
tributed with a density of ρw, interact with the fluid particles
via the Lennard–Jones-like potential

ϕ ε σ
σ

= −
+

r
r

( )
4

( )
,w

6

2 2 3 (13)

where r is the distance between the fluid and the wall atoms.
In the following, two substrate models (walls) are consid-

ered. Within Model 1, the external potential V r( ) is induced 
by two semi-infinite planes that meet at an angle ϕ = π/2 as
sketched in figure 1 (left). The wall is assumed to be impen-
etrable for the fluid particles, so that

⎧
⎨
⎩

=
∞ > ∧ <
∼V x z

x z

V x z
( , )

; 0 0,

( , ) ; otherwise,
1

1
(14)

which defines the attractive part of the wall potential 
∼
V x z( , )1 .

Assuming the translation invariance of the system along
the edge, 

∼
V1 is given by integrating over the entire depth of

the wall:

∫ ∫ ∫ρ

ϕ

= ′ ′ ′

− ′ + ′ + − ′

∼ ∞

−∞

∞

−∞

( )
V x z x y z

x x y z z

( , ) d d d

( ) ( ) ,

1 w
0

0

2 2 2
(15)

which upon substitution from equation (13), results in

πε σ ρ π
σ

σ σ

σ σ

σ σ σ

= − +

+
− + − −

+ +

− −
+ +

∼

σ

σ

+ +
+ +

V x z
x

x z xz z x

x z

z xz

x z

( , )
1

4
2 arctan

2 ( )

( ) ( )

2 arctan 2 arctan .

w

x z

x z

1 w
3

w

2 2

2 2 2 2

2 2 2

2 2 2

2 2 2

⎜ ⎟

⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫

⎬
⎪⎪

⎭
⎪
⎪

(16)

This expression can be compared with the potential of the 
planar wall based on the same molecular interaction:

πε ρ σ
π σ σ σ

σ

>

= −
+ − − +

+

π

σ( )
V z

z z z

z

( 0)

1

2

( ) 2 2 arctan ( )
,

z

w w
3

2 2 2 2

2 2
(17)
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which has an expected z−3 asymptotic behaviour:

Oσ πε ρ σ≫ ≈− +π
− −V z z z( )

2

3
( ) .w w

6 3 5 (18)

Within Model 2, the substrate remains infinite along 
the y axis, but the two other dimensions are a finite value  
L as sketched in figure 1 (right). In this case, the substrate 
potential is

⎧
⎨
⎩

=
∞ < ∧ <
͠V x z

x L z L

V x z
( , )

; / 2 / 2,

( , ) ; otherwise,
2

2
(19)

with

∫ ∫ ∫ρ

ϕ

= ′ ′ ′

− ′ + ′ + − ′

͠
− −∞

∞

−

( )
V x z x y z

x x y z z

( , ) d d d

( ) ( ) ,

L

L

L

L

2 w
/2

/2

/2

/2

2 2 2

 (20)

leading to

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

∫π ε σ ρ= − ′

Ψ ′ − −Ψ ′ − −

͠
− −

−
V x z x

x
L

z x
L

z

( , )
2

d

,
2

,
2

,

L x

L x

2 w
6

w
/2

/2

(21)

where 
σ

σ σ
Ψ = + +

+ + +
x z

z x z

x x z
( , ) (3 2 3 )

( ) ( )

2 2 2

2 2 2 2 2 2
3
2

, which can be 

solved analytically.
Using the external potentials Vi(x, z), i = 1, 2, the Euler–

Lagrange equations (10) are numerically solved for the equi-
librium profile ρ(x, z) on a 2D Cartesian grid with a spacing
of 0.05σ, and the corresponding integrals are performed
using a Gaussian quadrature as described in [24]. To model 
the coupling of the system with the bulk reservoir, we impose 
the following boundary conditions: For Model 1, we set  
ρ(Lc, z > 0) = ρπ(z) and ρ(x < 0, −Lc) = ρπ(−x), where Lc is a cut-
off of the wall, and ρπ(z) is the equilibrium density profile on
a corresponding planar wall. For each bulk density (chemical 
potential), the grand potential minimisation is performed for 
different values of Lc to check possible finite-size effect on the 
density distribution near the edge. For Model 2, we simply fix 
the density along the boundary of the system to the value of the 
vapour bulk density ρb.

3. Interface Hamiltonian theory and finite
size scaling

From a more phenomenological perspective, the adsorp-
tion near an edge can also be studied using the interfacial 
Hamiltonian model [6, 26]:

⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥∫ γ= +∼ ∼

∼
∼H x

f x

x
W x[ℓ] d

2

d ( )

d
(ℓ( ) ) .

2

(22)

The Hamiltonian is now expressed in a new Cartesian coor-
dinate system ∼∼ ∼x y z{ , , }, which is related to the original
system {x, y, z} by a rotation about the y axis through a tilt 
angle α = (π−ϕ)/2 (see figure 2); thus, the height of the wall
is α= −∼ ∼z xtan( )w . Bearing in mind that for a rectangular

wedge α = π/4, the following analysis leaves the tilt angle
unspecified. The function α= −∼ ∼ ∼f x x x( ) ℓ( ) tan( )  denotes
the local height of the liquid-gas interface relative to the 
horizontal, and ∼xℓ( ) is the local film thickness measured ver-
tically. The first term in equation (22) penalises the increase 
of the liquid–vapour surface because of its non-planar shape, 
where γ is the corresponding surface tension, while W (ℓ) is
the planar binding potential describing the interaction of the 
interface and the wall. Since the translation invariance of ℓ 
along the y axis is assumed, H[l] denotes the Hamiltonian 
of the system per unit length. We notice that W (ℓ) can be 
obtained from the DFT as a coarse-grained excess (over 
bulk) grand potential (7) using a sharp-kink approximation 
to the density profile [27]. In a mean-field approximation, 
the Hamiltonian (22) is simply minimised to yield the Euler-
Lagrange equation

γ = ∂
∂

∼ ∼
x

W x
ℓ̈ ( )

(ℓ( ) )

ℓ
, (23)

subject to the boundary conditions α=+ℓ̇ (0 ) tan  and
α→ =∼

π∞∼ xlim ℓ( ) ℓ secx , where ℓπ is the equilibrium film

thickness on a planar wall, and ≡
∼

∼
x

x
ℓ̇

dℓ( )

d
 (note that = fℓ̈ ¨ ).

The Euler-Lagrange equation has a first integral, which pro-
vides an implicit equation for the height of the interface 
above the edge ℓE:

γ α α= − πW W
tan

2
(ℓ ) (ℓ sec ) ,

2

E (24)

which can be solved solely from knowledge of the wetting 
properties of the corresponding planar wall (α = 0).

At the bulk coexistence, ℓπ → ∞ for T > Tw, thus the last
term in equation (24) vanishes. Then the height of the inter-
face above the edge acquires a simple form (cf. [26]):

δμ
γ α

≡ = = B
ℓ ℓ ( 0)

2

tan
,E

0
E 2 (25)

Figure 2. A sketch of the substrate model that was used by the 
interface Hamiltonian theory. The geometry of the substrate is 
identical to that of model 1, so that the tilt angle α = π/4. However,
the coordinate system is now different, as depicted.
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where B is the Hamaker constant defined by equation (3). 
Because the fluid-fluid interaction is short-ranged, the Hamaker 
constant can be obtained from equation (18):

∫Δρ= − = +͠π
∞

−W zV z
B

(ℓ) d ( )
ℓ

(ℓ ) ,
ℓ 2

4O (26)

with 
π ε ρ σ ρ= ΔB
3

ww w
6 .

We are now concerned with the limit δμ → 0+. Substituting
δ= +ℓ ℓ ℓE E

0  into equation (24) and introducing the abbrevia-
tion A = γ tan 2(α)/2, one obtains

δμ ρ δ α= Δ + − − +π
( ) ( )

A
B B

Wℓ
ℓ

2

ℓ
ℓ (ℓ sec ) H.O.T.E

0

E
0 2

E
0 3 

(27)

Using (6) and (25), it follows that

δ δμ δμ− +α−C Cℓ~ ,1
2

2
s
co

 (28)

as δμ  →  0 and C1, C2 >  0. Finally, upon substituting αs
co

from equation (6), the exponent βE
co defined in equation

(1) becomes β = +p p/ ( 1)E
co . More specifically, for van der

Waals forces (p = 2):

δ δμ δμ δμ= − + + ( )C Cℓ .1
2
3 2

4
3O (29)

In terms of Model 2, the asymptotic result (28) must be 
modified due to the finiteness of the linear dimension of the 
wall L competing with the correlation length ξ‖. Therefore,
recalling the finite-size scaling arguments (see, e.g., [32]), the 
result of equation (28) valid for L → ∞ becomes rescaled with
a scaling function F:

⎜ ⎜ ⎟⎟

⎜ ⎟

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎛
⎝

⎞
⎠

δ δμ δμ

δμ δμ δμ δμ

∝ +

∝ +

α
ξ ξ

α ν ν

−

−

O

O

( )L F F

F L F L

ℓ ( )

( ) ( )

E
L L2

2

s
co

s
co co co (30)

which must remain finite as  δμ → 0. Therefore,

O

O

δ ∝ +

∝ +

α
ν

−
−

− −

ν( )L L L

L L

ℓ ( )

( )

E

sco 2
co

1 3/2

1
co

(31)

where the values α = 4 / 3s
co and ν = 2 / 3co  were substituted in

the final expression.

4. Numerical results

We now examine the functional forms of (29) and (30) by a 
comparison with the numerical solution of the microscopic 
DFT, as described in section 2. We adopt σ and ε as the length
and energy units, respectively, and we fix the strength of the 
wall potential to εw = 0.4ε, for which the wetting temperature
is kBTw/ε = 1.25, which is sufficiently below the bulk critical
temperature kBTc/ε = 1.41. We begin with the case of a semi-
infinite wall as described by Model 1. For a given value of δμ,
we first determine the equilibrium density profile ρπ(z) for a
corresponding system with a planar wall, which constitutes a 
boundary condition for the system with a single edge. For the 
sake of numerical consistency, the profile ρπ(z), albeit varying
only in one dimension, is determined on the same two-dimen-
sional grid as used for the edge. This also provides a good test 
of our numerics, since the difference between the planar den-
sity profile that is constructed from a 2D calculation proved 
not to appreciably differ from that obtained from a standard 

Figure 3. Density profiles ρ(x, z) for a fluid at the interface between a semi-infinite rectangular substrate and a bulk vapour of temperature
kBT/ε = 1.35 and undersaturation (ρv − ρb)σ3 (from left to right): (a) 10−3, (b) 10−4 and (c) 2 · 10−5.

Figure 4. A log–log plot of the dependence of the film thickness above 
the edge relative to the saturation value, δ = −ℓ ℓ ℓE E

0, on the chemical
potential offset from the coexistence δμ for kBT/ε = 1.35. The symbols
represent the DFT results as obtained by model 1. The fitting line 
has a gradient of 3/2, suggesting δℓ ∼ δμ2/3, which is consistent
with equation (29). In the inset, a log–log plot of the dependence of 
δℓ′ = δℓ + C1δμ2/3 on δμ is shown. The fitting line has a gradient of 1,
which supports the linear form of the second-order correction as 
predicted by the effective Hamiltonian theory, see equation (29).
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1D treatment. Moreover, the numerical accuracy of the full 
2D DFT code, described in details in [24], was verified by 
comparison of the DFT results with the exact pressure sum-
rule [33]. Then we set the boundary conditions such that ρ(Lc,
z > 0) = ρπ(z) and ρ(x < 0, −Lc) = ρπ(−x), where the value of
the wall cut-off Lc ranges from Lc = 40σ to Lc = 100σ to verify
that the system size does not affect ℓE.

The representative samples of the equilibrium density pro-
files are shown in figure 3. The height of the fluid interface 
above the edge is defined as follows:

∫ρ
ρ ρ=

Δ
− −

−∞
( )x x xℓ

2
d ( , ) ,E

0

b (32)

where ρb is the density of the gas reservoir. Equation (32)
allows us to compare the DFT results with the prediction 
based on the interface Hamiltonian theory as given by (29). 
The comparison that is displayed in figure 4 reveals a consis-
tency between the two approaches and verifies the values of 
the exponents of the two first terms in equation (29).

Next, we consider Model 2 and examine the validity of the 
expansion (30). In the DFT, the density at the boundary of the 
system is fixed to the value of the bulk density of the saturated 
vapour, ρb  =  ρv, and the linear dimension of the box size is
chosen from a range between 80σ and 120σ. Varying the wall
size L, we find the equilibrium state of each system as shown in 
figure 5. In figure 6, we display a log-log plot of the height of 
the interface above the edge ℓE versus the wall size L. The values 
of ℓE are again determined using formula equation (31), where 
the upper limit is −Lc/2. The fitted line shows a good agreement 
between the DFT and the analytic expression (30), and for the 
region of L > 20σ, the first-order term in equation (30) appears to
dominate. The consistency between the gradient of the fitted line 
and the predicted value −1 is within an error of 0.2%.

5. Conclusion

In this work, we used an interfacial Hamiltonian theory and a 
fundamental-measure DFT to study the fluid adsorption near 
a rectangular edge of a substrate interacting with the fluid 
via van der Waals forces. When the two-phase bulk coexis-
tence is approached from below at a fixed temperature, i.e., 
the deviation of the chemical potential from the coexistence 
δμ  =  μs − μ  →  0+, macroscopically thick films are formed

at the wall far away from the edge. Because these asymp-
totic interfaces must eventually merge to form a meniscus, 
the local height of the interface above the edge ℓE remains 
finite and indeed rather small even at the bulk coexistence. 
In this paper, we have shown that for an infinitely long sub-
strate, ℓE(δμ) approaches the coexistence value according
to δ δμ δμ= − βℓ ℓ (0) ℓ ( ) ~E E E

co
 as δμ  →  0+. The exponent

depends on the range of the molecular interaction, such that 
β = +p p/ ( 1)E

co , where p defines the asymptotic decay of the 
binding potential W (ℓ) ∼ ℓ−p. The second-order correction
to δℓ is linear in δμ regardless of the molecular interaction.
Both findings were verified by the DFT numerical calcula-
tions. We also showed that if the substrate is of finite size L,  
the previous result corresponds to the scaling of ℓE as 

O− ∝ +− −( )L L Lℓ ℓ ( )E E
1 3

2 , as also confirmed by the DFT. We 

conclude with two remarks about the generality of these find-
ings. First, throughout this study, the substrate geometry was 
maintained fixed such that the substrate edge was rectangular. 
This geometry was selected because the model of a right-
angle edge appears important considering its connection 
with other fundamental substrate models as discussed in the 

Figure 5. Examples of density profiles ρ(x, z) of a fluid at the interface between a bulk saturated vapour at temperature kBT = 1.35ε and a
rectangular substrate of the size (from left to right): (a) L = 20σ, (b) L = 40σ and (c) L = 60σ.

Figure 6. A log–log plot of the dependence of the meniscus height 
above the edge on the linear dimension of the wall of size L. 
The symbols represent the numerical DFT data corresponding to 
systems with saturated bulk vapour at kBT = 1.35ε. The gradient of
the straight line fit is −1.002 compared to a predicted gradient of 
−1, see equation (31).
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introduction. Technically, the external potential for the rect-
angular geometry remains rather simple, which facilitates 
the numerics in the DFT, and the application of the finite-
size arguments is straightforward. Nevertheless, we believe 
that the result given by equation (1) is valid for an arbitrary 
internal angle, since the value of ϕ was not assumed in the
derivation of (1). Second, because the edge geometry does 
not induce any new divergence compared to a planar wall, the 
upper critical dimension du corresponding to complete wet-
ting must be identical for the two substrates. Since du < 3 for 
a finite p for a planar wall [28], our mean-field results remain 
unaffected by the capillary-wave fluctuations.
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A simple fluid, in a microscopic capillary capped at one end, is studied by means of fundamental
measure density functional. The model represents a single, infinitely long nanogroove with long-
range wall-fluid attractive (dispersion) forces. It is shown that the presence or absence of hysteresis
in adsorption isotherms is determined by wetting properties of the wall as follows: Above wetting
temperature, Tw, appropriate to a single wall of the groove, the adsorption is a continuous pro-
cess corresponding to a rise of a meniscus from the capped to the open end of the groove. For a
sufficiently deep capillary, the meniscus rise is shown to be a steep, yet continuous process tak-
ing place near the capillary condensation of a corresponding slit. However, for temperatures lower
than Tw the condensation exhibits a first-order transition accompanied by hysteresis of the adsorp-
tion isotherm. Finally, it is shown that hysteresis may occur even for T > Tw as a consequence
of prewetting on the side and bottom walls of the groove. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4769257]

The interfacial properties of fluids in confining geome-
tries play a key role in several branches of physics and chem-
istry, and are vital for numerous engineering applications, see,
e.g., Ref. 1. Two of the most fundamental interfacial phe-
nomena involve a development of a liquid phase on a sin-
gle wall and between two parallel unbounded walls at a pres-
sure below the phase coexistence. The first, known as com-
plete wetting, is characterized by a growth of an adsorbed liq-
uid film � ∼ �μ−βco

s . Here, � is the film thickness and �μ

is a deviation of the chemical potential from its saturation
value, μsat(T), above a wetting temperature Tw (which cor-
responds to a zero contact angle). The exponent βco

s is non-
universal and depends on the character of molecular inter-
action; in particular, βco

s = 0 for short-ranged forces, while
βco

s = 1/3 when dispersion forces are involved.2 The second
phenomenon, capillary condensation, differs from the previ-
ous one in two respects. First, it is a first-order transition, and,
second, it reflects the finite size shift of the (3D) bulk phase
boundary rather than surface phenomena at the wall. For a
non-retarded van der Waals fluid-wall interaction and in the
limit of a large distance L between the walls, the modified
Kelvin equation3, 4 predicts the undersaturation at which the
capillary condensation occurs at T > Tw

�μ(L) = μsat − μcc(L) ≈ 2γ

(ρl − ρg)(L − 3�)
. (1)

Here, γ is the surface tension of a free liquid-gas interface,
ρ l and ρg are densities of the coexisting bulk phases, and � is
an adsorbed-film thickness. It should be noted that the details
of the intermolecular forces in (1) are reflected only in the
Derjaguin’s correction (the factor of three multiplying the film
thickness).

While adsorption phenomena in systems that can be de-
scribed by a one-dimensional density distribution are rather
well understood, interfacial phenomena on patterned surfaces,

which are characterised by a variation in the density dis-
tribution at least in 2D, have recently become the focus of
considerable interest, see, e.g., Ref. 5. The presence of a
complex distribution of possible substrate topographies in-
troduces a challenging task of relating geometrical and well-
defined substrate models to the thermodynamics of fluid ad-
sorption. Models suited to this task include linear wedges,
cones, grooves, and pitted surfaces to name a few of the
most popular.6–13 The interest in this research has been largely
motivated by new advances in nanofabrication techniques14

which made possible a direct comparison between theoretical
predictions and experiment.15 Apart from the theoretical in-
terest, the adsorption in nanopatterned surfaces has attracted
considerable attention due to its application in micro- and
nanofluidics.16

The purpose of the paper is to give a microscopic de-
scription of the adsorption of a simple fluid in a single, in-
finitely long groove of finite depth. In particular, we wish
to know whether the adsorption isotherms in this model ex-
hibit hysteresis or not. The main conclusion based on earlier
studies11–13, 17, 18 is that in the case of complete wetting the
hysteresis vanishes due to the presence of the bottom wall.
Here, we present a detailed microscopic study of this issue
and discuss the effect of the wetting properties on the charac-
ter of the groove-adsorption.

Consider a semi-infinite solid slab with a uniform
one-body density ρw spanning a domain S = R ⊗ R
⊗ (−∞, Lz), Lz > 0, in 3D Cartesians. Imagine that an in-
finitely long groove of width Lx and depth Lz, occupying a
subspace G = (0, Lx) ⊗ (−∞,∞) ⊗ (0, Lz), is sculpted into
the slab. We assume that the groove is subject to a potential

V (x, z) =
{

0, x < σw or x > Lx − σw or z < σw,

Ṽ (x, z), elsewhere,
(2)
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where Ṽ (x, z) = ρw

∫
W φw(|r − r′|)dr′, W = S \ G, and

φw(r) = −4εw

(σw

r

)6
. (3)

Thus, we assume that the fluid particles interact with the sub-
strate atoms via long-ranged (dispersion) forces characterized
by the parameters εw and σw.

After integration, Ṽ (x, z) can be expressed as follows:

Ṽ (x, z) = V1(z) + V2(x, z) + V2(Lx − x, z), (4)

with V1(z) = 2αw

z3 and V2(x, z) = αw[ψ(x, z) + ψ(x,

Lz − z)], where we have defined αw = − 1
3πεwρwσ 6

w and

ψ(x, z) = 2z4 + x2z2 + 2x4

2x3z3
√

x2 + z2
− 1

z3
.

The fluid-fluid interaction is given by

φ(r) =
⎧⎨
⎩

∞, r < σ ;

−4ε
(

σ
r

)6
, σ < r < rc;

0, r > rc.

(5)

In the following, parameters σ and ε will be used as
length and energy units, respectively, and the cutoff is set to
rc = 2.5 σ . The wall parameters are fixed to σw = σ and
εw = 1.2ε. The wetting temperature for such a model is
Tw = 0.83 Tc, where kBTc/ε = 1.41 is the critical temperature.

Within a classical density functional theory (DFT),19 the
equilibrium density profile is found by minimizing the grand
potential functional

[ρ] = F[ρ] +
∫

drρ(r)[V (r) − μ], (6)

where μ is the chemical potential. F[ρ] is the intrinsic free
energy functional of the one-body density, ρ(r), whose excess
(over ideal gas) part is treated as a perturbation about a hard-
sphere reference fluid

Fex[ρ] = Fhs[ρ] + 1

2

∫
drρ(r)

∫
drρ(r′)φ(|r − r′|).

(7)
The hard sphere part of the excess free energy functional is
approximated by means of the Rosenfeld fundamental mea-
sure theory (FMT)20

Fhs[ρ] = 1

β

∫
dr�({nα}), (8)

where � is a function of the weighted densities {nα(r)}, and
β = 1/kBT. Numerical calculations were carried out on a 2D
grid with mesh 0.05 σ .

One should note that the functional (7) with Fhs[ρ] ob-
tained from the FMT is known to properly account for the
short-ranged correlations that play a significant role in con-
fined systems. In our nanogroove model, one expects strong
packing effects at the vicinity of the walls (as in the case of
common slit models) but additional and particularly strong
inhomogeneities are also expected at the edges of the groove.
Finally, our DFT is thermodynamically consistent and yields
the correct divergence of wetting film thickness for systems
that exhibit dispersion forces. All these properties are of key
importance for a reliable description of the phase behaviour
of the model.

FIG. 1. Meniscus rise in a groove of width Lx = 7 σ (empty symbols) and Lx

= 12 σ (full symbols) as a function of undersaturation (ρb is the bulk density,
ρc is the critical density). The depths of the grooves are from the bottom Lz/σ
= 20, 30, 40, and 50. The curves are the guides to the eye. The vertical lines
denote densities corresponding to capillary condensation in an infinite slit of
a width Lx = 7 σ (dashed) and Lx = 12 σ (dotted). For T = 0.92 Tc.

In the following, we summarize the most-important fea-
tures of adsorption in the model groove that can be inferred
from our DFT calculations. We start by considering tempera-
ture T = 0.92 Tc, which is above the wetting temperature, Tw,
of a corresponding planar wall. In such a case, a meniscus
separating a gas-like and a liquid-like phase is formed near
the bottom end, and continuously rises upon increasing the
chemical potential towards the two-phase coexistence region.
Position of the meniscus can be defined as �(x) ≡ ∫

dz(ρ(x,
z) − ρb)/�ρ, where �ρ = ρ l − ρg is the difference between
liquid and vapour densities at the bulk coexistence. In Fig. 1,
the meniscus rise is shown for grooves of Lx = 12 σ and Lx

= 7 σ and several depths. As is apparent, the groove filling
is a continuous process, which should be contrasted to cap-
illary condensation in infinite slits. Furthermore, as Lz is in-
creased, the meniscus rise becomes steeper and steeper upon
approaching the capillary condensation indicated by the ver-
tical lines. Such results should be compared with a schematic
plot (Fig. 1) in Ref. 13.

Next, consider T = 0.81 Tc, which is slightly below
Tw. Now, the scenario of the fluid adsorption dramatically
changes. As displayed in Fig. 2, the system exhibits a hys-
teresis in adsorption per unit length � = ∫

G ρ(x, z) dx dy, in-
dicating a first order transition resembling capillary conden-
sation in infinite slits. In order to understand the different be-
haviour of the adsorption in the two cases, let us discuss the
mechanism of the groove filling for T > Tw and T < Tw.

For T > Tw, the groove filling can be described with the
help of a simple slab model, as schematized in Fig. 3. Sub-
stituting a sharp-kink approximation for the density profile in
(6), the excess (over the groove completely filled with a liq-
uid) grand potential

ex(�x, �z)

L
= (p+

l − p)(Lx − 2�x)(Lz − �z)
(9)

+ γ [2(Lz − �z) + (Lx − 2�x)] + ρg − ρl

L

∫
Vg

V (r)dr,
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FIG. 2. Adsorption isotherm at temperature T = 0.81 Tc in a groove of width
Lx = 12 σ and depth Lz = 20 σ ; ρb is the bulk density, ρg is the density
of a saturated gas. Full symbols denote the adsorption path, empty symbols
denote the desorption path. The vertical dashed line denotes a density where
two distinct states coexist.

where p+
l is the bulk pressure of the metastable liquid and p

is that of the gas reservoir. When minimized with respect to
�z (minimization with respect to �x reproduces Eq. (1)), one
obtains in the limit of large Lz

�p + A

�4
+ O

(
1/�6

z

) = 0, (10)

where �p = p − p+
l − 2γ

Lx−3�x
and A = 9

8
αw(ρl−ρg )Lx (Lx−2�x )

Lx−3�x
.

Comparing (10) with (1) and assuming that �μ(Lx) is small,
the meniscus rise satisfies (cf. Ref. 13)

�z ∼ (μcc(Lx) − μ)−1/4. (11)

The same conclusion was obtained in Ref. 13. However, in
Ref. 13 the authors ignored the influence of �x, while the con-
nection with Eq. (1) has been made more explicit here. Thus,
for T > Tw one observes a continuous filling of a groove, sim-
ilar to a complete wetting on a planar wall. However, the dif-
ferences with the latter are: (i) the deep groove becomes filled
in the limit μ → μcc(Lx) rather than for μ → μsat; and (ii) the
critical exponent of the groove filling is 1/4, i.e., the process
is somewhat slower than the complete wetting.

In contrast, for T < Tw only a microscopically thin film
is formed on a free wall. Therefore, the system behaves in a
qualitatively same fashion as in an open slit and undergoes a
first-order transition accompanied by pronounced hysteresis.
We emphasize that Eq. (10) cannot be applied anymore in this

FIG. 3. Schematic illustration of the slab model.

FIG. 4. Adsorption isotherm at temperature T = 0.91 Tc in a groove of width
Lx = 50 σ and depth Lz = 50 σ . Black symbols denote the adsorption path,
red symbols denote the desorption path. The lines are the guides to the eye.
The vertical dashed line denotes a density corresponding to the prewetting
transition in an open slit of width L = 50 σ .

regime, since inclusion of higher order terms due to repulsive
interactions would be needed. These would give a global min-
imum of ex at a finite distance of �z.

Finally, let us consider temperature T = 0.91 Tc. Such a
temperature is again above Tw but this time (slightly) lower
than Tcs, the prewetting critical temperature corresponding to
a single wall. It is well known21 that the prewetting transi-
tion between a thin and thick layers on a single wall may
also occur in slits, but the phenomenon is preceded by cap-
illary condensation unless the separation between the walls is
large. It is interesting to examine how prewetting is reflected
in our model groove in the absence of capillary condensa-
tion (above Tw). In Fig. 4, an adsorption isotherm for a model
Lx = Lz = 50 σ is depicted. We observe that the otherwise-
continuous increase in adsorption, due to meniscus rise, ex-
hibits two small van der Walls loops, both slightly below the
bulk density appropriate to prewetting. The first of the two
loops corresponds to a discontinuous jump in the meniscus
height, reflecting prewetting on the bottom wall, cf. Fig. 5
(top). Such a transition is shifted to a higher undersaturation
compared to prewetting on a single wall, ρ

pw
b /ρsat, due to the

influence of the side walls that decreases the potential inside
the groove. The second loop corresponds to prewetting on the
side walls, cf. Fig. 5 (bottom). Again, this transition is shifted
below ρ

pw
b /ρsat but the difference is smaller, since the effect of

the bottom wall on the vertical liquid films is relatively weak
(for large z the potential of the bottom wall decays as z−3).
However, the scenario may be different and the sequence of
the two transitions be reversed if the side walls are stronger
adsorbents than the bottom wall.

In summary, we have employed a mean-field FMT-DFT
to describe adsorption in a single nanogroove with attractive
walls that exhibit a first-order wetting transition. At high tem-
peratures, the results support the picture of the onset of a
liquid phase due to a heterogeneous nucleation on a bottom
wall, followed by a continuous rise of the meniscus separat-
ing vapour-like and liquid-like phases, and no hysteresis in
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FIG. 5. Density distributions (x-z projection) in a groove with attractive walls at temperature T = 0.91 Tc. Lx = Lz = 50 σ . (Top) Coexisting states at a density
ρb/ρg = 0.93695. (Bottom) Coexisting states at a density ρb/ρg = 0.94813.

adsorption appears in this case (see Fig. 1). However, as we
have demonstrated, such a scenario is valid only for tem-
peratures above the wetting temperature of a corresponding
single wall. Below Tw, the adsorption exhibits a first-order
transition (accompanied by hysteresis) as in an open slit.
Thus, Tw, which represents a crossover between partial and
complete wetting for a single wall, represents a boundary
separating first-order and continuous transition regimes for a
nanogroove. Some care is needed, though. For large widths,
a wedge filling may take place at the corners of the groove at
temperatures above a filling temperature, which may cause
a shift of this boundary below Tw; for the model consid-
ered here, the filling temperature (of a rectangular wedge) is
Tf ≈ 0.76 Tc. We have not observed such a phenomenon even
for a groove width as large as Lx = 50 σ , but one cannot
rule out this possibility. Finally, it has been shown that in the
temperature interval (Tw, Tsc), the groove-adsorption isotherm
may exhibit two loops, reminiscent of prewetting. The first (if
the bottom and side walls are adsorbents of the same strength)
corresponds to a jump of the meniscus, which is followed by a
discontinuous thickening of the liquid films on the side walls.

We believe that the observed phenomena will motivate
further experimental measurements and give some contribu-
tion into the long-standing issue of a well-known but still ac-

tively debated phenomenon of hysteretic behaviour of fluid
adsorption in mesoporous media.
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1. Introduction

It is well known that confining a fluid can dramatically alter 
its properties and induce new examples of phase transi-
tions and critical phenomena. Important examples of this 
include wetting, pre-wetting and layering at planar walls 
[1–4], capillary condensation, critical point shifts and inter-
facial delocalization in parallel plate geometries [5–8] and 
filling transitions in wedges [9–13]. A simple extension of 
these idealized geometries, which has received a great deal 
of recent attention, is a groove or capped capillary formed 
by scoring a narrow deep channel or array of channels into 
a solid surface (see figure 1). Capping a capillary strongly 
influences the nature of condensation and evaporation, com-
pared to that occurring in an infinite open capillary-slit, 
because of the presence of a meniscus, which must unbind 
from the groove bottom (top) at condensation (evapora-
tion) [14–24]. The purpose of the present paper is to inves-
tigate the nature of this meniscus unbinding in a model 

microscopic density functional theory (DFT) incorporating 
realistic long-ranged intermolecular forces. In doing so we 
wish to study a number of predictions for the possible asym-
metry between the condensation and evaporation branches 
of the adsorption isotherm occurring both above and below 
the wetting temperature [22]. In particular, we report for 
the first time a precise connection, or covariance, between 
evaporation transitions in capillary grooves and complete 
wetting at planar walls.

Consider a simple fluid which, in the bulk, shows coex-
istence between liquid and gas phases, with densities ρl and
ρg respectively, along a saturation chemical potential curve
μsat(T) which terminates at a bulk critical temperature Tc. Now 
suppose the fluid is confined between two parallel plates, of 
infinite area, separated by a distance L. Such confinement 
shifts the location of the coexistence, which now occurs 
between capillary gas and capillary liquid phases along a cap-
illary condensation curve μcc(L) and which ends at a capil-
lary critical temperature [5, 7]. In the limit of macroscopically 
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wide capillaries and small undersaturation, μcc(L) satisfies the 
Kelvin equation [25]:

μ μ γ θ
Δρ

= − + ⋯L
L

( )
2 cos

,cc sat (1)

where Δρ = ρl − ρg, γ is the liquid-gas interfacial tension and
θ is the contact angle. For temperatures below the wetting
temperature Tw, corresponding to θ  >  0, the Kelvin equa-
tion is known to be accurate even for microscopically narrow 
slits which are only several molecular diameters wide [6]. 
However, for T > Tw, when θ = 0 and thick wetting films form
at the walls, it is necessary to also allow for Derjaguin’s cor-
rection which reduces the effective slit width [5, 6, 26] (see 
appendix). In this case the Derjaguin corrected Kelvin equa-
tion is known to be accurate down to slit widths of a few hun-
dred molecular diameters [6]. In most DFT studies of capillary 
condensation one supposes translational invariance along the 
walls so that the density profile depends only on one Cartesian 
coordinate. In this case capillary condensation is certainly a 
first-order transition, at which the density profile jumps, at μcc, 
from a low coverage to a high coverage state. Thus at mean-
field level, below the capillary critical temperature Tc(L), 
adsorption isotherms exhibit a van der Waals loop, charac-
terised by metastable extensions and spinodals. The Kelvin 
equation  is usually derived by equating the grand potentials 
of coexisting capillary liquid and capillary gas phases each 
of which have distinct bulk and surface free-energy contribu-
tions [6]. Alternatively, it can be understood geometrically as 
the value of the chemical potential where a circular meniscus 
of Laplace radius R = γ/(μsat − μcc)Δρ meets the walls at the
contact angle θ, thus establishing a stable separation of the
coexisting capillary phases.

This simple picture of capillary condensation is enriched 
considerably when one end is capped to form a deep capil-
lary groove, as shown schematically in figure  1. Hereafter 
we suppose that the side walls and cap are made from the 
same material so there is only one macroscopic contact angle 
θ. In such a macroscopically deep groove condensation must
still occur at μcc(L) since the contribution to the free energy 

from the capped and open ends do not scale with the depth D. 
However it is now necessary to distinguish between condensa-
tion and evaporation since these two transitions are distinct. 
Condensation involves the unbinding of the meniscus from 
the bottom of the groove, which is filled mostly with capillary 
gas along the adsorption branch, as the chemical potential is 
increased to μcc. Evaporation on the other hand involves the 
unbinding of the meniscus from the top of the groove, which 
is filled mostly with capillary liquid along the desorption 
branch, as the chemical potential is decreased to μcc. Recent 
theoretical studies [15, 19–21] have predicted that for T > Tw 
when the walls are completely wet by liquid the condensa-
tion involves the continuous unbinding of the meniscus. Thus, 
if ℓC denotes the equilibrium height of the meniscus above 
the groove bottom, we can characterise the divergence on 
approaching condensation by

μ μ− β−ℓ ~( ) ,C cc
C (2)

which is valid for deep grooves D ≫ ℓC ≫  L. Similarly, for
T > Tw the evaporation transition is also predicted to be con-
tinuous [22] in which case the distance of the meniscus from 
the groove top diverges as

μ μ≡ − − β−Dℓ ( ℓ ) ~( ) ,E C cc
E (3)

which is again valid for D ≫ ℓE ≫  L. Strictly speaking these
power laws only apply to macroscopically deep grooves but as 
we shall see they also describe the behaviour of the meniscus 
in grooves of finite depth. The values of the exponents βC and
βE (which are referred to as βA and βD in [15]) are, in gen-
eral, distinct with both depending sensitively on the range of 
intermolecular forces. In particular, for dispersion-like forces, 
effective Hamiltonian considerations lead to the mean-field 
predictions βC = 1/4 and βE = 1/3 which are almost entirely
insensitive to interfacial fluctuation effects (see later) [15]. 
Thus even when the condensation and evaporation are both 
continuous there is still an asymmetry between them with the 
condensation being a slightly sharper transition. Note that the 
value of the evaporation exponent βE is the same as that one
describing the growth of the complete wetting films at planar 

Figure 1. Sketch of a cross section of a capillary groove of width L and depth D ≫ L and three different configurations of the meniscus.
On the far left a near empty capillary is shown corresponding to μ < μcc with two small corner menisci near the capillary bottom. On the far 
right is a near filled capillary corresponding to μ < μcc in which a single meniscus is close to the groove opening. The middle configuration 
shows an empty capillary corresponding to μ ≈ μcc, but with much more prominent corner menisci which may correspond to a stable or a 
metastable configuration depending on the order of the condensation transition.
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walls in systems with dispersion forces. In fact, this is not 
coincidental and points to a much deeper connection between 
groove evaporation and planar complete wetting which we 
shall discuss at length in this paper.

The situation for walls which are partially wet by liquid 
is however quite different [21–23]. Below a temperature 
T *(L) ≈ Tw it has been predicted that the condensation transi-
tion becomes first-order due to the preferential adsorption of 
fluid, or corner menisci, at the bottom of the groove (see the 
left panel in figure 1). In this case at μcc a low coverage con-
figuration coexists with one in which the groove is completely 
filled with liquid (see the right panel in figure 1) similar to the 
standard interpretation of condensation. Note that the macro-
scopic size and shape of such corner menisci are determined 
uniquely by the simple geometrical requirement that they 
have a Laplace radius R = γ/(μsat − μ)Δρ and meet the side and
bottom walls at the correct contact angle θ. Such low coverage
configurations persist into a metastable regime μ > μcc which 
terminates at a spinodal μsp where the menisci meet, deter-
mined by the complementary Kelvin equation [22]

μ μ γ θ
Δρ

= + + ⋯L L
L

( ) ( )
2 sin

.sp cc (4)

The phenomena that we focus on in this paper are the con-
densation and evaporation transitions and in particular their 
order above and below the wetting temperature Tw. To fully 
understand them we must also consider them in the context of 
other phase transitions both at mean-field level and beyond. 
As mentioned earlier, the groove is itself a generalization of 
other geometries which exhibit known and well-studied phase 
transitions. Suppose for example that the separated side walls 
exhibit (in the limit L → ∞) a first-order wetting transition at
temperature Tw and chemical potential μ  =  μsat. Associated 
with this is a pre-wetting line which extends above Tw and 
to μ  <  μsat which is the locus of coexistence between two 
distinct phases with thin and thicker wetting layers. In a cap-
illary of finite width L, the wetting transition is of course 
suppressed but a finite-size shifted capillary pre-wetting line 
will still, in general, exist. In this case one should distinguish 
between capillary-gas phases which have either thin or thick 
wetting films at the side walls. However for narrow capil-
laries, which will be exclusively considered in this paper, the 
capillary pre-wetting occurs in a metastable region since it 
is preceded by capillary condensation. Similarly, the bottom 
of a capped capillary comprises two right-angle corners each 
of which, if separated by an infinite distance, would, at bulk 
two phase coexistence, exhibit a filling transition at a tem-
perature Tf < Tw (when the contact angle θ = π/4). In a capil-
lary of finite width L the filling transition is again suppressed 
since the corner menisci can not become macroscopically 
large. But, if the filling transition is first-order one may sus-
pect that a pre-filling line, corresponding to transitions from 
thin to thick corner menisci states, exists at either corner of 
a finite width capillary. However there are two reasons why 
such transitions are irrelevant for our discussion of condensa-
tion and evaporation. First, analogous to pre-wetting at the 
side walls, for narrow grooves, the pre-filling line exists in a 

metastable region of the phase diagram since it is preceded 
by capillary condensation. The second reason is that, strictly 
speaking, the pre-filling transition is an artefact of the mean-
field approximation in model density functional theories. In 
reality, any pre-filling-like jump in the adsorption near the 
corners is rounded owing to the pseudo one-dimensional 
nature of the transition. Exactly the same reasoning applies 
to any pre-wetting like transition associated with the bottom 
wall which must also be rounded beyond mean-field. We will 
return to this last point at the end of our paper. In summary, 
pre-wetting and pre-filling associated with the bottom wall 
are irrelevant artefacts of mean-field treatments, while pre-
wetting at the side walls is only of interest for rather wide 
capillaries.

In this paper we use a highly accurate fundamental measure 
DFT to examine different properties of condensation and 
evaporation in a narrow groove geometry for systems with 
long-ranged intermolecular forces. We aim to answer the fol-
lowing questions; Firstly regarding continuous capillary con-
densation above Tw, is the effective Hamiltonian prediction 
that the βC = 1/4 observable in our studies of grooves of large
but finite depth? Secondly does the transition become first 
order below the wetting temperature and if so how accurate is 
the complementary Kelvin equation? Similarly for evapora-
tion we wish to test the prediction that above Tw the exponent 
βE = 1/3 and to determine the order of the transition below
Tw. In doing this we will show that due to the presence of 
long-ranged forces, for capillary evaporation there is a hidden 
connection or covariance with the very well understood phe-
nomena of complete wetting at a planar wall i.e. the adsorp-
tions characterising these different phase transitions in two 
distinct geometries are precisely related to each other.

The rest of our paper is organised as follows. In section 2 
we describe our DFT, our choice of intermolecular forces and 
the substrate geometry in more detail. In section 3 we present 
our DFT results for condensation and evaporation below sec-
tion  3.1 and above section  3.2 the wetting temperature and 
determine numerically the critical exponents βC and βE. We
also show that above the wetting temperature, where corner 
menisci are not of crucial importance, the values of the crit-
ical exponents can be obtained analytically from a simple 
slab or shark-kink model the details of which are provided 
in an Appendix. Finally, we discuss in detail the covariance 
between groove evaporation and complete wetting on a planar 
wall and finish with a summary of our results and a discus-
sion of the nature of the capillary wetting transition beyond 
mean-field.

2. Density functional theory

Within DFT [27], the equilibrium density profile is found by 
minimising the grand potential functional

∫Ω ρ ρ ρ μ= + −Vr r r[ ] [ ] d ( ) [ ( ) ] ,F (5)

where μ is the chemical potential and V (r) is the external 
potential. It is convenient to divide the intrinsic free energy 
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functional F ρ[ ] into an exact ideal gas contribution and an
excess part:

F F∫β ρ ρ ρ β ρ= Λ − +r r r[ ] d ( ) [ ln ( ( ) ) 1] [ ] ,3
ex (6)

where Λ is the thermal de Broglie wavelength, which we set to
unity and β = 1/kBT is the inverse temperature. To continue we
follow the traditional van der Waals or perturbative approach 
and model the excess term as a sum of hard-sphere and attrac-
tive contributions where the latter is treated in a simple mean-
field fashion. Thus we write

F F ur r r r r r[ ] [ ]
1

2
d d ( ) ( ) ( ),ex hs a∫∫ρ ρ ρ ρ= + ′ ′ ∣ − ′∣ (7)

where ua(r) is the attractive part of the fluid–fluid interaction 
potential.

Minimisation of (5) leads to an Euler–Lagrange equation:

F
V ur

r
r r r r( )

[ ]

( )
d ( ) ( ) .hs

a∫δ ρ
δρ

ρ μ+ + ′ ′ ∣ − ′∣ = (8)

In our model, the fluid atoms are assumed to interact 
with each other via a truncated (but non-shifted) Lennard– 
Jones-like potential

⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

σ

ε σ σ=

<

− < <

>

u r

r

r
r r

r r

( )

0; ,

4 ; ,

0; .

c

c

a

6

 (9)

which is cut-off at rc  =  2.5  σ, where σ is the hard-sphere
diameter. Hereafter, we will use the parameters σ and ε as the
length and energy units.

The hard-sphere part of the excess free energy is approx-
imated by the fundamental measure theory (FMT) func-
tional [28],

∫ρ
β

Φ= αnr[ ]
1

d ({ } ) .hsF (10)

There exist various recipes for constructing FMT functionals in 
terms of the weighted densities nα, all of which are known to
accurately model the short-rage correlations. Here we follow the 
modified version of the Rosenfeld original functional proposed 
in [29], which is known to satisfy exact statistical mechanical 
sum rules and thermodynamic conditions at planar walls and cor-
ners [12, 13].

To construct the external potential V (r) we consider a 
semi-infinite solid slab of uniform density ρw, into which is
cut an infinitely long narrow groove of width L and depth D as 
shown in figure 1. The wall atoms interact with the fluid parti-
cles via the attractive part of Lennard–Jones potential

⎜ ⎟
⎛
⎝

⎞
⎠ϕ ε σ= −r

r
( ) 4 ,w

6

 (11)

so that total external potential experienced by the fluid atoms 
inside the groove is

⎪

⎪
⎧
⎨
⎩ ∫

σ σ σ

ρ ϕ=
∞ < > − <

∣ − ′∣ ′V x z L D
x x L z

rr r
( , ; , )

,  or   or  ,

( ) d elsewhere,w (12)

where the integral is over the solid volume and we have incorpo-
rated a hard-wall repulsion set by the atomic diameter σ which
prevents V(x, z) from diverging. Thus the external potential is 
translationally invariant along the y-axis running parallel to the 
groove. The integrals can be done analytically and the potential 
can be written as a sum of contributions from the bottom wall 
and vertical walls on the LHS and RHS respectively:

= +

+ −

V x z L D V z V x z D

V L x z D

( , ; , ) ( ) ( , ; )

( , ; ),

(1) (2)

(2) (13)

The potential due to the bottom wall is particularly simple and 
decays as a pure power law,

α=V z
z

( )
2

,w(1)
3 (14)

where we have introduced the pre-factor

α πε ρ σ= − 1

3
.w w w

6 (15)

The contribution due to each vertical wall is more complicated 
and is most conveniently written as [13]

α ψ ψ= + −V x z D x z x D z( , ; ) ( ( , ) ( , ) ) ,w
(2) (16)

where

ψ = + +
+

−x z
z x z x

x z x z z
( , )

2 2

2

1
.

4 2 2 4

3 3 2 2 3 (17)

It is straightforward to show that in the limits L  →  ∞ and
D → ∞ the potential V(x, z) reduces to that corresponding to a
rectangular corner [13].

Using the external potential V(x, z) we numerically solve the 
Euler-Lagrange equation (8) for the equilibrium profile ρ(x, z)
on a two-dimensional Cartesian grid with a spacing 0.05 σ.

In our numerical studies we set the wall strength εw = 1.2 ε.
In this case it is known that, for a planar wall-gas interface 
at bulk coexistence μ  =  μsat, there is a strongly first-order 
wetting transition at a temperature satisfying kBTw = 1.18 ε
which is far below the bulk critical temperature (occurring at 
kBTc = 1.41 ε) [13]. Similarly for a single right-angle corner
there exists a strongly first-order filling transition occurring 
also at bulk coexistence but at a lower temperature satisfying 
kBTf  = 1.08 ε. Before we considered the capped groove we
first studied an infinite open slit for which the external poten-
tial V(x) = 2αw(x−3 + (L − x)−3). For this system we determined
the equilibrium grand potentials and thus computed the capil-
lary coexistence curve μcc as a function of T for representa-
tive widths L = 7σ and L = 12σ. We then cap this geometry
leaving an open end in order to study the nature of the conden-
sation and evaporation transitions. For this we chose a groove 
with depth D = 50σ which is sufficiently deep to observe the
meniscus unbinding and accurately determine critical expo-
nents for these transitions. To model the boundary with the 
bulk reservoir at the top of the groove we use the simple 
boundary condition ρ(x, D) = ρbexp[−β V(x, D; L, D)] where ρb

is the bulk vapour density. This precludes us studying wetting 
films on top of the sculpted surface but does not influence the 
condensation and evaporation occurring within a deep groove 
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for chemical potentials close to μcc. Having determined the 
density profile ρ(x, z) we construct the total adsorption

( )x z x zd d ( , ) ,C b∫∫Γ ρ ρ= − (18)

which directly measures the height of the meniscus from the 
bottom and is thus an appropriate order parameter for con-
densation in a groove. For evaporation, it is more suitable to 
consider an excess over the density of the (metastable) bulk 
liquid density ρ+

l  :

x z x zd d ( , ) ,E l∫∫Γ ρ ρ= ∣ − ∣+
 (19)

which is proportional to the height of the meniscus from the 
top. We have determined adsorption isotherms of ΓC and
ΓE versus μ, for a variety of temperatures above and below
Tw which directly reflect the order of the condensation and 
evaporation transitions. For condensation we start from a low 
coverage configuration corresponding to μ ≪ μcc and increase
the chemical potential until either a spinodal is reached or the 
groove continuously fills. For evaporation we consider the 
reverse scenario and start from a high coverage at a chemical 
potential μ > μcc (but still below the saturation value μsat) and 
approach μcc from above.

3. Results

3.1. Condensation and evaporation below the wetting 
 temperature

In figure 2 we show a representative adsorption and desorp-
tion isotherms in a groove of width L = 7 and depth D = 50 

at a temperature T/Tw = 0.97. Consider first the condensation 
branch which follows the adsorption as the chemical poten-
tial is increased from an initial low value. It can be seen that 
the coverage remains small as one approaches the chemical 
potential μcc at which, in an infinitely deep groove, there is 
coexistence with a high density configuration. The density 
profile at μcc is shown in figure 3 and illustrates some prefer-
ential adsorption near the corners. There is however no mac-
roscopic meniscus. We note that the numerically determined 
value for μcc is extremely close to that predicted by the Kelvin 
equation, which is to be anticipated since T < Tw. For μ > μcc 
the low density configuration is metastable with respect to a 
high coverage state and persists up to a spinodal value μsp. 
The numerically obtained value μsp = − 4.15ε is also close,
within 0.5%, to that predicted by the complementary Kelvin 
equation  (4), although the agreement is not as good as for 
that between μcc and the Kelvin equation. The accuracy of the 
complementary Kelvin equation is remarkable in view of the 
fact that it was derived using entirely macroscopic arguments 
based on the merging of corner menisci even though these are 
not present at these microscopic scales.

Consider next moving along the desorption line starting 
from a high-density state we observe a continuous and dra-
matic decrease in Γ. Representative density profiles for dif-
ferent μ are shown in figure 4 and show a meniscus whose 
distance from the open end increases continuously as μ → μcc.
A log–log plot of ΓE versus μ − μcc is shown in figure 5 and
is consistent with the result βE = 1/3. We will return to this in
the next section.

These numerical results show that within our model of a 
macroscopically deep groove, below the wetting temperature, 

Figure 2. Adsorption isotherms (full symbols) found by increasing μ and desorption isotherms (empty symbols) found by decreasing μ 
in a capillary groove of width L = 7σ and depth D = 50σ, at a temperature T/Tw = 0.97. The black vertical dotted line denotes the value of
the chemical potential corresponding to the capillary condensation determined independently from a 1D DFT for an open slit of width 
L = 7σ; the red vertical dotted lines denotes the chemical potential corresponding to the capillary condensation determined from the Kelvin
equation (1). The red dashed line denotes the position of the spinodal as predicted by the complementary Kelvin equation (4). The vertical 
dotted-dashed line denotes the saturated chemical potential.
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the condensation is first-order while the evaporation is con-
tinuous. Of course, in a groove of finite depth the evapora-
tion transition is a subject to finite size effects which limit 
the distance of the meniscus from the open end. In this case, 
at mean-field level, the evaporation branch must also reach 
a spinodal μsp

evap which lies slightly below μcc (see figure 2).
However, as D becomes larger, μsp

evap tend to μcc. It is in this
sense that the evaporation transition is ultimately continuous 
in a macroscopically deep groove.

In contrast, the spinodal point μsp
cond, corresponding to

the condensation branch, remains distinct from μcc as D is 
increased indicating that the transition is first-order. In fact 
for condensation one needs to consider the opposite limit 
and ask what happens to the transition as the groove depth is 
decreased. We have checked numerically that, for a variety of 
temperatures below Tw, the condensation transition remains 
first-order until the depth D becomes microscopically small, 
comparable to the width L.

Beyond mean-field level the condensation/evaporation 
transition is rounded for all finite D since the groove geom-
etry is pseudo-one-dimensional. However standard finite-
size scaling arguments imply that the width of the rounding 
Δμround/μcc ≈ exp(−γβ LD) which is completely negligible once
the groove depth and width are greater than the bulk correla-
tion length.

3.2. Condensation and evaporation above the wetting 
 temperature

3.2.1. Numerical DFT results. In figure  6 we show the 
adsorption and desorption isotherms obtained for T/Tw = 1.1 

in a groove of width L = 12σ and depth D = 50σ. In this case
there is no hysteresis so that the condensation and evapora-
tion branches are connected continuously. This finding is 
consistent with the prediction of the complementary Kelvin 
equation since the contact angle θ = 0. In figure 7 we show

Figure 4. Density profiles corresponding to the evaporation branch 
for a capillary groove of width L = 7σ and depth D = 50σ, at a
temperature T/Tw = 0.97. From left to right the undersaturation 
δμ = μ − μsat is: 10−3, 10−4, and 5 · 10−5 in units of ε.

Figure 5. A log–log plot of the adsorption ΓE for the evaporation
branch, μ μ→ +

cc for a groove of width L = 7σ and depth D = 50σ
at sub-wetting temperature T/Tw = 0.97. The straight line has a 
slope −1/3.

Figure 3. Density profile corresponding to a low-adsorption state 
in a groove of L = 7σ and D = 50σ (displayed only to z = 10σ) at
T/Tw = 0.97 at capillary coexistence μ = μcc.
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density profiles obtained below, at, and slightly above μcc, 
which illustrate the continuous movement of the meniscus 
from the near cap to groove top as the chemical potential is 
increased. The absence of spinodals indicates that in the limit 
of macroscopic D both condensation and evaporation tran-
sitions occur via the continuous unbinding of the meniscus 
from the bottom and top, respectively. However, while both 
transitions are continuous there remains a quantitative differ-
ence between them characterised by the critical exponents βC

and βE. This is shown in figure 8 where we present log–log
plots of the adsorption and complementary adsorption as μcc 
is approached from below and above, respectively. For the 
evaporation branch, we find the same value βE = 1/3 obtained
for the case of T < Tw. For condensation on the other hand our 
results indicate that βC = 1/4.

3.2.2. Slab model analysis. Our numerical DFT results 
illustrate the asymmetry between condensation and evapora-
tion. Below the wetting temperature condensation is first-
order while the evaporation is continuous. This qualitative 
difference can be understood due to the behaviour of the 
corner menisci and is accurately quantified, even for narrow 
slits, by the complementary Kelvin equation. Above the wet-
ting temperature on the other hand the difference between 
condensation and evaporation is more subtle since both 
transitions are continuous. However an asymmetry still per-
sists through the distinction between the adsorption critical 
exponents βC and βE. In this section we present details of a
sharp-kink or slab model calculation, valid above the wet-
ting temperature, which predicts, analytically, the values of 
the critical exponents. This is similar to the original effective 
Hamiltonian analysis of continuous condensation and evapo-
ration presented in [15] but improves on by accounting for 
thick complete wetting films which will allow us to derive a 

formula for μcc consistent with the Derjaguin corrected Kel-
vin equation.

In sharp-kink approximation we assume that the full two 
dimensional density profile ρ(x, z) simply arises from a) a
flat meniscus constrained to be at height ℓ above the groove 
bottom, b) wetting films of thickness ℓπ at each wall lying 
above the meniscus. Hence vapour at pressure p occupies 
a volume Vg while a metastable bulk liquid at pressure +pl
is adsorbed at the capillary walls and below the meniscus 
(see figure  9). Such a parameterization neglects the shape 
of the meniscus which is approximately circular. However, 
allowing for a fixed circular shape adds only a constant term 
to the free-energy and thus does not influence in any way 
the equilibrium values of the meniscus height and wetting 
film thickness. More importantly this parameterization does 
not allow for corner menisci and is therefore not appropriate 
for modelling condensation occurring below the wetting 
temperature.

For a macroscopically deep groove, the equilibrium value 
of the wetting film thickness at the side walls is independent 
of the meniscus height and is the same as that for an infinite 
open slit, given by

O
⎛

⎝
⎜

⎞

⎠
⎟α

μ μ
= ∣ ∣

−
+π

−( )Lℓ
2

.w

sat

1
3 5

3 (20)

The first term here is the equilibrium film thickness of a com-

plete wetting film at a single planar wall while the O −( )L
5
3  

correction arises from the interaction between the wetting 

Figure 6. Adsorption isotherm in a capillary groove of width 
L = 12σ and depth D = 50σ, at a temperature T/Tw = 1.1. The
vertical dotted line denotes the location of the chemical potential 
μcc corresponding to the capillary condensation determined 
independently from the 1D DFT for an open slit of width L = 12σ;
the vertical dashed line denotes saturated vapour density at the 
same temperature.

Figure 7. From left to right density profiles for chemical 
potentials slightly below (μ/μcc = 0.98, close to μ/μcc ≈ 1) and 
slightly above (μ/μcc = 1.02) that of capillary condensation for 
a capillary groove of width L = 12σ and depth D = 50σ, at a
temperature T/Tw = 1.1.
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films on the opposite walls which can be safely ignored. Using 
this value for ℓπ we now substitute the trial density profile into 
the functional Ω[ρ] and obtain a grand potential Ω(ℓ) which
is a function of the meniscus height. Per unit length L∥ of 
the groove, the constrained, excess, contribution to the grand 
potential density ω (ℓ) = Ω(ℓ)/L∥ is given by

∫
ω γ

Δρ
= − − − + − + −

−

π π
+

∥

[ ]p p L D D L

L
V r r

(ℓ) ( ) ( 2ℓ ) ( ℓ) 2( ℓ) ( 2ℓ )

( ) d .

l

V

ex

g

(21)

where we have defined the relevant excess contribution by sub-
tracting off a constant term corresponding to the free-energy 
of a completely filled groove. Minimization of ωex determines
the equilibrium meniscus height ℓC and ℓE, details of which are 
presented in the appendix.

In the limit D → ∞ the minimization also determines the
value of the chemical potential at which condensation/evapo-
ration occurs as

μ μ γ
Δρ

≈ −
− π

L
L

( )
2

( 3ℓ )
,cc sat (22)

which is precisely the Derjaguin corrected Kelvin equa-
tion which allows for the shift in condensation due to thick 
complete wetting layers at the vertical walls.

For the condensation branch, occurring as μ approaches μcc 
from below, we find that in the limit D → ∞ of a macroscopi-
cally deep groove, the equilibrium height of the meniscus 
above the groove bottom is [21]

⎛

⎝
⎜

⎞

⎠
⎟α

μ μ
= ∣ ∣

−
+ ⋯L

ℓ
9

8( )
C

w

cc

1
4

 (23)

where the ellipsis denote negligible non-diverging higher 
order terms. Similarly for the evaporation branch, occurring 
as μ approaches μcc from above, we find that in the limit of a 
macroscopically deep groove, the equilibrium height of the 
meniscus from the groove opening is

⎛

⎝
⎜

⎞

⎠
⎟α

μ μ
= ∣ ∣

−
+ ⋯ℓ

2
.E

w

cc

1
3

 (24)

where we have again ignored non-diverging terms.
At this point we make the following remarks:

(a) The values of the exponents βC = 1/4 and βE = 1/3 are
exactly the same as those predicted in the effective 
Hamiltonian study of [15] which adopted a slightly 
simpler parameterization of the density profile. Thus as 
expected the only influence of the thick wetting films at 
side walls is change the location of the capillary conden-
sation, μcc, in keeping with Derjaguin corrected Kelvin 
equation. The values of these exponents, obtained in a 
slab model for an infinitely deep groove, are in excellent 

Figure 8. Left: a log–log plot of the adsorption, ΓC, for the condensation transition occurring as μ μ→ −
cc. The straight line fit has

gradient −0.2507 (compare to the theoretical prediction βC = 1/4). Right: a log–log plot of the complementary adsorption, ΓE, for the
evaporation transition occurring as μ μ→ +

cc. The straight line fit has gradient −0.3332 (compare to the theoretical prediction βE = 1/3).
These results pertain to a capillary groove of width L = 12σ and depth D = 50σ, at a temperature T/Tw = 1.1.

Figure 9. Slab model parameterization of the density profile 
showing a meniscus of height ℓ in a capped capillary groove of 
width L and height D appropriate above the wetting temperature.  
Vg denotes the volume filled by gas at pressure p. The side walls are 
coated with complete wetting films of thickness ℓπ.
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agreement with our numerical DFT results obtained for 
the condensation and evaporation in a groove of finite 
depth D = 50σ.

 (b) As discussed earlier the present slab model calculation 
cannot be used to study condensation occurring below Tw 
since the parameterization of the profile does not allow 
for corner menisci. However it can used to study evapora-
tion for T  <  Tw since in the limit of an infinitely deep 
groove, for all μ > μcc, the meniscus is always far from the 
groove bottom. Thus as for the case T > Tw there is only 
a single meniscus. Because the vertical walls are now 
partially wet there is no need to allow for thick wetting 
films and one can set the parameter ℓπ  =  0 in the slab 
model analysis. In this case it is easy to show that the 
result for the divergence of the meniscus depth remains 
ℓE  =  (2|αw|/(μ  −  μcc))1/3. The only difference is that the
location of capillary condensation, μcc, is given by the by 
standard macroscopic Kelvin equation (1). Thus for our 
present system, with long-ranged wall-fluid and short-
ranged fluid-fluid interactions, the slab model predicts 
that evaporation remains continuous even below the wet-
ting temperature Tw. This is completely consistent with 
our numerical DFT results. We shall return to this point 
later where we shall try to generalise the criteria for the 
order of the evaporation transition.

3.3. Covariance between groove evaporation and complete 
wetting

The slab model analysis points to a remarkably simple con-
nection between groove evaporation, occurring for T > Tw, 
in systems with dispersion forces, and complete wetting at a 
planar wall. Recall that the complete wetting transition occurs 
above the wetting temperature and refers to the divergence 
of the equilibrium thickness, ℓπ(μ), of an adsorbed liquid 
film, at a planar wall-gas interface, as the chemical potential 
μ of the bulk gas, is increased to saturation μsat. In general 
one writes this divergence as μ μ μ≈∣ − ∣π

β−ℓ ( ) sat
s
co
 where the

exponent βs
co is determined by the range of the intermolec-

ular forces and also possible interfacial fluctuation effects. 
For three dimensional systems, fluctuations are negligible, 
and for dispersion (van der Waals) forces the exponent takes 
the mean-field value β = 1 / 3s

co  first explained by the Russian
school of Derjaguin and Frumkin [26]. However, from the 
slab model results,

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ℓ ( )

2
, ℓ ( )

2
,E

w w

cc

1
3

sat

1
3

μ α
μ μ

μ α
μ μ

≈ ∣ ∣
∣ − ∣

≈ ∣ ∣
∣ − ∣π (25)

we see that the connection between groove evaporation and 
complete wetting goes much deeper. Thus, while ℓπ diverges 
as μ → μsat from below and ℓE diverges as μ → μcc from above,
the divergences are otherwise characterised by precisely the 
same power-law functions, apart from the shift in the location 
of the respective transition. That is

μ μ μ μ− = −πℓ ( ) ℓ ( ) .E cc sat (26)

This is a further example of a covariance relation relating 
adsorptions at phase transitions on different substrates, similar 
that observed in studies of wedge and cone filling [30–32].

We have tested this prediction using our microscopic DFT 
by comparing the divergences of ℓπ = Γ/Δρ and ℓE = ΓE/Δρ at a
temperature T/Tw = 1.1 in a groove of depth D = 50σ and width
L = 12σ. The results are shown in figure 10 and show a near
perfect collapse of the two curves ℓπ(μ) and ℓE(μ). In drawing 
the shifted curve for ℓE we have treated the value of μcc as a 
fitting parameter which determined as μ ε= −4.0541cc

fit . This 
compares very well with the value μcc = − 4.0529ε obtained
from the independent 1D DFT analysis for an infinite open 
slit. The small difference between these values is attributable 
to the finite depth of our groove. 

The origin of the covariance can be easily understood by 
simply recasting the slab model analysis in the language of 
an effective potential. The equilibrium film thickness ℓπ of a 
complete wetting layer, is the minimum of a binding poten-
tial Wπ(ℓ) defined as the excess grand potential per unit area 
of a wetting film at a planar wall which constrained to be of 
height ℓ. Within the slab model analysis this is determined in 
standard fashion as

μ μ Δρ Δρ= − − ∫π
∞W V z z(ℓ) ( ) ℓ ( )d ,sat ℓ

(1) (27)

where the first term is the thermodynamic cost of having a 
layer of liquid which is metastable in the bulk and the second 
arises from the integral over the long-ranged wall-fluid 
forces. This gives rise to an effective repulsion between the 
interfaces

μ μ Δρ= − + + ⋯πW
A

(ℓ) ( ) ℓ
ℓ

,sat 2 (28)

where the Hamaker constant A  =  −  αwΔρ, which is posi-
tive. Minimization of this determines ℓπ in agreement with 

Figure 10. Test of the covariance law showing comparison of the 
growth of the wetting layer thickness ℓπ for complete wetting on 
a planar wall (open symbols) with the meniscus position ℓE for 
evaporation in a capillary groove (filled symbols) of width L = 12σ
and depth D = 50σ at temperature T/Tw = 1.1. The results are
expressed in the molecular units of σ and ε.
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equation (20). Now we turn our attention to the evaporation 
occurring in an infinitely deep groove and understand the 
structure of the analogous binding potential ωex(ℓ) where we
have suppressed the dependence on the wetting films at the 
side walls. The slab model result for this is

O
L

D
A

D
D

(ℓ)
( ) ( ℓ)

( ℓ)
(( ℓ) ),

ex

cc 2
3ω μ μ Δρ= − − +

−
+ − −

(29)

where we have divided by the slit width so that the dimen-
sions are the same as for Wπ(ℓ). Here the first term is now 
the thermodynamic cost of having a volume of capillary-gas 
which is metastable in the groove. This is the direct ana-
logue of the first term in Wπ(ℓ) and determines the shift in 
the location of the transition from μsat to μcc. The second 
term is the all important repulsion of the meniscus from the 
capillary opening and can be understood as follows: con-
sider an infinite open capillary slit exactly at μ  =  μcc, and 
place a meniscus at some arbitrary position. Now imagine 
slicing off the side walls at height D − ℓ from the meniscus 
and replacing this by the vapour. The change to the excess 
grand potential from removing this volume of wall involves 
precisely the same integral over the dispersion interaction 
as in equation (27) apart from a slab of thickness L which 
contributes to the error term in equation (29). Minimization 
of ωex(ℓ) recovers the above expression for ℓE and hence the
covariance law.

For completeness we remark that for the condensation 
transition the binding potential is given by

L

AL(ℓ)
( ) ℓ

9

8ℓ
.

ex

cc 3

ω μ μ Δρ= − + + ⋯ (30)

This has a very similar interpretation to the potential for 
evaporation with the first term representing the energy cost of 
having a volume of metastable capillary liquid for μ < μcc. The 
reason why the meniscus repulsion from the groove bottom is 
higher order than for the evaporation can also be understood 
by dimensional analysis: imagine first that we are at coexis-
tence in an open slit then cap the geometry by adding a slab 
of solid that fits between the side walls a distance ℓ below the 
meniscus. Since this is of finite width L the integration of the 
intermolecular forces over this volume produces a power law 
which is one order higher compared to that for wetting at a 
planar wall and evaporation.

4. Conclusion

In this paper we have used a mean-field DFT and slab model 
analysis to determine the order of condensation and evapora-
tion transitions in a deep capillary groove with long-ranged 
wall-fluid forces. We have shown that the condensation transi-
tion becomes first order below the wetting temperature due 
to the presence of corner menisci and shown that the comple-
mentary Kelvin equation accurately describes the associated 
size of the metastable regime. For evaporation on the other 
hand our results indicate that the transition remains contin-
uous at all temperatures and confirm the mean-field value of 

the critical exponent βE = 1/3 . Our analysis of evaporation
also revealed a remarkably simple covariance relation with 
complete wetting at a planar wall.

Our study has been entirely at mean-field level and 
neglects the long wavelength, interfacial, fluctuations of the 
meniscus, the most dominant of which arise from those in 
the height of the meniscus along the groove. As discussed 
in [15] this means that the fluctuation theory of meniscus 
unbinding is analogous to that of two dimensional complete 
wetting but with a stiffness parameter, resisting the undu-
lations of the meniscus, which is ∝  γ L. Thus, for contin-
uous condensation, the mean-field power-law divergence 
ℓC ≈ ((μcc − μ)/L)−1/4 will, as μ → μcc, eventually cross-over
to ℓC ≈ (L2(μcc − μ))−1/3 describing the true asymptotic critical 
behaviour (assuming the groove is macroscopically long). 
However, a simple matching of these power laws shows that 
the size of the asymptotic regime is negligibly small since 
it scales as L−11. Thus to all intents and purposes the mean-
field description of the continuous capillary condensation 
is exact. Similar remarks apply to continuous evaporation. 
The repulsive term ∝  (D  −  ℓ)−2 appearing in the effective
potential (29) is marginal which implies that that value of 
the exponent βE = 1/3 is not altered by fluctuation effects.
The only influence of these is that they slightly change the 
critical amplitude of the divergence of ℓE so that the mean-
field result (24) is multiplied by a factor O βγ+ −L1 ( )2 1. This
is only significant if the evaporation occurs in the imme-
diate vicinity of the capillary critical point and is otherwise 
entirely negligible.

An important generalization of the present study is to 
include fully long-ranged fluid-fluid forces which decay as 
ϕ(r) ∝ −ϵ/r6. Indeed, within the slab model of evaporation it
is trivial to allow for such forces, at leading order, since the 
integrals they introduce into the analysis are identical to those 
arising from the wall-fluid forces. The upshot of this is that the 
prediction for the meniscus height is altered to

⎛

⎝
⎜

⎞

⎠
⎟μ

α α
μ μ

≈
−

−
ℓ ( )

2( )
E

f w

cc

1
3

(31)

where

α πεσ= − 1

3
.f

3 (32)

Equivalently, the Hamaker constant appearing in the poten-
tials (28) and (29) is replaced by A ∝ Δρ(αf − αw). This result
tells us that the covariance law (26) for evaporation occur-
ring for T  > Tw and complete wetting remains unchanged. 
More interestingly however it suggests that the evaporation 
becomes first-order when the Hamaker constant changes 
sign. This occurs under two circumstances: (a) at the wet-
ting temperature Tw associated with critical (second-order) 
wetting transition of the side walls (b) at the spinodal tem-
perature Ts associated with first-order wetting transition of 
the side walls. This is defined as the temperature at which 
the activation barrier in the wetting binding potential Wπ(ℓ) 
first appears. Interestingly, these conditions are precisely the 
same as the slab model predictions for the order of wedge 
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filling transitions and point to a possible deeper connection 
with that phase transition [10]. We emphasize that this pre-
diction of a possible change in the order of the evaporation 
transition is entirely consistent with the present numerical 
DFT study since in our current model, the short-ranged 
nature of the fluid-fluid forces means there is no spinodal 
temperature associated with the first-order wetting transi-
tion. However some caution is needed with this prediction 
regarding the change in order of evaporation since below 
the wetting temperature one should also consider the higher 
order terms in the binding potentials for which we need to 
go beyond the sharp kink approximation. For example it is 
certainly not the case that the higher order terms in (28) and 
(29) are the same which is the reason why the covariance 
law (26) only applies above Tw. In addition for very narrow 
slits it is necessary to carefully model the opening of the 
groove into the bulk reservoir since the structure of this may 
lead to additional interfacial pinning. This requires more 
study using numerical DFT rather than simple slab model 
considerations.

Finally we mention that there is one phenomenon occur-
ring in the groove geometry that we have not considered 
at all. This is the capillary-wetting transition defined as 
the divergence in the adsorption ΓC as the temperature is
increased towards T  ≈  Tw along the capillary-coexistence 
line μ = μcc [22]. The complementary Kelvin equation tells 
us that macroscopically the transition must occur at Tw since 
this is the temperature at which the contact angle vanishes 
implying the end of any metastability associated with corner 
menisci. The reason why we have avoided discussion of this 
transition is that here the mean-field character of the DFT is 
unreliable. According to the present DFT the capillary wet-
ting transition is first-order and with it is associated a cap-
illary pre-wetting line extending off capillary-coexistence 
and for T > T*(L). The first-order nature of this transition 
can be seen from the structure of the condensation binding 
potential (30). While the slab model parameterization does 
not allow for corner menisci for T < Tw it does tell us that if 
a single meniscus were to be formed at a distance ℓ above 
the groove bottom then it must be repelled from it (since the 
Hamaker constant A > 0). However we know that below Tw 
the lowest free-energy configuration is due to bound corner 
menisci. Thus there is always a potential barrier between 
bound corner menisci and a single meniscus state located 
above the bottom. Thus the transition must be first-order. 
However this mean-field reasoning is incorrect because the 
capillary wetting transition must belong to the universality 
of two dimensional critical wetting with short-ranged forces 
since the −(ℓ )3O  interaction of the meniscus with the wall 
appearing in equation  (30) is irrelevant. This implies not 
only that the transition is continuous and hence that there is 
no capillary pre-wetting line but that the location of T*(L) 
is renormalized by fluctuations and occurs below its mean-
field prediction because the meniscus can tunnel out of the 
barrier which binds it to the corner(s). However modelling 
this using an effective interfacial Hamiltonian, while taking 
into account the influence of long-ranged forces, is difficult 
because it is necessary to model two corner menisci and 

single meniscus configurations. This will be the subject of 
future work.
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Appendix A. Slab model integrals

The essential ingredient in the slab model calculation of the 
constrained grand potential ωex(ℓ) given by equation  (21) is
the integration of the external potential over the volume of the 
gas. Per unit length of the capillary, this is given by:
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Thus, when we minimise Ωex with respect to ℓ, we can 
make use of the relation
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which can be expanded
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Combining with (21) one obtains
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and substituting ℓπ from equation (20) gives:
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which determines the equilibrium height of the meniscus in 
a finite depth groove. Finally, using μ μ Δρ− ≈ −+p p ( )l sat  and
equation (1) we find that for μ < μcc, in the limit D → ∞, the
equilibrium position of the meniscus height above the groove 
bottom ℓC satisfies
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Conversely, for μ > μcc(L), in the limit D → ∞, with D − ℓ
fixed, the equilibrium distance of the meniscus from the top of 
the groove ℓE satisfies
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Abstract
The wetting and filling properties of a fluid adsorbed on a solid grooved substrate are studied
by means of a microscopic density functional theory. The grooved substrates are modelled
using a solid slab, interacting with the fluid particles via long-range dispersion forces, to
which a one-dimensional array of infinitely long rectangular grooves is sculpted. By
investigating the effect of the groove periodicity and the width of the grooves and the ridges, a
rich variety of different wetting morphologies is found. In particular, we show that for a
saturated ambient gas, the adsorbent can occur in one of four wetting states characterized by
(i) empty grooves, (ii) filled grooves, (iii) a formation of mesoscopic hemispherical caps (iv) a
macroscopically wet surface. The character of the transition between particular regimes, that
also extend off-coexistence, sensitively depends on the model geometry. The temperature at
which the system becomes completely wet is considerably higher than that for a flat wall.

(Some figures may appear in colour only in the online journal)

1. Introduction

Wetting and related phenomena at planar surfaces have
been thoroughly studied for the last several decades and
are currently fairly well understood at least for simple
fluids [1–3]. More recently, the subject of fluid adsorption
on structured surfaces has received considerable attention
from researchers and engineers (see, e.g., [4] and references
therein). From an engineering viewpoint, the perspective
on materials that possess large surface-to-volume ratios has
been appreciated. Indeed, recent advances in lithography have
allowed the decoration of solid surfaces on the micro- and
nano-scales and facilitated the fabrication of such devices [5].
From a more fundamental viewpoint, it was recognized that
structured substrates, when exposed to a gas that is close to
coexistence with its liquid phase, can produce quite distinct
adsorption characteristics compared to planar systems [6, 7].
For instance, macroscopic considerations that are based on
Young’s and Laplace’s equations predict that the adsorption
properties of a substrate with a linear-wedge shape can
be sensitively controlled by its opening angle [8]. As a
consequence, a large amount of the emerged liquid phase

may adsorb near the apex even though only a microscopic
film of the liquid is adsorbed far from the wedge apex.
However, statistical mechanics has to be incorporated to learn
more about the nature of interfacial phenomena on non-planar
surfaces, particularly with respect to the phase transitions that
they induce. Among other findings, such a more microscopic
approach has resulted in the discovery of interesting
hidden symmetries (or so-called covariances) that relate the
adsorption properties of different substrate geometries [9, 10].

One class of structured surface that has recently attracted
a strong interest motivated by recent experiments [11–13]
comprises solid substrates patterned with regular arrays. A
sketch of such a model substrate used in this work is provided
in figure 1. This ‘grooved substrate’ is characterized by the
presence of rectangular capillary grooves of depth D and
width L2, which are etched into a solid slab. The grooves
form an infinite periodic one-dimensional array along the
x-direction with a periodicity L and are assumed to be
unbounded in the y-direction. It is further assumed that the
substrate is formed with uniformly distributed atoms, which
interact with the fluid particles with a long-range potential that
decays as 1/r6 at large distances.

10953-8984/13/445006+13$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/25/44/445006
mailto:malijevsky@icpf.cas.cz
http://stacks.iop.org/JPhysCM/25/445006


J. Phys.: Condens. Matter 25 (2013) 445006 A Malijevský

Figure 1. Illustration of the model. The grooves (each of width
L2 = L− L1 and depth D) form an infinite one-dimensional array
along the x-axis. The sketch corresponds to the projection y = const.

Related substrate models were considered rather recently
by Dietrich et al [10, 14, 15] in a study of the complete
wetting of geometrically structured substrates by interfacial
Hamiltonian theory, derived from the so-called sharp-kink
approximation of density functional theory (DFT) [1]. In
this paper a more microscopic model is used, which
takes into account the short-range correlations between
fluid particles by adopting Rosenfeld’s fundamental measure
theory (FMT) [16]. In particular, this allows us to address the
questions such as: what is the equilibrium structure of an ad-
sorbed fluid for a particular substrate geometry? How does the
structure respond to a change in temperature and bulk pressure
(chemical potential)? What type of phase transitions does the
system exhibit and how does this depend on the individual
parameters that characterize the substrate geometry?

The remainder of the paper is organized as follows. In
section 2, fundamental adsorption phenomena at substrates,
to which the current model reduces in special cases, is briefly
recalled. In section 3, we formulate the molecular model of
the substrate and the fluid and outline the main features of
the microscopic DFT used in this work. The numerical results
including surface phase diagrams for several representative
geometrical models are presented in section 4. The main
points of the work are summarized and discussed in section 5
and a link with the earlier works based on an interface
Hamiltonian is made. The paper concludes with appendices
which provide the details of the derivations of some formulae
presented earlier.

2. Behaviour of the model substrate in special cases

In this section, we make a link between the substrate model
sketched in figure 1 and the more familiar model substrates to
which the current model reduces after taking the special limits
of the substrate geometric parameters. The main adsorption
characteristics of the resulting systems are briefly recalled.

2.1. L1 →∞ or L2 →∞ or D→ 0

If any of these limits is realized (alternatively, one can also
take L1 → 0 or L2 → 0), the grooved substrate reduces to
a simple planar wall. At the liquid–vapour bulk coexistence,
the planar wall (preferentially adsorbing liquid phase) exhibits
wetting transition at the wetting temperature Tw. Typically, the
transition is first-order but can also be continuous (critical)
depending on the range and strength of the intermolecular
interactions. It should be noted that the latter phenomenon is
notably rare in nature; in fact it has not been observed for solid
substrates and has only been detected for a few binary liquid
mixtures.

Alternatively, the wetting layer may develop at a constant
temperature T > Tw upon approaching the saturation value
of the chemical potential µ → µsat(T)−. In this complete
wetting process the width of the liquid film `π develops
according to

`π ∼ δµ
−βs , (1)

as δµ = µsat(T) − µ→ 0. The critical exponent βs = 1/3
if the dominating force at large distances originates from
dispersion interactions. If the wetting transition at Tw is
first-order, the singularity of the first derivative of the free
energy at Tw is prolonged off-coexistence in a prewetting line
representing the loci of the thin–thick first-order transitions.
This line terminates at its own critical temperature Tsc and
approaches the coexistence line tangentially at Tw as |δµ| ∼
(T − Tw)

3/2.

2.2. L→∞ or D→∞

Either of these two limits defines a capped capillary (single
groove). Because of the presence of the bottom wall, a
meniscus separating capillary-gas and capillary-liquid is
formed near the bottom for µ < µcc(H), whereas for µ >
µcc(H) the pore must be filled with a liquid, so that the
meniscus is to be found at the top. Here, µcc(H) is the
chemical potential of a slit (parallel plate) pore of a width
H, at which the capillary condensation occurs. Interestingly,
in contrast with the capillary condensation in a slit pore,
which is a first-order transition, the condensation in the
capped capillary proves to be continuous for walls that are
completely wet [10, 17–23]. The condensation is then given
by an unbinding of the meniscus separating the capillary-gas
and the capillary-liquid from the bottom end according to the
power law [17]

`cc ∼ (µ− µcc(H))
−βcc , (2)

with βcc =
1
4 for long-range forces. In the most recent studies

it was revealed [22, 23] that the order of the transition is
controlled by the wetting regime of the bottom wall, such
that below Tw the adsorption in a capped capillary exhibits
first-order transition.

While these features are experienced by single grooves
specified by either of the two limits, it should be noted that
the phase transitions and criticality of the former one with
D finite must be necessarily rounded beyond the mean-field
approximation (1D Ising model universality class).
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2.3. D→∞ and L2 →∞

In this case, the grooved substrate reduces to the geometry
of a linear wedge with an opening angle ψ = π/2. Such
a model exhibits a wedge filling transition that differs from
both wetting and capillary condensation: at the vapour–liquid
coexistence, a wedge becomes completely filled with liquid at
the filling temperature Tf that corresponds to the contact angle
of the liquid drop on the wall [8, 24, 25]:

θ(T = Tf) = (π − ψ)/2. (3)

The filling transition is critical whenever the corresponding
wetting transition is also critical; however, if the wetting
transition is first-order, the filling transition can be either
first-order or critical depending on the opening angle [26–28].

3. Theory

3.1. Potential of the grooved substrate

The model grooved substrate, as sketched in figure 1, enters
into the theory as an external field V(r) exerted on the fluid
atoms. Owing to the periodicity along the x-axis and its
translational invariance in the y-dimension, one can write

V(x, z) = V1(z)+
∞∑

n=−∞

V2(x+ nL, z). (4)

Here, V1(z) is the potential of a planar wall W = {x ∈ R, y ∈
R, z ∈ (−∞, 0)}, and V2(x, z) is the potential of a rectangular
body B = {x ∈ (−L1, 0), y ∈ R, z ∈ (0,D)} with a property
V2(x, z) = V2(−x− L1, z).

The substrate is treated as a continuous distribution of
atoms with a one-body density ρw, each of which interacts
with the fluid atoms via a Lennard-Jones tail

φw(r) = −4εw

(σ
r

)6
, (5)

where r is the distance between the substrate and the fluid
particles. After integrating φw(r) over the entire domain of the
wall (see appendix A) and introducing a hard-wall barrier to
model a short-range repulsion between fluid and wall atoms,
the potential of the substrate can be expressed as follows:

V1(z) =

{
Ṽ1(z); z > σ,

∞; z < σ
(6)

and

V2(x, z)

=

{
∞; x ∈ (−L1 − σ, σ ) ∩ z ∈ (0,D+ σ),

Ṽ2(x, z); otherwise,
(7)

with

Ṽ1(z) =
2αw

z3 , (8)

Ṽ2(x, z) = αw
[
ψz,D(L1 + x)− ψz,D(x)

]
, (9)

αw ≡ −
1
3πεwρwσ

6 (10)

and

ψz,D(x) ≡
2x4
+ x2(z− D)2 + 2(z− D)4

2x3(z− D)3
√

x2 + (z− D)2

−
2x4
+ x2z2

+ 2z4

2x3z3
√

x2 + z2
. (11)

3.2. Density functional theory

Within classical DFT [29], the equilibrium density profile is
obtained by minimizing the grand potential functional

�[ρ] = F[ρ] +
∫

dr ρ(r)[V(r)− µ], (12)

where µ is the chemical potential and V(r) is the external
potential. Here, F[ρ] is the intrinsic free energy functional of
the fluid one-body density, ρ(r), which can be split into ideal
and excess parts. As is common in modern DFT, the excess
free energy functional is further divided into a hard-sphere
term and an attractive contribution

Fex[ρ] = Fhs[ρ] +
1
2

∫∫
dr dr′ρ(r)ρ(r′)ua(|r− r′|), (13)

where ua(r) is the attractive portion of the fluid–fluid
interaction potential. In our analysis, we consider this to be
a truncated Lennard-Jones-like potential

ua(r) =


0; r < σ,

−4ε
(σ

r

)6
; σ < r < rc,

0; r > rc

(14)

which is cut-off at rc = 2.5σ , where σ is the hard-sphere
diameter. It should be noted that since the range of the
wall–fluid and fluid–fluid interactions are different, the
Hamaker constant of the system is always positive (at
least within the sharp-kink approximation), which ensures
that wetting transition at the corresponding planar wall is
first-order [1]. Note that the same molecular model was used
recently in [27, 28].

The hard-sphere part of the excess free energy is
approximated by the FMT functional [16],

Fhs[ρ] =
1
β

∫
dr8({nα}), (15)

where β = 1/kBT is the inverse temperature. The function
8 depends on six weighted densities nα(r) which can be
expressed as double integrals for the rectangular symmetry as
is dictated by the external field (4) (see appendix B).

The minimization of (12) results in an Euler–Lagrange
equation

µid(ρ(r))+
δFhs[ρ]

δρ(r)
+

∫
dr′ρ(r′)ua(|r− r′|) = µ, (16)

where µid is the ideal part of the chemical potential.
The equilibrium density profile is obtained by solving
equation (16) numerically on a two-dimensional Cartesian
grid with a spacing of 0.1σ . The convolution term in (16) is
recast into a two-dimensional integral (see appendix C).
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Figure 2. Coexisting density profiles for a model with L∗ = 15,
L∗1 = 10, and D∗ = 5. The temperature of the systems is T∗gw = 1.33
and the bulk phase is a saturated gas.

The thermodynamic properties of the corresponding bulk
system are determined from equation (12), which is applied
to ρ(r) = const. From the resulting Helmholtz free energy
the liquid–vapour phase boundary can be constructed. The
binodal terminates at the bulk critical temperature kBTc/ε =

1.41.

4. Numerical results

Throughout this paper, we will adopt σ and ε as our length
and energy units. Therefore, we will express our quantities
in dimensionless units, such as T∗ = kBT/ε, ρ∗ = ρσ 3, x∗ =
x/σ , etc, unless stated otherwise. The interaction potential that
characterizes the substrate strength is set to εw = 1.2ε, and
we will restrict ourselves to the results for a substrate depth of
D = 5σ .

4.1. Coexistence path

All results presented in this paragraph are for the liquid–gas
coexistence with a boundary condition for the density profile
ρ(x, zf) = ρv(T) for all x, where ρv(T) is the particle density
of a saturated vapour and zf refers to a vertical size of the
system. Our primary goal is to inspect the type of wetting
regimes that a system with a particular geometry can acquire
and compare with the wetting properties of the corresponding
planar wall. When applied to a planar wall, the solution of the
Euler–Lagrange equation (equation (16)) predicts a first-order
wetting transition at a temperature T∗w = 1.17 [27].

We start by considering a substrate model characterized
by the parameters L∗ = 15 and L∗1 = 10. In this case, the

Figure 3. Absolute value of the potential of the grooved-surface
model with L∗ = 15,L∗1 = 10, and D∗ = 5 at z = D+ σ (solid line)
and the potential of the planar wall at z = σ (dashed line).

minimization of the grand potential functional (12) leads
to two different sets of results depending on the initial
configuration. The temperature at which two different states
yield the identical grand potential value defines the location
of the first-order transition, and we will refer to this process
as groove-wetting. This process is now compared with an
ordinary wetting transition on a planar wall. First, as observed
from the plots in figure 2 in which the coexisting low- and
high-density profiles are displayed (for a single period), the
symmetry breaking in the x-dimension induces a non-planar
character of the liquid–vapour interface in the low-density
state. This behaviour is in contrast with a liquid–vapour
interface above a flat wall, in which case only the fluctuation
effects disrupt its otherwise planar shape. The high-density
state corresponds to a completely wet substrate, so that the
non-uniformity of the substrate potential in the x-direction no
longer influences the geometry of the unbounded liquid–gas
interface. Second, the groove-wetting occurs at a temperature
T∗gw = 1.33, which is much closer to the bulk critical
temperature (recall, T∗c = 1.41) than the wetting temperature
of a planar wall, T∗w = 1.17. This result can be explained by
comparing the strength of the potentials of the flat substrate
and that of the grooved substrate. As shown in figure 3, the
latter reaches the value of the planar wall about the middle of
the ridges but the presence of the grooves significantly lowers
the local absolute value of the potential at a given height
above the substrate. Thus, the grooved substrate constitutes
an effectively weaker adsorbent than the corresponding planar
wall, which pushes the temperature at which the surface is
completely wet upwards.

For thicker grooves, L∗1 = 5 (while maintaining L∗ = 15),
the adsorption scenario changes as the system can now realize
three different regimes as displayed in figure 4. These regimes
are separated by two first-order transitions—see figure 5,
where the temperature dependence of the adsorption per unit
length is shown. The latter is defined as

0 =

∫∫
dx dz (ρ(x, z)− ρb), (17)
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Figure 4. Density profiles of three distinct (separated by first-order
transitions) phases for a model with L∗ = 15,L∗1 = 5, and D∗ = 5.
The corresponding temperatures are (from above): T∗ = 1.1,
T∗ = 1.3 and T∗ = 1.37. In all cases the bulk phase is the saturated
gas.

which in the current case refers to a bulk coexistence state
ρb = ρv(T), and the integral is taken over the volume of the
system that is available for fluid particles within an interval
x ∈ (0,L). In contrast with the previous case, the width
of the grooves is now sufficient to allow a groove-filling
first-order phase transition before the system experiences
groove-wetting. Beyond this, the system is already saturated,
and the adsorption is effectively infinite.

We now increase the periodicity to L∗ = 40 and examine
the impact of the groove width on fluid adsorption. For
L∗1 = 10, the situation is similar to the observations from
the previous case: the system undergoes groove-filling (T∗gf =

1.16) and groove-wetting transitions (T∗gw = 1.29). Compared
to the case where L∗ = 15, the wall inhomogeneity is less
dramatic and the complete wetting of the wall takes place
closer to Tw. Now, below, but near Tgw, separate wetting
layers with concave interfaces are formed at the grooves
and the ridges, and groove-wetting occurs when the two
layers merge, such that the resulting liquid–vapour interface

Figure 5. Temperature dependence of the adsorption on a bulk
coexistence line for a model with L∗ = 15,L∗1 = 5, and D∗ = 5.

Figure 6. Coexisting density profiles for a model with L∗ = 40,
L∗1 = 10, and D∗ = 5. The temperature of the systems is T∗gw = 1.19
and the bulk phase is the saturated gas.

becomes flat, see figure 6. When the groove width decreases
(increasing L1), both Tgf and Tgw progressively decrease
and for a sufficiently large L1 a new first-order transition is
revealed as illustrated in figure 7 for L∗1 = 30. In addition to
groove-filling (Tgf = 1.09) and groove-wetting (Tgw = 1.23),
there is also an equilibrium between two density profiles that
differ by the amount of the adsorbed liquid at the ridges as
displayed figure 8. A sufficiently large value of L1 enables
the abrupt development of a thick layer at the ridges as a
result of the partial unbinding of the liquid–vapour interface
being pinned at the edges. We will refer to this process as
bounded-wetting. The temperature of this transition Tbw also

5
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Figure 7. Temperature dependence of the adsorption on a bulk
coexistence line for a model with L∗ = 40,L∗1 = 30, and D∗ = 5.
For T∗ > 1.3, the system is already saturated (because of its finite
size).

Figure 8. Coexisting density profiles for a model with L∗ = 40,
L∗1 = 30, and D∗ = 5. The temperature of the systems is T∗gw = 1.24
and the bulk phase is the saturated gas.

decreases with L2, and the transition is metastable with respect
to groove-wetting unless Tbw < Tgw. For the periodicity of
L∗ = 40, this relationship holds for L∗1 . 33.

4.2. Surface phase diagrams

Now we extend our considerations to off-coexistence states.
In this case, the minimization of the grand potential (12) is
subject to the boundary condition ρ(z) = ρb, where ρb is a
bulk density of a gas with a chemical potential µ ≤ µsat. At
low values of µ, the adsorption (17) is microscopic, while

Figure 9. Phase diagram for a model with L∗ = 15,L∗1 = 10, and
D∗ = 5. Tw showing the wetting temperature on a flat wall; Tgw is
the groove-wetting temperature, and Tc is the bulk critical
temperature. For a comparison, the prewetting line of a
corresponding flat wall (joining the bulk coexistence at Tw) is also
displayed.

its upper limit value (at µsat) is known from the previous
considerations. We wish to learn the behaviour of 0 between
these two limits.

We start with a periodicity of L∗ = 15. For L∗1 = 10, the
grooves are too narrow to undergo the filling transition; thus
the only free-energy singularity on the coexistence path is
at Tgw, which extends off-coexistence and terminates at its
own critical point as displayed in figure 9. The loci of the
first-order transitions characterized by a jump in 0 are similar
to a prewetting line for a thin–thick transition on a planar wall.
Thus, we will call the process groove-prewetting. However, in
contrast with prewetting on a planar wall, in which case the
two coexisting states differ only by a width of an adsorbed
film, here the interface also changes its geometry, as shown
in figure 10. At the higher-adsorption state (bottom panel
in figure 10), the fluid inhomogeneity in the x-direction has
no substantial influence and the system experiences ordinary
complete wetting upon a further increase in µ.

A different scenario occurs for L∗1 = 5. In this case, the
grooves are wide enough that groove-wetting is preceded
by the groove-filling transition on the coexistence line. As
shown in figure 11, the first-order groove-filling transition
also continues off-coexistence and terminates at a temperature
T∗ = 1.22. Above this temperature, condensation in the
grooves is a continuous process. We further note that below
the temperatures T∗ . 1.1, groove-filling becomes metastable
with respect to a crystalline structure of the fluid atoms
induced by the presence of the wall.

A larger periodicity gives rise to an even richer adsorption
scenario. The surface phase diagram of a model that is
specified by L∗ = 40 and L∗1 = 35 is depicted in figure 12,
where an off-coexistence extension of the bounded-wetting is
present, in addition to groove-prewetting. This is illustrated in
figure 13 for temperature T∗ = 1.27: the adsorption isotherm,
which is shown in the upper panel, clearly exhibits two
first-order transitions that correspond to bounded-wetting and
groove-prewetting. The loci of the equilibrium (stable) states
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Figure 10. Density profiles of the coexisting states before (top
panel) and after (bottom panel) groove-prewetting for a model with
L∗ = 15,L∗1 = 10 and D∗ = 5. The temperature is T∗ = 1.34.

Figure 11. Phase diagram for a model with L∗ = 15,L∗1 = 5, and
D∗ = 5. The nomenclature is the same as in figure 9. The low
temperature curve corresponds to groove-filling, which terminates at
its critical point at a temperature kBT/ε ≈ 1.22; the left end of the
curve, which would normally connect the bulk coexistence (see
figure 15), is truncated at the point where the first crystal nuclei
induced by the wall occur. For comparison, the prewetting line of a
corresponding flat wall (joining the bulk coexistence at Tw) is also
displayed.

are given by the concave envelope of�ex
= �+pV displayed

in the lower panel; the precise locations of the two-phase
transitions can be determined as the cusps in �ex(µ).

The surface phase diagram of a substrate with somewhat
broader grooves (L∗ = 40 and L∗1 = 30) is further
complemented by the groove-filling transitions, see figure 14.
For this model, the bounded-wetting transition is unstable on
the coexistence path (T∗bw = 1.24,T∗gw = 1.23). However, the

Figure 12. Phase diagram for a model with L∗ = 40,L∗1 = 35, and
D∗ = 5. The nomenclature is the same as in figure 9. In addition, the
bounded-wetting temperature Tbw is displayed. For comparison, the
prewetting line of a corresponding flat wall (joining the bulk
coexistence at Tw) is also displayed.

Figure 13. Adsorption isotherm (upper panel) and the excess grand
potential dependence on chemical potential for a model with
L∗ = 40,L∗1 = 35, and D∗ = 5 at a temperature T∗ = 1.27.

curves that represent bounded-wetting and groove-prewetting
intersect below the saturation line, which defines a triple point
at which three configurations of finite adsorption coexist.

For even broader grooves, the width of the ridges no
longer permits bounded-wetting. For the model of L∗ = 40

7
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Figure 14. Phase diagram for a model with L∗ = 40,L∗1 = 30, and
D∗ = 5. The nomenclature is the same as in figure 12. The symbols
at low temperatures correspond to groove-filling. The low
temperature curve corresponds to groove-filling, which terminates at
its critical point at a temperature kBT/ε ≈ 1.21; the left end of the
curve, which would normally connect the bulk coexistence (see
figure 15), is truncated at the point where the first crystal nuclei
induced by the wall occur. For comparison, the prewetting line of a
corresponding flat wall (joining the bulk coexistence at Tw) is also
displayed. In the inset, a triple point at which three different wetting
morphologies coexist is shown.

and L∗1 = 20 this results in a phase diagram in which only
groove-filling and groove-prewetting persist, as illustrated
in figure 15. This behaviour is somewhat similar to the
observation for the model with L∗ = 15 and L∗1 = 5 (see
figure 11). However, groove-filling is now stable with respect
to crystallization up to Tgf, and its critical point extends even
beyond Tgw.

5. Discussion

In this work, phase transitions of simple fluids in contact with
grooved substrates have been investigated using a mean-field
non-local DFT. The adsorption properties of such substrates
were shown to be remarkably complex as a consequence of
an intricate interplay of various interfacial phenomena and
sensitively dependent on the particular substrate geometry.
The main conclusions that can be inferred from the presented
results are summarized as follows.

• When exposed to a saturated vapour, the wetting state of a
grooved substrate may pass through four different regimes.

At lower temperatures, the system typically experiences
the groove-filling transition, which is characterized by the
condensation of the gas inside the grooves, provided the
groove width is sufficiently large. For a given periodicity,
the value of Tgf increases with the groove width. For
narrow grooves, the groove-filling, although taking place
well above the bulk triple point, is already metastable with
respect to wall-induced freezing.

The system becomes completely wet above a tempera-
ture Tgw, which is analogous to a wetting temperature Tw
for a flat wall. This groove-wetting transition is always

Figure 15. Phase diagram for a model with L∗ = 40,L∗1 = 20, and
D∗ = 5. Here, Tgf denotes the filling temperature, Tw is the wetting
temperature for a planar wall, Tgw is the groove-wetting
temperature, and Tc is the bulk critical temperature. For comparison,
the prewetting line of a corresponding flat wall (joining the bulk
coexistence at Tw) is also displayed.

first-order for the considered molecular model since the
range of the fluid–fluid and fluid–wall interactions is
different; thus, their contributions to the Hamaker constant
cannot be balanced.

Finally, our DFT study predicts the presence of another
transition, which we call bounded-wetting transition. This
transition (if stable) precedes groove-wetting and can be
thought of as a partial unbinding of a wetting film at the
ridges, the remnant of an ordinary wetting transition on a
planar wall, which would occur at Tw if the grooves were
absent. Clearly, this transition is possible only if the ridges
are sufficiently wide to accommodate mesoscopically thick
films. Some analogy can be found with thin–thick wetting
on planar walls for systems that exhibit long-range critical
wetting [30–32]. Unlike the latter, which is a consequence
of the competition of different interaction contributions,
bounded-wetting is induced by lateral heterogeneity of the
wall.
• For all models that are considered here, we have

found that Tgw > Tw, and in most cases, the difference
between the two temperatures was significant. This finding
deserves some discussion considering that according to the
macroscopic arguments, a corrugated surface of area As
becomes completely wet, if

γsv =
A

As
γlv + γsl, (18)

where A < As is the area of the liquid–vapour interface.
Because this condition is easier to be met than the one
for a planar wall, one would expect that the wetting of a
grooved surface occurs at a lower temperature than wetting
on a corresponding flat wall. Generally, macroscopic
models such as the well-known Wenzel model [33]
predict that the roughness of a solid surface enhances its
wetting (or drying) properties; thus, corrugation makes
hydrophilic substrates even more wettable. Other simple
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phenomenological models, that consider the possibility
of groove-filling, provide qualitatively similar predictions.
We claim that this contradiction can be explained as
follows.
(1) Classical models rely on an analysis of a macroscopic

liquid drop deposited on a solid surface whose contact
angle is controlled by the surface tensions involved.
However, a proper description of the models involving
tiny capillaries1 necessitates a more microscopic
treatment [34]. In particular, the concept of the binding
potential, which is neglected in macroscopic models, is
particularly crucial [35, 36]. For the present molecular
model the binding potential at the local height `(x)
decays as `−2(x) with an amplitude depending on the
strength and geometry of the wall. As illustrated in
figure 4, the effective wall parameter is considerably
weakened by the presence of the grooves, which tends
to shift the temperature of complete wetting to higher
values. Moreover, the molecular model presented
here takes into account the strongly inhomogeneous
character of the adsorbed fluid including packing
effects that are particularly strong in the vicinity of the
wall.

(2) Our model of the grooved substrate exhibits sharp
edges at the ends of the ridges. Here, the surface
tension prevents the local meniscus from unbinding
from the substrate, even if far from the edge
apex the height of the interface above the surface
is macroscopic [37]. Furthermore, the macroscopic
Young equation (even if the line tension contribution
is taken into account) ceases to hold if the three-
phase contact line is located at the edge, since the
apparent contact angle exhibits ambiguity. The latter
phenomenon, known as Gibbs’ criterion, has often
been invoked in conjecture with contact line pinning
at the edge, see e.g. [38]. Note, however, that the
concept of the contact line pinning was questioned
in the recent more microscopic study dealing with
nanoscopic sessile droplets [39] due to the presence of
the accompanying wetting films.

• Each phase transition that occurs at the two-phase
coexistence also extends to the undersaturation states
and terminates at its own critical point as shown in
figures 9, 11, 12, 14 and 15. In particular, the critical
point corresponding to groove-filling occurs slightly above
Tw and the difference is pronounced when the grooves
(of a fixed depth) are wide (see figure 15). This should
be contrasted with the groove-filling in a deep (D →
∞) groove, where, as mentioned in section 2, this
point corresponds to Tw and separates first-order and
critical filling regimes. We note that the limited numerical
accuracy does not allow us to determine the way in which
the transition line connects the bulk coexistence, so that
this remains an open question.

1 Only shallow grooves were considered throughout of this work. No
qualitative difference was found for the models with the deeper grooves (up
to D = 20σ ).

Figure 16. Adsorption isotherm for a model with L∗ = 40,
L∗1 = 20, and D∗ = 5 at a temperature T∗ = 1.35. Filling, postfilling
and planar regimes can be distinguished. The undersaturation is
expressed as a ratio between the bulk and saturated vapour densities.

• In [10], the authors report their results based on effective
interfacial Hamiltonian theory for complete wetting of
patterned substrates (including rectangular grooves) with
long-ranged intermolecular potentials. They observed four
distinct scaling regimes. This matches with the picture
of adsorption for our model provided the isotherm
corresponds to T > Tgw and does not cross any of
the first-order transition lines. As an example, we show
in figure 16 the adsorption isotherm for one of the
aforementioned substrate models at a sufficiently high
temperature. Clearly, the filling regime corresponding to
an abrupt rise of the meniscus inside the grooves is
less pronounced than that for much deeper capillaries
considered in [10]. The following postfilling regime is
characterized by an almost linear dependence of the
adsorption on undersaturation. Finally, the last regime
corresponds to the power law behaviour, equation (1),
as for the planar wall. The authors in [10] further split
the latter into the effective planar scaling regime with a
geometry-dependent Hamaker constant and the one for
which the geometrical patterns are irrelevant.
• The last remark concerns the approximations and possible

extensions of this work. As strictly of a mean-field
character, the approximative DFT necessarily neglects
some kinds of fluctuations such as those due to capillary
waves and thus it is legitimate to ask whether the predicted
phenomena could realistically be observed. Recall, first,
that since the molecular model includes dispersion
forces, the mean-field approximation is valid for wetting
and filling transitions in three dimensions [1, 9, 40].
It is further important to emphasize that owing to an
infinite extension of the groove array (together with
a translation invariancy along the y-axis), the phase
transitions considered here terminate at true critical points.
However, as already mentioned in section 2, this would
not be the case of a single groove (of finite depth), for
which the groove-filling transition must be rounded due to
its pseudo-1D character.
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Throughout this work the concern was on the fluid phase
of the adsorbent only. As we have seen, however, a strong
wall-induced crystallization takes place well above the
bulk triple point (Tb

t ≈ 0.5Tc, see, e.g., [41]). Therefore,
in some cases (see figures 11 and 14) the crystal nuclei
form before the groove-filling lines connect the bulk
coexistence. One could avoid such issue by considering a
lower value of the parameter εw but then the other phase
transitions would also be shifted and possibly vanish. The
proper investigation of the equilibrium fluid solidification
at the structured wall is definitely an interesting task
but requires a more demanding (3D) treatment than used
here.

There is a number of open questions as regards to
the related models. For instance, one may ask to what
extent the phase behaviour scenario will be modified
by considering the atomic corrugation of the wall, as
addressed, e.g., in [42–44]. In fact, the model itself could
serve to mimic a periodically corrugated substrate if both D
and L parameters are of the order of the molecular diameter
σ . We note that for D≈ 2σ the filling transition disappears.
Also, it would be interesting to make a link with adsorption
at chemically structured surfaces, especially in view of the
‘morphological phase transitions’ predicted in [45, 46].
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Appendix A. Wall potential

In this appendix, the attractive contributions of the potentials
V1(z) and V2(x, z) (equations (6) and (7)) as given by (8)–(11)
are derived.

We assume that the wall is formed with uniformly
distributed atoms with a density ρw, which interact with
the fluid particles according to (5). A contribution of the
semi-infinite planar wall, V1(z), is given by integrating φw(r)
over the domain {x ∈ R, y ∈ R, z ∈ (−∞, 0)}, which leads to
a familiar z−3 expression:

Ṽ1(z) = ρw

∫
∞

−∞

dx′
∫
∞

−∞

dy′
∫ 0

−∞

dz′

× φw

(√
x′2 + y′2 + (z− z′)2

)
= −8πεwρwσ

6
∫
∞

0
dρ ρ

∫
−z

−∞

dz′
1

(ρ2 + z′2)3

=
2αw

z3 , (∀z > 0), (A.1)

with αw = −
1
3πεwρwσ

6.
The attractive potential exerted by a single rectangular

body comprising a volume {x ∈ (−L1, 0), y ∈ R, z ∈ (0,D)}

is

Ṽ2(x, z) = ρw

∫ 0

−L1

dx′
∫
∞

−∞

dy′
∫ D

0
dz′

× φw

(√
(x− x′)2 + y′2 + (z− z′)2

)
= −4εwρwσ

6
w

∫ 0

−L1

dx′
∫
∞

−∞

dy′
∫ D

0
dz′

×
1(√

(x− x′)2 + y′2 + (z− z′)2
)

= −
3
2πεwρwσ

6
w

∫ 0

−L1

dx′
∫ D

0
dz′

×
1[

(x− x)′2 + (z− z′)2
]5/2

= −
3
2πεwρwσ

6
w

∫ L1+x

x
dx′

×

∫ z

z−D
dz′

1(
x′2 + z′2

)5/2
= −

1
2πεwρwσ

6
w

×

∫ L1+x

x
dx′

z′(3x′2 + 2z′2)

x′4
(
x′2 + z′2

)3/2
∣∣∣∣z′=z

z′=z−D

= αw
[
ψz,D(L1 + x)− ψz,D(x)

]
, (A.2)

where

ψz,D(x) ≡
2x4
+ x2(z− D)2 + 2(z− D)4

2(z− D)3x3
√

x2 + (z− D)2

−
2x4
+ x2z2

+ 2z4

2x3z3
√

x2 + z2
. (A.3)

It can be checked that for z > D:

lim
x→0

ψz,D(x) = lim
x→∞

[
2(z− D)4

2(z− D)4x3 −
1

x3

]
= 0

and

lim
x→∞

ψz,D(x) =
1

(z− D)3
−

1

z3 .

From these two limits it follows that (using (A.1))

lim
L1→∞

Ṽ2(0, z > D) =
Ṽ1(z− D)

2
−

Ṽ1(z)

2
,

as one expects.
Furthermore, for z < D:

lim
x→0

ψz,D(x) = −∞;

thus, Ṽ2(0, z < D) diverges as also expected.
Finally, in the limit of infinite D, (A.3) becomes

lim
D→∞

ψz,D(x) = −
1

x3 −
2x4
+ x2z2

+ 2z4

2x3z3
√

x2 + z2

and because

lim
x→∞

lim
D→∞

ψz,D(x) = −
1

z3 ,

10
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one obtains in the limit of both D→∞ and L1 →∞

lim
L1→∞

lim
D→∞

(
Ṽ1(z)+ Ṽ2(x, z)

)
= αw

[
1

z3 +
2x4
+ x2z2

+ 2z4

2x3z3
√

x2 + z2
+

1

x3

]
, (A.4)

which is the potential of a rectangular wedge, cf [27].

Appendix B. Weighted densities

In this appendix, we derive the expressions of the Rosenfeld
weighted densities for a hard-sphere N -component mixture,
exploiting the rectangular symmetry induced by the external
potential (4).

The weighted densities are defined by a sum of
convolutions

nα(r) =
N∑
i=1

∫
dr′ρi(r′)wi

α(r− r′), (B.1)

where, according to the original Rosenfeld fundamental
measure theory [16], the weighted functions consist of four
scalars

wi
3(r) = 2(Ri − r); wi

2(r) = δ(σ/2− r);

wi
1(r) =

w2(r)
4πRi

; wi
0(r) =

w2(r)
2πRi

;

and two vectors

wi
2(r) =

r
r
δ(Ri − r) wi

1(r) =
w2(r)
4πRi

.

Here, Ri refers to the radius of the ith species.

B.1. n3(x, z)

The weighted density n3(x, z) is given by the following
volume integral in the Cartesian coordinates:

n3(x, z) = 2
N∑
i=1

∫ Ri

−Ri

dz′
∫ √

R2
i −z′2

−

√
R2

i −z′2
dx′

×

√
R2

i − z′2 − x′2ρ(x+ x′, z+ z′), (B.2)

which can be solved numerically by any standard quadrature.
However, it may be more convenient to transform the dummy

variables z′ → Riz′ and x′ → x′
√

R2
i − z′2 to express n3(x, z)

as the integral over the domain (−1, 1)× (−1, 1):

n3(x, z) = 2
N∑
i=1

R3
i

∫ 1

−1
dz′(1− z′2)

∫ 1

−1
dx′
√

1− x′2

× ρ(x+ Ri

√
1− z′2x, z+ Riz

′). (B.3)

This form allows us to employ the Gaussian quadrature:

n3(x, z) ≈ 2
N∑
i=1

R3
i

nL∑
k

wL
k (1− (z

L
k )

2)

[ nc2∑
j

wc2
j

× ρ(x+ Ri

√
1− (zL

k )
2xc2

j , z+ Riz
L
k )

]
,(B.4)

where xL
k ,wL

k , k = {1, nL} are the nodes and the weights of
the Legendre polynomials up to degree nL, and xc2

k , wc2
k , k =

{1, nc2} are the nodes and the weights of the Chebyshev
polynomials of the second kind up to degree nc2 .

B.2. n2(x, z), n1(x, z), n0(x, z)

The ‘surface’ weighted function can be expressed as follows:

n2(x, z) = 2
N∑
i=1

Ri

∫ Ri

−Ri

dz′
∫ √

R2
i −z′2

−

√
R2

i −z′2
dx′

×
1√

R2
i − z′2 − x′2

ρ(x+ x′, z+ z′). (B.5)

Now, because the integrand blows up at the boundaries of
the inner integral, the use of the Gaussian quadrature is vital.
Following the same transformation as above, (B.5) becomes

n2(x, z) = 2
N∑
i=1

R2
i

∫ 1

−1
dz′
∫ 1

−1
dx′

×
1

√
1− x′2

ρ(x+ Ri

√
1− z′2x′, z+ Riz

′)

≈ 2
N∑
i=1

R2
i

nL∑
k

wL
k

[ nc1∑
j

wc1
j

× ρ(x+ Ri

√
1− (zL

k )
2xc1

j , z+ Riz
L
k )

]
, (B.6)

where xc2
k ,wc2

k , k = {1, nc1} are the nodes and the weights of
the Chebyshev polynomials of the first kind up to degree nc1 .

Similarly, for n1(x, z) and n0(x, z) one obtains

n1(x, z) ≈
1

2π

N∑
i=1

Ri

nL∑
k

wL
k

[ nc1∑
j

wc1
j

× ρ(x+ Ri

√
1− (zL

k )
2xc1

j , z+ Riz
L
k )

]
(B.7)

and

n0(x, z) ≈
1

2π

N∑
i=1

nL∑
k

wL
k

[ nc1∑
j

wc1
j

× ρ(x+ Ri

√
1− (zL

k )
2xc1

j , z+ Riz
L
k )

]
. (B.8)

B.3. n2(x, z),n1(x, z)

The vectorial weighted densities can be dealt in the same
manner. Thus, for the x-components of n2(x, z) and n1(x, z)
we obtain

nx
2(x, z) = 2

N∑
i=1

∫ Ri

−Ri

dz′
∫ √

R2
i −z′2

−

√
R2

i −z′2
dx′

×
x′√

R2
i − z′2 − x′2

ρ(x+ x′, z+ z′)

11
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≈ 2
N∑
i=1

R2
i

nc2∑
k

wc2
k

[ nc1∑
j

wc1
j xc1

j

× ρ(x+ Ri

√
1− (zc2

k )
2xc1

j , z+ Riz
c2
k )

]
,

(B.9)

and

nx
1(x, z) ≈

1
2π

N∑
i=1

Ri

nc2∑
k

wc2
k

[ nc1∑
j

wc1
j xc1

j

× ρ(x+ Ri

√
1− (zc2

k )
2xc1

j , z+ Riz
c2
k )

]
.

(B.10)

Similarly, for the y-components it follows that

ny
2(x, z) = 2

N∑
i=1

∫ Ri

−Ri

dz′
∫ √

R2
i −z′2

−

√
R2

i −z′2
dx′

×
1√

R2
i − z′2 − x′2

ρ(x+ x′, z+ z′)

≈ 2
N∑
i=1

R2
i

nL∑
k

wL
k zL

k

[ nc1∑
j

wc1
j

× ρ(x+ Ri

√
1− (zL

k )
2xc1

j , z+ Riz
L
k )

]
,

(B.11)

and

ny
1(x, z) ≈

1
2π

N∑
i=1

Ri

nL∑
k

wL
k yL

k

[ nc1∑
j

wc1
j

× ρ(x+ Ri

√
1− (zL

k )
2xc1

j , z+ Riz
L
k )

]
.

(B.12)

Appendix C.
∫

dr′ρ(r′)ua(|r− r′|)

In this appendix, we develop the third term in equation (16):

I(r) ≡
∫

dr′ρ(r′)ua(|r− r′|)

=

∫
dr′ρ(r+ r′)ua(r

′), (C.1)

with the attractive potential ua given by (14). With ρ(r) =
ρ(x, z), the function I(r) = I(x, z) reads

I(x, z) =
∫

ua(r
′)ρ(x+ x′, z+ z′) dr′

=

∫
ua(r

′)ρ(x+ x′, z+ z′)

×
[
H(rc − r′)− H(σ − r′)

]
dr′, (C.2)

where H(x) is the Heaviside function, and we wish to express
(C.2) as a double integral over the x and z coordinates.

Figure C.1. Sketch of the integrated domain in the x–z projection
for y = 0.

Figure C.2. Sketch of the integrated domain in the x–y projection
for z < σ .

Apparently, one can treat I(x, z) as the difference between two
independent contributions over the spheres of radii σ and rc.
Unfortunately, although this approach would be possible for a
potential such as the square-well, it cannot be applied for the
present model, since ua(r) cannot be extended to zero. Instead,
I(x, z) is separated into five terms as follows (see figures C.1
and C.2):

I = I11 + I12 + I21 + I22 + I3, (C.3)

where

I11 = −8εσ 6
∫ rc

σ

dz′
∫ √r2

c−z′2

−

√
r2
c−z′2

dx′ρ(x+ x′, z+ z′)

× ψrc(x
′, z′),

I12 = −8εσ 6
∫
−σ

−rc

dz′
∫ √r2

c−z′2

−

√
r2
c−z′2

dx′ρ(x+ x′, z+ z′)

× ψrc(x
′, z′),

12
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I21 = −8εσ 6
∫ σ

−σ

dz
∫
−

√
σ 2−z2

−

√
r2
c−z2

dx ρ(x+ x′, z+ z′)

× ψrc(x
′, z′),

I22 = −8εσ 6
∫ σ

−σ

dz′
∫ √r2

c−z′2

√
σ 2−z′2

dx′ ρ(x+ x′, z+ z′)

× ψrc(x
′, z′),

and

I3 = −8εσ 6
∫ σ

−σ

dz′

×

∫ √σ 2−z′2

−

√
σ 2−z′2

dx′ρ(x+ x′, z+ z′)ψ̃σ,rc(x
′, z′).

Here we use the following abbreviations:

ψrc(x, z) ≡
∫ √r2

c−z2−x2

0

dy

(x2 + y2 + z2)3

=
5r2y2 + 3y3

2

8r4r4
c
+

3 arctan
[ y2

r

]
8r5 ,

and

ψ̃σ,rc(x, z) ≡
∫ y2(x,z;rc)

y1(x,z;σ)

dz

(x2 + z2 + z2)3

=
1

8r5(r2 + y2
1)

2(r2 + y2
2)

2

{
r(y1 − y2)

× [−5r6
+ 3y3

1y3
2 + r4(−3y2

1 + 7y1y2 − 3y2
2)

+ r2y1y2(5y2
1 − y1y2 + 5y2

2)]

+ 3(r2
+ y2

1)
2(r2
+ y2

2)
2

×

[
arctan

(
r

y1

)
− arctan

(
r

y2

)]}
,

where r(x, z) ≡
√

x2 + z2, y1(x, z; σ) =
√
σ 2 − x2 − z2, and

y2(x, z; rc) =
√

r2
c − x2 − z2.

A singularity of ψ̃σ,rc at r→ 0 is removable:

lim
r→0

ψ̃σ,rc(x, z) = −
1
5

(
1

r5
c
−

1

σ 5

)
.
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We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical
side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using
density functional theory and interfacial models, we show that the meniscus separating liquid and gas
phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact
angle θcapðLÞ which depends on the difference between the Hamaker constants. If the bottom wall has a
weaker wall-fluid attraction than the side walls, then θcap > 0 even though all the isolated walls are
themselves completely wet. This alters the capillary condensation transition which is now first order;
this would be continuous in a capped capillary made wholly of either type of material. We show that
the capillary contact angle θcapðLÞ vanishes in two limits, corresponding to different capillary wetting
transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic
value determined by the difference in Hamaker constants. This second wetting transition is characterized by
large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

DOI: 10.1103/PhysRevLett.113.146101 PACS numbers: 68.08.Bc, 05.20.Jj, 64.60.F-, 68.03.Cd

The equilibrium contact angle θ of a macroscopic drop
of liquid on a planar substrate (wall) is determined by the
tensions of the wall-gas, wall-liquid and liquid-gas inter-
faces, by Young’s equation [1–3]

γwg − γwl ¼ γlg cos θ: ð1Þ

For complete wetting (θ ¼ 0), the tensions satisfy
Antonow’s rule γwg ¼ γwl þ γlg, which means that, as the
pressure is increased towards saturation, p → psatðTÞ, at
temperature T, a macroscopic layer of liquid must be
adsorbed at the wall. However, for partial wetting (θ > 0),
the wetting layer thickness remains finite at psat. It is well-
known that fluid adsorption is strongly modified, and
in general, enhanced by substrate geometry [4–14]. An
example of this is the capillary condensation of liquid in a
slit of width L at a shifted value of the pressure pccðT;LÞ
[15,16], the details of which depend on whether the slit
is capped at one end, thus forming a rectangular groove
[17–22]. Here, we point out that, in this groove geometry,
one may identify a capillary contact angle θcapðLÞ, defined
by analogy with the Young equation but at capillary
coexistence pcc, rather than at bulk coexistence psat.
This can be thought of as the angle at which the meniscus,
separating capillary liquid and gas phases, meets the groove
bottom as shown in Fig. 1. Intuitively, one may think that if
all the walls are made of completely wet material (θ ¼ 0),
then the capillary contact angle is also zero (θcapðLÞ ¼ 0).
This is indeed the case if all the walls are identical.
However, if the bottom wall, which extends over the whole
lower half-space, has a weaker long-ranged dispersion

interaction with the fluid than the side walls, the capillary
contact angle θcapðLÞ is nonzero. Thus, while grooves made
wholly of either material have θcapðLÞ ¼ 0, somewhat
counterintuitively, a groove made of a combination of both
has θcapðLÞ > 0. In addition, we show that θcapðLÞ vanishes
in two limits: (a) as the slit becomes macroscopically wide,
and (b) as L is reduced to a specific value determined by
the mismatch in Hamaker constants of the side and
bottom walls.
Consider the interface between a planar wall of infinite

area, occupying the half-space z < 0, and a bulk vapor at a
subcritical temperature T < Tc and pressure p < psatðTÞ
[or, equivalently, chemical potential μ < μsatðTÞ]. If θ ¼ 0,
then as p → psat, the equilibrium thickness lπ of the

(a) (b)

FIG. 1 (color online). (a) Schematic illustration of a mesoscopic
droplet of capillary liquid in a heterogeneous groove at capillary
coexistence. The meniscus is of near circular cross section,
meeting the side walls tangentially, and forming an angle θcap

as it separates from the bottom. (b) Cross section of a hetero-
geneous groove made from two completely wet materials.
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adsorbed liquid layer grows and would become macro-
scopic in the absence of gravity. The divergence of lπ was
first understood by Frumkin and Derjaguin using the
concept of a disjoining pressure [23]. Equivalently, one
determines a binding potentialWπðlÞ defined as the excess
grand potential per unit area of a wetting film constrained to
be of thickness l [2]. This quantity can be constructed from
a microscopic density functional theory (DFT), where the
Grand potential Ω½ρ� ¼ F½ρ� − R

drρðrÞ(μ − VðrÞ) is writ-
ten as a functional of the one-body average density ρðrÞ.
Here, F½ρ� is the intrinsic Helmholtz functional modeling
fluid-fluid interactions and VðrÞ is the external potential
due to the wall(s) [24]. Thus, for a single wall, VðrÞ ¼
ρw

R
dr0wðjr − r0jÞ, where the integral is over the volume

of the wall (of number density ρw) and wðrÞ is the pair
potential between fluid and wall atoms. The binding
potential then follows from Ω½ρ� using a sharp-kink
approximation for the density profile ρðrÞ in which one
simply assumes that there is liquid of bulk density ρl below
the interface and bulk gas of density ρg above it. For
systems with dispersion forces whose wall-fluid and fluid-
fluid potentials decay proportional to −εwr−6 and −εr−6,
respectively, the binding potential has the well-known
form [2]

WπðlÞ ¼ δplþ A
l2

þ � � � ; ð2Þ

where δp ¼ psat − p. The first term is the thermodynamic
penalty of having a layer of a metastable liquid. The second
emerges after the interaction potentials are integrated over
the 3D volume of the wall and the thickness of the wetting
layer, and its coefficient identifies the Hamaker constant
A ∝ ðρl − ρgÞðρwεw − ρlεÞ, which is positive for complete
wetting. Minimization of WπðlÞ determines the equilib-
rium film thickness lπ ∼ δp−1=3 [2].
Consider now a capillary groove of macroscopic length

and depth but of microscopic width Lwhich is capped at its
bottom. The groove is made from three slabs (two identical
side walls and a bottom) of two different materials which
are both completely wet. The side walls, of material 1 with
interaction strength εw1 , occupy the regions z > 0 and
jxj > L=2. The slit is capped by having the third slab of
material 2, with interaction strength εw2 , occupy the whole
lower space, z < 0 [See Fig. 1(b)]. In practice, this can be
achieved by depositing a layer of material 1 on material 2,
and then etching a groove (or an array of them) whose
width L is much smaller than the material dimensions. The
open end (z → ∞) at the top of the capillary groove is
in contact with a bulk gas at pressure p and temperature T.
In an uncapped slit, confinement between the side walls
leads to the phenomenon of capillary condensation corre-
sponding to the shift of the bulklike coexistence curve
so that, at fixed L, capillary-liquid (CL) and capillary-
gas (CG) phases coexist along a line pccðT;LÞ which

terminates at a capillary critical temperature TcðLÞ. In the
capped system, geometry necessitates the formation of a
meniscus separating CL and CG phases at some distance
lm from the bottom, which determines the adsorp-
tion Γ ≈ ðρl − ρgÞLlm.
To find lm, we first consider a mean-field (MF) treat-

ment and, using a sharp-kink approximation for the density
profile, construct from Ω½ρ� a capillary binding potential
WcapðLÞ by constraining the meniscus to a uniform height
along the groove and determine the excess grand potential
per unit area of the groove bottom. If l ≫ L, we find

WcapðlÞ ¼ Δplþ A2 − A1

l2
þ 3A1L

8l3
� � � ; ð3Þ

where Δp ¼ pccðT;LÞ − p and A1, A2 are the (positive)
Hamaker constants for the side and bottom walls, respec-
tively. The first term is the thermodynamic penalty of
having a thick layer of CL and is analogous to the term δpl
in WπðlÞ except that pressure is now measured relative to
capillary condensation. Analysis at this order also deter-
mines the value of psatðTÞ − pccðT;LÞ ¼ 2γlg=ðL − 3lπÞ,
which is the Kelvin-Derjaguin result for the shift of the
coexistence line allowing for thick wetting films at the side
walls [16]. The remaining terms in WcapðlÞ arise from
the dispersion forces and can be understood as follows:
consider an infinite uncapped capillary slit exactly at
p ¼ pcc and place the meniscus at some arbitrary position.
Now, cap the capillary by inserting an infinite slab of
material type 1 of width L at some large distance l below
the meniscus. Since the width of this slab is finite, the
contribution to Ω½ρ� from the dispersion forces can only
decay as Oðl−3Þ [see the final term of Eq. (3)]. When we
make the capillary heterogenous, we must further imagine
slicing off an infinite slab of material 1 at the same depth
and replacing it with an infinite slab of material type 2. The
contribution to Ω½ρ� from the dispersion forces for both
these slabs now involves integration over a 3D semivolume,
leading to the second term of Eq. (3). We now consider
three scenarios:
(A) A homogeneous capillary (A1 ¼ A2). In this case,

the meniscus is repelled from the capped end by a term
of Oðl−3Þ, which competes with the thermodynamic
attraction proportional to Δpl. Minimization of WcapðlÞ
determines the MF meniscus height lm ∼ Δp−1=4 [19]. The
condensation occurring as p → p−

cc is therefore a continu-
ous capillary transition.
(B) A heterogeneous capillary (A1 < A2). Now, there is a

stronger repulsion from the cap than in case A, and the
meniscus height grows as lm ∼ Δp−1=3, similar to complete
wetting at a planar wall. The condensation transition
remains continuous.
(C) A heterogeneous capillary (A1 > A2). Importantly,

the difference between the Hamaker constants leads to an
interfacial attraction, so that the meniscus remains bound at
a distance lm ≈ 9LA1=16ðA1 − A2Þ from the cap, even at
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p ¼ pcc. This state coexists with one in which the groove is
filled with CL.
The remarkable implication of this result is that, in a

capillary with a less attractive bottom wall, the condensa-
tion transition is first order even though it would be
continuous in a homogeneous capillary made entirely of
either material. We emphasize that this phenomenon only
occurs if the less attractive bottom wall occupies the whole
lower half-space [See Fig. 1(b)]. If the slab of material type
2 capping the capillary occupies only the width of the slit,
the effect is absent since the effective binding potential
for this system is WcapðlÞ ¼ Δplþ 3A2L=8l3 þ � � �. The
condensation remains continuous, as for case A, albeit with
a different amplitude.
We have tested these predictions using a Rosenfeld-like

DFT [25] with a mean-field treatment of the attractive
fluid-fluid forces Fatt ¼ 1

2
∬ dr1dr2ρðr1Þuðr12Þρðr2Þ. For

the latter, we chose uðrÞ ¼ −4εðσ=rÞ6, where σ is the
hard-sphere diameter. This attractive pair potential is
truncated at rc ¼ 2.5σ and is set to zero inside the hard
sphere [26].
The external potential Vðx; zÞ has a hard-wall contribu-

tion and a long-ranged tail, which can be determined
analytically from integrating the potential −4εwi ðσ=rÞ6 over
the volumes of the side (i ¼ 1) and bottom (i ¼ 2) walls.
Far from the bottom of the capillary (∼50σ), we fix the
density to that of a CG phase in order to model the open end
of the groove. Translational invariance is assumed along the
capillary (the y axis). The temperature is set at T ¼ 0.96Tc
(kBTc ¼ 1.41ε), which is above the wetting temperatures
of both the weaker (εw ¼ ε, Tw ¼ 0.93Tc) and stronger
(εw ¼ 1.2ε, Tw ¼ 0.83Tc) attractive walls, ensuring com-
plete wetting of all surfaces.
In Fig. 2, we show adsorption isotherms obtained from a

full DFT calculation for three slits of width L ¼ 12σ: εw1 ¼
εw2 ¼ 1.2ε (case A), εw1 ¼ ε and εw2 ¼ 1.2ε (case B),
and εw1 ¼ 1.2ε and εw2 ¼ ε (case C). As predicted, the

condensation is continuous for the first two cases, and a
log-log plot shows very good agreement with the predicted
exponent values 1=4 and 1=3, respectively [(See Fig. 3(a)].
For the third case, with a less attractive bottom wall, the
condensation transition is first order and, at capillary
coexistence, a meniscus remains bound close to the cap
[Fig. 3(b)].
Just as Young’s equation allows us to define a contact

angle θ from the three surface tensions associated with
coexisting bulk phases and a single isolated wall at
p ¼ psat, we may now define a capillary contact angle
from the analogous free energies of the coexisting capillary
phases at p ¼ pcc:

γcapwg ðLÞ − γcapwl ðLÞ ¼ γcaplg ðLÞ cos θcapðLÞ: ð4Þ

Here, γcaplg ðLÞ is the surface tension associated with the
meniscus separating capillary liquid and capillary gas
phases, defined as the excess grand potential per unit area
of the capillary bottom. For wide slits, this tension is well
approximated by γcaplg ðLÞ ≈ πγlg=2, owing to the near
circular shape of the meniscus. Similarly, γcapwg ðLÞ and
γcapwl ðLÞ are the surface tensions associated with the inter-
face between the groove bottom and the CG phase (bound
meniscus) and CL phase (unbound meniscus), respectively.
At MF level, we can identify WcapðlmÞ ¼

γcaplg ðLÞ(ðcos θcapðLÞ − 1), which leads to

θcapðLÞ ≈ 32ðA1 − A2Þ32
9

ffiffiffiffiffiffiffiffiffiffiffi
3πγlg

p
A1L

; L → ∞; ð5Þ

valid for A1 > A2 and sufficiently large L. Otherwise, when
A1 ≤ A2, the capillary contact angle vanishes.
The MF result [Eq. (5)] suggests that we can induce a

capillary wetting transition by changing the sign of
A1 − A2, similar to the standard mechanism for the critical
wetting transition at a single planar wall [2,3]. However,

FIG. 2. Adsorption isotherms obtained by numerical minimi-
zation of the DFT for (a) a homogeneous capillary, (b) a capillary
with a more attractive bottom wall, and (c) a capillary with a less
attractive bottom wall, for L ¼ 12σ and T ¼ 0.96Tc. Here, μcc is
the chemical potential at capillary condensation determined
independently for each infinite open slit.

(a) (b)

FIG. 3 (color online). (a) Log-log plot of adsorption isotherms
for the two examples of continuous capillary condensation and
comparison with the predicted slopes −1=4 and −1=3 [cases (A)
and (B), respectively]. (b) For case (C), a two dimensional density
profile ρðx; zÞ showing a bound state meniscus configuration that
coexists with a completely filled capillary at μ ¼ μcc.
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rather than tuning the Hamaker constants, we focus instead
on how θcapðLÞ depends on L, while maintaining capillary
coexistence p ¼ pccðLÞ. To do this, we must go beyond
MF and consider fluctuation effects arising from the
wandering of the meniscus height along the groove
(y axis). These are well described by the 1D interfacial
Hamiltonian

Hcap½l� ¼ L
Z

dy

�
γcaplg ðLÞ

2

�
dl
dy

�
2

þWcapðlÞ
�
; ð6Þ

where lðyÞ denotes the local height of the meniscus at
position y, and one may approximate γcaplg ðLÞ ≈ πγlg=2. The
partition function can be evaluated exactly using standard
transfer-matrix techniques, the spectrum of which follows
from solution of a Schrödinger-like equation from which
one can readily determine lm ¼ hli, the roughness
ξ⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hl2i − l2

m

p
, and the length scale ξy describing

height correlations along the direction of the groove.
Analysis shows that θcap may vanish in two different ways.
The first occurs when the slit becomes macroscopically
wide, in which case interfacial (meniscus) fluctuations are
suppressed. Thus, θcapðLÞ vanishes according to [Eq. (5)]
with the accompanying scaling behavior lm ∼ L, ξ⊥ ∼

ffiffiffiffi
L

p
and ξy ∼ L2 describing the growth of the meniscus.
The second type of capillary transition involving the

meniscus occurs as the slit width decreases. According to
the MF result [Eq. (5)], the capillary contact angle θcapðLÞ
continues to increase as the width becomes microscopic.
However, the reduction in the stiffness coefficient Lγcaplg ðLÞ
enhances fluctuation effects, and the meniscus eventually
tunnels out of the potential well in Wcap. Thus, at a
sufficiently small slit separation L ¼ Lw, the capillary
contact angle θcap also vanishes, corresponding to another
capillary wetting transition. This transition belongs to the
intermediate fluctuation regime of two dimensional critical
wetting, because the l−2 interaction is marginal, making it
highly sensitive to the short-ranged structure of the binding
potential [27]. In our case, the final term in WcapðlÞ [see
Eq. (3)] is strongly repulsive, which means that the
transition is characterized by essential singularities
[28,29]. When the difference in the Hamaker constants
is small, this identifies the value of the slit width Lw at
which θcapðLÞ vanishes as

Lw ¼ kBT

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πγlgðA1 − A2Þ

p ; A1 > A2: ð7Þ

Note that the divergence of Lw as A2 → A1 is consistent
with the fact that this transition is absent in a homogeneous
capillary. When A1 ¼ A2, the capillary contact angle is
always zero. As L is decreased towards Lw in a hetero-
geneous capillary, the capillary contact angle vanishes as

θcapðLÞ ∼ e−2πLw=
ffiffiffiffiffiffiffiffiffiffi
L2−L2

w

p
; L → Lw; ð8Þ

with the accompanying scaling lm ∼ ξ⊥ ∼ ξ1=2y ∝ 1=θcap,
characteristic of fluctuation-dominated behavior. For nar-
rower grooves (L < Lw), complete wetting of the cap is
restored (θcap ¼ 0) and eventually, coexistence ends at a
conventional capillary critical point [15]. These features are
illustrated schematically in Fig. 4, where we plot θcap vs

τ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=4πγlgL2

q
. This dimensionless parameter may be

interpreted in two ways. At fixed T < Tc, increasing τ
corresponds to decreasing L to the critical slit width LcðTÞ,
at which capillary coexistence between CL and CG phases
ends. Alternatively, at fixed L, increasing τ corresponds to
increasing T towards the capillary critical temperature
TcðLÞ. The value of τ at the capillary critical point depends
on the slit width but, in the limit L → ∞, tends to a
universal value τc. Using the known values of the critical
amplitude ratios associated with the wetting parameter [30]
and critical point shift TcðLÞ − Tc [26,31], this can be
reliably estimated as τc ≈ 0.1. The vanishing of θcap, as
described by Eqs. (5) and (8), corresponds to the two
different capillary wetting transitions, which occur at τ ¼ 0

and τ ¼ τw ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA1 − A2Þ=ðkBTÞ
p

, respectively. The maxi-
mum value of θcap occurs between these two transitions and
is of order A1=kBT if the difference between the Hamaker
constants is large.
In summary, we have shown that, in a capillary groove,

the competition between the wall-fluid dispersion forces at
the bottom and side walls can lead to a nonzero capillary
contact angle, though the isolated walls exhibit complete
wetting. This finite θcap will be present for all temperatures
away from the near vicinity of the capillary critical point if
the mismatch between the Hamaker constants is of order
kBT. Thus, even though the wetting transitions at τ ¼ 0 and
τ ¼ τw may be difficult to observe experimentally, the
qualitative change to the order of capillary condensation
should be readily observable in grooves of micron size,
very similar to the experiments of Mistura et al. reported
in [21].

FIG. 4. Schematic behavior of the capillary contact angle θcap

as a function of the dimensionless variable τ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=4πγlgL2

q
.

The locations of the capillary wetting transitions and capillary
critical point are shown.
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