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Preface

During the past two decades, the discontinuous Galerkin finite element method has be-
come increasingly popular as a robust and high order numerical method for the solution
of nonlinear partial differential equations of convective or convection-dominated char-
acter. Many advancements have been made in the theoretical analysis and practical
application of the discontinuous Galerkin method to real world problems establishing
the method as a competitive alternative to other approaches, especially the finite ele-
ment and finite volume methods.

This thesis aims to present results I obtained within the last six years of my research
dealing with the discontinuous Galerkin method. The main part of the thesis consists of
five papers, three of which deal with theoretical analysis of the discontinuous Galerkin
method, namely the derivation of a priori error estimates for various problems. These
are the papers [33], [23] and [34], in chronological order. The remaining two papers deal
with the numerical simulation of compressible fluid flow in time-dependent domains and
its interaction with rigid or elastic structures. These are the papers [10] and [26]. All
the papers upon which this thesis is based were published in foreign impacted journals
in the years 2010–2014.

The thesis itself consists of an introductory Chapter 1, where the discontinuous
Galerkin method is briefly introduced and the main ideas and contributions of the
individual papers are outlined. The main part of the thesis consists of the papers
themselves in the following order:

• Chapter 2: A priori optimal order L∞(L2)-error estimates are derived for the
discontinuous Galerkin method applied to a nonlinear convection-diffusion prob-
lem with nonlinear convection as well as diffusion using a nonlinear version of the
Aubin-Nitsche technique, [33].

• Chapter 3: A priori error estimates for the space-time discontinuous Galerkin
method applied to a convection-diffusion problem with linear diffusion are derived,
[23].

• Chapter 4: A priori error estimates are derived for the discontinuous Galerkin
method applied to a convection-diffusion problem that are uniform with respect
to the diffusion parameter ε → 0 and valid even in the purely convective case
ε = 0, [34].

• Chapter 5: The arbitrary Lagrangian-Eulerian method is used to numerically
solve compressible flow problems in time dependent domains using a semi-implicit
discontinuous Galerkin method, [10].

• Chapter 6: The arbitrary Lagrangian-Eulerian formulation of flow problems is
coupled with the equations of linear elasticity in order to simulate full fluid struc-
ture interaction, specifically a model problem for the simulation of voice formation
in human vocal folds, [26].

The presented papers are included in this thesis as they were published, with only
the text style being united to conform to the style of the thesis. Therefore each of
the chapters must be, to some extent, viewed as an individual self-contained entity,
otherwise various minor collisions of notation may occur due to the diversity of concepts
and techniques covered in this thesis.

I would like to thank all my collaborators and colleagues, especially Miloslav Feis-
tauer, Jaroslava Hasnedlová née Prokopová, Karel Najzar, Adam Kośık, Jan Česenek,
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Jaromı́r Horáček and others for their support, stimulating discussions and work on joint
projects.

Finally, I want to thank my family and friends for their support and encouragement,
especially my wife Monika.

Prague, August 2015

Václav Kučera
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1. Introduction

In many areas of applied mathematics in science and engineering, one encounters the
need to solve partial differential equations of convective or convective-diffusive nature.
Perhaps the most prominent of these fields is computational fluid dynamics, which plays
an extremely important role in practical applications. Much work has been devoted to
research in this area due to the mathematically and computationally challenging nature
of the equations of fluid dynamics problems.

The area of compressible fluid dynamics is especially of interest due to the compli-
cated phenomena encountered in the governing equations and their solutions. From the
computational point of view, one of the main problems associated with compressible
fluid dynamics is the rise of discontinuities (shock waves and contact discontinuities)
or very steep gradients (internal or boundary layers) in the solutions, cf. [20], [36].
This behavior is typical of the wider class of (nonlinear) first order hyperbolic partial
differential equations and their singular perturbations by diffusion.

The presence of discontinuities in the sought solutions is problematic from the point
of view of numerical mathematics. High order numerical methods, such as the finite el-
ement method [12] in general suffer from the so-called Gibbs phenomenon manifested by
the presence of spurious oscillations, overshoots and undershoots in the numerical solu-
tion. In the finite element method, which usually uses globally continuous (conforming)
piecewise polynomial approximations, these problems are typically overcome by the use
of suitable stabilization techniques (Streamline upwind Petrov Galerkin, Galerkin least
squares, etc.) or layer adapted meshes, cf. [20], [46]. Another approach is the finite
volume method, cf. [36], [8], where piecewise constant approximations are used. Such
functions are naturally globally discontinuous on the given partition and are therefore
more suitable for the approximation of discontinuous functions. The drawback of the
finite volume method is that it is only first order accurate at most and the extension to
orders higher than quadratic using for example reconstruction operators is problematic,
[31], [36], [8].

The discontinuous Galerkin finite element method first developed for a neutron
transport equation in [45], can be viewed as a generalization of the finite element and
finite volume methods. The method uses higher order piecewise polynomial approxima-
tions that are globally discontinuous with respect to the given partition of the computa-
tional domain. The discontinuity of the discrete function space is taken into account by
the use of so-called numerical fluxes to approximate the physical fluxes through interele-
ment boundaries, similarly as in the finite volume method. This means that arbitrarily
high orders of accuracy can be obtained, while the discontinuous nature of the discrete
solution helps to alleviate the Gibbs phenomenon compared to the conforming finite
element method. Unlike the finite element method, where the Gibbs phenomenon even-
tually pollutes the entire computational domain, in the discontinuous Galerkin method
the oscillations remain localized in the vicinity of the discontinuity. They can then be
effectively removed using e.g. limiting techniques (ENO, WENO, etc., cf. [25], [37],
[36], [31]) or artificial diffusion and shock capturing techniques, cf. [21], [42], [29]. The
drawback of the discontinuous Galerkin method is the increased number of degrees of
freedom as compared to the finite element method.

The discontinuous Galerkin method was first analyzed in the papers [35], [30], [2]
and in the papers [3], [4], [6] the method is analyzed for elliptic problems. The first
three papers included in the main part of this thesis, i.e. Chapters 2, 3 and 4, deal with
the theoretical analysis of the discontinuous Galerkin method for nonlinear convection-
diffusion equations, namely a priori error estimates for smooth solutions are derived.
Many papers have been written on this subject, however the three presented papers
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build on and naturally extend the results of [14], [15] and [16]. In these papers, a priori
error estimates of optimal orders in the L∞(L2)- and L2(H1)-norms are derived for a
scalar nonstationary nonlinear convection-diffusion problem with linear diffusion. In
the paper [22], suboptimal L∞(L2) error estimates are derived for convection-diffusion
problem with nonlinear diffusion. In the presented thesis, these results are generalized
to optimal order L∞(L2) error estimates for the nonlinear diffusion case (Chapter 2) and
the analysis of a space-time discontinuous Galerkin method for the considered problem
(Chapter 3). Finally, using the ideas of [50], in Chapter 4, error estimates for the
convection-diffusion with nonlinear convection and linear diffusion are derived that are
uniform with respect to the diffusion coefficient ε ≥ 0.

The last two chapters of this thesis deal with the practical application of the discon-
tinuous Galerkin method to the problem of simulation of compressible flow interaction
with rigid and elastic bodies. The discontinuous Galerkin method is becoming increas-
ingly popular in the computational compressible fluid dynamics community with many
groups working on the development and implementation of efficient and accurate algo-
rithms. Here we only mention, as an example, the papers [7], [9] and [48]. Chapters 5
and 6 use the semi-implicit discontinuous Galerkin scheme of [21] along with the arbi-
trary Lagrangian-Eulerian method, [40], in order to simulate compressible fluid flow in
time-dependent domains. In Chapter 5, the movement of the computational domain is
either prescribed (model of air flow through the human vocal folds) or described by a
simple system of ordinary differential equations (interaction of air flow and an elastically
supported aerodynamic profile). In the final Chapter 6, these results are generalized
to include the interaction of air flow and an isotropic elastic body described by the
equations of dynamic elasticity and generalized Hooke’s law with the aim of simulating
true fluid-structure interaction in a simplified model of the human glottis.

The five papers contained in this thesis demonstrate that the discontinuous Galerkin
method is a robust and accurate numerical method for the solution of partial differential
equations of convection-diffusion character, which has solid mathematical foundations.

1 Discontinuous Galerkin method

In this short section, we shall briefly introduce the basic concepts of the discontinuous
Galerkin method and its formulation for the type of problems considered in the main
part of this thesis. We present only the necessary minimum of notation and concepts in
order to formulate the method – many technical subtleties and notions will be omitted
for brevity, since they can be found in the subsequent chapters of the main part of the
thesis, which will be refered to frequently.

The discontinuous Galerkin method is best suited for the numerical solution of
advective or convective problems in conservative form. If, for simplicity, we consider
the scalar case, such a problem reads: Let Ω ⊂ Rd, d ∈ N, be a bounded open polygonal
(polyhedral) domain with Lipschitz-continuous boundary ∂Ω. Find u : Ω× (0, T ) → R
such that

∂u

∂t
+ div f(u) = g in Ω× (0, T ). (1)

Since problem (1) is an evolutionary partial differential equation, it must be equipped
with an initial condition and appropriate boundary conditions, cf. [20], [36]. From the
theoretical and practical point of view, the more interesting case is when f : R → Rd,
representing the convective or advective terms is nonlinear. The papers included in this
thesis are concerned with this case. Problem (1) represents a general conservation law
for the conserved quantity u and depending on the specific form of f , can describe such
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phenomena as fluid flows, city traffic, electrons in semiconductors or elastic waves in
solids, cf. [36]. The function g, usually equal to zero, is a prescribed right-hand side.

In many applications, diffusion enters the process, which leads to the convection-
diffusion problem

∂u

∂t
+ div f(u)− ε∆u = g in Ω× (0, T ), (2)

where ε > 0 represents the constant diffusion parameter. Typically in the discontinuous
Galerkin method, one is interested in the convection-dominated case ε ¿ 1. From the
practical point of view, in Chapters 5 and 6 we shall be concerned with the compressible
Navier-Stokes equations, for which (2) represents a simplified model with linear diffusion
terms.

Discrete space

The discontinuous Galerkin method is similar to the finite element method in that it
uses a suitable weak form of (1), but also the finite volume method since it uses piecewise
polynomial approximations. As in both of these methods, we use a triangulation Th of
Ω, i.e. a partition into closed simplexes with mutually disjoint interiors. Here

h = max
K∈Th

diamK (3)

is the parameter used to measure the convergence rate of the method, as in the finite
volume or finite element methods, cf. [12].

Using the partition Th, the discontinuous Galerkin method seeks a suitable approx-
imation of u from the space of globally discontinuous, piecewise polynomial functions:

Definition 1. We define the discrete space of discontinuous, piecewise polynomial func-
tions

Sh = {v; v|K ∈ P p(K),∀K ∈ Th},

where P p(K) is the space of all polynomials on K of degree less than or equal to p.

The finite element method uses a similar function space, however with the added
assumption of continuity:

Vh = {v ∈ C(Ω); v|K ∈ P p(K),∀K ∈ Th}, (4)

cf. [12]. The discontinuity of functions from Sh is the main advantage of the discon-
tinuous Galerkin method applied to (1) when approximating discontinuities or steep
gradients. However, one needs to use a more complicated weak form of the governing
equation than in the finite element method. This is true especially for the diffusion
terms in (2), cf. [4].

Because we deal with discontinuous approximations, suitable notation is required.
Since this chapter is only a short introduction, we refer to Chapters 2, 3 and 4 for the full
details and technicalities of the derivation and notation. By Fh, we denote the set of all
faces (edges in 2D) of Th. For each Γ ∈ Fh, we define an arbitrary but fixed unit normal
vector n. For v ∈ Sh, v(L) and v(R) represent left and right traces of the discontinuous
function v ∈ Sh on a given face Γ ∈ Fh with respect to the orientation of the normal
n. Finally, [v] = v(L) − v(R) is the jump of v on Γ ∈ Fh and 〈v〉 = 1

2(v(L) + v(R)) is the
average of v on Γ.
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1.1 Discrete formulation of convective problems

Similarly as in the finite element method, the discrete formulation of problem (1) is
obtained by multiplying the equation by a test function ϕ, integrating over an element
K ∈ Th and applying Green’s theorem. After summing over all elements, we obtain the
following, cf. [20], [21].

Definition 2. We say that uh ∈ C1([0, T ]; Sh) is a discontinuous Galerkin solution of
problem (1) if for all t ∈ (0, T ) and all ϕh ∈ Sh

d

dt

(
uh(t), ϕh

)
+ bh

(
uh(t), ϕh

)
=

(
g(t), ϕh

)
, (5)

where the convective form bh(·, ·) is defined by

bh(vh, ϕh) = −
∑

K∈Th

∫

K
f(vh) · ∇ϕh dx +

∫

Fh

H(v(L)
h , v

(R)
h ,n)[ϕh] dS. (6)

In the definition of b, in the second term the integration is performed over all in-
terelement faces. The function H being integrated is the so-called numerical flux, which
approximates the physical flux f(u)·n through each edge Γ using the two traces u

(L)
h , u

(R)
h

of the discrete solution. This term arises by the element-wise application of Green’s the-
orem due to the discontinuity of uh(t), ϕh ∈ Sh. We note that the second term in (6) is
not present in the finite element method, since in this case uh(t), ϕh ∈ Vh are continuous
functions and therefore [ϕh] = 0. Since Sh is finite-dimensional, (5) represents a system
of ordinary differential equations, which must be equipped with an appropriate initial
condition u0

h ∈ Sh.

Numerical flux

The numerical flux H is an important ingredient of the discontinuous Galerkin method
(5), (6). The concept is well known and studied in the finite volume method, therefore
one can use one of the many available constructions of numerical fluxes known from the
finite volume literature, cf. [36].

In the scalar case, H(u, v,n) is defined in R2 × B1, where B1 = {n ∈ Rd; |n| =
1}. From the analytic point of view, natural assumptions on H are the following, cf.
Chapters 2 and 3:

(H1) H(u, v,n) is Lipschitz-continuous with respect to u, v whenever f is Lipschitz-
continuous:

|H(u, v,n)−H(u∗, v∗,n)| ≤ LH(|u− u∗|+ |v − v∗|), u, v, u∗, v∗ ∈ R, n ∈ B1.

(H2) H(u, v,n) is consistent:

H(u, u,n) = f(u) · n, u ∈ R, n ∈ B1.

(H3) H(u, v,n) is conservative:

H(u, v,n) = −H(v, u,−n), u, v ∈ R, n ∈ B1.

Assumptions (H1), (H2) and (H3) are essential to any analysis of the discontinuous
Galerkin method and are used in Chapters 2 and 3. In Chapter 4, a more subtle
analysis of the convective terms is performed and the E-flux property is additionally
assumed. This will be discussed in more detail in Section 4 of this introduction.
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1.2 Discrete formulation of convection-diffusion problems

In Section 1.1, the discontinuous Galerkin formulation of (1) is briefly outlined. How-
ever, except for Chapter 4, the bulk of this thesis deals with the convection-diffusion
case (2) either theoretically or practically. The discontinuous Galerkin discretization of
the diffusion term −ε∆u is rather technical and lengthy in full detail, therefore here we
shall only introduce the final form and refer to Chapters 2, 3 and 4 for details, cf. also
the fundamental paper [4].

Definition 3. We say that uh ∈ C1([0, T ]; Sh) is a discontinuous Galerkin solution of
problem (1) if for all t ∈ (0, T ) and all ϕh ∈ Sh

d

dt

(
uh(t), ϕh

)
+ bh

(
uh(t), ϕh

)
+ εJh

(
uh(t), ϕh

)
+ εah

(
uh(t), ϕh

)
= lh

(
ϕh

)
(t), (7)

where the diffusion form ah(·, ·) is defined by

ah(vh, ϕh) =
∑

K∈Th

∫

K
∇vh·∇ϕh dx−

∫

FI
h

〈∇vh〉·n[ϕh] dS −Θ
∫

FI
h

〈∇ϕh〉·n[vh] dS

−
∫

FD
h

∇vh·nϕh dS −Θ
∫

FD
h

∇ϕh·nvh dS,

(8)

the interior and boundary penalty jump terms are defined by

Jh(vh, ϕh) =
∫

FI
h

σ[vh][ϕh] dS +
∫

FD
h

σvhϕh dS (9)

and the right-hand side form is

lh(ϕh)(t) =
∫

Ω
g(t)ϕh dx+

∫

FN
h

gN (t)ϕh dS+ε

∫

FD
h

σuD(t)ϕh−Θ∇ϕh·nuD(t) dS. (10)

Without going into full detail, in (8)–(10), FI
h ,FD

h and FN
h denote the sets of edges

lying in the interior of Ω, on the part of the boundary ∂Ω corresponding to Dirichlet
boundary conditions and to Neumann boundary conditions, respectively. By uD and
gN , we denote the corresponding Dirichlet and Neumann boundary data, respectively.
The parameter σ in (9) and (10) is constant on every edge and defined by

σ|Γ =
CW

|Γ| , ∀ Γ ∈ Fh, (11)

where CW > 0 is a suitably chosen constant. Finally, the parameter Θ is typically taken
as the Θ = 1, 0,−1, leading to the symmetric, incomplete and nonsymmetric interior
penalty variants of the discontinuous Galerkin method, respectively.

As is the case with the convective form bh, if we instead consider the classical
finite element case, i.e. uh(t), ϕh ∈ Vh, then again [uh(t)] = [ϕh] = 0 on each Γ due
to continuity and the Dirichlet boundary condition is exactly satisfied. Therefore ah

reduces only to its first term, Jh is identically zero and lh reduces to its first two terms,
therefore we obtain the classical weak formulation of (2), cf. [12].

As in the analysis of the finite element method, the diffusion terms Ah(v, w) :=
ah(v, w) + Jh(v, w) are shown to be elliptic and bounded in an appropriate “energy”
norm, in our case the so-called DG norm

‖w‖DG =
( ∑

K∈Th

|w|2H1(K) + Jh(w,w)
)1/2

. (12)

The ellipticity and boundedness of Ah holds provided the constant CW in (11) is large
enough, cf. Chapter 3, Section 4.2 and Chapter 2, Lemma 6 for the nonlinear version
of the diffusion term.
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2 Overview of Chapter 2: Optimal L∞(L2)-error estimates
for nonlinear convection-diffusion problems.

Chapter 2 consists of the paper Optimal L∞(L2)-error Estimates for the DG Method Ap-
plied to Nonlinear Convection-Diffusion Problems with Nonlinear Diffusion, published
in the journal Numerical Functional Analysis and Optimization in 2010, [33]. This pa-
per deals with the analysis of a generalized version of (2) where the diffusion term is
nonlinear:

∂u

∂t
+ div f(u)− div

(
β(u)∇u

)
= g. (13)

Here β(u) represents the diffusion coefficient dependent on the solution u. If β(u) := ε,
a constant, we obtain problem (2) as a special case with linear diffusion. The analysis
of (13) is challenging because both the convective and diffusive terms are nonlinear.
For the analysis presented in Chapter 2, we need the following assumptions on the
nonlinearity β:

β : R→ [β0, β1], 0 < β0 < β1 < ∞,

|β(u1)− β(u2)| ≤ L|u1 − u2|, ∀u1, u2 ∈ R,
(14)

where the first assumption is used to obtain monotonicity-type estimates, while the
other induces Lipschitz continuity of the resulting forms.

Chapter 2 is concerned with the derivation of a priori error estimates for the discon-
tinuous Galerkin method applied to problem (13). The numerical scheme analyzed is
therefore (7) with the diffusion form a(·, ·) modified to discretize the nonlinear diffusion
term, cf. Chapter 2 for details. If we denote the error of the method as eh := u−uh, in
a priori error analysis of evolutionary problems one is typically interested in estimates
of the type

‖eh‖L∞(0,T ;L2(Ω)) = sup
t∈(0,T )

‖eh(t)‖L2(Ω) ≤ Chµ, (15)

where µ is typically p or p + 1 and C is a constant independent of h. Estimate (15)
therefore gives us the convergence rate of the method with respect to h → 0.

2.1 Aubin-Nitsche technique and the Ah-projection

Problem (13) was already analyzed in the author’s doctoral thesis [32], cf. also [22].
Error estimates of the suboptimal order µ = p were obtained in the general nonlinear
case (13). Furthermore, using the so-called Aubin-Nitsche technique ([5], [39]), optimal
error estimates of order µ = p + 1 were obtained for problem (2), i.e. with linear
diffusion. The key problem in the application of the Aubin-Nitsche technique is that it
requires the use of a dual problem corresponding to the diffusion terms. Formulating
such a dual problem in the nonlinear case is not straightforward, since in this case, test
functions in the weak formulation will formally end up inside the nonlinearity.

In the case of linear diffusion, the dual problem which enables the analysis of the
scheme (7) is: Given z ∈ L2(Ω) find ψ ∈ H1

0 (Ω) such that

−∆ψ = z (16)

in the weak sense. One then uses the assumption that for Ω convex, ψ ∈ H2(Ω) and uses
this regularity to obtain the missing order of h in estimate (15). For nonlinear diffusion,
the situation is more complicated, since even if some formal form of the nonlinear dual
problem was used, results on the H2(Ω) regularity of ψ are readily available only in the
linear case, cf. [24]. In order to avoid these obstacles, in Chapter 2 a linearized version
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of the dual problem is used: Given z ∈ L2(Ω) and t ∈ (0, T ), find ψ(t) ∈ H1
0 (Ω) such

that
−div

(
β(u(t))∇ψ(t)

)
= z. (17)

This problem is linear in ψ(t) and if sufficient regularity of u is assumed, one can prove
that ψ(t) ∈ H2(Ω) using results for the Poisson problem (16), cf. Chapter 2, Lemma
9. If the “dual” problem (17) is used, one also needs the regularity of the derivative
∂ψ(t)

∂t ∈ H2(Ω) with respect to the parameter t. This purely technical, yet essential result
is proved in Chapter 2, Lemma 12, using difference approximations to the derivative
∂ψ(t)

∂t .
Another important ingredient in the Aubin-Nitsche technique is the use of a suitable

Ritz or Ah-projection of u(t) onto the space Sh. In the case of linear diffusion, we seek
u?(t) ∈ Sh such that

Ah

(
u∗(t), ϕh

)
= Ah

(
u(t), ϕh

) ∀ϕh ∈ Sh, (18)

where Ah(v, w) := ah(v, w) + Jh(v, w) represents all terms related to the discretization
of the diffusion term. One then uses the dual problem to show that the error of the
Ah-projection χ(t) = u(t)− u?(t) is of the order O(hp+1) in the L2(Ω) norm.

Without going into technical details, in Chapter 2 the Ah-projection is again con-
structed using a linearized version of the discrete form ah, where the linearization is
carried out by replacing all arguments in the function β by the exact solution u(t),
similarly as in (17), cf. Chapter 2, Section 5.1. Finally, using the linearized “dual”
problem (17), O(hp+1) approximation properties for this linearized Ah-projection are
proved in Chapter 2, Lemmas 11 and 13.

After further technical estimates of the convection and diffusion forms bh and ah,
the final result of Chapter 2 is proved in Theorem 18, the optimal-order error estimate

‖eh‖L∞(0,T ;L2(Ω)) ≤ Chp+1. (19)

We note that the final result is derived under standard regularity assumptions ∂u
∂t ∈

L2
(
0, T ;Hp+1(Ω)

)
, along with additional regularity assumptions required throughout

the analysis. Namely ∇u(t), ∂u
∂t (t) and ∇∂u

∂t (t) are assumed bounded in L∞(Ω) for a.a.
t ∈ (0, T ). These additional regularity assumptions are not needed in the analysis of
the linear diffusion case.

3 Overview of Chapter 3: Analysis of space-time discon-
tinuous Galerkin method.

In Chapter 3, the paper Analysis of space-time discontinuous Galerkin method for non-
linear convection-diffusion problems is presented, which was published in the journal
Numerische Mathematik in 2011, [23]. The goal of the paper is the analysis of the
space-time discontinuous Galerkin method applied to problem (2). Up to now, we have
only considered the spatial discretization of our problem. This so-called space semidis-
cretization leads to the system of ordinary differential equations (7). One can then
apply one of the many numerical methods to discretize this system with respect to
time, for example in Chapter 4, the implicit or backward Euler method is considered
and analyzed. Another possibility is to view (2) as an equation in the entire space-time
domain QT := Ω × (0, T ) and to discretize using the discontinuous Galerkin method
with respect to space and time simultaneously. This leads to the space-time discontin-
uous Galerkin method. The analysis builds on and generalizes ideas from the works [1],
[19], [47].
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3.1 Space-time discontinuous Galerkin method

As in the previous section, we shall only outline the main points of the discrete space-
time formulation and refer to Chapter 3, Section 3 for details. We consider a time
partition of (0, T ) into disjoint intervals: [0, T ] = ∪M

i=1Im where Im = (tm−1, tm). We
denote τm = tm− tm−1 and τ = maxm=1,...,M τm is the parameter with respect to which
the temporal error is measured. For every Im we consider a triangulation Th,m of Ω.
Each Th,m generates a different discrete space Sh, cf. Definition 1, which we shall denote
Sp

h,m. The approximate solution will then be sought in the space

Sp,q
h,τ =

{
ϕ ∈ L2(QT );ϕ

∣∣
Im

(t) =
q∑

i=0

ti ϕi, where ϕi ∈ Sp
h,m, m = 1, . . . ,M

}
. (20)

This space is finite-dimensional and consists of piecewise polynomial functions of degree
at most p in space and q in time on the space-time partition induced by all Im and Th,m.
Since ϕ ∈ Sp,q

h,τ is discontinuous with respect to time at each tm, we define the one-sided
limits and jump of ϕ at tm as

ϕ±m = ϕ (tm±) = lim
t→tm±

ϕ(t), {ϕ}m = ϕ (tm+)− ϕ (tm−) . (21)

The discrete forms bh, ah, Jh and lh remain the same as in Definitions 2 and 3, however
since each Im has a different triangulation Th,m in general, the forms bh etc. differ
on each Im. This is taken into account by the notation bh,m etc. Again, we define
Ah,m(v, w) := ah,m(v, w)+Jh,m(v, w). Similarly, the DG-norms (12) also depend on the
triangulation Th,m and are thus denoted ‖ · ‖DG,m.

Definition 4. We say U ∈ Sp,q
h,τ is the space-time discontinuous Galerkin solution of

problem (2), if for all ϕ ∈ Sp,q
h,τ and m = 1, . . . , M

∫

Im

(
(U ′, ϕ) + Ah,m(U,ϕ) + bh,m(U,ϕ)

)
dt +

({U}m−1, ϕ
+
m−1

)
=

∫

Im

`h,m(ϕ) dt, (22)

where U−
0 ∈ Sp

h,m is an approximation of the initial condition to problem (2).

The derivation of (22) follows the same lines as the derivation of (5) or (7): We
multiply (2) by a test function ϕ ∈ Sp,q

h,τ , integrate over a space-time element K × Im,
where K ∈ Th,m, and apply Green’s theorem in space and twice in time. The term({U}m−1, ϕ

+
m−1

)
plays a similar role as the numerical flux or the interior and boundary

penalty terms in the spatial discretization. Since U is discontinuous at tm, one needs to
prescribe in some “weak” sense the “initial condition” U−

m−1 for U |Im . The mentioned
term does this by so-called penalization, cf. [4].

We note that in the special case q = 0, (22) reduces to a variant of the implicit Euler
scheme, which is analyzed in Chapter 4.

3.2 Analysis of the space-time discontinuous Galerkin method

The goal of Chapter 3 is to derive a priori error estimates for scheme (22) in the
L2(0, T ;L2(Ω)) and L2(0, T ; H1(Ω)) norms. As usual in a priori error analysis, we
split the error e = U − u into two parts e = ξ + η, where ξ = U − πu ∈ Sp,q

h,τ and
η = πu − u, where π : L2(QT ) → Sp,q

h,τ is a suitably chosen projection operator. For
the purposes of Chapter 3, π is constructed so that

(1) (π v) (tm−) = Πm v(tm−), ∀m = 1, . . . , M.

(2)
∫

Im

(πv − v, ϕ∗) dt = 0, ∀ϕ∗ ∈ Sp,q−1
h,τ , ∀m = 1, . . . ,M,

(23)
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where Πm is the L2(Ω)-projection onto the space Sp
h,m.

First, an “abstract” estimate of the error e is derived in Chapter 3, Section 4.
Equation (22) and the corresponding weak form of (2) are subtracted and tested by
ϕ := ξ. Individual terms in this error equation are estimated using their ellipticity and
boundedness properties, while special care is taken to estimate the evolutionary terms.
Specifically, an important ingredient in the analysis is the construction of π by (23).
Since then

∫
Im

(η, ξ′) dt = 0 and
(
η−m, ξ−m

)
= 0 where the first term if nonzero would

yield suboptimal orders of convergence when estimated directly. Finally, one obtains
estimate (47), where

∥∥ξ−m
∥∥2 figures in the left-hand side, while on the right-hand side

we have terms containing the interpolation error expressed by η and
∫
Im
‖ξ‖2 dt. This

latter term is undesired and must be eliminated.

Estimation of
∫
Im
‖ξ‖2 dt and bounds on the interpolation error.

The goal of Chapter 3, Section 4.4 is the estimation of
∫
Im
‖ξ‖2 dt in terms of

∥∥ξ−m
∥∥2 and

η (Lemma 5). This is done using a classical procedure, cf. [1], in which the error equation
is tested by ϕ := ξ̃, where ξ̃ is the Lagrange interpolation of (tm− tm−1)ξ(t)/(t− tm−1)
at the right Radau quadrature points on Im, cf. [1]. Since the right Radau quadrature
formulas are exact for polynomials of order up to 2q, they integrate exactly terms such
as

∫
Im
‖ξ‖2 dt, which can therefore be expressed as finite sums and estimated more

straightforwardly.
Combining all these estimates gives us Theorem 6, i.e. the abstract estimate (here

in simplified form):

max
m=1,...,M

‖e−m‖2 +
ε

2

M∑

m=1

∫

Im

‖e‖2
DG,m dt ≤ CR(η), (24)

where C is independent of h, τ and R(η) depends only on η.
In Chapter 3, Section 5, the quantity R(η) from (24) is estimated in terms of the

convergence parameters h and τ . For this purpose, η is written as η = η(1) +η(2), where
η(1) = Πmu − u and η(2) = πu − Πmu = πu − π(Πmu) on each Im. The estimation of
R(η) thus reduces to bounding η(1) and η(2) in various norms.

Estimates for η(1) and η(2) are obtained using approximation properties of the L2(Ω)-
projection operator Πm and the interpolation operator π. To this end, π is expressed
using a one-dimensional interpolation operator P̃m, cf. Chapter 3, Lemma 7. Funda-
mental approximation properties of P̃m, hence π, are proven in Lemma 8 using the
theory of polynomial preserving operators, cf. [12]. For completeness, a self-contained
proof of Lemma 8 is provided in the Appendix of Chapter 3.

Finally, combining all the derived estimates gives us the main theorem of Chapter
3, Theorem 12 (here again in concise form):

max
m=1,...,M

‖e−m‖2 +
ε

2

M∑

m=1

∫

Im

‖e‖2
DG,m dt ≤ C(h2p + τ2q+2). (25)

Since in (25), the L2(Ω) estimates are only in the endpoints tm−, in Section 5.5 an
L2(QT )-bound is derived:

‖e‖2
L2(QT ) ≤ C(h2p + τ2q+2). (26)

The estimates (26), (25) are derived under the assumption 0 < τm ≤ C?ε and τm ≥
Ch2

m. The latter condition on τm is not necessary if all the triangulations Th,m are
identical, cf. Section 5.4.
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4 Overview of Chapter 4: Diffusion-uniform error esti-
mates for singularly perturbed problems

Chapter 4 consists of the paper On diffusion-uniform error estimates for the DG method
applied to singularly perturbed problems, published in the IMA Journal of Numerical
Analysis in 2014, [34]. This paper deals with the singularly perturbed version of problem
(2), i.e. the case when the diffusion parameter ε → 0, or even ε = 0. The purpose of the
paper presented in Chapter 4 is to derive a priori error estimates of the type (15) which
would be uniform with respect to ε → 0 and valid also in the purely convective case.
This pursuit stems from the fact that error analysis using classical techniques such as
those presented in Chapters 2 and 3 lead to estimates where the constant C in (15)
blows up exponentially with ε → 0. The results and techniques if Chapter 4 generalize
those of the series of papers by Q. Zhang and C.-W. Shu starting with the paper [50].

4.1 Limitations of the classical parabolic technique

The analysis of Chapters 2 and 3 uses the so-called parabolic technique. Problem (2) is
treated primarily as a heat equation (i.e. parabolic equation without convection) with
an additional convection term. The diffusion term Ah is elliptic in the DG-norm (12).
One can therefore use the classical ellipticity-based estimation technique for parabolic
problems, [12]. Equations (2) – in the weak form – and (7) are subtracted to obtain an
equation for the error eh = u − uh = η + ξ, where η = u − Πhu, ξ = Πhu − uh ∈ Sh

with a suitable projection Πhu of u onto Sh. The error equation is then tested with
ϕh := ξ and the proved ellipticity estimates for Ah are applied along with estimates of
η following from approximation properties of Πh.

As for the convective terms, they are than estimated straightforwardly as

|bh(u, ξ)− bh(uh, ξ)| ≤ C‖ξ‖DG

(
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

)
, (27)

cf. Chapter 2, Lemma 17 and Chapter 3, Section 4.2. While the term
(
hp+1|u|Hp+1(Ω) +

‖ξ‖L2(Ω)

)
in estimate (27) is desirable for the subsequent error analysis, the only pos-

sibility how to deal with the term ‖ξ‖DG is to “dominate” it by the elliptic terms: we
estimate using Young’s inequality

C‖ξ‖DG

(
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

) ≤ ε
2‖ξ‖2

DG + C
4ε

(
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

)2 (28)

and the unpleasant term ε
2‖ξ‖2

DG is subtracted from the left-hand side elliptic term
ε‖ξ‖2

DG stemming from the diffusion terms. The result of this procedure is the constant
C
4ε in the remaining right-hand side terms. After the application of Gronwall’s lemma,
this results in a constant of the form exp(C

ε ) in the resulting error estimate (15). This
constant is unrealistically large for ε ¿ 1 and it is not uniform with respect to ε → 0.
Furthermore, the analysis is not valid for ε = 0. We note that in the case of nonlinear
diffusion (13), these observations are still valid, with the final constant blowing up
exponentially as β0 → 0, cf. (14) and Chapter 2.

4.2 The technique of Zhang and Shu

In the paper [50], the authors have managed to overcome the limitations of the parabolic
technique for high order Runge-Kutta Discontinuous Galerkin schemes. The presented
analysis is based on a more subtle estimate of the convective terms than the straight-
forward bound (27). Along with the standard properties (H1)–(H3) of the numerical
flux, the addition E-flux property is assumed:

(H4)
(
H(v, w,n)− f(q)·n)

(v − w) ≥ 0, ∀v, w ∈ R, n ∈ B1 and all q between v, w.
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This technical assumption is satisfied for all so-called monotone numerical fluxes, a prop-
erty satisfied by many numerical fluxes used in practice, e.g. Lax-Friedrichs, Godunov,
Engquist-Osher and the Roe flux with entropy fix, cf. [41], [8].

Using the E-flux condition, the following estimate can be derived:

∣∣bh(uh, ξ)− bh(u, ξ)
∣∣ ≤ C

(
1 +

‖eh(t)‖2∞
h2

)(
h2p+1|u(t)|2Hp+1 + ‖ξ‖2

)
, (29)

cf. Chapter 4, Lemma 7. The advantage of estimate (29) over (27) is that the
term h−2‖eh(t)‖2∞ can be eliminated. For if we knew a priori that the error satis-
fies ‖eh(t)‖∞ = O(h), then h−2‖eh(t)‖2∞ = O(1) and estimate (29) reduces to the term
C(h2p+1|u(t)|2Hp+1 + ‖ξ‖2) which is ideal for the application of Gronwall’s lemma, lead-
ing to the improved estimate ‖eh(t)‖L2(Ω) = O(hp+1/2). Since the convection terms
are estimated independently of the diffusion terms, there is no need to use estimates
such as (28) involving ε−1. We therefore obtain estimates which are uniform for ε → 0
and valid even in the limiting case ε = 0. In [50], the O(h) a priori assumption is
eliminated via mathematical induction for an explicit Runge-Kutta time discretization
of the discontinuous Galerkin scheme. An artefact of the technique is that the degree
of polynomial approximation must satisfy certain conditions, such as p > (1 + d)/2 in
order to carry out the induction steps.

In Chapter 4, the ideas of Zhang and Shu are generalized in the following ways:

• Estimate (29) originally derived in 1D for periodic boundary conditions is gener-
alized to Rd with mixed Dirichlet-Neumann boundary conditions, cf. Chapter 4,
Lemma 7.

• The technique is applied to the space semidiscrete scheme (7), cf. Chapter 4,
Section 7, replacing the mathematical induction argument using by continuous
mathematical induction, cf. [11].

• The technique is applied to the implicit Euler scheme. To overcome fundamental
obstacles with the induction argument in case of an implicit scheme, a suitable
continuation of the discrete solution is constructed and again a continuous math-
ematical induction argument is applied to the continued version of the error, cf.
Chapter 4, Lemma 8.

• The error analysis is generalized to the case of only locally Lipschitz continuous
f , cf. Chapter 4, Lemma 9.

Due to lack of space in this introductory chapter and the technical nature of the
arguments, we only briefly outline the continuation argument from the analysis of the
implicit Euler scheme. For the purely convective case this reads: Find un+1

h ∈ Sh such
that for all ϕh ∈ Sh

(
un+1

h − un
h, ϕh

)
+ τnbh

(
un+1

h , ϕh

)
= τnlh

(
ϕh

)
(tn+1), (30)

where τn is the current time step. In Chapter 4, Lemma 14, it is proved that the
estimate (29) is insufficient to prove the desired error estimate. Therefore, we construct
a continuation of the discrete solution un

h: For every τ ∈ [0, τn] find uτ ∈ Sh such that
for all ϕh ∈ Sh (

uτ − un
h, ϕh

)
+ τbh

(
uτ , ϕh

)
= τ lh

(
ϕh

)
(tn+1). (31)

Formally, if τ = 0, we have uτ = un
h while for τ = τn, we obtain uτ = un+1

h , the solution
of (30). It can be proved (Chapter 4, Lemma 16) that between these two values uτ

depends continuously on the parameter τ . Therefore, we can go continuously from un
h
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to un+1
h , which allows us to carry out the necessary induction steps in the Zhang-Shu

technique. The result is an error estimate of the form

max
n∈{0,··· ,N+1}

‖en
h‖2 ≤ C2

T

(
h2p+1 + εh2p + τ2

)
, (32)

where the constant CT is independent of ε, h, τ , cf. Chapter 4, Theorem 19.

5 Overview of Chapter 5: Simulation of compressible vis-
cous flow in time-dependent domains

Chapter 5 consists of the paper Simulation of compressible viscous flow in time-dependent
domains, published in the journal Applied Mathematics and Computation in 2013, [10].
Unlike the previous three chapters, Chapters 5 and 6 deal with practical applications of
the discontinuous Galerkin method. Both these chapters deal with the numerical solu-
tion of the compressible Navier-Stokes equations in time-dependent domains with the
aid of the ALE, or Arbitrary Lagrangian-Eulerian method, cf. e.g. [40]. The resulting
equations are discretized by a semi-implicit discontinuous Galerkin scheme. In Chapter
5, the movement of the domain will be either prescribed (air flow through a channel
with moving walls) or governed by a simple system of ordinary differential equations
(flow induced airfoil vibrations).

The equations which are solved are the compressible Navier-Stokes equations written
in conservative form:

∂w

∂t
+

2∑

s=1

∂fs(w)
∂xs

=
2∑

s=1

∂Rs(w,∇w)
∂xs

, (33)

where w : QT → R4 represents the vector of conserved variables and fs,Rs are the
so-called Euler and viscous fluxes, respectively, cf. Chapter 5, Section 2. Equation (33)
has a similar form as the scalar equation (13) and can be analogically discretized by the
discontinuous Galerkin method.

Unlike equation (13), system (33) along with suitable initial and boundary conditions
is considered on a spatial domain Ωt depending on time t ∈ [0, T ]. This is taken into
account using the ALE method.

5.1 Arbitrary Lagrangian-Eulerian method

In the ALE method, the movement of Ωt is considered with respect to a reference domain
Ω0. Typically Ω0 is the computational domain Ωt taken at the initial time t = 0. The
domain Ωt is described using a one-to-one mapping

At : Ω0 −→ Ωt (34)

which maps points X ∈ Ω0 to points x = x(X, t) = At(X) ∈ Ωt. Since the domain is
time-dependent, it is useful to define the domain velocity

z(x, t) =
( ∂

∂t
At(X)

)∣∣∣
X=A−1

t (x)
(35)

for t ∈ [0, T ] and x ∈ Ωt. The basis of the ALE method lies in replacing the time
derivative in the governing equation (33) with the ALE derivative: For a given function
f = f(x, t) defined for x ∈ Ωt and t ∈ [0, T ]:

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t), (36)
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where
f̃(X, t) = f(At(X), t), X ∈ Ω0, x = At(X).

By the application of the chain rule, one obtains the fundamental relation

DAf

Dt
=

∂f

∂t
+ div (zf)− f div z, (37)

which allows us to rewrite the compressible Navier-Stokes equations in the ALE form

DAw

Dt
+

2∑

s=1

∂gs(w)
∂xs

+ w divz =
2∑

s=1

∂Rs(w,∇w)
∂xs

, (38)

where the ALE modified inviscid fluxes are defined by

gs(w) := fs(w)− zsw, s = 1, 2. (39)

5.2 Discontinuous Galerkin discretization

System (38) is discretized by the discontinuous Galerkin method in space similarly as in
Section 1. At time t the domain Ωt is partitioned into a triangulation Tht. The discrete
solution is sought in the discontinuous Galerkin space

Sht = [Sht]4, where Sht = {v; v|K ∈ P p(K) ∀K ∈ Tht}. (40)

Using these discrete spaces, we can discretize system (38) in the following way.

Definition 5. We say wh ∈ C1([0, T ]; Sht) is a discontinuous Galerkin solution of (38)
if for all t ∈ (0, T ) and ϕh ∈ Sht

∑

K∈Tht

∫

K

DAwh(t)
Dt

·ϕh dx + bh(wh(t), ϕh) + ah(wh(t), ϕh)

+ Jh(wh(t), ϕh) + dh(wh(t),ϕh) = `h(wh(t), ϕh).

(41)

In (41), the forms bh, ah, Jh and lh are vector analogies of the forms (6) and (8) –
(10). Only the convective form bh is based on the modified fluxes gs, (39) instead of
the original fluxes fs of (33). The new reaction form arises due to the ALE “reaction”
term w divz and is defined as

dh(w, ϕh) =
∑

K∈Tht

∫

K
(w ·ϕh) divz dx. (42)

The system of ordinary differential equations (41) is discretized with respect to time
using the semi-implicit approach of [21]. In the case of a stationary domain Ω, this
is essentially the implicit Euler scheme, where the nonlinear terms are linearised with
respect to the unknown solution on the next time level wk+1

h using suitable properties
of the individual convective and diffusive terms. For example, in the convective terms,
the nonlinearities of the form gs(w

k+1
h ) are approximated as

gs(w
k+1
h ) = (A s(wk+1

h )− zk+1
s I)wk+1

h ≈ (A s(wk+1
h )− zk+1

s I)wk+1
h , (43)

where A s(w) is the Jacobi matrix of fs(w), cf. [21] and wk+1
h is a state vector ex-

trapolated from wk
h and wk−1

h . The first equation in (43) follows from the first order
homogeneity of fs. Similar linearizations can be performed for the diffusion terms and
the numerical flux, if it is suitably chosen. In Chapter 5 the Vijayasundaram numerical
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flux is used, due to its appropriate form for linearization similar to (43), cf. [21] and
[49]. Finally, the ALE derivative is approximated by a second order backward differ-
ence formula applied to the time derivative in its definition (36). The advantage of the
chosen semi-implicit scheme is its practically unconditional stability obtained with the
solution of only one linear algebraic system of equations per time level as demonstrated
in [21]. The resulting linear systems are solved using the Generalized Minimal Residual
(GMRES) method with block-diagonal preconditioning, [21].

In the second numerical experiment from Chapter 5, Section 4.2.1, we also deal with
transonic flows. Therefore it is necessary to treat the Gibbs phenomenon occurring
in the vicinity of discontinuities and steep gradients. For this purpose, we add local
element-wise and interelement artificial viscosity terms to the resulting semi-implicit
formulation, cf. Chapter 5, Section 3.3. These artificial viscosity terms are based on
the discontinuity indicator which measures the interelement jumps of density, cf. [17]
and [21].

An important ingredient in the proposed numerical method is the treatment of
boundary conditions. On artificial boundaries (inlet and outlet), transparent, non-
reflecting boundary conditions based on local linearizations of the Euler equations are
applied, cf. Chapter 5, Section 3.4 and [21]. On moving solid impermeable walls, the no
slip boundary condition for the fluid velocity v = z is prescribed, where z is interpreted
as the velocity of the moving wall.

Two numerical experiments are performed to test the described numerical method.
First, in Chapter 5, Section 4.1, air flow through a channel with moving walls is consid-
ered. The shape and movement of the channel is inspired by the human glottis and is
taken from [43]. Together with more sophisticated simulations using true fluid-structure
interaction from Chapter 6, the goal is the simulation of voice formation in human vo-
cal folds. In the case of Chapter 5, the movement of the solid walls is prescribed as
a periodic motion with frequency 100 Hz mimicking the opening and closing of the
vocal chord aperture. This movement is then simply interpolated into the domain to
obtain the ALE mapping At also in the interior of Ωt. The inlet Reynolds number is
Re = 5227, the Mach number is Min = 0.012, i.e. a relatively low Mach flow is con-
sidered. Complicated interacting vortical structures arise downstream from the moving
part of the channel. The results are compared to similar simulations performed in [43]
obtained by the finite volume method, cf. also [44].

In the second numerical experiment, Chapter 5, Section 4.2, a simple example of
fluid-structure interaction is presented. We consider subsonic and transonic flow around
a rigid, elastically supported NACA 0012 airfoil. The motion of the profile is governed
by a system of two nonlinear ordinary differential equations for the vertical displacement
and rotation angle of the airfoil. Similar test problems have been considered e.g. in [18].
A strong coupling iterative procedure was applied to solve the coupled system consisting
of the compressible air flow and equations describing the movement of the profile. As
in the previous test case, the movement of the boundary (profile) is interpolated to the
rest of Ωt to obtain At, similarly as in [18]. In the numerical experiment, we were able
to capture the rise of the so-called flutter instability for inlet flow velocity 40 m/s. For
lower velocities the airfoil vibrations are damped.

6 Overview of Chapter 6: Discontinuous Galerkin for the
interaction of a compressible fluid and structures

Chapter 6 consists of the paper DGFEM for dynamical systems describing interaction
of compressible fluid and structures, [26], published in the Journal of Computational
and Applied Mathematics in 2013. In Chapter 5 only a simple case of fluid-structure
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interaction is considered, where the equations describing the movement of the structure
are simple ordinary differential equations. In Chapter 6 these results are extended to a
complicated fluid-structure interaction problem, where the compressible Navier-Stokes
equations are coupled with equations describing the deformation of an elastic body
governed by the generalized Hooke’s law.

6.1 Elasticity equations for the body and ALE mapping.

Similarly as in Chapter 5, we shall consider the compressible Navier-Stokes equations
in a time dependent domain Ωt ⊂ R2, where the ALE method will be used to describe
the domain using a mapping At : Ω0 −→ Ωt from a reference domain Ω0. Along with
these equations, in Chapter 6 we shall also consider interaction of the fluid flow with an
elastic body. The elastic body will be represented by a bounded open domain Ωb ⊂ R2,
which will be assumed to have a common (part of the) boundary with Ω0 denoted by
Γb

W . For X ∈ Ωb we denote the displacement of point X of the elastic body at time t by
u(X, t) = (u1(X, t), u2(X, t)). Therefore at time t, the point X ∈ Ωb will be located
at

x = X + u(X, t). (44)

As the governing equations for the motion of the elastic body we shall take the dynamical
equations for the displacement u of an isotropic elastic body

%b ∂2ui

∂t2
+ C%b ∂ui

∂t
−

2∑

j=1

∂τ b
ij

∂Xj
= 0 in Ωb × (0, T ), i = 1, 2, (45)

where %b denotes the material density and τ b
ij are the components of the stress tensor

defined by the generalized Hooke’s law for isotropic bodies, cf. Chapter 6, Section 2.2.
We note that τ b

ij = τ b
ij(u) depends on the displacement u and its first derivatives via

the strain tensor. Therefore (45) represents an equation for the single unknown u. The
term C%b ∂ui

∂t , where C ≥ 0, represents the dissipative structural damping of the system,
which is natural for real bodies.

System (45) must be equipped with initial and boundary conditions. These are
taken in a standard way, cf. Chapter 6, Section 2.2, with the exception of the common
interface Γb

W between the reference fluid domain Ω0 and the elastic body Ωb. On Γb
W ,

system (45) is equipped with the so-called transmission condition

2∑

j=1

τ b
ij(X)nj(X) = −

2∑

j=1

τ f
ij(x)nj(X), i = 1, 2, (46)

where τ f
ij are the components of the stress tensor of the fluid, cf. Chapter 6, Section 2.2.

Condition (46) prescribes the normal component of the stress tensor τ b and expresses the
force balance between the aerodynamic forces and the forces on the structure surface.

As for the Navier-Stokes equations, on the common part of the boundary ˜ΓWt cor-
responding to Γb

W by the mapping (44) at time t, the second transmission condition is
prescribed:

v(x, t) =
∂u(X, t)

∂t
, (47)

which corresponds to the no-slip moving wall boundary condition v = z of Chapter 5.
System (45) is used not only to describe the deformation of the elastic body, but its

stationary version is used to construct the ALE mapping At. We seek At : Ω0 → Ωt

expressed using a displacement vector field d:

At(X) = X + d(X, t), X ∈ Ω0, (48)
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in analogy to (44). The unknown d : Ω̄0 → R2 will be sought as the solution of the
artificial static elasticity problem

2∑

j=1

∂τa
ij

∂xj
= 0 in Ω0, i = 1, 2, (49)

where τa
ij = τa

ij(d) are the components of the artificial stress tensor defined using the
generalized Hooke’s law similarly as for the elastic problem on Ωb. Equation (49) is
therefore a second order linear elliptic partial differential equation for the unknown d.

On Γb
W , we equip (49) with the boundary condition

d(X, t) = u(X, t). (50)

The philosophy behind this approach is that we want to “interpolate” the movement
of the boundary ∂Ωt, which we know from the elastic problem (45) into the whole
fluid domain Ωt. This cannot be done e.g. by straightforward linear interpolation
as in Chapter 5, where the domain movement is simple and/or prescribed. For this
purpose we view Ωt as an elastic body with prescribed deformation of (part of) its
boundary. For small enough deformations, we can expect that similarly as for elastic
bodies, the artificial problem (49) will give us a one-to-one mapping of the reference
domain (configuration) Ω0 onto Ωt.

6.2 Discretization

The fluid problem, i.e. the compressible Navier-Stokes equations in ALE form are solved
using the same semi-implicit discontinuous Galerkin method with backward difference
formula time discretization of order 2 as in Chapter 5. Using this method, the new
solution wk+1

H can be found whenever the mapping Atn+1 is known.
The elasticity problem (45) is discretized in space using the standard piecewise linear

conforming finite element method, i.e. a weak form of (45) is taken on the space Vh

of (4) with p = 1, cf. [12]. With respect to time, the resulting second order system
of ordinary differential equations is discretized using the Newmark method, [13], which
is essentially an implicit scheme. The resulting system of linear algebraic equations is
symmetric positive definite, therefore it is solved using the conjugate gradient method.
The elasticity problem can be solved whenever the data from the boundary condition
(46) is known from the fluid simulation.

Similarly, the artificial elasticity problem (49) used for the construction of the ALE
mappingAt is solved using the piecewise linear conforming finite element method. Equa-
tion (49) is stationary and the resulting symmetric positive definite linear algebraic sys-
tem can be solved by the conjugate gradient method similarly as the systems of linear
equations arising in the Newmark method used to solve the nonstationary model (45).
The artificial elasticity problem can be solved once the data from boundary condition
(50) is available from the solution of the elasticity problem.

Since the solutions of the three individual subproblems depend on each other via
the transfer boundary conditions, some strategy is needed to solve the entire coupled
problem using the solution procedures for the three described subproblems. In Chapter
6, Section 4.2, the strong and weak coupling procedures are described. In brief form,
these can be described by the iterative procedure performed on each time level:

1. Solve elasticity problem (45) using the aerodynamic forces (46) from the previous
iteration.

2. Solve the artificial elasticity problem (49) using the displacement u from point 1.
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3. Solve the flow problem (38) using the mapping At obtained from point 2.

The weak coupling procedure consists of performing steps 1.–3. only once per time level.
On the other hand, in the strong coupling procedure, on each time level steps 1.–3. are
repeated iteratively until some form of convergence is obtained. After that we move on
to the next time level. The advantage of the strong coupling procedure is its higher
stability and robustness, while weak coupling requires less CPU time. Our numerical
experiments show that only a few inner iterations in the strong coupling procedure
are needed to obtain convergence of the computed displacements u in point 1. of the
algorithm above.

The developed numerical method is tested on a model problem of air flow through
a channel interacting with two elastic bumps representing a simplified model of human
vocal folds. The channel is 160 mm long with the narrowest aperture 1.6 mm. The flow
parameters are the same as in the vocal fold numerical experiment of Chapter 5. Results
are compared on three successively refined meshes and for weak and strong coupling.
The results indicate that in the considered test case the differences between weak and
strong coupling are not large. To analyze the character of the resulting vocal fold
vibrations, several “sensor” points are monitored on the surface of the elastic bumps as
well as pressure in a fluid sensor point monitoring the air pressure. A Fourier analysis of
the resulting signals is performed demonstrating the presence of a dominant frequency in
these signals (approximately 439 Hz for vertical displacement of the sensors and 113 Hz
for horizontal displacement). The obtained numerical results are compared to numerical
simulations using other methods, e.g. [44], [38], and wind tunnel experiments, cf. [27]
and [28].
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[6] Babuška, I., Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method
for diffusion problems, 1-D analysis. Comput. Math. Appl., 37, 103–122 (1999).

[7] Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of
the 2D Euler equations. J. Comput. Phys., 138, 251–285 (1997).

[8] Barth, T., Ohlberger, M.: Finite Volume Methods: Foundation and Analysis, En-
cyclopedia of Computational Mechanics, volume 1. John Wiley & Sons, Chichester,
New York, Brisbane, 439–474 (2004).

[9] Baumann, C. E., Oden, J. T.: A discontinuous hp finite element method for the Eu-
ler and Navier-Stokes equations. Int. J. Numer. Methods Fluids, 31, 79–95 (1999).

[10] Česenek, J., Feistauer, M., Horáček, J., Kučera, V., Prokopová, J.: Simulation
of compressible viscous flow in time-dependent domains. Appl. Math. Comput.
219(13), 7139–7150 (2013).

[11] Chao, Y.R.:A note on “Continuous mathematical induction”. Bull. Amer. Math.
Soc., 26 (1), 17–18 (1919).

[12] Ciarlet, P.G. The Finite Element Method for Elliptic Problems. North-Holland,
Amsterdam (1979).

[13] Curnier, A.: Computational Methods in Solid Mechanics. Kluwer Academic Pub-
lishing Group, Dodrecht (1994).
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Abstract

This paper is concerned with the analysis of the discontinuous Galerkin finite
element method (DGFEM) applied to the space semidiscretization of a nonstation-
ary convection-diffusion problem with nonlinear convection and nonlinear diffu-
sion. Optimal estimates in the L∞(L2)-norm are derived for the symmetric interior
penalty (SIPG) scheme in two dimensions. The error analysis is carried out for non-
conforming triangular meshes under the assumption that the exact solution of the
problem and the solution of a linearised elliptic dual problem are sufficiently regular.

Keywords: Convection-diffusion equation, nonlinear diffusion, discontinuous Galerkin
finite element method, symmetric formulation of diffusion terms, interior and bound-
ary penalty, method of lines, optimal error estimates.

1 Introduction

The numerical solution of nonstationary convection-diffusion problems plays an impor-
tant role in many areas of applied mathematics ranging from fluid dynamics and heat
transfer on one side to image processing on the other side. In the numerical treatment
of such problems many difficulties arise due to the occurrence of internal and boundary
layers, where steep gradients or discontinuities appear. Many numerical methods have
been devised to overcome such difficulties. The finite volume (FV) method, which is
often used, is based on piecewise constant approximations. It has good stability prop-
erties in the vicinity of discontinuities, however it has a low order of accuracy and its
generalization to higher order methods is rather sophisticated. On the other hand, the
finite element (FE) method with a high order of accuracy is suitable mainly for ellip-
tic problems and various stabilization techniques (e.g. streamline diffusion or Galerkin
least squares methods) must be employed to avoid spurious oscillations in the solution
of convection-diffusion problems with dominating convection.

A natural generalization of the FV and FE methods is the discontinuous Galerkin
finite element method (DGFEM). This method uses advantages of FV as well as FE
methods: it is based on piecewise polynomial but discontinuous approximations, where
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boundary fluxes are evaluated with the aid of a numerical flux. The use of discontinuous
functions allows a flexible capturing of discontinuities and steep gradients, while the use
of higher degree polynomials ensures a higher order of approximation in regions, where
the solution is smooth.

Originally, the DGFE method was proposed for the solution of a neutron transport
linear equation in [28] and analyzed theoretically in [27] and [24]. As for the numer-
ical solution of elliptic and parabolic problems, discontinuous Galerkin methods are
proposed and analysed in the pioneering works [33] and [1] with further theoretical
analysis in [4], [2] and [3]. In the following decades, the DGFE method was applied
to nonlinear conservation laws ([9], [23]) and the numerical solution of compressible
flow ([5], [6], [7], [12], [20], [32], [14], [18]) as well as incompressible viscous flow ([29],
[31]), porous media flow ([30]), shallow water flow ([10]), the Hamilton-Jacobi equations
([22]), the Schrödinger equation ([25]) and the Maxwell equations ([21]).

In this paper we are concerned with the analysis of the DGFE method applied
to the space semidiscretization of a nonstationary convection-diffusion problem with
nonlinear convection and nonlinear diffusion. The motivation to include also nonlinear
diffusion along with nonlinear convection comes from the area of numerical treatment of
compressible viscous flows governed by the compressible Navier-Stokes equations. This
system of equations, when written in conservative form contain nonlinear convective as
well as nonlinear viscous (diffusive) terms. Our scalar problem serves as a simplified
model of the compressible Navier-Stokes equations.

We extend previous work from [13], [15] and [16], where linear diffusion (and non-
linear convection) is treated. In this case, apriori estimates optimal with respect to the
order of convergence are obtained in the L2(H1)− and L∞(L2)−norms. As for nonlinear
diffusion, we extend the work [17], where error estimates suboptimal with respect to the
L∞(L2)−norm are derived. By using a linearised elliptic dual problem we are able to
improve these estimates using the Aubin-Nitsche technique. Optimal estimates in the
L∞(L2)-norm are derived for the symmetric interior penalty (SIPG) scheme in two di-
mensions. The error analysis is carried out for nonconforming triangular meshes under
the assumption that the exact solution of the problem and the solution of a linearised
elliptic dual problem are sufficiently regular.

2 Continuous problem

Let Ω ⊂ R2 be a bounded open convex polygonal domain with Lipschitz-continuous
boundary ∂Ω and T > 0. Let QT := Ω × (0, T ). We treat the following nonlinear
problem:

∂u

∂t
+

2∑

s=1

∂fs(u)
∂xs

− div
(
β(u)∇u

)
= g in QT , (1)

u|∂Ω×(0,T ) = uD, (2)

u(x, 0) = u0(x), x ∈ Ω, (3)

where the function β ∈ C2(R)∩W 2,∞(R) is bounded from below and above and Lipschitz
continuous:

β : R→ [β0, β1], 0 < β0 < β1 < ∞, (4)
|β(u1)− β(u2)| ≤ L|u1 − u2|, ∀u1, u2 ∈ R. (5)
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Condition (5) implies |β′| ≤ L. Let g : QT → R, uD : ∂Ω×(0, T ) → R and u0 : Ω → R be
given functions, and f1, f2 ∈ C1(R) be prescribed Lipschitz-continuous fluxes. Without
loss of generality let f1(0) = f2(0) = 0.

In the following we shall use standard notation of function spaces. Let G ⊂ R2 be a
bounded domain with a Lipschitz-continuous boundary ∂G. By G we denote the closure
of G. Let k ∈ {0, 1, 2, . . . } and p ∈ [1,∞]. We use the well-known Lebesgue and Sobolev
spaces Lp(G), Lp(∂G), W k,p(G), Hk(G) = W k,2(G), W k,p(∂G). By H1

0 (G) we denote
the space formed by all functions v ∈ H1(G) with zero traces on ∂G, i.e. v|∂G = 0.
Further, we use the Bochner spaces Lp(0, T ; X) of functions defined in (0, T ) with values
in a Banach space X and the spaces Ck([0, T ]; X) of k-times continuously differentiable
mappings of the interval [0, T ] with values in X (see e.g. [26]). The symbols ‖ · ‖X and
| · |X will denote a norm and a seminorm in a space X, respectively. By (·, ·) we denote
the standard L2(Ω)−scalar product.

3 Discretization

3.1 Finite element mesh

Let Th be a partition of the closure Ω of the domain Ω into a finite number of closed
triangles with mutually disjoint interiors. We shall call Th a triangulation of Ω. We
do not require the standard conforming properties of Th used in the finite element
method. This means that we admit the so-called hanging nodes. We shall use the
following notation. By ∂K we denote the boundary of an element K ∈ Th and set
hK = diam(K), h = maxK∈Th

hK . By ρK we denote the radius of the largest circle
inscribed into K and by |K| we denote the area of K.

Let K, K ′ ∈ Th. We say that K and K ′ are neighbours, if the set ∂K ∩ ∂K ′ has
positive length. We say that Γ ⊂ K is a face (or edge in R2) of K, if it is a maximal
connected open subset either of ∂K∩∂K ′, where K ′ is a neighbour of K, or of ∂K∩∂Ω.
By Fh we denote the system of all faces of all elements K ∈ Th. Further, we define the
set of all inner faces by

FI
h = {Γ ∈ Fh; Γ ⊂ Ω}

and the set of all boundary faces by

FB
h = {Γ ∈ Fh; Γ ⊂ ∂Ω} .

Obviously, Fh = FI
h ∪ FB

h .
For each Γ ∈ Fh we define a unit normal vector nΓ. We assume that for Γ ∈ FB

h the
normal nΓ has the same orientation as the outer normal to ∂Ω. For each face Γ ∈ FI

h

the orientation of nΓ is arbitrary but fixed. Finally, by d(Γ) we denote the length of
Γ ∈ Fh.

3.2 Spaces of discontinuous functions

Over a triangulation Th we define the broken Sobolev spaces

Hk(Ω, Th) = {v; v|K ∈ Hk(K), ∀K ∈ Th}
equipped with the seminorm

|v|Hk(Ω,Th) =
( ∑

K∈Th

|v|2Hk(K)

)1/2
.

27



Optimal L∞(L2)-error estimates for the DG method

For each face Γ ∈ FI
h there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Th such that Γ ⊂

K
(L)
Γ ∩K

(R)
Γ . We use the convention that nΓ is the outer normal to the element K

(L)
Γ

and the inner normal to the element K
(R)
Γ . For v ∈ H1(Ω, Th) and Γ ∈ FI

h we introduce
the following notation:

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, v|(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ = 1
2

(
v|(L)

Γ + v|(R)
Γ

)
, [v]Γ = v|(L)

Γ − v|(R)
Γ .

The value [v]Γ depends on the orientation of nΓ, but the values 〈v〉Γ and [v]ΓnΓ are
independent of this orientation. Now, let Γ ∈ FB

h and K
(L)
Γ ∈ Th be such an element

that Γ ⊂ ∂K
(L)
Γ ∩ ∂Ω. For v ∈ H1(Ω, Th) we set

vΓ = v|(L)
Γ = v|(R)

Γ = the trace of v|
K

(L)
Γ

on Γ,

i.e. we define v|(R)
Γ by extrapolation.

If [·]Γ and 〈·〉Γ appear in an integral of the form
∫
Γ . . . dS, we omit the subscript Γ

and write simply [·] and 〈·〉. For simplicity we shall use the following notation:
∫

FI
h

. . . dS =
∑

Γ∈FI
h

∫

Γ
. . . dS

and similarly for Fh and FB
h .

Let p ≥ 1 be an integer. The approximate solution will be sought in the space of
discontinuous piecewise polynomial functions

Sh = {v; v|K ∈ P p(K),∀K ∈ Th},
where P p(K) denotes the space of all polynomials on K of degree ≤ p.

3.3 Discontinuous Galerkin space semidiscretization

We introduce the following forms defined for u, v, ϕ ∈ H2(Ω, Th), which yield the SIPG
(Symmetric Interior Penalty Galerkin) version of the DG approximation.
Symmetric diffusion form:

ah(u, v, ϕ) =
∑

K∈Th

∫

K
β(u)∇v · ∇ϕdx

−
∫

FI
h

〈β(u)∇v〉 · n[ϕ] dS −
∫

FI
h

〈β(u)∇ϕ〉 · n[v] dS

−
∫

FB
h

β(u)∇v · nϕdS −
∫

FB
h

β(u)∇ϕ · nv dS.

Further we define the interior and boundary penalty jump terms:

Jh(u, ϕ) =
∫

FI
h

σ[u][ϕ] dS +
∫

FB
h

σuϕ dS (6)

and the symmetric right-hand side form:

lh(u, ϕ)(t) =
∫

Ω
g(t)ϕdx−

∫

FB
h

β(u)∇ϕ · nuD(t) dS +
∫

FB
h

σuD(t)ϕdS. (7)
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The parameter σ in (6) and (7) is constant on every edge and defined by

σ|Γ =
CW

d(Γ)
, ∀ Γ ∈ Fh, (8)

where CW > 0 is a constant, which must be chosen large enough to ensure coercivity of
the diffusion form – cf. Lemma 6.

Finally we define the convective form

bh(u, ϕ) = −
∑

K∈Th

∫

K

2∑

s=1

fs(u)
∂ϕ

∂xs
dx +

∫

Fh

H(u(L), u(R),n)[ϕ] dS.

The form bh approximates convective terms with the aid of a numerical flux H(u, v,n).
We assume that H has the following properties:

Assumptions (H):

(H1) H(u, v,n) is defined in R2 × B1, where B1 = {n ∈ R2; |n| = 1}, and is Lipschitz-
continuous with respect to u, v:

|H(u, v,n)−H(u∗, v∗,n)| ≤ CL(|u− u∗|+ |v − v∗|), ∀u, v, u∗, v∗ ∈ R, n ∈ B1.

(H2) H(u, v,n) is consistent:

H(u, u,n) =
2∑

s=1

fs(u) ns, ∀u ∈ R, n = (n1, n2) ∈ B1.

(H3) H(u, v,n) is conservative:

H(u, v,n) = −H(v, u,−n), ∀u, v ∈ R, n ∈ B1.

Definition 1. We say that uh is a DGFE solution of the convection-diffusion problem
(1) - (3), if

a) uh ∈ C1([0, T ]; Sh),

b)
d

dt

(
uh(t), ϕh

)
+ bh

(
uh(t), ϕh

)
+ β0Jh

(
uh(t), ϕh

)
+ ah

(
uh(t), uh(t), ϕh

)

= lh
(
uh(t), ϕh

)
(t), ∀ϕh ∈ Sh, ∀t ∈ (0, T ),

c) uh(0) = u0
h,

(9)

where u0
h denotes an Sh approximation of the initial condition u0.

Similarly as in [13] we can show that a sufficiently regular exact solution u of problem
(1) satisfies the identity

d

dt

(
u(t), ϕh

)
+ bh

(
u(t), ϕh

)
+ β0Jh

(
u(t), ϕh

)
+ ah

(
u(t), u(t), ϕh

)

= lh
(
u(t), ϕh

)
(t), ∀ϕh ∈ Sh, ∀t ∈ (0, T ),

(10)

which implies the Galerkin orthogonality property of the error.
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4 Some necessary results and assumptions

4.1 Regularity of the exact solution

We assume that the weak solution u is sufficiently regular, namely

∂u

∂t
∈ L2

(
0, T ; Hp+1(Ω)

)
, (11)

where p ≥ 1 denotes the given degree of approximation. It is possible to show that,
under these conditions, u satisfies equation (1) pointwise and u ∈ C

(
[0, T ];Hp+1(Ω)

)
.

To treat the nonlinear diffusion terms, we need additional regularity assumptions
on the solution u: there exists a constant CR < ∞ such that

‖∇u(t)‖L∞(Ω) ≤ CR, for all t ∈ (0, T ),

‖ut(t)‖L∞(Ω) =
∥∥∥∥
∂u

∂t
(t)

∥∥∥∥
L∞(Ω)

≤ CR, for a.a. t ∈ (0, T ),

‖∇ut(t)‖L∞(Ω) ≤ CR, for a.a. t ∈ (0, T ).

(12)

4.2 Geometry of the mesh

Let us consider a system {Th}h∈(0,h0), h0 > 0, of triangulations of the domain Ω with
the following properties:

Assumptions (A):

(A1) The system {Th}h∈(0,h0) is regular: there exists a constant C1 > 0 such that

hK

ρK
≤ C1, ∀K ∈ Th ∀h ∈ (0, h0).

(A2) There exists a constant C2 > 0 such that

hK ≤ C2 d(Γ), ∀K ∈ Th, ∀Γ ⊂ ∂K, Γ ∈ Fh ∀h ∈ (0, h0).

(A3) There exists a constant C3 > 0 such that

hp ≤ C3hK , ∀K ∈ Th, ∀h ∈ (0, h0).

Let us note that we do not require the usual conforming properties from the finite
element method, particularly, hanging nodes are allowed. In the case of piecewise linear
elements (i.e. p = 1), condition (A3) reduces to the standard inverse assumption of
[8] and becomes weaker with growing p. This nonstandard assumption is needed in the
proof of Lemmas 15 and 16.

4.3 Some auxiliary results

Throughout this work we denote by C a generic constant independent of h. Now we
can state two necessary results needed in the following analysis (cf. [13] and [8]):

Lemma 2 (Multiplicative trace inequality). There exists a constant CM > 0 indepen-
dent of h, K such that for all K ∈ Th, v ∈ H1(K) and h ∈ (0, h0)

||v||2L2(∂K) ≤ CM

(||v||L2(K)|v|H1(K) + h−1
K ||v||2L2(K)

)
.
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Lemma 3 (Inverse inequalities). There exists a constant CI > 0 independent of h,K
such that for all K ∈ Th and v ∈ P p(K)

|v|H1(K) ≤ CIh
−1
K ||v||L2(K),

‖v‖L∞(K) ≤ CIh
−1
K ‖v‖L2(K).

Now, for v ∈ L2(Ω) we denote by Πhv the L2(Ω)-projection of v on Sh:

Πhv ∈ Sh, (Πhv − v, ϕh) = 0, ∀ϕh ∈ Sh.

Obviously, if K ∈ Th, then the function Πhv|K is the L2(K)-projection of v|K on P p(K).
Let η(t) = Πhu(t)− u(t) ∈ Hp+1(Ω, Th) for t ∈ (0, T ).

Lemma 4. There exists a constant C > 0 independent of h, K such that for all h ∈
(0, h0)

a) ||η||L2(Ω) ≤ Chp+1|u|Hp+1(Ω),

b) |η|H1(Ω,Th) ≤ Chp|u|Hp+1(Ω),

c) |η|H2(Ω,Th) ≤ Chp−1|v|Hp+1(Ω),

d)
∣∣∣
∣∣∣∂η

∂t

∣∣∣
∣∣∣
L2(Ω)

≤ Chp+1
∣∣∣∂u

∂t

∣∣∣
Hp+1(Ω)

,

e) ||η||L∞(Ω) ≤ Chp|u|Hp+1(Ω).

Proof. The proof follows from standard approximation results found e.g. in [8]. ¤
Lemma 5 (Properties of the form Jh). For all v, w ∈ H1(Ω, Th) we have

a) Jh(v, w) ≤ (
Jh(v, v)

)1/2(
Jh(w, w)

)1/2
,

b) Jh(η, η) ≤ Ch2p|u|2Hp+1(Ω).

Proof. The first inequality follows directly from the Cauchy inequality. Statement b)
follows from the multiplicative trace inequality and approximation results of Lemma 4.
¤

5 Error analysis

5.1 Properties of the diffusion terms

Throughout the following analysis we shall assume that the constant CW from (8)
satisfies

CW ≥ 4
(β1

β0

)2
CM (1 + CI), (13)

where CM and CI are constants from Lemma 2 and 3, respectively.
Let us define the form

Ah(u, v, w) = ah(u, v, w) + β0Jh(v, w), ∀u, v, w ∈ H2(Ω, Th),

31



Optimal L∞(L2)-error estimates for the DG method

which is linear with respect to the second and third argument and nonlinear with respect
to the first argument. Finally, we define the following norm in H1(Ω, Th):

‖w‖DG =
(1

2
(|w|2H1(Ω,Th) + Jh(w, w)

))1/2
.

Lemma 6 (Coercivity of Ah). Let w : Ω → R be an arbitrary measurable function
defined almost everywhere in Ω. Under assumption (13) on the constant CW , we have

β0‖ϕh‖2
DG ≤ Ah(w,ϕh, ϕh) (14)

for all ϕh ∈ Sh and h ∈ (0, h0).

Proof. Since w is measurable, the boundedness and continuity of β imply that β(w) is
bounded from below by β0 and β(w) ∈ L∞(Ω). By the definition of the form Ah we get

Ah(w, ϕ, ϕ) = ah(w, ϕ, ϕ) + β0Jh(ϕ,ϕ)

≥ β0‖ϕ‖2
H1(Ω,Th) + β0Jh(ϕ,ϕ)− 2

∫

FI
h

∣∣∣
〈
β(w)∇ϕ

〉 · n[ϕ]
∣∣∣ dS − 2

∫

FB
h

∣∣β(w)∇ϕ · nϕ
∣∣ dS

≥ 2β0‖ϕ‖2
DG − 2β1

(∫

FI
h

d(Γ)
Θ

〈|∇ϕ|〉2
dS

)1/2(∫

FI
h

Θ
d(Γ)

[ϕ]2 dS
)1/2

− 2β1

(∫

FB
h

d(Γ)
Θ

|∇ϕ|2 dS
)1/2( ∫

FB
h

Θ
d(Γ)

|ϕ|2 dS
)1/2

,

(15)

where Θ > 0 is an arbitrary number. Now using in (15) the fact that for all α, β, γ, δ ∈ R,
we have 2(αγ + βδ) ≤ α2 + β2 + γ2 + δ2, we get

Ah(w, ϕ, ϕ) ≥ 2β0‖ϕ‖2
DG − β1ω − β1

Θ
CW

Jh(ϕ, ϕ), (16)

where

ω =
∫

FI
h

d(Γ)
Θ

|〈∇ϕ〉|2 dS +
∫

FB
h

d(Γ)
Θ

|∇ϕ|2 dS.

Further using Lemmas 2 and 3, we get

ω ≤ 1
Θ

∑

K∈Th

hK

∫

∂K
|∇ϕ|2 dS ≤ CM

Θ

∑

K∈Th

hK

(|ϕ|H1(K)|∇ϕ|H1(K) + h−1
K |ϕ|2H1(K)

)

≤ CM (1 + CI)
Θ

|ϕ|2H1(Ω,Th).

(17)

If we choose

Θ =
β1

β0
2CM (1 + CI),

and use condition (13), we get from (16) and (17)

Ah(w, ϕ, ϕ) ≥ 2β0‖ϕ‖2
DG −

β0

2
‖ϕ‖2

H1(Ω,Th) −
β0

2
Jh(ϕ,ϕ) ≥ β0‖ϕ‖2

DG. (18)
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Lemma 7 (Boundedness of Ah). Let w : Ω → R be an arbitrary measurable function
defined almost everywhere in Ω. Then there exists a constant C > 0 independent of h
such that

Ah(w, v, ϕh) ≤ C
(‖v‖DG + h|v|H2(Ω,Th)

)‖ϕh‖DG, (19)

Ah(w, vh, ϕh) ≤ C‖vh‖DG‖ϕh‖DG. (20)

for all v ∈ H2(Ω, Th) and vh, ϕh ∈ Sh.

Proof. We use the fact that β(w) ≤ β1 and proceed similarly as in [13]. ¤
Remark 1. The statement of Lemma 7 is valid also if we replace β(w) by another
function from L∞(Ω) in the definition of Ah. We shall use this fact in the proof of
Lemmas 8 and 13.

For each h ∈ (0, h0) and t ∈ [0, T ] we define the function u∗(t) (= u∗h(t)) as the
“Ah-projection” of u(t) on Sh, i. e. a function satisfying the conditions

u∗(t) ∈ Sh, Ah

(
u(t), u∗(t), ϕh

)
= Ah

(
u(t), u(t), ϕh

) ∀ϕh ∈ Sh. (21)

For simplicity of notation, in what follows, we shall omit the argument t, whenever
the role of t is not crucial. The existence of u∗ is a consequence of the Lax-Milgram
theorem, by the coercivity (Lemma 6) and boundedness (Lemma 7) of the form Ah on
the space Sh.

First, we shall derive estimates for the functions χ = u − u∗ and χt = ∂χ
∂t in the

norm ‖ · ‖DG and in the L2(Ω)-norm.

Lemma 8. There exists a constant C > 0 independent of h, such that

‖χ(t)‖DG ≤ C hp|u(t)|Hp+1(Ω), (22)
‖χt(t)‖DG ≤ C hp|ut(t)|Hp+1(Ω) (23)

for all h ∈ (0, h0) and for a.a. t ∈ (0, T ).

Proof. Let us set û = Πhu, the L2-projection of u onto the space Sh. By the coercivity
of Ah (14) and the definition of u∗, we obtain

β0‖û− u∗‖2
DG ≤ Ah(u, û− u∗, û− u∗)

= Ah(u, û− u∗, û− u∗) + Ah(u, u∗ − u, û− u∗) (24)
= Ah(u, û− u, û− u∗).

From Lemmas 7 and 4, b) and c), we obtain

Ah(u, û− u, û− u∗) ≤ C
(‖û− u‖DG + h|û− u|H2(Ω,Th)

)‖û− u∗‖DG

≤ C hp|u|Hp+1(Ω)‖û− u∗‖DG. (25)

From (24) and (25) we get

‖û− u∗‖DG ≤ C hp|u|Hp+1(Ω).

Further, in virtue of the regularity of u, Lemmas 4, b) and 5, b), we have

‖u− û‖DG = ‖η‖DG ≤ Chp|u|Hp+1(Ω).
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Now it is sufficient to use the triangle inequality

‖u− u∗‖DG ≤ ‖u− û‖DG + ‖û− u∗‖DG,

which implies (22).
Let us deal now with the norm ‖χt‖DG. By differentiating (21) with respect to time,

we get

0 =
d
dt

Ah

(
u(t), χ(t), ϕh

)
= ãh

(
χ(t), ϕh

)
+ Ah (u(t), χt(t), ϕh) , ∀ϕh ∈ Sh, (26)

where

ãh

(
v, ϕ

)
=

∑

K∈Th

∫

K

∂β(u)
∂t

∇v · ∇ϕ dx

−
∫

FI
h

〈∂β(u)
∂t

∇v
〉
· n [ϕ] dS −

∫

FI
h

〈∂β(u)
∂t

∇ϕ
〉
· n [v] dS

−
∫

FB
h

∂β(u)
∂t

∇v · nϕdS −
∫

FB
h

∂β(u)
∂t

∇ϕ · n v dS.

(27)

Since ∂β(u)
∂t = β′(u)∂u

∂t ∈ L∞(Ω) for a.a. t ∈ (0, T ), we have from Remark 1 an estimate
for ãh similar as in Lemma 7:

ãh

(
v, ϕ

) ≤ C
(‖v‖DG + h|v|H2(Ω,Th)

)‖ϕ‖DG. (28)

Now let t ∈ (0, T ) be fixed. We substitute ϕh := ût(t) − u∗t (t) into (26) and use the
coercivity of Ah. Due to (26), we can write (again we omit the argument t)

β0‖ût − u∗t ‖2
DG ≤ Ah(u, ût − u∗t , ût − u∗t )

= Ah(u, ût − u∗t , ût − u∗t )−Ah (u, ut − u∗t , ût − u∗t )− ãh

(
u− u∗, ût − u∗t

)

= Ah(u, ût − ut, ût − u∗t )− ãh

(
u− u∗, ût − u∗t

)
.

(29)

From Lemmas 7 and 4, b) and c), we obtain

Ah(u, ût − ut, ût − u∗t ) ≤ C
(‖ût − ut‖DG + h|ût − ut|H2(Ω,Th)

)‖ût − u∗t ‖DG

≤ C hp|ut|Hp+1(Ω)‖ût − u∗t ‖DG.
(30)

Similarly, due to (28)

ãh

(
u− u∗, ût − u∗t

) ≤ C
(‖u− u∗‖DG + h|u− u∗|H2(Ω,Th)

)‖ût − u∗t ‖DG

≤ C hp|u|Hp+1(Ω)‖ût − u∗t ‖DG.
(31)

From (29) – (31) we get

‖ût − u∗t ‖DG ≤ C hp|ut|Hp+1(Ω).

This and the triangle inequality imply (23). ¤

Dual problem
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In this section we shall derive estimates for the L2(Ω)−norm of χ and χt using the
linearised elliptic dual problem: Given z ∈ L2(Ω), for each t ∈ (0, T ) find ψ(t), such
that

−div
(
β(u(t))∇ψ(t)

)
= z in Ω,

ψ(t)|∂Ω = 0.
(32)

The weak formulation of (32) reads: Find ψ(t) ∈ H1
0 (Ω) such that

(
β(u(t))∇ψ(t), ∇v

)
= (z, v), ∀ v ∈ H1

0 (Ω). (33)

Lemma 9. Problem (32) has a unique weak solution ψ(t). Moreover, ψ(t) ∈ H2(Ω)
and there exists a constant C > 0, independent of z and t, such that for all t ∈ (0, T )

‖ψ(t)‖H2(Ω) ≤ C‖z‖L2(Ω). (34)

Proof. Since β(u(t)) ∈ L∞(Ω) for all t ∈ (0, T ), the Lax-Milgram theorem gives us the
existence of a unique weak solution ψ(t) ∈ H1

0 (Ω) of the dual problem. Let ϕ ∈ H1
0 (Ω)

be arbitrary. We define the test function ṽ := ϕ/β(u(t)). We have

‖ṽ‖2
H1(Ω) =

∥∥∥∥
ϕ

β(u(t))

∥∥∥∥
2

L2(Ω)

+
∥∥∥∥
∇ϕβ(u(t))− ϕβ′(u(t))∇u(t)

β(u(t))2

∥∥∥∥
2

L2(Ω)

≤ β−2
0 ‖ϕ‖2

L2(Ω) + β−4
0 (β2

1 + L2C2
R)‖ϕ‖2

H1(Ω) ≤ C‖ϕ‖2
H1(Ω).

Therefore ṽ ∈ H1
0 (Ω) for all t ∈ (0, T ), and we can set v := ṽ in the weak formulation

(33):
(
β(u(t))∇ψ(t),

∇ϕβ(u(t))− ϕβ′(u(t))∇u(t)
β(u(t))2

)
=

(
z,

ϕ

β(u(t))

)
, ∀ϕ ∈ H1

0 (Ω).

Therefore (∇ψ(t), ∇ϕ
)

= (f, ϕ), ∀ϕ ∈ H1
0 (Ω),

where
f =

1
β(u(t))

(
z + β′(u(t))∇u(t) · ∇ψ(t)

)
.

This means that ψ(t) ∈ H1
0 (Ω) solves, in the weak sense, the problem

−∆ψ(t) = f, ψ(t)|∂Ω = 0.

As the domain Ω is convex it follows from [19] that ψ(t) ∈ H2(Ω) for t ∈ (0, T ) and

‖ψ(t)‖H2(Ω) ≤ C‖f‖L2(Ω) ≤ C
(
β−1

0 ‖z‖L2(Ω) + LCR|ψ(t)|H1(Ω)

) ≤ C‖z‖L2(Ω).

Here we have used the fact that |ψ|H1(Ω) ≤ C‖z‖L2(Ω), which follows from (33) by
setting v := ψ(t) and applying the Friedrichs inequality

β−1
0 |ψ|2H1(Ω) ≤

(
z, ψ(t)

) ≤ ‖z‖L2(Ω)‖ψ‖L2(Ω) ≤ C‖z‖L2(Ω)|ψ|H1(Ω).

¤
Let us note that H2(Ω) ↪→ C(Ω). For convenience, we again omit t in the notation.

Let ψh (= ψh(t)) be the piecewise linear L2-projection of the function ψ, i.e. ψ|K ∈
P 1(K) and (

ψ − ψh, ϕh

)
L2(K)

= 0, ∀ϕh ∈ P 1(K), ∀K ∈ Th.

35



Optimal L∞(L2)-error estimates for the DG method

Lemma 10. There exists a constant independent of h, such that in (0, T )

‖ψ − ψh‖DG ≤ C h|ψ|H2(Ω).

Proof. The proof follows directly from Lemma 2 and approximation results in Lemma
4. ¤
Now we shall use the dual problem (32) to obtain L2-optimal error estimates for χ and
χt.

Lemma 11. There exists a constant C > 0 such that for all h ∈ (0, h0) and t ∈ (0, T )

‖χ‖L2(Ω) ≤ Chp+1|u|Hp+1(Ω).

Proof. We have

‖χ‖L2(Ω) = sup
z∈L2(Ω)

(χ, z)
‖z‖L2(Ω)

.

The continuity of functions from the space H2(Ω) yields

[ψ]Γ = 0, ∀Γ ∈ FI
h . (35)

By the definition of ψ and (35), for a fixed z ∈ L2(Ω), due to Green’s theorem, we have

(χ, z) =
∫

Ω
zχ dx = −

∫

Ω
div

(
β(u)∇ψ

)
χ dx

=
∑

K∈Th

∫

K
β(u)∇ψ · ∇χ dx−

∫

FI
h

〈β(u)∇ψ〉 · n [χ] dS −
∫

FB
h

β(u)∇ψ · nχ dS

=
∑

K∈Th

∫

K
β(u)∇ψ · ∇χ dx−

∫

FI
h

〈β(u)∇ψ〉 · n [χ] dS −
∫

FB
h

β(u)∇ψ · nχ dS

−
∫

FI
h

〈β(u)∇χ〉·n [ψ] dS −
∫

FB
h

β(u)∇χ·nψ dS + β0

∫

FI
h

σ [ψ] [χ] dS + β0

∫

FB
h

σ ψ χdS,

i. e.,
(χ, z) = Ah(u, ψ, χ). (36)

Further, the symmetry of Ah and (21) give

Ah(u, ψh, χ) = Ah(u, χ, ψh) = Ah(u, u− u∗, ψh) = 0. (37)

This and Lemmas 7 and 10 imply that for a.a. t ∈ (0, T )

(χ, z) = Ah(u, ψ − ψh, χ) ≤ C
(‖ψ − ψh‖DG + h|ψ − ψh|H2(Ω,Th)

)‖χ‖DG

≤ Ch|ψ|H2(Ω)h
p|u|Hp+1(Ω) ≤ Chp+1‖z‖L2(Ω)|u|Hp+1(Ω).

Hence,

‖χ‖L2(Ω) = sup
z∈L2(Ω)

(χ, z)
‖z‖L2(Ω)

≤ C hp+1|u|Hp+1(Ω),

which completes the proof of Lemma 11. ¤
Let us note that the assumption of the symmetry of the form Ah is crucial in the

presented proof. It enables us to exchange arguments in (37). This is the reason, why
we are unable to prove optimal error estimates for the nonsymmetric and incomplete
variants of the DG scheme (cf. [13]) using the presented technique.
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Lemma 12. Let ψ(t) be the weak solution of (32). Then, under the assumptions on
the data of the continuous problem (1), ψt(t) = ∂ψ(t)

∂t ∈ H2(Ω) for a.a. t ∈ (0, T ).
Furthermore, there exists a constant C > 0 independent of z such that

‖ψt(t)‖H2(Ω) ≤ C‖z‖L2(Ω). (38)

Proof. For simplicity, in the following proof we shall use the notation B(·) := β(u(·)).
By formal differentiation of (32) with respect to t, we obtain the identity

−div
(
B(t)∇ψt(t) + Bt(t)∇ψ(t)

)
= 0, ψt(t)|∂Ω = 0. (39)

Since we do not know apriori, whether ψt exists, we shall seek a suitable function Ψ
such that it satisfies (39), i.e.

−div
(
B(t)∇Ψ(t)

)
= div

(
Bt(t)∇ψ(t)

)
, Ψ(t)|∂Ω = 0. (40)

Problem (40) has the same form as the dual problem (32) with a special right-hand
side, which, as we shall show, lies in L2(Ω). We can therefore apply Lemma 9, which
states that there exists a weak solution Ψ(t) of (40), which lies in H2(Ω). Finally we
shall show that Ψ(t) = ψt(t).

First we show that the right-hand side of (40) lies in L2(Ω) for a.a. t ∈ (0, T ):
∥∥div

(
Bt(t)∇ψ(t)

)∥∥
L2(Ω)

≤ ∥∥∇Bt(t) · ∇ψ(t)
∥∥

L2(Ω)
+

∥∥Bt(t)∆ψ(t)
∥∥

L2(Ω)

≤ ∥∥Bt(t)
∥∥

W 1,∞(Ω)

∥∥ψ(t)
∥∥

H2(Ω)
≤ C

∥∥Bt(t)
∥∥

W 1,∞(Ω)
‖z‖L2(Ω),

(41)

due to (34). Since B(t) = β(u(t)), we can estimate
∥∥Bt(t)

∥∥
W 1,∞(Ω)

= ‖Bt(t)‖L∞(Ω) + ‖∇Bt(t)‖L∞(Ω)

=
∥∥β′(u(t))ut(t)

∥∥
L∞(Ω)

+
∥∥β′′(u(t))ut(t)∇u(t) + β′(u(t))∇ut(t)

∥∥
L∞(Ω)

≤ LCR +
∥∥β′′

∥∥
L∞(R)

C2
R + LCR < ∞, for a.a. t ∈ (0, T ),

(42)

due to assumptions (12) and the properties of β. We note that estimate (42) is inde-
pendent of t. Hence, Bt ∈ L∞(0, T ; W 1,∞(Ω)).

Now we can apply Lemma 9, which states that there exists a solution Ψ(t) ∈ H2(Ω)
of (40) and that ‖Ψ(t)‖H2(Ω) can be estimated by the L2−norm of the right-hand side,
i.e.

‖Ψ(t)‖H2(Ω) ≤ C
∥∥div

(
Bt(t)∇ψ(t)

)∥∥
L2(Ω)

≤ C‖z‖L2(Ω), for a.a. t ∈ (0, T ), (43)

due to (41), (42). We note that here the constant C is independent of t.
It remains to show that Ψ(t) = ψt(t). Let t ∈ (0, T ) and δ > 0 such that t+δ ∈ (0, T ).

For f : Ω× (0, T ) → R we define the difference operator Dδ as

Dδf(t) =
f(t + δ)− f(t)

δ
.

Since ψ(t) ∈ H2(Ω) for all t ∈ (0, T ), we see that Dδψ(t) ∈ H2(Ω) for all t ∈ (0, T )
and δ > 0 sufficiently small. To prove the Lemma, we need to establish the pointwise
convergence of Dδψ(t) to Ψ(t) as δ → 0.

We subtract the dual problem (32) taken at time t + δ and at time t:

−div
(
B(t + δ)∇ψ(t + δ)−B(t)∇ψ(t)

)
= 0,
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and to both sides we add the term div
(
B(t+ δ)∇ψ(t)

)
and divide by δ > 0. This yields

−div
(
B(t + δ)∇Dδψ(t)

)
= div

(
DδB(t)∇ψ(t)

)
. (44)

Subtracting (40) and (44) gives us

−div
(
B(t)∇Ψ(t)−B(t + δ)∇Dδψ(t)

)
= div

((
Bt(t)−DδB(t)

)∇ψ(t)
)
.

Finally to both sides we add the term div
(
B(t)∇Dδψ(t)

)
, which results in

−div
(
B(t)∇Φδ(t)

)
= gδ(t), Φδ(t)|∂Ω = 0, (45)

where

Φδ(t) := Ψ(t)−Dδψ(t),
gδ(t) := div

((
B(t)−B(t + δ)

)∇Dδψ(t) +
(
Bt(t)−DδB(t)

)∇ψ(t)
)
.

Again, problem (45) has the same form as the dual problem (32) with a special right-
hand side gδ(t), which, as we shall show, lies in L2(Ω) and ‖gδ(t)‖L2(Ω) → 0, as δ → 0.
We can therefore apply Lemma 9, which states that ‖Φδ(t)‖H2(Ω) can be estimated by
‖gδ(t)‖L2(Ω). The continuous embedding H2(Ω) ↪→ C(Ω) gives us

‖Φδ(t)‖C(Ω) ≤ C‖Φδ(t)‖H2(Ω) ≤ C‖gδ(t)‖L2(Ω) → 0, as δ → 0, t ∈ (0, T ).

Hence, by the definition of Φδ(t), it follows that ψt(t) exists, Ψ(t) = ψt(t) and (43) gives
estimate (38).

It remains to estimate ‖gδ(t)‖L2(Ω). We have:

‖gδ(t)‖L2(Ω)

≤ ‖B(t)−B(t + δ)‖W 1,∞(Ω)‖Dδψ(t)‖H2(Ω) + ‖Bt(t)−DδB(t)‖W 1,∞(Ω)‖ψ(t)‖H2(Ω).

(46)

Since Bt ∈ L∞(0, T ;W 1,∞(Ω)), we have B ∈ C(0, T ;W 1,∞(Ω)) and thus

‖B(t)−B(t + δ)‖W 1,∞(Ω) → 0, as δ → 0, for all t ∈ (0, T ). (47)

Furthermore, for a.a. t ∈ (0, T ), Bt(t) exists and lies in W 1,∞(Ω). Therefore

‖Bt(t)−DδB(t)‖W 1,∞(Ω) → 0 as δ → 0, for a.a. t ∈ (0, T ). (48)

Finally, we need to estimate ‖Dδψ(t)‖H2(Ω). Problem (44) for the unknown Dδψ(t) has
the same form as the dual problem (32) taken at time t+δ with a special right-hand side
div

(
DδB(t)∇ψ(t)

)
. We can therefore apply Lemma 9, which states that ‖Dδψ(t)‖H2(Ω)

can be estimated by the term ‖div
(
DδB(t)∇ψ(t)

)‖L2(Ω):

‖Dδψ(t)‖H2(Ω) ≤ C‖div
(
DδB(t)∇ψ(t)

)‖L2(Ω) ≤ C‖DδB(t)‖W 1,∞(Ω)‖ψ(t)‖H2(Ω)

≤ C
(‖Bt(t)‖W 1,∞(Ω) + ‖DδB(t)−Bt(t)‖W 1,∞(Ω)

)‖z‖L2(Ω) ≤ C‖z‖L2(Ω),

(49)

for a.a. t ∈ (0, T ) and all δ > 0 sufficiently small. Estimates (46)-(49) imply ‖gδ(t)‖L2(Ω) →
0, as δ → 0, for a.a. t ∈ (0, T ). ¤
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Lemma 13. There exists a constant C > 0 independent of h, such that for a.a. t ∈
(0, T ) and all h ∈ (0, h0)

‖χt(t)‖L2(Ω) ≤ Chp+1|ut(t)|Hp+1(Ω).

Proof. As in the proof of Lemma 11 we can write

‖χt(t)‖L2(Ω) = sup
z∈L2(Ω)

(χt(t), z)
‖z‖L2(Ω)

.

Let z ∈ L2(Ω) be arbitrary but fixed (we note that z is independent of time). Due to
(36), we have

(
χt(t), z

)
=

(∂χ(t)
∂t

, z
)

=
d
dt

(
χ(t), z

)
=

d
dt

Ah

(
u(t), ψ(t), χ(t)

)
. (50)

Differentiating identity (21) with respect to time, we get

d
dt

Ah

(
u(t), ψh(t), χ(t)

)
= 0.

This together with (50) gives

(
χt(t), z

)
=

d
dt

Ah

(
u(t), ψ(t)− ψh(t), χ(t)

)
= ãh

(
ψ(t)− ψh(t), χ(t)

)

+ Ah

(
u(t),

∂

∂t

(
ψ(t)− ψh(t)

)
, χ(t)

)
+ Ah

(
u(t), ψ(t)− ψh(t), χt(t)

)
,

(51)

where ãh(·, ·) is defined by (27). We shall now estimate individual terms in (51). Since
∣∣∣∂β(u)

∂t

∣∣∣ =
∣∣∣β′(u)

∂u

∂t

∣∣∣ ≤ LCR, in QT .

we have ∂β(u)
∂t ∈ L∞(Ω) for a.a. t ∈ (0, T ) and we can therefore estimate ãh

(
v, ϕ

)
similarly as in the proof of Lemma 7 to obtain

ãh

(
v, ϕ

) ≤ C
(‖v‖DG + h|v|H2(Ω,Th)

)‖ϕ‖DG,

which yields

ãh

(
ψ(t)− ψh(t), χ(t)

) ≤ C
(‖ψ(t)− ψh(t)‖DG + h|ψ(t)− ψh(t)|H2(Ω,Th)

)‖χ(t)‖DG

≤ Chp+1‖z‖L2(Ω)|u|Hp+1(Ω).

(52)

From Lemma 7 we immediately see that

Ah

(
u(t), ∂

∂t

(
ψ(t)− ψh(t)

)
, χ(t)

)
≤Ch|ψt(t)|H2(Ω,Th)‖χ(t)‖DG ≤ Chp+1‖z‖L2(Ω)|u|Hp+1(Ω).

(53)

Similarly, we obtain

Ah

(
u(t), ψ(t)− ψh(t), χt(t)

) ≤ Ch|ψ(t)|H2(Ω,Th)‖χt(t)‖DG ≤ Chp+1‖z‖L2(Ω)|ut|Hp+1(Ω).

(54)

Finally, we combine (51) and estimates (52)-(54), which completes the proof of Lemma
13. ¤
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Lemma 14. There exists a constant C > 0 independent of h, such that for all h ∈ (0, h0)
and a.a. t ∈ (0, T )

‖χ(t)‖L∞(Ω) ≤ Chp|u(t)|Hp+1(Ω).

Proof. For a given h and t the function χ(t) is a piecewise continuous function on a given
finite triangulation Th, thus there exists an element K ∈ Th such that ‖χ(t)‖L∞(Ω) =
‖χ(t)‖L∞(K). By Lemmas 3, 4 e) and 11 we have

‖χ‖L∞(K) ≤ ‖u−Πhu‖L∞(K) + ‖Πhu− u∗‖L∞(K)

≤ Chp|u|Hp+1(Ω) + CIh
−1
K ‖Πhu− u∗‖L2(K)

≤ Chp|u|Hp+1(Ω) + CIh
−1
K

(‖Πhu− u‖L2(K) + ‖u− u∗‖L2(K)

)

≤ Chp|u|Hp+1(Ω).

¤
Now we shall establish an important property of the Ah-projection u∗ needed in the
following analysis.

Lemma 15. There exists a constant C∗
R > 0 independent of h, such that for all h ∈

(0, h0) and a.a. t ∈ (0, T )
‖∇u∗(t)‖L∞(Ω) ≤ C∗

R.

Proof. For a given h and t the function u∗h(t) is a piecewise continuous function on a
given finite triangulation Th, thus there exists an element K ∈ Th such that ‖∇u∗h(t)‖L∞(Ω)

= ‖∇u∗h(t)‖L∞(K). Due to the second inverse inequality in Lemma 3, we have

‖∇u∗h(t)‖L∞(K) ≤ CIh
−1
K ‖∇u∗h(t)‖L2(K) = CIh

−1
K |u∗h(t)|H1(K)

≤ CIh
−1
K |u∗h(t)− u(t)|H1(K) + CIh

−1
K |u(t)|H1(K)

≤
√

2CIh
−1
K ‖χ(t)‖DG + CIh

−1
K |K|1/2|∇u(t)|L∞(K).

Now we can use estimate (22) and assumption (A3) on the mesh to obtain

‖∇u∗h(t)‖L∞(K) ≤ Ch−1
K hp|u(t)|Hp+1(Ω) + Ch−1

K hK |∇u(t)|L∞(K)

≤ CC3|u|Hp+1(Ω) + CCR ≤ C∗
R,

where C∗
R := CC3‖u‖L∞(0,T ;Hp+1(Ω)) + CCR < ∞ is a constant independent of h and t.

¤
Lemma 16. Let ζ := u∗ − uh ∈ Sh. There exists a constant C > 0 such that for all
h ∈ (0, h0) and a.a. t ∈ (0, T )

Ah

(
u, u∗, ζ

)−Ah

(
uh, u∗, ζ

)− lh(u, ζ) + lh(uh, ζ)

≤ Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

4
‖ζ‖2

DG.
(55)

Proof. We break down (55) into individual terms Ai, defined in the sequel, and treat
them separately:

Ah

(
u, u∗, ζ

)−Ah

(
uh, u∗, ζ

)− lh(u, ζ) + lh(uh, ζ) =:
5∑

i=1

Ai.
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1) First term: Due to the Lipschitz continuity of β and Lemma 15

A1 :=
∑

K∈Th

∫

K

(
β(u)− β(uh)

)∇u∗ · ∇ζ dx

≤ ‖∇u∗‖L∞(Ω)

∑

K∈Th

∫

K
L|u− uh||∇ζ| dx ≤ LC∗

R‖u− uh‖L2(Ω)|ζ|H1(Ω,Th)

≤ C
(‖χ‖L2(Ω) + ‖ζ‖L2(Ω)

)|ζ|H1(Ω,Th).

Finally, Young’s inequality and Lemma 11 give

A1 ≤ Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

16
‖ζ‖2

DG.

2) Second term: Due to the Lipschitz continuity of β, Lemma 15 and Young’s in-
equality,

A2 :=
∫

FI
h

〈(
β(u)− β(uh)

)∇u∗
〉 · n[ζ] dS ≤ ‖∇u∗‖L∞(Ω)

∫

FI
h

〈
L|u− uh|

〉|[ζ]| dS

≤ C
(∫

FI
h

d(Γ)
CW

〈|u− uh|
〉2

dS
)1/2(∫

FI
h

CW

d(Γ)
[ζ]2 dS

)1/2

≤ C
( ∑

K∈Th

∫

∂K
hK |u− uh|2 dS

)1/2
· Jh(ζ, ζ)1/2

≤ C
∑

K∈Th

∫

∂K
hK |u− uh|2 dS +

β0

64
Jh(ζ, ζ).

(56)

Now we estimate by Lemma 2 and Young’s inequality

C
∑

K∈Th

∫

∂K
hK |u− uh|2 dS

≤ C
∑

K∈Th

hK

(‖u− uh‖L2(K)|u− uh|H1(K) + h−1
K ‖u− uh‖2

L2(Ω)

)

≤ C
(
h‖u− uh‖L2(Ω)|u− uh|H1(Ω,Th) + ‖u− uh‖2

L2(Ω)

)

= C
(
h‖χ + ζ‖L2(Ω)|χ + ζ|H1(Ω,Th) + ‖χ + ζ‖2

L2(Ω)

)

≤ Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

64
|ζ|2H1(Ω,Th).

(57)

Finally, combining (56) and (57) results in

A2 ≤ Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

32
‖ζ‖2

DG.

3) Third term: Since u is a continuous solution, we have on each interior edge [u∗] =
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[u∗ − u] = −[χ]. Using this and Lemma 14, we get

A3 :=
∫

FI
h

〈(
β(u)− β(uh)

)∇ζ
〉 · n[u∗] dS ≤ L

∫

FI
h

〈|u− uh||∇ζ|〉
∣∣[χ]

∣∣ dS

≤ 2L‖χ‖L∞(Ω)

∑

K∈Th

∫

∂K

∣∣u− uh||∇ζ| dS

≤ Chp|u|Hp+1(Ω)

( ∑

K∈Th

∫

∂K
|u− uh|2 dS

)1/2( ∑

K∈Th

∫

∂K
|∇ζ|2 dS

)1/2

≤ C|u|Hp+1(Ω)

( ∑

K∈Th

∫

∂K
hp|u− uh|2 dS

)1/2( ∑

K∈Th

∫

∂K
hp|∇ζ|2 dS

)1/2
.

(58)

By assumption (A3), the multiplicative trace and inverse inequalities, we have

∑

K∈Th

∫

∂K
hp|∇ζ|2 dS ≤ CM

∑

K∈Th

hK

(‖∇ζ‖L2(K)|∇ζ|H1(K)+h−1
K ‖∇ζ‖2

L2(K)

) ≤ C|ζ|2H1(Ω,Th).

(59)
Finally, due to assumption (A3) and estimate (57), by Young’s inequality we obtain
from (58) and (59)

A3 ≤ C
∑

K∈Th

∫

∂K
hK |u− uh|2 dS +

β0

64
|ζ|2H1(Ω,Th)

≤ Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

64
|ζ|2H1(Ω,Th) +

β0

64
|ζ|2H1(Ω,Th)

≤ Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

16
‖ζ‖2

DG.

4) Fourth term: We can proceed similarly as in the estimation of A2 to obtain

A4 :=
∫

FB
h

(
β(u)− β(uh)

)∇u∗ · nζ dS ≤ Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

32
‖ζ‖2

DG.

5) Fifth term: We use the fact that u = uD on ∂Ω:

A5 :=
∫

FB
h

(
β(u)− β(uh)

)∇ζ · nu∗ dS − lh(u, ζ) + lh(uh, ζ)

=
∫

FB
h

(
β(u)− β(uh)

)∇ζ · n(u∗ − uD) dS =
∫

FB
h

(
β(u)− β(uh)

)∇ζ · n(u∗ − u) dS.

Now we can proceed similarly as in the estimate of A3:

A5 ≤ Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

16
‖ζ‖2

DG.

From the derived estimates of A1 . . . A5 we get the desired estimate (55). ¤
Lemma 17. Let u be the solution of the continuous problem (1), uh the solution of the
discrete problem (9), u∗ be defined by (21), and ζ (= ζh) = u∗ − uh ∈ Sh. Then there
exists a constant C > 0, independent of h ∈ (0, h0), such that

|bh(u, ζ)− bh(uh, ζ)| ≤ C‖ζ‖DG

(
hp+1|u|Hp+1(Ω) + ‖ζ‖L2(Ω)

)
. (60)
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Proof. The proof can be carried out similarly as in Lemma 4.3 from [15]. ¤
Theorem 18 (Main theorem). Let assumptions (H) and (A) be satisfied and let the
constant CW be chosen in such a way that (13) holds. Let u be the exact solution
of problem (1) satisfying the regularity condition (11) and let uh be the approximate
solution defined by (9). Then the error eh = u− uh satisfies the estimate

‖eh‖L∞(0,T ;L2(Ω)) ≤ Chp+1,

with a constant C > 0 independent of h.

Proof. Let u∗ be the Ah projection defined by (21) and let χ and ζ be as in Lemmas 8
– 17, i. e. χ = u − u∗, ζ = u∗ − uh. Then eh = u − uh = χ + ζ. Let us subtract (9, b)
from (10), substitute ζ ∈ Sh for ϕh and use the relation

(∂ζ(t)
∂t

, ζ(t)
)

=
1
2

d
dt
‖ζ(t)‖2

L2(Ω).

Then we get

1
2

d
dt
‖ζ(t)‖2

L2(Ω) + Ah

(
u(t), u(t), ζ(t)

)−Ah

(
uh(t), uh(t), ζ(t)

)

=
[
bh

(
uh(t), ζ(t)

)− bh

(
u(t), ζ(t)

)]− (
χt(t), ζ(t)

)
+ lh

(
u(t), ζ(t)

)− lh
(
uh(t), ζ(t)

)
.

(61)

The convective terms on the right-hand side term can be estimated by Lemma 17 and
Young’s inequality as follows (we omit the argument t)

bh(uh, ζ)− bh(u, ζ) ≤ C‖ζ‖DG

(
hp+1|u|Hp+1(Ω) + ‖ζ‖L2(Ω)

)

≤ β0

4
‖ζ‖2

DG +
C

β0

(
h2(p+1)|u|2Hp+1(Ω) + ‖ζ‖2

L2(Ω)

)
.

For the second right-hand side term in (61), by the Cauchy and Young’s inequalities
and Lemma 11, we have

|(χt, ζ)| ≤ ‖χt‖L2(Ω) ‖ζ‖L2(Ω)

≤ 1
2

(
‖χt‖2

L2(Ω) + ‖ζ‖2
L2(Ω)

)
≤ 1

2

(
C h2(p+1)|ut|2Hp+1(Ω) + ‖ζ‖2

L2(Ω)

)
.

Further, we treat the diffusion terms in (61):

Ah

(
u, u, ζ

)−Ah

(
uh, uh, ζ

)

= Ah

(
u, χ, ζ

)
+ Ah

(
u, u∗, ζ

)−Ah

(
uh, u∗, ζ

)
+ Ah

(
uh, ζ, ζ

)

≥ Ah

(
u, u∗, ζ

)−Ah

(
uh, u∗, ζ

)
+ β0‖ζ‖2

DG,

(62)

due to the coercivity of Ah – Lemma 6 – and the definition of u∗, cf. (21). Hence,
combining (61) – (62), we obtain

1
2

d
dt
‖ζ‖2

L2(Ω) +
3β0

4
‖ζ‖2

DG ≤ C h2(p+1)
( 1

β0
|u|2Hp+1(Ω) + |ut|2Hp+1(Ω)

)

+ C
(
1 +

1
β0

)
‖ζ‖2

L2(Ω) −
[
Ah

(
u, u∗, ζ

)−Ah

(
uh, u∗, ζ

)− lh(u, ζ) + lh(uh, ζ)
]
.
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Now we apply Lemma 16 to obtain

1
2

d
dt
‖ζ‖2

L2(Ω) +
3β0

4
‖ζ‖2

DG ≤ C h2(p+1)
( 1

β0
|u|2Hp+1(Ω) + |ut|2Hp+1(Ω)

)

+ C
(
1 +

1
β0

)
‖ζ‖2

L2(Ω) + Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

4
‖ζ‖2

DG.

Finally, by rearranging we get a.e. in (0, T )

d
dt
‖ζ‖2

L2(Ω) + β0‖ζ‖2
DG ≤ C h2(p+1)

(
|u|2Hp+1(Ω) + |ut|2Hp+1(Ω)

)
+ C

(
1 +

1
β0

)
‖ζ‖2

L2(Ω).

(63)

The integration of (63) from 0 to t ∈ [0, T ] yields

‖ζ(t)‖2
L2(Ω) + β0

∫ t

0
‖ζ(ϑ)‖2

DG dϑ

≤ C h2(p+1)
(∫ t

0
|u(ϑ)|2Hp+1(Ω) dϑ +

∫ t

0
|ut(ϑ)|2Hp+1(Ω) dϑ

)

+ C
(
1 +

1
β0

)∫ t

0
‖ζ(ϑ)‖2

L2(Ω) dϑ + C h2(p+1)|u0|2Hp+1(Ω),

(64)

since
‖ζ(0)‖L2(Ω) ≤ ‖u0

h − u0‖L2(Ω) + ‖χ(0)‖L2(Ω) ≤ C hp+1|u0|Hp+1(Ω).

Now we apply Gronwall’s Lemma (cf. [13]) to (64), which yields

‖ζ(t)‖2
L2(Ω) + β0

∫ t

0
‖ζ(ϑ)‖2

DG dϑ ≤ C h2(p+1) exp
(
C̃

(
1 +

1
β0

)
t
)
, (65)

where C and C̃ are constants independent of t and h. Since eh = χ + ζ, to complete
the proof, it is sufficient now to combine (65) with the estimate of ‖χ(t)‖L2(Ω) from
Lemma 11. ¤

6 Conclusion

This paper is concerned with the analysis of the discontinuous Galerkin space semidis-
cretization of a nonstationary convection-diffusion problem with nonlinear diffusion and
nonlinear convection, equipped with Dirichlet boundary conditions and an initial condi-
tion. We have proven optimal error estimates of order O(hp+1) in the L∞(0, T ; L2(Ω))-
norm for the SIPG method under the assumptions that the piecewise polynomial ap-
proximation of degree p is used, the time derivative of the exact solution is sufficiently
regular and the solution of the linearized dual problem of the form

−div
(
β(u(t))∇ψ(t)

)
= z in Ω, ψ|∂Ω = 0.

possesses a solution ψ(t) ∈ H2(Ω) with a time derivative ψt(t) ∈ H2(Ω) for any z ∈
L2(Ω). This is true under additional conditions on the nonlinearity β(·) and the exact
solution u, provided the polygonal domain Ω is convex.

There are several open problems connected with the analysis of optimal error esti-
mates of the DGFEM for convection-diffusion problems:
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• Derivation of optimal error estimates in the case of a weaker regularity of the exact
solution of the considered convection-diffusion problem and of the dual problem
(the case of a polygonal nonconvex domain Ω and/or mixed Dirichlet-Neumann
boundary conditions).

• The extension of the derived estimates to three spatial dimensions.

• The investigation of optimal error estimates for other variants of the DGFEM for
the diffusion terms, such as the nonsymmetric and incomplete interior penalty
Galerkin methods (NIPG and IIPG), where the presented technique cannot be
applied.
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[21] P. Houston, I. Perugia, D. Schötzau: Mixed discontinuous Galerkin approxima-
tion of the Maxwell operator, Technical Report 2002/45, University of Leicester,
Department of Mathematics. SIAM J. Numer. Anal., 42, 434–459 (2002).

[22] C. Hu, C. W. Shu: A discontinuous Galerkin finite element method for Hamilton-
Jacobi equations. SIAM J. Sci. Comput., 21, 666–690 (1999).

[23] J. Jaffre, C. Johnson, A. Szepessy: Convergence of the discontinuous Galerkin finite
element method for hyperbolic conservation laws, Math. Models Methods Appl. Sci..
5, 367–386 (1995).
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Abstract

The paper presents the theory of the discontinuous Galerkin finite element
method for the space-time discretization of a nonlinear nonstationary convection-
diffusion initial-boundary value problem. The discontinuous Galerkin method is
applied separately in space and time using, in general, different space grids on
different time levels and different polynomial degrees p and q in space and time
dicretization. In the space discretization the nonsymmetric, symmetric and in-
complete interior and boundary penalty (NIPG, SIPG, IIPG) approximation of
diffusion terms is used. The paper is concerned with the proof of error estimates in
“L2(L2)”- and “DG”-norm formed by the “L2(H1)”-seminorm and penalty terms.
Special space-time interpolation and a special technique has been applied for ob-
taining optimal error estimates with respect to the time step.

Keywords: nonstationary nonlinear convection-diffusion equation; space-time dis-
continuous Galerkin finite element discretization; NIPG, SIPG and IIPG treatment
of diffusion terms; error estimates

1 Introduction

In a number of complex problems from science and technology (aerospace engineering,
turbomachinery, oil recovery, meteorology, environmental protection etc.) we meet the
requirement to apply new efficient, robust, reliable and highly accurate numerical meth-
ods. It is necessary to develop techniques that allow to realize numerical approximations
of strongly nonlinear singularly perturbed systems in domains with a complex geometry,
whose solutions contain internal or boundary layers.

An excellent candidate to overcome the mentioned difficulties is the discontinuous
Galerkin finite element (DGFE) method, which has become rather popular for the
solution of a number of problems.

The DGFE method uses piecewise polynomial approximations of the sought solution
on a finite element mesh without any requirement on the continuity between neighbour-
ing elements and can be considered as a generalization of the finite volume and finite
element methods. It allows to construct higher order schemes in a natural way and is
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suitable for the approximation of discontinuous solutions of conservation laws or solu-
tions of singularly perturbed convection-diffusion problems having steep gradients. This
method uses advantages of the finite element method and finite volume schemes with
an approximate Riemann solver and can be applied on unstructured grids, which are
generated for most complex geometries.

The original DGFE method was first used in [47] for the solution of a neutron
transport linear equation and analyzed theoretically in [44] and later in [41]. Nearly si-
multaneously the DGFE techniques were developed for the numerical solution of elliptic
problems or parabolic problems ([58], [2]). Further, the DGFE method was applied to
transport-reaction problems ([12]), nonlinear conservation laws ([16], [40]), convection-
diffusion linear or nonlinear problems ([18], [10], [18], [17], [34], [32]), compressible flow
([7], [8], [9], [20], [22], [36], [57]), simulation of compressible low Mach number flows
at incompressible limit ([24], [33]), solution of incompressible viscous flow ([53], [56]),
porous media flow ([54]), shallow water flow ([19]), the Hamilton-Jacobi equations ([38]),
the Schrödinger equation ([42]) and the Maxwell equations ([37]). Theoretical analysis
of various types of the DGFE method applied to elliptic problems can be found, e.g. in
[5], [3] and [4]. In [48], DGFE analysis is performed in the case of a parabolic problem
with a nonlinear diffusion. In [39], analysis of hp-version of the DGFE method applied
to stationary advection-diffusion-reaction equations is analyzed.

In the discretization of nonstationary problems, one often uses the space semidis-
cretization, also called the method of lines. In this approach, the DGFE discretization
with respect to space variables is applied only, whereas time remains continuous. This
leads to a large system of ordinary differential equations, which can be solved numeri-
cally by a suitable ODE solver. (See, e.g., [48], [10], [16], [25], [26], [23].) In CFD and
conservation laws, explicit schemes are often used, which are however conditionally sta-
ble. Therefore, it is suitable to apply implicit or semi-implicit methods. In [48] implicit
θ-schemes are analyzed, [23] is concerned with the analysis of a semi-implicit linearized
scheme for a nonlinear convection-diffusion problem and in [22] and [33] an efficient
semi-implicit method for the solution of the compressible Euler equations was devel-
oped. However, these methods have low order of accuracy in time. As for higher-order
time discretization methods, we can mention the well-known Crank-Nicolson scheme,
which is second-order in time. In computational fluid dynamics, Runge-Kutta methods
are very popular. However, they are conditionally stable and in connection with the
DGFEM the time step is strongly limited by the CFL stability condition. An example
of unconditionally stable method is the technique using the backward difference for-
mula (BDF). It was used for the solution of compressible flow, e.g. in [22] and analyzed
theoretically in the case of a scalar nonlinear convection-diffusion equation in [27].

The numerical simulation of strongly nonstationary transient problems requires the
application of numerical schemes of high order of accuracy in space as well as in time.
In the paper [6], a time discretization of arbitrary order was proposed and analyzed.
Unfortunately, it is applicable to linear parabolic problems only. In the framework of
the space DG semidiscretization, the well-known Runge-Kutta discontinuous Galerkin
methods were developed, see e.g. [18]. They are applicable to the numerical solution of a
wide class of problems, including nonlinear conservation laws and nonlinear convection-
diffusion problems, but they are conditionally stable.

One possibility, how to construct an unconditionally stable numerical schemes of
high-order of accuracy is to use the discontinuous Galerkin discretization with respect
to both space and time. The discontinuous Galerkin time discretization was introduced
and analyzed, e.g. in [28] for the solution of ordinary differential equations. In [30],
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[29], [1], [51] and [52] the solution of parabolic problems is carried out with the aid
of conforming finite elements in space combined with the DG time discretization. See
also the monograph [55]. The works [40], and [57] apply on the other hand to the full
DG discretization in the space-time domain. This requires to construct the mesh in the
space-time cylinder, which may be quite complicated task for 3D problems.

In this paper we are concerned with the space-time discontinuous Galerkin discretiza-
tion applied separately in space and in time for the numerical solution of a nonstationary
nonlinear convection-diffusion equation. The time interval is split into subintervals and
on each time level a different space mesh may be used in general. This approach is suit-
able particularly in the case when the space mesh adaptivity is performed in the course
of increasing time. Moreover, the triangulations used for the space discretization may be
nonconforming with hanging nodes. In the discontinuous Galerkin formulation we use
the nonsymmetric, symmetric or incomplete version of the discretization of the diffusion
terms and interior and boundary penalty (i.e., NIPG, SIPG or IIPG versions). For the
space and time discretization, piecewise polynomial approximations of different degrees
p and q, respectively, are used. The main subject of the paper is the derivation of error
estimates of the space-time DGFE method for the nonstationary initial-boundary value
problem with nonlinear convection and linear diffusion. We do not consider a singularly
perturbed case with dominating convection, but assume that the diffusion coefficient is
a fixed positive constant of order O(1). Under the assumption that the triangulations on
all time levels are uniformly shape regular, and the exact solution has some regularity
properties, error estimates are derived for the space-time DGFE method.

The structure of the paper is as follows: First, the continuous problem is formu-
lated and the main assumptions are introduced. Further, the discontinuous Galerkin
discretization in space and time is described. In the next section, some auxiliary results
concerning properties of forms appearing in the definition of the approximate solution
are obtained and the abstract error estimate is derived. Then the error estimates of the
DG space-time discretization are proven. Finally an outlook of the future work is given.

2 Continuous problem

Let Ω ⊂ IRd (d = 2 or 3) be a bounded polyhedral domain and T > 0. We consider the
following initial-boundary value problem: Find u : QT = Ω× (0, T ) → IR such that

∂u

∂t
+

d∑

s=1

∂fs(u)
∂xs

− ε ∆u = g in QT = Ω× (0, T ), (1)

u
∣∣
∂Ω×(0,T )

= uD, (2)

u(x, 0) = u0(x), x ∈ Ω. (3)

We assume that ε > 0 and fs ∈ C1(IR), |f ′s| ≤ C, s = 1, . . . , d. This means that the
fluxes fs are Lipschitz-continuous in IR.

Using techniques from [50], it is possible to prove the existence and uniqueness of a
weak solution to problem (1) – (3).

We use the standard notation of function spaces (see, e.g. [43]). If ω is a bounded
domain, then we define the Lebesgue spaces

L∞(ω) = {measurable functions ϕ; ‖ϕ‖L∞(ω) = essupx∈ω|ϕ(x)| < ∞},

L2(ω) = {measurable functions ϕ; ‖ϕ‖L2(ω) =
(∫

ω
|ϕ|2 dx

)1/2
< ∞}
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and the Sobolev space

Hk(ω) = {ϕ ∈ L2(ω); ‖ϕ‖Hk(ω) =
( ∑

|α|≤k

‖Dαϕ‖2
L2(ω)

)1/2
< ∞},

with the seminorm
|ϕ|Hk(ω) =

( ∑

|α|=k

‖Dαϕ‖2
L2(ω)

)1/2
.

We also use the Bochner spaces. Let X be a Banach space with a norm ‖ · ‖X and a
seminorm | · |X and let s be an integer. Then we define:

C([0, T ]; X) = {ϕ : [0, T ] → X, continuous, ‖ϕ‖C([0,T ];X) = sup
t∈[0,T ]

‖ϕ‖X < ∞},

L2(0, T ; X) =
{

ϕ : (0, T ) → X, strongly measurable, ‖ϕ‖2
L2(0,T ;X) =

∫ T

0
‖ϕ‖2

X dt < ∞
}

,

Hs(0, T ; X) =
{

ϕ ∈ L2(0, T ;X); ‖ϕ‖2
Hs(0,T ;X) =

∫ T

0

s∑

α=0

∥∥∥∂αϕ

∂tα

∥∥∥
2

X
< ∞

}
.

Moreover, we set

|ϕ|C([0,T ];X) = sup
t∈[0,T ]

|ϕ|X ,

|ϕ|L2(0,T ;X) =
(∫ T

0
|ϕ|2X dt

)1/2
,

|ϕ|Hs(0,T ;X) =
( ∫ T

0

∣∣∣∂
sϕ

∂ts

∣∣∣
2

X

)1/2
.

3 Discretization

3.1 Construction of a mesh in QT

In the time interval [0, T ] we shall construct a partition formed by time instants 0 =
t0 < · · · < tM = T and denote Im = (tm−1, tm), τm = tm − tm−1. We have [0, T ] =⋃M

i=1 Īm, Im ∩ In = ∅ for m 6= n.
For each Im we consider a partition Th,m of the closure Ω of the domain Ω into a

finite number of closed d−dimensional simplices (triangles for d = 2 and tetrahedra for
d = 3) with mutually disjoint interiors. We shall call Th,m a triangulation of Ω. We
do not require the standard properties of Th,m used in the finite element method. This
means that we admit the so-called hanging nodes (and in 3D also hanging edges). The
partitions Th,m are in general different for different m.

Let K, K ′ ∈ Th,m. We say that K and K ′ are neighbouring elements, if the set
∂K ∩ ∂K ′ has positive (d− 1)-dimensional measure. We say that Γ ⊂ K is a face of K,
if it is a maximal connected open subset either of ∂K∩∂K ′, where K ′ is a neighbouring
element to K, or of ∂K ∩ ∂Ω. By Fh,m we denote the system of all faces of all elements
K ∈ Th,m. Further, we define the set of all inner faces by FI

h,m = {Γ ∈ Fh,m; Γ ⊂ Ω}
and by FB

h,m = {Γ ∈ Fh,m; Γ ⊂ ∂Ω}the set of all boundary faces. Obviously, Fh,m =
FI

h,m ∪ FB
h,m.

For each Γ ∈ Fh,m we define a unit normal vector nΓ. We assume that for Γ ∈ FB
h,m

the normal nΓ has the same orientation as the outer normal to ∂Ω. For each face
Γ ∈ FI

h,m the orientation of nΓ is arbitrary but fixed. See Figure 1.

52



Analysis of space-time DG method for nonlinear convection-diffusion problems

K1

K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Γ7

Γ8

~nΓ1

~nΓ2

~nΓ3

~nΓ4

~nΓ5

~nΓ6

~nΓ7

~nΓ8

Figure 1: Example of elements Kl, l = 1, . . . , 5, and faces Γl, l = 1, . . . , 8, with the
corresponding normals nΓl

.

In our further considerations we shall use the following notation. For an element
K ∈ Th,m we set hK = diam(K), hm = maxK∈Th,m

hK , h = maxm=1,...,M hm. By ρK

we denote the radius of the largest d-dimensional ball inscribed into K and by |K|
we denote the d-dimensional Lebesgue measure of K. Further, by d(Γ) we denote the
diameter of Γ ∈ Fh,m. Finally, we set τ = maxm=1,...,M τm.

3.2 Forms defined on spaces of discontinuous functions

For a function ϕ defined in
⋃M

m=1 Im we denote

ϕ±m = ϕ (tm±) = lim
t→tm±

ϕ(t), {ϕ}m = ϕ (tm+)− ϕ (tm−) . (4)

Over a triangulation Th,m we define the broken Sobolev spaces

Hk(Ω, Th,m) = {v; v|K ∈ Hk(K) ∀K ∈ Th,m} (5)

equipped with the seminorm

|v|Hk(Ω,Th,m) =
( ∑

K∈Th,m

|v|2Hk(K)

)1/2
. (6)

For each face Γ ∈ FI
h,m there exist two neighbours K

(L)
Γ ,K

(R)
Γ ∈ Th,m such that

Γ ⊂ ∂K
(L)
Γ ∩ ∂K

(R)
Γ . We use convention that nΓ is the outer normal to the element

K
(L)
Γ and the inner normal to the element K

(R)
Γ . For v ∈ H1(Ω, Th,m) and Γ ∈ FI

h,m we
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introduce the following notation:

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, (7)

v|(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ =
1
2

(
v|(L)

Γ + v|(R)
Γ

)
,

[v]Γ = v|(L)
Γ − v|(R)

Γ .

Now, let Γ ∈ FB
h,m and K

(L)
Γ ∈ Th,m be such an element that Γ ⊂ K

(L)
Γ ∩ ∂Ω. For

v ∈ H1(Ω, Th,m) we define v|(R)
Γ by extrapolation, i.e.

v|(R)
Γ := v|(L)

Γ = the trace of v|
K

(L)
Γ

on Γ. (8)

If [·]Γ and 〈 · 〉Γ appear in an integral
∫
Γ . . . dS, where Γ ∈ FI

h,m, we usually omit the
subscript Γ and write simply [·] and 〈 · 〉. Moreover, if Γ ∈ FB

h,m and v ∈ H1(Ω, Th,m),

then
∫
Γ v dS means

∫
Γ v|(L)

Γ dS.
Let CW > 0 be a fixed constant. We introduce the notation

h(Γ) =
h

K
(L)
Γ

+ h
K

(R)
Γ

2CW
for Γ ∈ FI

h,m, (9)

h(Γ) =
h

K
(L)
Γ

CW
for Γ ∈ FB

h,m.

By (·, ·) we denote the scalar product in L2(Ω) and by ‖ · ‖ we denote the norm in L2(Ω).
If u, ϕ ∈ H2(Ω, Th,m), we define the forms

ah,m(u, ϕ) = ε
∑

K∈Th,m

∫

K
∇u · ∇ϕdx (10)

− ε
∑

Γ∈FI
h,m

∫

Γ

(〈∇u〉 · nΓ[ϕ] + θ〈∇ϕ〉 · nΓ [u]
)
dS

− ε
∑

Γ∈FB
h,m

∫

Γ

(∇u · nΓ ϕ + θ∇ϕ · nΓ u
)
dS,

Jh,m(u, ϕ) =
∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ
[u] [ϕ] dS +

∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ
uϕdS, (11)

Ah,m = ah,m + εJh,m, (12)

bh,m(u, ϕ) = −
∑

K∈Th,m

∫

K

d∑

s=1

fs(u)
∂ϕ

∂xs
dx (13)

+
∑

Γ∈FI
h,m

∫

Γ
H

(
u
∣∣(L)

Γ
, u

∣∣(R)

Γ
,nΓ

)
[ϕ]

∣∣
Γ

dS +
∑

Γ∈FB
h,m

∫

Γ
H

(
u
∣∣(L)

Γ
, u

∣∣(L)

Γ
,nΓ

)
ϕ
∣∣(L)

Γ
dS.

Here H is a numerical flux. We assume that it has the following properties.
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(H1) H(u, v, n) is defined in IR2×B1, where B1 = {n ∈ IRd; |n| = 1}, and is Lipschitz-
continuous with respect to u, v:

|H(u, v, n)−H(u∗, v∗,n)| ≤ LH(|u− u∗|+ |v − v∗|), u, v, u∗, v∗ ∈ IR, n ∈ B1.

(H2) H(u, v, n) is consistent:

H(u, u,n) =
d∑

s=1

fs(u) ns, u ∈ IR, n = (n1, . . . , nd) ∈ B1.

(H3) H(u, v, n) is conservative:

H(u, v,n) = −H(v, u,−n), u, v ∈ IR, n ∈ B1.

Finally, the right-hand side form is defined on the basis of data:

`h,m(ϕ) = (g, ϕ) + ε
∑

Γ∈FB
h,m

( CW

h
K

(L)
Γ

∫

Γ
uD ϕ dS − θ

∫

Γ
∇ϕ · nΓuD dS

)
. (14)

In the above forms we take θ = −1, θ = 0, θ = 1 and obtain the nonsymmetric (NIPG),
incomplete (IIPG) and symmetric (SIPG) variants of the approximation of the diffusion
terms, respectively.

In the space H1(Ω, Th,m), the following norm will be used:

‖ϕ‖DG,m =
( ∑

K∈Th,m

|ϕ|2H1(K) + Jh,m(ϕ,ϕ)
)1/2

. (15)

3.3 Discrete problem

Let p, q ≥ 1 be integers. For each m = 1, . . . , M we define the finite-dimensional space

Sp
h,m =

{
ϕ ∈ L2(Ω);ϕ|K ∈ P p(K) ∀K ∈ Th,m

}
. (16)

By Πm we denote the L2(Ω)-projection on Sp
h,m, i.e., if ϕ ∈ L2(Ω), then Πmϕ ∈ Sp

h,m

and
(Πmϕ− ϕ,ψ) = 0, ∀ψ ∈ Sp

h,m. (17)

The approximate solution will be sought in the space

Sp,q
h,τ =

{
ϕ ∈ L2(QT );ϕ

∣∣
Im

=
q∑

i=0

ti ϕi with ϕi ∈ Sp
h,m, m = 1, . . . , M

}
. (18)

In what follows we shall use the notation U ′ = ∂U/∂t, u′ = ∂u/∂t, Dq+1 = ∂q+1/∂tq+1.

Definition 1. We say that the function U is an approximate solution of problem (1) –
(3), if U ∈ Sp,q

h,m and

∫

Im

(
(U ′, ϕ) + Ah,m(U,ϕ) + bh,m(U,ϕ)

)
dt +

({U}m−1, ϕ
+
m−1

)
=

∫

Im

`h,m(ϕ) dt,(19)

∀ϕ ∈ Sp,q
h,τ , ∀m = 1, . . . , M, U−

0 = Π1u
0.
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It is possible to show that the exact sufficiently regular solution u satisfies the
identity

∫

Im

(
(u′, ϕ) + Ah,m(u, ϕ) + bh,m(u, ϕ)

)
dt +

({um−1}, ϕ+
m−1

)
=

∫

Im

`h,m(ϕ) dt,

∀ϕ ∈ Sp,q
h,τ , ∀m = 1, . . . ,M,

(20)

if we set u(0−) = u(0).

Remark 1. It is also possible to consider q = 0. In this case, scheme (19) represents
a version of the backward Euler method. Since it can be analyzed in a similar way as,
for example, in [23], we shall be concerned only with q ≥ 1.

In the error analysis we shall use the Sp,q
h,τ -interpolation π of functions v ∈ L2(QT )

defined by

a) π v ∈ Sp,q
h,τ , (21)

b) (π v) (tm−) = Πm v(tm−),

c)
∫

Im

(πv − v, ϕ∗) dt = 0, ∀ϕ∗ ∈ Sp,q−1
h,τ , ∀m = 1, . . . , M.

In [32], Lemma 4, it was proven that πu is uniquely determined. Moreover, by [32],
Lemma 9,

πu|Im = π(Πmu)|Im . (22)

Our main goal will be the derivation of the estimation of the error e = U −u, which
can be expressed in the form

e = ξ + η, (23)

where
ξ = U − πu ∈ Sp,q

h,τ , η = πu− u. (24)

Then, in virtue of (19) and (20),
∫

Im

(
(ξ′, ϕ) + Ah,m(ξ, ϕ)

)
dt +

({ξm−1}, ϕ+
m−1

)
=

∫

Im

(
bh,m(u, ϕ)− bh,m(U,ϕ)

)
dt

(25)

−
∫

Im

(
(η′, ϕ) + Ah,m(η, ϕ)

)
dt− ({η}m−1, ϕ

+
m−1

)
, ∀ϕ ∈ Sp,q

h,τ .

4 Abstract error estimate

In this section we shall be concerned with the derivation of error estimates in terms of
interpolation error.

4.1 Assumptions on the triangulation

In our further considerations, by C and c we shall denote positive generic constants,
independent of h, τ,K, ε, u, U , which can attain different values in different places. In
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the sequel, we shall consider a system of triangulations Th,m, m = 1, . . . , M , h ∈ (0, h0),
which is shape regular and locally quasiuniform:

hK

ρK
≤ CR, K ∈ Th,m, m = 1, . . . , M, h ∈ (0, h0), (26)

hK ≤ CQhK′ , for neighbouring elements K,K ′ ∈ Th,m. (27)

Then there exist positive constants C−, C+ such that

C−hK ≤ h(Γ) ≤ C+hK , Γ ∈ Fh,m, Γ ⊂ K ∈ Th,m, h ∈ Th,m, m = 1, . . . ,M. (28)

4.2 Auxiliary results

In the analysis of the DGFEM we use the following important tools.

Multiplicative trace inequality: There exists a constant CM > 0 independent of v, h,
K and M such that

‖v‖2
L2(∂K) ≤ CM

(
‖v‖L2(K) |v|H1(K) + h−1

K ‖v‖2
L2(K)

)
, (29)

v ∈ H1(K), K ∈ Th,m, h ∈ (0, h0), m = 1, . . . ,M.

Inverse inequality: There exists a constant CI > 0 independent of v, h, K and M such
that

|v|H1(K) ≤ CIh
−1
K ‖v‖L2(K), v ∈ P p(K), K ∈ Th,m, h ∈ (0, h0), m = 1, . . . , M.

(30)
(For proofs, see, e.g. [25] and [11].)

Coercivity of the form Ah,m: It holds

Ah,m(ξ, ξ) ≥ ε

2
‖ξ‖2

DG,m (31)

provided

CW > 0 for NIPG, (32)
CW ≥ CM (1 + CI) (1 + CQ) for IIPG,

CW ≥ 2CM (1 + CI) (1 + CQ) for SIPG.

(See, [31].)

Consistency of bh,m: For any ϕ ∈ Sp,q
h,τ and k > 0,

|bh,m(u, ϕ)− bh,m(U,ϕ)| ≤ C‖ϕ‖DG,m

(‖ξ‖2 + σ̃2
m(η)

)1/2

≤ ε

k
‖ϕ‖2

DG,m +
C

ε

(‖ξ‖2 + σ̃2
m(η)

)
, (33)

where
σ̃2

m(η) =
∑

K∈Th,m

(‖η‖2
L2(K) + h2

K |η|2H1(K)

)
. (34)

(The constant C in the last expression depends, of course, on k.) The proof can be
carried out in a similar way as in [21] or [26].
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4.3 Derivation of estimates for ξ

Let us substitute ϕ := ξ in (25) and analyze individual terms. A simple calculation
yields

2
∫

Im

(ξ′, ξ) dt + 2
({ξ}m−1, ξ

+
m−1

)
=

∫

Im

d
dt
‖ξ‖2dt + 2

({ξ}m−1, ξ
+
m−1

)
(35)

= ‖ξ−m‖2 − ‖ξ+
m−1‖2 + 2

(
ξ+
m−1 − ξ−m−1, ξ

+
m−1

)

and
2

(
ξ+
m−1 − ξ−m−1, ξ

+
m−1

)
=

∥∥ξ+
m−1

∥∥2 +
∥∥{ξ}m−1

∥∥2 − ∥∥ξ−m−1

∥∥2
. (36)

Hence,

2
∫

Im

(
ξ′, ξ

)
dt + 2

({ξ}m−1, ξ
+
m−1

)
=

∥∥ξ−m
∥∥2 − ∥∥ξ−m−1

∥∥2 +
∥∥{ξ}m−1

∥∥2
. (37)

Further, we shall be concerned with estimates of the right-hand side of (25). In the
same way as in [26], Lemma 9, using Cauchy inequality, multiplicative trace inequality
and inverse inequality, we can show that for ϕ ∈ Sp,q

h,τ we have
∣∣Ah,m(η, ϕ)

∣∣ ≤ CAε‖ϕ‖DG,mσm(η), (38)

where
σ2

m(η) = ‖η‖2
DG,m +

∑

K∈Th,m

h2
K |η|2H2(K). (39)

By Young’s inequality, for k > 0,

|Ah,m(η, ϕ)| ≤ ε

k
‖ϕ‖2

DG,m + Cεσ2
m(η). (40)

Now (25), where we set ϕ := ξ, relation (37) and estimates (31), (33), (40) imply
that

∥∥ξ−m
∥∥2 − ∥∥ξm−1

∥∥2 +
∥∥{ξ}−m−1

∥∥2 + ε

∫

Im

‖ξ‖2
DG,m dt (41)

≤ −2
∫

Im

(η′, ξ) dt− 2
({η}m−1, ξ

+
m−1

)
+

2ε

k

∫

Im

‖ξ‖2
DG,m dt

+
C

ε

∫

Im

‖ξ‖2 dt + C

∫

Im

(
εσ2

m(η) +
1
ε
σ̃2

m(η)
)

dt.

Further, we shall be concerned with the expression
∫

Im

(η′, ξ) dt +
({η}m−1, ϕ

+
m−1

)
.

Integration by parts yields
∫

Im

(η′, ξ) dt =
(
η−m, ξ−m

)− (
η+

m−1, ξ
+
m−1

)−
∫

Im

(η, ξ′) dt. (42)

Since ξ′ ∈ Sp,q−1
h,τ and η = πu− u, it follows from the definition of π that

∫

Im

(η, ξ′) dt = 0.

58



Analysis of space-time DG method for nonlinear convection-diffusion problems

Thus,
∫

Im

(η′, ξ) dt +
({η}m−1, ξ

+
m−1

)
(43)

=
(
η−m, ξ−m

)− (
η+

m−1, ξ
+
m−1

)
+

(
η+

m−1, ξ
+
m−1

)− (
η−m−1, ξ

+
m−1

)
.

Further, since ξ−m, ξ−m−1 ∈ Sp
h,m, (21), b) and the definition of Πm imply that

(
η−m, ξ−m

)
= 0 and (η−m−1, ξ

−
m−1) = 0. (44)

Moreover,
∣∣(η−m−1, ξ

+
m−1

)∣∣ =
∣∣(η−m−1, ξ

+
m−1 − ξ−m−1

)∣∣ =
∣∣(η−m−1, {ξ}m−1

)∣∣ (45)

≤ 1
2
(∥∥{ξ}m−1

∥∥2 +
∥∥η−m−1

∥∥2)
.

From (43) – (45) we find that

∣∣∣
∫

Im

(η′, ξ) dt +
({η}m−1, ξ

+
m−1

)∣∣∣ ≤ 1
2

∥∥{ξ}m−1

∥∥2 +
1
2

∥∥η−m−1

∥∥2
. (46)

This and (41) imply that

∥∥ξ−m
∥∥2 − ∥∥ξ−m−1

∥∥2 + ε
(
1− 2

k

)∫

Im

‖ξ‖2
DG,m dt (47)

≤ C

ε

∫

Im

‖ξ‖2 dt + 2
∥∥η−m−1

∥∥2 + C

∫

Im

Rm(η) dt,

where
Rm(η) = εσ2

m(η) +
1
ε
σ̃2

m(η). (48)

In what follows, it will be necessary to estimate the terms with η and
∫
Im
‖ξ‖2 dt.

4.4 Estimation of

∫

Im

‖ξ‖2 dt

By Pq we shall denote the set of polynomials in t ∈ R of degree ≤ q. In the interval
(0, 1] we shall consider the Gauss–Radau quadrature formula

∫ 1

0
ϕ(t) dt ≈

q+1∑

i=1

wi ϕ(ϑi), (49)

where 0 < ϑ1 < · · · < ϑq+1 = 1 are the Radau integration points and wi > 0 are the
Radau weights. (We can refer, for example, to formulas from [46], transformed from the
interval [−1, 1) to (0, 1].) Formula (49) is transformed to the interval (tm−1, tm], which
yields ∫

Im

ϕ(t) dt ≈ τm

q+1∑

i=1

wiϕ
(
tm,i

)
, (50)

where tm,i = tm−1 +τm ϑi. Formulas (49), (50) are exact for polynomials of degree ≤ 2q.
In [1], the following result was proven:
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Lemma 1. Let p ∈ Pq and let p̃ ∈ Pq be the Lagrange interpolation of the function
τm p(t)/(t− tm−1) at the points tm,i, i = 1, . . . , q + 1:

p̃(tm,i) = τm p
(
tm,i

)/(
tm,i − tm−1

)
= p

(
tm,i

)
ϑ−1

i , i = 1, . . . , q + 1.

Then ∫

Im

p′ p̃ dt + p(tm−1) p̃(tm−1) =
1
2

(
p2(tm) +

q+1∑

i=1

wi ϑ
−2
i p2(tm,i)

)
. (51)

Now, by ξ̃ we shall denote the Lagrange interpolation of τmξ(t)/(t − tm−1) at the
points tm,i, i = 1, . . . , q + 1. This means that for each x ∈ Ω, the function ξ̃(·, x) is a
polynomial (in t) of degree ≤ q. In what follows we shall denote

‖ξ‖2
m = τm

q+1∑

i=1

wi ϑ
−1
i

∥∥ξ(tm,i)
∥∥2

. (52)

Let us set ϕ := ξ̃ in (25). Then we get
∫

Im

(ξ′, ξ̃) dt +
(
ξ+
m−1, ξ̃

+
m−1

)

︸ ︷︷ ︸
(a)

+
∫

Im

Ah,m(ξ, ξ̃) dt

︸ ︷︷ ︸
(b)

(53)

=
(
ξ−m−1, ξ̃

+
m−1

)

︸ ︷︷ ︸
(c)

−
∫

Im

(η′, ξ̃) dt−
(
{η}m−1, ξ̃

+
m−1

)

︸ ︷︷ ︸
(d)

−
∫

Im

Ah,m(η, ξ̃) dt

︸ ︷︷ ︸
(e)

+
∫

Im

(
bh,m(u, ξ̃)− bh,m(U, ξ̃) dt

)

︸ ︷︷ ︸
(f)

.

In what follows, we shall analyze individual terms (a) – (f).

(a) By Fubini’s theorem and (51),
∫

Im

(
ξ′, ξ̃

)
dt +

(
ξ+
m−1, ξ̃

+
m−1

)
=

∫

Ω

(∫ tm

tm−1

ξ′ ξ̃ dt + ξ+
m−1 ξ̃+

m−1

)
dx (54)

=
∫

Ω

1
2

(
(ξ−m)2 +

q+1∑

i=1

wi ϑ
−2
i

(
ξ(tm,1)

)2
)
dx =

1
2

(∥∥ξ−m
∥∥2 +

q+1∑

i=1

wi ϑ
−2
i

∥∥ξ(tm,i)
∥∥2

)
.

Hence, since ϑ−1
i ≥ 1, in view of the notation (52), we get the inequality

∫

Im

(
ξ′, ξ̃

)
dt +

(
ξ+
m−1, ξ̃

+
m−1

) ≥ 1
2

(
‖ξ−m‖2 +

1
τm
‖ξ‖2

m

)
. (55)

(b) We use the following lemma:

Lemma 2. Under assumptions (32) we have
∫

Im

Ah,m(ξ, ξ̃) dt ≥ ε

2

∫

Im

‖ξ‖2
DG,mdt. (56)
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Proof. In view of (10) and (12),
∫

Im

Ah,m(ξ, ξ̃) dt = ε

∫

Im

∑

K∈Th,m

∫

K
∇ξ · ∇ξ̃ dxdt

− ε

∫

Im

∑

Γ∈FI
h,m

∫

Γ

(
〈∇ξ〉 · nΓ[ξ̃] + θ〈∇ξ̃〉 · nΓ[ξ]

)
dSdt

− ε

∫

Im

∑

Γ∈FB
h,m

∫

Γ

(
∇ξ · nΓξ̃ + θ∇ξ̃ · nΓξ

)
dSdt + ε

∫

Im

Jh,m(ξ, ξ̃) dt.

The expressions ξ
∣∣
Γ
, [ξ]Γ, ξ̃

∣∣
Γ
, [ξ̃]Γ, ∇ξ and ∇ξ̃ are polynomials in t of degree ≤ q.

Hence,
∫
K ∇ξ · ∇ξ̃ dx,

∫
Γ[ξ]Γ[ξ̃]Γ dS,

∫
Γ〈∇ξ〉 · n[ξ̃] dS, Jh,m(ξ, ξ̃), etc. are polynomials

in t of degree ≤ 2q. Therefore, we can express the integrals
∫
Im
· · · dt with the aid of

the integration formula (50). We also use the relations ξ̃(tm,i) = ξ(tm,i)ϑ−1
i , ∇ξ̃(tm,i) =

∇ξ(tm,i)ϑ−1
i , [ξ̃(tm,i)] = [ξ(tm,i)ϑ−1

i ]. Then , by (10) we get
∫

Im

Ah,m(ξ, ξ̃) dt (57)

= ε τm

q+1∑

i=1

wi

( ∑

K∈Th,m

∫

K
∇ξ(tm,i) · ∇ξ̃(tm,i)dx + Jh,m(ξ(tm,i), ξ̃(tm,i)) dx

− ε τm

∑

Γ∈FI
h,m

∫

Γ

(
〈∇ξ(tm,i)〉 · nΓ[ξ̃(tm,i)] + θ〈∇ξ̃(tm,i)〉 · nΓ[ξ(tm,i)]

)
dS

− ε τm

∑

Γ∈FB
h,m

∫

Γ

(
∇ξ(tm,i) · nΓξ̃(tm,i) + θ∇ξ̃(tm,i) · nΓξ(tm,i)

)
dS

)

= τm

q+1∑

i=1

ϑ−1
i wi

(
ah,m(ξ(tm,i), ξ(tm,i)) + εJh,m(ξ(tm,i), ξ(tm,i))

)
.

In virtue of the results from [31], under assumptions (32), we have

ah,m(ξ(tm,i), ξ(tm,i))+εJh,m(ξ(tm,i), ξ(tm,i)) ≥ ε

2
‖ξ(tm,i)‖2

DG,m, i = 1, . . . , q+1. (58)

If we use (57), (58), inequality ϑ−1
i ≥ 1 and take into account that ‖ξ‖2

DG,m is a
polynomial in t of degree ≤ 2q, we find that

∫

Im

Ah,m(ξ, ξ̃) dt ≥ ε

2
τm

q+1∑

i=1

ϑ−1
i wi ‖ξ(tm,i)‖2

DG,m

≥ ε

2
τm

q+1∑

i=1

wi ‖ξ(tm,i)‖2
DG,m =

ε

2

∫

Im

‖ξ‖2
DG,m dt,

what we wanted to prove. ¤

(c) By the Cauchy inequality,
∣∣(ξ−m−1, ξ̃

+
m−1

)∣∣ ≤ ∥∥ξ−m−1

∥∥∥∥ξ̃+
m−1

∥∥. (59)
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Lemma 3. There exists a constant c1 independent of hK , τm, ξ such that
∥∥ξ̃+

m−1

∥∥2 ≤ c1

τm
‖ξ‖2

m (60)

Proof. The function ξ̃ is the Lagrange interpolant to τm ξ(t)/(t− tm−1) at points tm,i =
tm−1 + τm ϑi, i = 1, . . . , q + 1. This means that

ξ̃(t) = τm

q+1∑

i=1

ξ(tm,i)
tm,i − tm−1

q+1∏
j=1
j 6=i

t− tm,j

tm,i − tm,j
= τm

q+1∑

i=1

ξ(tm,i)
τm ϑi

q+1∏
j=1
j 6=i

t− tm−1 − τm ϑi

τm(ϑi − ϑj)
.

Setting t = tm−1, we get

ξ̃+
m−1 =

q+1∑

i=1

ξ(tm,i) ϑ−1
i

q+1∏
j=1
j 6=i

−ϑj

ϑi − ϑj

and, thus, since ϑ−1
i ≤ ϑ−1

1 ,

∥∥ξ̃+
m−1

∥∥2 ≤ C(q)
q+1∑

i=1

ϑ−1
i ϑ−1

1

∥∥ξ(tm,i)
∥∥2

( q+1∏
j=1
j 6=i

ϑj

ϑi − ϑj

)2

(61)

≤ C̃(q)
q+1∑

i=1

ϑ−1
i

∥∥ξ(tm,i)
∥∥2

( q+1∏
j=1
j 6=i

ϑj

ϑi − ϑj

)2

.

The Radau weights are defined as

wi =
∫ 1

0

q+1∏
j=1
j 6=i

z − ϑj

ϑi − ϑj
dz.

By [46], w∗ := mini=1,...,q+1wi > 0. Moreover, let us set

w∗∗ := maxi=1,...,q+1

( q+1∏
j=1
j 6=i

ϑj

ϑi − ϑj

)2

.

Hence, since wi ≥ w∗, using (54), we get

∥∥ξ̃+
m−1

∥∥2 ≤ C̃(q)
q+1∑

i=1

ϑ−1
i ‖ξ(tm,i)‖2 w∗∗w∗

w∗
≤ c1

q+1∑

i=1

ϑ−1
i

∥∥ξ(tm,i)
∥∥2

wi =
c1

τm
‖ξ‖2

m,

with c1 = C̃(q)w∗∗/w∗. ¤

(d) Integration by parts implies that
∫

Im

(
η′, ξ̃

)
dt +

({η}m−1, ξ̃
+
m−1

)
(62)

= −
∫

Im

(
η, ξ̃′

)
dt +

(
η−m, ξ̃−m

)− (
η+

m−1, ξ̃
+
m−1

)
+

(
η+

m−1, ξ̃
+
m−1

)− (
η−m−1, ξ̃

+
m−1

)
.
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Since ξ̃′ ∈ Sp,q−1
h,τ , in virtue of (21), c),

∫

Im

(
η, ξ̃′

)
dt = 0. (63)

Further, ξ̃−m ∈ Sp
h,m and thus, (

η−m, ξ̃−m
)

= 0. (64)

It follows from (62) – (64) that
∫

Im

(
η′, ξ̃

)
dt +

({η}m−1, ξ
+
m−1

)
= −(

η−m−1, ξ̃
+
m−1

) ≤ ∥∥η−m−1

∥∥ ∥∥ξ̃+
m−1

∥∥. (65)

(e) We use the following lemma:

Lemma 4. If k > 0, then there exists a constant C > 0 such that

∣∣∣
∫

Im

Ah,m(η, ξ̃) dt
∣∣∣ ≤ ε

k

∫

Im

‖ξ‖2
DG,m dt + C ε

∫

Im

σ2
m(η) dt. (66)

Proof. Using (40) with ϕ := ξ̃, we get

∣∣∣
∫

Im

Ah,m(η, ξ̃) dt
∣∣∣ ≤ ε

k

∫

Im

∥∥ξ̃
∥∥2

DG,m
dt + Cε

∫

Im

σ2
m(η) dt. (67)

Now we shall estimate
∫
Im
‖ξ̃‖2

DG,m dt. The function ξ̃(t) =
∑q

j=0 αj tj , where αj ∈ Sp
h,m

is the Radau interpolation of the function τm ξ(t)/(t− tm−1). Hence,

‖ξ̃(tm,i)‖2
DG,m = ‖ξ(tm,i)‖2

DG,m ϑ−2
i , i = 1, . . . , q + 1,

and ‖ξ̃(t)‖2
DG,m is a polynomial in t of degree ≤ 2q. Thus, we get

∫

Im

∥∥ξ̃(t)
∥∥2

DG,m
dt = τm

q+1∑

i=1

wi

∥∥ξ̃(tm,i)
∥∥2

DG,m
= τm

q+1∑

i=1

wi ϑ
−2
i

∥∥ξ(tm,i)
∥∥2

DG,m

≤ ϑ−2
1 τm

q+1∑

i=1

wi

∥∥ξ(tm,i)
∥∥2

DG,m
= ϑ−2

1

∫

Im

‖ξ‖2
DG,m dt.

Hence, ∫

Im

∥∥ξ̃
∥∥2

DG,m
dt ≤ C

∫

Im

∥∥ξ
∥∥2

DG,m
dt. (68)

From (67) and (68) we get estimate (66), which we wanted to prove. ¤

(f) By (33) and (68),

∣∣∣
∫

Im

bh,m(u, ξ̃)− bh,m(U, ξ̃) dt
∣∣∣ ≤ ε

k

∫

Im

‖ξ‖2
DG,mdt +

C

ε

(∫

Im

‖ξ‖2dt +
∫

Im

σ̃2
m(η)dt

)
.

(69)
Now we prove the desired estimate.
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Lemma 5. There exist constants C,C∗ > 0 such that
∫

Im

‖ξ‖2 dt ≤ C τm

(∥∥ξ−m−1

∥∥2 +
∥∥η−m−1

∥∥2 +
∫

Im

Rm(η) dt
)
, (70)

provided
0 < τm ≤ C∗ε. (71)

Proof. If we proceed similarly as in the proof of (68), using (52) and the inequalities
1 ≤ ϑ−1

i ≤ ϑ−1
1 , we get

∫

Im

‖ξ‖2 dt = τm

q+1∑

i=1

wi

∥∥ξ(tm,i)
∥∥2 ≤ ‖ξ‖2

m, (72)

‖ξ‖2
m ≤ ϑ−1

1 τm

q+1∑

i=1

wi

∥∥ξ(tm,i)
∥∥2 = ϑ−1

1

∫

Im

‖ξ‖2 dt.

Now, estimates (53), (55), (56), (59), (60), (65), (66) and (69) yield

1
2
‖ξ−m‖2 +

1
2

1
τm
‖ξ‖2

m +
ε

2

∫

Im

‖ξ‖2
DG,m dt

≤ ∥∥ξ−m−1

∥∥ ‖ξ‖m

√
c1

τm
+

∥∥η−m−1

∥∥ ‖ξ‖m

√
c1

τm
+

2ε

k

∫

Im

‖ξ‖2
DG,m dt

+
C

ε

∫

Im

‖ξ‖2 dt + C ε

∫

Im

σ2
m(η) dt +

C

ε

∫

Im

σ̃2
m(η) dt.

This, (48), (72), Young’s inequality and the choice k := 8 imply that

∥∥ξ−m
∥∥2 +

ε

2

∫

Im

‖ξ‖2
DG,m dt +

( 1
2τm

− C̃

ε

)∫

Im

‖ξ‖2 dt (73)

≤ C
(∥∥ξ−m−1

∥∥2 +
∥∥∥η−m−1

∥∥2 +
∫

Im

Rm(η) dt
)
.

Let us put C∗ = 1/(4C̃), where C̃ is the constant from (73), and assume that (71) holds.
Then 1

2τm
− C̃

ε ≥ 1
4τm

and (73) implies (70). ¤

Summarizing estimates (47) with k := 8 and (70), we find that for m = 1, . . . , M,

∥∥ξ−m
∥∥2 +

ε

2

∫

Im

‖ξ‖2
DG,m dt ≤

(
1 +

c

ε
τm

)∥∥ξ−m−1

∥∥2 + C
∥∥η−m−1

∥∥2 + C

∫

Im

Rm(η) dt, (74)

with constants c, C > 0.
Finally, we come to the abstract error estimate.

Theorem 6. Let (71) hold. Then there exist constants C, c > 0 such that the error
e = U − u satisfies the estimate for all m = 1, . . . , M :

‖e−m‖2 +
ε

2

m∑

j=1

∫

Ij

‖e‖2
DG,j dt (75)

≤ Cexp(ctm/ε)
( m∑

j=1

‖η−j ‖2 +
m∑

j=1

∫

Ij

Rj(η) dt
)

+ 2
(
‖η−m‖2 + ε

m∑

j=1

∫

Ij

‖η‖2
DG,j dt

)
.
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Proof. The application of the discrete Gronwall’s lemma to (74) gives the estimate

∥∥ξ−m
∥∥2 +

ε

2

m∑

j=1

∫

Ij

‖ξ‖2
DG,j dt (76)

≤ C exp(ctm/ε)
(∥∥ξ−0

∥∥2 +
m∑

j=1

∥∥η−j
∥∥2 +

m∑

j=1

∫

Ij

Rj(η) dt
)
,

for m = 1, . . . , M . In view of the definition of U−
0 , we have ξ−0 = 0. Now, if we use the

relation e = ξ + η and the inequalities

‖e‖2 ≤ 2(‖ξ‖2 + ‖η‖2), (77)

‖e‖2
DG,j ≤ 2(‖ξ‖2

DG,j + ‖η‖2
DG,j),

from (76) we immediately get (75). ¤

5 Interpolation error bounds and error estimation in terms
of h and τ

This section will be devoted to obtaining error estimates in dependence on the mesh
sizes τm and hm. They will be obtained on the basis of estimate (76), the relations

e = U − u = ξ + η, π u
∣∣
Im

= π (Πmu)
∣∣
Im

, (78)

η
∣∣
Im

= (πu− u)
∣∣
Im

= η(1) + η(2), with η(1) = (Πmu− u)
∣∣
Im

, η(2) = (π(Πmu)−Πmu)
∣∣
Im

and estimates of individual terms on the right-hand side of (76) containing η, which
will be proven in the sequel. To this end, we assume that the exact solution satisfies
the regularity condition

u ∈ Hq+1
(
0, T ; H1(Ω)

) ∩ C([0, T ];Hp+1(Ω)) (79)

and that the meshes satisfy conditions (26), (27), (31) and (71).
Obviously, C([0, T ]; Hp+1(Ω)) ⊂ L2(0, T ; Hp+1(Ω)). Moreover, let

τm ≥ Ch2
m, m = 1, . . . , M. (80)

Let us note that this assumption is not necessary, if the meshes are not time-dependent,
i.e. all meshes Th,m, m = 1, . . . ,M , are identical.

If r ≥ 1 is integer and µ = min(r, p), then for m = 1, . . . , M and any v ∈ Hr+1(Ω)
we have the standard estimates

‖Πmv − v‖L2(K) ≤ C hµ+1
K |v|Hr+1(K), (81)

|Πmv − v|H1(K) ≤ C hµ
K |v|Hr+1(K),

|Πmv − v|H2(K) ≤ C hµ−1
K |v|Hr+1(K),

for K ∈ Th,m, h ∈ (0, h0) and

a) ‖Πmv‖L2(K) ≤ ‖v‖L2(K) for v ∈ L2(K), K ∈ Th,m, h ∈ (0, h0), (82)

b) |Πmv|H1(K) ≤ C|v|H1(K) for v ∈ H1(K), K ∈ Th,m, h ∈ (0, h0).
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It is possible to find that

Dq+1(Πmu) = Πm(Dq+1u). (83)

Actually, by (17), Πmu(·, t) ∈ Sp
h,m and for all t ∈ Im,

∫

Ω

(
Πmu(x, t)− u(x, t)

)
ϕ(x) dx = 0, ∀ϕ ∈ Sp

h,m. (84)

The differentiation with respect to t yields
∫

Ω

(
Dq+1(Πmu(x, t))−Dq+1u(x, t)

)
ϕ(x) dx = 0, ∀ϕ ∈ Sp

h,m. (85)

Moreover, obviously Dq+1(Πmu(t)) ∈ Sp
h,m and thus, (83) holds.

Similarly we can prove that

Dq+1(∇Πmu) = ∇Πm(Dq+1u). (86)

5.1 Time interpolation

Lemma 7. Let ϕ ∈ C((tm−1, tm], Sp
h,m),m = 1 . . . , M. Then for each x ∈ K, K ∈

Th,m, t ∈ Im, m = 1, . . . , M we have

π ϕ(x, t) = P̃mϕ(x, t), (87)

where P̃m is defined in the following way: For ω ∈ C
(
(tm−1, tm]

)
,

a) P̃mω ∈ Pq(Im), (88)

b)
∫

Im

(
P̃mω(t)− ω(t)

)
tj dt = 0, ∀ j = 0, . . . , q − 1,

c) P̃mω(tm−) = ω(tm−).

Proof. Let m ∈ {1, . . . , M}. From the definition of the operators π and P̃m it follows
that for each K ∈ Th,m the functions πϕ and P̃mϕ are on K× Im polynomials of degree
≤ q in t ∈ Im and of degree ≤ p in x ∈ K. Moreover, πϕ(x, tm−) = ϕ(x, tm−) =
P̃mϕ(x, tm−) for all x ∈ K. Obviously, condition (21), c) is equivalent to

∫

Im

(∫

K
(πϕ(x, t)− ϕ(x, t))σ(x) dx

)
tj dt = 0, (89)

∀ j = 0, . . . , q − 1, ∀σ ∈ P p(K), ∀K ∈ Th,m.

Further, by (88), for any K ∈ Th,m,
∫

Im

(
P̃mϕ(x, t)− ϕ(x, t)

)
tj dt = 0, ∀ j = 0, . . . , q − 1, ∀x ∈ K. (90)

Let σ ∈ P p(K). Then (90) and Fubini’s theorem imply that

0 =
∫

K

(∫

Im

(P̃mϕ(x, t)− ϕ(x, t)) tj dt

)
σ(x) dx (91)

=
∫

Im

(∫

K
(P̃mϕ(x, t)− ϕ(x, t))σ(x) dx)

)
tj dt,

∀ j = 0, . . . , q − 1, ∀σ ∈ P p(K), ∀K ∈ Th,m.

Comparing (91) with (89) and taking into account the fact that the operator π is
uniquely determined by conditions (21), we immediately get (87).
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Lemma 8. If ω ∈ Hq+1(Im), then

∥∥P̃mω − ω
∥∥2

L2(Im)
≤ C τ2q+2

m

∥∥Dq+1ω
∥∥2

L2(Im)
, (92)

where C > 0 is a constant independent of ω,m and τm.

Proof. We proceed in several steps.
1) We transform the reference interval [0, 1] onto the interval [tm−1, tm] by the map-

ping
t = tm − ϑτm, ϑ ∈ [0, 1]. (93)

If ω ∈ Hq+1(Im) and s(ϑ) = ω(tm − ϑτm), then s ∈ Hq+1(0, 1) and

(P̃mω)(tm − ϑτm) = (Ps)(ϑ), (94)

where the operator P is defined by

a) Ps ∈ Pq(0, 1), (95)

b)
∫ 1

0
(Ps(ϑ)− s(ϑ))ϑj dϑ = 0 ∀ j = 0, . . . , q − 1,

c) Ps(0+) = s(0+).

Moreover, if we set

Zm(t) = P̃mω(t)− ω(t), t ∈ (tm−1, tm), z(ϑ) = Ps(ϑ)− s(ϑ), ϑ ∈ (0, 1), (96)

we have

z(ϑ) = Zm(tm − ϑτm), Dq+1z(ϑ) = (−1)q+1 τ q+1
m Dq+1Zm(tm − ϑτm), ϑ ∈ (0, 1).

(97)
By the substitution theorem,

‖z‖2
L2(0,1) =

1
τm
‖Zm‖2

L2(Im), (98)

‖Dq+1z‖2
L2(0,1) = τ2q+1

m ‖Dq+1Zm‖2
L2(Im).

2) Since conditions (95), a) – c) determine the values of the operator P uniquely, it
is clear that

Pr = r for r ∈ Pq(0, 1). (99)

Now we prove that the operator P is a continuous mapping of the space Hq+1(0, 1) into
L2(0, 1). Let un ∈ Hq+1(0, 1), n = 1, 2, . . . and un → 0 in Hq+1(0, 1) as n → ∞. The
continuous imbedding Hq+1(0, 1) ↪→ C([0, 1]) implies that

un ⇒ 0 in [0, 1] (100)

and hence, by (95), c),
Pun(0) → 0. (101)

For j = 0, . . . , q − 1 we have
∫ 1

0
(Pun − un) (ϑ) ϑj dϑ = 0.
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This and (100) imply that
∫ 1

0
Pun(ϑ) ϑj dϑ =

∫ 1

0
un(ϑ) ϑj dϑ → 0, j = 0, . . . , q − 1. (102)

Since Pun ∈ Pq(0, 1), we can write

Pun(ϑ) =
q∑

i=1

c
(n)
i ϑi + (Pun)(0), ϑ ∈ [0, 1]. (103)

Integration yields

∫ 1

0
Pun(ϑ) ϑj dϑ =

∫ 1

0

q∑

i=1

c
(n)
i ϑi+j dϑ + (Pun) (0)

∫ 1

0
ϑj dϑ (104)

=
q∑

i=1

c
(n)
i

1
i + j + 1

+ (Pun) (0)
1

j + 1
, j = 0, . . . , q − 1.

Using (101), (102), (104) and the fact that the matrix
(

1
i+j

)q

i,j=1
is nonsingular (cf. [35]),

we find that
c
(n)
i → 0 for i = 1, . . . , q as n →∞.

Thus, Pun ⇒ 0 in [0, 1] and Pun → 0 in L2(0, 1).
3) The above results allow us to apply Theorem 3.1.4 from [11] and get the estimate

‖z‖L2(0,1) ≤ C‖Dq+1z‖L2(0,1) (105)

with a constant C > 0 independent of z ∈ Hq+1(0, 1). This and (98) imply that

‖Zm‖L2(Im) ≤ C τ2q+2
m ‖Dq+1Zm‖L2(Im). (106)

Taking into account that Dq+1 P̃mω = 0, we immediately get (92). ¤

In Appendix we give a direct proof of estimate (92) without the use of Theorem 3.1.4
from [11].

Lemmas 7 and 8 imply that for ϕ ∈ Hq+1(Im, Sp
h,m) we have

‖πϕ(x, ·)−ϕ(x, ·)‖2
L2(Im) ≤ C τ2q+2

m

∥∥Dq+1ϕ(x, ·)
∥∥2

L2(Im)
, x ∈ K, K ∈ Th,m, m = 1, . . . ,M.

(107)

5.2 Estimates of terms with η

Our further goal is to estimate the expressions

‖η−m‖2,

∫

Im

‖η‖2
L2(K) dt,

∫

Im

|η|2H1(K) dt,

∫

Im

|η|2H2(K) dt, Jh,m(η, η).

By (78),

‖η‖2
L2(K) ≤ 2‖η(1)‖2

L2(K) + 2‖η(2)‖2
L2(K), (108)

|η|2Hs(K) ≤ 2|η(1)|2Hs(K) + 2|η(2)|2Hs(K), s = 1, 2.
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Lemma 9. The following estimates hold for K ∈ Th,m, m = 1, . . . , M :

‖η−m‖2 ≤ Chp+1|u(tj)|Hp+1(Ω), (109)∫

Im

‖η(1)‖2
L2(K)dt ≤ C h

2(p+1)
K |u|2L2(Im,Hp+1(K)), (110)

∫

Im

|η(1)|2H1(K)dt ≤ C h2p
K |u|2L2(Im,Hp+1(K)), (111)

h2
K

∫

Im

|η(1)|2H2(K)dt ≤ C h2p
K |u|2L2(Im,Hp+1(K)). (112)

Proof. It is enough to use (81). ¤

The derivation of estimates of terms with η(2) is more complicated.

Lemma 10. For K ∈ Th,m, m = 1, . . . , M , we have

∫

Im

‖η(2)‖2
L2(K)dt ≤ C τ2(q+1)

m |u|2Hq+1(Im,L2(K)), (113)
∫

Im

|η(2)|2H1(K)dt ≤ C τ2(q+1)
m |u|2Hq+1(Im,H1(K)), (114)

h2
K

∫

Im

|η(2)|2H2(K)dt ≤ C τ2(q+1)
m |u|2Hq+1(Im,H1(K)).

Proof. a) The use of Fubini’s theorem and relations (87), (83), (107), (82), a) and (92)
yield the relations

∫

Im

‖η(2)‖2
L2(K) =

∫

Im

(∫

K
|η(2)|2dx

)
dt

=
∫

K

(∫

Im

|η(2)|2dt
)
dx =

∫

K
‖P̃m(Πmu)−Πmu‖2

L2(Im)dx

≤ C τ2q+2
m

∫

K
‖Dq+1(Πmu)‖2

L2(Im)dx

= C τ2q+2
m

∫

Im

(∫

K
|Dq+1(Πmu)|2dx

)
dt

= C τ2q+2
m

∫

Im

(∫

K
|Πm(Dq+1u)‖2dx

)
dt

≤ C τ2q+2
m

∫

Im

(∫

K
|Dq+1u|2dx

)
dt

= C τ2q+2
m |u|2Hq+1(Im,L2(K)).
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b) Further, due to Fubini’s theorem, (87), (107), (86) and (82), b), we find that
∫

Im

|η(2)|H1(K)dt =
∫

Im

(∫

K

∣∣∣∇
(
Πmu− P̃m(Πmu)

)∣∣∣
2
dx

)
dt

=
∫

K

( ∫

Im

d∑

j=1

(
∂

∂xj
(Πmu)− P̃m

(
∂

∂xj
(Πmu)

))2

dt

)
dx

≤ C τ2q+2
m

∫

K
|∇(Πmu)|2Hq+1(Im)dx

= C τ2q+2
m

∫

K

(∫

Im

∣∣Dq+1∇(Πmu)
∣∣2 dt

)
dx

= C τ2q+2
m

∫

Im

(∫

K

∣∣∇(ΠmDq+1u)
∣∣2 dx

)
dt

= C τ2q+2
m

∫

Im

∣∣Πm

(
Dq+1u

)∣∣2
H1(K)

dt

≤ C τ2q+2
m

∫

Im

∣∣Dq+1u
∣∣2
H1(K)

dt = C τ2q+2
m |u|2Hq+1(Im,H1(K)).

c) Using a similar process as in b) and (30), we find that
∫

Im

|η(2)|H2(K)dt ≤ C τ2q+2
m

∫

Im

∣∣Πm

(
Dq+1u

)∣∣2
H2(K)

dt

≤ C τ2q+2
m h−2

K

∫

Im

∣∣Dq+1u
∣∣2
H1(K)

dt

= C τ2q+2
m h−2

K |u|Hq+1(Im,H1(K)).

This yields (115). ¤

Finally, we shall be concerned with the estimation of
∫
Im

Jh,m(η, η) dt. It holds

Jh,m(η, η) ≤ C
(
Jh,m(Πmu−u,Πmu−u)+Jh,m(π(Πmu)−Πmu, π(Πmu)−Πmu)

)
. (115)

Using the multiplicative trace inequality (29) and (81), in the same way as in [21]
we get ∫

Im

Jh,m

(
Πmu− u,Πmu− u

)
dt ≤ C h2p

∣∣u∣∣2
L2(Im,Hp+1(Ω))

. (116)

Further, we shall estimate the expression
∫

Im

Jh,m

(
π(Πmu)−Πmu, π(Πmu)−Πmu

)
dt.

We proceed in two steps.

(I) Let Γ ∈ FI
h,m, i. e. Γ ⊂ Ω. If we set ϕ := Πmu and use the relation

[
P̃mϕ− ϕ

]
=

P̃m[ϕ]− [ϕ] and estimate (107), we find that
∫

Im

(∫

Γ
[π(Πmu)−Πmu]2 dS

)
dt =

∫

Γ

∥∥P̃m[ϕ(x, ·)]− [ϕ(x, ·)]∥∥2

L2(Im)
dS (117)

≤ C τ2q+2
m

∫

Γ

∥∥∥Dq+1[ϕ(x, ·)]
∥∥∥

2

L2(Im)
dS.
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If we take into account that

Dq+1[ϕ(x, ·)] = [Dq+1ϕ(x, ·)], [Dq+1u] = 0, (118)

and use Fubini’s theorem, we obtain∫

Im

(∫

Γ
[π(Πmu)−Πmu]2 dS

)
dt =

∫

Γ

(∫

Im

[π(Πmu)−Πmu]2 dt
)

dS (119)

≤ C τ2q+2
m

∫

Γ

( ∫

Im

∣∣Dq+1[ϕ(x, t)]
∣∣2 dt

)
dS = C τ2q+2

m

∫

Im

(∫

Γ
[Dq+1(Πmu− u)]2 dS

)
dt.

The application of the multiplicative trace inequality implies that
∑

Γ∈FI
h,m

∫

Γ

[
Dq+1(Πmu− u)

]2 dS (120)

≤ C
∑

K∈Th,m

∫

∂K

[
Dq+1(Πmu− u)

]2 dS = C
∑

K∈Th,m

∥∥Dq+1(Πmu− u)
∥∥2

L2(∂K)

≤ C
∑

K∈Th,m

(∥∥Dq+1(Πmu− u)
∥∥

L2(K)

∣∣Dq+1(Πmu− u)
∣∣
H1(K)

+h−1
K

∥∥Dq+1(Πmu− u)
∥∥2

L2(K)

)
.

By (83),
Dq+1(Πmu− u) = Πm(Dq+1u)−Dq+1u. (121)

In virtue of (79), Dq+1u ∈ L2(Im,H1(Ω)). This and the approximation properties (81)
of Πm imply that

‖Πm(Dq+1u)−Dq+1u‖L2(K) ≤ ChK |Dq+1u|H1(K), (122)

|Πm(Dq+1u)−Dq+1u|H1(K) ≤ C|Dq+1u|H1(K).

Summarizing (28), (119), (120), (121) and (122), we get∫

Im

( ∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

[
π(Πmu)−Πmu

]2 dS
)

dt (123)

≤ C τ2q+2
m

∫

Im

∑

K∈Th,m

∣∣Dq+1u
∣∣2
H1(K)

dt

= C τ2q+2
m

∑

K∈Th,m

|u|2Hq+1(Im,H1(K)).

(II) In what follows, we shall assume that Γ ∈ FB
h,m, i. e. Γ ⊂ ∂Ω ∩ ∂K for some

K ∈ Th,m, and estimate the expression

β :=
∫

Im

(
h(Γ)−1

∫

Γ
|π(Πmu)−Πmu|2 dS

)
dt. (124)

Proceeding in a similar way as above, we find that

β ≤ C τ2q+2
m h(Γ)−1

∫

Γ

∥∥Dq+1(Πmu)
∥∥2

L2(Im)
dS (125)

= C τ2q+2
m h(Γ)−1

∫

Im

( ∫

Γ

∣∣Dq+1(Πmu)
∣∣2 dS

)
dt

= C τ2q+2
m h(Γ)−1

∫

Im

( ∫

Γ

∣∣Πm(Dq+1u)
∣∣2 dS

)
dt.
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If we apply the multiplicative trace inequality, we get the estimate of the part of
Jh,m

(
π(Πmu)−Πmu, π(Πmu)−Πmu

)
corresponding to Γ ⊂ ∂Ω∩∂K of order O

(
τ2q+2
m h−2

K

)
.

If hK ∼ τm, we loose the order of accuracy O(τ2
m) and the resulting error estimate is of

order O(τ q
m), which would be suboptimal. This drawback will be cured in the following

way.
Let the Dirichlet data uD = uD(x, t) have behaviour in t as a polynomial of degree

≤ q. In other words, we assume that

uD(x, t) =
q∑

j=0

ψj(x) tj , (126)

where ψj ∈ Hp+1/2(∂Ω) for j = 0, . . . , q. Hence, Dq+1u|∂Ω = Dq+1uD = 0. This and
(125) imply that

(+) ≤ C τ2q+2
m

∫

Im

(
h(Γ)−1

∫

Γ

∣∣Πm(Dq+1u)−Dq+1u
∣∣2 dS

)
dt. (127)

Again we use the multiplicative trace inequality and estimates (122) and get the estimate
∫

Im

( ∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

∣∣π(Πmu)−Πmu
∣∣2 ds

)
dt ≤ C τ2q+2

m

∑

K∈Th,m

|u|2Hq+1(Im,H1(K)).

(128)

The above results can be summarized in the following way.

Lemma 11. If we consider scheme (19) and the Dirichlet data is defined by (126), then

|Jh,m(η, η)| ≤ C
∑

K∈Th,m

(
h2p

K |u|2L2(Im,Hp+1(K)) + τ2q+2
m |u|2Hq+1(Im,H1(K))

)
. (129)

5.3 Main result

In this section we shall conclude the analysis of the error estimate.

Theorem 12. Let u be the exact solution of problem (1) – (3) satisfying the regularity
condition (79). Let U be the approximate solution to problem (1) – (3) obtained by
scheme (19) in the case that the Dirichlet data uD is defined by (126), over spatial
meshes Th,m and time partition Im, m = 1, . . . ,M , satisfying conditions (26), (27),
(71) and (80). Then there exist constants C, c > 0 independent of h, τ, m, ε, u such
that

‖e−m‖2 +
ε

2

m∑

j=1

∫

Ij

‖e‖2
DG,j dt (130)

≤ C exp(ctm/ε)
( m∑

j=1

(
h2p

j |u|2L2(Ij ;Hp+1(Ω)) + τ2q+1
j |u|2Hq+1(Ij ;H1(Ω))

) (
ε +

1
ε

)

+ h2p|u|2C([0,T ];Hp+1(Ω))

)
+ C h2p+2|u|2C([0,T ];Hp+1(Ω))

+ C ε
m∑

j=1

(
h2p

j |u|2L2(Ij ;Hp+1(Ω)) + τ2q+2
j |u|Hq+1(Ij ;H1(Ω))

)
,

m = 1, . . . , M, h ∈ (0, h0),
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or simply,

‖e−m‖+
ε

2

m∑

j=1

∫

Ij

‖e‖2
DG,j dt (131)

≤ C exp(ctm/ε)
((

h2p|u|2L2(0,T ;Hp+1(Ω)) + τ2q+2|u|Hq+1(0,T ;H1(Ω))

) (
ε +

1
ε

)

+h2p|u|2C([0,T ]+Hp+1(Ω))

)
, m = 1, . . . ,M, h ∈ (0, h0).

Proof. In order to prove (130), we start from (75) and estimate the terms containing η.
In virtue of (48), (39), (34),

Rj(η) = ε σ2
j (η) +

1
ε

σ̃2
j (η) (132)

= ε
( ∑

K∈Th,j

(|η|2H1(K) + h2
K |η|2H2(K)

)
+ Jh,j(η, η)

)
+

1
ε

∑

K∈Th,j

(
‖η‖2

L2(K) + h2
K |η|2H1(K)

)
.

Now, (132) together with (108) and Lemmas 9 and 10 yield the estimate
∫

Ij

Rj(η) dt ≤ C
(
ε +

1
ε

) ∑

K∈Th,j

(
h2p

K |u|2L2(Ij ,Hp+1(K)) + τ2q+2
j |u|2Hq+1(Ij ,H1(K))

)
. (133)

This and the inequality hK ≤ hj lead to
∫

Ij

Rj(η) dt ≤ C
(
ε +

1
ε

)(
h2p

j |u|2L2(Ij ,Hp+1(Ω)) + τ2q+2
j |u|2Hq+1(Ij ,H1(Ω))

)
. (134)

Similarly, we get
∫

Ij

‖η‖DG,j dt ≤ h2p
j |u|2L2(Ij ,Hp+1(Ω)) + τ2q+2

j |u|2Hq+1(Ij ,H1(Ω)). (135)

Further, by (109) and (80),

m∑

j=1

‖η−j ‖2 ≤ C
M∑

j=1

τj h2p
j |u(tj)|2Hp+1(Ω) ≤ C Th2p|u|2C([0,T ];Hp+1(Ω)). (136)

Finally, using (76) and (134) – (136), we arrive at estimates (130) and (131), which we
wanted to prove. ¤

Remark 2. As we see, estimate (130) is not uniform with respect to ε → 0. Just on
the contrary, the constant in this estimate behaves as Cexp(cT/ε), which blows up to ∞
as ε → 0. This is a consequence of the application of Young’s inequality necessary for
the treatment of nonlinear terms, and Gronwall’s lemma. The question, how to avoid
this bad behaviour of the error estimate, remains open.

5.4 The case of identical meshes on all time levels

If all meshes Th,m, m = 1 . . . , M , are identical, which means that Th,m = Th for all m =
1, . . . , M , then all spaces Sp

h,m and forms ah,m, bh,m, . . . are also identical: Sp
h,m = Sp

h,
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ah,m = ah, bh,m = bh, . . . for all m = 1, . . . ,M . This implies that {ξ}m−1 ∈ Sp
h and by

(24), (21), a), and (17), we have (η−m−1, {ξ}m−1) = 0. Hence,
∫

Im

(η′, ξ) dt +
({η}m−1, ξ

+
m−1

)
= 0. (137)

Moreover, similarly it is possible to show that the expression
∑m

j=1

∥∥η−j
∥∥2 does not

appear in estimate (76) and instead of (75) we get the estimate

‖e−m‖2 +
ε

2

m∑

j=1

∫

Ij

‖e‖2
DG,j dt (138)

≤ C exp(ctm/ε)
( m∑

j=1

∫

Ij

Rj(η) dt
)

+ 2‖η−m‖2 + 2ε
m∑

j=1

∫

Ij

‖η‖2
DG,j dt, m = 1, . . . , M.

Due to the fact that
∑m

j=1

∥∥η−j
∥∥2 does not appear in the abstract error estimate (75),

assumption (80) can be omitted in the process of the derivation of the error estimates
(130) and (131). This leads us to the following result.

Theorem 13. Let u be the exact solution of problem (1) – (3) satisfying the regularity
condition (79). Let U be the approximate solution to problem (1) – (3) obtained by
scheme (19) in the case that the Dirichlet data uD is defined by (126), over spatial
meshes Th,m = Th for all m = 1, . . . ,M , and time partition Im, m = 1, . . . , M , satisfying
conditions (26), (27) and (71). Then there exist constants C, c > 0 independent of
h, τ, m, ε, u such that error estimates (130) and (131) hold.

5.5 L2(QT )-error estimate

Finally, we shall be concerned with the L2(L2)-error estimate, i. e., the error estimate
in the norm of the space L2(QT ).

Theorem 14. Let u be the exact solution of problem (1) – (3) satisfying the regularity
condition (79). Let U be the approximate solution to problem (1) – (3) obtained by
scheme (19) in the case that the Dirichlet data uD is defined by (126), over spatial
meshes Th,m and time partition Im, m = 1, . . . ,M , satisfying conditions (26), (27),
(71) and (80). Then there exist constants C, c > 0 independent of h, τ, m, ε, u such
that

‖e‖2
L2(QT ) ≤ C

(
h2p+2 + ecT/εh2p

)
|u|2C([0,T ],Hp+1(Ω)) (139)

+ C
(
ε +

1
ε

)(
1 + ecT/ε

)(
h2p|u|2L2(0,T ;Hp+1(Ω)) + τ2q+2|u|2Hq+1(0,T ;H1(Ω))

)

+ C
(
h2p+2|u|2L2(0,T ;Hp+1(Ω)) + τ2q+2|u|2Hq+1(0,T ;L2(Ω))

)
.

Proof. It follows from (70) that
∫ T

0
‖ξ‖2 dt ≤ C

M∑

m=1

τm

(
‖ξ−m−1‖2 + ‖η−m−1‖2 +

∫

Im

Rm(η) dt
)
. (140)

This and (77) yield
∫ T

0
‖e‖2 dt ≤ C

M∑

m=1

τm

(
‖ξ−m−1‖2 + ‖η−m−1‖2 +

∫

Im

Rm(η) dt
)

+ 2
∫ T

0
‖η‖2 dt. (141)
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Now we use (76) with m := m− 1 < M , ξ0 = 0, η−0 = Π1u
0 − u0 and get

‖e‖2
L2(QT ) =

∫ T

0
‖e‖2 dt ≤ C

M∑

m=1

τm

(
‖η−m−1‖2 +

∫

Im

Rm(η) dt (142)

+ C ecT/ε
( M∑

j=1

‖η−j ‖2 +
M∑

j=1

∫

Ij

Rj(η) dt
))

+ 2‖η‖2
L2(QT ).

Further, by (133), (136) and (109),

M∑

j=1

∫

Ij

Rj(η) dt ≤ C
(
ε +

1
ε

)(
h2p|u|2L2(0,T ;Hp+1(Ω)) + τ2q+2|u|2Hq+1(0,T ;H1(Ω))

)
, (143)

M∑

j=1

‖η−j ‖2 ≤ C h2p|u|2C([0,T ]+Hp+1(Ω)), (144)

‖η−m−1‖2 ≤ C h2p+2|u|2C([0,T ]+Hp+1(Ω)), (145)
∫

Im

Rm(η) dt ≤ C
(
ε +

1
ε

)(
h2p

m |u|2L2(Im;Hp+1(Ω)) + τ2q+2
m |u|2Hq+1(Im,H1(Ω))

)
. (146)

Moreover, (108), (110) and (113) imply that

‖η‖2
L2(QT ) =

M∑

m=1

∫

Im

‖η‖2 dt (147)

≤ C
M∑

m=1

(
h2p+2|u|2L2(Im,Hp+2(Ω)) + τ2q+2|u|2Hq+1(Im;L2(Ω))

)

= C
(
h2p+2|u|2L2(0,T ;Hp+1(Ω)) + τ2q+2|u|2Hq+1(0,T ;L2(Ω))

)
.

From estimates (142) – (147) we get

‖e‖2
L2(QT ) ≤ C

M∑

m=1

τm

(
h2p+2|u|2C([0,T ];Hp+1) (148)

+
(
ε +

1
ε

)(
h2p

m |u|2L2(Im,hp+1(Ω)) + τ2q+2
m |u|2Hq+1(Im,H1(Ω))

))

+ ecT/ε

(
h2p|u|2C([0,T ],Hp+1(Ω))

+
(
ε +

1
ε

) (
h2p|u|2L2(0,T ;Hp+1) + τ2q+2|u|Hq+1(0,T ;H1(Ω))

))

+ C
(
h2p+2|u|2L2(0,T ;Hp+1(Ω)) + τ2q+2|u|2Hq+1(0,T ;L2(Ω))

)
.

This and the relation
∑M

m=1 τm = T yield the final estimate (139). ¤

Remark 3. Similarly as in Section 5.4, it is possible to formulate the L2(L2)-error
estimate in the case of identical space meshes on all time levels without assumption
(80).
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6 Appendix: Alternative proof of Lemma 8

Here we prove Lemma 8 without the use of Theorem 3.1.4 from [11].

Lemma 15. Let s ∈ C∞([0, 1]), s(0) = 0 and

∫ 1

0
ϑis(x) dϑ = 0, i = 0, · · · , q − 1. (149)

Then
‖s‖L2(0,1) ≤ C ‖Dq+1s‖L2(0,1), (150)

where C is a constant independent of the function s.

Proof. Let us develop the function with the aid of the Taylor formula with integral
remainder:

s(ϑ) = s(0) + · · ·+ s(q)(0)
q!

ϑq +
∫ ϑ

0

(ϑ− τ)q

q!
s(q+1)(τ) dτ, ϑ ∈ [0, 1]. (151)

In the space L2(0, 1) we choose an orthonormal system of polynomials ϕi, i = 0, 1, . . . ,
such that ϕi is a polynomial of degree i and ϕi(0) 6= 0. (At the end of Appendix we
show how this system can be constructed.) Obviously,

∫ 1

0
ϑis(ϑ) dϑ = 0, i = 0, . . . , q − 1 ⇐⇒

∫ 1

0
ϕi(ϑ)s(ϑ) dϑ = 0, i = 0, . . . , q − 1.

(152)
In virtue of the properties of the system ϕi, i = 0, 1, . . . , the expansion (151) can be
written in the form

s(ϑ) =
q∑

i=0

ciϕi(ϑ) +
∫ ϑ

0

(ϑ− τ)q

q!
s(q+1)(τ) dτ, ϑ ∈ [0, 1], (153)

where ci are constants depending on the values s(0), s′(0), . . . , s(q)(0). From assumption
(151) and equivalence (152) for j = 0, . . . , q − 1 we get

0 =
∫ 1

0
ϕj(ϑ)s(ϑ) dϑ = cj +

∫ 1

0
ϕj(ϑ)

∫ ϑ

0

(ϑ− τ)q

q!
s(q+1)(τ) dτ dϑ.

The use of Fubini’s theorem yields

cj = −
∫ 1

0
ϕj(ϑ)

∫ ϑ

0

(ϑ− τ)q

q!
s(q+1)(τ) dτ dϑ = −

∫ 1

0
ψj(τ)s(q+1)(τ) dτ, (154)

where

ψj(τ) =
1
q!

∫ 1

τ
ϕj(ϑ)(ϑ− τ)q dϑ, j = 0, . . . , q − 1.

Since ϕq(0) 6= 0, from the assumption that s(0) = 0 and expansion (153) we get

cq = − 1
ϕq(0)

q−1∑

i=0

ciϕi(0) =
∫ 1

0
ψq(τ)s(q+1)(τ) dτ
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with

ψq(τ) =
1

ϕq(0)

q−1∑

j=0

ϕj(0)ψj(τ).

Substituting in expansion (153) for ci, i = 0, . . . , q, we find that

s(ϑ) =
∫ 1

0
k(ϑ, τ)s(q+1)(τ) dτ, (155)

where

k(ϑ, τ) =





(ϑ−τ)q

q! + ϕq(ϑ)ψq(τ)−∑q−1
i=0 ϕi(ϑ)ψi(τ) for 1 ≥ ϑ > τ ≥ 0,

ϕq(ϑ)ψq(τ)−∑q−1
i=0 ϕi(ϑ)ψi(τ) for 1 ≥ τ > ϑ ≥ 0.

The function k(ϑ, t) is continuous on the set [0, 1]× [0, 1] and from (155) we get (150).
¤

Lemma 16. Let s ∈ Hq+1(0, 1), s(0) = 0 and
∫ 1

0
ϑis(ϑ) dϑ = 0, i = 0, . . . , q − 1. (156)

Then
‖s‖L2(0,1) ≤ C ‖Dq+1s‖L2(0,1), (157)

where C > 0 is a constant independent of the function s.

Proof. The space C∞([0, 1]) is dense in Hq+1(0, 1). Therefore, there exists a sequence
sn ∈ C∞([0, 1] such that

lim
n→∞ ‖sn − ω‖Hq+1(0,1) = 0.

This and Lemma 15 imply that

‖sn‖L2(0,1) → ‖s‖L2(0,1), ‖Dq+1sn‖L2(0,1) → ‖Dq+1s‖L2(0,1) as n →∞,

‖sn‖L2(0,1) ≤ C‖Dq+1sn‖L2(0,1), n = 1, 2, . . . .

Hence, (157) holds. ¤

Now, we can finish the proof of Lemma 8. Using the notation in (96), we have
z ∈ Hq+1(0, 1), z(0) = 0 and

∫ 1

0
z(ϑ)ϑj dϑ = 0 for j = 0, . . . , q − 1.

By Lemma 16, the function z satisfies (157) (i.e. (105)) and, in virtue of (98), estimate
(106) holds, which implies estimate (92). This finishes the alternative proof of Lemma
8.

Finally, we show, how to construct in the space L2(0, 1) the system of orthonormal
polynomials ϕi, i = 0, 1, . . . , such that ϕi is a polynomial of degree i satisfying ϕi(0) 6=
0. It is possible to put

ϕi(ϑ) =
√

2Pi(2ϑ− 1), i = 0, 1, . . . ,

77



Analysis of space-time DG method for nonlinear convection-diffusion problems

where Pi is the Legendre polynomial of degree i, defined as

Pi(ϑ) =

√
i +

1
2

1
2i i!

di

dϑi
(ϑ2 − 1)i, i = 0, 1, . . . .

The system Pi, i = 0, 1 . . . , is a complete orthonormal basis in the space L2(−1, 1). It
is possible to verify that ϕi, i = 0, 1 . . . , form a complete orthonormal basis in L2(0, 1)
and

ϕi(ϑ) =
√

2i + 1
1
i!

di

dϑi
(ϑ2 − ϑ)i, ϑ ∈ [0, 1].

Since
di

dϑi
(ϑ2 − ϑ)i|ϑ=0 = (−1)i i!,

for all i = 0, 1, . . . we have

ϕi(0) = (−1)i
√

2i + 1 6= 0.

Conclusion

In this paper we have presented a detailed analysis of error estimates of the space-time
discontinuous Galerkin discretization of an initial-boundary value problem for a nonsta-
tionary convection-diffusion equation with nonlinear convection and Dirichlet boundary
condition. In the space discretization NIPG, IIPG and SIPG versions of the diffusion
terms with polynomial approximation of degree p ≥ 1 is used on each time level. In
time the discontinuous approximations of degree q ≥ 1, q 6= p in general are used.
On different time levels, different space meshes may be used. The derived estimates
in L2(H1)-norm are optimal in space and time. The error estimate in L2(L2)-norm is
optimal in time, but suboptimal in space. The technique applied in this paper can be
extended to the case the discontinuous Galerkin time semidiscretization combined with
the hp discontinuous Galerkin space discretization. Of course, the analysis of this case
would be still more technical. The error estimates have been obtained with the aid of a
”parabolic machinery” for problems with ”dominating diffusion”. This means that the
results are not applicable to conservation laws, solved by the finite difference or finite
volume methods and treated e.g. in [13] – [15].

There are the following subjects for further work:

• derivation of optimal error estimates in space and time in the case of the SIPG
method,

• numerical realization of the discrete problem and the demonstration of results by
numerical experiments,

• analysis of the effect of numerical integration in space and time integrals,

• extension of the results to problems with nonlinear convection as well as diffusion,

• analysis of the combination of the time DGFEM with other space DG discretiza-
tions, as e.g. the LDG method (cf. [10], [17]),

• application of the space-time DGFEM to the numerical solution of some techni-
cally relevant problems, as, e. g. interaction of compressible flow with structures.
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[39] Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for
advection-diffusion problems. SIAM J. Numer. Anal., 39, 2133–2163 (2002).

[40] Jaffre, J., Johnson, C., Szepessy, A.: Convergence of the discontinuous Galerkin
finite element method for hyperbolic conservation laws. Math. Models Methods
Appl. Sci., 5, 367–386 (1995).
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[51] Schötzau, D.: hp-DGFEM for Parabolic Evolution Problems. Applications to Dif-
fusion and Viscous Incompressible Fluid Flow. PhD Dissertation ETH No. 13041,
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Abstract

This paper is concerned with the analysis of the discontinuous Galerkin (DG)
finite element method applied to a nonstationary nonlinear convection-diffusion
problem on quasi-uniform triangulations. Using the technique of Zhang and Shu
(2004), we prove apriori error estimates which are uniform with respect to the diffu-
sion coefficient ε → 0 and valid even in the purely convective case. Zhang and Shu
perform their analysis for various explicit schemes using an argument which relies
heavily on mathematical induction. We extend the analysis to the method of lines
using continuous mathematical induction and a nonlinear Gronwall-type lemma.
For an implicit scheme, we prove that standard arguments cannot prove the desired
estimates without additional assumptions. For this purpose, we use a suitable con-
tinuation of the discrete implicit solution and again use continuous mathematical
induction to prove error estimates under a CFL-like condition. Finally, we extend
the analysis from globally Lipschitz continuous convective nonlinearities to the lo-
cally Lipschitz continuous case.

Keywords: nonlinear convection-diffusion equation; discontinuous Galerkin finite
element method; apriori error estimates; continuous mathematical induction; con-
tinuation.

1 Introduction

The numerical solution of nonstationary convection-diffusion problems plays an impor-
tant role in many areas of applied mathematics ranging from fluid dynamics and heat
transfer on one side to image processing on the other side. In the numerical treatment
of such problems many difficulties arise due to the occurrence of internal and boundary
layers, where steep gradients or discontinuities appear. Many numerical methods have
been devised to overcome such difficulties. The finite volume (FV) method, which is
often used, is based on piecewise constant approximations. It has good stability prop-
erties in the vicinity of discontinuities, however it has a low order of accuracy and its
generalization to higher order methods is rather sophisticated. On the other hand, the
finite element (FE) method with a high order of accuracy is suitable mainly for ellip-
tic problems and various stabilization techniques (e.g. streamline diffusion or Galerkin
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least squares methods) must be employed to avoid spurious oscillations in the solution
of convection-diffusion problems with dominating convection.

A natural generalization of the FV and FE methods is the discontinuous Galerkin
finite element method (DGFEM). This method uses advantages of FV as well as FE
methods: it is based on piecewise polynomial discontinuous approximations, where
boundary fluxes are evaluated with the aid of a numerical flux. The use of discontin-
uous functions allows to capture discontinuities and steep gradients, while the use of
higher degree polynomials ensures a higher order of approximation in regions, where
the solution is smooth.

Originally, the DGFEM was proposed for the solution of a neutron transport linear
equation in [35] and analyzed theoretically in [33] and [29]. As for the numerical solution
of elliptic and parabolic problems, discontinuous Galerkin methods are proposed and
analyzed in the works [42] and [1] with further theoretical analysis in [5], [2] and [3].
The DGFEM was applied to nonlinear conservation laws ([13], [28]) and the numerical
solution of compressible flow ([6], [7], [8], [15], [24], [41], [19], [23]) as well as incom-
pressible viscous flow ([36], [40]), porous media flow ([37]), shallow water flow ([14]),
the Hamilton-Jacobi equations ([27]), the Schrödinger equation ([30]) and the Maxwell
equations ([25]).

This work is concerned with the analysis of the discontinuous Galerkin (DG) finite
element method applied to the nonstationary singularly perturbed convection-diffusion
problem defined in Ω ⊂ Rd with mixed boundary conditions on quasi-uniform trian-
gulations. Our aim is to derive apriori error estimates in the L∞(L2)-norm which are
uniform with respect to the diffusion coefficient ε → 0 and are valid even for the limiting
case ε = 0. In the case of linear advection-diffusion this has been done e.g. in [10], [26],
[39]. In the nonlinear purely convective case, for various explicit time discretizations,
such an error analysis was presented in a series of papers of Zhang and Shu starting
with [44]. The typical result for a k-th order explicit scheme for a convective problem
is of the form:

Lemma 1. Let f ∈ [C2(R)]d and the polynomial order used is p > (1 + d)/2. Then for
sufficiently small h and τ satisfying some CFL-like condition, the error en

h of the DG
scheme at time level tn satisfies

‖en
h‖L2(Ω) ≤ C(hp+1/2 + τk), n = 0, · · · , N, (1)

where C > 0 is independent of h, τ, n.

The proof relies on an elegant estimate of the convective terms derived in [44]
for the 1D case for periodic or compactly supported solutions under the assumption
that the numerical flux is an E-flux. Using this estimate, if we know apriori that
‖en

h‖ = O(h1+d/2), n = 0, · · · , N , then we may prove the improved estimate (1). A
bootstrapping argument using mathematical induction is then applied in order to elim-
inate the apriori assumption.

Since the proof relies heavily on mathematical induction, the technique cannot be
directly applied to estimates for the method of lines (no discrete structure with respect
to time) and implicit discretizations (not enough apriori information about the solution
on the next time level). This is a paradoxical situation, since the estimates per se are
simpler than for the explicit scheme (there are fewer terms to estimate), but their
rigorous application is not straightforward.

The structure of the paper is as follows. In Section 2, we introduce the continuous
problem, which we discretize in Section 3. In Section 4, we review the necessary results
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for our analysis, including properties of the numerical flux, which we assume to be an
E-flux.

Originally, in [44] the fundamental estimates of convective terms are derived for
periodic boundary conditions or compactly supported solutions. In Section 5, we gen-
eralize these estimates to the case of mixed Dirichlet-Neumann boundary conditions for
f ∈ (C2(R)∩W 2,∞(R))d. Improved estimates are obtained for f ∈ (C3(R)∩W 3,∞(R))d

and Dirichlet conditions on the whole boundary ∂Ω.
In Section 7, we use the estimates of the convective terms to prove similar estimates

as Lemma 1 for the method of lines, i.e. space semidiscretization. We apply two different
techniques. First, we use the so-called continuous mathematical induction, [11], instead
of standard mathematical induction in the bootstrapping argument. This is a technique
that we shall also use in the implicit case. Alternatively, we prove the same result using
a nonlinear variant of Gronwall’s inequality. The resulting error estimate is valid only
for higher order degrees in space, i.e. p > 1 + d/2 or p > (1 + d)/2 if f has higher
regularity.

In Section 8, we first prove that for the implicit scheme that an analogy of Lemma 1
cannot be obtained from the error equation and the considered estimates of its individual
terms without additional assumptions. Hence, we need to supply more information
about the properties of the problem and its (discrete) solution in order to derive the
desired error estimates. To this end, we introduce a continuation ẽh : [0, T ] → L2(Ω)
of the error en

h, n = 0, · · · , N constructed by means of a suitable modification of the
discrete problem. By definition, estimates for this continuated solution directly imply
estimates for the original implicit solution. The fact that ẽh is continuous with respect
to time and that it relates to the structure of the problem allows us to prove estimates
for ẽh via continuous mathematical induction. These estimates directly give us the
desired estimates for en

h. A principal artefact of using the estimates from [44] is that
even in the case of an implicit scheme we obtain a rather restrictive CFL-like condition
τ = O(h1+d/2) and τ = O(h(1+d)/2) if f has higher regularity. Furthermore, the result is
not valid for the lowest order approximation degrees (we need p > 1+d/2 or p > (1+d)/2
if f has higher regularity). Such restrictive assumptions are purely an artefact of the
proof due to the nonlinearity of the problem. For linear problems, we may expect the
standard τ = O(h) condition in various time-discretization schemes, [10], [38].

The results of Sections 7 and 8 were derived under the assumption that the convec-
tive nonlinearities f ∈ (C2(R) ∩W 2,∞(R))d, i.e. under global Lipschitz continuity and
boundedness. In [44], the global Lipschitz case is treated by modifying f sufficiently far
away from the compact set of values attained by u in such a way that these modified
nonlinearities are globally Lipschitz continuous and bounded. While this procedure does
not change the original problem, one obtains a completely new discrete problem and
unless the original discrete problem has a solution in L∞(QT ), one cannot guarantee
that the modified and original discrete problems have the same solution. In Section 9,
we show how to prove the error estimates from Sections 7 and 8 directly for a locally
Lipschitz f ∈ (C2(R))d without modifying the original equation.

2 Continuous problem

Let Ω ⊂ Rd, d ∈ N, be a bounded open polygonal (polyhedral) domain with Lipschitz-
continuous boundary ∂Ω. For 0 < T < +∞, we set QT := Ω × (0, T ). We treat the
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following nonlinear convection-diffusion problem. Find u : QT → R such that

a)
∂u

∂t
+ div f(u) = ε∆u + g in QT , (2)

b) u
∣∣
ΓD×(0,T )

= uD, (3)

c) ε
∂u

∂n

∣∣
ΓN×(0,T )

= gN , (4)

d) u(x, 0) = u0(x), x ∈ Ω. (5)

The diffusion coefficient ε ≥ 0 is a given constant, g : QT → R, uD : ΓD × (0, T ) → R,
gN : ΓN × (0, T ) → R, and u0 : Ω → R are given functions and ∂Ω = ΓN ∪ ΓD.

We assume that the convective fluxes f = (f1, · · · , fd) ∈ (C2
b (R))d = (C2(R) ∩

W 2,∞(R))d, hence f and f ′ = (f ′1, · · · , f ′d) are globally Lipschitz continuous. For im-
proved estimates via Lemma 8, we shall assume the continuity and boundedness of
f ′′′ along with global Lipschitz continuity of f ′′ = (f ′′1 , · · · , f ′′d ), i.e. f ∈ (C3

b (R))d =
(C3(R) ∩W 3,∞(R))d. In Section 9, we shall extend the error analysis, assuming only
local Lipschitz continuity and boundedness, i.e. f ∈ (C2(R))d and f ∈ (C3(R))d. As
already mentioned, by f ′, f ′′ and f ′′′ we will denote the vector of component-wise deriva-
tives of f .

Remark 1. In [44], local Lipschitz continuity is treated by modifying f sufficiently far
away from the compact set of values attained by u in such a way that these modified
nonlinearities are globally Lipschitz continuous along with their first derivatives. It is
argued that this procedure does not change the solution of (2). However one obtains a
completely new discrete problem. Unless one knows apriori that the original discrete
problem has a solution in L∞(QT ), one cannot guarantee that the modified and original
discrete problems have the same solution. In Section 9, we show how to prove error
estimates directly for a locally Lipschitz f without modifying the original equation.

We use standard notation of function spaces. Let G ⊂ Rd be a bounded domain
with a Lipschitz-continuous boundary ∂G. By G we denote the closure of G. Let
k ∈ {0, 1, 2, . . . } and p ∈ [1,∞]. We use the standard Lebesgue and Sobolev spaces
Lp(G), Lp(∂G), W k,p(G), Hk(G) = W k,2(G). Further, we use the Bochner spaces
Lp(0, T ;X) of functions defined in (0, T ) with values in a Banach space X and the spaces
Ck([0, T ];X) of k-times continuously differentiable mappings of [0, T ] with values in X
(see e.g. [31]). The symbols ‖· ‖X and |· |X denote a norm and a seminorm in a space
X, respectively. By (· , · ) we denote the standard L2(Ω)−scalar product and by ‖ · ‖
the L2(Ω)-norm. By ‖ · ‖∞, we denote the L∞(Ω)-norm. For simplicity of notation, we
shall drop the argument Ω in Sobolev norms, e.g. ‖ ·‖Hp+1 denotes the Hp+1(Ω)−norm.
We will also denote the Bochner norms over the whole interval [0, T ] in concise form,
e.g. ‖u‖L∞(Hp+1) denotes the L∞(0, T ;Hp+1(Ω))-norm.

3 Discretization

3.1 Finite element mesh

Let Th be triangulation of Ω, i.e. a partition of Ω into a finite number of closed simpices
with mutually disjoint interiors. We do not require the standard conforming properties
of Th used in the finite element method, i.e. we admit so-called hanging nodes. For
K ∈ Th we set hK = diam(K), h = maxK∈Th

hK . By ρK we denote the radius of the
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largest ball inscribed into K and by |K| we denote the d−dimensional Lebesgue measure
of K.

Let K, K ′ ∈ Th. We say that K and K ′ are neighbors, if the set ∂K ∩ ∂K ′ has
nonzero (d− 1)-dimensional measure. We say that Γ ⊂ K is a face (or edge in R2 and
node in R1) of K, if it is a maximal connected open subset either of ∂K ∩ ∂K ′, where
K ′ is a neighbour of K, or of ∂K ∩ ∂Ω. By Fh we denote the system of all faces of all
elements K ∈ Th.

Further, we define the set of all inner faces, Dirichlet boundary faces, Neumann
boundary faces and all boundary faces, respectively, as

FI
h = {Γ ∈ Fh; Γ ⊂ Ω} , FD

h = {Γ ∈ Fh; Γ ⊂ ΓD} ,

FN
h = {Γ ∈ Fh; Γ ⊂ ΓN} , FB

h = FD
h ∪ FN

h .

Obviously, Fh = FI
h ∪ FB

h .
For each Γ ∈ Fh we define a fixed unit normal vector nΓ. We assume that for

Γ ∈ FB
h the normal nΓ has the same orientation as the outer normal to ∂Ω. Finally, by

|Γ| we denote the (d− 1)-dimensional measure of Γ.

3.2 Spaces of discontinuous functions

Over a triangulation Th we define the broken Sobolev spaces

Hk(Th) = {v; v|K ∈ Hk(K), ∀K ∈ Th}

equipped with the seminorm

|v|Hk(Th) =
( ∑

K∈Th

|v|2Hk(K)

)1/2
.

For each face Γ ∈ FI
h there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Th such that Γ ⊂

K
(L)
Γ ∩K

(R)
Γ . We use the convention that nΓ is the outer normal to the element K

(L)
Γ .

For v ∈ H1(Th) and Γ ∈ FI
h we introduce:

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, v|(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ = 1
2

(
v|(L)

Γ + v|(R)
Γ

)
, [v]Γ = v|(L)

Γ − v|(R)
Γ .

The value [v]Γ depends on the orientation of nΓ, but the values 〈v〉Γ and [v]ΓnΓ are
independent of this orientation. Now, let Γ ∈ FB

h and K
(L)
Γ ∈ Th be such that Γ ⊂

∂K
(L)
Γ ∩ ∂Ω. For v ∈ H1(Th) we set

vΓ = v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ,

the value v|(R)
Γ , will be defined depending on the context by boundary conditions, cf.

Section 3.4.
If [· ]Γ and 〈· 〉Γ appear in an integral of the form

∫
Γ . . . dS, we omit the subscript Γ

and write simply [· ] and 〈· 〉. For simplicity we shall use the following notation:
∫

FI
h

. . . dS =
∑

Γ∈FI
h

∫

Γ
. . . dS
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and similarly for Fh,FD
h ,FN

h and FB
h .

Let p ≥ 1 be an integer. The approximate solution will be sought in the space of
discontinuous piecewise polynomial functions

Sh = {v; v|K ∈ P p(K),∀K ∈ Th},
where P p(K) denotes the space of all polynomials on K of degree ≤ p.

3.3 Discontinuous Galerkin space semidiscretization

We introduce the following forms defined for v, ϕ ∈ H2(Th).
Diffusion form:

ah(v, ϕ) =
∑

K∈Th

∫

K
∇v·ϕdx−

∫

FI
h

〈∇v〉·n[ϕ] dS −Θ
∫

FI
h

〈∇ϕ〉·n[v] dS

−
∫

FD
h

∇v·nϕ dS −Θ
∫

FD
h

∇ϕ·nv dS.

(6)

Further we define the interior and boundary penalty jump terms:

Jh(v, ϕ) =
∫

FI
h

σ[v][ϕ] dS +
∫

FD
h

σvϕdS (7)

and the right-hand side form:

lh(ϕ)(t) =
∫

Ω
g(t)ϕdx +

∫

FN
h

gN (t)ϕdS − εΘ
∫

FD
h

∇ϕ·nuD(t) dS + ε

∫

FD
h

σuD(t)ϕdS.

(8)
The parameter σ in (7) and (8) is constant on every edge and defined by

σ|Γ =
CW

|Γ| , ∀ Γ ∈ Fh, (9)

where CW > 0 is a constant, which must be chosen large enough to ensure coercivity of
the diffusion form – cf. Lemma 9. Depending on the value of Θ in definitions (6) and
(8), we obtain the symmetric, incomplete and nonsymmetric interior penalty variants
of the diffusion a right-hand side forms, by taking Θ = 1, 0,−1 respectively.

Finally we define the convective form

bh(v, ϕ) = −
∑

K∈Th

∫

K
f(v)·∇ϕdx+

∫

FI
h

H(v(L), v(R),n)[ϕ] dS+
∫

FB
h

H(v(L), v(R),n)ϕ(L) dS.

(10)
For Γ ∈ FB

h , the value v(R) is defined by boundary conditions, cf. Section 3.4. The
form bh approximates convective terms with the aid of a numerical flux H(v, w,n). We
assume that H is defined in R2×B1, where B1 = {n ∈ R2; |n| = 1} and has the following
properties:

(H1) H(v, w,n) is Lipschitz-continuous with respect to v, w:

|H(v, w,n)−H(v∗, w∗,n)| ≤ CL(|v−v∗|+ |w−w∗|), ∀v, w, v∗, w∗ ∈ R, n ∈ B1.

(H2) H(v, w,n) is consistent:

H(v, v,n) = f(v) · n, ∀v ∈ R, n ∈ B1.
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(H3) H(v, w,n) is conservative:

H(v, w,n) = −H(w, v,−n), ∀v, w ∈ R, n ∈ B1.

(H4) H(v, w,n) is an E-flux:

(
H(v, w,n)− f(q)·n)

(v − w) ≥ 0, ∀v, w ∈ R, n ∈ B1 and all q between v, w.

Condition (H4) was introduced by Osher in [34], cf. also [4]. This is a generalization
of the concept of monotone numerical fluxes.

Lemma 2. Let H(v, w,n) be a nondecreasing function of its first argument, and a
nonincreasing function of its second argument (i.e. H is a monotone numerical flux).
Furthermore, let H be consistent. Then H is an E-flux.

Proof. Without loss of generality assume that v ≤ q ≤ w. Then we have, due to the
consistency of H,

(
H(v, w,n)− f(q)·n)

(v − w)
=

(
H(v, w,n)−H(q, w,n) + H(q, w,n)−H(q, q,n)·n)

(v − w) ≥ 0,

since H is nondecreasing in its first and nonincreasing in its second arguments. ¤

Remark 2. Many commonly used numerical fluxes are monotone, e.g. Lax-Friedrichs,
Godunov, Engquist-Osher and the Roe flux with entropy fix, cf. [4].

3.4 Boundary conditions

In the work [44], boundary conditions are avoided by assuming either periodic boundary
conditions, or compactly supported solutions (i.e. u = 0 on a neighborhood of ∂Ω). In
our work, we shall treat general Dirichlet and Neumann boundary conditions, however
there are subtleties involved.

In the definition of form bh, it is necessary to specify the state v|(R)
Γ on edges Γ ∈ FB

h .
This is a delicate task due to the convective nature of the problem for ε = 0 or ε ¿ 1. It
is common practice to prescribe a Dirichlet boundary condition on ’inflow’ edges, where
the characteristics enter the domain and a Neumann boundary condition on ’outflow’
edges, where characteristics leave the domain. The question arises whether to define
ΓD and ΓN by the exact solution u or by uh. Our analysis allows for both possibilities,
our only requirement is that either f ′(u(x, t)).n ≥ 0 or f ′(uh(x, t)).n ≥ 0 on ΓN . In
other words, ΓN is (a subset of) the outflow boundary for either the exact, or numerical
solution.

3.4.1 Boundary conditions depending on u

We assume that the sets ΓD and ΓN , which appear in the definition of bh, are defined
by the exact solution u. Specifically, we assume that

Γ(t)
N ⊆ {x ∈ ∂Ω; f ′(u(x, t)).n ≥ 0},

Γ(t)
D := ∂Ω \ ΓN .

(11)
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The first condition in (11) is necessary in our analysis. We note that Γ(t)
N and Γ(t)

D may
depend on t, however for convenience we shall drop the superscript (t) in the notation.
In (10), we define

v|(R)
Γ =

{
uD, for Γ ⊂ ΓD,

v|(L)
Γ , for Γ ⊂ ΓN .

3.4.2 Boundary conditions depending on uh

We assume that the sets ΓD and ΓN , which appear in the definition of bh, are defined
by the approximate solution uh. Specifically, we assume that

Γ(t)
N,h ⊆ {x ∈ ∂Ω; f ′(uh(x, t)).n ≥ 0},

Γ(t)
D,h := ∂Ω \ ΓN .

(12)

Again, the first condition in (12) is necessary in our analysis. As in the previous case,
Γ(t)

N,h and Γ(t)
D,h may depend on t. In (10), we define

v|(R)
Γ =

{
uD, for Γ ⊂ ΓD,h,

v|(L)
Γ , for Γ ⊂ ΓN,h.

This choice is often used in practical computations, where we do not know u in
advance and therefore cannot use the approach from section 3.4.1. On the other hand,
it may happen that ΓD, as defined in (12), may contain a subset on which uD is not
defined in the original continuous problem. This problem does not arise, if we have uD

defined on the whole ∂Ω, even though some parts of the boundary will belong to ΓN ,
e.g. when uD represents some ’far-field’ state. The situation is trivial, if we prescribe a
Dirichlet boundary condition on the whole ∂Ω, i.e. ΓN = ∅.
Definition 1. We say that uh ∈ C1([0, T ]; Sh) is a DGFE solution of the convection-
diffusion problem (2) - (5), if uh(0) = u0

h, an Sh approximation of the initial condition
u0, and for all t ∈ (0, T )
d

dt

(
uh(t), ϕh

)
+bh

(
uh(t), ϕh

)
+εJh

(
uh(t), ϕh

)
+εah

(
uh(t), ϕh

)
= lh

(
ϕh

)
(t), ∀ϕh ∈ Sh.

(13)

Similarly as in [16] we can show that a sufficiently regular exact solution u of problem
(2) satisfies

d

dt

(
u(t), ϕh

)
+ bh

(
u(t), ϕh

)
+ εJh

(
u(t), ϕh

)
+ εah

(
u(t), ϕh

)
= lh

(
ϕh

)
(t), (14)

for all ϕh ∈ Sh and for all t ∈ (0, T ), which implies the Galerkin orthogonality property
of the error.

4 Some necessary results and assumptions

4.1 Regularity of the exact solution

We assume that the weak solution u is sufficiently regular, namely

ut :=
∂u

∂t
∈ L2

(
0, T ; Hp+1(Ω)

)
, u ∈ L∞(0, T ;W 1,∞(Ω)), (15)

where p ≥ 1 denotes the given degree of approximation. Under these conditions, u
satisfies equation (2) pointwise and u ∈ C

(
[0, T ]; Hp+1(Ω)

)
.
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4.2 Geometry of the mesh

We consider a system {Th}h∈(0,h0), h0 > 0, of quasi-uniform triangulations of Ω with
the following properties:

(1) The system {Th}h∈(0,h0) is regular: there exists a constant C1 > 0 such that

hK

ρK
≤ C1, ∀K ∈ Th ∀h ∈ (0, h0).

(2) There exists a constant C2 > 0 such that

hK ≤ C2 d(Γ), ∀K ∈ Th, ∀Γ ⊂ ∂K, Γ ∈ Fh, ∀h ∈ (0, h0).

(3) System {Th}h∈(0,h0) satisfies the inverse assumption: There exists a constant C3 >
0 such that

h ≤ C3 hK , ∀K ∈ Th, ∀h ∈ (0, h0).

4.3 Some auxiliary results

Throughout this work we denote by C a generic constant independent of h, t, ε. Now
we can state two necessary results needed in the following analysis:

Lemma 3 (Multiplicative trace inequality). There exists a constant CM > 0 indepen-
dent of h,K such that for all K ∈ Th, v ∈ H1(K) and h ∈ (0, h0)

||v||2L2(∂K) ≤ CM

(||v||L2(K)|v|H1(K) + h−1
K ||v||2L2(K)

)
.

Proof. Cf. [9] and [21] for a detailed proof. ¤

Lemma 4 (Inverse inequalities). There exists a constant CI > 0 independent of h,K
such that for all K ∈ Th and v ∈ P p(K)

|v|H1(K) ≤ CIh
−1
K ||v||L2(K),

‖v‖L∞(K) ≤ CIh
−d/2
K ‖v‖L2(K).

Proof. Cf. e.g. [12]. ¤
Now, for v ∈ L2(Ω) we denote by Πhv the L2(Ω)-projection of v on Sh:

Πhv ∈ Sh, (Πhv − v, ϕh) = 0, ∀ϕh ∈ Sh.

Using this projection, we define the following quantities used in the error splitting:

ηh(t) := u(t)−Πhu(t) ∈ Hp+1(Th), ξh(t) = Πhu(t)− uh(t) ∈ Sh

for t ∈ (0, T ). Then we can write the error eh as eh(t) := u(t) − uh(t) = ηh(t) + ξh(t).
For simplicity, we shall usually drop the subscript h and the argument t.
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Lemma 5. There exists a constant C > 0 independent of h,K such that for all h ∈
(0, h0)

a) ||ηh(t)|| ≤ Chp+1|u(t)|Hp+1 ,

b) |ηh(t)|H1(Th) ≤ Chp|u(t)|Hp+1 ,

c)
∣∣∣
∣∣∣∂ηh(t)

∂t

∣∣∣
∣∣∣ ≤ Chp+1

∣∣∣∂u(t)
∂t

∣∣∣
Hp+1

,

d) ||ηh(t)||∞ ≤ Chp|u(t)|Hp+1 ,

e) ||ηh(t)||∞ ≤ Ch|u(t)|W 1,∞ .

Proof. The proof follows from standard approximation results found e.g. in [12]. ¤

4.4 Properties of the numerical flux

Definition 2. For v ∈ H1(Th) we define the function α(v) = α
(
v(L), v(R)

)
on each

Γ ∈ Fh by

α(v)
∣∣
Γ

=

{
[v]−1

(
H(v(L), v(R),n)− f(〈v〉)·n)

, if [v] 6= 0,∣∣f ′(〈v〉)·n∣∣, if [v] = 0.

Here v(R) : ∂Ω → R is an arbitrarily defined but fixed function. .

Lemma 6. (cf. [44]) There exists a constant C ≥ 0, such that for all v ∈ H1(Th), we
have 0 ≤ α(v) ≤ C and ∣∣f ′(〈v〉)·n∣∣ ≤ 2α(v) + C

∣∣[v]
∣∣. (16)

Moreover, if f ∈ (C3
b (R))d, we have the estimate

f ′′(〈v〉)·n[v] ≤ 8α(v) + C[v]2. (17)

Proof. Since H is an E-flux, we have non-negativity of α(v). Assumptions (H1), (H2)
imply the boundedness of α(v). Inequality (16) is trivially satisfied if [v] = 0. Otherwise,
we have two cases:

(i) Let f ′(〈v〉)·n ≥ 0. Then

α(v) = [v]−1
(
H(v(L), v(R),n)− f(v(L))·n)

+ [v]−1
(
f(v(L))·n− f(〈v〉)·n)

. (18)

The first term is nonnegative due to assumption (H4). In the second term we shall use
a Taylor expansion in the point 〈v〉. We obtain

α(v) ≥ [v]−1
(
f ′(〈v〉)·n(

v(L) − 〈v〉) +
1
2
f ′′
v(L),〈v〉·n

(
v(L) − 〈v〉)2

)
≥ 1

2
f ′(〈v〉)·n− C

∣∣[v]
∣∣,

where f ′′
v(L),〈v〉 ≤ ‖f‖W 2,∞(R) is the Lagrange form of the remainder of the Taylor expan-

sion, i.e. f ′′
v(L),〈v〉(x) has components f ′′s (ϑsv

(L)(x) + (1− ϑs)〈v(x)〉) for some ϑs ∈ [0, 1]
and s = 1, · · · , d.

(ii) Let f ′(〈v〉)·n < 0. Then

α(v) = [v]−1
(
H(v(L), v(R),n)− f(v(R))·n)

+ [v]−1
(
f(v(R))·n− f(〈v〉)·n)

. (19)

Again, the first term is nonnegative and we use the Taylor expansion in the second:

α(v) ≥ [v]−1
(
f ′(〈v〉)·n(

v(R) − 〈v〉) +
1
2
f ′′
v(R),〈v〉·n

(
v(R) − 〈v〉)2

)
≥ −1

2
f ′(〈v〉)·n−C

∣∣[v]
∣∣.

92



On diffusion-uniform error estimates for the DG method

Here f ′′
v(R),〈v〉(x) := f ′′(ϑv(R)(x) + (1− ϑ)〈v(x)〉) for some ϑ ∈ [0, 1].

As for (17), this is trivially satisfied if [v] = 0. Otherwise, we have two cases:
(i) Let f ′(〈v〉)·n ≥ 0. Then we can write α(v) as in (18). The first term is nonneg-

ative and we apply a third order Taylor expansion to the second:

α(v) ≥ [v]−1
(
f ′(〈v〉)·n(

v(L) − 〈v〉) +
1
2
f ′′(〈v〉)·n(

v(L) − 〈v〉)2 +
1
2
f ′′′
v(L),〈v〉·n

(
v(L) − 〈v〉)3

)

=
1
2
f ′(〈v〉)·n +

1
8
f ′′(〈v〉)·n[v] +

1
2
f ′′′
v(L),〈v〉·n[v]2 ≥ 1

8
f ′′(〈v〉)·n[v]− C[v]2.

Again, f ′′′
v(L),〈v〉 ≤ ‖f‖W 3,∞(R) is the Lagrange form of the remainder of the Taylor ex-

pansion.
(ii) Let f ′(〈v〉)·n < 0. Then from (19), by use of the Taylor expansion,

α(v) ≥ [v]−1
(
f ′(〈v〉)·n(

v(R) − 〈v〉) +
1
2
f ′′(〈v〉)·n(

v(R) − 〈v〉)2 +
1
2
f ′′′
v(R),〈v〉·n

(
v(R) − 〈v〉)3

)

= −1
2
f ′(〈v〉)·n +

1
8
f ′′(〈v〉)·n[v]− 1

2
f ′′′
v(R),〈v〉·n[v]2 ≥ 1

8
f ′′(〈v〉)·n[v]− C[v]2.

¤

5 Analysis of the convective terms

Definition 3 (Bilinear form J̃h). Let v, w ∈ H1(Th). We define

J̃h(v, w) :=
∫

FI
h

α(uh)[v][w] dS +
∫

FD
h

α(uh)v(L)w(L) dS +
1
2

∫

FN
h

α(u)v(L)w(L) dS. (20)

Here we must interpret α(uh) = α(u(L)
h , uD) on FD

h and α(u) = α(u(L), u(L)) on FN
h .

Remark 3. We define J̃h by (20) if we use the approach to boundary conditions outlined
in Section 3.4.1. If we proceed as in Section 3.4.2, we use instead

J̃h(v, w) :=
∫

FI
h

α(uh)[v][w] dS+
∫

FD
h

α(uh)v(L)w(L) dS+
1
2

∫

FN
h

α(uh)v(L)w(L) dS, (21)

where we interpret α(uh) = α(u(L)
h , u

(L)
h ) on FN

h .

Remark 4. From α(·) ≥ 0, it follows that
(
J̃h(·, ·))1/2 is a seminorm on H1(Th).

Lemma 7. There exists a constant C ≥ 0 independent of h, t, ε, such that

bh(uh, ξ)− bh(u, ξ) ≤ C
(
1 +

‖eh(t)‖2∞
h2

)(
h2p+1|u(t)|2Hp+1 + ‖ξ‖2

)− 1
2
J̃h(ξ, ξ). (22)

Proof. We write

bh(uh, ξ)− bh(u, ξ) =
∑

K∈Th

∫

K

(
f(u)− f(uh)

)·∇ξ dx−
∫

FI
h

(
f(u)·n− f(〈uh〉)·n

)
[ξ] dS

−
∫

FI
h

(
f(〈uh〉)·n−H(u(L)

h , u
(R)
h ,n)

)
[ξ] dS −

∫

FB
h

(
f(u)·n− f

(
1
2(u + u

(L)
h )

)·n
)
ξ(L) dS

−
∫

FB
h

(
f
(

1
2(u + u

(L)
h )

)·n−H(u(L)
h , u

(R)
h ,n)

)
ξ(L) dS.

(23)
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By the Taylor expansion of f with respect to u, we have

f(u)− f(uh) = f ′(u)ξ + f ′(u)η − 1
2
f ′′u,uh

e2
h,

f(u)− f(〈uh〉) = f ′(u)〈ξ〉+ f ′(u)〈η〉 − 1
2
f ′′u,〈uh〉〈eh〉2,

f(u)− f
(

1
2(u + u

(L)
h )

)
=

1
2
f ′(u)ξ(L) +

1
2
f ′(u)η(L) − 1

8
f ′′
u,u

(L)
h

(
e
(L)
h

)2
,

(24)

where f ′′u,uh
, f ′′u,〈uh〉 and f ′′

u,u
(L)
h

are the Lagrange forms of the remainder of the Taylor

expansion, i.e. f ′′u,uh
(x, t) has components f ′′s (ϑsu(x, t) + (1− ϑs)uh(x, t)) for some ϑs ∈

[0, 1] and s = 1, · · · , d. Similarly, we define f ′′u,〈uh〉 and f ′′
u,u

(L)
h

.

Due to Green’s theorem, we have

∑

K∈Th

∫

K
f ′(u)· ∇ξ ξ dx =

− 1
2

∑

K∈Th

∫

K
div

(
f ′(u)

)
ξ2 dx +

∫

FI
h

f ′(u)·n〈ξ〉[ξ] dS +
1
2

∫

FB
h

f ′(u)·n(ξ(L))2 dS.

This and (23) – (24) implies

bh(uh, ξ)− bh(u, ξ) =

− 1
2

∑

K∈Th

∫

K
div

(
f ′(u)

)
ξ2 dx

︸ ︷︷ ︸
Y1

+
∫

FI
h

f ′(u)·n〈ξ〉[ξ] dS

︸ ︷︷ ︸
Y2

+
1
2

∫

FB
h

f ′(u)·n(ξ(L))2 dS

︸ ︷︷ ︸
Y3

+
∑

K∈Th

∫

K
f ′(u)·∇ξ η dx

︸ ︷︷ ︸
Y4

− 1
2

∑

K∈Th

∫

K
f ′′u,uh

·∇ξ e2
h dx

︸ ︷︷ ︸
Y5

−
∫

FI
h

f ′(u)·n〈ξ〉[ξ] dS

︸ ︷︷ ︸
Y6

−
∫

FI
h

f ′(u)·n〈η〉[ξ] dS

︸ ︷︷ ︸
Y7

+
1
2

∫

FI
h

f ′′u,〈uh〉·n 〈eh〉2[ξ] dS

︸ ︷︷ ︸
Y8

−
∫

FI
h

(
f(〈uh〉)·n−H(u(L)

h , u
(R)
h ,n)

)
[ξ] dS

︸ ︷︷ ︸
Y9

− 1
2

∫

FB
h

f ′(u)·n(
ξ(L)

)2 dS

︸ ︷︷ ︸
Y10

− 1
2

∫

FB
h

f ′(u)·n η(L)ξ(L) dS

︸ ︷︷ ︸
Y11

+
1
8

∫

FB
h

f ′′
u,u

(L)
h

·n (
e
(L)
h

)2
ξ(L) dS

︸ ︷︷ ︸
Y12

−
∫

FB
h

(
f
(

1
2(u + u

(L)
h )

)·n−H(u(L)
h , u

(R)
h ,n)

)
ξ(L) dS

︸ ︷︷ ︸
Y13

. (25)

We shall estimate these terms individually.
(A) Term Y1: Due to the boundedness of f ′′ and the regularity of u, we have

|Y1| ≤ C‖ξ‖2.

(B) Terms Y2,Y6: These terms cancel each other.
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(C) Terms Y3,Y10: These terms cancel each other.
(D) Term Y4: We set uK := 1

|K|
∫
K udx. Standard approximation results, cf. [12],

imply

‖u− uK‖L∞(K) ≤ ChK |u|L∞(W 1,∞) ≤ ChK .

Furthermore, due to the definition of η, we have
∑

K∈Th

∫
K f ′(uK)·∇ξ η dx = 0, since

f ′(uK)·∇ξ|K ∈ P p(K). Therefore, by the Lipschitz continuity of f ′,Lemma 5, a) and
Young’s inequality

|Y4| =
∣∣∣

∑

K∈Th

∫

K

(
f ′(u)− f ′(uK)

)·∇ξ η dx
∣∣∣

≤
∑

K∈Th

C‖u− uK‖L∞(K)CIh
−1
K ‖ξ‖L2(K)‖η‖L2(K) ≤ Ch2p+2|u(t)|2Hp+1 + ‖ξ‖2.

(E) Term Y5: We apply the inverse inequality, Lemma 5, a) and Young’s inequality:

|Y5| ≤ C‖eh‖∞‖eh‖CIh
−1‖ξ‖ ≤ Ch−2‖eh‖2

∞
(
Ch2p+2|u(t)|2Hp+1 + ‖ξ‖2

)
+ ‖ξ‖2

(F) Terms Y7,Y11: First we estimate f ′(u)·n. Due to the Lipschitz continuity of f ′

and (16), we have

On FI
h : |f ′(u)·n| ≤ |f ′(u)·n− f ′(〈uh〉)·n|+ |f ′(〈uh〉)·n|

≤ C|u− 〈uh〉|+ 2α(uh) + C
∣∣[uh]

∣∣ ≤ C‖eh‖∞ + 2α(uh).

On FD
h : |f ′(u)·n| ≤ ∣∣f ′(u)·n− f ′

(
1
2(u + u

(L)
h )

)·n∣∣ +
∣∣f ′(1

2(u + u
(L)
h )

)·n∣∣
≤ C‖eh‖∞ + 2α(uh).

On FN
h : |f ′(u)·n| = α(u).

(26)

By applying these estimates in Y7, Y11, Young’s inequality, the multiplicative trace and
inverse inequalities and Lemma 5, a), b), we obtain

|Y7 + Y11| ≤
(∫

FI
h

〈η〉2 dS
)1/2(∫

FI
h

2
(
C‖eh‖2

∞ + 2α(uh)2
)
[ξ]2 dS

)1/2

+
(∫

FD
h

(
η(L)

)2 dS
)1/2(∫

FD
h

2
(
C‖eh‖2

∞ + 2α(uh)2
)(

ξ(L)
)2 dS

)1/2

+
(∫

FN
h

(
η(L)

)2 dS
)1/2(∫

FN
h

2α(u)2
(
ξ(L)

)2 dS
)1/2

≤ Ch2p+1|u(t)|2Hp+1 + C‖eh‖2
∞

∑

K∈Th

∫

∂K
ξ2 dS

+
1
4

∫

FI
h

α(uh)[ξ]2 dS +
1
4

∫

FD
h

α(uh)
(
ξ(L)

)2 dS +
1
8

∫

FN
h

α(u)
(
ξ(L)

)2 dS

≤ Ch2p+1|u(t)|2Hp+1 + Ch−1‖eh‖2
∞‖ξ‖2 +

1
4
J̃h(ξ, ξ).

(27)

We cannot estimate the term J̃h(ξ, ξ), it shall be compensated by a similar term in (H).
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(G) Terms Y8,Y12: By Young’s inequality, the multiplicative trace and inverse in-
equalities and Lemma 5, a), b), we obtain

|Y8 + Y12|

≤ C‖eh‖∞
(∫

FI
h

(
e
(L)
h

)2 +
(
e
(R)
h

)2 +
(
ξ(L)

)2 +
(
ξ(R)

)2 dS +
∫

FB
h

(
e
(L)
h

)2 +
(
ξ(L)

)2 dS

)

≤ C‖eh‖∞
∑

K∈Th

∫

∂K
e2
h

∣∣
K

+ ξ2
∣∣
K

dS

≤ C‖eh‖∞
∑

K∈Th

(
‖eh‖L2(K)|eh|H1(K)+ h−1

K ‖eh‖2
L2(K) + ‖ξ‖L2(K)|ξ|H1(K) + h−1

K ‖ξ‖2
L2(K)

)

≤ C‖eh‖∞
(
Ch2p+1|u(t)|2Hp+1 + Ch2p|u(t)|2Hp+1 + ‖ξ‖2 + CIh

−1‖ξ‖2
)

≤ Ch−1‖eh‖∞
(
Ch2p+1|u(t)|2Hp+1 + ‖ξ‖2

)

≤ C
(
1 + h−2‖eh‖2

∞
)(

Ch2p+1|u(t)|2Hp+1 + ‖ξ‖2
)
.

In the last inequality we have used the fact that for x := h−1‖eh‖∞, we have x ≤ 1+x2.
(H) Terms Y9,Y13: First we treat the nonlinearities arising in these terms. By the
definition of α and boundary conditions, we have

On FI
h : f(〈uh〉)·n−H(u(L)

h , u
(R)
h ,n) = −α(uh)[uh]

= α(uh)[u− uh] = α(uh)[η] + α(uh)[ξ]

On FD
h : f

(
1
2(u + u

(L)
h )

)·n−H(u(L)
h , u

(R)
h ,n)

= −α(uh)
(
u

(L)
h − u

)
= α(uh)η(L) + α(uh)ξ(L)

On FN
h : f

(
1
2(u + u

(L)
h )

)·n−H(u(L)
h , u

(R)
h ,n) = f

(
1
2(u + u

(L)
h )

)·n− f
(
u

(L)
h

)·n.

(28)

On the Neumann part of the boundary, we shall employ a Taylor expansion at point u:

f
(

1
2(u + u

(L)
h )

)− f
(
u

(L)
h

)
= f

(
1
2(u + u

(L)
h )

)− f(u) + f(u)− f
(
u

(L)
h

)

= −f ′(u)1
2e

(L)
h + 1

2 f
′′
1 .

(
1
2e

(L)
h

)2 + f ′(u)e(L)
h − 1

2 f
′′
2 .

(
e
(L)
h

)2

= 1
2 f
′(u)η(L) + 1

2 f
′(u)ξ(L) + 1

8 f
′′
1 .

(
e
(L)
h

)2 − 1
2 f
′′
2 .

(
e
(L)
h

)2
,

(29)

where f ′′1 , f ′′2 are the Lagrange forms of the Taylor expansion remainder. By substituting
(28), (29) into the definition of Y9, Y13, we have

Y9 + Y13 = −
∫

FI
h

α(uh)[η][ξ] + α(uh)[ξ]2 dS −
∫

FD
h

α(uh)η(L)ξ(L) + α(uh)
(
ξ(L)

)2 dS

−
∫

FN
h

1
2 f
′(u)·n η(L)ξ(L) + 1

2 f
′(u)·n(

ξ(L)
)2 + 1

8 f
′′
1 ·n

(
e
(L)
h

)2
ξ(L) − 1

2 f
′′
2 ·n

(
e
(L)
h

)2
ξ(L) dS

= −J̃h(ξ, ξ)−
∫

FI
h

α(uh)[η][ξ] dS −
∫

FD
h

α(uh)η(L)ξ(L) dS −
∫

FN
h

1
2 f
′(u)·n η(L)ξ(L) dS

−
∫

FN
h

1
8 f
′′
1 ·n

(
e
(L)
h

)2
ξ(L) − 1

2 f
′′
2 ·n

(
e
(L)
h

)2
ξ(L) dS.

Apart from the first term, all terms in the last estimate may be treated similarly as in
(F) and (G), respectively. Thus

Y9 + Y13 ≤ −J̃h(ξ, ξ) + C
(
1 + h−2‖eh‖2

∞
)(

Ch2p+1|u(t)|2Hp+1 + ‖ξ‖2
)

+ 1
4 J̃h(ξ, ξ)

= −3
4 J̃h(ξ, ξ) + C

(
1 + h−2‖eh‖2

∞
)(

Ch2p+1|u(t)|2Hp+1 + ‖ξ‖2
)
.

(30)
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As stated in (F), the term −3
4 J̃h(ξ, ξ) in (30) is used to dominate the term 1

4 J̃h(ξ, ξ) in
(27).

The proof is completed by collecting all the estimates in (A)-(H). ¤
Remark 5. In the proof, we have treated boundary conditions as in Section 3.4.1. If
we wish to define boundary conditions as in 3.4.2, taking into account Remark 3, we
only need two modifications:

(i) In (26), on FN
h we estimate |f ′(u)·n| ≤ |f ′(uh)·n| + |f ′(u)·n − f ′(uh)·n| ≤

α(uh) + ‖eh‖∞ and proceed similarly as on FD
h .

(ii) We use a Taylor expansion at uh instead of u in (29).

We can improve estimate (22), if we suppose f ∈ (C3
b (R))d and ΓN = ∅. Namely, we

obtain a factor of h−1‖eh‖2∞ instead of h−2‖eh‖2∞. This improved estimate is useful in
proving the resulting estimates for lower order polynomials and with a less restrictive
CFL condition, cf. Remarks 8 and 13.

Lemma 8. Let f ∈ (C3
b (R))d and ΓN = ∅. There exists a constant C ≥ 0 independent

of h, t, ε, such that

bh(uh, ξ)− bh(u, ξ) ≤ C
(
1 +

‖eh(t)‖2∞
h

)(
h2p+1|u(t)|2Hp+1 + ‖ξ‖2

)− 1
6
J̃h(ξ, ξ). (31)

Proof. As in the proof of the preceding lemma, we estimate individual terms in (25).
We note that if ΓN = ∅, we only need to estimate terms Y5, Y8 and Y12, the remaining
terms already satisfy the improved estimate (31). We shall treat these suboptimal terms
in more carefully than in the proof of Lemma 7:
(A) Term Y5: We write

∑

K∈Th

∫

K
f ′′u,uh

·∇ξ e2
h dx =

∑

K∈Th

∫

K
f ′′(u)·∇ξ ξ2 dx +

∑

K∈Th

∫

K
f ′′u,uh

· ∇ξ e2
h − f ′′(u)·∇ξ ξ2 dx

=
∑

K∈Th

∫

K
f ′′(u)·∇ξ ξ2 dx +

∑

K∈Th

∫

K

(
f ′′u,uh

− f ′′(u)
)·∇ξ ξ2+ 2f ′′u,uh

·∇ξ ξη + f ′′u,uh
· ∇ξ η2 dx

(32)

The first right-hand side integral in (32) will be estimated later along with similar terms
in (D).

As for the second right-hand side integral in (32), we estimate its individual sum-
mands:

• By definition of the Lagrange form of the remainder of the Taylor expansion,
f ′′u,uh

(x, t) has components f ′′s (ϑsu(x, t) + (1−ϑs)uh(x, t)) for some ϑs ∈ [0, 1] and
s = 1, · · · , d. Hence, by the Lipschitz continuity of f ′′, we have |f ′′u,uh

− f ′′(u)| ≤
C|u− uh| = C|eh|. Therefore, by the inverse inequality and Lemma 5, (e),

∑

K∈Th

∫

K

(
f ′′u,uh

− f ′′(u)
)·∇ξ ξ2 dx ≤ C‖eh‖∞‖ξ‖∞CIh

−1‖ξ‖2

≤ C‖eh‖∞(‖eh‖∞ + ‖η‖∞)CIh
−1‖ξ‖2 (33)

≤ Ch−1‖eh‖2
∞‖ξ‖2 + C‖eh‖∞h|u(t)|W 1,∞h−1‖ξ‖2

≤ Ch−1‖eh‖2
∞‖ξ‖2 + C(1 + h−1‖eh‖2

∞)‖ξ‖2,

since x ≤ (1 + h0)(1 + h−1x2) for all x ≥ 0. Here we set x := ‖eh‖∞.
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• Due to the inverse inequality, we have be Lemma 5, (e)
∑

K∈Th

∫

K
2f ′′u,uh

·∇ξ ξη dx ≤ C‖η‖∞CIh
−1‖ξ‖2 ≤ Ch|u(t)|W 1,∞h−1‖ξ‖2 ≤ C‖ξ‖2.

(34)

• By the inverse and Young’s inequalities, Lemma 5, (e), we have
∑

K∈Th

∫

K
f ′′u,uh

·∇ξ η2 dx ≤ C‖η‖∞‖η‖CIh
−1‖ξ‖

≤ Ch|u(t)|W 1,∞hp+1|u(t)|Hp+1h−1‖ξ‖ ≤ Ch2p+2|u(t)|2Hp+1 + ‖ξ‖2.

(35)

(B) Term Y8: We write
∫

FI
h

f ′′u,〈uh〉·n〈eh〉2[ξ] dS

=
∫

FI
h

f ′′(u)·n〈ξ〉2[ξ] dS +
∫

FI
h

f ′′u,〈uh〉·n〈eh〉2[ξ]− f ′′(u)·n〈ξ〉2[ξ] dS

=
∫

FI
h

f ′′(u)·n〈ξ〉2[ξ] dS

+
∫

FI
h

(
f ′′u,〈uh〉 − f ′′(u)

)·n〈ξ〉2[ξ] + 2f ′′u,〈uh〉·n〈η〉〈ξ〉[ξ] + f ′′u,〈uh〉·n〈η〉2[ξ] dS

(36)

The first right-hand side integral in (36) will be estimated later along with similar
terms in (D).

As for the second right-hand side integral in (36), its individual summands have the
same structure as those in (32), thus their estimates are essentially similar:

• By the Lipschitz continuity of f ′′, we have |f ′′u,〈uh〉 − f ′′(u)| ≤ C|eh|. Therefore, by
Lemma 3,

∫

FI
h

(
f ′′u,〈uh〉 − f ′′(u)

)·n〈ξ〉2[ξ] dS ≤ C‖eh‖∞‖ξ‖∞h−1‖ξ‖2,

which can be further estimated as in (33)

• Due to Lemmas 3 and 5, (e)
∫

FI
h

2f ′′u,〈uh〉·n〈η〉〈ξ〉[ξ] dS ≤ C‖η‖∞h−1‖ξ‖2 ≤ C‖ξ‖2.

• By Lemmas 3 and 5, (e), we have
∫

FI
h

f ′′u,〈uh〉·n〈η〉2[ξ] dS ≤ C‖η‖∞h−1‖η‖‖ξ‖ ≤ Ch2p+2|u(t)|2Hp+1 + ‖ξ‖2.

(C) Term Y12: For simplicity of notation, we shall remove the superscript (L) at ξ, eh

and η. We write
∫

FB
h

f ′′
u,u

(L)
h

·ne2
hξ dS =

∫

FB
h

f ′′(u)·nξ3 dS +
∫

FB
h

f ′′
u,u

(L)
h

·ne2
hξ − f ′′(u)·nξ3 dS

=
∫

FB
h

f ′′(u)·nξ3 dS +
∫

FB
h

(
f ′′
u,u

(L)
h

− f ′′(u)
)·nξ3 + 2f ′′

u,u
(L)
h

·nηξ2 + f ′′
u,u

(L)
h

·nη2ξ dS

(37)
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The first right-hand side integral in (37) will be estimated later along with similar
terms in (D). Individual summands in the second right-hand side integral in (37) can
be estimated as in (B).
(D) Remaining terms from Y5,Y8,Y12: Again, we shall omit the superscript (L)

in quantities on ΓB. First, we have due to Green’s theorem
∑

K∈Th

∫

K
f ′′(u)·∇ξ ξ2 dx =

1
3

∑

K∈Th

∫

∂K
f ′′(u) · nKξ|3K dS − 1

3

∑

K∈Th

∫

K
div

(
f ′′(u)

)
ξ3 dx

=
1
3

∫

FI
h

f ′′(u)·n(
(ξ(L))3 − (ξ(R))3

)
dS +

1
3

∫

FB
h

f ′′(u)·nξ3 dS − 1
3

∑

K∈Th

∫

K
div

(
f ′′(u)

)
ξ3 dx.

Thus, we may estimate the remaining terms of Y5, Y5, Y12 as

−1
2

∑

K∈Th

∫

K
f ′′(u)·∇ξ ξ2 dx +

1
2

∫

FI
h

f ′′(u) · n〈ξ〉2[ξ] dS +
1
8

∫

FB
h

f ′′(u) · n ξ3 dS

=
∫

FI
h

f ′′(u) · n
(
− 1

6

(
(ξ(L))3 − (ξ(R))3

)
+ 1

2〈ξ〉2[ξ]
)

dS

︸ ︷︷ ︸
Z1

+
∫

FB
h

f ′′(u) · n(− 1
6ξ3 + 1

8ξ3) dS

︸ ︷︷ ︸
Z2

+
1
6

∑

K∈Th

∫

K
div

(
f ′′(u)

)
ξ3 dx

︸ ︷︷ ︸
Z3

.

• Z1 : Using the identity −1
6

(
(ξ(L))3 − (ξ(R))3

)
+ 1

2〈ξ〉2[ξ] = − 1
24 [ξ]3 and the Taylor

expansion we have

−f ′′(u) · n[ξ] = −f ′′
(〈uh〉

) · n[ξ]− f ′′′u,〈uh〉 · n
(
u− 〈uh〉

)
[ξ]

= f ′′
(〈uh〉

) · n[η] + f ′′
(〈uh〉

) · n[uh]− f ′′′u,〈uh〉 · n
(〈u− uh〉

)
[ξ].

Therefore, due to (17) and Lemma 5, d), we have

|f ′′(u) · n[ξ]| ≤ ∣∣f ′′(〈uh〉
)∣∣ 2‖η‖∞ + 8α(uh) + C[uh]2 +

∣∣f ′′′u,〈uh〉
∣∣‖eh‖∞

∣∣[eh]− [η]
∣∣

≤ C‖η‖∞ + 8α(uh) + C[eh]2 + C‖eh‖∞
(
2‖eh‖∞ + 2‖η‖∞

)

≤ Chp + 8α(uh) + C‖eh‖2
∞.

Therefore, we may conclude using Lemma 3

|Z1| ≤ 1
3

∫

FI
h

α(uh)[ξ]2 dS +
(
Chp−1 + Ch−1‖eh‖2

∞
)‖ξ‖2

• Z2 : We use the identity −1
6ξ3 + 1

8ξ3 = − 1
24ξ3 and by the Taylor expansion we

have

−f ′′(u) · nξ = −f ′′
(

1
2(u + uh)

) · n ξ − f ′′′1 · n(
u− 1

2(u + uh)
)
ξ

= f ′′
(

1
2(u + uh)

) · n η + f ′′
(

1
2(u + uh)

) · n(u− uh)− f ′′′1 · n1
2ehξ.

Therefore

Z2 =
1
24

∫

FB
h

f ′′
(

1
2(u + uh)

) · n ηξ2 dS +
1
24

∫

FB
h

f ′′
(

1
2(u + uh)

) · n (u− uh)ξ2 dS

− 1
48

∫

FB
h

f ′′′1 · nehξ3 dS = Z
(a)
2 + Z

(b)
2 + Z

(c)
2 .
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We estimate using Lemmas 3 and 5, d)

|Z(a)
2 | ≤ C‖η‖∞

∫

FB
h

|ξ|2 dS ≤ Chp−1‖ξ‖2 ≤ C‖ξ‖2.

Now, we estimate using (17) and Lemma 3

|Z(b)
2 | ≤ 1

24

∫

FB
h

8α(uh)ξ2+ C(uh − u)2ξ2 dS ≤ 1
3

∫

FB
h

α(uh)ξ2 dS + Ch−1‖eh‖2
∞‖ξ‖2.

Finally, due to Lemma 3

|Z(c)
2 | ≤ C

∫

FB
h

|eh||ξ|3 dS ≤ C‖eh‖∞‖ξ‖∞h−1‖ξ‖2

≤ Ch−1‖eh‖2
∞‖ξ‖2 +Ch−1‖eh‖∞‖η‖∞‖ξ‖2 ≤ Ch−1‖eh‖2

∞‖ξ‖2 + Chp−1‖eh‖∞‖ξ‖2

≤ Ch−1‖eh‖2
∞‖ξ‖2 + C(1 + h−1‖eh‖2

∞)‖ξ‖2,

where we have used the fact that x ≤ (1 + h0)(1 + h−1x2) for all x ≥ 0. Here we
set x := ‖eh‖∞. This completes the estimate of Z2.

• Z3 : We estimate

|Z3| ≤ C‖ξ‖∞‖ξ‖2 ≤ (C + ‖ξ‖2
∞)‖ξ‖2

≤ (C + 2‖eh‖2
∞ + 2‖η‖2

∞)‖ξ‖2 ≤ C(1 + h−1‖eh‖2
∞)‖ξ‖2.

The proof is completed by collecting all the estimates in (A)-(D). ¤

6 Further properties of the convection and diffusion forms

Let us define the bilinear form

Ah(v, w) := ah(v, w) + Jh(v, w), ∀v, w ∈ H2(cTh),

and the following (energy) norm in H1(Th):

‖w‖DG =
(1

2
(|w|2H1(Th) + Jh(w,w)

))1/2
.

Lemma 9 (Ellipticity and boundedness of Ah). Let the constant CW from (9) satisfy

CW





≥ 4CM (1 + CI) for Θ = 1, i.e. the symmetric variant,
≥ 2CM (1 + CI) for Θ = 0, i.e. the incomplete variant,
> 0 for Θ = −1, i.e. the nonsymmetric variant,

(38)

where CM , CI are constants from Lemmas 3 and 4, respectively. Then the form Ah is
elliptic, i.e.

‖v‖2
DG ≤ Ah(v, v), ∀v ∈ Sh,

and bounded, i.e.
Ah(v, w) ≤ ‖v‖DG‖w‖DG, ∀v, w ∈ Sh.

Moreover, we have the estimate

Ah

(
ηh(t), ξh(t)

) ≤ Chp|u(t)|Hp+1‖ξh(t)‖DG.
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Proof. Cf. [3] for an overview and [22] for a thorough discussion. ¤
Remark 6. Using Lemmas 3 and 4 it is straightforward to prove that for all vh ∈ Sh

‖vh‖DG ≤ Ch−1‖vh‖.
Lemma 10 (Consistency error of bh). There exists a constant Lbh

> 0 independent of
u, uh, h, ε, such that for all v, v̄, w ∈ Sh.

|bh(v, w)− bh(v̄, w)|
≤ Lbh

(
‖v − v̄‖‖w‖DG +

(‖v − v̄‖‖v − v̄‖DG + ‖v − v̄‖2
)1/2(‖w‖‖w‖DG + ‖w‖2

)1/2
)
.

Proof. By the definition of bh, we have

bh(v, ϕ) = −
∑

K∈Th

∫

K
f(v)·∇ϕdx+

∫

FI
h∪FD

h

H(v(L), v(R),n)[ϕ] dS+
∫

FN
h

f(v(L))·nϕ(L) dS.

The first two integrals may be treated directly using the multiplicative trace inequality
as in [20]. As for the integral over FN

h , we estimate
∣∣∣
∫

FN
h

(
f(v(L)) · n − f(v̄(L)) · n)

w(L) dS
∣∣∣ ≤ C‖v − v̄‖L2(ΓN )‖w‖L2(ΓN ). (39)

These terms cannot be estimated from above directly, since ‖·‖DG contains only integrals
over ΓD. We must proceed as in [17] with the use of the global multiplicative trace
inequality, which, for our purposes, we write in the form

‖v‖2
L2(∂Ω) ≤ C ′

M

(‖v‖DG‖v‖+ ‖v‖2
)
, ∀v ∈ Sh, (40)

where C ′
M is a constant independent of h. Applying (40) to (39) gives the desired result.

¤

7 Error analysis for the method of lines

We proceed in a standard way. We subtract (13) from (14) and set ϕh := ξh(t) ∈ Sh.
Since (∂ξh(t)

∂t
, ξh(t)

)
=

1
2

d
dt
‖ξh(t)‖2,

we get

1
2

d
dt
‖ξh(t)‖2 + εAh

(
ξh(t), ξh(t)

)

= −εAh

(
ηh(t), ξh(t)

)
+ bh

(
uh(t), ξh(t)

)− bh

(
u(t), ξh(t)

)−
(∂ηh(t)

∂t
, ξh(t)

)
.

(41)

For the last right-hand side term, by the Cauchy and Young’s inequalities and Lemma
5, we have

|(ηt, ξ)| ≤ ‖ηt‖ ‖ξ‖ ≤ 1
2

(‖ηt‖2 + ‖ξ‖2
) ≤ 1

2

(
C h2(p+1)|ut(t)|2Hp+1 + ‖ξ‖2

)
.

As for the right-hand side diffusion terms, we use Lemma 9 and Young’s inequality:

Ah(η, ξ) ≤ C h2p|u(t)|2Hp+1 + 1
2‖ξ‖2

DG.
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Finally, we use the ellipticity of Ah and Lemma 7 to obtain from (41)

d
dt
‖ξh(t)‖2 + ε‖ξh(t)‖2

DG + J̃h

(
ξh(t), ξh(t)

)

≤ C
(
1 +

‖eh(t)‖2∞
h2

)(
h2p+1|u(t)|2Hp+1 + εh2p|u(t)|2Hp+1 + h2p+2|ut(t)|2Hp+1 + ‖ξh(t)‖2

)
.

Integrating from 0 to t ∈ [0, T ] yields

‖ξh(t)‖2 +
∫ t

0
ε‖ξh(ϑ)‖2

DG + J̃h

(
ξh(ϑ), ξh(ϑ)

)
dϑ (42)

≤ C

∫ t

0

(
1 +

‖eh(ϑ)‖2∞
h2

)((
h2p+1+ εh2p

)|u(ϑ)|2Hp+1 + h2p+2|ut(ϑ)|2Hp+1 + ‖ξh(ϑ)‖2
)

dϑ,

where the constant C ≥ 0 is independent of h, t, ε. For simplicity, we assume that
ξh(0) = 0, i.e. u0

h = Πhu0. Otherwise we assume e.g. ‖ξh(0)‖2 ≤ Ch2p+1|u0|2Hp+1 and
include this term in estimate (42).

7.1 Estimates based on continuous mathematical induction

We notice that if we knew apriori that ‖eh‖∞ = O(h) then the unpleasant term
‖eh‖2∞h−2 in (42) would be O(1). Thus we could simply apply the standard Gron-
wall inequality to obtain the desired error estimates. We state this formally:

Lemma 11. Let t ∈ [0, T ] and p ≥ d/2. If

‖eh(ϑ)‖ ≤ h1+d/2, ∀ϑ ∈ [0, t], (43)

then we have the estimate

max
ϑ∈[0,t]

‖eh(ϑ)‖2 +
∫ t

0
ε‖eh(ϑ)‖2

DG + J̃h

(
eh(ϑ), eh(ϑ)

)
dϑ ≤ C2

T

(
h2p+1 + εh2p

)
, (44)

where CT is a constant independent of h, t and ε.

Proof. Due to the inverse inequality, Lemma 5 and assumption (43) we have

‖eh(ϑ)‖∞ ≤ ‖ηh(ϑ)‖∞ + ‖ξh(ϑ)‖∞ ≤ Ch|u(ϑ)|W 1,∞ + CIh
−d/2‖ξh(ϑ)‖ (45)

≤ Ch + CIh
−d/2‖eh(ϑ)‖+ CIh

−d/2‖ηh(ϑ)‖ ≤ Ch + Chp+1−d/2|u(ϑ)|Hp+1(Th) ≤ Ch,

where the constant C is independent of h, ϑ, ε. If we use this estimate in (42), we obtain

‖ξh(t)‖2 +
∫ t

0
ε‖ξh(ϑ)‖2

DG + J̃h

(
ξh(ϑ), ξh(ϑ)

)
dϑ

≤ C
((

h2p+1 + εh2p
)|u|2L2(Hp+1) + h2p+2|ut|2L2(Hp+1)

)
+ C

∫ t

0
‖ξh(ϑ)‖2 dϑ

≤ C̃
(
h2p+1 + εh2p

)
+ C

∫ t

0
‖ξh(ϑ)‖2 dϑ,

(46)

where the constants C̃, C are independent of h, t, ε. Gronwall’s inequality applied to
(46) states that there exists a constant C̃T , independent of h, t, ε, but depending expo-
nentially on T , such that

max
ϑ∈[0,t]

‖ξh(ϑ)‖2 +
∫ t

0
ε‖ξh(ϑ)‖2

DG + J̃h

(
ξh(t), ξh(t)

)
dϑ ≤ C̃T

(
h2p+1 + εh2p

)
.
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By Lemma 5, we have the estimate

max
ϑ∈[0,t]

‖ηh(ϑ)‖2 +
∫ t

0
ε‖ηh(ϑ)‖2

DG + J̃h

(
ηh(t), ηh(t)

)
dϑ ≤ C̄T

(
h2p+1 + εh2p

)
. (47)

Therefore, by the triangle inequality we obtain estimate (44) with some constant CT .
¤

Now it remains to get rid of the apriori assumption ‖eh‖∞ = O(h). In [44] this is
done for an explicit scheme using mathematical induction. If en

h denotes the error of the
explicit DG scheme at the n-th time node tn, we get for the initial condition at least
‖e0

h‖ = O(hp+1/2). Then it is easy to prove the following induction step:

‖en
h‖ = O(hp+1/2) =⇒ ‖en+1

h ‖∞ = O(h) =⇒ ‖en+1
h ‖ = O(hp+1/2). (48)

For the method of lines we have no discrete structure with respect to time and hence
cannot use mathematical induction straightforwardly. However, we can divide [0, T ] into
a finite number of sufficiently small intervals [tn, tn+1] on which ”eh does not change
too much” and use induction with respect to n. This is close to the philosophy of the
so-called continuous mathematical induction introduced in [11]. This states that if ϕ(t)
is a propositional function depending on t ∈ [0, T ] such that

(i) ϕ(0) is true,
(ii) ∃δ0 > 0 : ϕ(t) implies ϕ(t + δ), ∀t ∈ [0, T ] ∀δ ∈ [0, δ0] : t + δ ∈ [0, T ].

Then ϕ(t) holds for all t ∈ [0, T ]. Due to the simple nature of this concept, we shall
not formulate the proof of the main theorem as a continuous mathematical induction
argument, but rather prove it directly using the aforementioned partition of [0, T ] and
continuity of eh with respect to time.

Remark 7. Due to the regularity assumptions, the functions u(· ), uh(· ) are continuous
mappings from [0, T ] to L2(Ω). Since [0, T ] is a compact set, eh(· ) is a uniformly
continuous function from [0, T ] to L2(Ω). By definition,

∀ε̄ > 0 ∃δ > 0 : s, s̄ ∈ [0, T ], |s− s̄| ≤ δ =⇒ ‖eh(s)− eh(s̄)‖ ≤ ε̄.

Theorem 12 (Main theorem). Let p > 1 + d/2. Let h1 > 0 be such that CT (hp+1/2
1 +√

εhp
1) = 1

2h
1+d/2
1 , where CT is the constant from Lemma 11. Then for all h ∈ (0, h1]

we have the estimate

max
ϑ∈[0,T ]

‖eh(ϑ)‖2 +
∫ T

0
ε‖eh(ϑ)‖2

DG + J̃h

(
eh(ϑ), eh(ϑ)

)
dϑ ≤ C2

T

(
h2p+1 + εh2p

)
. (49)

Proof. We have p > 1 + d/2, therefore h1 is uniquely determined and CT (hp+1/2 +√
εhp) ≤ 1

2h1+d/2 for all h ∈ (0, h1]. We fix an arbitrary h ∈ (0, h1]. By Remark 7, there
exists δ > 0, such that if s, s̄ ∈ [0, T ], |s− s̄| ≤ δ, then ‖eh(s)− eh(s̄)‖ ≤ 1

2h1+d/2.
We define ti = iδ, i = 0, 1, . . . and set N := max{i = 0, 1, . . . ; ti < T}, tN+1 := T .

This defines a partition 0 = t0 < t1 < · · · < tN+1 = T of the interval [0, T ] into N + 1
intervals of length (at most) δ.

We shall now prove by induction that for all n = 1, . . . , N + 1

max
ϑ∈[0,tn]

‖eh(ϑ)‖2 +
∫ tn

0
ε‖eh(ϑ)‖2

DG + J̃h

(
eh(ϑ), eh(ϑ)

)
dϑ ≤ C2

T

(
h2p+1 + εh2p

)
. (50)
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Inequality (49) is thus obtained by taking n := N + 1 in (50).
(i) n = 1: We know that ‖eh(0)‖ = ‖ηh(0)‖ ≤ CT (hp+1/2 +

√
εhp) ≤ 1

2h1+d/2. By
uniform continuity, we have for all s ∈ [0, t1]

‖eh(s)‖ ≤ ‖eh(0)‖+ ‖eh(s)− eh(0)‖ ≤ 1
2h1+d/2 + 1

2h1+d/2 = h1+d/2.

Therefore, by Lemma 11 we obtain estimate (50) on [0, t1], i.e. for n = 1.
(ii) Induction step: We assume that (50) holds for a general n < N + 1. Therefore
‖eh(tn)‖ ≤ CT (hp+1/2 +

√
εhp) ≤ 1

2h1+d/2. By uniform continuity, we have that for all
s ∈ [tn, tn+1]

‖eh(s)‖ ≤ ‖eh(tn)‖+ ‖eh(s)− eh(tn)‖ ≤ 1
2h1+d/2 + 1

2h1+d/2 = h1+d/2.

This and the induction assumption imply that ‖eh(s)‖ ≤ h1+d/2 for s ∈ [0, tn] ∪
[tn, tn+1] = [0, tn+1]. Therefore, by Lemma 11, we obtain estimate (50) on [0, tn+1],
i.e. for ’n := n + 1’. ¤
Remark 8. If we assume f ∈ (C3

b (R))d and ΓN = ∅, then we may use the improved
estimate of Lemma 8 which gives the more favorable factor h−1 instead of h−2 in the
estimate of the convective terms. Hence in Theorem 12 we get the improved assumption
p > (1 + d)/2. Furthermore, if ε = 0 we need to assume only p + 1/2 > (1 + d)/2, i.e.
p > d/2.

Remark 9. The derived estimates are suboptimal in the L∞(L2)-norm, where we would
expect an O(hp+1) convergence rate, however this estimate is valid for all ε ≥ 0. For
ε > 0 also a DG energy norm is included in the estimates, which is estimated optimally.
However, this estimate degenerates for ε → 0 and does not hold for ε = 0. For this
reason, we view the L∞(L2)-estimate as primary, even though it is suboptimal.

7.2 Estimates based on a nonlinear Gronwall’s inequality

For the method of lines we can use a more direct approach to prove Theorem 12 than
in Section 7.1, an appropriate nonlinear Gronwall-type lemma. As we prove in Lemma
14, this is not possible in the case of an implicit scheme.

Lemma 13 (Nonlinear Gronwall’s inequality). Let A(t) ≥ 0, for all t ∈ [0, T ], and
α, β1, β2, T > 0 are constants. Let u ∈ C

(
[0, T ]; [0,∞)

)
such that

0 ≤ u(t) + A(t) ≤ α +
∫ t

0

(
β1u(ϑ) + β2u

2(ϑ)
)
dϑ, ∀t ∈ [0, T ].

If the coefficients satisfy
2αβ2e

β1T ≤ β1, (51)

then
u(t) + A(t) ≤ 2αeβ1t, ∀t ∈ [0, T ]. (52)

Proof. First, we assume that u(t) > 0. Defining F (t) := α +
∫ t
0

(
β1u(ϑ) + β2u

2(ϑ)
)
dϑ,

we have 0 < α ≤ F, F ∈ C1([0, T ], R) and F is strictly increasing, since F ′ > 0.
Since u(t) ≤ u(t) + A(t) ≤ F (t) for all t ∈ [0, T ], we obtain by integration

F ′(t) ≤ β1u(t) + β2u
2(t) ≤ β1F (t) + β2F

2(t) ⇒
∫ t

0

F ′(ϑ)
F (ϑ) + γF 2(ϑ)

dϑ ≤
∫ t

0
β1 dϑ,
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where γ = β2

β1
. Since F ′ > 0, F is a bijection and we can evaluate the left-hand side

integral by substitution, while the right-hand side is simply β1t. Thus

ln
F (t)(1 + γF (0))
F (0)(1 + γF (t))

≤ β1t ⇒ F (t)
1 + γF (t)

≤ F (0)
1 + γF (0)

eβ1t ≤ αeβ1t.

From this inequality, we may express F (t), therefore

u(t) + A(t) ≤ F (t) ≤ 1
1− γαeβ1t

αeβ1t ≤ 2αeβ1t,

due to condition (51). Thus we have proven (52) for the case u(t) > 0.
Generally, if u(t) ≥ 0, we define ũ(t) := u(t) + δ > 0 for some small δ > 0. Then

ũ(t) satisfies

0 < ũ(t) + A(t) ≤ (α + δ) +
∫ t

0

(
β1ũ(ϑ) + β2ũ

2(ϑ)
)
dϑ, ∀t ∈ [0, T ].

Therefore, by (52)
u(t) + A(t) ≤ ũ(t) + A(t) ≤ 2(α + δ)eβ1t,

which holds for all sufficiently small δ > 0. By taking δ → 0, we obtain (52). ¤
Alternative proof of Theorem 12. Due to the inverse inequality and Lemma 5, we
have

h−2‖eh(ϑ)‖2
∞ ≤ 2h−2‖ηh(ϑ)‖2

∞ + 2h−2‖ξh(ϑ)‖2
∞ ≤

Ch−2h2|u(ϑ)|2W 1,∞ + CIh
−2−d‖ξh(ϑ)‖2 ≤ C + Ch−2−d‖ξh(ϑ)‖2,

where the constant C is independent of h, ϑ, t, ε. If we use this estimate in (42), we
obtain

‖ξh(t)‖2 +
∫ t

0
ε‖ξh(ϑ)‖2

DG + J̃h

(
ξh(ϑ), ξh(ϑ)

)
dϑ (53)

≤ C̃
(
h2p+1 + εh2p

)
+ C

∫ t

0

(
1 + h2p−1−d + εh2p−2−d

)‖ξh(ϑ)‖2 + h−2−d‖ξh(ϑ)‖4 dϑ,

where the constants C̃, C are independent of h, t, ε. Now, we shall apply Lemma 13 to
(53) by setting

u(t) := ‖ξh(t)‖2,

A(t) :=
∫ t

0
ε‖ξh(ϑ)‖2

DG + J̃h

(
ξh(ϑ), ξh(ϑ)

)
dϑ,

α := C̃
(
h2p+1 + εh2p

)
,

β1 := C
(
1 + h2p−1−d + εh2p−2−d

) ≤ C̄,

β2 := Ch−2−d.

Condition (51) can be written as

2C̃
(
h2p+1 + εh2p

)
Ch−2−deC̄T ≤ C̄ ⇐⇒ h2p−1−d + εh2p−2−d ≤ 1

2 C̃−1C−1C̄e−C̄T ,

which is satisfied for sufficiently small h if p > 1 + d/2. By (52), we have

‖ξh(t)‖2 +
∫ t

0
ε‖ξh(ϑ)‖2

DG + J̃h

(
ξh(ϑ), ξh(ϑ)

)
dϑ ≤ C̃T

(
h2p+1 + εh2p

)
,

for some C̃T independent of h, t, ε. The proof is completed by taking (47) and the
triangle inequality.
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8 Error estimates for a fully implicit scheme

In this section, we shall introduce and analyze the DG scheme with a standard first
order implicit time discretization. Here we cannot use the approach of [44] for the
explicit scheme, since in Lemma 14 we prove that the first implication in the induction
step (48) does not hold. Essentially the error equation along with the estimates of
individual terms does not contain sufficient information about the problem to prove the
desired estimates.

In Section 7.1 the key ingredient was the continuity of eh with respect to time,
which guarantees that the error cannot suddenly blow up. We then use a continuous
mathematical induction argument. However, for the implicit scheme we have a discrete
temporal structure, hence no continuity. To overcome this obstacle, we introduce an
appropriate continuation of the discrete solution and error with respect to time. This
is constructed using an auxiliary problem, essentially a modification of the discrete
implicit problem. This allows us to derive error estimates for the continuated solution
and consequently for the original implicit scheme

We consider a partition 0 = t0 < t1 < · · · < tN+1 = T of the time interval [0, T ] and
set τn = tn+1 − tn for n = 0, · · · , N . The exact solution u(tn) will be approximated by
un

h ∈ Sh.

Definition 4. We say that {un
h}N+1

n=0 ⊂ Sh is an implicit DGFE solution of the convection-
diffusion problem (2) - (5), if u0

h = Πhu0 ∈ Sh and for n = 0, · · · , N

(un+1
h − un

h

τn
, ϕh

)
+ bh

(
un+1

h , ϕh

)
+ εAh

(
un+1

h , ϕh

)
= lh

(
ϕh

)
(tn+1), ∀ϕh ∈ Sh. (54)

Similarly as in Section 4, we define ηn
h = u(tn) − Πhu(tn) ∈ Hp+1(Th) and ξn

h =
Πhu(tn)− un

h ∈ Sh. Then we can write the error en
h as en

h := u(tn)− un
h = ηn

h + ξn
h .

To obtain error estimates for the implicit scheme, we would now subtract the equa-
tion for the exact and approximate solution

(
en+1
h − en

h, ϕh

)
+ τn

(
bh(u(tn+1), ϕh)− bh(un+1

h , ϕh)
)

+ τnεAh(en+1
h , ϕh)

=
(
u(tn+1)− u(tn)− τnut(tn+1), ϕh

)
.

In standard approaches, we set ϕh := ξn+1
h and apply the derived estimates of bh, Ah

and Lemma 17:

‖ξn+1
h ‖2 + ‖ξn+1

h − ξn
h‖2 + τnε‖ξn+1

h ‖2
DG + τnJ̃h

(
ξn+1
h , ξn+1

h

)
(55)

≤ ‖ξn
h‖2 + Cτn

(
1 +

‖en+1
h ‖2∞
h2

)(
h2p+1 + ‖ξn+1

h ‖2
)

+ Cτn

(
εh2p + h2p+2 + τ2

n + ‖ξn+1
h ‖2

)
.

At this point, we would apply induction or some (nonlinear) discrete Gronwall lemma
to obtain the desired error estimates as in Section 7.2. However, it is simple to see that
(55) does not imply the desired error estimates without any additional assumptions and
we need to proceed more carefully in our analysis.

Lemma 14. Inequalities (55) taken for n = 0, · · · , N , do not imply the desired error
estimate (73).

Proof. We take (55) on the first time level n = 0:

‖ξ1
h‖2 + ‖ξ1

h − ξ0
h‖2 + τ0ε‖ξ1

h‖2
DG + τ0J̃h

(
ξ1
h, ξ1

h

)
(56)

≤ ‖ξ0
h‖2 + Cτ0

(
1 +

‖e1
h‖2∞
h2

)(
h2p+1 + ‖ξ1

h‖2
)

+ Cτ0

(
εh2p + h2p+2 + τ2

0 + ‖ξ1
h‖2

)
.
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Let us denote X := ‖e1
h‖. We shall prove that for all h, the right-hand side of (56)

”grows faster with respect to X” than the left-hand side as X → ∞. Therefore (56)
is satisfied not only for small X = O(hp+1/2 +

√
εhp + τ), but also for arbitrary X

sufficiently large. Hence, (56) does not imply the error estimate (73) even for n = 0.
We proceed as follows: let X be sufficiently large. Then we have due to Lemmas 3,

4 and 5

‖ξ1
h‖ ≤ ‖e1

h‖+ ‖η1
h‖ ≤ X + Chp+1 ≤ 2X, for X sufficiently large,

‖ξ1
h‖ ≥ ‖e1

h‖ − ‖η1
h‖ ≥ X − Chp+1 ≥ X/2, for X sufficiently large,

‖ξ1
h − ξ0

h‖ ≤ ‖ξ1
h‖+ ‖ξ0

h‖ ≤ 2X + Chp+1 ≤ 3X,

‖ξ1
h‖DG ≤ C1h

−1‖ξ1
h‖ ≤ C1h

−12X, due to Remark 6,

J̃h

(
ξ1
h, ξ1

h

) ≤ C2h
−1‖ξ1

h‖2 ≤ C2h
−14X2,

‖e1
h‖∞ ≥ X|Ω|−1/2,

where the last inequality follows directly from Hölders inequality.
Applying these estimates, we can estimate the left-hand side of (56) as

LHS = ‖ξ1
h‖2 + ‖ξ1

h − ξ0
h‖2 + τ0ε‖ξ1

h‖2
DG + τ0J̃h

(
ξ1
h, ξ1

h

)

≤ 4X2 + 9X2 + τ0εC
2
1h−24X2 + τ0C2h

−14X2.

On the other hand, we get for the right-hand side of (56)

RHS ≥ Cτ0

(
1 +

‖e1
h‖2∞
h2

)
‖ξ1

h‖2 ≥ Cτ0

(
1 +

X2

|Ω|h2

)
X2/4.

We want to determine, for what X is (56) satisfied, i.e. when is LHS ≤ RHS. This
happens e.g. if

LHS ≤ 4X2 + 9X2 + τ0εC
2
1h−24X2 + τ0C2h

−14X2 ≤ Cτ0

(
1 +

X2

|Ω|h2

)
X2/4 ≤ RHS,

i.e. when X satisfies

Cτ0

(
1 +

X2

|Ω|h2

)
X2/4− 4X2 − 9X2 − τ0εC

2
1h−24X2 − τ0C2h

−14X2 ≥ 0. (57)

However, the leading term X4 in (57) has a positive coefficient Cτ0|Ω|−1h−2/4. Hence
inequality (57) – and therefore inequality (56) – is satisfied for all X sufficiently large.
¤

8.1 Auxiliary problem and continuation of the discrete solution

Problem (54) represents a nonlinear equation on each time level tn+1 for the unknown
function un+1

h . First, we prove that un+1
h exists is uniquely determined and depends

continuously on τn. To this end we define a general abstract formulation of problem
(54):

Definition 5. (Auxiliary problem) Let t ∈ [0, T ], τ ∈ [0, T ] and Uh ∈ Sh. We seek
uτ ∈ Sh such that

(
uτ − Uh, ϕh

)
+ τbh

(
uτ , ϕh

)
+ τεAh

(
uτ , ϕh

)
= τ lh

(
ϕh

)
(t + τ), ∀ϕh ∈ Sh. (58)

107



On diffusion-uniform error estimates for the DG method

Remark 10. If we take τ := τn, Uh := un
h, t := tn and define un+1

h := uτ , the auxiliary
problem (58) reduces to equation (54), which defines the approximate solution un+1

h . On
the other hand, if we take τ := 0 the solution of (58) is uτ = un

h. In between these two
cases uτ changes continuously with τ . For that we need to assume the right-hand side
of (58) behaves ”continuously with respect to time”.

Lemma 15. Let g ∈ C([0, T ]; L2(Ω)), gN ∈ C([0, T ];L2(ΓN )) and uD ∈ C([0, T ]; L2(ΓD)).
Then for all h ∈ (0, h0) there exists a function λh ∈ C([0, T ]; Sh) such that

lh(ϕh)(t) =
(
λh(t), ϕh

)
, ∀ϕh ∈ Sh. (59)

Proof. We equip Sh with the L2(Ω)-scalar product. Then lh(·)(t) is a linear functional
on the finite-dimensional Hilbert space Sh. Hence, lh(·)(t) is a continuous functional
and by the Riesz representation theorem there exists λh(t) such that (59) holds. It
remains to show the continuity of λh(t) with respect to t. Let s, t ∈ [0, T ], we estimate

∥∥λh(t)− λh(s)
∥∥ = sup

ϕh∈Sh

1
‖ϕh‖

(
λh(t)− λh(s), ϕh

)
= sup

ϕh∈Sh

1
‖ϕh‖

(
lh(ϕh)(t)− lh(ϕh)(s)

)

≤ sup
ϕh∈Sh

1
‖ϕh‖

(‖g(t)− g(s)‖‖ϕh‖+ ‖gN (t)− gN (s)‖L2(ΓN )‖ϕh‖L2(ΓN )

+ ε|Θ|‖uD(t)− uD(s)‖L2(ΓD)‖∇ϕh‖L2(ΓD) + εCh−1‖uD(t)− uD(s)‖L2(ΓD)‖ϕh‖L2(ΓD)

)
.

Since ϕh ∈ Sh, we may use the multiplicative trace and inverse inequalities. Thus
∥∥λh(t)− λh(s)

∥∥ ≤ sup
ϕh∈Sh

1
‖ϕh‖‖ϕh‖

(‖g(t)− g(s)‖+ ‖gN (t)− gN (s)‖L2(ΓN )Ch−1

+ ε|Θ|‖uD(t)− uD(s)‖L2(ΓD)Ch−2 + εCh−2‖uD(t)− uD(s)‖L2(ΓD)

) −→ 0, as s → t.

¤
Now we are ready to prove the basic result used in the construction of a continuation

of the discrete solution, the continuity of uτ with respect to τ . We shall assume the
assumptions of Lemma 15 are satisfied from now on.

Lemma 16. There exist constants C1, C2 > 0 independent of h, τ, t, ε, such that the
following holds. Let t ∈ [0, T ], h ∈ (0, h0), Uh ∈ Sh and τ ∈ [0, τ0), where τ0 =
max{C1ε, C2h}. Then uτ , the solution of (58), exists, is uniquely determined, ‖uτ‖
is uniformly bounded with respect to τ ∈ [0, τ0) and ‖uτ‖ depends continuously on τ .

Proof. (i) Existence: We shall use the nonlinear Lax-Milgram theorem, cf. [43]. First,
we define the forms Bτ : Sh × Sh → R, Lτ : Sh → R:

Bτ (u, v) := (u, v) + τbh(u, v) + τεAh(u, v),
Lτ (v) := (Uh, v) + τ lh(v)(t + τ).

Then problem (58) can be written as Bτ (uτ , ϕh) = Lτ (ϕh) for all ϕh ∈ Sh. If we equip
Sh with the L2(Ω)-norm, then Lτ (· ) is a linear functional on the finite-dimensional space
Sh, hence Lτ is continuous and uniformly bounded with respect to τ , i.e. ‖Lτ‖L(Sh,R) ≤
‖Uh‖ + τ‖λh(t)‖ ≤ ‖Uh‖ + T‖λh‖L∞(Sh) < +∞, since τ ≤ T . In order to apply
the nonlinear Lax-Milgram theorem, it remains to prove monotonicity and Lipschitz
continuity of Bτ in the space Sh.

108



On diffusion-uniform error estimates for the DG method

Monotonicity: For all u, v ∈ Sh, we have due to Lemmas 9 and 10, by Young’s
inequality

Bτ (u, u− v)−Bτ (v, u− v)

≥ ‖u− v‖2 + τε‖u− v‖2
DG − τLbh

‖u− v‖DG‖u− v‖ − τLbh
‖u− v‖2

≥ (1− τLbh
)‖u− v‖2 + τε‖u− v‖2

DG − τε‖u− v‖2
DG − τ

4εL
2
bh
‖u− v‖2

= (1− τ0Lbh
− τ0

4εL
2
bh

)‖u− v‖2.

On the other hand, we may estimate by the inverse inequality and multiplicative trace
inequalities τLbh

‖u− v‖DG ≤ τLbh
Ch−1‖u− v‖. Therefore

Bτ (u, u− v)−Bτ (v, u− v)

≥ ‖u− v‖2 + τε‖u− v‖2
DG − τLbh

Ch−1‖u− v‖2 − τLbh
‖u− v‖2

≥ (1− τ0Lbh
− τ0Lbh

Ch−1)‖u− v‖2.

Thus we have L2(Ω)-monotonicity of Bτ , e.g. if τ0 < 1
2L−1

bh
and either τ0 < 2εL−2

bh
or

τ0 < 1
2L−1

bh
C−1h.

Lipschitz continuity: For all u, v, w ∈ Sh, we have due to Lemmas 9, 10 and Remark
6

∣∣Bτ (u,u− v)−Bτ (v, u− v)
∣∣

≤ ‖u− v‖2 + τε‖u− v‖2
DG + τLbh

‖u− v‖DG‖u− v‖+ τLbh
‖u− v‖2

≤ (1 + τ0εCh−2 + τ0Lbh
Ch−1 + τ0L

2
bh

)‖u− v‖2.

By the nonlinear Lax-Milgram theorem, we obtain the existence and uniqueness of
uτ ∈ Sh, the solution of (58). Moreover, ‖uτ‖ is uniformly bounded for τ ∈ [0, τ0), since
‖uτ‖ ≤ C‖Lτ‖L(L2(Ω),R) ≤ C‖Uh‖+ τ0‖l(t)‖L(Sh,R).

We note that by taking v := 0 in the monotonicity estimates of Bτ , we may prove
Sh−coercivity, i.e. there exists some α > 0 such that

Bτ (u, u) = Bτ (u, u− 0)−Bτ (0, u− 0) ≥ α‖u‖2.

(ii) Continuity with respect to τ : Let τ, τ̄ ∈ (0, τ0). We subtract (58) for τ and
τ̄ , obtaining

Bτ (uτ , ϕh)−Bτ̄ (uτ̄ , ϕh) = Lτ (ϕh)− Lτ̄ (ϕh). (60)

First, we estimate the right-hand side of (60) using the representation formula (59):

Lτ (ϕh)− Lτ̄ (ϕh) = τ
(
λh(t + τ)− λh(t + τ̄), ϕh

)
+ (τ − τ̄)

(
λh(t + τ̄), ϕh

)

≤ T‖λh(t + τ)− λh(t + τ̄)‖‖ϕh‖+ |τ − τ̄ |‖λh‖L∞(Sh)‖ϕh‖.
(61)

Setting ϕh := uτ − uτ̄ in (60) and rearranging gives us

Bτ (uτ , uτ − uτ̄ )−Bτ (uτ̄ , uτ − uτ̄ )
= Bτ̄ (uτ̄ , uτ − uτ̄ )−Bτ (uτ̄ , uτ − uτ̄ ) + Lτ (uτ − uτ̄ )− Lτ̄ (uτ − uτ̄ ).

Taking into account the monotonicity of Bτ on the left-hand side and estimating the
right-hand side by (61), Lemma 9 and 10 and the inverse inequality, we obtain

α‖uτ − uτ̄‖2

≤ |τ − τ̄ |(C(ε, h)‖uτ̄‖+ ‖λh‖L∞(Sh)

)‖uτ − uτ̄‖+ T‖λh(t + τ)− λh(t + τ̄)‖‖uτ − uτ̄‖
=⇒ ‖uτ − uτ̄‖ ≤ C(ε,h)

α |τ − τ̄ |(C(ε, h)‖uτ̄‖+ ‖λh‖L∞(Sh)

)
+ T

α‖λh(t + τ)− λh(t + τ̄)‖,

109



On diffusion-uniform error estimates for the DG method

where α > 0 is the monotonicity constant of Bτ and C(ε, h) is a constant depending
on ε, h. It follows directly that ‖uτ̄‖ → ‖uτ‖ as τ̄ → τ , since by the inverted triangle
inequality ∣∣‖uτ‖ − ‖uτ̄‖

∣∣ ≤ ‖uτ − uτ̄‖ −→ 0, as τ̄ → τ.

We have proved the continuity of ‖uτ‖ with respect to τ ∈ (0, τ0). It remains to prove
the continuity of ‖uτ‖ at τ = 0. This is straightforward, since for τ = 0, we have
uτ = Uh. We test (58) with ϕh := uτ − Uh

‖uτ − Uh‖2 ≤ τ |lh
(
uτ − Uh

)
(t)|+ τ |bh

(
uτ , uτ − Uh

)|+ τε|Ah

(
uτ , uτ − Uh

)|
≤ τ

(‖λh‖L∞(Sh) + C(ε, h)‖uτ‖
)‖uτ − Uh‖.

This implies that ‖uτ − Uh‖ → 0, and therefore ‖uτ‖ → ‖Uh‖, as τ → 0. ¤
As we have seen in Remark 10, by taking Uh := un

h in (58) we obtain uτ = un+1
h

for τ := τn and uτ = un
h for τ := 0. For general τ ∈ [0, τn], uτ depends continuously

on the parameter τ . This allows us to construct a function ũh ∈ C([0, T ];Sh) which
”interpolates” the values {un

h}N
n=0 and which is constructed using essentially the implicit

problem itself.

Definition 6 (Continuated discrete solution). Let ũh : [0, T ] → Sh be defined as follows:
For s ∈ [tn, tn+1] we set ũh(s) := uτ , the solution of the auxiliary problem (58) with
τ := s − tn, t := tn+1 and Uh := un

h. Furthermore, we define ẽh := u − ũh and
ξ̃h := Πhu− ũh.

Remark 11. Under the assumptions of Lemma 16, ũh is uniquely determined, ũh ∈
C([0, T ]; Sh) and ẽh ∈ C([0, T ];L2(Ω)), due to the regularity (15). Also, ũh(tn) =
un

h, ẽh(tn) = en
h and ξ̃h(tn) = ξn

h , for all n = 0, · · · , N . Therefore, estimates of ẽh(·)
imply estimates of en

h. Finally, we note that ẽh = ηh + ξ̃h.

8.2 Estimates based on continuous mathematical induction.

Since ũh is constructed using the auxiliary problem (58), which is essentially the original
implicit scheme (54) with special data, we can derive error estimates for ũh in a standard
manner. We start by proving a discrete analogy of Lemma 11. However, first we need
some standard results concerning the approximation of time derivatives.

Lemma 17. Let utt = ∂2u
∂t2

∈ L2(0, T ; L2(Ω)). Let s ∈ [tn, tn+1] and ϕh ∈ Sh. Then
∣∣(u(s)− u(tn)− (s− tn)ut(s), ϕh

)∣∣ ≤ Cτ2‖utt‖L∞(L2)‖ϕh‖,∣∣(ηh(s)− ηh(tn), ϕh

)∣∣ ≤ Cτhp+1‖ut‖L∞(Hp+1)‖ϕh‖.
Proof. Cf. [18]. ¤

Now we shall prove a discrete analogy of Lemma 11. For simplicity we assume a
uniform partition of [0, T ], i.e. τn := τ for all n = 0, · · · , N .

Lemma 18. Let p ≥ d/2. Let s ∈ (tn, tn+1] for some n ∈ {0, · · · , N}. If

‖ẽh(s)‖ ≤ h1+d/2 and ‖ẽh(tk)‖ ≤ h1+d/2, ∀k = 0, · · · , n, (62)

then we have the estimate

max
t∈{t0,··· ,tn,s}

‖ẽh(t)‖2 +
n∑

k=1

τ
(
ε‖ẽh(tk)‖2

DG + J̃h

(
ẽh(tk), ẽh(tk)

))

+ (s− tn)
(
ε‖ẽh(s)‖2

DG + J̃h

(
ẽh(s), ẽh(s)

)) ≤ C2
T

(
h2p+1 + εh2p + τ2

)
,

(63)
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where the constant CT is independent of s, n, h, τ, ε.

Proof. Since ẽh = u − ũh and ũh is defined by the Auxiliary problem (58) with τ =
s − tn, Uh = un

h, in order to obtain an equation for ẽh, we subtract (58) from (14).
Furthermore, in (14) we introduce the time difference instead of the time derivative ut.
Thus ẽh(s) satisfies

(
ẽh(s)−ẽh(tn), ϕh

)
+ (s− tn)

(
bh(u(s), ϕh)− bh(ũh(s), ϕh)

)
+ (s− tn)εAh(ẽh(s), ϕh)

=
(
u(s)− u(tn)− (s− tn)ut(s), ϕh

)
.

(64)

We set ϕh := ξ̃h(s) and use the fact that 2(a−b, a) = ‖a‖2−‖b‖2+‖a−b‖2. Furthermore,
we estimate the convective terms using Lemma 7 and the diffusion terms using Lemma
9. For the remaining terms, we use Lemma 17. Thus we obtain the inequality

‖ξ̃h(s)‖2− ‖ξ̃h(tn)‖2+ ‖ξ̃h(s)− ξ̃h(tn)‖2+ (s− tn)ε‖ξ̃h(s)‖2
DG + (s− tn)J̃h

(
ξ̃h(s), ξ̃h(s)

)

≤ Cτ
(
1 +

‖ẽh(s)‖2∞
h2

)((
h2p+1 + εh2p)

∣∣u|2L∞(Hp+1)+ (65)

+ h2p+2‖ut‖2
L∞(Hp+1) + τ2‖utt‖2

L∞(L2) + ‖ξ̃h(s)‖2
)
.

As in (45), we may show that from (62), it follows that ‖ẽh(s)‖∞ ≤ Ch. Thus (65)
reduces to

‖ξ̃h(s)‖2 + (s− tn)ε‖ξ̃h(s)‖2
DG + (s− tn)J̃h

(
ξ̃h(s), ξ̃h(s)

)

≤ ‖ξ̃h(tn)‖2 + Cτ
(
h2p+1 + εh2p + τ2 + ‖ξ̃h(s)‖2

)
,

(66)

which may be written as

‖ξ̃h(s)‖2 ≤ 1
1−Cτ ‖ξ̃h(tn)‖2 + Cτ

1−Cτ

(
h2p+1 + εh2p + τ2

)
. (67)

Similarly as ẽh(s) satisfies (64), ẽh(tk) satisfies the following equation for all k =
0, · · · , n− 1:

(
ẽh(tk+1)−ẽh(tk), ϕh

)
+ τ

(
bh(u(tk+1), ϕh)− bh(ũh(tk+1), ϕh)

)
+ τεAh(ẽh(tk+1), ϕh)

=
(
u(tk+1)− u(tk)− τut(tk+1), ϕh

)
.

(68)

We set ϕh := ξ̃h(tk+1) and proceed similarly as in estimates (65)-(66) to obtain

‖ξ̃h(tk+1)‖2 + τε‖ξ̃h(tk+1)‖2
DG + τ J̃h

(
ξ̃h(tk+1), ξ̃h(tk+1)

)

≤ ‖ξ̃h(tk)‖2 + Cτ
(
h2p+1 + εh2p + τ2 + ‖ξ̃h(tk+1)‖2

)
,

(69)

which we simplify to

‖ξ̃h(tk+1)‖2 ≤ 1
1−Cτ ‖ξ̃h(tk)‖2 + Cτ

1−Cτ

(
h2p+1 + εh2p + τ2

)
. (70)

Assuming Cτ ≤ 1/2, we may define

A := h2p+1 + εh2p + τ2, B := 1
1−Cτ = 1 + Cτ

1−Cτ ≤ 1 + 2Cτ ≤ e2Cτ .
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Taking into account (67) and (70), we have by induction

‖ξ̃h(s)‖2 ≤ Bn+1‖ξ̃h(0)‖2 + Bn+1−1
B−1 BCτA

≤ e(n+1)2CτBA ≤ e2CT 1
2A = C̃T

(
h2p+1 + εh2p + τ2

)
,

(71)

since ξ̃h(0) = 0. Similarly, we obtain by induction from (70)

‖ξ̃h(tk)‖2 ≤ C̃T

(
h2p+1 + εh2p + τ2

)
, ∀k = 0, · · · , n. (72)

Since ẽh = ξ̃h + ηh, the triangle inequality and (71), (72) gives us the desired estimate
of the first left-hand side term in (63).

As for the remaining left-hand side terms in (63), we sum (66) and (69) for all
k = 0, · · · , n− 1. After applying estimates (71) and (72), we obtain

n∑

k=1

τ
(
ε‖ξ̃h(tk)‖2

DG + J̃h

(
ξ̃h(tk), ξ̃h(tk)

))
+ (s− tn)

(
ε‖ξ̃h(s)‖2

DG + J̃h

(
ξ̃h(s), ξ̃h(s)

))

≤ ‖ξ̃h(0)‖2 + (n + 1)Cτ
(
h2p+1 + εh2p + τ2 + C̃T (h2p+1 + εh2p + τ2)

)

≤ CT (1 + C̃T )(h2p+1 + εh2p + τ2).

Again, we apply the triangle inequality and suitable estimates for ηh to obtain (63). ¤
Remark 12. The functions u(· ), ũh(· ) are continuous mappings from [0, T ] to L2(Ω).
Therefore, ẽh(· ) is a uniformly continuous function from [0, T ] to L2(Ω). By definition,

∀ε > 0 ∃δ > 0 : s, s̄ ∈ [0, t], |s− s̄| ≤ δ =⇒ ‖ẽh(s)− ẽh(s̄)‖ ≤ ε.

Theorem 19 (Main theorem – implicit version). Let p > 1 + d/2. Let h1, τ1 > 0 be
such that CT (hp+1/2

1 +
√

εhp
1 + τ1) = 1

2h
1+d/2
1 , where CT is the constant from Lemma 18

and let τ1 < τ0, where τ0 is defined in Lemma 16. Then for all h ∈ (0, h1), τ ∈ (0, τ1)
we have the estimate

max
n∈{0,··· ,N+1}

‖en
h‖2 +

N+1∑

n=1

τ
(
ε‖en

h‖2
DG + J̃h

(
en
h, en

h

)) ≤ C2
T

(
h2p+1 + εh2p + τ2

)
. (73)

Proof. We have p > 1+d/2, therefore h1, τ1 exist and CT (hp+1/2 +
√

εhp +τ) ≤ 1
2h1+d/2

for all h ∈ (0, h1], τ ∈ (0, τ1]. We fix an arbitrary h ∈ (0, h1] and τ ∈ (0, τ1]. By Remark
12, there exists δ > 0 such that if s, s̄ ∈ [0, T ], |s− s̄| ≤ δ then ‖ẽh(s)− ẽh(s̄)‖ ≤ 1

2h1+d/2.
We define si = iδ, i = 0, 1, . . . and set M := max{i = 0, 1, . . . ; si < T}, sM+1 := T .

This defines a partition 0 = s0 < s1 < · · · < sM+1 = T of the interval [0, T ] into M + 1
intervals of length (at most) δ.

We shall now prove by induction that for all i = 1, . . . ,M + 1

max
ϑ∈[0,si]

‖ẽh(ϑ)‖ ≤ CT

(
hp+1/2 +

√
εhp + τ

) ≤ h1+d/2. (74)

Inequality (73) is obtained by taking i := M + 1 in (74) and applying Lemma 18 with
s := tN+1 = T .
(i) i = 1: We know that ‖ẽh(0)‖ = ‖ηh(0)‖ ≤ CT (hp+1/2 +

√
εhp + τ) ≤ 1

2h1+d/2. By
uniform continuity, we have for all s ∈ [0, s1]

‖ẽh(s)‖ ≤ ‖ẽh(0)‖+ ‖ẽh(s)− ẽh(0)‖ ≤ 1
2h1+d/2 + 1

2h1+d/2 = h1+d/2.
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Therefore, by Lemma 18 we obtain estimate (74) on [0, s1], i.e. for i = 1.
(ii) Induction step: We assume that (74) holds for a general i < M + 1. Therefore,
‖ẽh(si)‖ ≤ CT (hp+1/2 +

√
εhp + τ) ≤ 1

2h1+d/2. By uniform continuity, we have that for
all s ∈ [si, si+1]

‖ẽh(s)‖ ≤ ‖ẽh(si)‖+ ‖ẽh(s)− ẽh(si)‖ ≤ 1
2h1+d/2 + 1

2h1+d/2 = h1+d/2.

This and the induction assumption imply that ‖ẽh(ϑ)‖ ≤ h1+d/2 for ϑ ∈ [0, si] ∪
[si, si+1] = [0, si+1]. Therefore, by Lemma 18 we obtain estimate (74) on [0, si+1],
i.e. for ’i := i + 1’. ¤

Remark 13. We conclude with several remarks.

• The CFL condition required in Theorem 19 effectively imposes τ = O(h1+d/2).
This is rather restrictive from the perspective of an implicit scheme. This condition
arises due to the key step in our analysis, where we require CT (hp+1/2+

√
εhp+τ) ≤

1
2h1+d/2. If we assumed higher regularity of f and used Lemma 8, we would obtain
the CFL condition τ = O(h(1+d)/2) along with the less restrictive order condition
p > (1 + d)/2.

• Such a restrictive CFL condition is purely an artefact of the proof due to the
nonlinearity of the problem. For linear problems, we may expect the standard
τ = O(h) condition in explicit schemes (for third-order RungeKutta schemes in
[10]) as well as in the space-time DG scheme ([38]).

• For the purely convective case ε = 0, we require only CT (hp+1/2 + τ) ≤ 1
2h1+d/2,

which leads to the order condition p > (1 + d)/2. Using Lemma 8, this improves
to p > d/2.

• We have treated the simplest first order temporal discretization. Were we to ana-
lyze a scheme of kth order in time, we would require that CT (hp+1/2+

√
εhp+τk) ≤

1
2h1+d/2, which leads to the less restrictive CFL condition τ = O(h(1+d/2)/k) or
τ = O(h(1+d)/(2k)), using Lemma 8.

• Essentially, we are still limited by the CFL condition τ = O(max{ε, h}) of Lemma
16 to guarantee existence and continuity of the continuated discrete solution.

9 From global to local Lipschitz continuity of f

Up to now, we have assumed f ∈ (C2
b (R))d, i.e. global Lipschitz continuity of f and

f ′. We have stated in Remark 1 that in [44], these global assumptions are replaced
by local ones by modifying f away from the set of values of u. This procedure does
not change the exact solution of the continuous problem, however, one obtains a new
discrete problem for which we cannot guarantee apriori that it has the same solution as
the unmodified version. In this section we show how to obtain error estimates for locally
Lipschitz continuous f – without modifying the scheme – using continuous mathematical
induction.
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9.1 Basic notation and results

For simplicity we shall derive estimates for the method of lines, the implicit scheme can
be treated similarly. Let f ∈ (C2(R))d and let uh ∈ C1([0, T ]; Sh) be the DG solution
of problem (2)–(5) as defined in Definition 1.

Definition 7. Let v : QT → R be a function. We define the range of v as R(v) :=
{v(x, t); (x, t) ∈ QT }.
Definition 8. Let A ⊂ R be a closed set. We define the local generalized Lipschitz
constant of f on A as Lf (A) := ‖f‖(W 2,∞(A))d.

Remark 14. If A ⊂ R is bounded then Lf (A) < ∞. Due to the regularity assumptions
(15), we have u ∈ C(QT ) and thus Lf (R(u)) < ∞ is a constant depending only on u.

Definition 9. Let h ∈ (0, h0), t ∈ [0.T ]. We define the admissible set Uad
h (t) := {v ∈

Sh; ‖u(t)− v‖ ≤ h1+d/2}.
In Section 7.1, we have used mathematical induction with respect to t to ensure that

(43) holds, i.e. uh(ϑ) ∈ Uad
h (ϑ) for ϑ ∈ [0, t]. As a byproduct, we got the desired error

estimates. Here we shall do something similar using the fact that functions in Uad
h (t)

have values in some compact interval and thus we may use Lipschitz continuity of f for
such functions.

Lemma 20. Let p + 1 ≥ d/2. There exists a constant R ≥ 0 independent of h such
that for all h ∈ (0, h0)

a) R(u) ⊆ [−R, R],

b) R(v) ⊆ [−R, R], for all v such that v(t) ∈ Uad
h (t) for all t ∈ [0, T ].

Proof. Inclusion a) is trivial due to Remark 14. As for b), let t ∈ [0, T ], v(t) ∈ Uad
h (t).

Then due to Lemmas 4 and 5

‖v(t)− u(t)‖∞
≤ ‖v(t)−Πhu(t)‖∞ + ‖Πhu(t)− u(t)‖∞ ≤ CIh

−d/2‖v(t)−Πhu(t)‖+ Ch|u(t)|W 1,∞

≤ CIh
−d/2‖v(t)− u(t)‖+ CIh

−d/2‖u(t)−Πhu(t)‖+ Ch0|u|L∞(W 1,∞)

≤ CIh
−d/2h1+d/2 + CIh

−d/2Chp+1|u(t)|Hp+1 + Ch0|u|L∞(W 1,∞)

≤ CIh0 + CIh
p+1−d/2
0 |u|L∞(Hp+1) + Ch0|u|L∞(W 1,∞) =: R1.

Therefore due to a)

‖v(t)‖∞ ≤ ‖v(t)− u(t)‖∞ + ‖u(t)‖∞ ≤ R,

with some constant R independent of h. ¤

Definition 10. We set L := Lf

(
[−R, R]

)
< ∞, where R is the constant from Lemma

20.

Now, we shall state the fundamental properties of the convective terms which we
need in our analysis. These results can be proved similarly as in the case of global prop-
erties of f , since in our analysis all the arguments of f , e.g. u, uh, have values in [−R, R].
On this compact set of values, we may use Lipschitz continuity and boundedness of f
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and its derivatives. However, to proceed, we also need assumptions on the numerical
flux H which mimic those of f :

Assumption (H1)loc: H(v, w,n) is defined in R2×B1, where B1 = {n ∈ R2; |n| = 1},
and is Lipschitz-continuous on [−R, R] with respect to v, w:

|H(v, w,n)−H(v∗, w∗,n)| ≤ CL(|v−v∗|+ |w−w∗|), ∀v, w, v∗, w∗ ∈ [−R, R], n ∈ B1.

In the following, we shall assume that H satisfies conditions (H1)loc, (H2), (H3) and
(H4). We note that (H1)loc is satisfied e.g. if H is locally Lipschitz continuous with
respect to the first two arguments.

Lemma 21. There exists a constant C ≥ 0 such that for all v ∈ H1(Th) which satisfy
{v(x);x ∈ Ω} ⊆ [−R,R], we have 0 ≤ α(v) ≤ C and

∣∣f ′(〈v〉)·n∣∣ ≤ 2α(v) + C
∣∣[v]

∣∣.

Proof. The proof is identical to that of Lemma 6, one only needs to realize that it
is possible to use L instead of ‖f‖W 2,∞(R). This is due to the fact that in the proof
of Lemma 6 one only estimates remainders in Taylor expansions, e.g. f ′′

v(L),〈v〉(x) with

components f ′′s (ϑsv
(L)(x) + (1− ϑs)〈v(x)〉) for some ϑs ∈ [0, 1] and s = 1, · · · , d. Since

v has values in the interval [−R, R], we also have ϑsv
(L)(x) + (1− ϑs)〈v(x)〉 ∈ [−R, R]

and thus |f ′′
v(L),〈v〉| ≤ L. ¤

Now, we shall prove the ”local” analogy of Lemma 7. Again, we usually omit the
argument t for simplicity.

Lemma 22. Let p ≥ d/2. There exists a constant C ≥ 0 independent of h, t, uh, such
that if uh(t) ∈ Uad

h (t), then

bh

(
uh, ξ

)− bh

(
u, ξ

) ≤ C
(
h2p+1|u(t)|2Hp+1 + ‖ξ‖2

)− 1
2
J̃h(ξ, ξ). (75)

Proof. The proof is identical to that of Lemma 7, only one uses L instead of ‖f‖W 2,∞(R).
This is due to the fact that in the proof of Lemma 7 all arguments of f , f ′ and f ′′ lie
in the interval [−R,R]. Specifically, one uses Lipschitz continuity and boundedness for
arguments such as u, uK , uh, 〈uh〉 or 1

2(u + u
(L)
h ), which all have values in [−R,R], since

u(t), uh(t) ∈ Uad
h (t).

Furthermore, one estimates remainders in Taylor expansions, such as f ′′u,uh
, f ′′u,〈uh〉

and f ′′
u,u

(L)
h

, which by definition is f ′′ evaluated at some convex combination of the

subscript arguments, e.g. ϑsu(x, t) + (1 − ϑs)uh(x, t) for some ϑs ∈ [0, 1]. Hence, all
these arguments also have values in [−R, R] and we can bound e.g. |f ′′u,uh

| ≤ L. Finally,
throughout the proof one uses the properties of α(uh(t)) and α(u(t)) from Lemma 21.
Both uh(t) and u(t) satisfy the assumptions of this Lemma.

In such a way we obtain the same estimate as in Lemma 7,

bh(uh, ξ)− bh(u, ξ) ≤ C
(
1 +

‖eh‖2∞
h2

)(
h2p+1|u(t)|2Hp+1 + ‖ξ‖2

)− 1
2
J̃h(ξ, ξ). (76)

Now we use the fact that uh(t) ∈ Uad
h (t), i.e. ‖eh(t)‖ ≤ h1+d/2. Since p ≥ d/2, this

implies due to (45), that ‖eh(t)‖∞ ≤ Ch for some constant C independent of h, t, uh(t).
Thus we may estimate h−2‖eh‖2∞ ≤ C and (76) reduces to (75). ¤
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9.2 Estimates for the method of lines

Basically, we proceed as in Section 7. We subtract (13) from (14), set ϕh := ξh(t) ∈
Sh and apply standard estimates to the evolutionary and diffusion terms. As for the
convective terms, we notice that if we know apriori that uh(ϑ) ∈ Uad

h (ϑ) for ϑ ∈ [0, t],
then we may apply Lemma 22 on this interval. By applying Gronwall’s lemma, we
obtain error estimates on [0, t]. Finally, we use continuous mathematical induction to
go from t = 0 to t = T .

Lemma 23. Let t ∈ [0, T ] and p ≥ d/2. If uh(ϑ) ∈ Uad
h (ϑ) for all ϑ ∈ [0, t], then we

have the estimate

max
ϑ∈[0,t]

‖eh(ϑ)‖2 +
∫ t

0
ε‖eh(ϑ)‖2

DG + J̃h

(
eh(ϑ), eh(ϑ)

)
dϑ ≤ C2

T

(
h2p+1 + εh2p

)
, (77)

where CT is a constant independent of h, t and ε.

Proof. We subtract (13) from (14) and set ϕh := ξh(t) ∈ Sh. We get

1
2

d
dt
‖ξh(t)‖2 + εAh

(
ξh(t), ξh(t)

)

= −εAh

(
ηh(t), ξh(t)

)
+ bh

(
uh(t), ξh(t)

)− bh

(
u(t), ξh(t)

)−
(∂ηh(t)

∂t
, ξh(t)

)
.

(78)

Now, we apply the ellipticity and boundedness of Ah and Lemma 22 for the convective
terms. Finally, we obtain from (78)

d
dt
‖ξh(t)‖2 + ε‖ξh(t)‖2

DG + J̃h

(
ξh(t), ξh(t)

)

≤ C
(
h2p+1|u(t)|2Hp+1 + εh2p|u(t)|2Hp+1 + h2p+2|ut(t)|2Hp+1 + ‖ξh(t)‖2

)
.

Integration from 0 to t ∈ [0, T ] yields

‖ξh(t)‖2 +
∫ t

0
ε‖ξh(ϑ)‖2

DG + J̃h

(
ξh(ϑ), ξh(ϑ)

)
dϑ ≤ C

(
h2p+1 + εh2p

)
+ C

∫ t

0
‖ξh(ϑ)‖2 dϑ,

(79)

where the constant C is independent of h, t, ε. Gronwall’s inequality applied to (79)
gives us a constant C̃T , independent of h, t, ε, such that

max
ϑ∈[0,t]

‖ξh(ϑ)‖2 +
∫ t

0
ε‖ξh(ϑ)‖2

DG + J̃h

(
ξh(t), ξh(t)

)
dϑ ≤ C̃T

(
h2p+1 + εh2p

)
.

Using a similar inequality for ηh, we obtain estimate (77) for some constant CT . ¤
Now it remains to get rid of the apriori assumption uh(ϑ) ∈ Uad

h (ϑ) on [0, t]. As
in Section 7.1, we shall use the uniform continuity of eh(· ) as a function from [0, t] to
L2(Ω), cf. Remark 7.

Theorem 24 (Main theorem – local version). Let p > 1+d/2. Then there exists h1 > 0
such that CT (hp+1/2

1 +
√

εhp
1) = 1

2h
1+d/2
1 . Furthermore, for all h ∈ (0, h1] we have the

estimate

max
ϑ∈[0,T ]

‖eh(ϑ)‖2 +
∫ T

0
ε‖eh(ϑ)‖2

DG + J̃h

(
eh(ϑ), eh(ϑ)

)
dϑ ≤ C2

T

(
h2p+1 + εh2p

)
. (80)
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Proof. We have p > 1 + d/2, therefore h1 is uniquely determined and CT (hp+1/2 +√
εhp) ≤ 1

2h1+d/2 for all h ∈ (0, h1]. We fix an arbitrary h ∈ (0, h1]. By Remark 7, there
exists δ > 0, such that if s, s̄ ∈ [0, T ], |s− s̄| ≤ δ, then ‖eh(s)− eh(s̄)‖ ≤ 1

2h1+d/2.
We define ti = iδ, i = 0, 1, . . . and set N := max{i = 0, 1, . . . ; ti < T}, tN+1 := T .

This defines a partition 0 = t0 < t1 < · · · < tN+1 = T of the interval [0, T ] into N + 1
intervals of length (at most) δ.

We shall now prove by induction that for all n = 1, . . . , N + 1

max
ϑ∈[0,tn]

‖eh(ϑ)‖2 +
∫ tn

0
ε‖eh(ϑ)‖2

DG + J̃h

(
eh(ϑ), eh(ϑ)

)
dϑ ≤ C2

T

(
h2p+1 + εh2p

)
. (81)

Inequality (80) is thus obtained by taking n := N + 1 in (81).
(i) n = 1: We know that ‖eh(0)‖ = ‖ηh(0)‖ ≤ CT (hp+1/2 +

√
εhp) ≤ 1

2h1+d/2. By
uniform continuity, we have for all s ∈ [0, t1]

‖eh(s)‖ ≤ ‖eh(0)‖+ ‖eh(s)− eh(0)‖ ≤ 1
2h1+d/2 + 1

2h1+d/2 = h1+d/2.

Therefore, uh(s) ∈ Uad
h (s) for all s ∈ [0, t1] and by Lemma 23 we obtain estimate (81)

on [0, t1].
(ii) Induction step: We assume that (81) holds for a general n < N + 1. Therefore
‖eh(tn)‖ ≤ CT (hp+1/2 +

√
εhp) ≤ 1

2h1+d/2. By uniform continuity, we have that for all
s ∈ [tn, tn+1]

‖eh(s)‖ ≤ ‖eh(tn)‖+ ‖eh(s)− eh(tn)‖ ≤ 1
2h1+d/2 + 1

2h1+d/2 = h1+d/2.

This and the induction assumption imply that ‖eh(s)‖ ≤ h1+d/2 for s ∈ [0, tn] ∪
[tn, tn+1] = [0, tn+1]. Therefore, uh(s) ∈ Uad

h (s) for all s ∈ [0, tn+1] and by Lemma
23, we obtain estimate (81) on [0, tn+1]. ¤
Remark 15. If we assume f ∈ (C3(R))d then we may derive a ”local” version of
estimate (17) and Lemma 8 similarly as we proved Lemmas 21 and 22. In this case,
we would define the admissible set as Uad

h (t) := {v ∈ Sh; ‖u(t) − v‖ ≤ h(1+d)/2} and in
Theorem 24 we would get the improved assumption p > (1 + d)/2, or p > d/2 if ε = 0.

Remark 16. Assuming only f ∈ (C2(R))d, we may obtain error estimates for the
implicit scheme simply by ensuring that the continuated error ẽh(t) ∈ Uad

h (t) on [0, T ].
As in Section 9.2, we first prove a ”local” version of Lemma 18 under the assumption
ẽh(ϑ) ∈ Uad

h (ϑ) for all ϑ ∈ [0, t]. Then we use continuous mathematical induction to go
from t = 0 to t = T as in Theorem 24.

10 Conclusion

We have presented an analysis of the discontinuous Galerkin finite element method for a
nonlinear singularly perturbed convection-diffusion problem on quasi-uniform triangula-
tions. Building on results from [44], which dealt with an explicit time discretization, we
proved apriori L∞(L2) error estimates independent of the diffusion coefficient ε ≥ 0 for
the method of lines and a fully implicit scheme. The derived estimates are suboptimal
in the L∞(L2)-norm, but for ε > 0 also a DG energy norm is included in the estimates,
which is estimated optimally, but degenerates for ε → 0.

• We have extended the key estimate of the convective term from [44] to the case of
mixed Dirichlet-Neumann conditions if f ∈ (C2

b (R))d. An improved estimate for
f ∈ (C3

b (R))d is obtained for Dirichlet boundary conditions.
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• Using these estimates and the apriori assumption ‖eh(t)‖∞ = O(h), we prove that
if p > 1 + d/2, then ‖eh‖L∞(L2) ≤ CT (hp+1/2 + εhp) with CT independent of the
diffusion coefficient ε. Using continuous mathematical induction we eliminate the
apriori assumption.

• We show that for the method of lines the same estimate can be obtained directly
using a nonlinear Gronwall lemma.

• For a fully implicit scheme we show that the error equation and the considered
estimates of its individual terms do not imply the desired error estimate. Hence,
more information about the discrete problem is needed to proceed with the anal-
ysis.

• Using an appropriate auxiliary problem derived from the implicit scheme, we
introduce a suitable continuation ũh with respect to time of the discrete solution
un

h. Using continuous mathematical induction we prove error estimates for ũh,
which imply estimates for un

h.

• For the first order implicit scheme we have that if p > 1+d/2, then supn=0,··· ,N ‖en
h‖ ≤

CT (hp+1/2 + εhp + τ) with CT independent of ε. This is proved under the rather
restrictive CFL-like condition τ = O(h1+d/2).

• For f ∈ (C3
b (R))d, we obtain the derived estimates under the assumption p >

(1 + d)/2 and the less restrictive CFL condition τ = O(h(1+d)/2). For ε = 0 this
improves to p > d/2.

• Finally, we extend the obtained results to the locally Lipschitz case f ∈ (C2(R))d

and f ∈ (C3(R))d using continuous mathematical induction directly, without the
need to modify the original problem as in [44].

There are several open problems connected with the presented analysis:

• Eliminating the order condition p > 1 + d/2 and p > (1 + d)/2, respectively.

• Eliminating the unnatural CFL condition τ = O(h1+d/2) and τ = O(h(1+d)/2),
respectively.

• Obtaining optimal error estimates of the order O(hp+1/2 +εhp+1) using some form
of the Aubin-Nitsche technique.

• The extension to nonlinear diffusion terms using e.g. the estimates derived in [32]
for a diffusion of the form −div

(
β(u)∇u

)
.
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Abstract

The paper is concerned with the simulation of viscous compressible flow in time
dependent domains. The dependence on time of the domain occupied by the fluid
is taken into account with the aid of the ALE (Arbitrary Lagrangian-Eulerian) for-
mulation of the compressible Navier-Stokes equations. They are discretized by the
discontinuous Galerkin finite element method using piecewise polynomial discontin-
uous approximations. The time discretization is based on a semi-implicit linearized
scheme, which leads to the solution of a linear algebraic system on each time level.
A suitable treatment of boundary conditions and shock capturing are used, allowing
the solution of flow with a wide range of Mach numbers. The applicability of the
developed method is demonstrated by computational results obtained for compress-
ible viscous flow in a channel with moving walls and flow induced airfoil vibrations.

Keywords: compressible Navier-Stokes equations; time dependent domain; ALE
method, discontinuous Galerkin method; semi-implicit time discretization; bound-
ary conditions, shock indicator; artificial viscosity; flow in a channel with moving
walls; fluid-structure interaction, flow induced airfoil vibrations.

1 Introduction

The interaction of fluid flow with vibrating bodies plays a significant role in many
areas of science and technology. We mention, for example, development of airplanes
(vibrations of wings) or turbines (blade vibrations), some problems from civil engineer-
ing (interaction of wind with constructions as bridges, TV towers or cooling towers of
power stations), car industry (vibration of various elements of a carosery), but also in
medicine (hemodynamics or flow in the glottis with vibrating vocal folds). In a number
of these examples the moving medium is a gas, i.e. compressible flow. For low Mach
number flows incompressible models are used (as e.g. in [1], [14]), but in some cases
compressibility plays an important role.

The solution of fluid-structure interaction requires the coupling of the solution of
equations describing the fluid flow with equations describing the structural behaviour.
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Due to the deformation and/or vibrations of structures, the computational domain is
time dependent. There exist several techniques of the solution of incompressible flow
in time dependent domains. See, e.g. [1], [14] and references therein. The numerical
simulation of compressible flow is much more difficult, particularly in time dependent
domains. It is necessary to overcome difficulties caused by nonlinear convection dom-
inating over diffusion, which leads to boundary layers and wakes for large Reynolds
numbers and shock waves and contact discontinuities for high Mach numbers and in-
stabilities caused by acoustic effects for low Mach numbers.

It appears that a suitable numerical method for the solution of compressible flow
is the discontinuous Galerkin finite element method (DGFEM). It employs piecewise
polynomial approximations without any requirement on the continuity on interfaces
between neighbouring elements. The DGFEM was used for the numerical simulation
of the compressible Euler equations, for example, by Bassi and Rebay in [2], where the
space DG discretization was combined with explicit Runge-Kutta time discretization.
In [3] Baumann and Oden describe an hp version of the space DG discretization with
explicit time stepping to compressible flow. Van der Vegt and van der Ven apply space-
time discontinuous Galerkin method to the solution of the Euler equations in [15],
where the discrete problem is solved with the aid of a multigrid accelerated pseudo-
time-integration. The papers [6] and [9] are concerned with a semi-implicit DGFEM
technique for the solution of inviscid compressible flow, which is unconditionally stable.
In [11], this method was extended so that the resulting scheme is robust with respect
to the magnitude of the Mach number. The paper [5] is concerned with discontinuous
Galerkin method for viscous compressible flow.

The goal of our research is the numerical simulation of interaction of compressible
flow with structures as, e.g. flow induced airfoil vibrations or the flow past a vibrating
elastic wall. We are concerned with the generalization of the method from [11], [9] and
[5] to the solution of compressible inviscid and viscous flow in time dependent domains.
The main ingredients of the method is the discontinuous Galerkin space semidiscretiza-
tion of the governing equations written in the ALE (arbitrary Lagrangian-Eulerian, cf.
[14]) form, semi-implicit time discretization, suitable treatment of boundary conditions
and the shock capturing avoiding Gibbs phenomenon at discontinuities. Numerical
experiments prove the applicability of the method.

2 Formulation of the problem

We shall be concerned with the numerical solution of compressible flow in a bounded
domain Ωt ⊂ IR2 depending on time t ∈ [0, T ]. Let the boundary of Ωt consist of three
different parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt , where ΓI is the inlet, ΓO is the outlet and ΓWt

denotes impermeable walls that may move in dependence on time.

The system describing compressible flow, consisting of the continuity equation, the
Navier-Stokes equations and the energy equation, can be written in the form

∂w

∂t
+

2∑

s=1

∂f s(w)
∂xs

=
2∑

s=1

∂Rs(w,∇w)
∂xs

, (1)

124



Simulation of compressible viscous flow in time-dependent domains

where

w = (w1, . . . , w4)T = (ρ, ρv1, ρv2, E)T ∈ IR4, (2)
w = w(x, t), x ∈ Ωt, t ∈ (0, T ),

f i(w) = (fi1, · · · , fi4)T = (ρvi, ρv1vi + δ1i p, ρv2vi + δ2i p, (E + p)vi)
T ,

Ri(w,∇w) = (Ri1, . . . , Ri4)T =
(
0, τV

i1 , τV
i2 , τV

i1 v1 + τV
i2 v2 + k∂θ/∂xi

)T
,

τV
ij = λdivv δij + 2µdij(v), dij(v) =

1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
.

We use the following notation: ρ – density, p – pressure, E – total energy, v = (v1, v2) –
velocity, θ – absolute temperature, γ > 1 – Poisson adiabatic constant, cv > 0 – specific
heat at constant volume, µ > 0, λ = −2µ/3 – viscosity coefficients, k – heat conduction.
The vector-valued function w is called state vector, the functions f i are the so-called
inviscid fluxes and Ri represent viscous terms.

The above system is completed by the thermodynamical relations

p = (γ − 1)(E − ρ|v|2/2), θ =
(E

ρ
− 1

2
|v|2

)/
cv. (3)

The resulting system is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω0, (4)

and the following boundary conditions:

a) ρ|ΓI
= ρD, b) v|ΓI

= vD = (vD1, vD2)T, (5)

c)
2∑

i,j=1

τV
ij nivj + k

∂θ

∂n
= 0 on ΓI ,

d) v|ΓWt
= zD = velocity of a moving wall, e)

∂θ

∂n
|ΓWt

= 0 on ΓWt ,

f)
2∑

i=1

τV
ij ni = 0, j = 1, 2, g)

∂θ

∂n
= 0 on ΓO.

In order to treat the time dependence of the domain, we use the so-called arbitrary
Lagrangian-Eulerian ALE technique, see e.g. [12]. We define a reference domain Ω0

and introduce a regular one-to-one ALE mapping of Ω0 onto Ωt:

At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈ Ωt.

Here we use the notation X for points in Ω0 and x for points in Ωt.
Further, we define the domain velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0,

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt

and the ALE derivative of a function f = f(x, t) defined for x ∈ Ωt and t ∈ [0, T ]:

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t), (6)
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where
f̃(X, t) = f(At(X), t), X ∈ Ω0, x = At(X).

As a direct consequence of the chain rule we get the relation

DAf

Dt
=

∂f

∂t
+ div (zf)− f div z.

This leads to the ALE formulation of the Navier-Stokes equations

DAw

Dt
+

2∑

s=1

∂gs(w)
∂xs

+ w divz =
2∑

s=1

∂Rs(w,∇w)
∂xs

, (7)

where
gs(w) := f s(w)− zsw, s = 1, 2,

are the ALE modified inviscid fluxes.
We see that in the ALE formulation of the Navier-Stokes equations the time deriva-

tive ∂w/∂t is replaced by the ALE derivative DAw/Dt, the inviscid fluxes f s are
replaced by the ALE modified inviscid fluxes gs and a new additional ”reaction” term
w divz appears.

3 Discrete problem

3.1 Discontinuous Galerkin space semidiscretization

For the space semidiscretization we use the discontinuous Galerkin finite element method.
We construct a polygonal approximation Ωht of the domain Ωt. By Tht we denote a
partition of the closure Ωht of the domain Ωht into a finite number of closed triangles
K with mutually disjoint interiors such that Ωht =

⋃
K∈Tht

K.

By Fht we denote the system of all faces of all elements K ∈ Tht. Further, we
introduce the set of all interior faces FI

ht = {Γ ∈ Fht; Γ ⊂ Ωt} , the set of all boundary
faces FB

ht = {Γ ∈ Fht; Γ ⊂ ∂Ωht} and the set of all “Dirichlet” boundary faces FD
ht ={

Γ ∈ FB
ht; a Dirichlet condition is prescribed on Γ

}
. Each Γ ∈ Fht is associated with a

unit normal vector nΓ to Γ. For Γ ∈ FB
ht the normal nΓ has the same orientation as

the outer normal to ∂Ωht. We set d(Γ) = length of Γ ∈ Fht.
For each Γ ∈ FI

ht there exist two neighbouring elements K
(L)
Γ ,K

(R)
Γ ∈ Th such that

Γ ⊂ ∂K
(R)
Γ ∩∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the direction of nΓ and K

(L)
Γ

lies in the opposite direction to nΓ. The elements K
(L)
Γ , K

(R)
Γ are called neighbours. If

Γ ∈ FB
ht, then the element adjacent to Γ will be denoted by K

(L)
Γ .

The approximate solution will be sought in the space of piecewise polynomial func-
tions

Sht = [Sht]4, with Sht = {v; v|K ∈ Pr(K) ∀K ∈ Tht}, (8)

where r ≥ 0 is an integer and Pr(K) denotes the space of all polynomials on K of degree
≤ r. A function ϕ ∈ Sht is, in general, discontinuous on interfaces Γ ∈ FI

ht. By ϕ
(L)
Γ

and ϕ
(R)
Γ we denote the values of ϕ on Γ considered from the interior and the exterior

of K
(L)
Γ , respectively, and set

〈ϕ〉Γ = (ϕ(L)
Γ + ϕ

(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ −ϕ

(R)
Γ . (9)
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The discrete problem is derived in the following way: We multiply system (7) by
a test function ϕh ∈ Sht, integrate over K ∈ Tht, apply Green’s theorem, sum over
all elements K ∈ Tht, use the concept of the numerical flux and introduce suitable
terms mutually vanishing for a regular exact solution. In this way we get the following
identity:

∑

K∈Tht

∫

K

DAw

Dt
·ϕh dx + bh(w, ϕh) + ah(w, ϕh) + Jh(w, ϕh) + dh(w, ϕh)

= `h(w, ϕh).

Here

bh(w, ϕh) = −
∑

K∈Tht

∫

K

2∑

s=1

gs(w)· ∂ϕh

∂xs
dx (10)

+
∑

Γ∈FI
ht

∫

Γ
Hg(w

(L)
Γ , w

(R)
Γ , nΓ)· [ϕh]Γ dS +

∑

Γ∈FB
ht

∫

Γ
Hg(w

(L)
Γ , w

(R)
Γ , nΓ)·ϕ(L)

hΓ dS

is the convection form, defined with the aid of a numerical flux Hg. We require that it
is consistent with the fluxes gs:

Hg(w, w, n) =
2∑

s=1

gs(w)ns (n = (n1, n2), |n| = 1),

conservative:
Hg(u, w, n) = −Hg(w, u,−n),

and locally Lipschitz-continuous. The determination of the boundary state w
(R)
Γ in the

case when Γ ⊂ ∂Ωht is described in Section 3.4.
Further, we define the viscous form

ah(w,ϕh) =
∑

K∈Tht

∫

K

2∑

s=1

Rs(w,∇w) · ∂ϕh

∂xs
dx (11)

−
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

〈Rs(w,∇w)〉Γ(nΓ)s · [ϕh]Γ dS

−
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

Rs(w,∇w)(nΓ)s ·ϕ(L)
hΓ dS,

(we use the incomplete discretization of viscous terms - the so-called IIPG version), the
interior and boundary penalty terms and the right-hand side form, respectively,

Jh(w,ϕh) =
∑

Γ∈FI
ht

∫

Γ
σ[w]Γ · [ϕh]Γ dS +

∑

Γ∈FD
ht

∫

Γ
σw ·ϕ(L)

hΓ dS, (12)

`h(w,ϕh) =
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

σwB ·ϕ(L)
hΓ dS. (13)
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Here σ|Γ = CW µ/d(Γ) and CW > 0 is a sufficiently large constant. The reaction form
reads

dh(w, ϕh) =
∑

K∈Tht

∫

K
(w ·ϕh) divz dx. (14)

The boundary state wB is defined on the basis of the Dirichlet boundary conditions
(5), a), b), d) and extrapolation:

wB = (ρD, ρDvD1, ρDvD2, cvρDθ
(L)
Γ +

1
2
ρD|vD|2) on ΓI , (15)

wB = w
(L)
Γ on ΓO, (16)

wB = (ρ(L)
Γ , ρ

(L)
Γ zD1, ρ

(L)
Γ zD2, cvρ

(L)
Γ θ

(L)
Γ +

1
2
ρ
(L)
Γ |zD|2) on ΓWt . (17)

The approximate solution is defined as wh(t) ∈ Sht such that

∑

K∈Tht

∫

K

DAwh(t)
Dt

·ϕh dx + bh(wh(t), ϕh) + ah(wh(t), ϕh)

+ Jh(wh(t), ϕh) + dh(wh(t),ϕh) = `h(wh(t), ϕh)

holds for all ϕh ∈ Sht, all t ∈ (0, T ) and wh(0) = w0
h is an approximation of the initial

state w0.

3.2 Time discretization

Let us construct a partition 0 = t0 < t1 < t2 . . . of the time interval [0, T ] and define
the time step τk = tk+1 − tk. We use the approximations wh(tn) ≈ wn

h ∈ Shtn ,
z(tn) ≈ zn, n = 0, 1, . . . and introduce the function ŵk

h = wk
h ◦ Atk ◦ A−1

tk+1
, which is

defined in the domain Ωhtk+1
. In order to approximate the ALE derivative at time tk+1,

we start from its definition and then use the backward difference:

DAwh

Dt
(x, tk+1) =

∂w̃h

∂t
(X, tk+1)

≈ w̃k+1
h (X)− w̃k

h(X)
τk

=
wk+1

h (x)− ŵk
h(x)

τk
, x = Atk+1

(X) ∈ Ωhtk+1
.

By the symbol (·, ·) we shall denote the scalar product in L2(Ωhtk+1
). A possible full

discretization reads: We seek wk+1
h ∈ Shtk+1

such that for all ϕh ∈ Shtk+1
, k = 0, 1, . . .,

(wk+1
h − ŵk

h

τk
, ϕh

)
+ bh(wk+1

h , ϕh) + ah(wk+1
h ,ϕh) (18)

+ Jh(wk+1
h , ϕh) + dh(wk+1

h , ϕh) = `h(wk+1
h , ϕh).

Scheme (18) is of the first-order in time. In order to increase the accuracy in the
time discretization, it is possible to use the second-order backward difference formula
(BDF) for the approximation of the ALE derivative:

DAwh

Dt
(tk+1) ≈ 2τk + τk−1

τk(τk + τk−1)
wk+1

h − τk + τk−1

τkτk−1
ŵk

h +
τk

τk−1(τk + τk−1)
ŵk−1

h . (19)

The problem for obtaining wk+1
h from (18) is equivalent to a strongly nonlinear algebraic

system and its solution is rather difficult.
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Our goal is to develop a numerical scheme, which would be accurate and robust,
with good stability properties and efficiently solvable. Therefore, we proceed similarly
as in [6] and use a partial linearization of the forms bh and ah. This approach leads
to a scheme that requires the solution of only one large sparse linear system on each
time level. The efficiency and accuracy of this technique was analyzed in [6], [9] and
[11] in the case of inviscid flow, where advantages of this method are demonstrated
by numerical experiments. Here we show that this technique can be extended to the
solution of viscous compressible flow in time-dependent domains with applications to
fluid-structure interaction.

The linearization of the first term of the form bh is based on the relations

gs(w
k+1
h ) = (As(wk+1

h )− zk+1
s I)wk+1

h ≈ (As(wk+1
h )− zk+1

s I)wk+1
h ,

where As(w) is the Jacobi matrix of f s(w), cf. [10]. By wk+1
h we define the state

obtained by the extrapolation:

wk+1
h = ŵk

h and wk+1
h =

τk + τk−1

τk−1
ŵk

h −
τk

τk−1
ŵk−1

h (20)

in the case of the first-order time discretization and second-order time discretization,
respectively.

The second term of bh is linearized with the aid of the Vijayasundaram numerical
flux (cf. [16]) defined in the following way. Taking into account the definition of gs, we
have

Dgs(w)
Dw

=
Df s(w)

Dw
− zsI = As(w)− zsI, (21)

and can write

Pg(w, n) =
2∑

s=1

Dgs(w)
Dw

ns =
2∑

s=1

(As(w)ns − zsnsI) . (22)

By [10], this matrix is diagonalizable. It means that there exists a nonsingular matrix
T = T(w, n) such that

Pg = TIΛT−1, IΛ = diag(λ1, . . . , λ4), (23)

where λi = λi(w, n) are eigenvalues of the matrix Pg. Now we define the ”positive”
and ”negative” parts of the matrix Pg by

P±g = TIΛ±T−1, IΛ± = diag(λ±1 , . . . , λ±4 ), (24)

where λ+ = max(λ, 0), λ− = min(λ, 0). Using the above concepts, we introduce the
modified Vijayasundaram numerical flux (cf. [16] or [10]) as

Hg(wL, wR, n) = P+
g

(wL + wR

2
,n

)
wL + P−g

(wL + wR

2
, n

)
wR. (25)

Using the above definition of the numerical flux, we introduce the approximations

Hg(w
k+1(L)
hΓ , w

k+1(R)
hΓ ,nΓ) ≈ P+

g (〈wk+1
h 〉Γ, nΓ)wk+1(L)

hΓ + P−g (〈wk+1
h 〉Γ, nΓ)wk+1(R)

hΓ .

for Γ ∈ FI
htk+1

and

Hg(w
k+1(L)
hΓ , w

k+1(R)
hΓ , nΓ) ≈ P+

g (〈wk
h〉Γ, nΓ)wk+1(L)

hΓ + P−g (〈wk
h〉Γ, nΓ)wk+1(R)

hΓ .
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for Γ ∈ FB
htk+1

. In this way we get the form

b̂h(wk+1
h , wk+1

h ,ϕh) (26)

= −
∑

K∈Thtk+1

∫

K

2∑

s=1

(As(wk+1(x))− zk+1
s (x))I)wk+1(x))· ∂ϕh(x)

∂xs
dx,

+
∑

Γ∈FI
htk+1

∫

Γ

(
P+

g

(〈
wk+1

h

〉
, nΓ

)
w

k+1(L)
h + P−g

(〈
wk+1

h

〉
, nΓ

)
w

k+1(R)
h

)
· [ϕh]dS

+
∑

Γ∈FB
htk+1

∫

Γ

(
P+

g

(〈
wk+1

h

〉
, nΓ

)
w

k+1(L)
h + P−g

(〈
wk+1

h

〉
, nΓ

)
w

k+1(R)
h

)
·ϕhdS.

For the determination of the boundary state w
k+1(R)
h , if Γ ⊂ ∂Ωhtk+1

, we refer to Section
3.4.

The linearization of the form ah is based on the fact that Rs(wh,∇wh) is linear in
∇w and nonlinear in w. We get the linearized viscous form

âh(wk+1
h , wk+1

h , ϕh) =
∑

K∈Thtk+1

∫

K

2∑

s=1

Rs(wk+1
h ,∇wk+1

h )· ∂ϕh

∂xs
dx (27)

−
∑

Γ∈FI
htk+1

∫

Γ

2∑

s=1

〈
Rs(wk+1

h ,∇wk+1)
〉
(nΓ)s · [ϕh] dS

−
∑

Γ∈FD
htk+1

∫

Γ

2∑

s=1

Rs(wk+1
h ,∇wk+1

h )(nΓ)s ·ϕh dS.

3.3 Artificial viscosity

In high-speed gas flow with large Mach numbers, discontinuities - called shock waves
or contact discontinuities - appear. In viscous high-speed flow these discontinuities
may be smeared due to viscosity and heat conduction. Near shock waves and contact
discontinuities, the so-called Gibbs phenomenon, manifested by nonphysical spurious
overshoots and undershoots, usually occurs in the numerical solution. In order to avoid
this undesirable phenomenon, it is necessary to apply a suitable limiting procedure.
Here we use the approach proposed in [11] based on the discontinuity indicator

gk(K) =
∫

∂K
[ρ̂k

h]2 dS
/
(hK |K|3/4), K ∈ Thtk+1

, (28)

introduced in [7]. By [ρ̂k
h] we denote the jump of the function ρ̂k

h on the boundary ∂K
and |K| denotes the area of the element K. Then we define the discrete discontinuity
indicator

Gk(K) = 0 if gk(K) < 1, Gk(K) = 1 if gk(K) ≥ 1, K ∈ Thtk+1
, (29)
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and the artificial viscosity forms

β̂h(ŵk
h, wk+1

h , ϕh) = ν1

∑

K∈Thtk+1

hKGk(K)
∫

K
∇wk+1

h · ∇ϕh dx, (30)

Ĵh(ŵk
h, wk+1

h ,ϕh) = ν2

∑

Γ∈FI
htk+1

1
2
(
Gk(K(L)

Γ ) + Gk(K(R)
Γ )

) ∫

Γ
[wk+1

h ]· [ϕh] dS,

with parameters ν1, ν2 = O(1).
The resulting scheme has the following form: We seek wk+1

h ∈ Shtk+1
such that for

all ϕh ∈ Shtk+1
, k = 0, 1, . . .,

(wk+1
h − ŵk

h

τk
, ϕh

)
+ b̂h(ŵk

h, wk+1
h ,ϕh) + âh(ŵk

h, wk+1
h ,ϕh) + Jh(wk+1

h , ϕh)

+ dh(wk+1
h , ϕh) + β̂h(ŵk

h, wk+1
h ,ϕh) + Ĵh(ŵk

h, wk+1
h ,ϕh) = `(wk+1

B ,ϕh), (31)

in the case of the first-order time discretization. The second-order time discretization
is obtained by replacing the expression (wk+1

h − ŵk
h,ϕh)/τk by the approximation (19)

and replacing ŵk
h in the forms âh and b̂h by wk+1

h .
This method successfully overcomes problems with the Gibbs phenomenon in the

context of the semi-implicit scheme. It is important that the indicator Gk(K) vanishes
in regions, where the solution is regular and, therefore, the numerical solution does not
contain any nonphysical entropy production in these regions. If the described artificial
viscosity is not applied, then in the case of high-speed flow with shock waves and
contact discontinuities the computational process collapses, because negative values of
the approximation of the density and pressure appear.

3.4 Treatment of boundary states in the form b̂h

If Γ ∈ FB
htk+1

, it is necessary to specify the boundary state w
k+1(R)
hΓ appearing in the

numerical flux Hg in the definition of the inviscid form b̂h. For simplicity we shall use
the notation w(R) for values of the function w

k+1(R)
hΓ which should be determined at

individual integration points on the face Γ. Similarly, w(L) will denote the values of
w

k+1(L)
hΓ at the corresponding points.

On the inlet, which is assumed fixed, we proceed in the same way as in [11], Section
4. Using rotational invariance, we transform the Euler equations

∂w

∂t
+

2∑

s=1

∂f s(w)
∂xs

= 0

to the coordinates x̃1, parallel with the normal direction n = nΓ to ∂Ω, and x̃2, tan-
gential to the boundary. In this way we obtain a system for an unknown function
q = Q(n)w, where

Q(n) =




1, 0, 0, 0
0, n1, n2, 0
0, −n2, n1, 0
0, 0, 0, 1


 (32)
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is the rotational matrix. Now we neglect the derivative with respect to x̃2 and linearize
the system around the state q(L) = Q(n)w(L). In this way we obtain the linear system

∂q

∂t
+ A1(q(L))

∂q

∂x̃1
= 0, (33)

for the vector-valued function q = q(x̃1, t), considered in the set (−∞, 0)× (0,∞) and
equipped with the initial and boundary conditions

q(x̃1, 0) = q(L), x̃1 < 0, and q(0, t) = q(R), t > 0. (34)

The goal is to choose q(R) in such a way that this initial-boundary value problem is well
posed, i.e. has a unique solution. The method of characteristics leads to the following
process:

Let us put q∗ = Q(n)w∗, where w∗ is a given boundary state at the inlet. We
calculate the eigenvectors rs corresponding to the eigenvalues λs, s = 1, . . . , 4, of the
matrix A1(q(L)), arrange them as columns in the matrix T and calculate T−1. Now we
set

α = T−1q(L), β = T−1q∗ (35)

and define the state q(R) by the relations

q(R) :=
4∑

s=1

γsrs, γs =
{

αs, λs ≥ 0,
βs, λs < 0.

(36)

Finally, the sought boundary state w(R) is defined as

w(R) = Q−1(n)q(R). (37)

On the impermeable moving wall we prescribe the normal component of the velocity

v · n = zD · n, (38)

where n is the unit outer normal to ΓWt and zD is the wall velocity. This implies
that two eigenvalues of Pg(w, n) are equal to zero, one eigenvalue is positive and one
eigenvalue is negative. Then, in analogy to [10], Section 3.3.6, we should prescribe one
quantity, namely v · n, and extrapolate three quantities - tangential velocity, density
and pressure.

However, here we define the numerical flux on ΓWt as the physical flux through the
boundary with the assumption (38) taken into account. Thus, on ΓWt we write

2∑

s=1

gs(w)ns = (v · n− zD · n)w + p (0, n1, n2, v · n)T (39)

= p (0, n1, n2,zD · n)T =: Hg.

On the outlet (which does not depend on time) the pressure is prescribed and other
variables are extrapolated. However, numerical experiments show that this treatment
of the outlet boundary conditions can lead to the reflection of a strong intensity vortex
on an artificial outlet in the numerical simulation. This problem, which does not appear
in the examples presented in Section 4, will require a special analysis in the future.
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Figure 1: Computational domain for flow in human vocal folds.

Remark 1. In practical computations, integrals appearing in the definitions of the forms
âh, b̂h, dh, Jh, Ĵh and β̂h are evaluated with the aid of quadrature formulas.

The developed numerical scheme can also be used for the numerical solution of in-
viscid flow, if we set µ = λ = k = 0. See [11].

The linear algebraic system equivalent to (31) is solved either by a direct solver
UMFPACK ([4]) or by the GMRES method with block diagonal preconditioning.

If we set r = 0, we get a finite volume scheme.

4 Numerical experiments

In order to demonstrate the applicability of the developed method, we present here
results of two numerical experiments. In both cases piecewise quadratic finite elements
(r = 2) in the space discretization are used. For the time discretization the second-order
BDF formula from Section 3.2 is used.

4.1 Flow through a channel with moving walls

In the first example we present results of numerical experiments carried out for viscous
compressible flow in a channel with geometry from [13] inspired by the shape of the
human glottis and a part of supraglottal spaces as shown in Figure 1. The walls are
moving in order to mimic the vibrations of vocal folds during voice production. The
lower channel wall between the points A and B and the upper wall symmetric with
respect to the axis of the channel are vibrating up and down periodically with frequency
100 Hz. This movement is interpolated into the domain resulting in the ALE mapping
At.

The width of the channel at the inlet (left part of the boundary) is H = 0.016
m and its length is L = 0.16 m. The width of the narrowest part of the channel (at
the point C) oscillates between 0.0004 m and 0.0028 m with frequency 100 Hz. We
consider the following input parameters and boundary conditions: magnitude of the
inlet velocity vin = 4 m/s, the viscosity µ = 15 · 10−6 kg m−1 s−1, the inlet density
ρin = 1.225 kg m−3, the outlet pressure pout = 97611 Pa, the Reynolds number Re =
ρinvinH/µ = 5227, heat conduction coefficient k = 2.428·10−2 kg m s−2 K−1, the specific
heat cv = 721.428m2 s−2 K−1, the Poisson adiabatic constant γ = 1.4. The inlet Mach
number is Min = 0.012.

In [13], the described channel flow was solved by the first-order finite volume method
under the assumption that the flow is symmetric with respect to the axis of the channel.
This means that the results presented in [13] do not reflect the behaviour of real flow.

133



Simulation of compressible viscous flow in time-dependent domains

Figure 2: Streamlines at time instants t = 2.016, 2.124, 2.448, 2.664 s.

Here, we use piecewise quadratic finite elements and we do not require the symmetry
of the flow field.

Figure 2 shows computed streamlines of the solution at different time instants
2.016, 2.124, 2.448, 2.664 s during the fourth period of the motion. In the solution
we can observe large vortex formation convected through the domain. The flow field is
neither periodic, nor axisymmetric, in spite of the fact that the computational domain
is axisymmetric and the motion of the channel walls is periodic and symmetric as well.
We can observe the so-called Coandă effect, when the main flow is attached to one of
the walls. This effect is not present in results of the paper [13]
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Figure 3: Computational domain for flow around a vibrating airfoil.
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4.2 Flow induced airfoil vibrations

The second example is concerned with the simulation of vibrations of elastically sup-
ported airfoil NACA 0012 induced by compressible viscous flow. The airfoil has two
degrees of freedom: the vertical displacement H (positively oriented downwards) and
the angle of rotation around an elastic axis α (positively oriented clockwise), cf. Figure
3. The motion of the airfoil is described by the system of nonlinear ordinary differential
equations for unknowns H, α:

mḦ + kHHH + Sα α̈ cosα− Sαα̇2 sinα + dHHḢ = −L(t), (40)

SαḦ cosα + Iαα̈ + kααα + dααα̇ = M(t).

The dot and two dots denote the first-order and second-order time derivative, respec-
tively. We use the following notation: L(t) – aerodynamic lift force (upwards positive),
M(t) – aerodynamic torsional moment (clockwise positive), m - mass of the airfoil,
Sα – static moment around the elastic axis EO, Iα – inertia moment around the elastic
axis EO, kHH – bending stiffness, kαα – torsional stiffness, dHH – structural damping
in bending, dαα – structural damping in torsion, c - length of the chord of the airfoil, l
– airfoil depth.

System (40) is equipped with the initial conditions prescribing the values H(0), α(0),
Ḣ(0), α̇(0). It is transformed to a first-order ODE system and solved numerically by
the fourth-order Runge-Kutta method. For the derivation of equations (40), see [14].
The aerodynamic lift force L acting in the vertical direction and the torsional moment
M are defined by

L = − l

∫

ΓWt

2∑

j=1

τ2jnjdS, M = l

∫

ΓWt

2∑

i,j=1

τijnjr
ort
i dS, (41)

where

τij = (−p + λdivv)δij + µ
(∂ui

∂xj
+

∂uj

∂xi

)
, (42)

rort
1 = −(x2 − xEO2), rort

2 = x1 − xEO1.

By τij we denote the components of the stress tensor, δij denotes the Kronecker symbol,
n = (n1, n2) is the unit outer normal to ∂Ωt on ΓWt (pointing into the airfoil) and
xEO = (xEO1, xEO2) is the position of the elastic axis (lying in the interior of the
airfoil). Relations (41) and (42) define the coupling of the fluid dynamical model with
the structural model.

4.2.1 Algorithm of the flow induced airfoil vibrations simulation

In the solution of the complete coupled fluid-structure interaction problem we apply the
following algorithm:

1) Assume that the approximate solution of the discrete flow problem (31) at time
levels tk−1 and tk is known and the force L and torsional moment M are computed
from (41).

2) Extrapolate L and M on the time interval [tk, tk+1].
3) Compute the displacement H and angle α at time tk+1 as the solution of system

(40).
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4) Determine the position of the airfoil at time tk+1, the domain Ωtk+1
, the ALE

mapping and the domain velocity at time tk+1.
5) Solve the discrete system at time tk+1.
6) Compute L and M at time tk+1 and interpolate L and M on [tk, tk+1].
7) Is higher accuracy needed? YES: go to 3); NO: k := k + 1, go to 2).

If in step 7) one goes to 2), the so-called loose (weak) coupling is applied. In our
numerical experiments the stronger coupling was applied with 4 – 5 loops for obtain-
ing the difference between two approximations of H and α less than 10−5. The ALE
mapping and the domain velocity are computed in the same way as in [8].

4.2.2 Results of numerical experiments

I) The simulation of flow induced airfoil vibrations was carried out for the following data:
m = 0.086622 kg, Sα = −0.000779673 kg m, Iα = 0.000487291 kg m2, kHH = 105.109
N/m, kαα = 3.696682 Nm/rad, l = 0.05 m, c = 0.3 m, µ = 1.8375 · 10−5 kg m−1 s−1,
far-field density ρ = 1.225 kg m−3, H(0) = 0.02 m, α(0) = 6 degrees, Ḣ(0) = 0, α̇ = 0.
We neglect the structural damping. The elastic axis is placed on the airfoil chord at
the 40% distance from the leading edge.

The computational process starts at time t = −δ < 0 by the solution of the flow,
keeping the airfoil in a fixed position given by the prescribed initial translation H and
the angle of attack α. Then, at time t = 0 the airfoil is released and we continue by the
solution of a complete fluid-structure interaction problem.

Figure 4 shows the displacement H and the rotation angle α in dependence on time
for the far-field velocity 10, 20, 30 and 40 m/s. The corresponding Reynolds number
was in the range 2 · 105 − 8 · 105. We see that for the velocities 10, 20 and 30 m/s the
vibrations are damped, but for the velocity 40 m/s we get the flutter instability when
the vibration amplitudes are increasing in time. The monotonous increase and decrease
of the average values of H and α, respectively, shows that the flutter is combined with
a divergence instability in the presented example.

II) In the above examples the flow was subsonic. The described method was also
applied to transonic flow with far-field velocity 290 m/s, far-field Mach number 0.85,
Reynolds number 5000 and initial data H(0) = 0, α(0) = 4 degrees, Ḣ(0) = α̇(0) =
0. In this case it was necessary to consider harder bending and torsional stiffnesses.
We set kHH = 105109 N/m and kαα = 36.956 N m/rad. Figure 5 shows the time
dependence of H and α. In Figure 6, Mach number isolines at time instants t =
0.00261, 0.00661, 0.00831, 0.00961 s are shown. We see an interesting system of shock
waves, separated boundary layer, wake moving in time and vortices leaving the airfoil.

5 Conclusion

We have presented an efficient numerical scheme for the solution of the compressible
Navier-Stokes equations in time dependent domains and the simulation of flow induced
airfoil vibrations. It is based on several important ingredients:

• the ALE method applied to the compressible Navier-Stokes equations,

• the application of the discontinuous Galerkin method for the space discretization,

• semi-implicit time discretization,

• suitable treatment of boundary conditions,
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Figure 4: Displacement H (left) and rotation angle α (right) of the airfoil in dependence
on time for far-field velocity 10, 20, 30 and 40 m/s.
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Figure 5: Displacement H (left) and rotation angle α (right) of the airfoil in dependence
on time for far-field velocity 290 m/s and far-field Mach number 0.85.

Figure 6: Flow past an airfoil: Mach number isolines for far-field velocity 290 m/s and
far-field Mach number 0.85 at time instants t = 0.00261, 0.00661, 0.00831, 0.00961 s,
ordered from left to right in rows.
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• artificial viscosity applied in the vicinity of discontinuities.

The developed method behaves as unconditionally stable and appears to be robust with
respect to the magnitude of the Mach number. The presented examples demonstrate
that the method can be applied to the numerical solution of compressible flow with very
low Mach numbers as well as high-speed flow with shock waves and contact discontinu-
ities.

Future work will be concentrated on the following topics:

• further analysis of the robustness and accuracy of the method with respect to the
Mach number and Reynolds number,

• investigation of various types of boundary conditions,
• the realization of a remeshing in case of closing the channel during the oscillation

period of the channel walls,
• the coupling of the developed method with the solution of elasticity equations

describing the deformation of vocal folds,
• the use of a suitable turbulence model.
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Abstract

The paper is concerned with the numerical solution of flow-induced vibrations
of elastic structures. The dependence on time of the domain occupied by the fluid
is taken into account with the aid of the ALE (Arbitrary Lagrangian-Eulerian)
formulation of the compressible Navier-Stokes equations. The deformation of the
elastic body, caused by aeroelastic forces, is described by the linear dynamical elas-
ticity equations. These two systems are coupled by transmission conditions. The
flow problem is discretized by the discontinuous Galerkin finite element method
(DGFEM) in space and by the backward difference formula (BDF) in time. The
structural problem is discretized by conforming finite elements and the Newmark
method. The fluid-structure interaction is realized via weak or strong coupling al-
gorithms. The developed technique is tested by numerical experiments and applied
to the simulation of vibrations of vocal folds during phonation onset.

Keywords: compressible Navier-Stokes equations; time dependent domain; ALE
method, discontinuous Galerkin method; semi-implicit time discretization; dynamic
elasticity equations; conforming finite elements, Newmark method; weak and strong
coupling; flow in glottis; flow-induced vibrations of vocal folds.

1 Introduction

The studies on flow-induced vibrations play an important role in a number of fields
in science and technology (e.g., vibrations of airplane wings or turbine blades, inter-
action of wind with bridges, TV towers or cooling towers of power stations) but also
in biomechanics, e.g., simulation of the vocal folds vibrations and voice production. In
all of these examples the moving medium is gas, i.e. compressible fluid. For low Mach
number flows incompressible models are used (as e.g. in [3], [15]), but in some cases
compressibility plays an important role.

The goal of our research is the numerical finite element (FE) simulation of interaction
of compressible 2D viscous flow in the glottal region with a compliant tissue of the human
vocal folds modeled by a 2D elastic layered structure. A current challenging question is
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a mathematical and physical description of the mechanism for transforming the airflow
energy in the glottis into the acoustic energy representing the voice source in humans.
The primary voice source is given by the airflow coming from the lungs that causes
self-oscillations of the vocal folds. The voice source signal travels from the glottis to
the mouth, exciting the acoustic supraglottal spaces, and becomes modified by acoustic
resonance properties of the vocal tract ([16]).

An overview [2] presents the current state of mathematical models for the human
phonation process. In current publications various simplified glottal flow models are
used. They are based on the Bernoulli equation ([16]), 1D models for an incompress-
ible inviscid fluid ([9]), 2D incompressible Navier-Stokes equations solved by the finite
volume method ([1]) or finite element method ([18]). Acoustic wave propagation in
the vocal tract is usually modelled separately using linear acoustic perturbation the-
ory ([17]). Work [14] is concerned with the finite volume solution of the Navier-Stokes
equations for a compressible fluid with prescribed periodic changes of the channel cross-
section of the glottal channel. The phonation onset was studied by using the interaction
of incompressible potential flow model with three-mass lumped model for the vibrating
vocal folds in [8] and for a 2D elastic model of the vocal folds in [19].

Only in the paper [14], the model of compressible flow is used. It is solved by the
finite volume method, but the vibrations of the moving walls are prescribed. Otherwise,
all the above mentioned papers use the model of incompressible flow. In many cases the
incompressible flow approximates the airflow well, but often the compressibility plays
important role, even in the case of low Mach number flows. It is particularly the case,
when acoustic effects as propagating pressure waves appear. In the domain representing
the vocal tract, this can happen, when the vocal folds are very close to each other and
when the voice source is generated in the glottis. Therefore, it is suitable to analyze the
compressible flow in vocal flows as well. However, it is well-known that the numerical
solution of low Mach number flow at incompressible limit is a very difficult task and
standard finite volume and finite element schemes applied to this type of flow fail. Our
goal is to develop a method, which overcomes this obstacle.

The present paper is devoted to the numerical simulation of vocal folds vibrations
induced by compressible viscous flow. The air flow is described by the compressible
Navier-Stokes equations written in the arbitrary Lagrangian-Eulerian (ALE) form in
order to take into account the time dependence of the domain occupied by the air. The
vocal folds are considered as isotropic elastic bodies. Their vibrations are described by
the linear elasticity equations. The coupled fluid-structure interaction problem repre-
sents a strongly nonlinear dynamical system, which is analyzed numerically.

The flow problem is discretized in space by the discontinuous Galerkin finite element
method (DGFEM), using piecewise polynomial approximations, in general discontinu-
ous on interfaces between neighbouring elements. The time discretization is carried out
by the backward difference formula (BDF) in time. The structural problem is approx-
imated by conforming finite elements and the Newmark method. The fluid-structure
interaction is realized via weak or strong coupling algorithms.

The main purpose of the paper is to present a numerical technique allowing the
simulation of vocal fold vibrations induced by compressible flow. The developed method
is tested on a model problem in order to show the applicability of the method to the
compressible flow in time-dependent domains and to the interaction of gas flow with
elastic bodies. The results of numerical experiments are qualitatively comparable with
results of other works (using the model of incompressible flow) and with wind tunnel
experiments.
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The contents of the paper is the following. In Section 2, the continuous fluid-
structure interaction (FSI) problem is formulated. Section 3 is concerned with the
derivation of the discrete problem. Section 4 is devoted to the realization of the coupled
FSI problem. It consists of the construction of the ALE mapping and the formulation of
the coupling algorithms. In Section 5, we present results of numerical tests showing the
applications to the simulation of flow-induced vibrations of vocal folds. In Conclusion,
subjects for future work are formulated.

2 Continuous problem

In this section we shall formulate the problem of the interaction of a compressible flow
with an elastic structure.

2.1 Formulation of the flow problem

We consider a compressible flow in a bounded domain Ωt ⊂ IR2 depending on time
t ∈ [0, T ]. We assume that the boundary of Ωt is formed by three disjoint parts:
∂Ωt = ΓI∪ΓO∪ΓWt , where ΓI is the inlet, ΓO is the outlet and ΓWt denotes impermeable
walls that may move in dependence on time.

The dependence of the domain Ωt on time is taken into account with the use of the
arbitrary Lagrangian-Eulerian (ALE) method, see e.g. [13]. It is based on a regular one-
to-one ALE mapping of the reference configuration Ω0 onto the current configuration
Ωt:

At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈ Ωt.

We define the domain velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0, (1)

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt

and the ALE derivative of the vector function w = w(x, t) defined for x ∈ Ωt and
t ∈ [0, T ]:

DA

Dt
w(x, t) =

∂w̃

∂t
(X, t), (2)

where
w̃(X, t) = w(At(X), t), X ∈ Ω0, x = At(X).

Then, using the relations

DAwi

Dt
=

∂wi

∂t
+ div (zwi)− wi div z, i = 1, . . . , 4,

we can write the governing system consisting of the continuity equation, the Navier-
Stokes equations and the energy equation in the ALE form

DAw

Dt
+

2∑

s=1

∂gs(w)
∂xs

+ w divz =
2∑

s=1

∂Rs(w,∇w)
∂xs

. (3)
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See, for example [6]. Here

w = (w1, . . . , w4)T = (ρ, ρv1, ρv2, E)T ∈ R4, (4)
w = w(x, t), x ∈ Ωt, t ∈ (0, T ),

gs(w) = f s(w)− zsw, s = 1, 2,

f i(w) = (fi1, · · · , fi4)T = (ρvi, ρv1vi + δ1i p, ρv2vi + δ2i p, (E + p)vi)
T ,

Ri(w,∇w) = (Ri1, . . . , Ri4)T =
(
0, τV

i1 , τV
i2 , τV

i1 v1 + τV
i2 v2 + k∂θ/∂xi

)T
,

τV
ij = λdivv δij + 2µ dij(v), dij(v) =

1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
.

We use the following notation: ρ – density, p – pressure, E – total energy, v = (v1, v2) –
velocity, θ – absolute temperature, γ > 1 – Poisson adiabatic constant, cv > 0 – specific
heat at constant volume, µ > 0, λ = −2µ/3 – viscosity coefficients, k – heat conduction,
τV
ij – components of the viscous part of the stress tensor. The vector-valued function w

is called state vector, the functions f i are the so-called inviscid fluxes and Ri represent
viscous terms. The above system is completed by the thermodynamical relations

p = (γ − 1)(E − 1
2
ρ|v|2), θ =

1
cv

(E

ρ
− 1

2
|v|2

)
. (5)

The resulting system is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω0, (6)

and the following boundary conditions:

a) ρ|ΓI
= ρD, b) v|ΓI

= vD = (vD1, vD2)T, (7)

c)
2∑

i,j=1

τV
ij nivj + k

∂θ

∂n
= 0 on ΓI ,

d) v|ΓWt
= zD = velocity of a moving wall, e)

∂θ

∂n
|ΓWt

= 0 on ΓWt ,

f)
2∑

i=1

τV
ij ni = 0, j = 1, 2, g)

∂θ

∂n
= 0 on ΓO,

with prescribed data ρD,vD and zD.

2.2 Elasticity problem and fluid-structure interaction coupling

For the description of the deformation of an elastic structure we shall use the model of
dynamical linear elasticity formulated in a bounded open set Ωb ⊂ R2 representing the
elastic body, which has a common boundary with the reference domain Ω0 occupied
by the fluid at the initial time. We denote by u(X, t) = (u1(X, t), u2(X, t)), X =
(X1, X2) ∈ Ωb, t ∈ (0, T ), the displacement of the body. The equations describing the
deformation of the elastic body Ωb have the form

%b ∂2ui

∂t2
+ C%b ∂ui

∂t
−

2∑

j=1

∂τ b
ij

∂Xj
= 0 in Ωb × (0, T ), i = 1, 2. (8)
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Here τ b
ij are the components of the stress tensor defined by the generalized Hooke’s law

for isotropic bodies

τ b
ij = λbdiv u δij + 2µbeb

ij(u), i, j = 1, 2. (9)

By eb = {eb
ij}2

i,j=1 we denote the strain tensor defined by

eb
ij(u) =

1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
, i, j = 1, 2. (10)

The Lamé coefficients λb and µb are related to the Young modulus Eb and the Poisson
ratio σb as

λb =
Ebσb

(1 + σb)(1− 2σb)
, µb =

Eb

2(1 + σb)
, (11)

The expression C%b ∂ui
∂t , where C ≥ 0, is the dissipative structural damping of the system

and %b denotes the material density.
We complete the elasticity problem by initial and boundary conditions. The initial

conditions read
u(·, 0) = 0,

∂u

∂t
(·, 0) = 0, in Ωb. (12)

Further, we assume that ∂Ωb = Γb
W ∪ Γb

D, where Γb
W and Γb

D are two disjoints parts of
∂Ωb. We assume that Γb

W is a common part between the fluid and structure at time
t = 0. This means that Γb

W ⊂ ΓW0 . On Γb
W we prescribe the normal component of

the stress tensor and assume that the part Γb
D is fixed. This means that the following

boundary conditions are used:

2∑

j=1

τ b
ijnj = Tn

i on Γb
W × (0, T ), i = 1, 2, (13)

u = 0 on Γb
D × (0, T ). (14)

By T n = (Tn
1 , Tn

2 ) we denote the prescribed normal component of the stress tensor.
The structural problem consists in finding the displacement u satisfying equations

(8) and the initial and boundary conditions (12) – (14).
Now we shall deal with the formulation of the coupled FSI problem. We denote the

common boundary between the fluid and the structure at time t by Γ̃Wt . It is given by

Γ̃Wt =
{

x ∈ R2; x = X + u(X, t), X ∈ Γb
W

}
. (15)

Thus, the domain Ωt is determined by the displacement u of the part Γb
W at time t.

The ALE mapping At is constructed with the aid of a special stationary linear elasticity
problem - see Section 4.1.

If the domain Ωt occupied by the fluid at time t is known, we can solve the problem
describing the flow and compute the surface force acting onto the body on the interface
Γ̃Wt , which can be transformed to the reference configuration, i.e. to the interface Γb

W .
In case of the linear elasticity model, when only small deformations are considered, we
get the transmission condition

2∑

j=1

τ b
ij(X)nj(X) = −

2∑

j=1

τ f
ij(x)nj(X), i = 1, 2, (16)
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where τ f
ij are the components of the stress tensor of the fluid:

τ f
ij = −pδij + τV

ij , i, j = 1, 2, (17)

the points x and X satisfy the relation

x = X + u(X, t). (18)

and n(X) = (n1(X), n2(X)) denotes the unit outer normal to the body Ωb on Γb
W at

the point X. Further, the fluid velocity is defined on the moving part of the boundary
Γ̃Wt by the second transmission condition

v(x, t) = zD(x, t) =
∂u(X, t)

∂t
. (19)

Now we formulate the continuous FSI problem: We want to determine the domain
Ωt, t ∈ (0, T ] and functions w = w(x, t), x ∈ Ωt, t ∈ [0, T ] and u = u(X, t), X ∈
Ωb

, t ∈ [0, T ] satisfying equations (3), (8), the initial conditions (6), (12), the boundary
conditions (7), (13), (14) and the transmission conditions (16), (19).

This FSI problem represents a strongly nonlinear dynamical system. Theoretical
analysis of qualitative properties of this problem, as the existence, uniqueness and reg-
ularity of its solution, is open. Therefore, in the sequel we shall be concerned with its
numerical solution.

3 Discrete problem

First we describe numerical methods for the solution of separately considered flow and
structural problems.

3.1 Discretization of the flow problem

3.1.1 Space discretization

For the space semidiscretization we use the discontinuous Galerkin finite element method
(DGFEM). We construct a polygonal approximation Ωht of the domain Ωt. By Tht we
denote a partition of the closure Ωht of the domain Ωht into a finite number of closed
triangles K with mutually disjoint interiors such that Ωht =

⋃
K∈Tht

K.
By Fht we denote the system of all faces of all elements K ∈ Tht. Further, we

introduce the set of all interior faces FI
ht = {Γ ∈ Fht; Γ ⊂ Ωt} , the set of all boundary

faces FB
ht = {Γ ∈ Fht; Γ ⊂ ∂Ωht} and the set of all “Dirichlet” boundary faces FD

ht ={
Γ ∈ FB

ht; a Dirichlet condition is prescribed on Γ
}

. Each Γ ∈ Fht is associated with a
unit normal vector nΓ to Γ. For Γ ∈ FB

ht the normal nΓ has the same orientation as
the outer normal to ∂Ωht. We set d(Γ) = length of Γ ∈ Fht.

For each Γ ∈ FI
ht there exist two neighbouring elements K

(L)
Γ ,K

(R)
Γ ∈ Tht such that

Γ ⊂ ∂K
(R)
Γ ∩ ∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the direction of nΓ and

K
(L)
Γ lies in the opposite direction to nΓ. If Γ ∈ FB

ht, then the element adjacent to Γ
will be denoted by K

(L)
Γ .

The approximate solution will be sought in the space of piecewise polynomial func-
tions

Sht = [Sht]4, with Sht = {v; v|K ∈ Pr(K) ∀K ∈ Tht}, (20)
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where r ≥ 1 is an integer and Pr(K) denotes the space of all polynomials on K of degree
≤ r. A function ϕ ∈ Sht is, in general, discontinuous on interfaces Γ ∈ FI

ht. By ϕ
(L)
Γ

and ϕ
(R)
Γ we denote the values of ϕ on Γ considered from the interior and the exterior

of K
(L)
Γ , respectively, and set

〈ϕ〉Γ = (ϕ(L)
Γ + ϕ

(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ −ϕ

(R)
Γ . (21)

The discrete problem is derived in the following way: We multiply system (3) by a
test function ϕh ∈ Sht, integrate over K ∈ Tht, apply Green’s theorem, sum over all
elements K ∈ Tht, use the concept of the numerical flux and introduce suitable terms
mutually vanishing for a regular exact solution. Moreover, we carry out a linearization
of nonlinear terms. In a similar way as in [6] we define the following forms.

Convection form: We set As(w) = Df s(w)/Dw, which is the Jacobi matrix of the
mapping f s. Then Dgs(w)

Dw = As(w)− zsI, and we write Pg(w, n) =
∑2

s=1
Dgs(w)

Dw ns =∑2
s=1 (As(w)ns − zsnsI). By [5], this matrix is diagonalizable. It means that there

exists a nonsingular matrix T = T(w, n) such that Pg = TIΛT−1, IΛ = diag(λ1, . . . , λ4)
where λi = λi(w, n) are eigenvalues of the matrix Pg. Further, we define the ”positive”
and ”negative” parts of the matrix Pg by P±g = TIΛ±T−1, IΛ± = diag(λ±1 , . . . , λ±4 ),
where λ+ = max(λ, 0), λ− = min(λ, 0). Now, in the same way as in [6], for wh,wh, ϕh ∈
Sht we define the linearized convection form

b̂h(wh,wh, ϕh) (22)

= −
∑

K∈Thtk+1

∫

K

2∑

s=1

(As(wh)− zs(x))I)wh)· ∂ϕh

∂xs
dx

+
∑

Γ∈FI
ht

∫

Γ

(
P+

g

(〈
wh

〉
, nΓ

)
w

(L)
h + P−g

(〈
wh

〉
,nΓ

)
w

(R)
h

)
· [ϕh] dS

+
∑

Γ∈FB
ht

∫

Γ

(
P+

g

(〈
wh

〉
, nΓ

)
w

(L)
h + P−g

(〈
wh

〉
,nΓ

)
w

(R)
h

)
·ϕh dS.

If Γ ∈ FB
ht, it is necessary to specify the boundary state w

(R)
hΓ appearing in the numerical

flux Hg in the definition of the inviscid form b̂h. Here we use the approach applied in
the case of inviscid flow simulation, treated in [5], using a linearized initial-boundary
value 1D Riemann problem.

Viscous form: The linearization of the viscous terms is based on the fact that
Rs(wh,∇wh) is linear in ∇w and nonlinear in w. We get the linearized viscous form

âh(wh, wh,ϕh) =
∑

K∈Tht

∫

K

2∑

s=1

Rs(wh,∇wh) · ∂ϕh

∂xs
dx (23)

−
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

〈
Rs(wh,∇wh)

〉
(nΓ)s · [ϕh] dS

−
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

Rs(wh,∇wh)(nΓ)s ·ϕh dS.

(We use the so-called incomplete version of the approximation of the viscous terms.)
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Interior and boundary penalty and right-hand side forms: Further, we set

Jh(w, ϕh) =
∑

Γ∈FI
ht

∫

Γ
σ[w] · [ϕh] dS +

∑

Γ∈FD
ht

∫

Γ
σw ·ϕh dS, (24)

`h(w, ϕh) =
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

σwB ·ϕh dS. (25)

Here σ|Γ = CW µ/d(Γ) and CW > 0 is a sufficiently large constant. The boundary
state wB is defined on the basis of the Dirichlet boundary conditions (7), a), b), d) and
extrapolation:

wB = (ρD, ρDvD1, ρDvD2, cvρDθ
(L)
Γ +

1
2
ρD|vD|2) on ΓI , (26)

wB = w
(L)
Γ on ΓO, (27)

wB = (ρ(L)
Γ , ρ

(L)
Γ zD1, ρ

(L)
Γ zD2, cvρ

(L)
Γ θ

(L)
Γ +

1
2
ρ
(L)
Γ |zD|2) on ΓWt . (28)

Reaction form reads

dh(w, ϕh) =
∑

K∈Tht

∫

K
(w ·ϕh) divz dx. (29)

3.1.2 Time discretization

Let us construct a partition 0 = t0 < t1 < t2 . . . of the time interval [0, T ] and define
the time step τk = tk+1 − tk. We use the approximations wh(tn) ≈ wn

h ∈ Shtn ,
z(tn) ≈ zn, n = 0, 1, . . ., and introduce the function ŵk

h = wk
h ◦ Atk ◦ A−1

tk+1
, which is

defined in the domain Ωhtk+1
. The ALE derivative at time tk+1 is approximated by the

first- or second-order backward finite difference

DAwh

Dt
(x, tk+1) ≈

wk+1
h (x)− ŵk

h(x)
τk

, (30)

or

DAwh

Dt
(tk+1) ≈ 2τk + τk−1

τk(τk + τk−1)
wk+1

h − τk + τk−1

τkτk−1
ŵk

h +
τk

τk−1(τk + τk−1)
ŵk−1

h . (31)

By the symbol (·, ·) we shall denote the scalar product in L2(Ωhtk+1
), i.e.

(wh, ϕh) =
∫

Ωhtk+1

wh ·ϕh dx, (32)

respectively.
In order to avoid spurious oscillations in the approximate solution in the vicinity of

discontinuities or steep gradients, we apply artificial viscosity forms introduced in [7].
They are based on the discontinuity indicator

gk(K) =
∫

∂K
[ρ̂k

h]2 dS
/
(hK |K|3/4), K ∈ Thtk+1

. (33)

By [ρ̂k
h] we denote the jump of the function ρ̂k

h on the boundary ∂K and |K| denotes the
area of the element K. Then for each K ∈ Thtk+1

we define the discrete discontinuity
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indicator Gk(K) = 0 if gk(K) < 1, Gk(K) = 1 if gk(K) ≥ 1 and the artificial viscosity
forms

β̂h(ŵk
h, wk+1

h , ϕh) = ν1

∑

K∈Thtk+1

hKGk(K)
∫

K
∇wk+1

h · ∇ϕh dx, (34)

Ĵh(ŵk
h, wk+1

h ,ϕh) = ν2

∑

Γ∈FI
htk+1

1
2
(
Gk(K(L)

Γ ) + Gk(K(R)
Γ )

) ∫

Γ
[wk+1

h ]· [ϕh] dS,

with parameters ν1, ν2 = O(1).
Finally, by wk+1

h we denote the state obtained by the extrapolation:

wk+1
h = ŵk

h and wk+1
h =

τk + τk−1

τk−1
ŵk

h −
τk

τk−1
ŵk−1

h (35)

in the case of the first-order time discretization and second-order time discretization,
respectively.

The resulting scheme has the following form: For each k = 0, 1, . . . we seek wk+1
h ∈

Shtk+1
such that

(wk+1
h − ŵk

h

τk
, ϕh

)
+ b̂h(wk+1

h , wk+1
h ,ϕh) + âh(wk+1

h , wk+1
h , ϕh)

+ Jh(wk+1
h , ϕh) + dh(wk+1

h , ϕh) + β̂h(ŵk
h,wk+1

h , ϕh)

+ Ĵh(ŵk
h, wk+1

h , ϕh) = `(wk+1
B ,ϕh), ∀ϕh ∈ Shtk+1

, (36)

in the case of the first-order time discretization. In the case of the second-order time
discretization the expression (wk+1

h −ŵk
h,ϕh)/τk is replaced by the approximation (31).

3.2 Discretization of the structural problem

3.2.1 Space semidiscretization

The space semidiscretization of the structural problem will be carried out by the con-
forming finite element method. By Ωb

h we denote a polygonal approximation of the
domain Ωb. We construct a triangulation T b

h of the domain Ωb
h formed by a finite

number of closed triangles with the following properties:
a) Ωb

h =
⋃

K∈T b
h

K.
b) The intersection of two different elements K, K ′ ∈ T b

h is either empty or a common
edge of these elements or their common vertex.
c) The vertices lying on ∂Ωb

h are elements of ∂Ωb.
d) The set Γb

W ∩ Γb
D is formed by vertices of some elements K ∈ T b

h .
Further, by Γb

Wh and Γb
Dh we denote the parts of ∂Ωb

h approximating Γb
W and Γb

D.
The approximate solution of the structural problem will be sought in the finite-

dimensional space Xh = Xh ×Xh, where

Xh =
{

vh ∈ C(Ωb
h); vh|K ∈ Ps(K), ∀K ∈ T b

h

}
(37)

and s ≥ 1 is an integer. In Xh we define the subspace Vh = Vh × Vh, where

Vh =
{

yh ∈ Xh; yh|Γb
Dh

= 0
}

. (38)
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The derivation of the space semidiscretization can be obtained in a standard way.
Multiplying system (8) by any test function yhi ∈ Vh, i = 1, 2, applying Green’s theorem
and using the boundary condition (13), we obtain an identity containing the forms
defined for uh = (uh1, uh2), yh = (yh1, yh2) ∈ Xh:

ah(uh, yh) =
∫

Ωb
h

λbdiv uh div yh dX + 2
∫

Ωb
h

µb
2∑

i,j=1

eb
ij(uh) eb

ij(yh) dX, (39)

and
(ϕ, ψ)Ωb

h
=

∫

Ωb
h

ϕ ·ψ dX, (ϕ, ψ)ΓWh
=

∫

ΓWh

ϕ ·ψ dS. (40)

We shall use the approximation T n
h ≈ T n and the notation u′h(t) = ∂uh(t)

∂t and u′′h(t) =
∂2uh(t)

∂t2
. Then we define the approximate solution of the structural problem as a function

t ∈ [0, T ] → uh(t) ∈ Vh such that there exist the derivatives u′h(t), u′′h(t) and the identity

(%bu′′h(t), yh)Ωb
h

+ (C%bu′h(t),yh)Ωb
h

+ ah(uh(t), yh) = (T n
h (t), yh)ΓWh

,

∀yh ∈ Vh, ∀t ∈ (0, T ), (41)

and the initial conditions

uh(X, 0) = 0, u′h(X, 0) = 0, X ∈ Ωb
h. (42)

are satisfied.
The discrete problem (41), (42) is equivalent to the solution of a system of ordinary

differential equations. Let functions ϕ1, . . . , ϕm form a basis of the space Vh. Then the
system of n = 2m of the vector functions (ϕ1, 0), . . . , (ϕm, 0), (0, ϕ1), . . . , (0, ϕm) form
a basis of the space V h. Let us denote them by ϕ1, . . .ϕn. Then the approximate
solution uh can be expressed in the form

uh(t) =
n∑

j=1

pj(t)ϕj , t ∈ [0, T ]. (43)

Let us set p(t) = (p1(t), . . . , pn(t)). Using ϕj , j = 1, . . . , n, as test functions in (41),
we get the following system of ordinary differential equations

Mp′′ = G−Kp− CMp′, (44)

where M = (mij)n
i,j=1 is the mass matrix and K = (kij)n

i,j=1 is the stiffness matrix with
the elements mij = (ρbϕi,ϕj) and kij = ah(ϕi, ϕj), respectively. The aerodynamic force
vector G = G(t) = (G1(t), . . . , Gn(t))T has the components Gi(t) = (T n

h (t),ϕi)ΓWh
, i =

1, . . . , n. System (44) is equipped with the initial conditions

pj(0) = 0, p′j(0) = 0, j = 1, . . . , n. (45)

3.2.2 Time discretization of the structural problem

The discrete initial value problem (44), (45) is solved by the Newmark method ([4]).
We consider the partition of the time interval [0, T ] formed by the time instants 0 =
t0 < t1 < . . . introduced in Section 3.1.2. Let us set p0 = 0,z0 = 0,Gk = G(tk),
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and introduce the approximations pk ≈ p(tk) and qk ≈ p′(tk) for k = 1, 2, . . . . The
Newmark scheme can be written in the form

pk+1 = pk + τkqk + τ2
k

(
β

(
M−1Gk+1 −M−1Kpk+1 − Cqk+1

)
(46)

+
(

1
2
− β

) (
M−1Gk −M−1Kpk − Cqk

))
,

qk+1 = qk + τk

(
γ

(
M−1Gk+1 −M−1Kpk+1 − Cqk+1

)
(47)

+ (1− γ)
(
M−1Gk −M−1Kpk − Cqk

) )
,

where β, γ ∈ R are parameters. From equation (47) we get

qk+1 =
1

1 + Cγτk

(
qk + τk

(
γ

(
M−1Gk+1 −M−1Kpk+1

)
(48)

+ (1− γ)
(
M−1Gk −M−1Kpk − Cqk

) ))
.

The substitution of (48) in (46) yields the relation which can be written in the form
(
I+ ξkM−1K

)
pk+1 = pk + (τk − Cξk) qk + ξkM−1Gk+1 + (49)

+
(

C (γ − 1) ξkτk +
(

1
2
− β

)
τ2
k

) (
M−1Gk −M−1Kpk − Cqk

)
.

where we set for the sake of simplicity

ξk = βτ2
k

(
1− Cγτk

1 + Cγτk

)
=

βτ2
k

1 + Cγτk
. (50)

If pk and qk are known, then pk+1 is obtained from system (49) and afterwards qk+1 is
computed from (48).

In numerical examples presented in Section 5, the parameters β = 1/4 and γ = 1/2
were used. This choice yields the Newmark method of the second order.

4 Realization of the coupled FSI problem

In this section we shall describe the algorithm of the numerical realization of the com-
plete fluid-structure interaction problem.

4.1 Construction of the ALE mapping for fluid

The ALE mapping is constructed with the aid of an artificial stationary elasticity prob-
lem. We seek d = (d1, d2) defined in Ω0 as a solution of the elastostatic system

2∑

j=1

∂τa
ij

∂xj
= 0 in Ω0, i = 1, 2, (51)

where τa
ij are the components of the artificial stress tensor

τa
ij = λadivd δij + 2µaea

ij , ea
ij(d) =

1
2

(
∂di

∂xj
+

∂dj

∂xi

)
, i, j = 1, 2. (52)
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The Lamé coefficients λa and µa are related to the artificial Young modulus Ea and to
the artificial Poisson number σa as in (11). The boundary conditions for d are prescribed
by

d|ΓI∪ΓO
= 0, d|ΓW0h\ΓWh

= 0, d(x, t) = u(x, t), x ∈ ΓWh. (53)

The solution of (51) gives us the ALE mapping of Ω0 onto Ωt in the form

At(x) = x + d(x, t), x ∈ Ω0, (54)

for each time t.
System (51) is discretized by the conforming piecewise linear finite elements on the

mesh Th0 used for computing the flow field in the beginning of the computational process
in the polygonal approximation Ωh0 of the domain Ω0. The use of linear finite elements
is sufficient, because we need only to know the movement of the points of the mesh.

In our computations we choose the Lamé coefficients λa and µa as constants corre-
sponding to the Young modulus and Poisson ratio Ea = 10000 and σa = 0.45.

If the displacement dh is computed at time tk+1, then in view of (54), the approxi-
mation of the ALE mapping is obtained in the form

Atk+1h(x) = x + dh(x), x ∈ Ω0h. (55)

The knowledge of the ALE mapping at the time instants tk−1, tk, tk+1 allows us to
approximate the domain velocity with the aid of the second-order backward difference
formula

zk+1
h (x) =

3x− 4Atkh(A−1
tk+1h(x)) +Atk−1h(A−1

tk+1h(x))

2τ
, x ∈ Ωtk+1h. (56)

4.2 Coupling procedure

In the solution of the complete coupled fluid-structure interaction problem it is necessary
to apply a suitable coupling procedure. See, e.g. [3] for a general framework. Here we
apply the following algorithm.

1. Assume that the approximate solution of the flow problem on the time level tk is
known as well as the deformation of the structure uh,k.

2. Set u0
h,k+1 := uh,k, l := 1 and apply the iterative process:

(a) Compute the stress tensor τ f
ij and the aerodynamical force acting on the

structure and transform it to the interface Γb
Wh.

(b) Solve the elasticity problem, compute the deformation ul
h,k+1 at time tk+1

and approximate the domain Ωl
htk+1

.

(c) Determine the ALE mapping Al
tk+1h and approximate the domain velocity

zl
h,k+1.

(d) Solve the flow problem on the approximation of Ωl
htk+1

.

(e) If the variation of the displacement ul
h,k+1 and ul−1

h,k+1 is larger than the
prescribed tolerance, go to a) and l := l + 1. Else k := k + 1 and goto 2).

This represents the so-called strong coupling. If in the step e) we set k := k + 1 and
go to 2) already in the case when l = 1, then we get the weak (loose) coupling.
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Figure 1: Computational domain at time t = 0 with a finite element mesh and the
description of its size: LI = 50 mm, Lg = 15.4 mm, LO = 94.6 mm, H = 16 mm. The
width of the channel in the narrowest part is 1.6 mm.

Figure 2: Detail of the flow computational mesh at time t = 0 near the narrowest part
of the channel and the position of some sensors used in analysis.

5 Numerical examples

In order to demonstrate the applicability of the developed method, we present here
results of some numerical experiments.

We consider a model of flow through a channel with two bumps which represent time
dependent boundaries between the flow and a simplified model of vocal folds (see Figures
1 and 2). The numerical experiments were carried out for the following data: magnitude
of the inlet velocity vin = 4 m/s, the fluid viscosity µ = 15 · 10−6 kg m−1 s−1, the inlet
density ρin = 1.225 kg m−3, the outlet pressure pout = 97611 Pa, the Reynolds number
Re = ρinvinH/µ = 5227, heat conduction coefficient k = 2.428 · 10−2 kg m s−2 K−1, the
specific heat cv = 721.428m2 s−2 K−1, the Poisson adiabatic constant γ = 1.4. The
inlet Mach number is Min = 0.012. The Young modulus and the Poisson ratio have
values Eb = 25000 Pa and σb = 0.4, respectively, the structural damping coefficient is
equal to the constant C = 100 s−1 and the material density ρb = 1040 kg m−3 . The
quadratic (r = 2) and linear (s = 1) elements were used for the approximation of flow
and structural problem, respectively.

Figure 1 shows the situation at the initial time t = 0 the flow computational mesh
consisting of 5398 elements and the structure computational mesh with 1998 elements.
In Figure 2 we see a detail of the flow mesh near the narrowest part of the channel at
the initial time and the positions of sensor points used in the analysis.

First we tested the influence of the density of the computational meshes on the
oscillations of the pressure averaged over the outlet ΓO and the corresponding Fourier
analysis. We consider three successively refined meshes. Figure 3 shows the behaviour
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Figure 3: Dependence of the quantity pav computed on three meshes: strong coupling
(left), weak coupling (right).
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Figure 4: Fourier analysis of the quantity pav computed on three meshes: strong coupling
(left), weak coupling (right).

of the quantity

pav(t) =
∫

ΓO

(
p(x, t)− 1

T

∫ T

0
p(x, t) dt

)
/

∫

ΓO

dS. (57)

in dependence on time, computed on the flow/structure meshes with 5398/1998 elements
(red), 10130/2806 elements (green) and 20484/4076 elements (blue) with the aid of the
strong coupling (left) and the weak coupling (right). Figure 4 shows the corresponding
Fourier analysis. During the successive mesh refinement one can observe the convergence
tendency manifested by the decrease of the magnitude of the quantity pav fluctuations
and the decrease of the magnitude of the Fourier spectra. No peaks related to any basic
acoustic modes of vibration in the channel were identified in the spectra. The difference
between the results obtained by the strong and weak coupling is not too large. The main
difference is in a higher stability of the strong coupling during solving the problem on
a long time interval. On the other hand, the strong coupling requires naturally longer
CPU time.

Flow-induced deformations of the vocal folds model with the computational mesh
and the velocity field near the vocal folds are shown in Figure 5 at several time instants.
Similarly as in experimental study presented in [10] and [11], we can see the Coanda
effect represented by the attachment of the main stream (jet) successively to the upper
and lower wall of the glottis and formation of large scale vortices behind the glottis.
The same effects can be observed in numerical results from [12]. The character of the
vocal folds vibration can be indicated in Figure 7, which shows the displacements of
the sensor points on the vocal folds surface (marked in Figure 2) and the fluid pressure
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Figure 5: Detail of the mesh and the velocity distribution in the vicinity of the narrowest
part of the channel at time instants t = 0.2056, 0.2072, 0.2088, 0.2104 s.
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Figure 6: The difference between the pressure on the centreline of the channel and the
averaged outlet pressure corresponding to time instants t = 0.2072 (left) and t = 0.2104
(right).

fluctuations in the middle of the gap as well as the Fourier analysis of the signals. The
vocal folds vibrations are not symmetric due to the Coanda effect and are composed of
the fundamental horizontal mode of vibration with the corresponding eigen-frequency
113 Hz and by the higher eigenmode with the eigenfrequency 439 Hz. The increase of
horizontal vibrations due to the aeroelastic instability of the system results in a fast
decrease of the glottal gap. Similarly as in [12], the displacement dx in the vertical
direction is larger than the vertical displacement dy.

At about t = 0.2 s, when the gap is nearly closed, the fluid mesh deformation in this
region is too high and the numerical simulation stopped. The dominant peak at 439
Hz in the spectrum of the pressure signal corresponds well to the vertical oscillations
of the glottal gap, while the importance of the lower frequency 113 Hz associated with
the horizontal vocal folds motion is in the pressure fluctuations negligible. The modeled
flow-induced instability of the vocal folds is called phonation onset followed in reality by
a complete closing of the glottis and consequently by the vocal folds collisions producing
the voice source acoustic signal.

Figure 6 shows the distribution of the difference between the pressure on the cen-
treline of the channel and the averaged outlet pressure , corresponding to time instants
t = 0.2072 (maximal opening of the glottis) and t = 0.2104 (minimal opening of the glot-
tis). The inlet pressure varies approximately between 300 and 500 Pa, which corresponds
to subglottal pressure for humans during phonation. The pressure drop corresponds to
the narrowest part of the channel similarly as in the paper [12]. Pressure oscillations
behind the vocal folds are caused by propagating vortices.

6 Conclusion

We have presented a robust higher-order method for the numerical simulation of the
interaction of compressible flow with elastic structures with applications to the compu-
tation of flow-induced vibrations of vocal folds during phonation. It is based on several
important ingredients:

• the ALE method applied to the compressible Navier-Stokes equations,

• the application of the discontinuous Galerkin method for the space discretization
and semi-implicit linearized time discretization,

156



DGFEM for interaction of compressible fluid and structures

0.00 0.05 0.10 0.15 0.20
time [s]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

di
sp

la
ce

m
en

t d
x
 [m

]

sensor_00 [0.007700, -0.000810]

0 100 200 300 400 500 600 700 800 900 1000
frequency [Hz]

0

1

2

3

4

sensor_00 [0.007700, -0.000810]

0.00 0.05 0.10 0.15 0.20
time [s]

�0.0004

�0.0002
0.0000
0.0002
0.0004
0.0006
0.0008

di
sp

la
ce

m
en

t d
y
 [m

]

sensor_00 [0.007700, -0.000810]

0 100 200 300 400 500 600 700 800 900 1000
frequency [Hz]

0.0

0.5

1.0

1.5

2.0
sensor_00 [0.007700, -0.000810]

0.00 0.05 0.10 0.15 0.20 0.25
time [s]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

di
sp

la
ce

m
en

t d
x
 [m

]

sensor_01 [0.007700, 0.000810]

0 100 200 300 400 500 600 700 800 900 1000
frequency [Hz]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
sensor_01 [0.007700, 0.000810]

0.00 0.05 0.10 0.15 0.20
time [s]

�0.0006

�0.0004

�0.0002
0.0000
0.0002
0.0004
0.0006

di
sp

la
ce

m
en

t d
y
 [m

]

sensor_01 [0.007700, 0.000810]

0 100 200 300 400 500 600 700 800 900 1000
frequency [Hz]

0.0

0.5

1.0

1.5

sensor_01 [0.007700, 0.000810]

0 0.05 0.1 0.15 0.2 0.25
−2000

−1000

0

1000

2000

time [s]

p−
p(

av
er

ag
e)

[P
a]

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2
x 10

5

frequency [Hz]

Figure 7: Vibrations of sensor points lying on the boundary of the vocal folds and
the pressure oscillations in the middle of the gap (left), and the corresponding Fourier
analyses (right).
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• the use of conforming finite elements for the space discretization and of the New-
mark method for the time discretization of the elasticity problem,

• technique for the construction of the ALE mapping,

• the application of coupling algorithms for the realization of the coupled FSI prob-
lem.

The numerical tests and experiments show that the developed method can be applied
to the numerical solution of the interaction of compressible flow and elastic structures
with applications to the simulation of air flow through vocal folds.

The computational results are qualitatively similar to other computations (cf., e.g.,
[12]) and wind-tunnel experiments ([10], [11]).

Future work will be concentrated on the following topics:

• further analysis of the robustness and accuracy of the method with respect to the
Mach number and Reynolds number with the use of various types of the vocal
folds geometry,

• quantitative examination of the worked out technique on suitable test problems
and the comparison with results of other methods (if they are available),

• investigation of various types of boundary conditions,
• the realization of a remeshing in the case of closing the glottal channel during the

oscillation period of the channel walls,
• the use of nonlinear elasticity models including vocal folds collision,
• the use of a suitable turbulence model,
• the identification of the acoustic signal.
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