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1 Introduction

I have said the 21st century might be the era of quantum mathematics or, if you like, of infinite-
dimensional mathematics. What could this mean? Quantum mathematics could mean, if we get
that far, ‘understanding properly the analysis, geometry, topology, algebra of various non-linear
function spaces’, and by ‘understanding properly’ I mean understanding it in such a way as to
get quite rigorous proofs of all the beautiful things the physicists have been speculating about.

Sir Michael Atiyah

In the literature, topics contained in this thesis are treated rather separately. From a philo-
sophical point of view, a common thread of themes that we consider is represented by the above
quotation of M. Atiyah. We are inspired by mathematical and theoretical physics.

The content of the thesis concerns analysis, differential geometry and representation theory
on infinite dimensional objects. A specific infinite dimensional object which we consider is the
Segal-Shale—Weil representation of the metaplectic group. This representation originated in
number theory and theoretical physics. We analyze its tensor products with finite dimensional
representations, induce it to metaplectic structures defined over symplectic and contact projective
manifolds obtaining differential operators whose properties we study. From other point of view,
differential geometry uses the infinite dimensional algebraic objects to obtain vector bundles and
differential operators, that we investigate by generalizing analytic methods known currently —
namely by a Hodge theory for complexes in categories of specific modules over C*-algebras.

Results described in the thesis arose from the year 2003 to the year 2016. At the beginning,
we aimed to classify all first order invariant differential operators acting between bundles
over contact projective manifolds that are induced by those irreducible representations of the
metaplectic group which have bounded multiplicities. See Krysl [41] for a result. Similar results
were achieved by Fegan [14] in the case of irreducible finite rank bundles over Riemannian
manifolds equipped with a conformal structure. In both cases, for any such two bundles, there
is at most one first order invariant differential operator up to a scalar multiple.! The condition
for the existence in the case of contact projective manifolds is expressed by the highest weight of
the induced representation considered as a module over a suitable simple group, by a conformal
weight, and by the action of —1 € R*. The result is based on a decomposition of the tensor
product of an irreducible highest weight sp(2n, C)-module that has bounded multiplicities with
the defining representation of sp(2n,C) into irreducible submodules. See Krysl [40]. For similar
classification results in the case of more general parabolic geometries and bundles induced by
finite dimensional modules, see Slovak, Soucek [71].

Our next research interest, described in the thesis, was the de Rham sequence tensored
by the Segal-Shale-Weil representation. From the algebraic point of view, the Segal-
Shale-Weil representation (SSW representation) is an L2-globalization of the direct sum of two
specific infinite dimensional Harish-Chandra (g, K)-modules with bounded multiplicities over
the metaplectic Lie algebra, which are called completely pointed. We decompose the de Rham
sequence with values in the mentioned direct sum into sections of irreducible bundles, i.e., bundles
induced by irreducible representations. See Krysl [38]. For a 2n dimensional symplectic manifold

land up to operators of the zeroth order. See section 4.3.



with a metaplectic structure, the bundle of exterior forms of degree i, i < n, with values in
the Segal-Shale-Weil representation decomposes into 2(i + 1) irreducible bundles. For i > n,
the number of such bundles is 2(2n — ¢ + 1). It is known that the decomposition structure of
completely reducible representations is connected to the so-called Schur—Weyl-Howe dualities.
See Howe [29] and Goodman, Wallach [20]. We use the decomposition of the twisted de Rham
sequence to obtain a duality for the metaplectic group which acts in this case, on the exterior
forms with values in the SSW representation. See Krysl [46]. The dual partner to the metaplectic
group appears to be the orthosymplectic Lie superalgebra osp(1]2).

Any Fedosov connection (i.e., a symplectic and torsion-free connection) on a symplectic mani-
fold with a metaplectic structure defines a covariant derivative on the symplectic spinor bundle
which is the bundle induced by the Segal-Shale—Weil representation. We prove that twisted de
Rham derivatives map sections of an irreducible subbundle into sections of at most three irre-
ducible subbundles. Next, we are interested in the quite fundamental question on the structure
of the curvature tensor of the symplectic spinor covariant derivative similarly as one does in
the study of the curvature of a Levi-Civita or a Riemannian connection. Inspired by results of
Vaisman in [75] on the curvature tensors of Fedosov connections, we derive a decomposition of
the curvature tensor on symplectic spinors. See Krysl [42]. Generalizing this decomposition, we
are able to find certain subcomplexes of the twisted de Rham sequence, that are called symplec-
tic twistor complexes in a parallel to the spin geometry. These complexes exist under specific
restrictions on the curvature of the Fedosov connection. Namely, the connection is demanded to
be of Ricci-type. See Krysl [43]. Further results based on the decomposition of the curvature
concern a relation of the spectrum of the symplectic spinor Dirac operator to the spectrum of
the symplectic spinor Rarita—Schwinger operator. See Krysl [39]. The symplectic Dirac operator
was introduced by K. Habermann. See [23]. The next result is on symplectic Killing spinors. We
prove that if there exists a non-trivial (i.e., not covariantly constant) symplectic Killing spinor,
the connection is not Ricci-flat. See [45].

Since the classical theories on analysis of elliptic operators on compact manifolds are not
applicable in the case of the de Rham complex twisted by the Segal-Shale-~Weil representation,
we tried to develop a Hodge theory for infinite rank bundles. We use and elaborate ideas of
Mishchenko and Fomenko ([58] and [59]) on generalizations of the Atiyah—Singer index theorem
to investigate cohomology groups of infinite rank elliptic complexes concerning their topological
and algebraic properties. We work in the categories PH? and H whose objects are pre-Hilbert
C*-modules and Hilbert C*-modules, respectively, and whose morphisms are adjointable maps
between the objects. These notions go back to the works of Kaplansky [31], Paschke [62] and
Rieffel [63]. Analyzing proofs of the classical Hodge theory, we are lead to the notion of a Hodge-
type complex in an additive and dagger category. We introduce a class of self-adjoint parametrix
possessing complexes, and prove that any self-adjoint parametrix possessing complex in PHY is
of Hodge-type. Further, we prove that in I the category of self-adjoint parametrix possessing
complexes coincides with the category of the Hodge-type ones. Using these results, we show that
an elliptic complex on sections of finitely generated projective Hilbert C*-bundles over compact
manifolds are of Hodge-type if the images of the Laplace operators of the complex are closed. The
cohomology groups of such complexes are isomorphic to the kernels of the Laplacians and they
are Banach spaces with respect to the quotient topology. Further, we prove that the cohomology
groups are finitely generated projective Hilbert C*-modules. See Krysl [47]. Using the result
of Baki¢ and Guljas [2] for modules over a C*-algebra of compact operators K, we are able to
remove the condition on the closed image. We prove in [51] that elliptic complexes of differential
operators on finitely generated projective K-Hilbert bundles are of Hodge-type and that their



cohomology groups are finitely generated projective Hilbert K-modules. See Krysl [48], [49] and
[50] for a possible application connected to the quotation of Atiyah.

We find it more appropriate to mention author’s results and their context in Introduction,
and treat motivations, development of important notions, and most of the references in Chapters
2 and 3. In the 2nd Chapter, we recall a definition, realization and characterization of the Segal—
Shale—Weil representation. In Chapter 3, symplectic manifolds, Fedosov connections, metaplectic
structures, symplectic Dirac and certain related operators are introduced. Results of K. and L.
Habermann on global analysis related to these operators are mentioned in this part as well.
Chapter 4 of the thesis contains own results of the applicant. We start with the appropriate
representation theory and Howe-type duality. Then we treat results on the twisted de Rham
derivatives, curvature of the symplectic spinor derivative and twistor complexes. Symplectic
Killing spinors are defined in this part as well. We give a classification of the invariant operators
for contact projective geometries together with results on the decomposition of the appropriate
tensor products in the third subsection. The fourth subsection is devoted to the Hodge theory.
The last part of the thesis consists of selected articles published in the period 2003-2016.



2 Symplectic spinors

The discovery of symplectic spinors as a rigorous mathematical object is attributed to I. E. Segal,
D. Shale and A. Weil. See Shale [66] and Weil [80]. Segal and Shale considered the real symplectic
group as a group of canonical transformations and were interested in a certain quantization of
Klein—Gordon fields. Weil was interested in number theory connected to theta functions, so
that he considered more general symplectic groups than the ones over the real numbers. Let
us notice, that this representation appeared in works of van Hove (see Folland [15], p. 170) at
the Lie algebra level and can be found in certain formulas of Fresnel in wave optics already (see
Guillemin, Sternberg [22], p. 71).

When doing quantization, one has to assign to “any” function defined on the phase space
of a considered classical system an operator acting on a certain function space — a Hilbert
space by a rule. Usually, smooth functions are considered to represent the right class for the
set of quantized functions. The prescription shall assign to the Poisson bracket of two smooth
functions a multiple of the commutator of the operators assigned to the individual functions.
The multiple is determined by “laws of nature”. It equals to (+h)~!, where 2 is a fixed root
of —1 and A is the Planck constant over 2w. Thus, in the first steps, the quantization map
is demanded to be a Lie algebra homomorphism up to a multiple. In further considerations,
there is a freedom allowed in the sense that the image of a Poisson bracket need not be the
(2h)~! multiple of the commutator precisely, but the so-called deformations are allowed. (See
Waldmann [77] and also Markl, Stasheff [54] for a framework of quite general deformations.)
This tolerance is mainly because of the Groenewold-van Hove no go theorem (see Waldmann
[77]). Analytically, deformations are convergent series in the small variable #. Their connection
to the formal deformations is given by the so called Borel lemma [77].

The state space of a classical system with finite degrees of freedom is modeled by a symplectic
manifold (M,w). The state space of a point particle moving in an n-dimensional vector space
or m point particles on a line is the space R2" or the intersection of open half-spaces in it,
respectively. Considering the coordinates ¢',...,¢", and p1,...,p, on R?" where ¢* projects
onto the i-th coordinate and p; onto the (n + i)-th one, w equals to > ., dg® A dp;, or to its
restriction to the intersection, respectively.

The group of all linear maps ® on R2™ which preserve the symplectic form, i.e., ®*w = w,
is called the symplectic group. Elements of this group do not change the form of dynamic
equations governing non-quantum systems — the Hamilton’s equations. In this way, they coincide
with linear canonical transformations used in Physics.? See, e.g., Arnold [1] or Marsden, Ratiu
[55].

The symplectic group G = Sp(2n,R) is an n(2n + 1) dimensional Lie group. Its maximal
compact subgroup is isomorphic to the unitary group U(n) determined by choosing a compatible
positive linear complex structure, i.e., an R-linear map J : R?" — R2" such that 1) J? = —1p2n
and 2) the bilinear map g : R?" x R?" — R given by g(v, w) = w(v, Jw) is symmetric and positive
definite, i.e., a scalar product. The unitary group can be proved diffeotopic to the circle S', and
consequently, its first fundamental group is isomorphic to Z. Thus, for each m € N, Sp(2n,R)

—_~—

has a unique non-branched m-folded covering A(m) : ™Sp(2n,R) — Sp(2n,R) up to a covering
isomorphism. We fix an element e in the preimage of the neutral element in Sp(2n,R) on the
two fold covering. The unique Lie group such that its neutral element is e and such that the

2The system is supposed to be non-dissipative, i.e., its Hamiltonian function does not depend on time.



covering map is a Lie group homomorphism is called the metaplectic group, or if we wish,
the real metaplectic group. We set A = A(2) and G = Mp(2n,R) = 2 Sp(2n,R). We denote the
A-preimage of U(n) by K.

So far, the construction of the metaplectic group was rather abstract. One of the basic results
of the structure theory of Lie groups is that this is unavoidable indeed. By this we mean that
there is no faithful representation of Mp(2n,R) by matrices on a finite dimensional vector
space. Otherwise said, the metaplectic group cannot be realized as a Lie subgroup of any finite
dimensional general linear group. Following Knapp [32], we prove this statement.

Theorem 1: The connected double cover Mp(2n,R) does not have a realization as a Lie sub-
group of GL(W) for a finite dimensional vector space W.

Proof. Let us suppose that there exists a faithful representation 7n’ : G — Aut(W) of the
metaplectic group on a finite dimensional space W. This representation gives rise to a faithful
representation 7 : G — Aut(W©) on the complexified vector space WC. This map is injective by
its construction. The corresponding Lie algebra representation, i.e., the map 7, : g — End(W©)
is well defined because of the finite dimension of WC. Consequently, we have the commutative
diagram

§— End(WC)

J,\* ¢'T
g me@n, C)

where g is the Lie algebra of the appropriate symplectic group, ;' is the natural inclusion and
¢ is defined by ¢'(A +1B) = n A 1 (A) + m A H(B), A, B € g. Taking the exponential of the
Lie algebra sp(2n,C) C End(C?"), we get the group Sp(2n,C). Because this group is simply
connected, we get a representation ¢ : Sp(2n,C) — Aut(WTC) which integrates ¢’ in the sense
that ¢, = ¢'. Because \,, 1, and also ¢, are derivatives at 1 of the corresponding Lie groups
representations, and j’ is the derivative at 1 € G of the canonical inclusion j : G — Sp(2n,C),
we obtain a corresponding diagram at Lie groups level which is commutative as well. Especially,
we have n = ¢ o j o A. However, the right hand side of this expression is not injective whereas
the left hand side is. This is a contradiction. (]

Remark: The complex orthogonal group SO(n,C) is not simply connected, so that the above
proof does not apply for G = SO(n,R) and its connected double cover G = Spin(n,R). If it
applied, Spin(n,R) would not have any faithful finite dimensional representation.

2.1 The Segal-Shale-Weil representation

For the canonical symplectic vector space (R?",w), a group H(n) = R?" x R is assigned in which
the group law is given by

(v,t) - (w,8) = (v+w,s+t+ %w(v,w))

where (v,t), (w,s) € H(n). This is the so called Heisenberg group H(n) of dimension 2n + 1.
Let us set L = R"x {0} x {0} C H(n) and L' = {0} x R™ x {0} for the vector space of initial space
and for the vector space of initial impulse conditions, respectively. In particular, the symplectic
vector space R?" is isomorphic to the direct sum L @ L'.



For any u’ € H(n), we have a unique ¢t € R and ¢ € L, p € L’ such that v’ = (gq,p,t). The
Schrédinger representation Sch of the Heisenberg group Sch : H(n) — U(L?(L)) is given by

(Sch((qm, t))f)(;v) _ 627rzt+7rzw(q,p)+27rzw(x,p)f(x + q)

where ¢, € L, p € L', t € R, and f € L?(L). It is an irreducible representation. See Folland
[15]. (By w(z,p), we mean w((z,0), (0,p)) and similarly for w(q,p).)

We may “twist” this representation in the following way. For any g € G, we set I, : H(n) —
H(n), ly(u,t) = (gu,t), where u € R*" and ¢ € R. Consequently, we obtain a family of represen-
tations Schol, of the Heisenberg group H(n) parametrized by elements g of the symplectic group
G. The action of the center of H(n) is the same for each member of the family (Sch o ly)gec.
Namely, (Schol4)(0,0,t) = e?™ ¢ € R. Let us recall the Stone-von Neumann theorem. For a
proof, we refer to Folland [15] or Wallach [78].

Theorem 2 (Stone—von Neumann): Let T' be an irreducible unitary representation of the Heisen-
berg group on a separable infinite dimensional Hilbert space H. Then T is unitarily equivalent
to the Schrodinger representation.

By Stone-von Neumann theorem, we find a unitary operator C, : L*(L) — L?*(L) that
intertwines Sch o l, and Sch for each g € G.*> By Schur lemma for irreducible unitary rep-
resentations (see Knapp [33]), we see that there is a function m : G x G — U(1) such that
CyCy =mlg,9')Cqy, 9,9' € G. In particular, g — Cy is a projective representation of Sp(2n,R)
on the Hilbert space L?(L). It was proved by Shale in [66] and Weil in [80] that it is possible
to lift the cocycle m and the projective representation g — Cy of G to the metaplectic group to
obtain a true representation of the 2-fold cover. We denote this representation by ¢ and call it
the Segal-Shale—Weil representation. Note that some authors call it the symplectic spinor,
metaplectic or oscillator representation. The representation is unitary and faithful. See, e.g.,
Weil [80], Borel, Wallach [5], Folland [15], Moeglin et al. [60], Habermann, Habermann [26] or
Howe [30].

The “essential” uniqueness of the Segal-Shale—~Weil representation with respect to the choice
of a representation of the Heisenberg group is expressed in the next theorem.

Theorem 3: Let T : H(n) — U(W) be an irreducible unitary representation of the Heisenberg
group on a Hilbert space W and ¢’ : G — U(W) be a non-trivial unitary representation of the
metaplectic group such that for all (v,t) € H(n) and g € G

o'(9)T(v,t)0'(9)~" = T(A(g)v,1).

Then there exists a deck transformation v of A, such that o' is equivalent either to o o or to
o* o, where 0*(g) = 7o (g)T and (7(f))(z) = f(x), x € R", g € G and f € L*(R").
Proof. See Wallach [78], p. 224. O

Remark: Let us recall that a deck transformation 7 is any continuous map which satisfies
Ao~y = A Note that in the case of the symplectic group covered by the metaplectic group,
a deck transformation is either the identity map or the map “interchanging” the leaves of the
metaplectic group.

3We say that C' : W — W intertwines a representation T : H — Aut(W) of the group H if CoT(h) = T'(h)oC
for each h € H.



2.2 Realization of symplectic spinors

There are several different objects that one could call a symplectic basis. We choose the one which
is convenient for considerations in projective contact geometry. (See Yamaguchi [82] for a similar
choice.) If (V,w) is a symplectic vector space of dimension 2n over a field k of characteristic
zero, we call a basis (e;)2", of V a symplectic basis if w(e;, e;) = 0; 2n4+1—; for 1 <i < n and
1 <j < 2n, and w(e;,ej) = =0 an41—; for n+1 <4 < 2n and 1 < j < 2n. Thus, with respect
to a symplectic basis, the matrix of the symplectic form is

(wz‘j):( _OK IO{ )

where K is the following n x n matrix

0 0 1
0 10
K= )
1 0 0
Further, we denote by w%, i, = 1,...,2n, the coordinates which satisfy Zi’;l wipw’® =

571 for each 4,5 = 1,...,2n. They define a bilinear form w* : V* x V* — Kk, e.g., by setting
w* = 2?2:1 we; A ej. We use w;; and w to rise and lower indices of tensors over V. For

rs...t...u rs...t

. 2 ;
of a tensor K on V, we denote the expression Zczl WK b c..d

,,,,,, and Z?ll Kap. "%y by Kap o 5" and similarly for other types of
tensors and in the geometric setting when we consider tensor fields on symplectic manifolds.

Remark: Let (R?",w) be the canonical symplectic vector space introduced at the beginning of
this Chapter. Then the canonical arithmetic basis of R?" is not a symplectic basis according to
our definition unless n = 1.

Let us denote the A-preimage of g € Sp(2n,R) by g. Suppose A, B € M, (R), A is invertible
and B! = B. We define the following representation of G on L?(R")

—Te xr,xr ~ 1 O
(o(h)f)(x) = Le ™0B2D/2¢2) for any hy € §1, g1 = < 511 )

(o(ho)f)(x) = Vdet A=1f(A™ x) for any hy € Ga, g2 = < 61 Aglt >

(o(h3)f)(@) = "™ /A(Ff)(x) for any hs € g3, g3 = Jo = ( (1) _01 >

where f € L?(R™) and z € R™. The =+ signs and the square roots in the definition of (h;) depend
on the specific element in the preimage of g;. The coordinates of g;, ¢ = 1,2, 3, are considered with
respect to the canonical basis of R?". See Folland [15]. Notice that we use the Fourier transform
defined by (Ff)(y) = [, cgn e2m90(@Y) f(z)dx, y € R™, with respect to the Lebesgue measure
dz on R” induced by the scalar product go(z,y) = w(x,Joy), (z,0),(y,0) € R™ x {0} ~ L.
Elements of type g1, g2 and g3 generate Sp(V,w). See Folland [15]. Note that in Habermann,
Habermann [26], a different convention for the Fourier transform is used. Note that L?(R")
decomposes into the direct sum L2(R™)4 & L2(R™)_ of irreducible G-modules of the even and of



the odd functions in L?(R™). For a proof that o is a representation, see Folland [15] or Wallach
[78] for instance. For a proof that o intertwines the Schrodinger representation of the Heisenberg
group, see Wallach [78], Habermann, Habermann [26] or Folland [15]. A proof that L?(L)+ are
irreducible is contained in Folland [15].

Taking the derivative o, at the unit element of G of the representation o restricted to smooth
vectors in L?(L), we get the representation o, : g — End (S) of the Lie algebra of the metaplectic
group on the vector space S = S(L) of Schwartz functions on L. See Borel, Wallach [5] and Folland
[15] where the smooth vectors are determined. Note that, we have S ~ Sy & S_ similarly as
in the previous decomposition. For n x n real matrices B = B, C = C* and A, we have (see
Folland [15])

4y —
_ j 0 0
0.(Y)=—m Z Cijxta? for Y c oo
.7]._1
A 0
ZlA” ?—*ZA”fOI'Z ( 0 —At)
0

It follows that

dacm

Definition 1: For any m € Ny, we set hy,(z) = 21/4( ) ma? (6*2”2). For n € N and
= (a1,...,ap) by ha(zh, ... 2") =

a € Nj, we define the Hermite function h, with mdex
hoy (1) .. hg, (2™), (2., 2") € R™

Remark: For Hermite functions, see Whittaker, Watson [81] and Folland [15]. We use the
convention of Folland [15]. Especially, ho(z) = 21/4¢=72",

Well known properties of Hermite functions make us able to derive that for any a = (ay, ...
an) € Ny

o (Jo)ha = —1(|a| + g)ha

where |a] = 31" | ;. Thus, the Hermite functions are eigenfunctions of o, (Jp).

2.3 Weyl algebra and Symplectic spinor multiplication
Let k be a field of characteristic zero. For any n € N, the Weyl algebra W,, over k is the

associative algebra generated by elements 1 € k, ai,...,a, and by,...,b, satisfying to the
relations la; = a;1, 1b; = b1, a;b; — bja; = —di51, aza; = ajas, bib; = bjb;, 1 < 4,5 < n.
It is known that W, has a falthful representatlon on the space of polynomials k[¢!, ..., ¢"] given

by 1~ 1 (multiplication by 1), a; — ¢* and b; — aiqﬂ where ¢' denotes the multiplication of a
polynomial by ¢* and 8%1‘ is the partial derivative in the i-th variable. See, e.g., Bjork [3].



Any associative algebra A over field k can be equipped with the commutator
[,[]:AxA— A

defined by [z,y] = 2y — yx, z,y € A, making it a Lie algebra. The Heisenberg Lie algebra
H,, is the real vector space R*" (gl ... ¢" p1,...,pn,t] with the Lie bracket

[,]: Hy x H, = {0} x {0} xRC H,

prescribed on basis by [0y, 04i] = [0r,0p,] = [04i, 0gi] = [0p,;,0p,] = 0 and [0y, 0,,] = —0;;0,
1 <4,j < n. Note that [, ] is not the Lie bracket of vector fields in this case. It is the Lie algebra
of the Heisenberg group H(n) and it is isomorphic (as a Lie algebra) to

Wa(1) = {r1+ Y (oia; + Bibi)| 704, 8 €R,i=1,...,n} CW,

i=1

equipped with the commutator as the Lie algebra bracket. An isomorphism can be given on a
basis by 0; = 1, 04 + a3, Op, = by, i =1,...,n.

For a symplectic vector space (V,w) of dimension 2n over R, let us choose a symplectic basis
(e;)#, and consider the tensor algebra

A=T(VS=CaVia ViV a-...

Let us set sClif f(V,w) = A/I, where I is the two sided ideal generated over A by elements
vRw—w®v+w(v,w), v,w € VC. The complex associative algebra sClif f(V,w) is called the
symplectic Clifford algebra. Let us consider the map 1+ 1, e,,4; — —a; and e, 41—; — b,
i = 1,...,n, which extends to a homomorphism of associative algebras sClif f(V,w) and W,
for k = C. It is not difficult to see that this map is an isomorphism onto W,,. Summing up, W,
and sClif f(V,w) are isomorphic as associative algebras. The Heisenberg Lie algebra H,, embeds
homomorphically into sClif f(V,w) (considered as a Lie algebra with respect to the commutator)
via Oy > 1, Opi = —epyq and Op, > 1epq1—4, 1 =1,...,m.

Remark: Note that there is an isomorphism of the Heisenberg Lie algebra H,, with ki[q', ...,
..q"™,p1,...,Dnl, the space of degree one polynomials in ¢*,p; (i = 1,...,n), equipped with the

Poisson bracket
_ N~ (9505 0f o

ij=1

where f’g S kl[qla e aqnapla e 7pn]
We come to the following important definition.

Definition 2: Let (e;)?"; be a symplectic basis of (V,w). For i =1,...,n and f € S, we set
of

ei.f:mjif and €i+n'f:W

and extend it linearly to V. The map - : V x § — S is called the symplectic spinor multipli-
cation.

Remark: In the preceding definition, f € S(R") and 2% denotes the projection onto the i-th
coordinate in R™. Note that the symplectic spinor multiplication depends on the choice of a



symplectic basis. Because of its equivariant properties (see Habermann [26], p. 13), one can use
the multiplication on the level of bundles. In this case, we denote it by the dot as well. Note that
the equivariance of the symplectic Clifford multiplication with respect to the Segal-Shale—Weil
representation makes the definitions of the symplectic spinor Dirac, the second symplectic spinor
Dirac and the associated operator correct.

3 Symplectic spinors in differential geometry

Let us recall that a symplectic manifold is a manifold equipped with a closed non-degenerate
exterior differential 2-form w.

One of the big achievements of Bernhard Riemann in geometry is a definition of the curvature
(Kriimmungsmaf) in an arbitrary dimension. After publishing of his Habilitationsschrift, Levi-
Civita and Riemannian connections became fundamental objects for metric geometries. Intrinsic
notions and properties (such as straight lines, angle deficits, parallelism etc.) of many geometries
known in that time can be defined and investigated by means of them. Using these connections,
one can find out quite easily, whether the given manifold is locally isometric to the Euclidean
space.

Definition 3: Let (M,w) be a symplectic manifold. An affine connection V on M is called
symplectic if Vw = 0. Such a connection is called a Fedosov connection if it is torsion-free.

For symplectic connections, see, e.g., Libermann [52], Tondeur [74], Vaisman [75] and Gelfand,
Retakh, Shubin [19]. In contrast to Riemannian geometry, we have the following theorem which
goes back to Tondeur [74]. See Vaisman [75] for a proof.

Theorem 4: The space of Fedosov connections on a symplectic manifold (M,w) is isomorphic
to an affine space modeled on the infinite dimensional vector space I'(S3TM), where S3TM
denotes the third symmetric product of the tangent bundle of M.

Remark: Note that due to a theorem of Darboux (see McDuff, Salamon [56]), all symplectic
manifolds of equal dimension are locally equivalent. In particular, symplectic connections cannot
serve for distinguishing of symplectic manifolds in the local sense. From the eighties of the last
century, symplectic connections gained an important role in mathematical physics. They became
crucial for quantization procedures. See Fedosov [13] and Waldmann [77].

Let (M?",w) be a symplectic manifold and V be a Fedosov connection. The curvature
tensor field of V is defined by

R(X.Y)Z =VxVyZ -VyVxZ - Vxy)Z

where X,Y,Z € X(M). A local symplectic frame (U, (e;)?,) of (M,w) is an open subset

U in M and a sequence of vector fields e; on U such that ((e_,;)m)?ﬁl is a symplectic basis of
(T'wM, wyy,) for each m € U.

Let (U, (e;)?%,) be a local symplectic frame. For X = 2" X'ie, Y = 2" Yie, Z =
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S Zie, V=3 Vie, e X(M), X\, Y4, Z!, Vi € C*(U), and 4,5, k,1 = 1,...,2n, we set

Rijii = w(R(er,er)e;,e;)
o(X,Y) = TV R(V,X)Y), V€ X(M)
055 = 0'(61‘, ej)
1
Oijkl = m(wilajk — WOk + W10k — Wji1Tik + 20:;Wk)
2n
FX.Y,Z,V) = Y ouuX'YIZFV!
0,5k, l=1
W = R-0o

where at the last row, R represents the (4, 0)-type tensor field Zf? i Rijri€ @€ @ ¥ @ e and

(€)?m, is the frame dual to (e;)?".

Definition 4: We call W the symplectic Weyl curvature. The (2,0)-type tensor field o is
called the symplectic Ricci curvature. A symplectic manifold with a Fedosov connection is
called of Ricci-type if W = 0 and it is called Ricci-flat if o = 0.

Let (M,w) be a symplectic manifold. We set
Q = {f is a symplectic basis of (T,,M,w,,)|m € M}

and call it the symplectic repére bundle. For any f = (e1,...,e2,) € Q, we denote by 7g(f)
the unique point m € M such that each vector in f belongs to T,,M. The topology on @ is
the coarsest one for which mg is continuous. It can be seen that mg : @ — M is a principal
Sp(2n, R)-bundle.

Definition 5: A pair (P, A) is called a metaplectic structure if 7p : P — M is a principal
Mp(2n,R)-bundle over M and A : P — @ is a principal bundle homomorphism such that the
following diagram commutes. The horizontal arrows denote the actions of G and G, respectively.

PxG——P

QxG——Q

A compatible positive almost complex structure J on a symplectic manifold (M, w) is
any endomorphism J : TM — TM such that J?2 = —17,, and such that g(X,Y) = w(X,JY),
X,Y € X(M), is a Riemannian metric. In particular, g is a symmetric tensor field. Note that J is
an isometry and a symplectomorphism as well. A compatible positive almost complex structure
always exists on a symplectic manifold (M, w). See, e.g., McDuff, Salamon [56], pp. 63 and 70,
for a proof.

Remark: Note that a Kéhler manifold can be defined as a symplectic manifold equipped with a
Fedosov connection V and a compatible positive almost complex structure J such that VJ = 0,

11



i.e., J is V-flat. Especially, any Kahler manifold is symplectic. The first example of a compact
symplectic manifold which does not admit any Kéhler structure was given by Thurston [72].
He was inspired by a review note of Libermann [53] who comments a mistake in an article of
Guggenheimer [21]. See also the review [28] of the Guggenheimer’s article by Hodge.

In the following theorem, a condition for the existence of a metaplectic structure is given.

Theorem 5: Let (M, w) be a symplectic manifold and J be a compatible positive almost complex
structure. Then (M, w) possesses a metaplectic structure if and only if the second Stiefel-Whitney
class wy (T M) of TM vanishes if and only if the first Chern class ¢, (TM) € H*(M,Z) of (TM, J)
is even.

Proof. See Kostant [36] and Forger, Hess [16], p. 270. O

Remark: An element a € H?*(M,Z) is called even if there is an element b € H?(M,Z) such
that ¢ = 2b. By a Chern class of (T'M,J), we mean the Chern class of the complexification

TMFC defined with the help of the compatible positive almost complex structure J. See Milnor,
Stasheff [57].

3.1 Habermann’s symplectic Dirac and associated second order oper-
ator

We introduce the symplectic Dirac operators and the associated second order operator of K.
Habermann. Note that there exists a complex version of the metaplectic structure (so-called
Mpe-structure), and also of the mentioned operators. See Robinson, Rawnsley [64] and Cahen,
Gutt, La Fuente Gravy and Rawnsley [10]. Let us notice that Mp® structures exist globally on
any symplectic manifold (see [64]). Generalizations of many results of Habermann, Habermann
in [26] to the Mp®-case are straightforward (see [10]).

Definition 6: Let (M?",w) be a symplectic manifold admitting a metaplectic structure (P, A).
The associated bundle § = P X, S is called the symplectic spinor or the Kostant’s bundle.
Its smooth sections are called symplectic spinor fields.

After introducing the Kostant’s bundle, we can set up definitions of the differential operators.

Definition 7: Let V be a symplectic connection on a symplectic manifold (M,w) admitting
a metaplectic structure (P,A). Consider the principal connection TQ — sp(2n,R) induced
by V and its lift Z : TP — g to the metaplectic structure. The associated covariant derivative
V5 : T(S) — I'(S®T*M) on symplectic spinor fields is called the symplectic spinor covariant
derivative. Let (U, (¢;)?",) be a local symplectic frame. The operator D : I'(S) — T'(S) defined
for any ¢ € T'(S) by

2n
D= wle;-Vig

i,j=1
is called the (Habermann’s) symplectic spinor Dirac operator.
Let J be a compatible positive almost complex structure on a symplectic manifold (M, w).

A local unitary frame is a local symplectic frame which is orthogonal with respect to the
associated Riemann tensor g(X,Y) = w(X,JY), X,Y € X(M).

12



Definition 8: Let J be a compatible positive almost complex structure on a symplectic manifold
which admits a metaplectic structure and (U, (e;)?",) be a local unitary frame. The operator

D :T(S) — I'(S) defined for any ¢ € I'(S) by
2n

D¢ = (Jei)-Vig
i=1

is called the second symplectic spinor Dirac operator. The operator P = 1[5, D] is called
the associated second order operator.

Remark: The associated second order operator B is elliptic in the sense that its principal
symbol o(,£) : S — S is a bundle isomorphism for any non-zero cotangent vector & € T*M.
See Habermann, Habermann [26], p. 68.

For symplectic spinor covariant derivative V° and a chosen compatible positive almost com-
plex structure, one defines the formal adjoint (V)* : T(S®T*M) — I'(S) of V°. See Habermann,
Habermann [26].

Definition 9: The Bochner-Laplace operator on symplectic spinors A® : I'(S) — I'(S) is
the composition A% = (V9)* o V7.

Definition 10: The curvature tensor field R® on symplectic spinors induced by a Fedosov
connection V is defined by

R¥(X,Y)¢ = VXVy¢— ViVie = Vix v
where X,Y € X(M), ¢ € T(S) and V¥ is the symplectic spinor derivative.

In the next theorem, a relation of the associated second order operator 8 to the Bochner-
Laplace operator AS on symplectic spinors is described. It is derived by K. Habermann, and
it is a parallel to the well known Weitzenbock’s and Lichnerowicz’s formulas for the Laplace
operator of the de Rham differentials (Hodge-Laplace) and the Laplace operator of a Levi-Civita
connection (Bochner-Laplace); and for the square of the Dirac operator and the Laplace operator
of a Lichnerowicz connection on spinors (Lichnerowicz-Laplace), respectively. See, e.g., Friedrich
[18] for the latter formula. We present a version of the Habermann’s theorem for Kéhler manifold.
See Habermann, Habermann [26] for more general versions.

Theorem 6: Let (M,w, J) be a Kihler manifold and (U, (e;)?",) be a local unitary frame. Then
for any ¢ € I'(S)

2n
Po=A%¢+1 > (Jei)-ej - R¥(es,¢))0.

3,J=1

Proof. See Habermann, Habermann [26]. O

For complex manifolds of complex dimension one*, Habermann obtains the following conse-
quence of the formula in Theorem 6.

4i.e., Riemann surfaces
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Theorem 7: If M is a Riemann surface of genus g > 2, w is a volume form on M, and (P, A) is
a metaplectic structure, then the kernel of the associated second order operator is trivial.
Proof. See Habermann [25]. O

Remark: In [24] and [25], Habermann proves that for 72 (g = 1) and the trivial metaplectic
structure, the null space for 98 is isomorphic to the Schwartz space S = S(R). In the case of the
(trivial) metaplectic structure on the sphere, the kernel of the associated second order operator
is rather complicated. See Habermann [25] or Habermann, Habermann [26]. In the case of
genus g = 1 and non-trivial metaplectic structures, the kernel of B is trivial as well. For it, see
Habermann [25].

For further results on spectra and null-spaces of the introduced operators, see Brasch, Haber-
mann, Habermann [6], Cahen, La Fuente Gravy, Gutt, Rawnsley [10] and Korman [35]. The key
features used are the Weitzenbock-type formula (Theorem 6) and an orthogonal decomposition
of the Kostant’s bundle. To our knowledge, this decomposition was used firstly by Habermann
in this context. It is derived from a K-isomorphism between L?(R™) and the Hilbert orthogonal
sum @,°_, Hm of the spaces

Hm= P Cha, meN,.

o Jal<m

Recall that K denotes the preimage in the metaplectic group of the unitary group U(n) by the
covering A. (See Habermann, Habermann [26], p. 18 for a description of the isomorphism.)

3.2 Quantization by symplectic spinors

For a symplectic manifold (M,w) and a smooth function f on M, we denote by Xy the vector
field w-dual to df, i.e., such a vector field for which

w(Xy, Y) = (d)Y

for any Y € X(M). It is called the Hamiltonian vector field of f. A vector field is called symplectic
if its flow preserves the symplectic form. Any Hamiltonian vector field is symplectic but not vice
versa. For a study of these notions, we refer to the monograph McDuff, Salamon [56]. Note that
in this formalism, a Poisson bracket of two smooth functions f,g on M is defined by

{f,9}p = w(Xy, Xy).

Let (M,w) be a symplectic manifold admitting a metaplectic structure. For a symplectic
vector field Y, let Ly denote the Lie derivative on the sections of the Kostant’s bundle in
direction Y. See Habermann, Klein [27] and Kolaf, Michor, Slovék [34].

Definition 11: Let (M,w) be a symplectic manifold admitting a metaplectic structure. For a
smooth function f on M, we define a map q(f) : T'(S) — IT'(S) by

q(f)¢ = —hLx, ¢
for any ¢ € T'(S). We call q: f — q(f) the Habermann’s map.
Due to the properties of Lx, it is clear that ¢ maps into the vector space endomorphisms of

I'(S)
q:C(M) = End(I(S)).
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Moreover, Habermann derives the following theorem.

Theorem 8: Let (M, w) be a symplectic manifold admitting a metaplectic struture. Then for
any f,g € C*(M), the Habermann’s map satisfies

[a(f),a(9)] = ha({f, g} p)-
Proof. See Habermann, Habermann [26]. O

Remark: The Habermann’s map q satisfies the quantization condition (see Introduction) and
thus, it gives an example of a non-deformed quantization. By this we mean that ¢ is a morphism
of Poisson algebras (C>*°(M), {,}) and (End (I'(S)), [,]) up to a multiple. However notice that
usually, a quantization is demanded to be a map on smooth functions C*>°(M) defined on the
phase space M into the space of operators on the vector space L?(N) of L?-functions or L>2-
sections of a line bundle over NV where N denotes the Riemannian manifold of the configuration
space. See Souriau [70] and Blau [4] for conditions on quantization maps, their constructions
and examples.

4 Author’s results in Symplectic spinor geometry

We present results achieved by the author in differential geometry concerning symplectic spinors
that we consider important and relevant. We start with a chapter on representational theoretical,
or if we wish equivariant, properties of exterior differential forms with values in symplectic
spinors.

4.1 Decomposition of tensor products and a Howe-type duality

Let g be the Lie algebra of symplectic group Sp(2n,R), g© the complexification of g, h a Cartan
subalgebra of g&, AT a choice of positive roots, and {w;}?, the set of fundamental weights
with respect to these choices. Let us denote the irreducible complex highest weight module
with highest weight A € b* by L(\). For any A = > | \iw;, we set L(A1,...,\,) = L(A). For
i=0,...,2n, we denote by o* the tensor product representation of the complexified symplectic
Lie algebra g€ on E' = \'V* ® S, ie., 0' : ¢ — End(E?) and ¢*(X)(a ® s5) = \){(X)a ®
s+ a®o.(X)s for any X € g¢,a € \'V* and s € S, where \)* denotes the action of g©
on A\'V*. We consider E = EB?:O E' equipped with the direct sum representation o®(X) =
(0%(X),...,0?"(X)), X € g°. Let us notice that here, o, denotes the complex linear extension
of the representation o, : g — End(S) considered above.

Remark: Note that there is a misprint in Krysl [46]. Namely, the “action” of g on E (denoted
by W there) is prescribed by X (a ® s) = \(X)a ® 0,(X)s for X € g, a € \'V, s € S, and
i =0,...,2n. Actually, we meant the standard tensor product representation as given above,
e, X(a®s) = M (X)a® s+ a® o.(X)s. However, the results in [46] are derived for the
correct action o® defined above.

Definition 12: Let us set = = {(i,5;)[i =0,...,n,75, =0,...,i} U{(i,4:)|i=n+1,...,2n,j; =
0,...,2n — i}, sgn(+) =0, sgn(—) = 1, and

i 1 1 1
E£:L(§v"’7§7f§a"'7** _
—_— —

J n—j—1
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fori =0,....,n—1,j=0,...,iand i =n, j =0,...,n—1. For i = j = n, we set B" =
L(%, ,%) apd E™ = L(%,--- ,%,—g). For ¢ = n+v.1,...,2n and j = 0,...,2n — i, we set
EY = EC"™Y For any (i,7) € Z x Z\ E, we define E = 0. Finally for any (i,j) € Z x Z, we
set EY = EY @ EY. For (i,j) € E, the gC-modules EY are called higher symplectic spinor
modules and their elements higher symplectic spinors.

Theorem 9: The following decomposition into irreducible g®-modules holds

/\V*®Si: @ E;j

(i,5)€E

Proof. Krysl [46]. O

Remark: The decomposition holds also on the level of minimal and hyperfunction globaliza-
tions since the corresponding globalization functors are adjoint functors to the Harish-Chandra
forgetful functor. See Vogan [76] and Casselmann [12]. It holds also for smooth Fréchet global-
ization G — Aut(S). By abuse of notation, we shall denote the tensor product representation of
Gon E by ¢® as well. The above decomposition holds also when V* is replaced by V since the
symplectic form gives an isomorphism of the appropriate representations of g°.

Definition 13: For ¢ =0, ...,2n, we denote the uniquely determined equivariant projections of
AN VoSt ETCN V®Si by pY and the projections p +p onto E“ by p%, (i,5) € Z x Z.

Let us recall a definition of the simple Lie superalgebra osp(1]2). It is generated by elements
et,e”,h, fT, f satisfying the following relations

[h,ei] — 4ot [€+,€_] =2h
[h’fi]:i%fi {er,f*}:}h
T = ) = i;e

where {, } denotes the anticommutator, i.e., {a,b} = ab+ ba, a,b € 0sp(1|2).

We give a Zy-grading to the vector space E = A\*V ® S by setting Ey = @, ANV ® S,

=®d., AN "'V®S and E = Ey® E,. Further, we choose a symplectic basis (¢;)2"; of (V,w)

and denote its dual basis by (¢!)??; C V*. The Lie superalgebra o0sp(1]2) has a representatlon
p:0sp(1]2) — End(FE) on the superspace E given by

2n
2 .
p(f+)(a®s):§E eNa®e-s and p(f7)(a®s) E Wi a®e; -

i=1

where a € A\*V*, s € S, and ¢, denotes the contraction by the vector v. Consequently, elements
eT,e” and h act by

p(e®) = £2{p(f*),p(f*)} and p(h)zé[p(ﬁ)m(e*)]
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where {, } and [, ] denote the anticommutator and the commutator on the associative algebra
End(E), respectively.

The following theorem is parallel to the Schur and Weyl dualities for tensor representations
of GL(n,C) and SO(n,C), respectively. See Howe [29] where they are treated.

Theorem 10: The following g© x osp(1]|2)-module isomorphism holds

ANV es~@PEier) e (B e F)
=0 1=0

where F; = C?"~=2*1 and p; : 0sp(1]2) — End(F;) is given on a basis (bj)?if of F; by prescrip-
tions

pi(fT)(b;) = A(n,i+1,5)bj+1 pi(f7)(bs) =bj1
pi(h) =2{pi(f "), ps(f)} and pi(e®) = £2{p;(f*), pi(f¥)}

where i = 0,...,n and A(n,i,j)2%@—’5)4—%@4-]'—211—1).

Proof. See Krysl [46]. O

Remark: In the preceding definition, if an index exceeds its allowed range, the object is con-
sidered to be zero. Thus, e.g., by, —;4+1 Or b;_o are zero vectors.

Theorem 11: For ¢ = 0,...,n, representations F; are irreducible.
Proof. See Krysl [46]. O

Remark: Representations p; in Theorem 10 depend on the choice of a basis, but not their
equivalence class. As follows from Theorem 11, the multiplicity of E% in the g¢-module E is
2n —2i+1fori=0,...,n.

4.2 Differential geometry of higher symplectic spinors

For any symplectic manifold (M, w) admitting a metaplectic structure (P, A), the decomposition
from Theorem 9 can be lifted to the associated bundle & = P X 4o FE.

Remark: Since S is a smooth globalization, we may consider F as a representation of the
metaplectic group as well.

Definition 14: Let (M,w) be a symplectic manifold admitting a metaplectic structure (P, A).

For any (i,j) € Zx Z, we set £ = P X& E% and call it the higher symplectic spinor bundle
and elements of its section spaces the higher symplectic spinor fields if (i,j) € Z.

We keep denoting the lifts of the projections /\Z V*® S — EY to T'(E) — T'(EY) by p¥,
where £ = P x i E'.
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4.2.1 Curvature, higher curvature and symplectic twistor complexes

For a Fedosov connection V on a symplectic manifold (M, w) admitting a metaplectic structure,
we consider the exterior covariant derivative d¥° for the induced symplectic spinor derivative
V5. See, e.g., Kolat, Michor, Slovdk [34] for a general construction of such derivatives.

Theorem 12: Let (M,w) be a symplectic manifold admitting a metaplectic structure and V
be a Fedosov connection. Then for any (i,j) € Z x Z, the restriction of the exterior symplectic
spinor derivative satisfies

dV7 i T(7) —» T~ @ T(£117) @ D(£71I 1Y),
Proof. See Krysl [38]. O

Remark: In particular, sections of each higher symplectic spinor bundle are mapped into sections
of at most three higher symplectic spinor bundles. Note that in the case of orthogonal spinors
in pseudo-Riemannian geometry, the target space structure of the exterior covariant derivative
is similar. See Slupinski [68].

Let (e;)?", be a local symplectic frame on (M, w) and (¢*)2?, be its dual symplectic coframe.
Recall that above, we defined the symplectic Ricci and symplectic Weyl curvature tensor fields.
Let us denote by ¢ the endomorphism of the symplectic spinor bundle defined for any ¢ € S
by

2n
os(b: Z Uijklek/\el®ei-ej~¢.

iyj.k,l=1

N |

Similarly we set
2n

E Wijklek/\el®6i~€j-d).
i k=1

Wo¢ =

N

Recall that )
/\T*M®S:520@821 @522

according to Theorem 9.

In the next theorem, components of R¥ in £2°, £2! and £2? are found. We notice that

1) we use the summation convention, i.e., if two indices occur which are labeled by the same
letter, we sum over it without denoting the sum explicitly and

2) instead of e; - e;-, we write e;;- and similarly for a higher number of indices.
Theorem 13: Let n > 1, (M?",w) be a symplectic manifold admitting a metaplectic structure

and V be a Fedosov connectlon Then for any ¢ € T'(S), 0%¢ € T(E2° @ £21) and Wo¢ €
['(E% @ £22). Moreover, we have the following projection formulas

) .
pPR%¢ = %aljwklek AN @ €ij - @
) 1
p21R5¢ = m ” k A 6 ® (wzlekj ankleij~)¢ — 1_ W”k A 6 X Emkij * gf)
22RS _ ¢ Uk em
P ¢ = 2W kge A€ ® e - ¢+ W A€l ® emkij * O-
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Proof. See Krysl [42]. O

Remark: Note that for n = 1, E?! = E?? = 0, so that there is no Weyl component of the
curvature tensor of a Fedosov connection in this dimension. The formula for p?° holds also for
n=1.

Definition 15: For (i,5),(i+1,k) €Z,a=0,...,n—1and b=n,...,2n — 1, let us set
i i b,2n—b
Di,, = dlr(gu T(EV) 5 T(EHY), To=D3i1 401 and  Ty=Dyrly .
The operators T;, + = 0,...,2n — 1, are called the symplectic twistor operators.

Let (V,w) be a symplectic vector space, (e;)?"; be a symplectic basis, (¢/)?"; be a basis of
V* dual to (e;)#,, and o € S2V* be a bilinear form. For a € A* V* and s € S, we set

(a®s) ZO’ dAaRe; s

1,9=1
and
(a®s) E a®oe; - €j -
i,j=1

We keep denoting the corresponding tensors on symplectic spinor bundles by the same symbols.
In this case, the the symplectic Ricci curvature tensor field plays the role of the tensor o.

We use abbreviations
E*f =p(e®): E— Eand F*f = p(f*): E > E.

Let (M,w) be a symplectic manifold which admits a metaplectic structure and V be a Fedosov
connection of Ricci-type. For a higher symplectic spinor field ¢ € T'(£), we have (see Krysl [43])

the following formula
1

E
Rro=1"7 n+1

—(E*O7 +2F*%%)¢.

Remark: By the higher curvature, we understand the curvature of V° on higher symplectic
: ; E _ gv°  gvS

spinors, i.e., R =d¥ od" .

The above formula is used for proving the next theorem.

Theorem 14: Let n > 1, (M?",w) be a symplectic manifold admitting a metaplectic structure
and V be a Fedosov connection of Ricci-type. Then

0 — D) Lo pretty Ly IS penny 5 0 and
0—T(E™) LN r(gntintly Tty Ton L&) — 0
are complexes.
Proof. See Krysl [43]. O
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We call the complexes from Theorem 14 the symplectic twistor complexes.

Theorem 15: Let n > 1, (M?",w) be a symplectic manifold admitting a metaplectic structure
and V be a Fedosov connection of Ricci-type. Then

0 —s I‘((‘:OO) g .. T"_>—2 F(gn—l,n—1) Tyﬂfl F(gn+1,n+1) Tn_+>1 Ti; I‘(52"72") —.0

is a complex.
Proof. See Krysl [43]. O

Definition 16: Let (F* — M);cz be a sequence of vector bundles over a smooth manifold
M, D* = (T(F%),D; : T(F%) — ['(F*1));ez be a complex of pseudodifferential operators and
for each ¢ € T*M, let o(D)(&)* = (Fi,0(D;,&) : F© — F*l),cz be the complex of symbols
evaluated in £ which is associated to the complex D*®. We call D* elliptic if o(D)(&)® is an exact
sequence in the category of vector bundles for any £ € T*M \ {0}.

Remark: Note that in homological algebra, the above complexes are usually called cochain
complexes.

Theorem 16: Let n > 1, (M?",w) be a symplectic manifold admitting a metaplectic structure
and V be a Fedosov connection of Ricci-type. Then the complexes

0 — (€% 2o p(et) Ly . 22 penl) and

D(E™) o Tty T L S (e — 0

are elliptic.
Proof. See Krysl [44]. O

4.2.2 Symplectic spinor Dirac, twistor and Rarita—Schwinger operators

Definition 17: Let (M,w) be a symplectic manifold admitting a metaplectic structure and V
be a Fedosov connection. The operators

D =F oDY:T(S) = T(S) and R = F~ o Dy} : T(EM) — T (&)

are called the symplectic spinor Dirac and the symplectic spinor Rarita—Schwinger
operator, respectively.

Remark: D is the 1/2 multiple of the Habermann’s symplectic spinor Dirac operator.

Let us denote the set of eigenvectors of a vector space endomorphism G : W — W by eigen(G)
and the set of its eigenvalues by spec(G). Recall that by an eigenvalue, we mean simply a complex
number pu, for which there is a nonzero w € W, such that Gw = pw. (We do not investigate

spectra from the functional analysis point of view.)

Definition 18: A symplectic Killing spinor field is any not everywhere zero section ¢ € I'(S)
for which there exists u € C such that

Vio=nX -9
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for each X € X(M). (The dot denotes the symplectic Clifford multiplication.) The set of sym-
plectic Killing spinor fields is denoted by kill. Number p from the above equation is called the
symplectic Killing spinor number and its set is denoted by kill.

Remark: The equation for a symplectic Killing spinor field can be written also as

V¢ = —2uF .

Remark: Note that there is a misprint in the abstract in Krysl [39]. Namely, we write there that
—1l\ is not a symplectic Killing number instead of % is not a symplectic Killing spinor number.
In that paper, | denotes the half of the dimension of the corresponding symplectic manifold.

Theorem 17: If (M,w) is a symplectic manifold admitting a metaplectic structure and V is a
Fedosov connection, then
kill = Ker Ty N Ker ®.

Proof. See Krysl [45]. O

Theorem 18: Let (M?",w) be a symplectic manifold admitting a metaplectic structure and V
be a Fedosov connection with Ricci tensor o. Let ¢ be a symplectic Killing spinor field to the
symplectic Killing spinor number p. Then in a local symplectic frame (U, (e;)?";), we have

0%¢ = 21*n¢.
Proof. See Krysl [45]. O
As a consequence of this theorem, we have

Theorem 19: Let (M, w) be a symplectic manifold admitting a metaplectic structure and V be
a Ricci-flat Fedosov connection. Then kill = {0} and any symplectic Killing spinor field on M
is locally covariantly constant.

Proof. See Krysl [45]. O

Remark: By a locally covariantly constant field ¢, we mean V¢ = 0 which implies that ¢ is
locally constant if the Kostant’s bundle is trivial.

Theorem 20: Let n > 1, (M?" w) be a symplectic manifold admitting a metaplectic structure
and V be a flat Fedosov connection. Then

(1) If p € spec(D) \ Gkill, then =Ly € spec(R).

(2) If ¢ € eigen(D) \ kill, then Ty € eigen(R).
Proof. See Krysl [39]. O

Remark: For any A € C, Akill denotes the number set {Aa, o € kill}.
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4.3 First order invariant operators in projective contact geometry

Some of the results described above can be modified to get information for contact projective
manifolds which are more complicated objects to handle than the symplectic ones. Contact
manifolds are models for time-dependent Hamiltonian mechanics. The adjective ‘projective’ is
related to the fact that we want to deal with unparametrized geodesics rather than with the ones
with a fixed parametrization. Connections that we consider are partial in the sense that they
act on sections of the contact bundle only.

Definition 19: A contact manifold is a manifold M together with a corank one subbundle H M
(contact bundle) of the tangent bundle 7'M which is not integrable in the Frobenius sense in any
point of the manifold, i.e., for each m € M, there are 1, ¢ € H,, M such that [0, (] € HM.

Equivalently, HM is a contact bundle if and only if the Levi bracket
L(X,Y) = q([X,Y])

is non-degenerate. Here X, Y € I'(HM) and q : TM — QM = TM/HM denotes the quotient
projection onto QM. The Levi bracket induces a tensor field which we denote by the same letter
L:N*HM — QM.

Definition 20: For a contact manifold (M, HM), a partial connection V : T(HM) xT'(HM) —
['(HM) is called a contact connection if the associated exterior covariant derivative d on
(A HM) preserves the kernel of the Levi form, i.e., dCV(Ker L) C Ker L for any ¢ € HM.
The set of contact connections is denoted by Cps. A contact projective manifold is a contact
manifold (M, HM) together with a set Sy of contact connections for which the following holds. If
V1 V2 € Sy, there exists a differential one-form Y € T'(H M*) such that for any X,Y € I'(HM)

VLY - VAY = T(X)Y + T(Y)X + YHL(X,Y))

where T# : QM — HM is a bundle morphism defined by L(Y%(n),¢) = Y({)n, ¢ € QM and
n € HM. Morphisms between contact projective manifolds (M, HM, Sy) and (N, HN,Sy) are
local diffeomorphisms f : M — N such that f.(HM) = HN, and for any V € Sy, the pull-back
connection f*V € Sy.

Remark: For a contact projective manifold (M, HM,Sys), it is easy to see that the relation
R = Sy x Sy € Cypr X Cpr on the set of contact connections Cps is an equivalence.

Let (V,w) be a real symplectic vector space of dimension 2n+ 2 and (ei)fgfz be a symplectic
basis. The action of the symplectic group G’ of (V,w) on the projectivization of V is transitive
and its stabilizer P’ is a parabolic subgroup of G'. We denote the preimages of G’ and P’ by the
covering A : Mp(2n + 2,R) — Sp(2n + 2,R) by G’ and P’, respectively.

Definition 24: A projective contact Cartan geometry is a Cartan geometry (G, ¢) whose
model is the Klein geometry G’ — G’/P’ with G’ and P’ as introduced above. We say that a
Cartan geometry is a metaplectic projective contact Cartan geometry if it is modeled on
the Klein geometry G’/ P’.

Remark: For Cartan geometries, see Sharpe [67] and Cap, Slovak [11]. In Cap, Slovék [11], a
theorem is proved on an equivalence of the category of the so-called regular normal projective
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contact Cartan geometries and the category of regular normal projective contact manifolds. See
Cap, Slovak [11], pp. 277 and 410. See also Fox [17].

The Levi part évo of P is isomorphic Mp(2n,R) x R* with the semisimple part G§°* ~ G =
Mp(2n,R) and the center isomorphic to the multiplicative group R*. The Lie algebra p’ of Pis
graded, p’ = (sp(2n, R) DR) ©R* O R with gg ~ sp(2n, R) B R, g; ~ R?" and go ~ R. We denote
the Lie algebra of G’ by g’ and identify it with the Lie algebra sp(2n+2, R). The semi-simple part
g5° of go is isomorphic sp(2n,R). We denote it by g in order to be consistent with the preceding
sections. The grading of g’ = @?:_2 i, -2 ~ go and g_1 ~ g1, can be visualized with respect

to the basis (ei)fgl+2 by the following block diagonal matrix of type (1,n,1) x (1,n,1)

9o g1 g2

g= g-1 9o g1

g2 g-1 9o

The center of the Lie algebra gg is generated by

1 0 0
Gr = 0 0 0
0 0 -1

which is usually called the grading element because of the property [Gr, X] = jX for each
Xegjand j=-2,...,2.

Let # : (g%)* x (g%)* — C be the dual form to the Killing form of g* = sp(2n, C). We choose
a Cartan subalgebra b of g€ and a set of positive roots obtaining the set of fundamental weights
{w;}7_, for gC. Further, we set (X,Y) = (4n +4)k(X,Y), X,Y € (g©)*, and define

1
Ay = LA +20) + (v, v +26) — (p, 11+ 20)]

for any A, u, v € b*, where § is the sum of fundamental weights, or equivalently, the half-sum of
positive roots. For any u € h*, we set

- 1
A=) Al €Noyi=1....n =12 +2X1+3> 0,0, €Z+ 5} Ch” and
=1
A, =An{p+v|lv==xe,i=1,...,n}

where ¢, = w1, ¢, = w; —w;_1,i =2,...,n.

Considering C?" with the defining representation of g&€ = sp(2n,C), i.e., C** = L(wy), we
have the following decomposition.

Theorem 21: For any u € A, the following decomposition into irreducible g®-modules

Lp)@C" = @ L(\)

AEA,
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holds.
Proof. See Krysl [40]. O

Remark: The above decomposition has the same form when we consider the algebra sp(2n,R)
instead of sp(2n, C).

The set {L(A\)| A € A} coincides with the set of all infinite dimensional irreducible g“-modules
with bounded multiplicities, i.e., those irreducible sp(2n,C)-modules W for which there exists
a bound [ € N such that for any weight v, dim W, < [.° See Britten, Hooper, Lemire [8] and
Britten, Lemire [9].

In the next four steps, we define P-modules L(\ ¢,y) for any A € A, c € C and v € Zs.

1) Let S and S; be the gc-modules of smooth K-finite vectors of the Mp(2n, R)-modules
L?*(R™) and L?(R™),, respectively. Recall that L?(R™) denotes the Segal-Shale-Weil mod-
ule and L?(R"), is the submodule of even functions in L?(R™). For any A € A, there is an
irreducible finite dimensional g€-module F(v) with highest weight v € h* such that L()\) is
an irreducible summand in S; ® F(v) = @Ll S;. For it, see Britten, Lemire [9]. Otherwise
said, there exists a j € {1,...,k} such that L()\) ~ S;. The tensor product of the smooth
globalization S = S(R™) of S with F(v) decomposes into a finite number of irreducible
G-submodules in the corresponding way

k

Sy ®Fw) =S

i=1

ie., S; is the gC-module of smooth K-finite vectors in S;. We set L()\) = Sj, obtaining a
G-module.

2) We let the element exp(Gr) € Gy act by the scalar exp(c) (the conformal weight) on L(\)
and denote the resulting structure by L(\, ¢).

3) Let us consider the element (1,—1) € Sp(2n,R) x R* C /\’(CTO) C P and the preimage
I'=N""((1,-1)) € Gy ~ Mp(2n,R) x R*. Let us suppose that the element in I the first
component of which is the neutral element e € Mp(2n,R) acts by v € Zs on L()\, ¢).

4) Finally, the preimage \ 71(G+) C P of the unipotent part G, of P is supposed to act by
the identity on L(A,c¢). We denote the resulting admissible P-module by L(A, ¢, 7). (See
Vogan [76] for the admissibility condition.)

For details on notions in the next definition, see Slovak, Soucek [71].

Definition 25: Let & = (G — M,9) be a Cartan geometry of type (G,H) and &, F —
M be vector bundles associated to the principal H-bundle G — M. We call a vector space
homomorphism D : T'(§) — I'(F) a first order invariant differential operator if there is a
bundle homomorphism ® : J1€ — F such that Ds = ®(s, V”s) for any section s € I'(£), where
J'E denotes the first jet prolongation of £ — M and V7 is the invariant derivative for &.

5By W, we mean the wight space W, = {w € W|H - w = v(H)wfor any H € h}.
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It is convenient to divide the vector space of first order invariant differential operators by
those bundle homomorphisms between J'£ and F which act trivially on the tangent space part
of J'&. We call the resulting vector space the space of first order invariant operators up to
the zeroth order and denote it by Diffg (£, F).

Remark: Between any bundles induced by irreducible bounded multiplicities representations
introduced above, there is at most one such an invariant operator up to a multiple and up to the
operators of zeroth order. An equivalent condition for its existence is given in the next theorem.
The author obtained it at the infinitesimal level when writing his dissertation thesis already. See
[37].

Theorem 22: Let (G — M?"*! 9) be a metaplectic contact projective Cartan geometry,
(A e), (u,d,y') € Ax C X Zo, and £ = G x5 L(A¢,y) and F = G x5 L(p,d, ') be the
corresponding vector bundles over M. Then the space

. C ifuedy,c=d—-1=c)_ andy=+
1 ~ Ay Aw
DIH(Q*M*‘” (&, F) = { 0 in other cases. '

Proof. See Krysl [41]. O

4.4 Hodge theory over (C*-algebras

An additive category is called dagger if it is equipped with a contravariant functor % which is
the identity on the objects, it is involutive on morphisms, ** F' = F', and it preserves the identity
morphisms, i.e., xIdc = Id¢o for any object C. No compatibility with the additive structure
is demanded. See Brinkmann, Puppe [7]. For a morphism F, we denote *F by F*. For any
additive category C, we denote the category of its complexes by £(C). If C is an additive and
dagger category and d® = (U%,d;);cz € R(C), we set A; = did; + d;i_1d}_, i € Z, and call it the
i-th Laplace operator.

Definition 26: Let C be an additive and dagger category. We call a complex d® = (U',d;);ez €
R(C) of Hodge-type if for each i € Z

U'=KerA; @ Imd;_; @ Imd;.

We call d* self-adjoint parametrix possessing if for each i, there exist morphisms G; : U’ —
Ut and P; : U* — U? such that Idy: = GiA; + P;, Idy: = AG + Py, A;P;=0and P, = Pr.

Remark: In the preceding definition, we suppose that the images of the chain maps, the images
of their adjoints, and the kernels of the Laplacians exist as objects in the additive and dagger
category C. The sign @ denotes the biproduct in C. See Weibel [79], p. 425.

The first two equations from the definition of a self-adjoint parametrix possessing complex
are called the parametrix equations. Morphisms P; from the above definition are idempotent
as can be seen by composing the first equation with P; from the right and using the equation
A;P; = 0. In particular, they are projections. The operators G; are called the Green operators.

Definition 27: Let (A, #4,||4) be a C*-algebra and AT be the positive cone of A, i.e., the set

of all hermitian elements (x4a = a) in A whose spectrum is contained in the non-negative real
numbers. A tuple (U, (,)) is called a pre-Hilbert A-module if U is a right module over the

25



complex associative algebra A, and (,) : U x U — A is an A-sesquilinear map such that for all
u,v € U, (u,v) = x4(v,u), (u,u) € AT, and (u,u) = 0 implies v = 0. A pre-Hilbert module is
called a Hilbert A-module if it is complete with respect to the norm |u| = v/|(u,u)|a, u € U.
A pre-Hilbert A-module morphism between (U, (, )y) and (V, (,)y) is any continuous A-linear
map F:U — V.

Remark: We consider that (,) is antilinear in the left variable and linear in the right one as it
is usual in physics.

An adjoint of a morphism F : U — V acting between pre-Hilbert modules (U, (,)y) and
(V,(,)v) is a morphism F* : V — U that satisfies the condition (Fu,v)y = (u, F*v)y for
any u € U and v € V. The category of pre-Hilbert and Hilbert C*-modules and adjointable
morphisms is an additive and dagger category. The dagger functor is the adjoint on morphisms.
For any C*-algebra A, we denote the categories of pre-Hilbert A-modules and Hilbert A-modules
and adjointable morphisms by PH and H}, respectively. In both of these cases, the dagger
structure is compatible with the additive structure.

To any complex d® = (U',d;);cz € R(PH?Y), the cohomology groups H(d®*) = Kerd,;/Imd;_;
are assigned which are A-modules and which we consider to be equipped with the canonical
quotient topology. They are pre-Hilbert A-modules with respect to the restriction of (,)y, to
Kerd; if and only if Imd;_; has an A-orthogonal complement in Ker d;.

We have the following

Theorem 23: Let d* = (U, d;);cz be a self-adjoint parametrix possessing complex in PH?.
Then for any i € Z

1) d* is of Hodge-type
2) H'(d®) is isomorphic to Ker A; as a pre-Hilbert A-module
3) Kerd; = Ker A; ®Imd;_4

4) Kerd; = Ker A;yy @ Imdj

5) ImA; =Imd,;,_; & Imd.

Proof. See Krysl [50]. O

Remark: If the image of d;_; is not closed, the quotient topology on the cohomology group
H(d®) is non-Hausdorff and in particular, it is not in PH%. See, e.g., von Neumann [61] on
the relevance of topology for state spaces. See also Krysl [51] for further references and for
a relevance of our topological observation (Theorem 23 item 2) to the basic principles of the
so-called Becchi-Rouet—Stora—Tyutin (BRST) quantization.

Theorem 24: Let d* = (U%,d;);cz be a complex of Hodge-type in H?, then d® is self-adjoint
parametrix possessing.
Proof. See Krysl [51]. O

Definition 28: Let M be a smooth manifold, A be a C*-algebra and F — M be a Banach

bundle with a smooth atlas such that each of its maps targets onto a fixed Hilbert A-module
(the typical fiber). If the transition functions of the atlas are Hilbert A-module automorphisms,
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we call F — M an A-Hilbert bundle. We call an A-Hilbert bundle 7 — M finitely generated
projective if the typical fiber is a finitely generated projective Hilbert A-module.

For further information on analysis on C*-Hilbert bundles, we refer to Solovyov, Troitsky [69],
Troitsky [73] and Schick [65]. In the paper of Troitsky, complexes are treated with an allowance
of the so-called ‘compact’ perturbations.

Theorem 25: Let M be a compact manifold, A be a C*-algebra and D* = (I'(F?), D;);cz be an
elliptic complex on finitely generated projective A-Hilbert bundles over M. Let for each i € Z,
the image of A; be closed in T'(F?). Then for any i € Z

1) D* is of Hodge-type

2) HY(D®) is a finitely generated projective Hilbert A-module isomorphic to Ker A; as a
Hilbert A-module

3) KerD; =KerA; ®Im D;_4
4) Ker D} = Ker Ay @ Im D},
5) ImA; =ImD;_; @Im D;}.
Proof. See Krysl [50]. O

Let H be a Hilbert space. Any C*-subalgebra of the C*-algebra of compact operators on H
is called a C*-algebra of compact operators.

For C*-algebras of compact operators, we have the following analogue of the Hodge theory
for elliptic complexes of operators on finite rank vector bundles over compact manifolds.

Theorem 26: Let M be a compact manifold, K be a C*-algebra of compact operators and
D* = (I'(F*), D;);cz be an elliptic complex on finitely generated projective K-Hilbert bundles
over M. If D* is elliptic, then for each 7 € Z

1) D* is of Hodge-type

2) The cohomology group H*(D*®) is a finitely generated projective Hilbert K-module isomor-
phic to the Hilbert K-module Ker A;.

3) KerD; =KerA; ®ImD;_,
4) Ker Df = Ker A1 @ Im Dy
5) ImA; =Im D, 1 & Im D}
Proof. See [51]. O

Remark: In particular, we see that the cohomology groups share properties of the fibers.
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Abstract. Let L{A) be the irreducible highest weight sp(2n,C)-module
with a highest weight A, such that L{A) is an infinite dimensional module
with bounded multiplicities, and let F'(tw;) be the defining representation of
sp(2n,C). In this article, the tensor product L()) ® F(w,) is explicitly decom-
posed into irreducible summands. This decomposition may be used in order to
define some invariant first order differential operators for metaplectic structures.
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1. Introduction

Let L(A) denote the irreducible highest weight module with a highest weight A
and let us write F'(A) instead of L{X), if A is integral dominant with respect to
a choice of a Cartan subalgebra and of a set of positive roots. In this article,
we shall study a decomposition of the tensor product L(}) ® F(w;) as a module
over complex symplectic Lie algebras, where X is some nonintegral weight from
a suitable set, which will be denoted by A, and =, is the highest weight of the
defining representation of the complex symplectic Lie algebra sp(2n, C).

This study was motivated by author’s interest in certain first order invari-
ant differential operators, which are symplectic analogues of orthogonal Dirac-type
operators. In general, invariant differential operators are acting between sections
of vector bundles associated to some principal fiber bundles via representations of
the principal group. The operators, we were interested in, are acting between sec-
tions of vector bundles associated to projective contact or symplectic geometries
via the so called higher symplectic spinor modules over complex symplectic Lie al-
gebras. Higher symplectic spinor modules represent symplectic analogues of spinor

* 1 am very grateful to Vladim “ir Sougek, who helped me to find a motivation for this research, and Jim
Humphreys, who recommended me his texts for reading. The author of this article was supported by GACR
201/06/P223.

ISSN 0949-5932 / $2.50 (© Heldermann Verlag



64 KRYSL

representations of orthogonal complex Lie algebras so(m,C), see Kostant [12].
Projective contact geometries belong to Cartan geometries defined by a contact
grading of the tangent bundle and a projective class of partial affine connections,
see Krysl [13]. In physics, these geometries play a role of a phase-space of time
dependent Hamiltonian mechanics, while the symplectic geometries are models of
the time independent one. To classify invariant differential operators {(on the in-
finitesimal level at least), one needs to decompose the mentioned tensor product
L(A) ® F(w@1), if the sections take their values in L(A). (See, e.g., Slovék, Soucek
(15].) One of the invariant differential operators serving as a motivation for our
paper appeared already in Kostant [12] and is known as the Kostant Dirac op-
erator. Analytical and geometrical aspects of the Kostant Dirac operator were
studied by many authors, see, e.g., Habermann [4], Klein [10] and Kadlédkova (8]
The last author is studying also the so called symplectic twistor and symplectic
Rarita-Schwinger operators, which are related to our decomposition as well. Let
us mention that for the basic symplectic spinor modules, a kind of globalization
is known. These globalizations are called Segal-Shale-Weil representations, see
Kashiwara, Vergne [9], where these globalized modules are introduced as repre-
sentations over the metaplectic group Mp(2n,R). Let us also mention that the
study of the corresponding first order differential operators has its application in
theoretical physics, namely in the 10 dimensional super string theory, see Green,
Hull [3], and in the theory of Dirac-Kihler fields, see, e.g., Reuter [14], where the
author of this article found his motivation for this study.

In [1], Britten, Hooper and Lemire and in [2], Britten and Hooper described
the decomposition of L();) ® F(v) for i = 0,1, where v is a dominant integral
weight, Ay = méwn and A\ = wp_; — %wn, i.e, A; are the highest weights of the
so called basic symplectic spinor modules L(A;) (for notation, see bellow). Britten,
Hooper, Lemire in [1] and Britten, Hooper in [2] are giving a characterization of all
infinite dimensional modules with bounded multiplicities over complex symplectic
Lie algebras. The authors of these articles proved that the class of infinite dimen-
sional highest weight modules with bounded multiplicities equals the set of higher
symplectic spinor modules, i.e., the set {L()); A € A}. In this article, we study a
problem, which is in a sense complementary to that of Britten, Hooper and Lemire.
Namely, we describe the decomposition of the tensor product L(A) ® F(w;) of an
arbitrary infinite dimensional module with bounded multiplicities L(X), X e A,
and the defining representation F(w,) of the complex symplectic Lie algebra.
Techniques used to decompose the mentioned tensor product are based on a result
on formal characters of tensor products of an irreducible highest weight module
and an irreducible finite dimensional module over simple commplex Lie algebras,
described by Humphreys in [5]. The assumption under which his formula is valid
is the same as that one used by Kostant, see [11], for a more general situation.
The second ingredient we have used is the famous Kac-Wakimoto formula in Kac,
Wakimoto [7], which was published for complex simple Lie algebras in Jantzen 6]
earlier, but which is valid for slightly different set of weights.

In the second section of this article, some known results on formal characters
of irreducible highest weight modules (Theorem 2.1), decomposition of tensor
products (Theorems 2.2, 2.3) and formal character of a tensor product (Theorem
2.4) are presented. The second part contains also Lemma 2.7, in which Theorem
2.1 is adapted to the situation of our interest. The third part of this paper is



KrvsL 65

devoted to the formulation of the decomposition of L(XA) ® F(w;) for A € A and
to its proof (Theorem 3.1).

2. Tensor products and higher symplectic modules

2.1. Tensor products decompositions.

Let g be a complex simple Lie algebra of rank n and let (,) denote the Killing
form of g. Suppose a Cartan subalgebra § together with a subset ®* of positive
roots of the set @ of all roots are given. The set of roots determines its R-linear
span, denoted by hj. With help of the Killing form on g, we can introduce a
mapping () : by % (b§ —{0}) = R by the following equation

(v, w)

(v, w) = Z(w, i

for v € hj and w € b — {0}. The half-sum of all positive roots will be denoted
by 4, i.e., ¢ = %Eaeqﬁ a. Further, let us denote the Weyl group associated to
(9,h) by W. The determinant of an element ¢ € W is denoted by ¢(a). If A € h*
then the symbol W* is used for a subgroup of the Weyl group W generated by
reflections in planes perpendicular to such simple roots 7, for which (},v) € Z.
Further, let us denote the affine action of a Weyl group element by a dot, thus
o.A = (A +3d) — ¢ is an affine action of an element o € W on A € h*. For
A p € B*, let us write A ~ pu, if there is an element ¢ € W such that ¢.A = u.
We will call such weights linked to each other. Let us denote the set of positive
coroots by H, and the set {X € R,;A(X) € Z} for some A € h* by R7. Further,
denote the basis of R* := R} U—R} by B*C R2).

For a complex simple Lie algebra g, let L{\) be the irreducible highest
weight module over g with a highest weight A and M{X) be the Verma module
with a highest weight A. To stress that A is integral and dominant for a choice of
(h, ®7), i.e., the corresponding module L(}) is finite dimensional, we will denote
L(A) by F(A) or simply by F, if the highest weight is not important or clear from
the context. Let ITI(A) be the set of all weights of the module L({}) and n(v) be
the multiplicity of weight v € II()A). For a weight X € *, symbol Ly denotes the
weight space of weight A of a highest weight module L. Further, let us denote
the formal character of a highest weight module L by ch L. The central character
corresponding to a weight A is denoted by x,, i.e., we have z.v = x,(2)v for each
element v of a highest weight module with a highest weight A and an element
z € 3= Z(8l(g)) of the center of the universal enveloping algebra (g).

Let L be a highest weight module over a complex semisimple algebra g. We
call L module with bounded multiplicities, if there is & € N such that dimL, < k
for all weights A of the module L. Such minimal % is called degree of L. We call
a module with bounded multiplicities completely pointed provided its degree is 1.
Let us mention that the basic symplectic spinor modules L(A;), i = 0,1 (see the
Introduction for their definition via fundamental weights) are completely pointed
and these are the only ones among infinite dimensional irreducible highest weight
modules over the complex symplectic Lie algebra, see Britten, Hooper, Lemire [1].

There is a result on a formal character of an irreducible highest weight
module over a complex semisimple algebra. In this theorem, the formal characters
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of Verma modules M(c.A) for some Weyl group elements ¢ are related to the
formal character of the irreducible module L({}).

Theorem 2.1.  Let A € b} be such that (A +d8)a > 0 for all o« € B*. Then we
have
ch L(A) = Y e(o)ch M(o.)).
FeWA

Proof.  See Kac, Wakimoto [7], Theorem 1, pp. 4957. [

A version of the previous theorem appeared already in Jantzen [6], Theorem
2.23, pp. 70 but for a slightly different set of weights. We will refer to the formula
in the preceding theorem as the Kac-Wakimoto formal character formula.

In the next theorem a decomposition of a tensor product of an irreducible
highest weight module (possibly of infinite dimension) and a finite dimensional
irreducible module into invariant summands is described, for further comments
see Humphreys [5], pp. 1 - 64.

Theorem 2.2.  Let F be a finite dimensional module over a complex semisimple
Lie algebra g and L()) be an irreducible highest weight module with o highest
weight A over g, then one has o canonical decomposition F ® L(\) = MM @
@& M®) | where MU is the generalized eigenspace corresponding to xn4,, and
Hi runs over o subset of the weights of F, so that the indicated central characters
are distinct.

Proof.  See Humphreys [5], sect 4.4. and pp. 39. ]

Let us recall the famous Harish-Chandra theorem, which says that x, = ¥,
if and only if A ~ u. In the next theorem, the generalized eigenspaces are specified
more precisely.

Theorem 2.3.  Keep the above notation. Suppose p = j; is a weight of F
such that for all weights v # p of F, A+v and A+ p are not linked to each other.
Then M := MY is g direct sum of n copies of L(A+ p), where n = dim My

Proof.  See Humphreys [5] sect. 6.3., pp. 40. ]

In the next theorem, the formal character of the generalized eigenspace
is related to formal characters of some Verma modules and to multiplicities of
corresponding weights of the finite dimensional module F.

Theorem 2.4.  Keep the above notation and denote by n(y) the multiplicity of
the weight p in the irreducible finite dimensional module F. Suppose that for all
weights v # 1 of F, A+v and A+ are not linked to each other. Further suppose
that (A + p+d)a > for each o € BM* and each weight 1 of F. Then

n(p) > e(o)ch M(o.(A+ p)) = nch L(A + p).

gewr

Proof.  See Humphreys [5] sect. 6.4., pp. 42 and use the Kac-Wakimoto formal
character formula in the substitution for a(w, A) from Humphreys. |
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2.2. The case of sp(2n,C) and higher symplectic spinor modules.

In this subsection, we focus our attention to the complex symplectic Lie
algebra, i.e., g = s5p(2n,C)(= Cy), and to a distinguished class of infinite dimen-
sional irreducible highest weight modules. For a choice of a Cartan subalgebra
h C g and of a system of positive roots ®* of g, there is a set of fundamental
weights, which will be denoted by {w;}? ;. Having chosen the Cartan subalgebra
I of g, we can define a subset {e;}7=; of h;, such that w; = E;:1 Epy 1= Loyl
which is an orthonormal basis of h; with respect to the restriction of the Killing
form (,) to the subspace h§ x bg.

Now, let us describe modules we shall be dealing with.

Definition 2.5.  Let us denote the set of weights
k3 ) 1 .
A= Mwmsdh20i=1...,n-LxE Z+ 5 A1+ D+ 3> 0} C B
i=1

by A. We will call the modules L(A) for A € A higher symplectic spinor modules.

Theorem 2.6.  The following are equivalent:
1.) L(X\) is o higher symplectic spinor module, i.e., A € A,
2.) L(A) has bounded multiplicities,

8.) L(X) is equivalent to o direct surmmand of the tensor product L(—w,)®F (v)
for some choice of dominant integral weight v.

Proof.  See Britten, Lemire [2], Theorem 2.1 pp. 3417 and Theorem 1.2 pp.
3415. [

In the next lemma, Theorem 2.1 is adapted to the situation we are studying.

Lemma 2.7. Let v € () and \,A+v € A, then

ch LA +v) = Y elo)ch M(o.(A +v)).

aewA

Proof.  We must check whether the assumption of Theorem 2.1 is satisfied. At
first, we determine the set R} for v € lI(w;) and X, A+ v € A. Looking at the
definition of the set R}™, we easily obtain that

RV ={e;+e,l<i<j<n}u{ei—e;,l<i<j<n}uU{e,l<k<nl,

where {e;}7, is the dual basis of hg to the basis {e;}7 . The basis B> of R}™
is
B = {e,- —e, 1 <1< n— 2} U {en_l}.

Secondly, we need to compute (A + v + d)a for & € BA¥. Suppose that
v =te, forsome p=1,...,n and £t € {-1,1}.
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1) A:= ()\+1/-i—6)(e1 €is1) =D [(E::TAS+n‘“7”+1+t61‘p)6,-](6i—'63‘4..1) =
Ai + 14+ t(0ip — div1p), ¢ = 1,...,n — 2. We know that A+ v € A, from
which it follows that A; + #(d;; — dip—1) > 0 for i = 1,...,n — 1, because

€p = Wp — Wp-1,0=1,...,n, where wg=0and & _,:=0fori=1,...,n
are to be understood. Thus the condition A > 0, we have had to check, is
satisfied.

2) Bi=(A+v+b)ent) = (o, As + 10— 1+ 1+ tdp)er](eny) =
A1+ A+ 2+ 16,1, If Ay > 0, then the inequality B > 0 is evidently
satisfied. Now, suppose that A, < —%. If p = n—1, then using the inequality
Ano1 + 2M, +3+t >1{A+v € A)and A\, < —%, one obtains, that
A1+ An+ 3+ ¢ >0, from which B > 0 easily follows. If p # n — 1, then
using the mequahty An-1+2M+321 (A€ A) and A, < -3, one obtams
that h,_; + A, + & 5 2 0, from which B > 0 follows.

Thus, we have proved that the assumption of Theorem 2.1 is satisfied and
therefore the conclusion of this lemma, follows. |

3. Decomposition of L(A) ® F(w;) for A€ A

Theorem 3.1.  Let L(A) be a higher symplectic spinor module, i.e., A € A.
Then
L) ® F(w) = P Ll

HEA)
where Ay = {A +v;v € M(w)} NA 2

Proof.  Part I. We would like to use Theorem 2.3. In this part, we shall verify
its assumption. Thus we shall prove that A+u and A4v are not conjugated by the
affine action of an element of the Weyl group W of the algebra C,, if v # u are
arbitrary weights of F'(w;) and A € A. Two elements ¢, € h* are conjugated by
the affine action of an element of the Weyl group if and only if $+6 and ¥+ are
conjugated by an element of the Weyl group, i.e., if and only if ¢(¢ + 6) = ¢ + 6,
for some o € W.
Let us first prove that {A +v+6,A + p+ 8} C W, UW,, where

Wii={D B fr > ... > B > 0},

i=1
We:={) BieisBi> ... > By > —fn > 0}
i=1

are two open neighbor Weyl chambers of C,,, and where X denotes the closure of
X C by wr. to the restriction of the Killing form (,) to b} x h3. An arbitrary
weight u of F(ww,) is of the form pu = se, for s € {~1,1} andsome p=1,...,n
In the case of C,, we have § = ne; + (n — 1) + ... + €,. Using the relation

20ne can easily compute that the (saturated) set II{zwy) of weights of F(own) equals {+e;i =
|
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;= Zle & (J = 1,...,n), one easily computes that for A = 37 | Moy, we
have

n n n
A+ d = Zﬁiﬁi = Z[(E/\J) +n—i+1 +S§1’p]€i.

i=1 i=1 j=¢
Thus the requirement A+ u+ 6 € Wy reduces to A + 1 > s(di41, — &) Which
is evidently satisfied for all ¢ = 1,...,n — 1, see Definition 2.5. For i = n, the
condition we need to check is 8, > 0 or B,_; > =8, > 0. If 3, > 0, we are done.
Suppose B, < 0, then the remaining condition we need to check is 8,1 > —f8,_;,
because —f, > 0 follows from our assumptions. The inequality 8,-1 > —8,_;
translates into

Ane1+ 220 + 34 8(0n1p + Opp) = 0. (1)

Condition (1) is satisfied due to the last inequality in Definition 2.5 of higher
symplectic spinor modules.

Suppose that there are some weights p # v with u,v € II(w,) for which
A+p+d and A+wv+46 are conjugated by an element o of the Weyl group of C,,
ie, oc(A+p+d8)=A+v+4.

(1) Suppose that A4 pu+d6€ W, and A+v+6 €Wy (or A+ p+6 €W, and
A+v+4§ € Wy, which is analogous). The condition (A +pu+6) = A+v+6
implies ¢W) = W,. It is evident that o, W; = W,. The Weyl group acts
simply transitively on the set of open {or closed) Weyl chambers. Hence
0 = 0¢,. The weight ¢, does not belong to the system of simple roots,
but it is evident that we could have written o, instead of O, Now,
mJA+u+5)=A+y+6~2&mA+y+ﬂkn=A+u+6~zun+ﬁ@+dkw
This element equals to A + v + § if and only if p — v = 2()\, + 50np + 1)e,
which is impossible due to the structure of the set II(ww;) and the condition
M €L+

(2) The case A+p+d, A\+v+5€W; and o(A+pu+68) =A+v+dfori=1,2
leads to the condition ¢ = id, i.e., ¥ = p - a contradiction.

(3) The remaining case is A+ p+ 0, A+v+6 € W UuW, — (W1 U Wy), ie.,
the considered elements lie on the walls of the two Weyl chambers. (The
other cases are impossible: if there is an element lying on a wall of a closed
Weyl chamber and the other one is lying in the open Weyl chamber, then they
cannot be conjugated.) The inspection of the fact A+u+6, A+v+6 € WU,
showed that if these elements lie on the walls of W, and Wa, then they lie in
their interior (i.e., they do not lie on the walls of codimension 2): inequalities
in the definition of W) (81 > ...8, > 0) become equations only once and
the same is true for W,. Let us define two families of open Weyl chambers

n
Y, = {Zﬁifi;ﬁl > > frr > =B > By > ... > B > 0},
i=1
r=1,...,n -1 and

Y= {Zﬁiﬁi;ﬁl > we B Piet > =By > Ba B v =y >0},

i=1
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t=1,...,n—1L

(3.1) Suppose that A+ p+5 € WinY, and A+v+6 € WoNY] for some
r,t=1,...,n— 1. If we suppose that (A + u+d) = A + v + 6, then
the fact that these elements lie in the interior of the walls implies that
oW1 =W, or oW = ¥]. The first case leads to a contradiction as we
have shown. Using the fact that the Weyl group acts simply transitively,
we easily find that ¢ = o0, in the second case. Let us compute
OO (A+p+0) =A+p+6—2(e, A+ pu+6)er —2(en, A+ p+6)en =
At pu+6=2(M+ 80 +n—t+ 1) — 2(A, + 565, + 1)€,. This
element equals A + v + ¢ if and only if 4 — v = 2(A; + sbp +n —
t 4+ 1)ec + 2(A, + $0pn + 1)¢,. Because of the structure of I1(w,), we
obtain: g — v € {£2¢, £2¢,, te; + €,, L€, F €, ). The first possibility
leads to 0 = A, + sd,, + 1, which is impossible because A, is half-
integral. The second possibility implies 0 = A\ + 86y +n -t +1 >
Ai+n—t > 0 - a contradiction. The third and fourth possibilities force
+1 = 2(A;+sé,, +n—t+1) - an odd number equals an even one, which
is a contradiction,

(3.2) Suppose that A+p+6 € WiNY, and A+v+46 € W, NY,. In this case,
oW, = W, or oW, = Y,. The first case leads to a contradiction as we
already know. In the second case, one easily finds that o, W, =V}, ie.,
using the simplicity of the Weyl group action, this implies ¢ = o,. Let
us compute g, (A+p+0) = A+p+0—2(A+80p+n—t+1)e,. This element
equals A + v+ 6 if and only if {u,v} = {&, —€}, le, p—v = £2€,.
That means that 1 = A, +1+n—-¢t+1lor -1=X-1+n—-1t+1
which are impossible because Ay, >0 and t <n fort=1,...,n— L.

(3.3) The remaining cases are analogous to the previous ones and actually
have been done.

Part II. Summarizing part I of the proof, we have proved that the as-
sumption of Theorem 2.3 is satisfied, and therefore for each v; € [I(w,;) we have
that the generalized eigenspace M occurring in the canonical decomposition
L)@ Flw)=MYa...0 M® can be written as M = n,L(A + 1) for some
nonnegative integer n;. We should determine the numbers n; for i=1,...,%. To
do it, we should use Theorem 2.4. Let us suppose that »; € [I(w;) is such that
A+y; € A It follows from the proof of Lemma 2.7 that for such weights, we have
(A+ v + 8)a > 0 for each o € BM¥, i.e., the condition of Theorem 2.4 is satis-
fied. We may therefore write n(1;) 3 oy €(o)ch M(o.(A + 1)) = nichL(A + ;).
Because we know, that n{y;) =1 for all weights 1, € II(w;), we get

Z e(o)ch M{a.(A+ 1)) = nich L(A + 1;).

gEW?A

Using the formal character formula of Kac and Wakimoto from Lemma 2.7, we get
ch L(A+v;) = nych L(A + v;), which implies n; = 1 for such v; € [I(w,;) for which
A+v; € A. From Theorem 2.3, we know that if L(u) appears in the decomposition
of L(A) ® F(v), then p = A+, where i € II(z=;). Still, we have shown that
p € (A+1I{w1)) NA =: A, occurs in the decomposition, we are interested in, with
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multiplicity 1. The remaining question is, whether a weight from (A + I1{w))\A
may occur in the decomposition. But this is not possible, because the highest
weight ¢ of an irreducible summand L(u) of the decomposition lies in the set A. To
see it, consider an integral dominant weight v € §j such that L{A) C L(A)®F(v).
Such weight v exists due to Theorem 2.6 (1. = 3.). Using the associativity of
a tensor product, we have L(u) C L(A) ® (F(v) ® F(w;)). The tensor product
F(v)® F(w1) decomposes into a finite direct sum of finite dimensional irreducible
sp(2n, C)-modules, and therefore L(u) is a direct summand in a tensor product
LX) ® F'(v') for some integral dominant weight /. Using Theorem 2.6 (3. =
1) weget p€ A ]

Further research could be devoted to an investigation of real higher symplec-
tic spinor representations of real symplectic Lie algebras and to their globalizations.

References

(1] Britten, D. J., J. Hooper, and F. W. Lemire, Simple C,-modules with
multiplicities I and application, Canad. J. Phys. 72 (1994), 326-335.

(2] Britten, D. J., and F. W. Lemire, On modules of bounded multiplicities for
the symplectic algebra, Trans. Amer. Math. Soc. 351 (1999), 3413-3431.

3] Green, M. B., and C. M. Hull, Covariant quantum mechanics of the su-
perstring, Phys. Lett. B 225 (1989), 57-65.

[4] Habermann, K., Symplectic Dirac Operators on Kihler Manifolds, Math.
Nachr. 211 (2000), 37-62.

[5] Humphreys, J. E., Firite and infinite dimensional modules for semisimple

Lie algebras, Lie theories and their applications, Queen’s Papers in Pure
and Appl. Math. 48 (1978), 1-64.

6] Jantzen, J. C., “Moduln mit einem hoéchsten Gewicht,” Lecture Notes in
Mathematics 750, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[7] Kac, V. G., and M. Wakimoto, Modular invariant representations of in-

finite dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci.
USA 85 (1988), 4956-4960.

8] Kadleakova, L.,  “Dirac operator in parabolic contact symplectic geo-
metry,” Ph.D. Thesis, Charles University of Prague, Prague, 2001.

19] Kashiwara, M., and M. Vergne, On the Segal-Shale- Weil representation
and harmonic polynomials, Invent. Math, 44 (1978), 1-49.

[10] Klein, A., “Eine Fouriertransformation fiir symplektische Spinoren und

Anwendungen in der Quantisierung,” Diploma Thesis, Technische Univer-
sitit Berlin, Berlin, 2000.

[11] Kostant, B., On the Tensor Product of ¢ Finite and an Infinite Dimen-
sional Representations, Journal of Functional Analysis 20 (1975), 257-285.

(12] Kostant, B., Symplectic Spinors, Symposia Mathematica, (14) (1974),
139-152.

(13] Krysl, S., “Invariant differential operators for projective contact geome-
tries,” Ph. D. Thesis, Charles University of Prague, Prague, 2004.



72 KRYSL

[14] Reuter, M., Symplectic Dirac-Kdihler Fields, J. Math. Phys. 40 (1999),
5593-5640.

[15] Slovak, J., and V. Soucek, Invariant operators of the first order on mani-
folds with a given parabolic structure, Sémin. Congr. Soc. Math. France 4
(2000), 251-276.

Svatopluk Krysl

Mathematical Institute

Faculty of Mathematics and Physics
Charles University of Prague
Sckolovskd 83

186 73 Praha 8 - Karl‘in

Czech Republic
krysl@karlin.mff.cuni.cz

Received Janury 26, 2006
and in final form May 16, 2006



Available online at www.sciencedirect.com

. . DIFFERENTIAL
ScienceDirect GEOMETRY AND ITS
APPLICATIONS

= =
ELSEVIER Differential Geometry and its Applications 26 (2008) 553-565

www.elsevier.com/locate/difgeo

Classification of 1st order symplectic spinor operators over contact
projective geometries

Svatopluk Krysl *°*

& Charles University, Sokolovskd 83, Praha, Czech Republic
5 Humboldt-Universitit zu Berlin, Unter den Linden 6, Berlin, Germany

Received 16 October 2006; received in revised form 20 May 2007
Available online 19 February 2008
Communicated by J. Slovak

Abstract

We give a classification of 1st order invariant differential operators acting between sections of certain bundles associated to
Cartan geometries of the so-called metaplectic contact projective type. These bundles are associated via representations, which
are derived from the so-called higher symplectic (sometimes also called harmonic or generalized Kostant) spinor modules. Higher
symplectic spinor modules are arising from the Segal-Shale—Weil representation of the metaplectic group by tensoring it by finite
dimensional modules. We show that for all pairs of the considered bundles, there is at most one 1st order invariant differential oper-
ator up to a complex multiple and give an equivalence condition for the existence of such an operator. Contact projective analogues
of the well known Dirac, twistor and Rarita—Schwinger operators appearing in Riemannian geometry are special examples of these
operators.
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1. Introduction

The operators we would like to classify are Ist order invariant differential operators acting between sections of
vector bundles associated to metaplectic contact projective geometries via certain minimal globalizations.

Metaplectic contact projective geometry on an odd dimensional manifold is first a contact geometry, i.e., it is given
by a corank one subbundle of the tangent bundle of the manifold which is nonintegrable in the Frobenius sense in
each point of the manifold. Second part of the metaplectic contact projective structure on a manifold is given by a
class of projectively equivalent contact partial affine connections. Here, partial contact means that the connections are
compatible with the contact structure and that they are acting only on the sections of the contact subbundle. These
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connections are called projectively equivalent because they have the same class of unparameterized geodesics going in
the contact subbundle direction, see, e.g., D. Fox [9], where you can find a relationship between the contact projective
geometries and classical path geometries. The adjective “metaplectic* suggests that in addition to contact projective
geometries, the metaplectic contact projective structures include some spin phenomena like the spin structures over
Riemannian manifolds. Metaplectic contact projective and contact projective geometries have their description also
via Cartan geometries. Contact projective geometries could be modeled on a (2/ 4+ 1)-dimensional projective space
PV of a (2] 4 2)-dimensional real symplectic vector space V, which we suppose to be equipped with a symplectic
form w. Here, the projective space is considered as a homogeneous space G/ P, where G is the symplectic Lie group
Sp(V, w) acting transitively on PV by the factorization of its defining representation (on V), and P is an isotropy
subgroup of this action. In this case, it is easy to see that P is a parabolic subgroup, which turns out to be crucial
for our classification. Contact projective geometry, in the sense of E. Cartan, are curved versions (p : G — M, w) of
this homogeneous (also called Klein) model G/ P. There exist certain conditions (known as normalization conditions)
under which the Cartan’s principal bundle approach and the classical one (via the class of connections and the contact
subbundle) are equivalent, see, e.g., Cap, Schichl [4] for details. We also remind that contact geometries are an arena
for time-dependent Hamiltonian mechanics. Klein model of the metaplectic contact projective geometry consists of
two groups G and P, where G is the metaplectic group Mp(V, ), i.e., a nontrivial double covering of the symplectic
group G, and P is the preimage of P by this covering.

Symplectic spinor operators over projective contact geometries are acting between sections of the so-called higher
symplectic spinor bundles. These bundles are associated via certain infinite dimensional irreducible admissible rep-
resentations of the parabolic principal group P. The parabolic group P acts then nontrivially only by its Levi factor
G, while the action of the unipotent part is trivial. The semisimple part gy of the Lie algebra of the Levi part of the
parabolic group P is isomorphic to the symplectic Lie algebra sp(2/, R). Thus to give an admissible representation
of P, we have to specify a representation of gp’. Let us recall that the classification of first order invariant operators
was done by Slovak, Soucek in [24] (generalizing an approach of Fegan in [8]) for all finite dimensional irreducible
representations and general parabolic subgroup P of a semisimple G (almost Hermitian structures are studied in
detail). Nevertheless, there are some interesting infinite dimensional representations of the complex symplectic Lie
algebra, to which we shall focus our attention. These representations form a class consisting of infinite dimensional
modules with bounded multiplicities. Modules with bounded multiplicities are representations, for which there is
a nonnegative integer, such that the dimension of each weight space of this module is bounded by it from above.
Britten, Hooper and Lemire in [2] and Britten, Hooper in [3] showed that each of these modules appear as direct sum-
mands in a tensor product of a finite dimensional sp(2/, C)-module and the so-called Kostant (or basic) symplectic
spinor module S and vice versa. Irreducible representations in this completely reducible tensor product are called
higher symplectic, harmonic or generalized Kostant spinors. It is well known, that all finite dimensional modules over
complex symplectic Lie algebra appear as irreducible submodules of a tensor power of the defining representation.
Thus the infinite dimensional modules with bounded multiplicities are analogous to the spinor—vector representations
of complex orthogonal Lie algebras. Namely, each finite dimensional module over orthogonal Lie algebra is an ir-
reducible summand in the tensor product of a basic spinor representation and some power of the defining module
(spinor—vector representations), or in the power of the defining representation itself (vector representations). In order
to have a complete picture, it remains to show that the basic (or Kostant) spinors are analogous to the orthogonal ones,
even though infinite dimensional. The basic symplectic spinor module S; was discovered by Bertram Kostant (see
[20]), when he was introducing half-forms for metaplectic structures over symplectic manifolds in the context of geo-
metric quantization. While in the orthogonal case spinor representations can be realized using the exterior algebra of
a maximal isotropic vector space, the symplectic spinor representations are realized using the symmetric algebra of
certain maximal isotropic vector space (called Lagrangian in the symplectic setting). This procedure goes roughly as
follows: one takes the Chevalley realization of the symplectic Lie algebra C; by polynomial coefficients linear differ-
ential operators acting on polynomials C[z', ..., z'] in / complex variables. The space of polynomials splits into two
irreducible summands over the symplectic Lie algebra, namely into the two basic symplectic spinor modules S and
S_. There is a relationship between the modules S; and S_ and the Segal-Shale—Weil or oscillator representation.
Namely, the underlying C;-structure of the Segal-Shale—Weil representation is isomorphic to S; & S_.

In order to classify 1st order invariant differential operators, one needs to understand the structure of the space
of P-homomorphisms between the so called 1st jets prolongation P-module of the domain module and the target
representation of P, see Section 4. Thus the classification problem translates into an algebraic one. In our case, rep-
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resentation theory teaches us, that it is sometimes sufficient to understand our representation at its infinitesimal level.
The only thing one needs in this case, is to understand the infinitesimal version of the 1st jets prolongation module.
For our aims, the most important part of the 1st jets prolongation module consists of a tensor product of the defining
representation of C; and a higher symplectic spinor module. In order to describe the space of P-homomorphisms, one
needs to decompose the mentioned tensor product into irreducible summands. This was done by Krysl in [21], where
results of Humphreys in [12] and Kac and Wakimoto in [15] were used.

Let us mention that some of these operators are contact analogues of the well-known symplectic Dirac operator,
symplectic Rarita—Schwinger and symplectic twistor operator. Analytical properties of these operators were studied
by many authors, see, e.g., K. Habermann [11] and A. Klein [18]. These symplectic versions were mentioned also by
M.B. Green and C.M. Hull, see [10], in the context of covariant quantization of 10 dimensional super-strings and also
in the theory of Dirac—Kihler fields, see Reuter [22], where we found a motivation for our studies of this topic.

In the second section, metaplectic contact projective geometries are defined using the Cartan’s approach. Basic
properties of higher symplectic spinor modules (Theorem 1) together with a theorem on a decomposition of the tensor
product of the defining representation of sp(2/, C) and an arbitrary higher symplectic spinor module (Theorem 2)
are summarized in Section 3. Section 4 is devoted to the classification result. Theorem 3 and Lemmas 1 and 2 in
this section are straightforward generalizations of similar results obtained by Slovdk and Soucek in [24]. Theorem 4
(in Section 4) is a well-known theorem on the action of a Casimir element on highest weight modules. While in
the Section 4.1. we are interested only in the classification at the infinitesimal level (Theorem 5), we present our
classification theorem at the globalized level in Section 4.2 (Theorem 6). In the fifth section, three main examples of
the 1st order symplectic spinor operators over contact projective structures are introduced.

2. Metaplectic contact projective geometry

The aim of this section is neither to serve as a comprehensive introduction into metaplectic contact projective
geometries, nor to list all references related to this subject. We shall only present a definition of metaplectic contact
projective geometry by introducing its Klein model, and give only a few references, where one can find links to a
broader literature on this topic (contact projective geometries, path geometries etc.).

For a fixed positive integer / > 3, let us consider a real symplectic vector space (V, w) of real dimension 2/ + 2
together with the defining action of the symplectic Lie group G := Sp(V, w). The defining action is transitive on
V — {0}, and thus it defines a transitive action G x PV — PV on the projective space PV of V by the prescription
(g, [v]) = [gv] for g € G and v € V —{0}. (Here, [v] denotes the one dimensional vector subspace spanned by v.) Let
us denote the stabilizer of a point in PV by P. It is well known that this group is a parabolic subgroup of G, see, e.g.,
D. Fox [9]. The pair (G, P) is often called Klein pair of contact projective geometry. Let us denote the Lie algebra of
P by p.

Definition 1. Cartan geometry (p : G — M?*! w) is called a contact projective geometry of rank [, if it is a Cartan
geometry modeled on the Klein geometry of type (G, P) for G and P introduced above.

It is possible to show that each contact projective geometry defines a contact structure on the tangent bundle 7 M
of the base manifold M and a class [V] of contact projectively equivalent partial affine connections V acting on the
sections of the contact subbundle (see the Introduction for some remarks). For more details on this topic, see Fox [9].
In Cap, Schichl [4], one can find a treatment on the equivalence problem for contact projective structures. Roughly
speaking, the reader can find a proof there, that under certain conditions, there is an isomorphism between the Cartan
approach and the classical one (via contact subbundle and a class of connections). Because we would like to include
some spin phenomena, let us consider a slightly modified situation. Fix a nontrivial two-fold covering ¢ : G — G
of the symplectic group G = Sp(V, w) by the metaplectic group G = Mp(V, w), see Kashiwara, Vergne [17]. Let us
denote the g-preimage of P by P.

Definition 2. Cartan geometry (p : G — M1 w) is called metaplectic contact projective geometry of rank /, if it is
a Cartan geometry modeled on the Klein geometry of type (G, P) with G and P introduced above.



556 S. Krysl / Differential Geometry and its Applications 26 (2008) 553-565

Let us remark, that in Definition 2, we do not demand metaplectic contact projective structure to be connected to a
contact projective structure as one demands in the case of spin structures over Riemannian manifolds or in the case of
metaplectic structures over manifolds with a symplectic structure.

3. Higher symplectic spinor modules

Let C; ~sp(2l, C), [ > 3, be the complex symplectic Lie algebra. Consider a Cartan subalgebra h of C; together
with a choice of positive roots @ . The set of fundamental weights {wi}éz | is then uniquely determined. For later
use, we shall need an orthogonal basis (with respect to the form dual to the Killing form of C;), {ei}ﬁzl, for which
w; :Z;Zlej fori=1,...,1.

For A € bh*, let L()) be the irreducible C;-module with the highest weight A. This module is defined uniquely up
to a C;j-isomorphism. If A happens to be integral and dominant (with respect to the choice of (h, ®1)), i.e., if L()) is
finite dimensional, we shall write F'(A) instead of L(L). Let L be an arbitrary (finite or infinite dimensional) weight
module over a complex simple Lie algebra. We call L a module with bounded multiplicities, if there is a k € Ny, such
that for each u € h*, dim L, < k, where L, is the weight space of weight 1.

Let us introduce the following set of weights

1
1
A= {A:ZA@- |kieNo,i=1,...,l—1,kl_1+2A1+3>0,AIGZ+§ )

i=1
Definition 3. For a weight A € A, we call the module L (1) higher symplectic spinor module. We shall denote the mod-

ule L(—%wl) by S, and the module L (w;—| — %zm) by S_. We shall call these two representations basic symplectic
spinor modules.

The next theorem says that the class of higher symplectic spinor modules is quite natural and in a sense broad.
Theorem 1. Let A € b*. Then the following are equivalent:

1) L(X) is an infinite dimensional C;-module with bounded multiplicities;
2) L(}) is a direct summand in S+ ® F(v) for some integral dominant v € bh*;
3) A€ A.

Proof. See Britten, Hooper, Lemire [2] and Britten, Lemire [3]. O

In the next theorem, the tensor product of a higher symplectic spinor module and the defining representation
C? ~ F(w) of the complex symplectic Lie algebra C; is decomposed into irreducible summands. We shall need
this statement in the classification procedure. It gives us an important information on the structure of the Ist jets
prolongation module for metaplectic contact projective structures.

Theorem 2. Let A € A. Then
L) ® F(m) = @ Lw).

HEA,
where A) = AN{A+v|vell(w)}and I1(w) ={xe; |i =1,...,1} is the set of weights of the defining represen-
tation.

Proof. See Krysl, [21]. O

Let us remark, that the proof of this theorem is based on the so-called Kac—Wakimoto formal character formula
published in [15] (generalizing a statement of Jantzen in [14]) and some results of Humphreys, see [12], in which re-
sults of Kostant (from [19]) on tensor products of finite and infinite dimensional modules admitting a central character
are specified.
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4. Classification of first order invariant operators

In this section, we will be investigating first order invariant differential operators acting between sections of certain
vector bundles associated to parabolic geometries (p : G — M, w), i.e., to Cartan geometries modeled on Klein pairs
(G, P), where P is an arbitrary parabolic subgroup of an arbitrary semisimple Lie group G.

We first consider a general real semisimple Lie group G together with its parabolic subgroup P and then we
restrict our attention to the metaplectic contact projective case. Let us suppose that the Lie algebra g of the group
G is equipped with a |k|-grading g = @f:—k gi, 1.e., g1 generates @le g; as a Lie algebra and [g;, g;] € g;; for
i,j €{—k, ..., k}.! Denote the semisimple part and the center of the reductive Lie algebra go C g (also called Levi
factor) by g’ and 3(go), respectively. The subalgebra @f:o g; forms a parabolic subalgebra of g and will be denoted
by p. Let us suppose that p is isomorphic to the Lie algebra of the fixed parabolic subgroup P of G. The nilpotent
part @Ll gi of p is usually denoted by g and the negative );_ =1—k g; part of g by g_. Let us consider Killing forms
(,)g and (,)g.(v)s of g and g}, respectively. Further, fix a basis {5’}{2l of g4, such that {5’}?2l is a basis of g; and

(g Yi—s41 1s a basis of @{'{:2 gi- The second basis, we will use, is a basis of g’, which will be denoted by ' Yi_,-The
|k|-grading of g uniquely determines the so-called grading element Gr € 3(go). The defining equation for this element
is [Gr, X] = jX for X € g; and each j € {—k, ..., k}. It is known that for each |k|-grading of a real (or complex)
semisimple Lie algebra the grading element exists, see, €.g2., Yamaguchi [28]. Sometimes, we will denote the grading
element Gr by nt“. The set {ni}ii} is then a basis of go. Let us denote the basis of g_ dual to {Ei }i_, with respect to
the Killing form (, )g by {&};_, and the basis of g¢ dual to the basis {n' };:} with respect to the Killing form (, )4 by
(i)t

At the beginning, let us consider two complex irreducible representations (o, E) and (t, F) of P in the category
R(P), the objects of which are locally convex, Hausdorff vector spaces with a continuous linear action of P, which
is admissible, of finite length. Here, admissible action means that the restriction of this action to the Levi subgroup
Go of P is admissible, see Vogan [27]. The morphisms in the category R(P) are linear continuous P-equivariant
maps between the objects. It is well known that the unipotent part of the parabolic group acts trivially on both E
and F. We shall call E and F the domain and the target module, respectively and we shall specify further conditions
on these representations later. Generally, for a Lie group G and its admissible representation E, we shall denote
the corresponding Harish-Chandra (g, K)-module (K is maximal compact in G) by E and when we will only be
considering the g-module structure, we shall use the symbol E for it. Further, we will denote the corresponding
actions of an element X from the Lie algebra of G on a vector v simply by X.v, and the action of g € G on a vector v
by g.v—the considered representation will be clear from a context.

Let us stress that most our proofs are formally almost identical to that ones written by Slovak, Soucek in [24], but
we formulate them also for infinite dimensional admissible irreducible E and F, and use the decomposition result in
Krysl [21] when we will be treating the metaplectic contact projective case.

Let (p: G — M, w) be a Cartan geometry modeled on the Klein pair (G, P). Because w, : T,G — g is an
isomorphism for each u € G by definition, we can define a vector field w~!(X) for each X € g by the equa-
tion wy (w0~ 1(X),) = X, the so-called constant vector field. For later use, consider two associated vector bundles
EM :=G x, E and FM := G x; F—the so called domain and target bundle, respectively. To each Cartan geometry,
there is an associated derivative V defined as follows. For any section s € I"(M, EM) considered as s € C*(G, E)”
under the obvious isomorphism, we obtain a mapping V®s : G — g* ® E, defined by the formula

(VEs)) X := L -1(xys W),

where X € g_, u € G and L is the Lie derivative. The associated derivative V® is usually called absolute invariant
derivative. The 1st jets prolongation module J'E of E is defined as follows. As a vector space, it is simply the space
E & (g+ ® E). To be specific, let us fix the Grothendieck’s projective tensor product topology on 1st jets prolongation
module, see Treves [26] or/and D. Vogan [27]. The vector space J 'E comes up with an inherited natural action of the
group P, forming the Ist jets prolongation P-module, see Cap, Slovik, Soudek [6]. Let us remark that the function
u > (s(u), V¥s(u)) defines a P-equivariant function on G with values in J 'E and thus a section of the first jet
prolongation bundle J' (EM) of the associated bundle EM. For details, see Cap, Slovik Soucek [6].

1 By definition, g; = 0 for |i| > k is to be understood.
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By differentiation of the P-action on J I'E, we can obtain a p-module structure, the so-called infinitesimal 1st jets
prolongation p-module J'E, which is as a vector space isomorphic to E @ (g, ® [E). The p-representation is then
given by the formula

,

R.(V,S®V") = <R.u’, S®RV'+[R.SI@V + ) & ®IR, si]p.v’> (1)
i=1

where R €p, S € gy, v,v” € E and [R, &ilp denotes the projection of [R, §;] to p. For a derivation of the above

formula, see éap, Sl_ovék, Soucek [6] for more details. Obviously, this action does not depend on a choice of the
vector space basis {£'}/_,. We will call this action the induced action of p.

Definition 4. We call a vector space homomorphism © : I'(M,EM) — I'(M,FM) first order invariant differential
operator, if there is a P-module homomorphism2 D: J'E — F, such that ©s(u) = D(s(u), V®s(u)) for each u € G
and each section s € I'(M, EM) (considered as a P-equivariant E-valued smooth function on G).

Let us remark, that this definition could be generalized for an arbitrary order. The corresponding operators are called
strongly invariant. There exist also operators which are invariant in a broader sense (see Cap, Slovék, Sougek [5]) and
not strongly invariant.

We shall denote the vector space of first order invariant differential operators by Diff(EM, FM )%p: Gy It is

clear that Diff(EM,FM )%p;gﬁ = Homp (J'E, F) as complex vector spaces. Let us denote the restricted st jets
prolongation P-module, i.e., the quotient P-module

[E@(g+®E)]/[{0}® (égi ®E>},

i=2

by J IleE. According to our notation, the meanings of J }QE and J IIQIE are also fixed. Now, let us introduce a linear
mapping ¥ : g1 ® E — g; ® E given by the following formula

V(X Q) =) & QX &lv.

i=1

Obviously, mapping ¥ does not depend on a choice of the basis {& Yo
First, let us derive the following

Theorem 3. Let E and F be two p-modules such that the nilpotent part g acts trivially on them. If D € Homy (J IE, F)
is a p-homomorphism, then D vanishes on the image of ¥ and D factors through the restricted jets, i.e., D(0, Z ®
V") =0 for each v" € E and Z € @5;2 g;. Conversely, suppose D € Homg,(J'E,F) is a go-homomorphism, D
factors through the restricted jets, and D vanishes on the image of ¥, then D is a p-module homomorphism.

Proof. Let D € Hom,, (J'E, F) be a p-homomorphism. Take an element & € g..J ' E. Then D(¥) = D(X.v) for some
X € g4 and v € E. Using the fact, that D is a p-homomorphism, we can write D(v) = X.D(v) = 0, because the
nilpotent algebra g acts trivially on the module F. Thus D vanishes on the image of g4 on J!'E.

Now, we would like to prove, that D factors through J IIQE. Take an arbitrary element Z € @fzz g; and v” € E.
Because g is a |k|-graded algebra, there are n € N and X;,Y; e g4 fori =1,...,n, such that Z = ZLI[X,-, Yi]. It
is easy to compute that Y »_; X;.(0,Y; @ v") = (0, ', ¥i ® X; v+ [X;, Yi]v"+0) = (0, )7 [X;, Yi]®@ V") =
(0, Z ® v"). Thus we may write D(0, Z®v") = D(}_"_, X;.(0, Y; ® v")) = 0, because D acts trivially on g;.J'E,
as we have already proved.

Second, we shall prove that D vanishes on the image of ¥. Substituting v” = 0 into formula (1) for the in-
duced action, we get that X.(v',0) = (X.v/, >}, £ ® [X,&1p.v") for v' € E and X € g;. Assuming that the
nilpotent subalgebra g acts trivially on E, one obtains X.(v',0) = (0, :_, £ ® [X,&lp.v) = (0,27, £ ®

2 By a P-module homomorphism, we mean a morphism in R(P).
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[X, E,-]p.v’ + ZLH] £ ®[X, Si]p.v’). The last summand is zero, because [X, §;], = 0 for i > 5. Thus we have
X.(v,0)=(0,>7_, £ Q[X, &1p.v"). Because D vanishes on the image of the action of g on JE, we know that
0=D(X.(v',0)) = D(0, Y ;_, & ®[X,&1,.v"). Since one can omit the restriction of the Lie bracket in the last term
to the subalgebra p (we are considering &; only fori =1, ..., s), D vanishes on the image of ¥.

Now, we would like to prove the opposite direction. Hence suppose, a go-homomorphism D is given. Let us take an
element S € g (for S € go it is clear) and an arbitrary element o = (v, ¥ ® v”) € J'E. Thus D(S.9) = D(S.(v/, Y ®
V) =DV, Y @SV +[S, Y@V + Y £ ®[S,&]p.v) = D(0,Y_ & ®IS,&]p.v)) =0=S.D(), where
we have used that the action of g is trivial on E, D factors through the restricted jets, vanishes on the image of ¥,
and the fact that g acts triviallyon F. O

Now, we derive the following

Lemma 1. For the mapping ¥, we have

t+1
VX ®v)=) [0 X]@ 1 v
j=1

for each X € g1 and v € E.

Proof. Take an element X € g;. Using the invariance of the Killing form (, )4, expressed by

t+1 t+1

(X, &1=" " (m. [X. &1) gn' = (Imi, X1. &) '

i=1 i=1

we compute the value ¥ (X ® v) as

V(X®v) =) EX &lv
i=1

t+1

- Zsi ® Z(T)j’ [X, &'])gr/j.v
i=1 j

t+1

= Zé" ® Z([le, X1, Si)gﬁj-v
i=1 j=1
s t+1

=33 (. X18) & @l

i=1 j=1
t+1 ‘
= Z[nj,X] ®n/v. 0O
j=1
For any real Lie algebra g, let us denote its complexification over reals by g€ ie, g* =g®rC. Let h be a
(complex) Cartan subalgebra of (gp’ )C.Foreach A, u, € b*, we define a complex number
1
ol = E[(,\, A+ 28)gas + (@, @ +28) g — (1, 1+ 25)2,5:],

where 8 denotes the sum of fundamental weights with respect to a choice of positive roots.

3 We are denoting the Killing form on gy’ as well as the dual form on (gg)* by the same symbol (,) gss - We shall also not distinguish between

the Killing form of a real algebra and that one of the complexification of this algebra. We hope that this will cause no confusion.
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From now on, we shall suppose that the semisimple part of the Levi factor of P is actually simple and the center
of the Levi factor is one dimensional. These assumptions are rather technical and introduced only in order to simplify
formulations of our statements. Until yet, we have demanded the considered modules to be admissible irreducible
P-modules. In particular, we have used the fact that the unipotent part of P acts trivially on them. From now on, we
will suppose in addition that the modules E and F are irreducible highest weight modules over the complexification
(gf)s)(C of the Lie algebra g;° of the semisimple part of the Levi factor Go of P. Further we shall suppose, that the
grading element acts by a complex multiple on each of the modules E and F. We call a pair (1, ¢) € h* x C a highest
weight of a representation [E over the reductive Lie algebra (go), if the restriction of the representation of g on E
to the simple part (gg’ )€ has highest weight A and the grading element Gr acts by a complex number ¢. The complex
number c is often called generalized conformal weight of the p-module E.

Recall a well-known theorem on the action of the universal Casimir element on highest weight modules.
Theorem 4. Let E be a highest weight module over the simple complex Lie algebra (gf)s)(C
reb*and C € ii((gf)‘v)(c) be the universal Casimir element of (gB‘Y)C. Then

with a highest weight

Cv=Q, A+ 28)98sv,

where v € E.
Proof. See, e.g., Humphreys [13]. O

Before we state the next lemma, let us do some comments on the relationship between the Killing forms (, )g‘ff and
(,)g- Itis well known that the restriction of (, )4 to g(sf is anondegenerate and obviously an invariant bilinear form, and
therefore there is a constant k € C*, such that for X, Y ¢ gf)s we have (X,7Y) oy = Kk (X, Y)g—due to the uniqueness
of invariant nondegenerate forms up to a nonzero complex multiple. The bases {;’ Yi_, and {n;}}_, of g¢’ are not dual
with respect to the Killing form () gis in general. For further purposes, we can consider these bases being also bases
of the appropriate complexified Lie algebras. According to the relationship between the Killing forms in question,
we know that {n'}!_, and {ic_ln,-}f:1 are dual with respect to (, )g.(v)s. We would like to compute (Z;Zl n'n;).v. Due
to Theorem 4, we can write (3__; n'c ~'n).v =, A + 28)gsev, if v € L(1). Therefore iy nin)v=k(, A+
28)93 v. Let us denote (Gr, Gr)g =: ,0’1, ie., n’“ = Gr whereas 1;+1 = pGr. Thus if Gr acts by a complex number
¢, we have that the action of n'*15,| is by pc?. We will use these computations in the proof of the following

Lemma 2. Suppose E is an irreducible p-module, the action of (g4 )T being trivial and the highest weight of E over
(80)C is (1, ¢) € h* x C. Let us further suppose that E ® (g1)C decomposes into a finite direct sum E ® g = @M E#
of irreducible (gff')(c )C-module with a highest weight . Let us fix a set of
projections 1, onto the irreducible summands in E® (gl)(c. Assume further that (g1 )(C is an irreducible (gff )C—module

with a highest weight a. Then

-modules, where B is an irreducible (g

W= (pc—Kch)m,. )
"
Proof. Let us do the following computation with “Casimir” operators Zﬁi} n'n; € U(go). For X e g and v € E, we
have:
141 141 141
D)X @ =) (') XQu+X®) (1'n).v+2¥ (X ®v), 3)

i=1 i=1 i=1
where we have used Lemma 1. Now, we would like to compute the first two terms of the R.H.S. of the last written
equation using the universal Casimir element of g’, see Theorem 4.

t+1
Z(nini).X(@v=f<(a,ot+28)g.(v)sX®v+,0X®v, 4)
i=1
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1+1
X®Z(nim).v:K(A,)\+28)95sX®v+pc2X®v. 5)
i=1
Let us compute the L.H.S. of (3)
i+l
D)X @v) =D k(i +28)gpmu(X ®v) + ) mulpX @ v+2pcX @ v+ pc’X @ ). (©)
i=1 " “w
Substituting Eqs. (4), (5) and (6) into Eq. (3) we obtain

D+ 28) gy (X ®v) +2) pemu(X @)+ ) pPmu(X ®v) +pX @ v
u " "
=20 (X ®V) + k(0 a +28)gs X Qv+ pX Qv+ k(A 1 +28) g X @ v +p?X @v.
As a result we obtain

lI’(X®v)=Z(pc—/<c/\“a)nM(X®v). O

%
4.1. Infinitesimal level classification

Let (V, w) be areal symplectic vector space of dimension 2/ + 2, > 3. In this subsection, we shall focus our atten-
tion to the specific case of symplectic Lie algebra sp(V, w) ~ sp(2/ 4+ 2, R) and its parabolic subalgebra p introduced
in Section 2. We shall be investigating the vector space Homy, (J IE, F) for suitable p-modules E, I, i.e., classify the
first order invariant differential operator at the infinitesimal level. For a moment, we shall consider a complex setting.

The complex symplectic Lie algebra g€ = sp(2! + 2, C) possesses a |2|-grading,

" =500 @95 @07 @05,
such that gg ~C, g(F ~C, gg: = (gff)(c @ (3 (go))(C ~ sp(21, C) @ C. This splitting could be displayed as follows.

Choose a basis B of V such that w, expressed in coordinates with respect to B, is given by w((z!, ..., z2*?), (w!,
w2y = wl 22 4wl 2 24221 For A € sp(21 4 2, C) we have:
go | g1 |92
A=1g-1] g0 |o
g-2| 9-1 |90

with respect to B. As one can easily compute, the parabolic subalgebra p© = (g9)C @ (g1)C @ (g2)C is a complex-
ification of the Lie algebra of the group P introduced in Section 2, where we have defined the metaplectic contact
projective geometry. Before we state the next theorem, we should compute the coefficients p and « for the case
g =-sp(2l 4+ 2, C) considered with the grading given above. One can easily realize, that

11 0 |0
Gr=]0/0y |0
ol 0 |—1

is the grading element, and that (Gr, Gr)y = 4/ + 8. Computing the square-norm of an element of g;’ via (, )4 and

(, )gn one obtains for the ratio x = ﬁ—é Further, let us introduce a bilinear form (, ) on h*, in which the orthogonal

basis {e,-}l.=1 is orthonormal. The relation between the Killing form (,)g(s)s and (, ) is given by (X, Y)gss = 41+4 (X,Y)
for X, Y € h*. For each A, u, o € h*, let us define a complex number

1
&= 5 (G 1 +20) = (0 +28) — (o0 +28)).

Substituting the computed values of p and « and the relation between (, ) o and (,) into formula (2), we obtain a
prescription for mapping Y (in the metaplectic contact projective case)

BTN Z(C G
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Theorem 5. For (A, ¢), (i,d) € A xC, let E and F be two pc—modules such that E and ¥ are irreducible if considered
as (go)c-modules with highest weight (A, ¢) and (i, d), respectively, and let (g.,r)(C has a trivial action on each of
these modules. Further, suppose ) % . Then

C, ifueA;Landd—1=C=Effwl,

Hom,c (J'E,F) ~ {
0  in other cases.

Proof. Let us start with the second part of the statement, i.e., u ¢ A, or ¢ # Eﬁfaﬂ ord—1+# E’;m, and consider

an element 7 € Hompc(JIIE, F). Then T € Hom(g?-f)c(JlE, F). Because T is a pc-homomorphism, we have that

T e Hom(gg;)c J IIQIE, F) due to Theorem 3 (used in the complexified setting). We also know that

Hom(gas)c(J,gE, F) = Hom g c (E, F) @ @ Hom ges)c (L), L(w))
VEA;
due to Theorem 2. If we suppose pn ¢ A, and A # u, then due to Theorems 2.6.5, 2.6.6 in Dixmier [7], each
member of the direct sum is zero. Now suppose that u € A;. Thus ¢ # Eﬁfwl ord—1# Ef\twl. First suppose that

c# Eﬁfwl . Using Theorem 2 and the cited theorems of Dixmier, we see that Hom(gés)c J IIQE, F) ~ Hom(96S)c E,F) e

Hom(gs.v)c (L(w), L(n)) >~ Hom(ggx)(c (L(u), L(w)), because the decomposition of (g; )(C ® E is multiplicity-free and
A # . Thus we can consider T to be a (gf)s)c—intertwining operator acting on the irreducible highest weight module
L(w). We have two possibilities: 7' : L(u) — L(w) is either zero and we are done, or Ker 7 = {0}. We will suppose

the latter possibility. Take a nonzero element 0 7% v € L(u). Using the formula ¥ = (4] + 8)~! > (e — Ele)nv,
we obtain under the assumption ¢ # E’fw] that ¥ (v) = (4l + 8)"(c — Efa)v # 0. Because Ker T = {0}, we have
that TW¥ (v) # 0 and thus, according to Theorem 3, T it is not a p(c-module homomorphism because it does not
vanish on the image of ¥. Secondly, consider the case d # Eﬁfa + 1. We can make the following easy computation.
d(S1®V") =Gr.(S1®v") =[Gr, $11Q@ V" + S1 ® Gr.v” = (1+¢)S; @v" for §; € (g1)C and v’ € E. Thusc =d — 1
and we are obtaining the case ¢ # Ei‘wl , which was already handled.

Now, consider the case u € Ay, ¢ = Eﬁfa andd — 1= Eﬁfa and take a T € Hompcc (JIE,F). As in the previous
case, this implies T € Hom(gf)S)c(J,le]E, F). Decomposing J}?E = L) & (F(w) ® L())) into irreducible modules

and substituting this decomposition into Hom(ggs)c J IleE’ ), we obtain a direct sum

Hom(gss)c (B, F) ® @ Hom(gss)c (L), L(w).
VEA)

According to our assumptions u € A, and X # u, and due to the structure of the set A,, we know that the di-
rect sum simplifies into a space isomorphic to C (using the above cited theorem of Dixmier once more). Thus we
know that Hompcc (J'E,F) c Hom(ggs)cc J IIQ]E, F) ~ C. To obtain an equality in the previous inclusion, consider the
one dimensional vector space of (gff‘)c—homomorphisms {wr,|w € C}, where 7, is a trivial extension of the pro-
jection (g DE ®E — L(u). The elements of this vector space are clearly (gf)s)(c—homomorphisms, which vanish on
the image of ¥, if ¢ = Effa, and they factorize through the restricted jets. What remains is to show that for each
w € C, mappings w7, are not only (gff)‘c—homomorphisms, but also (go)©-homomorphisms. Notice that it is suffi-
cient to test the condition only on (gl)(C ® [E because Gr € (go)c, and 7?,] is the trivial extension, see formula (1). For
S1 € (g1)C and v” € E, we have Gr.m,(S1®v") = d7,(S1 ®v”) by definition. Now, let us evaluate 77, Gr.(S; ®v") =
T ([Gr, $11® V" + 81 ®Gru") =7, (S1 @V +¢S81®@v") = (1 +0)7,(S1 ®v") =di,,(S1 ®v") = Gr., (S Qv”),
thus 77, commutes with the action of Gr. Therefore 77, is a (90)©-homomorphism and the statement follows using
Theorem 3. O

Let us remark, that for . = u, the space of homomorphisms is also one dimensional. But this case leads to zeroth
order operators, which are not interesting from the point of view of our classification. Let us derive an easy corollary
of the above theorem.

Corollary 1. The preceding theorem remains true for a real form f of (g’ )C, if one considers complex representations
and complex linear homomorphisms. In particular, it remains true for the split real form f = gy’ ~ sp(2l, R).



S. Krysl / Differential Geometry and its Applications 26 (2008) 553-565 563

Proof. First, observe that the decomposition of F(w) ® L(\) remains the same also over {. For it, let us take an
irreducible summand M in the decomposition and suppose there is a proper nontrivial complex submodule M’ of M.
Forve M’ and X +iY € f+ if, we get that (X +iY).v = X.v + i Y.v. Using the fact that M is closed under complex
number multiplication and X.v, Y.v € M, we would obtain that M is (gf)s)c—invariant, which is a contradiction.

Second, we would like to prove that each f-invariant complex linear endomorphism of an irreducible module,
say IF, is a scalar. It is easy to observe, that such an endomorphism is actually (gg’ )C-endomorphism, i.e., the theorem
of Dixmier used in the proof of the previous theorem, could be applied and the corollary follows. O

4.2. Globalized level classification

In this subsection, we shall extend the results obtained in the previous one to the group level. We will do it using
some basic facts on globalization techniques.

Let (V, ) be a real symplectic vector space of real dimension 2/ + 2,1 > 3, G = Sp(V, ) and P as described
in Section 2. First, we introduce the groups, we shall be considering. Let G+, Go, Gy, K be the unipotent part, the
Levi factor, the semisimple part of P and the maximal compact subgroup of G, respectively. Recall that we have fixed
a nontrivial 2-fold covering g : G — G of the symplectic group G by the metaplectic group G = Mp(V, w). Let us
denote the respective g-preimages by G, Go, G(S)S, K . Further, let us denote the maximal compact subgroup of the

semisimple part G’ of the Levi factor by K* and its g-preimage by 1555. We have

1555 ~ ljU) = {(u,z) ceU()xC* |detu=zz},

which is obviously connected, see Tirao, Vogan and Wolf [25].

Second, let us introduce a class of P-modules we shall be dealing with. In Kashiwara, Vergne [17], the so called
metaplectic (or Segal-Shale-Weil or oscillator) representation over fo is introduced. Let S; be the irreducible
submodule of the Segal-Shale—Weil representation consisting of even functions. Let us take the underlying (gg’, K 0)-
module and denote it by Sy. The gg’-module structure of this representation coincides with the irreducible highest
weight module structure of S, which was introduced in Section 3. For a choice of a weight A € A, we know that there
exists a dominant integral weight v (with respect to choices made in Section 3), such that L. := L(A) €S ® F(v).
Because S;+ ® F'(v) decomposes without multiplicities, we have an identification of L(A) with its isomorphic module
inS; ® F(v). Now we would like to make L a (gp’, Ie(s)s)—module. Using a result of Baldoni [1], this could be done
as follows. Because S and F(v) are (gg’, kgs)—modules, their tensor product is a (gy’, Kés)—module as well. Using
the fact that 1665 = LT(Z ) is connected, we are obtaining a (gp’, Kgs)-module structure on each irreducible summand
in S4 ® F(v), in particular on L. Denote the resulting (g;’, Kés)-module by L. Using globalization results of Kashi-
wara and Schmid in [16], there exists a minimal globalization for this (gf)s, IES‘Y)-module, which will be denoted by
L =:L()). (For this topic, see also Vogan [27] and Schmid [23].) Thus L(}) is a complex G‘ff—module. Further, we
need to specify the action of the center of G and that one of the unipotent part G ;. For each (A, c) € A x C we
suppose, that the unipotent G, acts trivially on L() and the grading element Gr in the Lie algebra of the center
of the Levi factor Gy acts by multiplication by a complex number ¢ € C. Since the center is isomorphic to R* we
need to specify the action of, e.g., —1 € R*. This action should be any y € R satisfying y? = 1. So we have ob-
tained a P-module structure on L(2) which we will refer to as L(A, ¢), . Let us remark, that defining the action of
G+ to be trivial, is actually no restriction, when one considers only irreducible admissible P-modules. We shall call
the corresponding associated bundles higher symplectic bundles and the corresponding 1st order invariant differential
operators symplectic spinor operators, stressing the fact that the representations of P we are considering are coming
from higher symplectic spinor modules.

Theorem 6. Let (A, c,y), (n,d,y’) € A X C x Zay,* A #wand (p: G — M+ w) be a metaplectic contact pro-
Jective geometry of rank l. Consider the P-modules E .= L(A, ¢), and F :=L(u, d),. Then for the vector space of

4 The group Zj is considered as multiplicative, i.e., Zy = {—1, 1}.
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invariant differential operators up to a zeroth order we have

C ifMGA/\,d—1=C=5§fwl andy =y,

Diff(EM, FM)( Gomptt gy {0

in other cases.

Proof. According to the definition of first order invariant differential operators between sections of associated vector

bundles over Cartan geometries, the vector space Diff(EM, FM ); G M) is isomorphic to the space Hom 3 (J 'E,F).

From the definition of the minimal globalization, it follows that it gives a natural bijection between Hom’s

of respective categories: the Harish-Chandra category of (p, K/a_(/;o)-modules and the category of admissible P-
modules, see Kashiwara, Schmid [16]. Thus we have Hom g (J g, F) ~ Hom J g F ). Because the identity

e~

(. KNGo)

component (K N Gy); is connected by definition, we can write Hom JYE, F)~ Homy (J IE, F), see W.

(v (&G E ) 2
Baldoni [1]. It remains to show that each p-module homomorphism is actually a (p, (K N Go)—1)-module homomor-
phism, where (K/HEO) 1 denotes the component of the group K/HEO to which —1 belongs Let us parameterize
the elements of the (—1)-component of (K NGo)~U (l) X Zo by pairs (k, —1), k e U (l) and denote the appro-
priate P- -representation on E by p. We can easily check that for (v, S ® v’) € J 'E, we have (k,—1).(v/, S ®

V") = (pk, =)V, Ad(k, —1)S ® p(k, —1)v") = (yp(k, D)V, Ad(k, 1)S @ yp(k, Dv") =y, 1).(v', S @ v"). Fur-
ther for a p-homomorphism T € Homp(JlE, F), we can write T(k,—1).(v/,S @ v") =yT(k, 1).(v/, S @ v’) =
yk, ).TQW,S®V")=yy'(k,—1).T(V', S ® v”). Thus we have also Hom(p G )(J E F)~ Homp(JlE, F) if
y = y’. The Hom at the right hand side was determined in Corollary 1. In the case y # y’, we have that T = 0 and
the proof is finished. O

5. Examples: contact projective Dirac, twistor and Rarita—Schwinger operators
In this section, we shall introduce three main examples of contact projective analogues of Dirac, twistor and Rarita—

Schwinger operators known from Riemannian and partly from symplectic geometry. In each of the next paragraphs,
we suppose that a metaplectic contact projective geometry (p : G — M+ @) of rank / is fixed.

Contact projective Dirac operator. For A = —%wl, we have A, = {w] — %wl, wi_1 — %wl} according to The-
orem 2. Take u = wj_1 — %wl € Ay. Using § =le; + (I — 1)z + -+ + €, we obtain that ¢}, = 1+21 . Thus for
conformal weight ¢ = # and y € Z; there is an invariant differential operator 9% (M, L, #)},M) —

(M7 L, %)VM ). This operator could be called contact projective Dirac operator because of the analogy
with the orthogonal case.

Contact projective twistor operator. Taking the same A = — —wl as in the previous example and p = @] — 5 ], We
obtain ¢ = % and the corresponding operator ¥ : I" (M, L(}, 2)VM) — I'(M,L(u, 2)},M) (y € Zy) is called contact
projective twistor operator also due to the analogy with the orthogonal case.

Contact projective Rarita—Schwinger operator. Here, take A = @ — %wl. Ay ={oy — %wl, 2w — %wl, —%zm,

o] +wi—1 — %w;}. Foru=o + w1 — %wl, we obtain ¢ = H'Tzl, and we shall call this operator contact projective

Rarita—Schwinger operator, Z)% :I'(M,L(A, #)VM) — I'(M,L(u, %)VM), where again y € Z,.

Remark. It may be interesting to mention, that computing formally the conformal weights using a Lepowsky general-
ization of a result of Bernstein—Gelfand—Gelfand on homomorphism of nontrue Verma-modules, one gets exactly the
same weights, although Lepowsky is considering only Verma modules induced by finite dimensional representations.
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the space of symplectic spinor valued exterior differential 2-forms, I" (M, /\2 "M ® 34),
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1. Introduction

In the paper, we shall study the action of the curvature tensor field on symplectic spinors over a symplectic manifold
(M?, w) admitting a metaplectic structure and equipped with a symplectic torsion-free affine connection V. Such
connections are usually called Fedosov connections. It is well known that in the case of | > 1, the curvature tensor field
of the connection V decomposes into two parts, namely into the symplectic Weyl and the symplectic Ricci curvature tensor
field. In the case | = 1, only the symplectic Ricci curvature tensor field appears. See [1] for details.

Now, let us say a few words about the metaplectic structure. In the symplectic case, there exists (in a parallel to the
Riemannian case) a non-trivial two-fold covering of the symplectic group Sp(2l, R), the so-called metaplectic group. We
shall denote it by Mp(2l, R). A metaplectic structure on a symplectic manifold (M?, w) is a notion parallel to the notion of
a spin structure on a Riemannian manifold. In particular, one of its parts is a principal Mp(2[, R)-bundle. For a symplectic
manifold admitting a metaplectic structure, one can construct the so-called symplectic spinor bundle &, introduced by B.
Kostant in 1974. The symplectic spinor bundle 4§ is the vector bundle associated to the metaplectic structure on M (more
precisely to the mentioned principal Mp (21, R)-bundle) via the so-called Segal-Shale-Weil representation of the metaplectic
group Mp(2l, R). See [2] for details.

The Segal-Shale-Weil representation is an infinite dimensional unitary representation of the metaplectic group
Mp(21, R) on the space of all complex valued square Lebesgue integrable functions L?(R!). Because of the infinite dimension,
the Segal-Shale-Weil representation is not so easy to handle. It is known, see, e.g., [3], that the infinitesimal structure
of the underlying Harish-Chandra module of this representation is equivalent to the space C[x', ..., x'] of polynomials
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in [ variables, on which the symplectic Lie algebra sp(2l, R) acts via the so-called Chevalley homomorphism,' see [4].
Thus, the underlying vector space of the infinitesimal structure of the Segal-Shale-Weil representation can be viewed as
the complexified symmetric algebra (@20 o R’) ®gr C of the Lagrangian subspace R' of the canonical symplectic vector

space R? ~ R! @ R'. This shows that the situation is completely parallel to the complex orthogonal case and the spinor
representation, which can be realized as the exterior algebra of a maximal isotropic subspace. An interested reader is referred
to [5,3] and also to [4] for more details. For some technical reasons, we shall be using the so-called minimal globalization
of the underlying Harish-Chandra (g, K)-module of the Segal-Shale-Weil representation, which we will call metaplectic
representation and denote it by S (the elements of S will be called symplectic spinors). This representation, as well as the
Segal-Shale-Weil one, decomposes into two irreducible subrepresentations. In the case of the module S, we shall denote
them by S, and S_.

For any symplectic connection V on a symplectic manifold (M, w) admitting a metaplectic structure, we can form the
associated covariant derivative VS acting on the sections of the symplectic spinor bundle §. The curvature tensor field
RS : T'(M,$) — I'(M, /\2 TM* ® &) of the associated covariant derivative V° is defined by the classical formula. The
tensor field R® decomposes also into two parts, one of which depends on the symplectic Ricci and the remaining one on the
symplectic Weyl tensor field. It is known (cf. [6]) that the space of the symplectic spinor valued exterior 2-forms, /\2 R¥®S..,
decomposes into three irreducible summands with respect to the natural action of Mp(2l, R) on this space. We shall briefly
describe the decomposition in this paper. Let us denote the mentioned three summands of the decomposition of /\2 R¥®S.
by Ezio, Ezi] and Ezi2 and the corresponding vector bundles associated to the chosen metaplectic structure via the mentioned
modules by €20, €2 and €22, respectively. We define €% := &7 @ &% forj = 0, 1, 2.

In the paper, we shall prove that the part of RS corresponding to the symplectic Ricci tensor field maps a symplectic spinor
field ¢ € I'(M, 8) into I'(M, €?° @ &2') and that one corresponding to the symplectic Weyl tensor field maps a symplectic
spinor field into I'(M, €2! @ &%2). Parallel and similar conclusions were done in the Riemannian case, see [7].

For an arbitrary symplectic spinor field ¢ € I'(M, 4), the projections of RS¢ to the invariant subspaces I'(M, %)
(j = 0, 1, 2) are computed explicitly. More precisely, we have described a structure of the action of the curvature tensor
field R® on the space of symplectic spinor fields in terms of the invariant parts of the curvature of the underlying affine
connection V. In what follows, this result will be called the decomposition result. Although this result seems to be rather
abstract or technical, knowing the decomposition of RS ¢ makes it possible to derive several conclusions for certain invariant
differential operators, which are defined with help of the Fedosov connection.

This is the case of the application that we shall mention. Let us briefly describe its context. In 1994, Habermann introduced
a symplectic analogue of the Riemannian Dirac operator known from Riemannian geometry, the so-called symplectic Dirac
operator. The symplectic Dirac operator was introduced with help of the so-called symplectic Clifford multiplication, see
[8]. It is possible to define the same operator using the de Rham sequence tensored (twisted) by symplectic spinor fields as
one usually does in the Riemannian spin geometry to get a definition of the Riemannian Dirac, twistor and Rarita-Schwinger
operator and their further higher spin analogues. Not only the symplectic Dirac operator but also symplectic analogues of the
Riemannian twistor operators can be defined using the de Rham sequence twisted by symplectic spinor fields. We will call
these symplectic versions symplectic twistor operators and denote the first two of them by Ty and T;. Under the assumption
the symplectic Weyl tensor W of the Fedosov connection is trivial, we prove the existence of a complex consisting of the
two mentioned symplectic twistor operators Ty and T;. One of the advantages of knowing the decomposition result is a
complete avoidance of possibly lengthy computations in coordinates when proving that To and T; form a complex (provided
W = 0). One can say that the coordinate computations were absorbed into the proof of the decomposition result. Though
finding the complex seems to be a rather particular result, there is a strong hope of deriving a longer complex under the
same assumption.

The reader interested in applications of symplectic spinors in physics is referred to [9], where they are used in the context
of 10 dimensional superstring theory. In [10], symplectic spinors are used in the theory of the so-called Dirac-Kahler fields.

In the second section, some basic facts on the metaplectic representation and higher symplectic spinors are recalled.
In Section 3, basic properties of symplectic torsion-free, i.e., Fedosov, connections and their curvature tensor fields are
mentioned. In Corollary 11 (Section 4), the action of the curvature tensor field RS of the associated symplectic spinor
covariant derivative V° acting on the space of symplectic spinor fields (the decomposition result) is described. In this section,
the mentioned complex consisting of the two symplectic twistor operators is presented (Theorem 12).

2. Metaplectic representation, higher symplectic spinors and basic notation

We start with a summary of notions from representation theory that we shall need in this paper. From the point of view
of this article, these notions are of rather a technical character. Let G be a reductive Lie group in the sense of Vogan (see [11]),
g be the Lie algebra of G and K be a maximal compact subgroup of G. Typical examples of reductive groups are finite covers of
semisimple Lie subgroups of the general linear group of a finite dimensional vector space. Let R (G) be the category the object

1 The Chevalley homomorphism realizes the complex symplectic Lie algebra as a Lie subalgebra of the algebra of polynomial coefficients differential
operators acting on C[x', ..., x’].
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of which are complete, locally convex, Hausdorff topological spaces with continuous linear G-action, such that the resulting
representation is admissible and of finite length; the morphisms are continuous G-equivariant linear maps between the
objects. Let #C (g, K) be the category of Harish-Chandra (g, K)-modules and let us consider the forgetful Harish-Chandra
functor HC : R(G) — HC(g, K). It is well known that there exists an adjoint functor mg : #C(g, K) — R(G) to the
Harish-Chandra functor HC. This functor is usually called the minimal globalization functor and its existence is a deep result
in representation theory. For details and for the existence of the minimal globalization functor mg, see [12,11].

For arepresentation E € R(G) of G, we shall denote the corresponding Harish-Chandra (g, K)-module HC (E) by E. When
we will only be considering its g-module structure, we shall use the symbol E for it.

Now, suppose that g€ is a simple Lie algebra, K is connected and two complex (g, K)-modules E, F € #C(g, K) are given
such that both E and F are irreducible highest weight g®-modules. Because mg is an adjoint functor to the functor HC, we
have Hom¢(mg(E), mg(F)) ~ Hom k) (E, F). It is well known that the category of (g, K)-modules is a full subcategory of
the category of g-modules provided K is connected. Due to that, we have Hom(, ¢ (E, F) >~ Hom,(E, FF). Because E and F are
complex irreducible highest weight modules over g€, Dixmier’s version of the Schur lemma implies dim Hom,(E, F) = 1
iff E >~ FF (see [13], Theorem 2.6.5 and Theorem 2.6.6). Summing up, we have dim Hom¢g(mg(E), mg(F)) = 1iff E >~ F. For
brevity, we will refer to this simple statement as the globalized Schur lemma.

Further, if (p : ¢ — M, G) is a principal G-bundle, we shall denote the vector bundle associated to this principal bundle
via a representation o : G — Aut(W) of Gon Wby W, i.e, W = § x, W. Let us also mention that we shall often use the
Einstein summation convention for repeated indices (lower and upper) without mentioning it explicitly.

Now, we shall focus our attention to the studied case, i.e., to the symplectic one. To fix a notation, let us recall some
notions from the symplectic linear algebra. Let us consider a real symplectic vector space (V, wp) of dimension 2/, i.e.,, Vis a
2l dimensional real vector space and wy is a non-degenerate antisymmetric bilinear form on V. Let us choose two Lagrangian
subspaces®? L, € V such that L @ I.” = V. It follows that dim(L) = dim(L’) = I. Throughout this article, we shall use
a symplectic basis {e; lzi1 of V chosen in such a way that {e,'}ﬁ=1 and {ei}izL,Jrl are respective bases of L and L. Because the

definition of a symplectic basis is not unique, let us fix one which shall be used in this text. A basis {ei}izi1 of V is called a

symplectic basis of (V, wp) if wyj = wo(e;, ¢)) satisfies w; = 1ifand onlyifi <landj =i+ 1; w; = —1ifandonlyifi > I
and j = i — l and finally, w; = 0 in other cases. Let {€'}?, be the basis of V* dual to the basis {e;}? . Fori,j = 1,..., 2l we
define w¥ by Zi'ﬂ wike® = 8}, fori,j =1, ..., 2l Notice that not only w; = —wj;, but also 0’ = —/',i,j=1,...,2L

Let us denote the symplectic group of (V, wg) by G, i.e.,, G := Sp(V, wg) =~ Sp(2l, R). Because the maximal compact
subgroup K of G is isomorphic to the unitary group K =~ U(l) which is of homotopy type Z, there exists (up to an
isomorphism) a unique nontrivial two-fold covering G of G. See, e.g., [14] for details. This two-fold covering is called a
metaplectic group of (V, wp) and it is denoted by Mp(V, wy) in this text. In the considered case, we have G~ Mp(2l, R). Let
us remark that Mp(V, wy) is reductive in the sense of Vogan. For later use, let us reserve the symbol A for the mentioned
covering. Thus A : G — G is a fixed member of the isomorphism class of all nontrivial 2:1 coverings of G. Because
L:G—> Gisa homomorphism of Lie groups and G is a subgroup of the general linear group GL(V) of V, the mapping
A is also a representation of the metaplectic group G on the vector space V. Let us define K = A" '(K). Then K is a
maximal compact subgroup of G. One can easily see that K ~ U() == {(g,2) € U(l) x C*|det(g) = z?} and thus K is
connected. The Lie algebra of the metaplectic group Gis isomorphic to the Lie algebra g of G and we will identify them. One
has g = sp(V, wg) >~ sp(2l, R).

From now on, we shall restrict ourselves to the case | > 2 without mentioning it explicitly. The case | = 1 should
be handled separately (though analogously) because the shape of the root system of sp(2, R) =~ s[(2, R) is different from
that one of the root system of sp(2l, R) for I > 1. As usual, we shall denote the complexification of g by g€. Obviously,
a® ~ sp(2l, C). Let us choose a Cartan subalgebra € of g© and an ordering on the set of roots of (g*, H©). If E is an irreducible
highest weight g®-module with a highest weight A, we shall denote it by the symbol L()). Let us denote the fundamental
weight basis of g© with respect to the above choices by {w,-}£=1.

2.1. Metaplectic representation and symplectic spinors

There exists a distinguished infinite dimensional unitary representation of the metaplectic group G which does not
descend to a representation of the symplectic group G. This representation, called Segal-Shale-Weil,> plays a fundamental
role in geometric quantization of Hamiltonian mechanics, see, e.g., [15], and in the theory of modular forms and theta
correspondence, see, e.g., [16]. We shall not give a definition of this representation in this text and refer the interested
reader to [5] or [14]. We only mention some of its properties which we shall need.

The Segal-Shale-Weil representation, which we shall denote by U here, is a complex infinite dimensional unitary
representation of Gonthe space of complex valued square Lebesgue integrable functions defined on the Lagrangian subspace

2 Maximal isotropic with respect to wy.

3 The names oscillator or metaplectic representation are also used in the literature. We shall use the name Segal-Shale-Weil in this text, and reserve
the name metaplectic for certain representation arising from the Segal-Shale-Weil one.



1254 S. Krysl / Journal of Geometry and Physics 60 (2010) 1251-1261

L,ie,
U:G— UIAL)),

where U (W) denotes the group of unitary operators on a Hilbert space W. In order to be precise, let us refer to the space
L?(L) as the Segal-Shale-Weil module. It is known that the Segal-Shale-Weil module belongs to the category R(G). (See 3]
for details and the Segal-Shale-Weil representation in general.) It is easy to see that this representation splits into two
irreducible modules L*(L) ~ L?(L). @ L?(L)_. The first module consists of even and the second one of odd complex valued
square Lebesgue integrable functions on the Lagrangian subspace L. Let us remark that one of the typical constructions
of the Segal-Shale-Weil representation is based on the so-called Schrédinger representation of the Heisenberg group of
(V=L®L, wy) and a use of the Stone-von Neumann theorem.

For technical reasons, we shall need the minimal globalization of the underlying (g, K)-module HC (L2(L)) of the
introduced Segal-Shale-Weil module. We shall call this minimal globalization metaplectic representation and denote it by
meta, i.e.,

meta : G — Aut(mg(HC(L*(1)))),
where mg is the minimal globalization functor (see this section and the references therein). For our convenience, let us
denote the module mg(HC(L2(L))) by S. Similarly we define S, and S_ to be the minimal globalizations of the underlying
Harish-Chandra modules of the modules L?(LL), and L?(L)_ introduced above. Accordingly to L>(L) ~ L?(L), @ L*(L)_,
we haveS >~ S, @S_. We shall call the Mp(V, wp)-module S the symplectic spinor module and its elements symplectic spinors.
For the name “spinor”, see [2] or the Introduction.

A further notion related to the symplectic vector space (V = L®L/, wy) is the so-called symplectic Clifford multiplication
of elements of S by vectors from V. For a symplectic spinor f € S, we define

€N (x) = wf(),*

of ol ,
(e f)(x) == @(x), X = ;x'ei elL,i=1,...,L

Extending this multiplication R-linearly, we get the mentioned symplectic Clifford multiplication. Let us remark that the
multiplication and the differentiation make sense for any f € S because of an interpretation of the minimal globalization.
(See [11] for details.) Let us notice that in the physical literature, the symplectic Clifford multiplication is usually called the
Schrédinger quantization prescription.

The following lemma is an easy consequence of the definition of the symplectic Clifford multiplication.

Lemma 1. For v, w € Vands € S, we have

v.w.s — w.v.s = —1wg (v, w)s.

Proof. See [14],pp. 11. O

Sometimes, we shall write v.w.s instead of v.(w.s) for v, w € V and a symplectic spinor s € S and similarly for a higher
number of multiplying elements. Instead of e;.e;.s, we shall write e;;.s simply and similarly for expressions with higher
numbers of multiplying elements, e.g., e;i.s abbreviates e;.e;.ex.s.

2.2. Higher symplectic spinors

In this subsection, we shall present a result on a decomposition of the tensor product of the symplectic spinor module
S with exterior forms of degree one and two into irreducible G-modules, G being the metaplectic group Mp(V, wp). Let
2* 1 G — GL(V*) be the representation of G dual to the representation A : G — G. Recall that A is the chosen two-fold
covering of the symplectic group. Further let us reserve the symbol p for the mentioned tensor product representation of G,

ie.,
0:G— Aut</\V*®S)

and
pE@)(x ®s) == A(g)"" a ® meta(g)s

forg e Guae N V¥ seS,r=0,...,2land extended linearly. For definiteness, let us equip the tensor product A* V*®$
with the so-called Grothendieck tensor product topology. See [11,17] for details on this topological structure. In a parallel
to the Riemannian case, we shall call the elements of /\* V* ® S higher symplectic spinors.

In the next theorem, the modules of the exterior 1-forms and 2-forms with values in the module S of symplectic spinors
are decomposed into irreducible summands.

4 The symbol 1 denotes the imaginary unit,1 = +/—1.
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Theorem 2. For % dim(V) =: | > 2, the following isomorphisms

V*®S~EY®E} and
2
AW®%2@@@@ﬁ

hold. For j; = 0,1 and j, = 0, 1, 2 the modules Eil and E¥2 are uniquely determined by the conditions that first, they are
submodules of the corresponding tensor products and second,

3 1
EP~E¥~S_ =~ <w,,1 — EWI> , E° ~EX ~s; ~L <—§w1> ,

1 3
EE ~EY >~ <w1 - 5071) , E!' ~ Eij ~L (wl + @1 — iwl) ,

22 1 22 3
EX~L wz—iw, and E““ ~1L wz—l—w,_]—iwl .

Proof. See [18]or[19]. O

Remark. In this paper, the multiplicity freeness of the previous two decompositions will be used substantially. One can
show that the decompositions are multiplicity-free also in the case I = 2. (One only has to modify the prescription for the
highest weights of the summands in the decompositions. See [19] for this case.) Let us also mention that Theorem 2 is a
simple consequence of a theorem of [4].

Let us set Elii := E'i‘ D EU,’ fori =1,2,j; =0, 1andj, = 0, 1, 2. For the mentioned i, j;, let us consider the projections
i AN'VF®S — E;j;. The definition of pYi is correct because of the multiplicity freeness of the decomposition of the
appropriate tensor products. In this paper, we shall need some explicit formulas for these projections. In order to find them,
let us introduce the following mappings.

Forr =0,...,2landa ®s € \" V* ® S, we set

r+1

r 21
X:/\V*®5—>/\V*®S, X(a®s)::—Zei/\a®ei.s;
i=1

r r—1 21
Y:/\V*®5—> /\V*@S, Y(a®s):= Za)ijteia@)ej.s and
ij=1
r r
H: A\vV'®s— A\V'®S.  H:={XY}=XY+YX.

Because we would like to use these operators in a geometric setting, we shall make use of the following lemma.

Lemma 3. The homomorphisms X, Y, H are f?—equivariant with respect to the representation p of G.
Proof. This can be verified by a direct computation. See [18] or [19] for a proof. O

In the next lemma, the values of H on the degree homogeneous components of /\* V* ® S are computed.

Lemma 4. Let (V, wg) be a 21 dimensional symplectic vector space. Then for r = 0, .. ., 2I, we have

=1(r—DIld r
( )\/\

H - .
I\ V*®S V*@S

Proof. This can be verified by a direct computation as well. See [18] or [19] for a proof. O
In the next lemma, the projections p¥, j = 0, 1, 2, are computed explicitly with help of the operators X and Y.

Lemma 5. For | > 1, the following identities hold on /\2 V*®S.

1
P2 = szyz’ (1)
1 1
= (xy - ix2Y2> and (2)
22 ! T 22
p? =1d - ——XY — —X°Y2 (3)

|/2\w®s I-1 I-1
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Proof. 1. From the definition of Y, the fact that it is G-equivariant (Lemma 3) and Theorem 2, we know that Y2 maps
/\2 V*® S, into S and /\2 V* @ S_ into S_. Because X? is &—equivariant (Lemma 3), it maps S+ into a submodule of
/\2 V* ® (S4+ & S_) which is a (possibly empty) direct sum of submodules isomorphic to S... Regarding the multiplicity-
free decomposition structure of A\> V* ® Sy (Theorem 2), we see that p’ := X2Y? maps A\’ V* ® S. into E2°. Computing
the value of p’ on the element ¢ := a)ijei A€l @sforans e S, we find that p'yy = Iyr. Using the globalized Schur lemma

(see the beginning of Section 2), we obtain that necessarily p?* = $X?Y?2.

2. As in the first item, it is easy to see that p” = XY(Idl/\z vas — %xlyz) maps /\2 V* ® S into E2'. Let us consider a
symmetric 2-vector ¢ € ©° V and denote its (i, j)-th component with respect to the basis {e; lzil by o', Computing the
value p"y for ¢ := olek A lwy ® ej.s — S0 Twmed A €™ @ ej.s,s € S, we get "y = 1(1 — ). Using the globalized
Schur lemma again, we have p?! = ﬁ p”. Using the defining identity H = XY + YX and Lemma 4, we get the formula

for p?! written in the statement of the lemma.
3. The third equation follows from the fact p*® 4+ p?! 4+ p** = Id, )2 415 and the preceding two items. O

3. Symplectic curvature tensor field

After we have finished the ‘algebraic’ part of this paper, we shall recall some results of Vaisman [ 1] and of Gelfand, Retakh
and Shubin [20]. Let (M, w) be a symplectic manifold and V be a symplectic torsion-free affine connection. By symplectic
and torsion-free, we mean Vw = 0and T(X,Y) = VxY — WX — [X,Y] = Oforall X,Y € X(M), respectively. Such
connections are sometimes called Fedosov connections and were used, e.g., in the so-called Fedosov quantization. See [21]
for this use. Let us remark that the Fedosov connection is not unique, in contrast to the case of Riemannian manifolds and
Riemannian connections. The triple (M, w, V) will be called a Fedosov manifold.

To fix our notation, let us recall the classical definition of the curvature tensor RV of the connection V. Let

RV(X, Y)Z = vayz - VyVXZ - V[X,y]z

for X,Y,Z € X(M). Let us choose a local symplectic frame (U, {e,»}izil), where U is an open subset of M. Whenever a local
symplectic frame will be chosen, we denote its dual coframe by (U, {¢'}?. ). We have €/(e;) = §! fori,j = 1,...,2l. We
shall often write expressions for sections of vector bundles which are valid only locally, although the sections are global.
(For instance in the case when the expressions will contain local frames.) We shall not mention this restriction of validness
explicitly further in the text.
We shall use the following convention. For i, j, k, [ =1, ..., 2l, we set
Rin := w(RY (e, e)e;, e;). (4)

Let us remark that the convention is different from that one used in [ 14]. We shall often write expressions in which indices
i,j, k or [ etc. occur. We will implicitly mean i, j, k or [ are running from 1 to the dimension of the manifold M without
mentioning it explicitly.

Obviously, one has

Rijkl = _Rijlk and (5)

Rijkl + Riklj + R,‘[jk = 0 (1stBianchi identity). (6)
One can also prove the identity

Rijii = Rjiui. (7)

See [20] for the proof.
For a symplectic manifold with a Fedosov connection, one has also the following simple consequence of the first Bianchi
identity:

Rijkt + Rjuii + Ruij + Rijk = 0 (extended 1st Bianchi identity). (8)

From the symplectic curvature tensor field RV, we can build the symplectic Ricci curvature tensor field oV defined by
the classical formula

oV (X,Y) :=Tr(V — RV (V,X)Y)
for each X, Y € X(M) (the variable V denotes a vector field on M). For the chosen frame andi,j = 1, ..., 2I, we define

. A%
gjj =0 (e,‘, ej).
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Further, let us define
1
~V
Oy = —————
BT+ 1)
GV (X,Y,Z,V) = GuX'Y'Z*¥V! and

wY =R" -5V

(wioj — wikoj) + wjoik — wWikoi + 20WK),

for local vector fields X = X'e;, Y = Ye;, Z = Z*e, and V = V'e.. We will call the tensor field WV the symplectic Weyl
curvature tensor field. These tensor fields were introduced in [1] already. We shall sometimes drop the index V in the
previous expressions. Thus we shall often write W, o and & instead of WY, oV and &V, respectively.

Remark. As in the Riemannian geometry, we would like to raise and lower indices. Because the symplectic form o is
s--L-U of 3 tensor field on the considered

i st 1S...EU 1S, .l
d and Kgp...c i by Kap...™

(similarly for other types of tensor fields).

In the next lemma, a symmetry of o and an equivalent definition of o are stated.

Lemma 6. The symplectic Ricci curvature tensor field o is symmetric and

Riﬂda)k[ = ZO'U.
Proof. The proof follows from the definition of the symplectic Ricci curvature tensor field and Eq. (7). See [1] for a proof. O

Remark. In [1], one can find a proof of a statement saying that the space of tensors R € V®* (dimV = 2I) satisfying the
relations (5), (6) and (7) is an Sp(V, wg)-irreducible module if | = 1 and decomposes into a direct sum of two irreducible
Sp(V, wp)-submodules if [ > 1.

In the next lemma, two properties of the symplectic Weyl tensor field are described.

Lemma 7. The symplectic Weyl curvature tensor field is totally trace-free, i.e.,

Wiy = Wiy = WiMwy = WiHey = wiey = wikey, = 0
and the following equation

Wi + Wi + Wi + Wi = 0 (extended 1st Bianchi identity forW) 9)
holds.

Proof. The proofis straightforward and can be done just using the definitions of the symplectic Weyl curvature tensor field
W, the tensor field 6 and Lemma 6. O

4. Metaplectic structure and the curvature tensor acting on symplectic spinor fields

Let us start describing the geometric structure with the help of which the action of the symplectic curvature tensor
field on symplectic spinors, and the symplectic twistor operators are defined. This structure, called metaplectic, is a precise
symplectic analogue of the notion of a spin structure in the Riemannian geometry.

For a symplectic manifold (M?, w) of dimension 21, let us denote the bundle of symplectic repéres in TM by £ and the
foot-point projection of # onto M by p. Thus (p : # — M, G), where G >~ Sp(2l, R), is a principal G-bundle over M. As in
Section 2, let A : G — G be a member of the isomorphism class of the non-trivial two-fold coverings of the symplectic group
G. In particular, = Mp(2l, R). Further, let us consider a principal G-bundle q:Q@—> M, G) over the symplectic manifold
(M, w). We call a pair (@, A) a metaplectic structure if A : @ — & is a surjective bundle homomorphism over the identity
on M and if the following diagram,

@xG—=@Q

N,

AXA A M

A

PXGC—=FP
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with the horizontal arrows being respective actions of the displayed groups, commutes. See [14,2] for details on metaplectic
structures. Let us only remark that typical examples of symplectic manifolds admitting a metaplectic structure are cotangent
bundles of orientable manifolds (phase spaces), Calabi-Yau manifolds and complex projective spaces CP**! k € Nq.

Let us denote the vector bundle associated to the introduced principal G-bundle q:Q@—> M, G) via the representation
o acting on S by 4 and call this associated vector bundle a symplectic spinor bundle. Thus, we have § = @ X, S. (Recall that
the representation p was introduced in Section 2.) The sections ¢ € I'(M, §), will be called symplectic spinor fields. Further
fori=1,2andj; =0, 1andj, = 0, 1, 2, we define the associated vector bundles &¥i by the prescription: &¥i := @ X Eli,

Because the projections p'°, p!!, p?°, p?! and p*? and the operators X, Y and H are G-equivariant (Lemma 3), they lift
to operators acting on sections of the corresponding associated vector bundles. We shall use the same symbols as for the
previously defined operators as for their “lifts” to the associated vector bundle structure.

4.1. Curvature tensor on symplectic spinor fields

Let (M, w, V) be aFedosov manifold admitting a metaplectic structure (@, A).The (symplectic)connection V determines
the associated principal bundle connection Z on the G-bundle (p : £ — M, G). This connection lifts to a principal bundle
connection on the principal bundle (¢ : @ — M, 6) and defines the associated covariant derivative on the symplectic bundle
4, which we shall denote by V5 and call it a symplectic spinor covariant derivative. The curvature field R® on the symplectic
spinor bundle is given by the classical formula

RS =d" Ve,

where d¥° is the associated exterior covariant derivative.
In the next lemma, the action of R® on the space of symplectic spinors is described using the symplectic curvature tensor
field R only.

Lemma 8. Let (M, w, V) be a Fedosov manifold admitting a metaplectic structure. Then for a symplectic spinor field ¢ €
I'(M, 8), we have

1 ..
RS¢ = ERuklék VAN El ® ei.ej.cb.

Proof. See [14] pp.42. O
Let us define the operators o° and WS by the formulas
oS¢ = %aijk,e" Ae'®eie.¢ and
WS¢ = %Wﬁk,ek Ae ®epeg,
where ¢ € I'(M, 4) is a symplectic spinor field.
Theorem 9. Let (M, w, V) be a Fedosov manifold admitting a metaplectic structure. Then for a symplectic spinor field ¢ €

I'(M, 8), we have
oS¢ e "M, €2° @ &),

Proof. Using the definition of & and Lemma 1 repeatedly we have for a symplectic spinor field ¢ € I'(M, 3§),
41+ 1 i
go%p =2(+ 15" ne' ®ejg

1
= (a)il()'jk — a)ikO’j[ + a)j,aik — (,L)ikO'il + ZUU(,()M)Ek N El ® €;j.¢
= (—ole* ne Fole Ak — ol AE +alke A e+ 200wk A € ® e
= Zo’jkfi NG ® E,‘j.¢ — Zo‘ikék Aé ® €U¢ + ZO’ijwklék N ® €u¢
= 20’11(61 VAN Ek ® (e,] + €ﬁ.)¢ + ZGija)klék A 61 ® eij.qﬁ
= 20’jla)lkéi AN Gk ® (eij. + ej,'.)¢ + 20'ija)k16k VAN El ® eij.¢

= 40’ﬂwlk€i A ek ® ej.¢ + ZUkalék A€l Q ejj.¢.
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It is straightforward but tedious to verify the next identities:
X2 Y220 wpet A et @ ej.¢) = 2cTwpe* A el ® eij.p,
X?Y? (4 wpet A ¥ @ ej.¢) = Zoika)jmej A e ® ey,
XY 20 Twyed A €' @ ejj.) = 2107 wyek A €' @ ej.p and
XY (4ol wpe' A e ® ej.¢p) = 4(1 — Dollwge™ A ef ® emj.¢ + 2107 wpie™ A €' ® ej.¢.

Using the formulas (1) and (2), we get:

1.

pPoSp = z—la”wkle" A ®ej¢ and (10)
1 ~ 1

pPlodep = ma”ek Ael® (Cl)[lekj. - ﬂwkleij) 0. (11)

Adding these two formulas and comparing them with the result of the computation of @asﬁ we get (p?° 4+ p*HoS¢p =
o5¢. Now, the statement follows. [

Theorem 10. Let (M, w, V) be a Fedosov manifold admitting a metaplectic structure. Then for a symplectic spinor field ¢ €
I'(M, 8), we have
WS¢ e T(M, %' @ 22).

Proof. Let us compute Y2WS¢ for a symplectic spinor field ¢ € T'(M, $).
2 ;
YW = Y (0" Wi, (€5 A €') ® emij.¢)
1
= Y(0"" Wiy (8ke' — 8L€) ® emij.)
= Y(@"(Wye' — Wie) ® enij.¢)
= 2a)nmy(wijnlel ® emij~¢)
= 2(l)pka)nmWijnl[ep €1 & eymij-&
= 200" WY pemi.p = 2W ey 0.
Now, let us use the extended first Bianchi identity for the symplectic Weyl curvature tensor field, Eq. (9), i.e.,
Wikl ki ki ik — )

Multiplying this identity by the operator ey., using the relation e;. — ej. = —iw; (Lemma 1) and the fact that the
symplectic Weyl tensor field is totally trace free (Lemma 7), we get the following chain of equations.

Wijklelkij. + ijlieikij. + Wk”jelkij. + Wlijkelk,‘j. =0,
Wijkle,k,j. + ij”e,(e,-k. — la)ki)ej. + Wk“j(emq-. — la)k,-elj.) + Wlijk(ekw. — lw,keij.) =0,
Wieyi. + WHi (e, — 1per.) + WX (eqg. — 10jiexj.) + W™ (e — 1) = 0,
Wijklelkij. + Wj"”(e,-,jk. - 1wkjeﬁ.) + W"”j(eiklj. - lwlkeij.)W“j"(ekﬂi. - lw,jek,-.) =0 and
3Wijkl€[k,‘j. + Wklij(e,'kﬂ. — lw,je,-k.) =0.
Continuing in a similar way, we get 4We;;. = 0. Summing up, we have Y2WS = 0. Using the relation (1) for p?°, we have

p?®WS¢ = 0. Hence the statement follows. O

Let us consider a symplectic spinor field ¢ € I'(M, 8). By a straightforward way, we get XYWS¢ = 2Wikem Ae! ® emkij-P-
Using this result, Theorem 10, the definition of W5 and the relations (2) and (3) for p?! and p??, respectively, we get

1 -
PP'wi¢ = ﬁW’f",e'" A€ ®emij.¢ and (12)
1 1 -
pZZWqu = Ewuklék AN El ® 6’,‘j.¢ — ﬁwljklem A Gl ® Emkfj.¢. (13)

Summing up the preceding two theorems, we can formulate the decomposition result in the following
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Corollary 11. In the situation described in the formulation of Theorem 10, we have for a symplectic spinor field ¢ € T'(M, §)

1.
pPRS¢ = i(r”a)k,ek Ae ® e,

1 o 1 1 ;

p21RS¢ = mo‘ufk A\ 61 ® (a)i,ekj. — iw,de,j.) d) + ﬁwuklfm AN fl ® emkij.q& and
1. 1 o

p22R5¢) = EWUHG’( A\ El ® €u¢ — l_i_lwuklfm AN El X em,ﬂ-j.q’).

S

Proof. The equations in the formulation of the corollary follow from Egs. (10)-(13) and the definitions of o> and

ws. O

Now, let us turn our attention to the mentioned application of the decomposition result (Corollary 11). Let (M, w, V)
be a Fedosov manifold admitting a metaplectic structure (@, A). Then we have the associated bundles &% — M (i = 1, 2,
ji1 = 0,1andj, = 0, 1, 2) and the symplectic spinor covariant derivative V° as well as the associated exterior covariant

derivative d¥° at our disposal. Let us introduce the following first order Mp(2l, R)-invariant differential operators:
To:T(M,$) - T'(M, "), To:=p""V° and

S
T,:TWM, &) > T M, &%), T= pzzd‘vr(M’gn).

We shall call these operators symplectic twistor operators. These definitions are symplectic counterparts of the definitions of

twistor operators in Riemannian spin-geometry.
Using Corollary 11, we get

Theorem 12. Let (M, w, V) be a Fedosov manifold admitting a metaplectic structure. Suppose the symplectic Weyl tensor field
W = 0. Then

To T
0——=TM,$) ——=TM, ") ——=TM, §2)

is a complex of first order differential operators.

Proof. Let us suppose W = 0. Then p?>RS = 0 (due to Corollary 11). Using the definition of RS, we have 0 = p?*R° =

p2(dV'VS) = p2d™’ (p!! + p'O)VS = p?2d" p!'VS + p22d¥°ploVS. According to Krysl [6], p?2d¥ p'® = 0. Thus we have
0 = p2d¥’p''VS = T;T,, which gives the statement. [J

Remark. In [6], the Mp(2l, R)-module A°V* ® S was decomposed into irreducible summands. Let us denote these

irreducible summands by EV (the specification of the indices i, j can be found in the mentioned article or in [19]). Similarly
as above, we can introduce the projections p¥ : A V*®$ — EU.In the mentioned article, we proved that p"“’fleFS(M,eik) =0
for all appropriate specified i, kand j > k 4+ 1 orj < k — 1.In the proof of the preceding theorem, we used this information
inthe caseofi =1,k =0andj = 2.
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Abstract For a symplectic manifold admitting a metaplectic structure (a symplectic
analogue of the Riemannian spin structure), we construct a sequence consisting of dif-
ferential operators using a symplectic torsion-free affine connection. All but one of
these operators are of first order. The first order ones are symplectic analogues of
the twistor operators known from Riemannian spin geometry. We prove that under
the condition the symplectic Weyl curvature tensor field of the symplectic connection
vanishes, the mentioned sequence forms a complex. This gives rise to a new complex
for the so called Ricci type symplectic manifolds, which admit a metaplectic structure.

Keywords Fedosov manifolds - Metaplectic structures - Symplectic spinors -
Kostant spinors - Segal-Shale-Weil representation - Complexes of differential

operators
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1 Introduction

In this paper, we shall introduce a sequence of differential operators acting on
symplectic spinor valued exterior differential forms defined over a symplectic manifold
(M, w) admitting the so called metaplectic structure. To define these operators, we
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382 S. Krysl

make use of a symplectic torsion-free affine connection V on (M, w). Under certain
condition on the curvature of the connection V, described below, we prove that the
mentioned sequence forms a complex.

Let us say a few words about the metaplectic structure. The symplectic group
Sp(2l, R) admits a non-trivial two-fold covering, the so called metaplectic group,
which we shall denote by Mp(2[, R). Let g be the Lie algebra of Mp(2[,R). A
metaplectic structure on a symplectic manifold (M2, w) is a notion parallel to a
spin structure on a Riemannian manifold. In particular, one of its part is a principal
Mp(2l, R)-bundle (g : Q@ — M, Mp(2l, R)).

For a symplectic manifold admitting a metaplectic structure, one can construct the
so called symplectic spinor bundle S — M, introduced by Bertram Kostant in 1974.
The symplectic spinor bundle S is the vector bundle associated to the principal meta-
plectic bundle (¢ : @ — M, Mp(2l,R)) on M via the so called Segal-Shale-Weil
representation of the metaplectic group Mp (21, R). See Kostant [12] for details.

The Segal-Shale-Weil representation is an infinite dimensional unitary representa-
tion of the metaplectic group Mp(2/, R) on the space of all complex valued square
Lebesgue integrable functions L2 (R!). Because of the infinite dimension, the Segal-
Shale-Weil representation is not so easy to handle. It is known, see, e.g., Kashiwara
and Vergne [11], that the gc-module structure of the underlying Harish-Chandra mod-
ule of this representation is equivalent to the space C[x!, ..., x'] of polynomials in /
variables, on which the Lie algebra g(c =~ sp (21, C) acts via the so called Chevalley
homomorphism.! Thus, the infinitesimal structure of the Segal-Shale-Weil represen-
tation can be viewed as the complexified symmetric algebra (2, O'R) @g C =~
Clx', ..., x'] of the Lagrangian subspace (R, 0) of the canonical symplectic vector
space RZ ~ (R!,0) @ (0, R!). This shows that the situation is “supersymmetric” to
the complex orthogonal case, where the spinor representation can be realized as the
exterior algebra of a maximal isotropic subspace. An interested reader is referred to
Weil [22], Kashiwara and Vergne [11] and also to Britten et al. [1] for details. For
some technical reasons, we shall be using the so called minimal globalization of the
underlying Harish-Chandra module of the Segal-Shale-Weil representation, which we
will call metaplectic representation and denote it by S. The elements of S are usually
called symplectic spinors.

Now, let us consider a symplectic manifold (M, w) together with a symplectic
torsion-free affine connection V on it. Such connections are usually called Fedosov
connections. Because the Fedosov connection is not unique for a choice of (M, w)
(in the contrary to Riemannian geometry), it seems natural to add the connection to
the studied symplectic structure and investigate the triples (M, @, V) consisting of
a symplectic manifold (M, w) and a Fedosov connection V. Such triples are usually
called Fedosov manifolds and they were used in the deformation quantization. See,
e.g., Fedosov [4]. Let us recall that in Vaisman [20], the space of the so called sym-
plectic curvature tensors was decomposed wr. to Sp(2/, R). For/ = 1, the module of
the symplectic curvature tensors is irreducible, while for / > 2, it decomposes into

I The Chevalley homomorphism is a Lie algebra monomorhism of the complex symplectic Lie algebra
sp(2/, C) into the Lie algebra of the associative algebra of polynomial coefficients differential operators
acting on (C[xl ..... xl]. See, e.g., Britten et al. [1].
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Complex of twistor operators in symplectic spin geometry 383

two irreducible submodules. These modules are usually called symplectic Ricci and
symplectic Weyl modules, respectively. This decomposition translates to differential
geometry level giving rise to the symplectic Ricci and symplectic Weyl curvature ten-
sor fields, which add up to the curvature tensor field of V. See Vaisman [20] and also
Gelfand et al. [6] for a comprehensive treatment on Fedosov manifolds.

Further, let us suppose that a Fedosov manifold (M, w, V) admits a metaplectic
structure and denote the corresponding principle bundle by (g : Q — M, Mp (21, R)).
Let S — M be the symplectic spinor bundle associated to ¢ : Q@ — M and let
us consider the space Q°(M,S) of exterior differential forms with values in S,
ie, Q°(M,S) = TI'(M, Q %, (A\°(R?)* ® S)), where p is the obvious tensor
product representation of Mp(2[, R) on A\*(R*)* ®S. In Krysl [15], the Mp (21, R)-
module /\'(RZZ )* ® S was decomposed into irreducible submodules. The elements
of A*(R?)* ® S are specific examples of the so called higher symplectic spinors.
Fori = 0,...,2l, let us denote the so called Cartan component (certain explicitly
given submodule) of the tensor product A’ RH)* @ S by E"_ (Fori = 0,...,2l,
the numbers m; will be specified in the text.) Fori = 0, ..., 2/ — 1, we introduce an
operator T; acting between the sections of the vector bundle £/ associated to E!"i
and the sections of the vector bundle £/T1i+1 associated to E/T1™i+1_ In a parallel
to the Riemannian case, we shall call these operators symplectic twistor operators.
See, e.g., Friedrich [5] for a study of the Riemannian twistor operators and Sommen
and Soucek [18] for a study of the de Rham complex tensored by (orthogonal) spinor
fields and a description of the Riemannian twistor operators appearing there. The sym-
plectic twistor operators T;,i = 0,...,2] — 1, are first order differential operators
and they are defined using the symplectic torsion-free affine connection V as follows.
First, the connection V induces a covariant derivative VS on the bundle S — M in
the usual way. Second, the covariant derivative VS determines the associated exterior
covariant derivative, which we denote by dvs. Fori =0,...,2] — 1, we define the
symplectic twistor operator 7; as the restriction of d V1o (M, £™) composed with
the projection to I'(M, EiF1.mi+1y,

Because we would like to derive a condition under which 7,1 7; = 0, i =
0,...,21 — 1, we should focus our attention to the curvature tensor R (M- S) =
dv v of dv° acting on the space Q*(M, S). The curvature R%* M-S depends only
on the curvature of the symplectic connection V, which consists of the symplectic
Ricci and symplectic Weyl curvature tensor fields as we have already mentioned. In
the paper, we will analyze the action of the symplectic Ricci curvature tensor field
on symplectic spinor valued exterior differential forms and especially on I (M, £™),
i =0,...,2]—2. We shall prove that the symplectic Ricci curvature tensor field when
restricted to I"' (M, gimiy maps this submodule into at most three M p(2/, R)-submod-
ules sitting in symplectic spinor valued forms of degree i +2,i = 0,...,2] — 2.
These submodules will be explicitly described. The crucial method used to derive this
result, was a computation based description of the (anti-)commutators of operators
from which one may construct the Ricci curvature tensor field.

This will help us to prove that 7;417; = 0@ =0,...,l —2)and T;417; = 0
@i =1,...,2l —2) assuming the symplectic Weyl curvature tensor field vanishes. In
this way, we will obtain two complexes. Unfortunately, it is questionable under which
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condition 7;7;—1 = 0. This will influence the way, how we construct one complex of
the two complexes introduced above. Let us notice that similar complex was investi-
gated in Severa [17] in the case of spheres equipped with the conformal structure of
their round metrics.

The reader interested in applications of the symplectic spinor fields in theoretical
physics is referred to Green and Hull [ 7], where the symplectic spinors are used in the
context of 10 dimensional super string theory. In Reuter [16], symplectic spinors are
used in the theory of the so called Dirac-Kéhler fields.

Let us describe the structure of the paper briefly. In the second section, some basic
facts on the metaplectic representation and higher symplectic spinors are recalled. In
this section, we also introduce several mappings acting on the graded space A *(R*)*®
S, derive the (anti-)commutation relations between them and determine a superset of
the image of two of them (Lemma 4), which are components of an infinitesimal ver-
sion of the symplectic Ricci curvature tensor field. In the Sect. 3, basic properties
of torsion-free symplectic connections and their curvature tensor field are recalled
and the metaplectic structure is introduced. In Sect. 3.1., the theorem on the complex
consisting of the symplectic twistor operators is presented and proved.

2 Metaplectic representation, higher symplectic spinors and basic notation

To fix a notation, let us recall some notions from symplectic linear algebra. Let us
consider a real symplectic vector space (V, w) of dimension 2/, i.e., V is a 2/ dimen-
sional real vector space and w is a non-degenerate antisymmetric bilinear form on V.
Let us choose two Lagrangian subspaces® L, I € V such that L@ L/ = V. It follows
that dim(IL) = dim(IL") = [. Throughout this article, we shall use a symplectic basis
{e; },~21:1 of V chosen in such a way that {e,-}gz1 and {e,-}[.zl:lJrl are respective bases of L
and IL'. Because the definition of a symplectic basis is not unique, let us fix one which
shall be used in this text. A basis {ei}izlz | of Vis called symplectic basis of (V, w)
if wjj := w(e;, ej) satisfies w;; = lifandonlyifi </and j =i +1[; w;j = —1
if and only if i > / and j = i — [ and finally, w;; = O in other cases. Let {e"}iy:1
be the basis of V* dual to the basis {ei}?lzl. Fori,j = 1,...,2l, we define 'l by
Zilzl a),'ka)jk = 81./, fori, j =1,...,2l. Notice that not only w;; = —wj;, but also
ol =—wl i j=1,...,2l

As in the orthogonal case, we would like to rise and lower indices. Because the
symplectic form w is antisymmetric, we should be more careful in this case. For coordi-
nates Kabmcmdrs...l...u rs..t

by Kab__.’_“d”"'t and Kgp. """ by Kap. /" and similarly for other types
of tensors and also in the geometric setting when we will be considering tensor fields
over a symplectic manifold (M, ).

Let us denote the symplectic group of (V,w) by G, ie., G := Sp(V,w) =~
Sp(2/, R). Because the maximal compact subgroup K of G is isomorphic to the uni-
tary group K =~ U (I) which is of homotopy type Z, there exists a nontrivial two-fold

2 That is, maximal isotropic wr. to w.
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covering G of G. See, e.g., Habermann and Habermann [9] for details. This two-fold
covering is called metaplectic group of (V, w) and it is denoted by Mp(V, w). Let
us remark that Mp(V, w) is reductive in the sense of Vogan [21]. In the considered
case, we have G~M p(2l, R). For a later use, let us reserve the symbol A for the
mentioned covering. Thus A : G — G is a fixed member of the isomorphism class
of all nontrivial 2 : 1 covering homomorphisms of G. Because A : G —> Gisa
homomorphism of Lie groups and G is a subgroup of the general linear group GL (V)
of V, the mapping 4 is also a representation of the metaplectic group G on the vector
space V. Let us define K :=1"1(K). Obv10usly, K is a maximal compact subgroup

of G. Further, one can easily see that K ~ U(l) ={(g.2) € U() xC*|det(g) = z2}
and thus in particular, K is connected. The Lie algebra § of G is isomorphic to the Lie
algebra g of G and we will identify them. One has g = sp(V, ) =~ sp(2/, R).

Now let us recall some notions from representation theory of reductive groups
which we shall need in this paper. From the point of view of this article, these notions
are rather of a technical character. Let R(G) be the category the object of which
are complete, locally convex, Hausdorff topological spaces with a continuous linear
G-action, such that the resulting representation is admissible and of finite length;
the morphisms are continuous G-equivariant linear maps between the objects. Let
‘HC (g, K) be the category of Harish-Chandra (g, K)-modules and let us consider the
forgetful Harish-Chandra functor HC : R(G) — HC (g, K). It is well known that
there exists an adjoint functormg : HC(g, K ) — R(G) to the Harish-Chandra functor
HC. This functor is usually called the minimal globalization functor and its existence
is a deep result in representation theory. For details and for the existence of the minimal
globalization functor mg, see Kashiwara and Schmid [10] or Vogan [21].

From now on, we shall restrict ourselves to the case / > 2 not always mentioning it
explicitly. The case [ = 1 should be handled separately (though analogously) because
the shape of the root system of sp(2, R) =~ s[(2, R) is different from that one of of the
root system of sp(2l, R) for I > 2. As usual, we shall denote the complexification of
g by g Obv10usly, ~sp(2l, C).

Further, for any Lie group G and a principal G-bundle (p : P — M, G) over a
manifold M, we shall denote the vector bundle associated to this principal bundle via
a representation 0 : G — Aut(W) of G on Wby W, ie., W = G x, W. Let us
also mention that we shall often use the Einstein summation convention for repeated
indices (lower and upper) without mentioning it explicitly.

2.1 Metaplectic representation and symplectic spinors

There exists a distinguished faithful infinite dimensional unitary representation of
the metaplectic group G which does not descend to a representation of the sym-
plectic group G. This representation, called Segal-Shale-Weil,> plays an important
role in geometric quantization of Hamiltonian mechanics, see, e.g., Woodhouse [23].

3 The names oscillator or metaplectic representation are also used in the literature. We shall use the name
Segal-Shale-Weil in this text, and reserve the name metaplectic for certain representation arising from the
Segal-Shale-Weil one.
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We shall not give a definition of this representation here and refer the interested reader
to Weil [22], Habermann and Habermann [9] or Kashiwara and Vergne [11].

The Segal-Shale-Weil representation, which we shall denote by U, is a complex
infinite dimensional unitary representation of G on the space of complex valued square
Lebesgue integrable functions defined on the Lagrangian subspace L, i.e., a homo-
morphism

U G—>u(L2(L)),

where U/ (W) denotes the group of unitary operators on a Hilbert space W. In order
to be precise, let us refer to the space L2(LL) as to the Segal-Shale-Weil module. It
is known that the Segal-Shale-Weil module belongs to the category R(G). See, e.g.,
Kashiwara and Vergne [11]. It is easy to see that the Segal-Shale-Weil representa-
tion splits into two irreducible Mp(2/, R)-submodules L?(L) ~ L*(L); @ L*(L)_.
The first module consists of even and the second one of odd complex valued square
Lebesgue integrable functions on the Lagrangian subspace IL. Let us remark that a
typical construction of the Segal-Shale-Weil representation is based on the so called
Schrédinger representation of the Heisenberg group of (V = L @ I/, ) and a use of
the Stone-von Neumann theorem.

For technical reasons, we shall need the minimal globalization of the underlying
Harish-Chandra (g, K )-module HC (L2 (IL)) of the introduced Segal-Shale-Weil mod-
ule. We shall call this minimal globalization metaplectic representation and denote it
by meta, i.e.,

meta : G — Aut (mg (HC (L2 (IL)))) ,

where mg is the minimal globalization functor (see this section and the references
therein). For our convenience, let us denote the module mg(H C(L2(LL))) by S.
Similarly we define S4 and S_ to be the minimal globalizations of the underlying
Harish-Chandra (g, K )-modules of the modules L2 L)+ and L2 (L) —. Accordingly to
L2(L) ~ L2(L); ® L2(L)_, we have S ~ S, @ S_. We shall call the Mp(V, w)-
module S the symplectic spinor module and its elements symplectic spinors. For the
name “‘spinor”, see Kostant [12] or Sect. 1.

Further notion, related to the symplectic vector space split into the two chosen
Lagrangian subspaces (V = L@ 1L/, w), is the so called symplectic Clifford multipli-
cation of elements of S by vectors from V. Fori = 1, ...,/ and a symplectic spinor
f €8S, we define

(ei.f)(x) :==1x' f(x) and

a
(a1 = L),

oxi
_ l i _ . . . .
where x = >';_, x'e; € L and 1 = +/—1 denotes the imaginary unit. Extending

this multiplication R-linearly, we get the mentioned symplectic Clifford multiplica-
tion. Let us mention that the multiplication and the differentiation make sense for
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any f € S because of the “analytic” interpretation of the minimal globalization. (See
Vogan [21] for details.) Let us remark that in the physical literature, the symplectic
Clifford multiplication is usually called Schrédinger quantization prescription.

The following lemma is an easy consequence of the definition of the symplectic
Clifford multiplication.

Lemmal Forv,w e Vands €8S, we have
v.(w.s) —w.(v.s) = —1w(v, w)s.

Proof See Habermann and Habermann [9, pp. 11]. O

We shall often write v.w.s instead of v.(w.s) for v, w € V and a symplectic spinor
s € S and similarly for higher number of multiplying elements. Further instead of
e;.ej.s, we shall write ¢;;.s simply and similarly for expressions with higher number
of multiplying elements, e.g., e;j.s abbreviates e;.¢;.ey.s.

2.2 Higher symplectic spinors

In this subsection, we shall present a result on a decomposition of the tensor product
of the metaplectic representation meta : G — Aut(S) with the wedge power of the
representation A* : G — GL(V*) of G (dual to the representation A) into irreducible
summands. Let us reserve the symbol p for the mentioned tensor product representa-
tion of G, ie.,

0:G— Aut(/\V*@S)
p(g) (@ ®s):=1(g)"" a@meta(g)s

forr =0,...,2l,g € G, o € /\r V*, s € S, and extend this defining formula lin-
early. For definiteness, let us equip the tensor product A°® V* ® S with the so called
Grothendieck tensor product topology. See Vogan [21] and Treves [19] for details
on this topological structure. In a parallel to the Riemannian case, we shall call the
elements of A\® V* ® S higher symplectic spinors.

Let us introduce the following subsets of the set of pairs of non-negative integers.
We define

E:={(,j)eNoxNoli =0,...,1;j=0,....i}

ULG, ) eNg x Noli =1 +1,...,21; j =0,...,21 — i},
=8 —{G,)|i=0,...,1} and
— G2 =Di=1,...,2]).

o] [
[CITN 6

Foreach (i, j) € E,a g(c—module ]Ei was introduced in Krysl [15]. These modules
are irreducible infinite dimensional highest modules over sp(V, )€ and they are

@ Springer



388 S. Krysl

O E5’O EG,O

NI
N

E224>E324>E42

N

Fig. 1 Decomposition structure of A®* V*® S forl =3

described via their highest weights in the mentioned article explicitly. In Theorem 2,
the module of symplectic spinor valued exterior forms A® V* ® S is decomposed into
irreducible submodules.

Theorem 2 Forl > 2, the following decomposition into irreducible Mp(V, w)-sub-
modules

i
AV esi~ P EL i=0....2. holds.
J.G. )€

The modules Eli are determined, as objects in the category R(G), by the fact that first
they are submodules of the corresponding tensor product and second the g -structure
of HC(Ei) is isomorphic to E..

Proof See Krysl [13,15]. O

At the Fig. 1, the decomposition in the case [ = 3 is displayed. In the ith column,
when counted from zero, the summands of /\l V*®S,i =0,...,6, are written. The
meaning of the arrows at the figure will be explained later.

Remark Let us mention that for any (i, j), (i, k) € &, j # k, we have Ei * ]Ei‘ (as
gC-modules) for all combinations of =+ on the left hand as well as on the right hand
side. Using this fact, we see that fori = 0, ..., 2] the G-modules /\’ V* ® S4 are
multiplicity free. Moreover for (i, j), (k, j) € &, we have Elij ~ IEIJCFJ . These facts will
be crucial in this paper.
For our convenience, let us set Ei := {0} for (i, j) € Z x Z — B and EV :=
ij ij
E/ ®E”.
Now, we shall introduce four operators which help us to describe the action of the
symplectic Ricci curvature tensor field acting on symplectic spinor valued exterior
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differential forms. Forr = 0,...,2l,a ® s € A\ V*® Sand o € ©>V*, we set

r r+1 21
X:/\V*®8—> /\V*@S, X(a®s):=ZeiAoc®ei.s,

i=1

r—1 21

r
Y:/\V*@S—> /\V*@S, Y ®s) = Zwijteia(zi)ej.s,
ij=1
r r+l1 21 . 4
DINEE /\V*@S—> /\V*@S, Y (a®s):= Zaljej/\a@)ei.s and
i,j=1

r r 21
e : /\V*®8—> /\V*®S, 0% (x ®s) := Za®0ij€ij~s
i,j=1

and extend it linearly. Here 0; := o (e;, ¢j), i, j =1, ..., 2l, and the contraction of
an exterior form o € /\* V* by a vector v € V is denoted by ¢, a.

Remark (1) One easily finds out that the operators are independent of the choice of
a symplectic basis {e; }lzl: |- The operators X and Y were used to prove the Howe
correspondence for Mp(V, w) acting on A\ * V* ® S via the representation p. See
Krysl [13] for details.

(2) The symmetric tensor o is an infinitesimal version of a part of the curvature of
a Fedosov connection. This part is called symplectic Ricci curvature tensor field
and will be introduced below. The operators X and ®° will help us to describe
the action of the symplectic Ricci curvature tensor field acting on symplectic
spinor valued exterior differential forms.

In what follows, we shall write ¢, ;o instead of ¢, t, 2 i,j=1,...,2l, and simi-
larly for higher number of elements contracting a form o € A*® V*.
Using the Lemma 1, it is easy to compute that

Xz(oe ®s) = —lza)ijei Ael Aa®s and Yz(oe ®s) = %wijLEija s (1)

for any elementa @ s € A°V*®S.
In order to be able to use the operators X and Y in a geometric setting and some
further reasons, we shall need the following

Lemma 3 (1) The operators X, Y are G—equivariant wr. to the representation p
of G.

(2) For (i, j) € E_, the operator X is an isomorphism if restricted to EY . For
(i, j) € By, the operator Y is an isomorphism if restricted to B .

Proof For the G-equivariance of X and Y, see Krysl [14]. The fact that the mentioned
restrictions are isomorphisms is proved in Krysl [13]. O
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In Lemma 4, four relations are proved which will be used later in order to deter-
mine a superset of the image of a restriction of the symplectic Ricci curvature ten-
sor field acting on symplectic spinor valued exterior differential forms. Without these
(anti-)commutation relations many of the computations presented below would became
very difficult to manage because of their increasing length. Often, we shall write ¥ and
® simply instead of the more explicit £ and ®?. The symmetric tensor o is assumed
to be chosen. The symbol {, } denotes the anticommutator on End( /A * V* ® S) viewed
as an associative algebra.

Lemma 4 The following relations

(%, X} =0, (2)

[{z, Y}, YZ] -0, 3)
[X,®9] =212 and 4)

[@, YZ] =0 (5)

hold on \°*V* ® S.

Proof We shall prove these identities fora ® s € A" V*® S, r =0, ..., 2/ only.
The statement then follows by linearity of the considered operators.

(1) Letus compute

XZ+EX)(@®s) =X je/ hna®ei.s)+ (€ Aa®e.s)

FAel Aa @ epi.s + ol pek A e ANaQ@ejj.s

k k

— gl
=0 j€

=O’ik6j/\6 /\ot®ej,~.s+oike /\ej/\a®e,'j.s
=olrel A ek ANa® (eji. —ejj.)s
kAa(X)s

= —10"rwjie! Ne
=10jk€’ AeEANa®s

=0,

where we have renumbered indices, used the Lemma 1 and the fact that o is
symmetric. In what follows, we shall use similar procedures without mentioning
them explicitly.

(2) Letus compute

Pla®s) ={Z, Y} (a®s)
= Y(o"]fj ANa®e;.s)+ E(a)"jteiot ®ej.s)

k 1

= a’ja)klcek(ej ANa) Qepis + Vo€ Ao @ xS

= a’ja)kl(ééa —€/ Niga) ®ejis + ook el A le,0 @ ej.S
= —ailoz ® el,-.s—aija)klej Al ® ejj.s +wijoklelALeia Q ekj.s
k 1 k 1

= ocla®e;.s—oF e Aot @ eji.s+w’ o 1€ Niga @ egj.s
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—olla @ ejj.5 — za)”a)kjaklel ANl ® s

=—oc"a®ej.s —10'je/ Ny ®s.

Now, we use the derived prescription for P and the Eq. (1) to compute

[P, 2 Y2] (@®s)=2PY (@ ®s)— Y2 Pa®s)

=—P (a)ijcel.ja@)s) -2 Y2 Gaija@)eﬁ.s—laijej/\cel.a@)s)

= w”aklteija ® ep.s + 1ok el A Legi; & ® S
— oo a®eijs — 10" j0 iy, (€ A ya) @ s

= a)’faklteijoc ® ex.s + 1ok el A Leg;; & ® S

— ook, a® eji.s—za)kla’j(Sl]Lekia — 8]ty

+ e/ ANig,) ®s

k ij k1
lteijoz@ekl.s—i—lw”a 1€ A Ley ;@ ® S

klel Nl @8

=o'o
Kl ij ij
-0 w Lel.ja®ek1.s—la) o

=0.

(3) Due to the definition of ®, we have
[X,0](a®s) = Erna® Uijekij.s N ®0jkejki.s

k k

=" rna®adcejs—€ Aa@aeji.s

=dlef ha® (€ikj.s — 1wkj€j.s — €jjk.S)

N ® (eijk.S — lwgje;.s — Lwg;ej.s — €jjk.S)
=212(x®S).
(4) This relation follows easily from the definition of ® and the relation (1). O

Remark 1t may be interesting to find a representation theoretical aspects of the pre-
vious relations regarding the fact that the symmetric bilinear form o € ©*V* when
supposed to be Sp(V, w)-equivariant, became zero.

In Proposition 5, a superset of the image of ¥ and ® restricted to E¥/, for (i,j) ek,
is determined.

Proposition 5 For (i, j) € E, we have
Sigi : EY — EFL T g BN @ BN gng
O EY > EV 1@ EY @ EV/ L
Proof (1) Fori =0, ...,1, let us choose an element ¥ = « ® s € E/’. Using the

relation (3), we have 0 = [P, Y*]y = (PY? = Y?P)y = (ZY° + YEY? —
YIZY — Y 32)1//. Because Y is G-equivariant (Lemma 3 item 1), decreasing
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the form degree of i by one and there is no summand isomorphic to Ei or

EY in /\"_1 V* ® S (see the Remark below the Theorem 2), Y = 0. Using
this equation, we see that the first three summands in the above expression for
[P, Y?] are zero. Therefore we have 0 = Y3 % Y. Because Y is injective on E!/ for
(i, j) € B4+ (Lemma 3 item 2), we see that £y € EitLi-I g Ei+Li g EitLit]
(It is recommendable to have a look at the Fig. 1.)

Now, letus consider a general (i, j) € Eand s € E//.Letustake anelement’ €
E// such that v = X~/ This element exists because according to Lemma 3
item 2, the operator X is an isomorphism when restricted to E!/ for (i,j)e&_.
Because of the relation (2), we have £y = LX)y’ = £X0~D 3y’ From
the previous item, we know that ©v' € E/ L/~ gE/+1./ @ E/+1./+1 Because
X is é—equivariant (Lemma 3 item 1) and the only summands in /\H'l V*®S
isomorphic to E/+1./=1 @ E/+1.J @ E/ 1.+ are those described in the formu-
lation of this proposition (see the Remark below the Theorem 2), the statement
follows.

(2) Fori =0,...,1I, let us consider an element = o ® s € E'. Using the rela-
tion (5), we have 0 = [®, Yz]w = @szp — Y2®1//. Using similar reasoning
to that one in the first item, we get Y = 0. Using the expression for [©, Y?]
above, we get Y2®1p = 0 and consequently, @y € E' @ E~!. Now, let us
suppose ¥ € EY for (i, j) € E. There exists an element ¥ € E// such that
¥ = Xy’ (Lemma 3 item 2). Using the relations (4) and (2), we have Oy =
XDy = XU=D@y’ if i — jiseven and (XU=DO — 2. X—I=Dx)y’ if
i — j is odd. Using the fact X i : E/ — EFLI-1gE+ @EFL/*! proved
in the previous item, the statement follows by similar lines of reasoning as in the
first item. O

3 Metaplectic structures and symplectic curvature tensors

After we have finished the algebraic part of the paper, let us describe the geometric
structure we shall be investigating. We begin with a recollection of results of Vaisman
in [20] and of Gelfand et al. in [6]. Let (M, w) be a symplectic manifold and V be a
symplectic torsion-free affine connection. By symplectic and torsion-free, we mean
Vo=0and T(X,Y) :==VxY — VyX — [X,Y] =0forall X,Y € X(M), respec-
tively. Such connections are usually called Fedosov connections. In what follows, we
shall call the triples (M, w, V) Fedosov manifolds.

To fix our notation, let us recall the classical definition of the curvature tensor RV
of the connection V, which we shall use in this text. Let

RY (X.Y)Z :=VxVyZ — VyVxZ — Vix. 11 Z

for X, Y, Z € X(M).
Let us choose a local symplectic frame {ei}izl_ | over an open subset U € M. We
shall often write expressions in which indices i, j, k, [ e.t.c. occur. We will implicitly
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mean i, j, k, [ are running from 1 to 2/ without mentioning it explicitly. We set
Rijii = o (R (ex. e) e, €;).

Let us mention that we are using the convention of Vaisman [20] which is different
from that one used in Habarmann and Habermann [9].

From the symplectic curvature tensor field RV, we can build the symplectic Ricci
curvature tensor field oV defined by the classical formula

oV (X,Y) = Tr(V — RV (V, X) Y)

for each X, Y € X(M) (the variable V denotes a vector field on M). For the chosen
frame and i, j = 1, ..., 2[, we set

Oij = Uv (e,-,ej).

Further, let us define

2(1 + 1)5,7;(1 = Wj|0jk — WikOj| + W;jI0ik — Wj)0i] + 20;jWwil, (6)
V(X Y. Z, V) =5y X'Y/Z*V! and
wY .= RV -5V 7

for local vector fields X = X'e;, Y = Y/e;, Z = Z*e; and V = V'e;. We will call
the tensor field 5V the extended symplectic Ricci curvature tensor field and WV the
symplectic Weyl curvature tensor field. These tensor fields were already introduced
in Vaisman [20]. We shall often drop the index V in the previous expressions. Thus,
we shall often write R, W, o and & instead of RY, WY, oV and 5V, respectively.

In Lemma 6, the symmetry of o is stated.

Lemma 6 For a Fedosov manifold (M, w, V), the symplectic Ricci curvature tensor
field o is symmetric.

Proof See Vaisman [20]. O

Let us describe the geometric structure with help of which the actions of the sym-
plectic twistor operators are defined. This structure, called metaplectic, is a precise
symplectic analogue of the notion of a spin structure in the Riemannian geometry.
For a symplectic manifold (M2, @) of dimension 2/, let us denote the bundle of sym-
plectic reperes in 7'M by P and the foot-point projection of P onto M by p. Thus
(p: P — M,G), where G ~ Sp(2l,R), is a principal G-bundle over M. As in
the Sect. 2, let A : G — G be a member of the isomorphism class of the non-trivial
two-fold coverings of the symplectic group G. In particular, G ~ Mp(2l, R). Further,
let us consider a principal G-bundle (g:Q—> M, G) over the symplectic manifold
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(M, w). We call a pair (Q, A) metaplectic structure if A : Q — P is a surjective
bundle homomorphism over the identity on M and if the following diagram,

OxG—=0Q

N

AXA A M
e

PxG——P
with the horizontal arrows being respective actions of the displayed groups, commutes.
See, e.g., Habermann and Habermann [9] and Kostant [12] for details on the meta-
plectic structures. Let us only remark, that typical examples of symplectic manifolds
admitting a metaplectic structure are cotangent bundles of orientable manifolds (phase
spaces), Calabi-Yau manifolds and complex projective spaces CP**!, k e Ny (all
considered with their standard symplectic forms).

Let us denote the vector bundle associated to the introduced principal G-bundle
(g:Q— M, G) via the representation meta on S by S. We shall call this associated
vector bundle symplectic spinor bundle. Thus, we have & = Q X714 S. Sections
¢ € I'(M, S) will be called symplectic spinor fields. Let us denote the space of sym-
plectic valued exterior differential forms I'(M, Q x, (A\°* V*®S)) by Q*(M, S) and
call it the space of symplectic spinor valued forms simply. Further for (i, j) € Z x Z,
we define the associated vector bundles £/ by the prescription £/ := Q x , EV.

Because the operators X, ¥ are G-equivariant (Lemma 3 item 1), they lift to oper-
ators acting on sections of the corresponding associated vector bundles. We shall
use the same symbols as for the defined operators as for their “lifts” to the asso-
ciated vector bundle structure. Because for each i = 0, ..., 2/, the decomposition
N V*®S = @; ; i)z EV is multiplicity free (see the Remark below the Theorem 2),
there exist uniquely defined projections p/ : Q/(M,S) — I'(M, EY), (i, j) € ZxZ.

Now, let us suppose that (M, w) is not only equipped with a Fedosov connection
V but also admit a metaplectic structure ((¢ : Q@ — M, G), A). The connection
V determines the associated principal bundle connection Z on the principal bundle
(p : P - M, G). This principle bundle connection lifts to a principal bundle con-
nection on the principal bundle (¢ : Q@ — M, é) and defines the associated covariant
derivative on the symplectic bundle S, which we shall denote by V* and call it the sym-
plectic spinor covariant derivative. See Habermann and Habermann [9] for details. The
symplectic spinor covariant derivative induces the exterior symplectic spinor deriv-
ative dvs acting on Q°(M, S). The curvature tensor field R M.5) acting on the
symplectic spinor valued forms is given by the classical formula

REMS) = gV "’

In Theorem 7, a superset of the image of dvs restricted to T'(M, £, (i, j) € E,
is described.
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Theorem 7 Let (M, w, V) be a Fedosov manifold admitting a metaplectic structure.
. L L 5 A
Then for the exterior symplectic spinor derivative d¥ and (i, j) € B, we have

d|vrS(M,gi./) T (M, gij) T (M, gitli=1 g gi+li g 5i+1,j+1).
Proof See Krysl [15]. O

Remark From the proof of the theorem, it is easy to see that it can be extended to
the case (M, w) is presymplectic and the symplectic connection V has a non-zero
torsion. For / = 3 and any (i, j) € E_, the mapping d"° restricted to I'(M, £ is
displayed as an arrow at the Figure 1 above. (The exterior covariant derivative d v
maps ['(M, £Y) into three “neighbor” subspaces.)

3.1 Curvature tensor on symplectic spinor valued forms and the complex
of symplectic twistor operators

Let (M, w, V) be a Fedosov manifold admitting a metaplectic structure (Q, A). In

Lemma 8, the action of RS := dV° VS on the space of symplectic spinor fields is
described using just the symplectic curvature tensor field R of V.

Lemma 8 Let (M, w, V) be a Fedosov manifold admitting a metaplectic structure.
Then for a symplectic spinor field ¢ € T'(M, S), we have

1 ..
RS¢ = 5R’-/klek Ne @ eij.g.

Proof See Habermann, Habermann [9, pp. 42]. O

For our convenience, let us set m; := i fori = 0,...,/ and m; := 2/ — i for
i=1+1,...,2l. Now, we can define the symplectic twistor operators, with help of
which we introduce the mentioned complex. Fori =0, ...,2/ — 1, we set

’Ti . F(M, glm,) ST (1‘47 gl—&-l,m,“)’ ’Tl = pl+1’ml+ld|¥‘(Mygimi)

and call these operators symplectic twistor operators. Informally, one can say that the
operators are going on the two bottom edges of the triangle at the Fig. 1. Let us notice
that up to a constant complex multiple XD = V5 — T where ® is the so called
symplectic Dirac operator introduced by K. Habermann in [8]. In Riemannian spin
geometry, the twistor operators fulfill a parallel relation.
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Theorem 9 Let (M2, w, V) be a Fedosov manifold admitting a metaplectic structure.
Ifl > 2 and the symplectic Weyl tensor field WY = 0, then

0— (M, % 2 rer, ey I S pv ) — 0 and

Ti41 Tzz 1
—_ ..

0 — (M, &M s rm, g1+ 2B rm, e — 0

are complexes.

Proof (1) In this item, we prove that for an element ¢ € Q°*(M, S),

REMS)y, — l+1 (1X2®"+XE )zp

Fory =a ® ¢ € Q*(M, S), we can write

REMS (4@ ¢)=dV’ d"’ (a® )
— dvs(do( Q¢+ (_l)deg(ot)a A VS¢)
=d*a @ ¢ + (=)@ gy A VS + (=)D go A V3¢
+ (—1)deg@ (_pydeg@), /\dvsvs¢

_ Loij kol
—(x/\ER'kIE NE Qejj.¢

1 ..
= ERuklfk AnebAa ® eij.9,

where we have used the Lemma 8. Using this computation, the definition of the
symplectic Weyl curvature tensor field WV (Eq. (7)), the definition of the extended
symplectic Ricci curvature tensor field 5 ¥ (Eq. (6)) and the assumption WY = 0,
we get

—4(1 + 1 RF M@ @ ¢) =20+ DR ek Al N ® eij.¢
=204+ DWWy +57 )" Al ha @ eij.p
=2+ DGV el na® ey
= (a)ilajk — a)ikO‘jl + Cl)le'ik - wjkoil
+ Zaija)kl)ek NN ® eij.¢
"Na®eij.¢

/\elAa®e,~j.¢

= 4wilajk6k A€
+20ija)klek
=X (@ ®@cVej.p) +4X (0 e na®ej.9)

= (U X*O% +4X%%)y,

where we have used the relation (1) in the second last step. Extending the result
by linearity, we get the statement of this item for an arbitrary ¥ € Q*(M, S).

@ Springer
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(2) Using the formula for R ™-S) derived in the previous item, the Proposition 5,
the G-equivariance of X (Lemma 3 item 1) and the decomposition structure of
A°V* ® S (see the Remark below the Theorem 2), we see that for (i, j) € E
and an element ¢ € (M, EV), the section RQ'(M’S)W € 1"(M,<S"’+2’j_l ®
2 @ £i+2J+1) Thus especially, piT2mi+2 RE M-Sy, — (0 fori = 0, ...,
1—2,1,...,21—2andy e (M, E™i). Fori =0,...,1 —2, we get

0= pi+2,i+2RQ‘(M,8) _ pi+2,i+2dVSdVS

=D
=Pp
=TinT,

i+2,i+2dvs(pi+1,0+_._+pi+1,i+l)dvs

i+2,i+2dVSpi+1,0dV5 IS pi+2,i+2dv5pi+1,i+1dvs

where we have used the Theorem 7 in the last step. Similarly, one proceeds in the
casei =1,...,2l —2. O

Corollary 10 Let (M, w, V) be a Fedosov manifold admitting a metaplectic structure.
Ifl > 2 and the symplectic Weyl tensor field WY = 0, then

0—>T (M, 500) Do Iz (M, 51—1»’—1) il

Tt (M, 51+1,1+1) UL S (M, 52’121) —0

is a complex.
Proof Follows easily from the Theorem 9. O

The question of the existence of a symplectic connection with vanishing symplectic
Weyl curvature tensor field was treated, e.g., in Cahen et al. [2]. These connections
are called connections of Ricci type. For instance it is known that if a compact simply
connected symplectic manifold (M, w) admits a connection of Ricci type, then (M, w)
is affinely symplectomorphic to a P*C equipped with the symplectic form, given by
the standard complex structure and the Fubini-Study metric, and the Levi-Civita con-
nection of this metric. Let us refer an interested reader to the paper of Cahen et al.
[3], where also a relation of symplectic connections to contact projective geometries
is treated.

Further research could be devoted to the investigation and the interpretation of the
cohomology of the introduced complex and to the investigation of analytic properties
of the symplectic twistor operators.
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ELLIPTICITY OF THE SYMPLECTIC TWISTOR COMPLEX

SVATOPLUK KRYSL

ABSTRACT. For a Fedosov manifold (symplectic manifold equipped with a
symplectic torsion-free affine connection) admitting a metaplectic structure,
we shall investigate two sequences of first order differential operators acting
on sections of certain infinite rank vector bundles defined over this manifold.
The differential operators are symplectic analogues of the twistor operators
known from Riemannian or Lorentzian spin geometry. It is known that the
mentioned sequences form complexes if the symplectic connection is of Ricci
type. In this paper, we prove that certain parts of these complexes are elliptic.

1. INTRODUCTION

In this article, we prove the ellipticity of certain parts of the so called symplectic
twistor complexes. The symplectic twistor complexes are two sequences of first
order differential operators defined over Ricci type Fedosov manifolds admitting
a metaplectic structure. The mentioned parts of these complexes will be called
truncated symplectic twistor complexes and will be defined later in this text.

Now, let us say a few words about the Fedosov manifolds. Formally speaking,
a Fedosov manifold is a triple (M2, w, V) where (M?!,w) is a (for definiteness
2] dimensional) symplectic manifold and V is a symplectic torsion-free affine
connection. Connections satisfying these two properties are usually called Fedosov
connections in honor of Boris Fedosov who used them to obtain a deformation
quantization for symplectic manifolds. (See Fedosov [p].) Let us also mention that
in contrary to torsion-free Levi-Civita connections, the Fedosov ones are not unique.
We refer an interested reader to Tondeur [I8] and Gelfand, Retakh, Shubin [6] for
more information.

To formulate the result on the ellipticity of the truncated symplectic twistor
complexes, one should know some basic facts on the structure of the curvature
tensor field of a Fedosov connection. In Vaisman [I9], one can find a proof of a
theorem which says that such curvature tensor field splits into two parts if > 2,
namely into the symplectic Ricci and symplectic Weyl curvature tensor fields. If
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I =1, only the symplectic Ricci curvature tensor field occurs. Fedosov manifolds
with zero symplectic Weyl curvature are usually called of Ricci type. (See also
Cahen, Schwachhofer [3] for another but related context.)

After introducing the underlying geometric structure, let us start describing the
fields on which the differential operators from the symplectic twistor complexes
act. These fields are certain exterior differential forms with values in the so called
symplectic spinor bundle which is an associated vector bundle to the metaplectic
bundle. We shall introduce the metaplectic bundle briefly now. Because the first
homotopy group of the symplectic group Sp(2l, R) is isomorphic to Z, there exists
a connected two-fold covering of this group. The covering space is called the
metaplectic group, and it is usually denoted by Mp(2l,R). Let us fix an element of
the isomorphism class of all connected 2 : 1 coverings of Sp(2l, R) and denote it by A.
In particular, the mapping A: Mp(2l,R) — Sp(2{,R) is a Lie group homomorphism,
and in this case it is also a Lie group representation. A metaplectic structure on
a symplectic manifold (M?,w) is a notion parallel to that of a spin structure
known from Riemannian geometry. In particular, one of its part is a principal
Mp(21,R)-bundle Q covering twice the bundle of symplectic reperes P on (M,w).
This principal Mp(2l, R)-bundle is the mentioned metaplectic bundle and will be
denoted by @ in this paper.

As we have already written, the fields we are interested in are certain exterior
differential forms on M?! with values in the symplectic spinor bundle which is a
vector bundle over M associated to the chosen principal Mp(2l, R)-bundle Q via an
‘analytic derivate’ of the Segal-Sahle-Weil representation. The Segal-Shale-Weil re-
presentation is a faithful unitary representation of the metaplectic group Mp(2l, R)
on the vector space L?(LL) of complex valued square Lebesgue integrable functions
defined on a Lagrangian subspace L of the canonical symplectic vector space
(R, wp). For technical reasons, we shall use the so called Casselman-Wallach glo-
balization of the underlying Harish-Chandra (g, K )-module of the Segal-Shale-Weil
representation. Here, g is the Lie algebra of the metaplectic group G and K is
a maximal compact subgroup of the group G. The vector space carrying this
globalization is the Schwartz space S := S(IL) of smooth functions on L rapidly
decreasing in infinity with its usual Fréchet topology. This Schwartz space is the
‘analytic derivate’ mentioned above. We shall denote the resulting representation
of Mp(2n,R) on S by L and call it the metaplectic representation, i.e., we have
L: Mp(2l,R) — Aut(S). Let us mention that S decomposes into two irreducible
Mp(2l,R)-submodules S, and S_, i.e., S = S; & S_. The elements of S are
usually called symplectic spinors. See Kostant [11] who used them in the context
of geometric quantization.

The underlying algebraic structure of the symplectic spinor valued exterior
differential forms is the vector space E := A*(R*)* ® S = @flzo "(R2H* @
S. Obviously, this vector space is equipped with the following tensor product
representation p of the metaplectic group Mp(2l,R). Forr =0,...,2l, g € Mp(2l,R)
and a® s € N"(R¥)* @ S, we set p(g)(a® s) := A(g)*""a ® L(g)s and extend
this prescription by linearity. With this notation in mind, the symplectic spinor
valued exterior differential forms are sections of the vector bundle £ associated
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to the chosen principal Mp(2l,R)-bundle Q via p, ie., £ := Q x, E. Now, we
shall restrict our attention to the mentioned specific symplectic spinor valued
exterior differential forms. For each r = 0,...,2l, there exists a distinguished
irreducible submodule of A\"(R?*)* ® S1 which we denote by E’.. Actually, the
submodules E7. are the Cartan components of A\"(R?)* ® S, i.e., the highest
weight of each of them is the largest one of the highest weights of all irreducible
constituents of A"(R?)* ® S4 wrt. the standard choices. For r» = 0,...,2l, we
set E" := E. ®E” and £" := Q x, E". Further, let us denote the corresponding
Mp(2l, R)-equivariant projection from A" (R?)* ® S onto E" by p". We denote the
lift of the projection p” to the associated (or ’geometric’) structures by the same
symbol, i.e., p": T(M, Q x, (A"(R*)* ® S)) — I'(M,E").

Now, we are in a position to define the main subject of our investigation, namely
the symplectic twistor complexes. Let us consider a Fedosov manifold (M,w, V)
and suppose that (M,w) admits a metaplectic structure. Let dV”° be the exterior
covariant derivative associated to V. For each r = 0,...,2l, let us restrict the
associated exterior covariant derivative d¥° to I'(M, ™) and compose the restriction
with the projection p™+!. The resulting operator, denoted by T;., will be called

symplectic twistor operator. In this way, we obtain two sequences of differential

operators, namely 0 — I'(M, &) Do, (M, EY) s T (M, — 0 and

0 — D(M, &Y 5 p(a, ey T8 B pag, €21 — 0. Tt is known, see

Krysl [I4], that these sequences form complexes provided the Fedosov manifold
(M?,w,V) is of Ricci type. These two complexes are the mentioned symplectic
twistor complezes. Let us notice, that we did not choose the full sequence of all
symplectic spinor valued exterior differential forms together with the exterior
covariant derivative acting between them because for a general or even Ricci type
Fedosov manifold, this sequence would not form a complex in general.

As we have mentioned, we shall prove that some parts of these two complexes
are elliptic. To obtain these parts, one should remove the last (i.e., the zero) term
and the second last term from the first complex and the first term (the zero space
again) from the second complex. The complexes obtained in this way will be called
truncated symplectic twistor complexes. Let us mention that by an elliptic complex,
we mean a complex of differential operators such that its associated symbol sequence
is an exact sequence of the sheaves in question. (See, e.g., Wells [21] for details.)

Let us make some remarks on the methods we have used to prove the ellipticity
of the truncated symplectic twistor complexes. We decided to use the so called
Schur-Weyl-Howe correspondence, which is referred to as the Howe correspondence
for simplicity in this text. The Howe correspondence in our case, i.e., for the
metaplectic group Mp(2l,R) acting on the space E of symplectic spinor valued
exterior forms, leads to the ortho-symplectic super Lie algebra osp(1]2) and a
certain representation of this algebra on E. We decided to use the Howe type
correspondence mainly because the spaces E” (defined above) can be characterized
via the mentioned representation of 0sp(1]2) easily and in a way described in this
paper. See R. Howe [10] for more information on the Howe type correspondence
in general. Let us also mention that besides this duality, the Cartan lemma on
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exterior differential forms was used. For other examples of elliptic complexes, we
refer an interested reader, e.g., to Stein and Weiss [17], Schmid [I5], Hotta [9], and
Branson [2].

For an application of symplectic spinors in mathematical physics, see, e.g., Shale
[16] and Green, Hull [7] and the already mentioned article of Kostant [I1I]. In
the first reference, one can find an application of these spinors in quantizing of
Klein-Gordon fields and in the second one in the 10 dimensional super-string theory.
The purpose for taking symplectic spinor valued forms might be justified by the
intention to describe higher spin boson fields.

In the second section, we recall some known facts on symplectic spinors and
the space of symplectic spinor valued exterior forms and its decomposition into
irreducible submodules (Theorem . In the third chapter, basic information on
Fedosov manifolds and their curvature are mentioned and the symplectic twistor
complexes are introduced. In the fourth section, the symbol sequence of the
symplectic twistor complexes is computed and the ellipticity of the truncated
symplectic twistor complexes is proved (Theorem .

2. SYMPLECTIC SPINOR VALUED FORMS

In this paper the Einstein summation convention is used for finite sums, not
mentioning it explicitly unless otherwise is stated. (We will not use this convention
in the proof of the Lemma |§| and in the item 3 of the proof of the Theorem (7| only.)
The category of representations of Lie groups we shall consider is that one the
object of which are finite length admissible representations of a fixed reductive
group G on Fréchet vector spaces and the morphisms are continuous G-equivariant
maps between the objects. All manifolds, vector bundles and their sections in
this text are supposed to be smooth. The only manifolds which are allowed to
be of infinite dimension are the total spaces of vector bundles. If this is the case,
the bundles are supposed to be Fréchet. The base manifolds are always finite
dimensional. The sheaves we will consider are sheaves of smooth sections of vector
bundles. If F — M is a Fréchet vector bundle, we denote the sheaf of sections by
[, ie, (U) :=T(U, E) for each open set U in M. For m € M, we denote the stalk
of I' at m by I',,.

2.1. Symplectic linear algebra and basic notation. In order to set the notation, let
us start recalling some simple results from symplectic linear algebra. Let (V,wp) be
a real symplectic vector space of dimension 2/, [ > 1. Let us choose two Lagrangian
subspaces L and I/, such that V ~ L®L’ 1. It is easy to see that dim L = dim L’ = 1.
Further, let us choose an adapted symplectic basis {e; flzl of ( VLaL, wy),ie.,
{e;}3L, is a symplectic basis of (V,wp) and {e;}i_; C L and {e;}?-,,; C L. The
basis dual to the basis {e;}2L, will be denoted by {e'}?.,, i.e., fori, j=1,...,2l
we have €/ (e;) = 1.,/ = 5{, where ¢, for an element v € V and an exterior
form a € A°® V*, denotes the contraction of the form o by the vector v. Further
for i,j = 1,...,2l, we set w;; := wp(e;,e;) and define w¥, 4, j = 1,...,2l, by

1Let us recall that by Lagrangian, we mean maximal isotropic wrt. wq.
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the equation wijwkj = 6F for all 4, k = 1,...,2l. Let us remark that not only
wij = —wj;, but also w¥ = —w¥? for i, j =1,...,2l.

As in the Riemannian case, we would like to rise and lower indices of tensor
coordinates In the symplectic case, one should be more careful because of the
7Sl of a tensor K over V. we

; rs...t
denote the expression wKap o q" "t by Kap.' 4 and Kgp "5t "wy by

K. %" and similarly for other types of teﬁéors and also in the geometric
setting when we will be considering tensor fields over a symplectic manifold (M2, w).
Let us remark that w;’ = —w?; = 67,4, j =1,...,2l. Further, one can also define

an isomorphism #: V* — V, V* 5 a — af € V, by the formula
a(w) = wo(af,w) foreach a€V* and weV.

For a = e’ and j = 1,...,2l, we get a; = a(e;) = wo((a)le;, ej) = wj(ak) =
(a¥); which implies of = (a¥)’e; = a'e;. Thus, we see that the rising of indices via
the form wyq is realized by the isomorphism f.

Finally, let us introduce the groups we will be using. Let us denote the symplectic
group of (V,wp) by G, i.e., G := Sp(V,wpy) ~ Sp(2l,R). Because the fundamental
group of G = Sp(V,wy) is Z, there exists a connected 2: 1, necessarily non-universal,
covering of G by the so called metaplectic group Mp(V,wp) denoted by G in this text.
Let us denote the mentioned two-fold covering map by A, in particular A: G — G.
(See, e.g., Habermann, Habermann [g].)

2.2. Segal-Shale- Weil representation and symplectic spinor valued forms. The
Segal-Shale-Weil representation is a distinguished representation of the meta-
plectic group G' = Mp(V,wp).2 This representation is unitary, faithful and does not
descend to a representation of the symplectic group. Its underlying vector space
is the vector space of complex valued square Lebesgue integrable functions L?(IL)
defined on the chosen Lagrangian subspace L. Let us set S := V> (HC(L?(L))),
where V°° is the Casselman-Wallach globalization functor and HC denotes the
forgetful Harish-Chandra functor from the category of G-modules defined above
into the category of Harish-Chandra (g, K )-modules®. We shall denote the resulting
representation by L and call it the metaplectic representation. Thus, we have

L: Mp(V,wy) — Aut(S).

The elements of S will be called symplectic spinors. It is well known that S splits
into two irreducible Mp(V,wp)-submodules S and S_. Thus, we have S = S ®S_.
See the foundational paper of A. Weil [20] for more detailed information on the
Segal-Shale-Weil representation and Casselman [4] on this type of globalization. Let
us mention that choosing this particular globalization seems to be rather technical
from the point of view of the aim of our article.

In the proof of the ellipticity of the truncated symplectic twistor complexes,
we shall need some facts on the underlying vector space of the metaplectic repre-
sentation. Let us mention that it is known that S is isomorphic to the Schwartz

2The names oscillator and metaplectlc are also used in the literature. See, e.g., Howe [10].
3Here g is the Lie algebra of G and K is the maximal compact Lie subgroup of G.
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space S(L) of smooth functions rapidly decreasing in the infinity equipped with the
standard (locally convex) Fréchet topology generated by the supremum semi-norms.
(See, e.g., Habermann, Habermann [8] or Borel, Wallach [I].) For the convenience of
the reader, let us briefly recall the definition of the involved semi-norms. For each a,
b € N}, the semi-norm g, is defined by the formula g, 4 (f) := sup,cp|(z?0° f)(z)],
f € S(L). Let us order the set (¢q)qp in the standard ’lexicographical’ way
and denote the resulting sequence of semi-norms by (¢*)xen,. These semi-norms
generate a complete metric topology on S(LL). Taking a = b = 0, one sees that
the convergence with respect to the semi-norms implies the uniform convergence
immediately. Further, it is well known that the Schwartz space S(L) possesses a
Schauder basis. For a complex metric (e.g., Fréchet) space F, an ordered countable
set (fi)ien C F is called a Schauder basis of F' if each element f € F' can be uni-
quely expressed as f =Y .o, a;f; for some a; € C. Notice that from the uniqueness
of the coefficients a; immediately follows that 0 = Zfil a; f; implies a; = 0 for all
1 € N. From the basic mathematical analysis courses, one knows that in the case of
the Schwartz space S(IL), one can take, e.g., the lexicographically ordered sequence
of Hermite functions in [ variables as the Schauder basis. We denote this basis by
(hi)ien-

Now, we may define the so called symplectic Clifford multiplication -: VxS — S.
Forse€S,z=a¢; €L,2? e Rand 4,5 =1,...,1[, let us set

ds

e - s(x) :==1x's(x) and ey -s(x) = e ().

In physics, this mapping (up to a constant multiple) is usually called the canonical
quantization. Let us remark that the definition is correct due to the preceding
paragraph. For each v, w € V and s € S, one can easily derive the following
commutation relation

(1) vew-s—w-v-s=—wp(v,w)s.

(See, e.g., Habermann, Habermann [8].) We shall use this relation repeatedly and
without mentioning its use. Now, we prove that the symplectic Clifford multipli-
cation by a fixed non-zero vector v € V is injective as a mapping from S into S.
We shall use the G-equivariance of the symplectic Clifford multiplication, i.e., the
fact L(g)(v-s) = [A(g)v] - L(g)s which holds for each g € G, v € Vand s € S
(see Habermann, Habermann [8]). Thus, let us suppose that a fixed s € S and a
fixed 0 # v € V are given such that v - s = 0. Because the action of the symplectic
group G on V — {0} is transitive and \ is a covering, there exists an element
g € G such that A(g)v = e;. Applying L(g) on the equation v -s = 0, we get
L(g)(v-s) = 0. Using the above mentioned equivariance of the symplectic Clifford
multiplication, we get 0 = L(g)(v - s) = [A(g)v] - (L(g)s) = e1 - (L(g)s). Denoting
L(g)s =: ¢ and using the definition of the symplectic Clifford multiplication, we
obtain 2x'y) = 0, which implies ¥)(x) = 0 for each z = (z!,...,2') € L such that
x' # 0. By continuity of ) € S, we get 1) = 0. Because L is a group representation,
we get s = 0 from 0 = ¢ = L(g)s, i.e., the injectivity of the symplectic Clifford
multiplication.
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Having defined the metaplectic representation and the symplectic Clifford mul-
tiplication, we shall introduce the underlying algebraic structure of the basic
geometric object we are interested in, namely the space E := A\*V* ® S of sym-
plectic spinor valued exterior forms. The vector space E is considered with its
canonical (Fréchet) direct sum topology induced by the metric topology on the
(finite dimensional) space of exterior forms and the Fréchet topology on S. The
metaplectic group G acts on E by the representation

p: G — Aut(E) defined by the formula

p(g9)(a®s) = (Ag)")""a® L(g)s,

where o € \"V*, s €S, r =0,...,2l, and it is extended by linearity also for
non-homogeneous elements.

For ¢ =a®s € E,v € Vand 3 € \* V¥, we set 1,0 1= 1,a®s, BAY = BAa®s
and v- 1Y :=a®wv-s and extend these definitions by linearity to non-homogeneous
elements. Obviously, the contraction, the exterior multiplication and the Clifford
multiplication by a fixed vector or co-vector are continuous on E.

Now, we shall describe the decomposition of the space E into irreducible
G-submodules. For i = 0,...,[, let us set m; := i, and for i = [ + 1,...2l,
m; := 2l — i, and define the set = of pairs of non-negative integers

E:={(i,j) eNg xNg |i=0,...,2[, j=0,...,m;}.

One can say the set = has a shape of a triangle if visualized in a 2-plane. (See
the Figure 1. below.) We use the elements of = for parameterizing the irreducible
submodules of E. N

In Krysl [12] for each (i, ;) € E, two irreducible G-modules EY were uniquely
defined via the highest weights of their underlying Harish-Chandra modules and
by the fact that they are irreducible submodules of A\'V* ® S.. For convenience
for each (i,7) € Z x 7\ Z, we set EY := 0, and for each (i,7) € Z x Z, we define
EY .=EJ ¢ EY. )

In the following theorem, the decomposition of E into irreducible G-submodules
is described.

Theorem 1. For r = 0,...,2l, the following decomposition into irreducible
G-modules

/\V*@Si: D EY  holds.
(r,j])GE

Proof. See Krysl [12]. O

The following remark on the multiplicity structure of the module E is cru-
cial. It follows from the prescriptions for the highest weights of the underlying
Harish-Chandra modules of EY (see Krysl [13]).

Remark. 1. For any (r,7), (r, k) € Z such that j # k, we have
BY o Byt
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EY E}° E2° E3° E4 EZ° ES°
E! E¥ E! EY!  EY
E?  ER  EY
E3

F1G. 1: Decomposition of A\* V* ® Sy for 21 = 6.

(any combination of + at both sides of the preceding relation is allowed).
Thus in particular, A" V* ® S is multiplicity-free for each r = 0,...,2I.

2. Moreover, it is known that E ~ EfFj for each (r,j),(s,j) € E. One
cannot change the order of + and — at precisely one side of the preceding
isomorphism without changing its trueness.

3. From the preceding two items, one gets immediately that there are no
submodules of A" V* ® S isomorphic to Ei;rl’”l foreachi=0,...,1 — 1.

In the Figure [l} one can see the decomposition structure of A®*V* ® S in the
case of | = 3. For i = 0,...,6, the i*" column constitutes of the irreducible modules
in which the S-valued exterior forms of form-degree i decompose.

In the next theorem, the decomposition of V* ® E¥, (i,j) € Z, into irreducible
G-submodules is described. Let us remind the reader that due to our convention
EY =0 for (i,j) € Z x Z\ E. We will use this theorem in the proofs of Lemma 6
and Theorem [7] on the ellipticity of the truncated symplectic twistor complexes.

Theorem 2. For (i,j) € E, we have

i+1
(V* ® EZ]) N (/\ V* ® S) ~ Ei+17j71 D E'L+1,j ® Ei+1’j+1 '

Proof. See Krysl [13]. O

Remark. Roughly speaking, the theorem says that the wedge multiplication sends
each irreducible module E¥ into at most three “neighbor” modules in the (i + 1)
column. (See the Figure[l])

2.3. Operators related to a Howe type correspondence. In this section, we will
introduce five continuous linear operators acting on the space E of symplectic
spinor valued exterior forms. Let us mention that these operators are related to the
so called Howe type correspondence for the metaplectic group Mp(V,wp) acting on
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E via the representation p. For r =0,...,2l and a® s € \"V* ® S, we set

r r+1 2l
F*:/\V*@SH /\V*@S, F+(a®s)::%;ei/\a®ei-s
and
T r—1 1 21
F~: /\V*®5—> /\V*@S, F‘(a@s)::§ZwijLe,ia®ej~s
i=1

and extend them linearly. Further, we shall introduce the operators H, E* and
E~ acting also continuously on the space E = A\* V* ® S. We define

H:=2{F* F~} and E*:.=42{F* F*},

where {, } denotes the anti-commutator in the associative algebra End(E). By a
direct computation, we get

(2) E (a®s) = %wijLeiLeja ® s

for any a®s € \°* V*®S. Thus, we see that the operator E~ acts on the form-part
of a symplectic spinor valued exterior form only. Because of that we will write
E~a® s instead of E~(a ® s) simply.

In the next lemma, we sum-up some known facts and derive some new information
on the operators F+, E* and H which we shall need in the proof of the ellipticity
of the truncated symplectic twistor complexes.

Lemma 3. 1. The operators FE, E* and H are G-equivariant.
2. Fori=20,...,l, the operator F‘;lmi =0 and fori=1,...,2l, the operator
+ —
F|E’”ni =0.

3. The associative algebra }
Ends(E) := {A: E — E continuous | Ap(g) = p(g)A for all g € G}
is, as an associative algebra, finitely generated by F* and F~ and the
G-equivariant projections p+: S — S.

4. Fora®se \"V*®S, the following relations hold on E

(3) [EJr?Ei]:H? [E7’F+]:7F7a
(4) H(a@s)z%(r—l)a@s,

(5) {F+,LU}(a®s):%a®v-s and [Fﬂv-](oz@s)z%%a@s.

Proof. See Krysl [I3] for the proof of the items 1 and 2, and Krysl [12] for a
proof of the item 3 and of the relations in the rows and . Now, suppose
we are given an element v = v'e; € V, v" € R, ¢ =1,...,2l, and a homogeneous
element a @ s € A’V*® S, j = 0,...,2l. First, let us prove the first relation
in the row (5)). Using the definition of F*, we may write {F*,.,}(a ® s) =
F+(Lva®s)+%bv(ei/\a®ei-s) = %[ei/\Lva®ei~s+via®ei-s—eiALva@)ei-s] = $a®uv-s.
Thus, the first relation of follows now by linearity. Now, let us prove the second
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relation at the row . Using the definition of F~ and the commutation relation
, we get F~(a®v-s) = $(wi,a®ej-v-s) = 2w, a®(v-e;-s—wo(ej,v)s) =
v-F(a®s)+ swi,a®ujs =v-F~ (a®s)+ 51,a®s. Thus, the second relation
at the row is proved. O

Remark. The operators F*, E* and H satisfy the commutation and anti-commu-
tation relations identical to that ones which are satisfied by the usual generators of
the ortho-symplectic super Lie algebra osp(1]2).

3. SYMPLECTIC TWISTOR COMPLEXES AND THEIR ELLIPTIC PARTS

In this section, we define the notion of a Fedosov manifold, recall some informa-
tion on its curvature, introduce a symplectic analogue of the spin structure (the
metaplectic structure) and define the symplectic twistor complexes.

Let (M,w) be a symplectic manifold. Let us consider an affine torsion-free sym-
plectic connection V on (M, w) and denote the induced connection on I'(M, A* T M)
by V as well. Let us recall that by torsion-free and symplectic, we mean T'(X,Y) :=
VxY -VyX—[X,Y]=0forall X,Y € X(M) and Vw = 0. Such connections are
usually called Fedosov connections, and the triple (M, w, V) a Fedosov manifold.
See the Introduction and the references therein for more information on these
connections. The curvature tensor RV of a Fedosov connection is defined in the
classical way, i.e., formally by the same formula as in the Riemannian geometry. It
is known, see Vaisman [19], that RV splits into two parts, namely into the extended
symplectic Ricci and Weyl curvature tensor fields, here denoted by o and WV
respectively. Let us display the definitions of these two curvature parts although
we shall not use them explicitly. For a symplectic frame (U, {e;}7L,), U C M, we
have the following local formulas

_ pk
oij = R%j,
~V . _
2(1 + l)oij,m = WinOjk — WikOjn + WinTik — WjkOin + 20wk, and
WY :=RY -5V,

where i, 7, k,n =1,...,2l. Let us call a Fedosov manifold (M,w, V) of Ricci type if
wY =0.

Remark. Because the Ricci curvature tensor field o;; is symmetric (see Vaisman
[19]), a possible candidate for the scalar curvature, namely o*w;;, is zero.

Example. It is easy to see that each Riemann surface equipped with its volume
form as the symplectic form and with the Riemann connection is a Fedosov manifold
of Ricci type. Further for any [ > 1, the Fedosov manifold ((CIP)Z, wrs, V) is also a
Fedosov manifold of Ricci type. Here, wrg is the Kéhler form associated to the
Fubini-Study metric and to the complex structure on the complex projective space
CIF’l, and V is the Riemannian connection associated to the Fubini-Study metric.
Now, let us introduce the metaplectic structure the definition of which we have
sketched briefly in the Introduction. For a symplectic manifold (M2, w) of dimension
21, let us denote the bundle of symplectic reperes in T'M by P and the foot-point
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projection from P onto M by p. Thus (p: P — M,G), where G ~ Sp(2[,R), is a
principal G-bundle over M. As in the subsection, let A: G — G be a member
of the isomorphism class of the non-trivial two-fold coverings of the symplectic
group G. In particular, G ~ Mp(2[,R). Now, let us consider a principal G-bundle
(¢: @ — M, G) over the chosen symplectic manifold (M, w). We call the pair (Q, A)
metaplectic structure if A: Q — P is a surjective bundle morphism compatible with
the actions of G on P and that of G on Q and with the covering A in the same
way as in the Riemannian spin geometry. (For a more elaborate definition see, e.g.,
Habermann, Habermann [g].) Let us remark, that typical examples of symplectic
manifolds admitting a metaplectic structure are cotangent bundles of orientable
manifolds (phase spaces), Calabi-Yau manifolds and the complex projective spaces
CP** ! k € Ny.

Now, let us denote the Fréchet vector bundle associated to the introduced
principal G-bundle (¢: Q— M, é) via the metaplectic representation L on S by
S. Thus, we have S = Q x, S. We shall call this associated vector bundle S — M
the symplectic spinor bundle. The sections ¢ € T'(M,S) will be called symplectic
spinor fields. Let us put £ := Q x, E. For r = 0,...,2[, we define £" := Q x, E",
where E” abbreviates E™™r. The smooth sections I'(M, £) will be called symplectic
spinor valued exterior differential forms. Because the operators E, F* and H are
G-equivariant (see the Lemma 3 item 1), they lift to operators acting on sections of
the corresponding associated vector bundles. The same is true about the projections
p, (i,j) € Z x Z. We shall use the same symbols as for the mentioned operators
as for their “lifts” to the associated vector bundle structure.

Now, we shall make a use of the Fedosov connection. The Fedosov connection
V determines the induced principal G-bundle connection on the principal bundle
(p: P — M,QG). This connection lifts to a principal G-bundle connection on the
principal bundle (¢: @ — M, G) and defines the associated covariant derivative
on the symplectic bundle S, which we shall denote by V¥, and call it the sym-
plectic spinor covariant derivative. See, e.g., Habermann, Habermann [§] for this

classical construction. The symplectic spinor covariant derivative V* induces the

exterior covariant derivative dV° acting on T'(M,E). For r = 0,...,2l, we have
dV°:T(M,Q x, (N V*®8)) = T(M,Q x, (A" V* ®8)). Now, we are able to
define the symplectic twistor operators. For r =0, ..., 2l, we set

T.: F(M, 87‘) N F(M, 5r+1) , T, = pr+1,mr+1 d|VI‘?]\/I,ET)

and call these operators symplectic twistor operators. Informally, one can say that
the operators are going on the lower edges of the triangle at the Figure 1. Let
us notice that F~(V® — Tp) is, up to a non-zero scalar multiple, the so called
symplectic Dirac operator introduced by K. Habermann. See, e.g., Habermann,
Habermann [§].

In the next theorem, we state that the sequences consisting of the symplectic
twistor operators form complexes. These sequences will be called symplectic twistor
sequences or complexes.
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Theorem 4. Let | > 2 and (M?,w,V) be a Fedosov manifold of Ricci type
admitting a metaplectic structure. Then
0 — D(M, &%) L, ety I I p ety — o
and
0 — I(M, gll) N (M, gl+1,l+1) Tipr  Tog (M, 821,21) 0
are complezes.

Proof. See Krysl [14]. O

4. ELLIPTICITY OF THE SYMPLECTIC TWISTOR COMPLEX

After the preceding summarizing parts, we now tend to the proof the ellipticity
of the truncated symplectic twistor complexes. Let us recall that by an elliptic
complex of differential operators we mean a complex of differential operators acting
on the sections of Fréchet bundles such that the associated complex of symbols of
the considered differential operators forms an exact sequence of sheaves. Let us
recall that a sequence (I'(F*), 7*) in the category of complexes of sheaves of sections
of Fréchet bundles F* is called exact if the stalks [Ker(7%)],,, [Im(7®~1)],, satisfy
the equality [Ker(7?)],, = [Im(7*~1)],, for each i € Z and each m € M, where
always when arriving at a preshaef and not at a sheaf, we consider its sheafification
not distinguishing it at the notation level. Let us notice that in the case of symbols,
we may speak about fibers and not necessarily about stalks because the symbols
are bundle and not only sheaf morphisms. See the classical text-book of Wells [21]
for more on ellipticity of complexes of differential operators.

After this introductory paragraph, we start with a simple lemma in which the
symbol of the exterior covariant symplectic spinor derivative associated to a Fedosov
manifold admitting a metaplectic structure is computed.

Lemma 5. Let (M,w,V) be a Fedosov manifold admitting a metaplectic structure,

S — M be the corresponding symplectic spinor bundle and dV° denotes the exterior
covariant derivative. Then for each & € T(M,T*M) and a ® ¢ € T'(M,E), the

symbol o€ of dv° is given by
cfa®p)=ENa®o.

Proof. For f € C*(M), £ e (M, T*M) and a ® s € T'(M, &), let us compute
dvs(fa@)s) —fdvs(a@)s) = df/\a®s+fdvs(a®s) —fdvs(a®s) =df N\a®s.
Using this computation, we get the statement of the lemma. [

From now on, we shall denote the projections p"™ onto E? by p’ simply, i =
0,...,2l. (In order not to cause a possible confusion, we will make no use of the
projections from E onto A"V* ® S or of their lifts to the associated geometric
structures.) Due to the previous lemma and the definition of the symplectic twistor
operators, we get easily that for each i = 0,...,2l and £ € I'(M, T*M), the symbol
Jf of the symplectic twistor operator 7T; is given by the formula

fa®s)=p T (Ena®s)
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for each a ® s € T'(M, £).

In order to prove the ellipticity of the appropriate parts of the symplectic twistor
complexes, we need to compare the kernels and the images of the symbols maps
af for any £ € T'(M,T*M) \ {0}. Therefore, we prove the following statement in

which the projections p* are more specified.
Lemma 6. Fori=0,...,1—1,£€V* and a ® s € E, we have

(6) P ENa®s) =ENa®s+BFT(a@ €t ) +y(ETiga ® s)

where 3 = 2; and v = 7.

Fori=1+1,...,2l and p € E--bmi-1 g Ei-bmici—1 @ Bimbmi-1=2 e haye
) 4 1
(7) Pl =9+ mF*Fﬂ/J - mE*Ew.

Proof. We prove the first relation only. The second formula can be derived following
the same lines of reasoning used for proving the first one. We split the proof of @
into four parts.

1. In this item, we prove that for a fixed i € {0,...,l} and any k=0, ...,1,
there exists af € C such that

p'=Y ap(FH)F(F)*
k=0

with of = 1 for each i = 0,...,l. Because for each i = 0,...,l, the
projections p’ are G-equivariant, they can be expressed as (finite) linear
combinations of the elements of the finite dimensional vector space End (E).
Due to the Lemma 3 item 3 (cf. also Krysl [12]), we know that the complex
associative algebra Endgs(E) is generated by F* and F~ and by the
projections p. It is easy to see that the projections p+ can be omitted
from any expression for p’ and thus, each projection p’ can be expressed
just using F* and F~. Due to the defining relation H = 2{F*, F~} and
the relation on the values of H on homogeneous elements, one can
order the operators F* and F~ in an expression for p’ in the way that
the operators Ft appear on the left-hand and the operators F'~ on the
right-hand side. In this way, we express p’ as a linear combination of the
expressions of type (FT)?(F~)" for some a,b € Ny. Since the projection
p* does not change the form degree of a symplectic spinor valued exterior
form and F~ and Ft decreases and increases the form degree by one,
respectively, the relation a = b follows. Because the operator F'~ decreases
the form degree by one, the summands (F)*(F~)* for k > i actually do
not occur in the expression for the projection p® written above. Thus,

(8) p= g (FNEED)
k=0

for some ot € C, k=0,...,i.
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Now, we shall prove the equation o)y = 1, i = 0,...,l. By evaluating
the left-hand side of (8) on an element ¢ € E! we get ¢, whereas at the
right-hand side the only summand which remains is the one indexed by
zero. (The other summands vanish because F'~ is G-equivariant, decreases
the form degree by one and there is no summand in /\l_1 V*®S isomorphic
to E’, or to E*. See the Remark item 3 below the Theorem )

2. Now, suppose £ € V* and a®s € EY,i =0,...,1—1. Due to the Theorem [2]
we know that ¢ := EAa®s € BT 1gEITLQETL+L Applying pt! to
the element ¢, only the zeroth, first, and second summand in the expression
pitle = STrE ol (FH)E(F~)*¢ remains. (For k > 2, the k" summand
vanishes in the expression for p'*1¢ because F~ is G-equivariant, decreases
the form degree by one and there is no summand in /\172 V*®S isomorphic
to ET V! or BN or BT See the item 3 of the Remark below the
Theorem [1})

3. Due to the previous item, we already know that for the element ¢ = EAa®s
chosen above, we get

2
pi+1¢ _ ZO‘Z+1(F+)]€(F7)]€¢.
k=0
Using the relations (4]) and , we may write
P ENa®s)=¢na®s+a T FTF (EAa®s)
+ay  (FXF ) Enams)
1 y

—5/\04®s+al+12F+w”[(Leif)a®ej-s—§/\¢eia®ej-s}

_ aé‘HE—&- 37'2w Le;le, (5 Na® S)

=tNa®s—alf F"'[oz@fﬁ S+2ANF (a®s))
aéﬂE"‘S%w Le,(§ja® 8 —ENLe,a® 5).

Because a ® s € Ef, we get F~(a ® s) = 0 by Lemma [3item 2. Using the
last written equation, we may write

i+1
Pl na®s)=¢Ena®s — alTF+(o<®§ﬁ-s)
Zaz+1 it1
322 ET (26", ® s+ ENE a®s).
The last summand in this expression vanishes due to the Lemma [3]item 2 be-
cause first E~ = —4F~ F~ (Eqn. ) and second a ® s € E?. Summing-up,

we have
) 11 i
p7,+1¢ :g/\0l®5*0611+1§F+(a®€ﬁ . 5) _ a;"rléE‘i’LgﬁOé@S,

which is a formula of the form written in the statement of the lemma.
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4. In this item, we shall determine the numbers 8,7 € C. Using the fact
that p'*! is an idempotent ((p*+1)? = p*1), we get o't =4/(1 — i) and
abt™ =16/(1 — i) after a tedious but straightforward calculation.
Thus, comparing the last written formula of the preceding item and the
Eqn. (6), we get 8 =2/(i —1) and v =1/(i — ).
O

Remark. For i =1,...,2], £ € V* and a ® s € E?, the formula for p*! reads
simply

Pl na®s)=Ena®s
because of the Theorem [2land the items 1 and 2 of the Remark below the Theorem [I1
(Notice that one may also use the relation (7).)

Now, we are prepared to prove the ellipticity of the truncated symplectic twistor
complexes.

Theorem 7. Let (M?,w,V) be a Fedosov manifold of Ricci type admitting a
metaplectic structure, | > 2. Then the truncated symplectic twistor complezes

0 — T(M.€%) (el M T2 T e
and
(M, Y L p, ey B B pay, ) o

are elliptic.

Proof. We should prove the equations Ker(o Ym = Im( 1)m for the appropriate
indices 7 and for each point m € M. Here the constltuents of the previous equation
are fibers of the corresponding shaeves.

1. First, we prove that the sequences mentioned in the formulation of the theorem
are complexes. Fori =0,...,1—2,1,...,2l—1, 9 € T'(M, ") and a differential
I-form ¢ € T'(M,T*M), we may write 0 = p**2(0) = p"2((E ANE) AY) =
PPEATA(EAY)) = P2 (EAYTEG p' 1T (€ A1h)). Due to the Theorem 2} we
know that the last written expression equals p'*2(£ A piTH(E A1) = af+1of¢
and thus af+laf = 0.

2. Second, we prove the relation Ker(af)m - Im(afﬁl)m foreach 0 £ & € T, M
and¢=0,...,l—2. Here ot 1 = 0is to be understood. Suppose a homogeneous

element a ® s € £ is given such that o (a ® s) = 0. (In the next item, we
will treat the general non-homogeneous case.) Due to the paragraph below
the Lemma |5, we know that 0 = 0% (a ® s) = p'™' (¢ Aa ® s). We shall find
an element ¢ € £-1 such that p'(E A7) = a ® s.

Using formula @ for the projection (Lemma @, we may rewrite the
equation p"t1(¢ Aa® s) =0 into

(9) 5/\Oé®8+ﬁF+(Oé®§ﬁ~S)+7E+L§ua®820.



324 S. KRYSL

Applying the operator E~ (formula ) on the both sides of the previous
equation and using the first commutation relation in the row (3)) from Lemma (3]
we get

%wijbeibe]. (ENQ)@s+BE Fra®é-s)+y(ETE™ — 2H)1gza®@ s = 0.
Using the graded Leibniz property of ¢z, the relation @) for the values of

H on form-homogeneous elements and the second relation in the row from
Lemma 3, we obtain

2
5 (2t —2ENET) (0@ 5) + BFTE (a®&-s)— BF (a®&d - s)
+YETE tga®@s+y(—i+ 1)iga®@s=0.
The operator E~ commutes with the operator of the symplectic Clifford
multiplication (by the vector field £*) and also with the contraction ¢g; because
E~ = tw"ic, e, (formula ) Using these two facts, we get
5(~2e —2ENET) (@ ®s)+ BFE - BT (a®s) — BF (e @ ELs)
+yEf g E a®s+y(l—i+ iga®s=0.
Because F~(a®s) = 0 (Lemma [3]item 2), we have E-a®s = 4F~F~(a®
s) = 0. Thus, we obtain the identity
—ZLgnOé@S—ﬁF_((Jé@fu~8)—‘r’y(l—i+1)L£uO{®8=0.
Substituting the second relation in the row @) into the previous equation
and using the fact F'~ (o ® s) = 0 again, we get
?
—Ugr @ 5 — BEF (a®s) — 6§L£u0¢ ® s
+yl—i+1)ga®s=0.
Using the prescription for the numbers $ and v (Lemma @ and the already
twice used relation F~(a ® s) =0, we get (—o+y(l —i+1) = f5)igra®s =
—2ugra @ s = 0 from which the equation
(10) tera @ s =0

follows.
Substituting this relation into the prescription for the projection p® (Eqn.
@), we get for s =0,...,1 — 2 the equation

(11) 0=pt(ENna®s)=ENa®@s+ BFT (a@E - s).

Applying the contraction operator t¢: to the previous equation and using
the first formula in the row from Lemma 3, we obtain

0=—¢Nga®@s—BF T g(a®é - s) +ﬁ%a®€u-(fu -s).

Using the fact that the contraction and symplectic Clifford multiplication
commute, we have

0=—EAiga®s—BFE (lpa®s)+fza0 e (¢ ).
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Substituting the Eqn. into the previous equation, we obtain
a®&h (685 =0.

Substituting the definition of F'* into the equation multiplying it by
¢ and using the equation Lz ®@ s =0 (Eqn. ) again, we get

0:§Aa®§ﬁ~s+ﬂ%ei/\a®§ﬁ~e,;~§ﬁ~s,
0:§/\oz®§ﬁ~s+ﬂ%ei/\a®(ei~§ﬁ'§ﬁ~—zwo(§ﬁ,ei)§ﬁ~)s.

Substituting the identity a ® &* - €% - s = 0 into the previous equation, we
obtain

0:(1+%ﬂ)§Aa®§ﬁ-s.

If i =0,...,0l — 2, the coefficient 1 4+ 3/2 # 0, and thus by dividing, we get
ENa®Er s = 0. Because the symplectic Clifford multiplication by a non-zero
vector is injective (see the subsection 2.2), we have

(12) 0=E(Aa®s.

3. In this item, we will still suppose i =0,...,l — 2. Let us consider a general
element ¢ € Ker(af)m C &/, and denote the basis of \" T M by (a)pi,,
n; € N. Due to the finite dimensionality of \"T M, there exist complex
numbers aji, j € N, k = 1,...,n;, such that ¢ = > 2, ;')11 ajkaik ® h;
where (h;);en is the Schauder basis of S,, corresponding to the Schauder basis
of S(L) ~ S,,,. Because the operators F*, H, B+, te and EA are continuous
on &, we get 0= 370, 322 apé Aot @ hy precisely in the same way as we
obtained the formula in the homogeneous situation (item 2 of this proof).
Using the definition of the Schauder basis again, we have for each j € N the
equation Y7 | a;rE Aa’f = 0. Using the Cartan lemma on exterior differential
systems, we get the existence of a family (5;);en of (¢ — 1) forms such that
ENB; = YL ajpa’™. Tt is possible to see (e.g. by taking the standard
Hodge-type metric on the space of forms) that one can choose the family
(Bj)jen in such a way that ¢ := Z]Oil B; @ h; converges. Thus, we may write
o1 (52185 @ hy) = pH (S5 €A B @ hy) = pH (05, D0l agra® @ hy) =
p'(¢) = ¢. Summing-up, we have that ¢ = Z;’;l B; ® h; is the desired
preimage. Thus, ¢ € Im(afﬁl)m.

4. Now, we prove that Ker(af)m - Im(ofﬁl)m fori=1+1,...,2[,0 #¢ €
I'M,T*M). f¢=a®s e Ker(of)m, then 0 = p"*t1(EAN@) = EAa®s. Due
to the Cartan lemma, we know that there is a form 3 € A" 7% M such that
ENB®s=a®s. Define ¢ := p'~1(8®s). Using the formula 7 the equation
& A B = a and the assumption F'*(a ® s) = 0 (implied by a ® s € E™#), one
can prove that £ A¢Y = a ® s in an analogous way as we proceeded the item
2 of this proof. The dehomogenization goes in the steps similar to that ones

written in the preceding item.
|
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In the future, we would like to interpret the appropriate (reduced) cohomology
groups of the truncated symplectic twistor complexes. Eventually, one can search
for an application of the symplectic twistor complexes in representation theory.
One can also try to prove that the full (i.e., not truncated) symplectic twistor
complexes are not elliptic by finding an example of a suitable Ricci type Fedosov
manifold admitting a metaplectic structure.
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Symplectic Killing spinors

SVATOPLUK KRYSL

Abstract. Let (M, w) be a symplectic manifold admitting a metaplectic structure
(a symplectic analogue of the Riemannian spin structure) and a torsion-free
symplectic connection V. Symplectic Killing spinor fields for this structure are
sections of the symplectic spinor bundle satisfying a certain first order partial
differential equation and they are the main object of this paper. We derive a
necessary condition which has to be satisfied by a symplectic Killing spinor field.
Using this condition one may easily compute the symplectic Killing spinor fields
for the standard symplectic vector spaces and the round sphere S? equipped
with the volume form of the round metric.

Keywords: Fedosov manifolds, symplectic spinors, symplectic Killing spinors,
symplectic Dirac operators, Segal-Shale-Weil representation

Classification: 58J60, 53C07

1. Introduction

In this article we shall study the so called symplectic Killing spinor fields on
Fedosov manifolds admitting a metaplectic structure. A Fedosov manifold is a
structure consisting of a symplectic manifold (M?!,w) and the so called Fedosov
connection on (M,w). A Fedosov connection V is an affine connection on (M, w)
such that it is symplectic, i.e., Vw = 0, and torsion-free. Let us notice that in
contrary to the Riemannian geometry, a Fedosov connection is not unique. Thus,
it seems natural to add the Fedosov connection into the studied structure and
obtain the notion of a Fedosov manifold. See, e.g., Tondeur [13] for symplec-
tic connections for presymplectic structures and Gelfand, Retakh, Shubin [3] for
Fedosov connections.

It is known that if [ > 1, the curvature tensor of a Fedosov connection decom-
poses into two invariant parts, namely into the so called symplectic Ricci curvature
and symplectic Weyl curvature tensor fields. If [ = 1, only the symplectic Ricci
curvature occurs. See Vaisman [14] for details.

In order to define a symplectic Killing spinor field, we shall briefly describe the
so called metaplectic structures with help of which these fields are defined. Any
symplectic group Sp(2{,R) admits a non-trivial, i.e., connected, two-fold covering,

The author of this article was supported by the grant GACR 306-33/80397 of the Grant
Agency of the Czech Republic. The work is a part of the research project MSM0021620839
financed by MSMT CR.
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the so called metaplectic group, denoted by Mp(2[, R) in this paper. A metaplectic
structure over a symplectic manifold is a symplectic analogue of the Riemannian
spin structure. In particular, one of its parts is a principal Mp(2l, R)-bundle
which covers twice the bundle of symplectic frame of (M?,w). Let us denote this
principal Mp(2l, R)-bundle by ¢: Q — M.

Now, let us say a few words about the symplectic spinor fields. These fields
are sections of the so called symplectic spinor bundle & — M. This vector bundle
is the bundle associated to the principal Mp(2l, R)-bundle ¢ : @ — M via the so
called Segal-Shale- Weil representation. The Segal-Shale-Weil representation is a
distinguished representation of the metaplectic group and plays a similar role in
the quantization of boson particles as the spinor representations of spin groups
play in the quantization of fermions. See, e.g., Shale [12]. The Segal-Shale-Weil
representation is unitary and does not descend to a representation of the sym-
plectic group. The vector space of the underlying Harish-Chandra (g, K)-module
of the Segal-Shale-Weil representation is isomorphic to S®(R!), the symmetric
power of a Lagrangian subspace R! of the symplectic vector space R?. Thus, the
situation is parallel to the complex orthogonal case, where the spinor representa-
tion can be realized on the exterior power of a maximal isotropic subspace. The
Segal-Shale-Weil representation and some of its analytic versions are sometimes
called oscillatory representation, metaplectic representation or symplectic spinor
representation. For a detailed explanation of the last name, see, e.g., Kostant [8].

The symplectic Killing spinor field is a non-zero section of the symplectic spinor
bundle § — M satisfying certain linear first order partial differential equation for-
mulated by the connection V* : I'(M,S) x I'(M,TM) — I'(M, S), the associated
connection to the Fedosov connection V. This partial differential equation is a
symplectic analogue of the classical symplectic Killing spinor equation from at
least two aspects. One of them is rather formal. Namely, the defining equation
for a symplectic Killing spinor is of the “same shape” as that one for a Killing
spinor field on a Riemannian spin manifold. The second similarity can be ex-
pressed by comparing this equation with the so called symplectic Dirac equation
and the symplectic twistor equation and will be discussed below in this paper. Let
us mention that any symplectic Killing spinor field determines a unique complex
number, the so called symplectic Killing spinor number. Let us notice that the
symplectic Killing spinor fields were considered already in a connection with the
existence of a linear embedding of the spectrum of the so called symplectic Dirac
operator into the spectrum of the so called symplectic Rarita-Schwinger operator.
The symplectic Killing spinor fields represent an obstruction for the mentioned
embedding. See Krysl [10] for this aspect.

In many particular cases, the equation for symplectic Killing spinor fields seems
to be rather complicated. On the other hand, in many cases it is known that its
solutions are rare. Therefore it is reasonable to look for a necessary condition
satisfied by a symplectic Killing spinor field which is simpler than the defining
equation itself. Let us notice that similar necessary conditions are known and
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parallel methods were used in Riemannian or Lorentzian spin geometry. See, e.g.,
Friedrich [2].

In this paper, we shall prove that any symplectic Killing spinor field necessarily
satisfies certain zeroth order differential equation. More precisely, we prove that
any symplectic Killing spinor is necessarily a section of the kernel of a symplectic
spinor bundle morphism. We derive this equation by prolongating the symplectic
Killing spinor equation. We make such a prolongation that enables us to compare
the result with an appropriate part of the curvature tensor of the associated
connection V* acting on symplectic spinors. An explicit formula for this part of
the curvature action was already derived in Krysl [11]. Especially, it is known
that the symplectic Weyl curvature of V does not show up in this part and thus,
the mentioned morphism depends on the symplectic Ricci part of the curvature
of the Fedosov connection V only. This will make us able to prove that the
only symplectic Killing number of a Fedosov manifold of Weyl type is zero. This
will in turn imply that any symplectic Killing spinor on the standard symplectic
vector space of an arbitrary finite dimension and equipped with the standard flat
connection is constant. This result can be obtained easily when one knows the
prolongated equation, whereas computing the symplectic Killing spinors without
this knowledge is rather complicated. This fact will be illustrated when we will
compute the symplectic Killing spinors on the standard symplectic 2-plane using
just the defining equation for symplectic Killing spinor field.

The cases when the prolongated equation does not help so easily as in the case
of the Weyl type Fedosov manifolds are the Ricci type ones. Nevertheless, we
prove that there are no symplectic Killing spinors on the 2-sphere, equipped with
the volume form of the round metric as the symplectic form and the Riemann-
ian connection as the Fedosov connection. Let us remark that in this case, the
prolongated equation has a shape of a stationary Schrodinger equation. More pre-
cisely, it has the shape of the equation for the eigenvalues of certain oscillator-like
quantum Hamiltonian determined completely by the symplectic Ricci curvature
tensor of the Fedosov connection.

Let us notice that there are some applications of symplectic spinors in physics
besides those in the mentioned article of Shale [12]. For an application in string
theory physics, see, e.g., Green, Hull [4].

In the second section, some necessary notions from symplectic linear algebra
and representation theory of reductive Lie groups are explained and the Segal-
Shale-Weil representation and the symplectic Clifford multiplication are intro-
duced. In the third section, the Fedosov connections are introduced and some
properties of their curvature tensors acting on symplectic spinor fields are sum-
marized. In the fourth section, the symplectic Killing spinors are defined and
symplectic Killing spinors on the standard symplectic 2-plane are computed. In
this section, a connection of the symplectic Killing spinor fields to the eigen-
functions of symplectic Dirac and symplectic twistor operators is formulated and
proved. Further, the mentioned prolongation of the symplectic Killing spinor
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equation is derived and the symplectic Killing spinor fields on the standard sym-
plectic vector spaces are computed. At the end, the case of the round sphere 52
is treated.

2. Symplectic spinors and symplectic spinor valued forms

Let us start recalling some notions from symplectic linear algebra. Let us
mention that we shall often use the Einstein summation convention without men-
tioning it explicitly. Let (V,wp) be a symplectic vector space of dimension 21,
i.e., wo is a non-degenerate anti-symmetric bilinear form on the vector space V
of dimension 2. Let L. and I” be two Lagrangian subspaces! of (V,wq) such that
L@L = V. Let {e;}?., be an adapted symplectic basis of (V = L @ L, wy),
ie., {ei}2, is a symplectic basis and {e;}!_; C L and {e;}?L,,; C L’. Because
the definition of a symplectic basis is not unique, we shall fix one which we shall
use in this text. A basis {e;}2L; of (V,wp) is called symplectic, if wo(e;,e;) = 1
iff 1 <i<landj =141 wolejej) =—-1iffI+1<i<2landj=1i—1
and wy(e;, e;) = 0 in the remaining cases. Whenever a symplectic basis will be
chosen, we will denote the basis of V* dual to {e;}?L, by {€}2.,. Further for
i,7 =1,...,2l, we set w;; = wo(e;, e;) and similarly for other type of tensors.
Fori,j =1,...,2l, we define w"” by the equation Eilzl wirwI® = 5t

As in the orthogonal case, we would like to rise and lower indices. Because
the symplectic form wq is antisymmetric, we should be more careful in this case.

For coordinates Kap. ..q"% "% of a tensor K over V, we denote the expression

wic ab...c...drsmt by Kab.__l___drsmt and Kabmcrs...t...uwti by Kabmcrs...i‘..u and sim-
ilarly for other types of tensors and also in a geometric setting when we will be
considering tensor fields over a symplectic manifold (M,w).

Let us denote the symplectic group Sp(V,wp) of (V,wg) by G. Because the
maximal compact subgroup of G is isomorphic to the unitary group U(l) which
is of homotopy type Z, we have 71(G) ~ Z. From the theory of covering spaces,
we know that there exists up to an isomorphism a unique connected double cover
of G. This double cover is the so called metaplectic group Mp(V,wy) and will be
denoted by G in this text. We shall denote the covering homomorphism by A,
ie., \: G — G is a fixed member of the isomorphism class of all connected 2:1
coverings.

Now, let us recall some notions from representation theory of reductive Lie
groups which we shall need in this paper. Let us mention that these notions are
rather of technical character for the purpose of our article. For a reductive Lie
group G in the sense of Vogan [15], let R(G) be the category the object of which
are complete, locally convex, Hausdorff vector spaces with a continuous action of
G which is admissible and of finite length; the morphisms are continuous linear
G-equivariant maps between the objects. Let us notice that, e.g., finite covers
of the classical groups are reductive. It is known that any irreducible unitary
representation of a reductive group is in R(G). Let g be the Lie algebra of G

1i.e.7 maximal isotropic with respect to wp, in particular dimL = dimL/ =
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and K be a maximal compact subgroup of G. It is well known that there exists
the so called L2-globalization functor, denoted by L? here, from the category
of admissible Harish-Chandra modules to the category R(G). See Vogan [15]
for details. Let us notice that this functor behaves compatibly with respect to
Hilbert tensor products. See, e.g., Vogan [15] again. For an object E in R(G),
let us denote its underlying Harish-Chandra (g, K)-module by E and when we
will be considering only its gC-module structure, we shall denote it by E. If g©
happens to be a simple complex Lie algebra of rank [, let us denote its Cartan
subalgebra by h®. The set ® of roots for (g&, h*) is then uniquely determined.
Further let us choose a set @+ C ® of positive roots and denote the corresponding
set of fundamental weights by {wi}ézl. For X\ € hC, let us denote the irreducible
highest weight module with the highest weight A by L()\).

Let us denote by U(W) the group of unitary operators on a Hilbert space
W and let L : Mp(V,wg) — U(L?(L)) be the Segal-Shale-Weil representation of
the metaplectic group. It is an infinite dimensional unitary representation of the
metaplectic group on the complex valued square Lebesgue integrable functions
defined on the Lagrangian subspace L. This representation does not descend
to a representation of the symplectic group Sp(V,wp). See, e.g., Weil [16] and
Kashiwara, Vergne [7]. For convenience, let us set S := L2(LL) and call it the
symplectic spinor module and its elements symplectic spinors. It is well known
that as a G-module, S decomposes into the direct sum S = S: @& S_ of two
irreducible submodules. The submodule S (S_) consists of even (odd) functions
in L%(L). Further, let us notice that in Krysl [9], a slightly different analytic
version (based on the so called minimal globalizations) of this representation was
used.

As in the orthogonal case, we may multiply spinors by vectors. The multipli-
cation . : V x S — S will be called symplectic Clifford multiplication and it is
defined as follows. For f € Sand ¢ =1,...,[, we set

(ei-f)(@) = 1" f(2),

(ersi f)(w) = 2T

(x), x €L

and extend it linearly to get the symplectic Clifford multiplication. The symplectic
Clifford multiplication (by a fixed vector) has to be understood as an unbounded
operator on L?(L). See Habermann, Habermann [6] for details. Let us also
notice that the symplectic Clifford multiplication corresponds to the so called
Heisenberg canonical quantization known from quantum mechanics. (For brevity,
we shall write v.w.s, instead of v.(w.s), v,w € V and s € S.)

It is easy to check that the symplectic Clifford multiplication satisfies the re-
lation described in the following

Lemma 1. Forv,w € V and s € S, we have

v.(w.s) — w.(v.s) = —wp(v,w)s.
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PROOF: See Habermann, Habermann [6]. O

Let us consider the representation

p:G— Aut(/\V* ®8)
of the metaplectic group G on A° V¥ ® S given by

p(9)(a® s) == X""(g)a @ L(g)s,

where r = 0,...,2l, « € \"V*, s € S and \*\" denotes the rth wedge power of
the representation A\* dual to A, and extended linearly. For definiteness, let us
consider the vector space A\*V* ® S equipped with the topology of the Hilbert
tensor product. Because the L2-globalization functor behaves compatibly with
respect to the Hilbert tensor products, one can easily see that the representation
p belongs to the class R(G).

In the next theorem, the space o symplectic valued exterior two-forms is de-
composed into irreducible summands.

Theorem 2. For §dim(V) =1 > 2, the following isomorphism
2

AV ©@8:~EY o EY @ EY

holds. For j, = 0,1,2, the E*2 are uniquely determined by the conditions that
first, they are submodules of the corresponding tensor products and second,

3 1

E* ~S ~ L(w_1 — §wl), EP ~Sy ~ L(—§wl),
3

E3 ~ L(wy — §wl), Eil ~ L(wy +wi—1 — 5@[),

1 3
E? ~ L(ws — §wl) and E* ~ L(ws + w1 — §wl).

PRrROOF: This theorem is proved in Krysl [10] or Krysl [9] for the so called minimal
globalizations. Because the L2-globalization behaves compatibly with respect to
the considered Hilbert tensor product topology, the statement remains true. 0O

Remark. Let us notice that for [ = 2, the number of irreducible summands in
symplectic spinor valued two-forms is the same as that one for [ > 2. In this case
(I = 2), one only has to change the prescription for the highest weights described
in the preceding theorem. For [ = 1, the number of the irreducible summands is
different from that one for [ > 2. Nevertheless, in this case the decomposition is
also multiplicity-free. See Krysl [9] for details.

In order to make some proofs in the section on symplectic Killing spinor fields
simpler and more clear, let us introduce the operators
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. o+1 21
Fro: A\V'esS— AV'es Fflaes) =) ¢rave.s,
i=1
. o—1 21 3
F=: A\V'esS— AV es Fags) =-) wi,awe.s,
i,j=1

H /.\V*®S—>/.\V*®S, H:={F" F}.

Remark. (1) One easily finds out that the operators are independent of the
choice of an adapted symplectic basis {e; 22l:1

(2) Let us remark that the operators F*, F~ and H defined here differ from
the operators F™, F~, H defined in Krysl [9]. Though, by a constant real
multiple only.

(3) The operators F'*™ and F~ are used to prove the Howe correspondence
for Mp(V,wp) acting on A* V*® S via the representation p. More or less,
the ortho-symplectic super Lie algebra osp(1|2) plays the role of a (super
Lie) algebra, a representation of which is the appropriate commutant. See
Krysl [9] for details.

In the next lemma the é—equivariance of the operators F'*, I~ and H is stated,
some properties of F'* are mentioned and the value of H on degree-homogeneous
elements is computed. We shall use this lemma when we will be treating the
symplectic Killing spinor fields in the fourth section.

Lemma 3. Let (V=L & L' ,wy) be a 2l dimensional symplectic vector space.
Then

(1) the operators Ft, F* and H are G-equivariant,
) (2) Figan =0,

(b) F‘EOO is an isomorphism onto E'°,

(c) (F*)fs = —3w®Idjs and it is an isomorphism onto E*°.
(3) Forr=0,...,2l, we have

H‘ AT VRS = Z(’I“ — l) Id‘ AT V*®S -

PRrROOF: See Krysl [9]. O

Let us remark that the items 1 and 3 of the preceding lemma follow by a
direct computation, and the second item follows from the first item, decomposition
theorem (Theorem 2), a version of the Schur lemma and a direct computation.
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3. Curvature of Fedosov manifolds and its actions on symplectic
spinors

After we have finished the “algebraic part” of this paper, let us recall some
basic facts on Fedosov manifolds, their curvature tensors, metaplectic structures
and the action of the curvature tensor on symplectic spinor fields.

Let us start recalling some notions and results related to the so called Fedosov
manifolds. Let (M?!,w) be a symplectic manifold of dimension 2{. Any torsion-
free affine connection V on M preserving w, i.e., Vw = 0, is called Fedosov
connection. The triple (M, w, V), where V is a Fedosov connection, will be called
Fedosov manifold. As we have already mentioned in the Introduction, a Fedosov
connection for a given symplectic manifold (M,w) is not unique. Let us remark
that Fedosov manifolds are used for a construction of geometric quantization of
symplectic manifolds due to Fedosov. See, e.g., Fedosov [1].

To fix our notation, let us recall the classical definition of the curvature tensor
RY of the connection V, we shall be using here. We set

RY(X,Y)Z :=VxVyZ—-VyVxZ—Vxy|Z

for XY, Z € X(M).

Let us choose a local adapted symplectic frame {e; 22l:1 on a fixed open subset
U C M. By alocal adapted symplectic frame {e;}2., over U, we mean such a local
frame that for each m € U the basis {(e;)m}?L, is an adapted symplectic basis
of (T, M, wy,). Whenever a symplectic frame is chosen, we denote its dual frame
by {€}?L,. Although some of the formulas below hold only locally, containing a
local adapted symplectic frame, we will not mention this restriction explicitly.

From the symplectic curvature tensor field RV, we can build the symplectic
Ricci curvature tensor field oV defined by the classical formula

oV (X,Y):=Te(V = RY(V,X)Y)

for each X, Y € X(M) (the variable V' denotes a vector field on M). For the
chosen frame and 7,57 = 1,...,2l, we define

oij =0 (e, e;).
Let us define the extended Ricci tensor field by the equation
3(X,Y,Z,U) = iun X'YIZFU™, XY, Z,U € X(M),
where for 4,5, k,n=1,...,2l,
2(04+ 1)0ijkn = Win0jk — WikOjn + WinTik — WjkCin + 204 Wkn-

A Fedosov manifold (M,w, V) is called of Weyl type, if 0 = 0. Let us notice,
that it is called of Ricci type, if R = ¢. In Vaisman [14], one can find more
information on the Sp(2[, R)-invariant decomposition of the curvature tensors of
Fedosov connections.
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Now, let us describe the geometric structure with help of which the symplectic
Killing spinor fields are defined. This structure, called metaplectic, is a symplec-
tic analogue of the notion of a spin structure in the Riemannian geometry. For
a symplectic manifold (M?',w) of dimension 2[, let us denote the bundle of sym-
plectic frame in TM by P and the foot-point projection of P onto M by p. Thus
(p: P — M,G), where G ~ Sp(2[,R), is a principal G-bundle over M. As in Sub-
section 2, let A : G — G be a member of the isomorphism class of the non-trivial
two-fold coverings of the symplectic group G. In particular, G ~ Mp(2{,R). Fur-
ther, let us consider a principal G-bundle (¢: Q@ — M, é) over the symplectic
manifold (M,w). We call a pair (Q,A) metaplectic structure if A : Q@ — P is
a surjective bundle homomorphism over the identity on M and if the following
diagram,

OxG—=Q

PxG——=P

with the horizontal arrows being respective actions of the displayed groups, com-
mutes. See, e.g., Habermann, Habermann [6] and Kostant [8] for details on
metaplectic structures. Let us only remark that typical examples of symplectic
manifolds admitting a metaplectic structure are cotangent bundles of orientable
manifolds (phase spaces), Calabi-Yau manifolds and complex projective spaces
CP***! ke N.

Let us denote the vector bundle associated to the introduced principal G-
bundle (¢ : Q — M, G) via the representation p acting on S by S, and call this
associated vector bundle symplectic spinor bundle. Thus, we have S = Q x, S.
The sections ¢ € T'(M,S) will be called symplectic spinor fields. Further for
jo = 0,1,2, we define the associated vector bundles £22 by the prescription
&%z 1= Q x, E¥2. Further, we define £" := I'(M,Q x, A" V* ® S), i.e., the
space o symplectic spinor valued differential r-forms, r = 0,...,2l. Because the
symplectic Clifford multiplication is G’—equivariant (see Habermann, Habermann
[6]), we can lift it to the associated vector bundle structure, i.e., to let it act
on the elements from I'(M,S). For jo = 0,1,2, let us denote the vector bundle
projections I'(M, ) — ['(M, E%2) by paj,, i-e., paj, : (M, E?) — (M, £272) for
all appropriate jo. This definition makes sense because due to the decomposition
result (Theorem 2) and Remark below Theorem 2, the G-module of symplectic
spinor valued exterior 2-forms is multiplicity-free.

Let Z be the principal bundle connection on the principal G-bundle (p : P —
M, G) associated to the chosen Fedosov connection V and Z be a lift of Z to the
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principal G-bundle (¢q: Q— M, é) Let us denote by V* the covariant derivative
associated to Z. Thus, in particular, V7 acts on the symplectic spinor fields.

Any section ¢ of the associated vector bundle S = Q x, S can be equivalently
considered as a G’—equivariant S-valued function on Q. Let us denote this function
by qAS, ie., qAS : @ — S. For a local adapted symplectic frame s : U — P, let us
denote by 5 : U — Q one of the lifts of s to Q. Finally, let us set ¢ := ngSO S.
Further for ¢ € Q and ¢ € S, let us denote by [g, ] the equivalence class in S
containing (¢, ). (As it is well known, the total space S of the symplectic spinor
bundle is the product @ x S modulo an equivalence relation.)

Lemma 4. Let (M,w,V) be a Fedosov manifold admitting a metaplectic struc-
ture. Then for each X € X(M), ¢ € I'(M,S) and a local adapted symplectic
frame s : U — P, we have

l
Vo =[5 X(¢5)] — %Z[ei+l~(vX6i)~ —e;.(Vxeiy).J¢ and

i=1
V3 (Y.0) = (VXY).0 + X.V5¢.
PROOF: See Habermann, Habermann [6]. O

The curvature tensor on symplectic spinor fields is defined by the formula
R*(X,Y)$ = VX Vyé — ViV — Viy yio,

where ¢ € I'(M,S) and X,Y € X(M).
In the next lemma, a part of the action of R® on the space of symplectic spinors
is described using just the symplectic Ricci curvature tensor field o.

Lemma 5. Let (M,w,V) be a Fedosov manifold admitting a metaplectic struc-
ture. Then for a symplectic spinor field ¢ € I'(M,S), we have
p20R5¢ = %aijwklek Ae ® e;.ej.¢.

PROOF: See Krysl [11]. O

4. Symplectic Killing spinor fields

In this section, we shall focus our attention to the symplectic Killing spinor
fields. More specifically, we compute the symplectic Killing spinor fields on some
Fedosov manifolds admitting a metaplectic structure and derive a necessary con-
dition satisfied by a symplectic Killing spinor field.

Let (M,w,V) be a Fedosov manifold admitting a metaplectic structure. We
call a non-zero section ¢ € I'(M,S) symplectic Killing spinor field if

Vid=AX.¢
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for a complex number A € C and each vector field X € X(M). The complex
number A will sometimes be called symplectic Killing spinor number. (Allowing
the zero section to be a symplectic Killing spinor would make the notion of a
symplectic Killing spinor number meaningless.)

Let us note that one can rewrite equivalently the preceding defining equation
for a symplectic Killing spinor into

V¢ = \F*¢.

Indeed, if this equation is satisfied, we get by inserting the local vector field
X = X'e; the equation V3¢ = tx (A’ ® €;.0) = Ae'(X)e;.0 = AX'e;.p = AX.9,
i.e., the defining equation. Conversely, one can prove that V}g(gi) = AX.¢ is equiv-
alent to tx V¢ = 1x(A\FT¢). Because this equation holds for each vector field
X, we get V¢ = A\F*¢$. We shall call both the defining equation and the equiv-
alent equation for a symplectic Killing spinor field the symplectic Killing spinor
equation.

In the next example, we compute the symplectic Killing spinors on the standard
symplectic 2-plane.

Example 1. Let us solve the symplectic Killing spinor equation for the stan-
dard symplectic vector space (R?[s,t],wo) equipped with the standard flat Eu-
clidean connection V. In this case, (R?, wp, V) is also a Fedosov manifold. The
bundle of symplectic frame in TR? defines a principal Sp(2, R)-bundle. Because
HY(R2%2,R) = 0, we know that there exists, up to a bundle isomorphism, only
one metaplectic bundle over R?, namely the trivial principal Mp(2, R)-bundle
R? x Mp(2,R) — R? and thus also a unique metaplectic structure A : Mp(2, R) x
R? — Sp(2,R) x R? given by A(g, (s,t)) := (A(g), (s,t)) for g € Mp(2,R) and
(s,t) € R2. Let S — R? be the symplectic spinor bundle. In this case S — R2
is isomorphic to the trivial vector bundle S x R? = L?(R) x R? — R2. Thus, we
may think of a symplectic spinor field ¢ as of a mapping ¢ : R? — S = L%(R).
Let us define ¢ : R?* — C by (s, t,z) := ¢(s,t)(z) for each (s,t,z) € R, One
easily shows that ¢ is a symplectic Killing spinor if and only if the function v
satisfies the system

oy

= iy and
0s
o _ o
o Tox’

If A = 0, the solution of this system of partial differential equations is neces-
sarily 9 (s, t,z) = (x), (s,t,x) € R3, for any 1 € L*(R).

If A # 0, let us consider the independent variable and corresponding depen-
dent variable transformation s = s,y =t + A"lz, 2 =t — A1z and (s, t,2) =
(s, t + Atz t — A12) = (s,y,2). The Jacobian of this transformation is
—2/X # 0 and the transformation is obviously a diffeomorphism. Substitut-
ing this transformation in the studied system, one gets the following equivalent
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transformed system
a{ﬂv _ e i
s 5/\ (y—2)¢
W 0 D O
8y+8z = )\([“)y)\ +8Z( A7H).

(Let us notice that the substitution we have used is similar to that one which
is usually used to obtain the d’Alemebert’s solution of the wave equation in two

dimensioris.) The first equation implies g—f = 0, and thus J(s, y,z) = (s, y) for a
function 1. Substituting this relation into the second equation of the transformed
system, we get
65 1 =
— = _(y — 2)A%.
55 — W~ AW
The solution of this equation is i(s, y) = e%Az(y_z)SE(y) for a suitable function .
Because of the dependence of the right hand side of the last written equation on z,

we see that E does not exist unless A = 0 or 1) = 0 (More formally, one gets these

restrictions by substituting the last written formula for v into the first equation
of the transformed system.) Thus, necessarily 1) = 0 or A = 0. The case A =0 is
excluded by the assumption at the beginning of this calculation.

Summing up, we have proved that any symplectic Killing spinor field ¢ on
(R2,wp, V) is constant, i.e., for each (s,t) € R?, we have ¢(s,t) = ¢ for a function
1 € L?(R). The only symplectic Killing spinor number is zero in this case.

Remark. More generally, one can treat the case of a standard symplectic vec-
tor space (R%[st,... sl t1 ... #],wo) equipped with the standard flat Euclidean
connection V. One gets by similar lines of reasoning that any symplectic Killing
spinor for this Fedosov manifold is also constant, i.e.,

qp(slv"'vslvtlv"'vtl) :E7

for (s',...,s!),(t,...,t") € Rt and ¢ € L%(R!). But we shall see this result more
easily below when we will be studying the prolongated equation mentioned in the
Introduction.

Now, in order to make a connection of the symplectic Killing spinor equation
to some slightly more known equations, let us introduce the following operators.
The operator

D:T(M,S) - T'(M,S), ®:=-FV°

is called symplectic Dirac operator and its eigenfunctions are called symplectic
Dirac spinors. Let us notice that the symplectic Dirac operator was introduced
by Katharina Habermann in 1992. See, e.g., Habermann [5].
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The operator
T:D(M,S) = T(M,EMN), T:= VS —pltvs

is called (the first) symplectic twistor operator.
In the next theorem, the symplectic Killing spinor fields are related to the
symplectic Dirac spinors and to the kernel of the symplectic twistor operator.

Theorem 6. Let (M,w,V) be a Fedosov manifold admitting a metaplectic struc-
ture. A symplectic spinor field ¢ € T'(M,S) is a symplectic Killing spinor field if
and only if ¢ is a symplectic Dirac spinor lying in the kernel of the symplectic
twistor operator.

Proor: We prove this equivalence in two steps.

(1) Suppose ¢ € I'(M,S) is a symplectic Killing spinor to a symplectic Killing
number A € C. Thus it satisfies the equation V¢ = A\F*¢. Applying the
operator —F~ to the both sides of the preceding equation and using the
definition of the symplectic Dirac operator, we get D¢ = —AF~FT¢ =
M—H + FTF7)¢p = —\H¢ = —\(—1lg) = 1\l¢ due to the definition of
H and Lemma 3(2)(a) and (3). Thus ¢ is a symplectic Dirac spinor.

Now, we compute Té. Using the definition of T, we get Tp = (V5 —
POV o = AN(Ft¢—pPFt¢) = A\p'' F+¢ = 0, because F'+¢ € T'(M, £19)
due to Lemma 3(2)(a).

(2) Conversely, let ¢ € I'(M, £9°) be in the kernel of the symplectic twistor op-
erator and also a symplectic Dirac spinor. Thus, we have VS¢—pl0VS¢p =
0 and D¢ = —F~V®p = pu¢ for a complex number p € C. From
the first equation, we deduce that ¢ := V3¢ € TI'(M,E'). Because
F|J1:(M,500) is surjective onto I'(M, ) (see Lemma 3(2)(b)), there ex-
ists a ¢’ € T'(M,E") such that ¢ = F+¢/. Let us compute FTF~ 1 =
FYF-Ft)/ = Ft(H — FTF~ )¢ = F*(—uy') = —ilt, where we have
used the defining equation for H and Lemma 3(2)(a) and (3). Thus we
get

(1) —FYF ) =aly).

From the symplectic Dirac equation, we get u¢ = —F 1. Thus —EFTF =
= puF*¢. Using the equation (1), we obtain ) = uF*¢, ie., V¢ =
—Z%FJFQS. Thus, ¢ is a symplectic Killing spinor to the symplectic Killing
spinor number —upu/l. O

In the next theorem, we derive the mentioned prolongation of the symplectic
Killing spinor equation. It is a zeroth order equation. More precisely, it is an
equation for the sections of the kernel of an endomorphism of the symplectic
spinor bundle S — M. A similar computation is well known from the Riemannian
spin geometry. See, e.g., Friedrich [2].
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Theorem 7. Let (M? w,V) be a Fedosov manifold admitting a metaplectic
structure and a symplectic Killing spinor field ¢ € T'(M,S) to the symplectic
Killing spinor number . Then

ocle;.ej.p =21\

PROOF: Let ¢ € I'(M?,8) be a symplectic spinor Killing field, i.e., V3¢ = A\ X.¢
for a complex number A and any vector field X € X(M). For vector fields X,Y €
X(M), we may write

R¥(X,Y)p = (VxVy—VyVx—Vixy)o
= AVx(Y.9) = AVy(X.9) — A[X,Y].¢
= AVxY).0+A.(Vx¢) = A(VyX).¢ — AX.Vy.¢ — A[X,Y].¢
= M(X,Y).¢p+N(Y.X. - Y.X)¢
= M(X,Y).¢+12°w(X,Y)p = 1\ w(X,Y)o,

where we have used the symplectic Killing spinor equation and the compatibility
of the symplectic spinor covariant derivative and the symplectic Clifford multipli-
cation (Lemma 4).

Thus R%¢ = 1A\%w ® ¢. Because of Lemma 3(2)(c), we know that the right
hand side is in T'(M, £2°). Thus also R°¢ = p?*° R°¢. Using Lemma 5, we get
%w@aijei.ej.(b =1 2w®¢. Thus aijei.ej.(;b = 2I\2¢ and the theorem follows. O

Remark. Let us recall that in the Riemannian spin geometry (positive definite
case), the existence of a non-zero Killing spinor implies that the manifold is Ein-
stein. Further, let us notice that if the symplectic Ricci curvature tensor o is
(globally) diagonalizable by a symplectomorphism, the prolongated equation has
the shape of the equation for eigenvalues of the Hamiltonian of an elliptic [ di-
mensional harmonic oscillator with possibly varying axes lengths. An example
of a diagonalizable symplectic Ricci curvature will be treated in Example 3. Al-
though, in this case the axis will be constant and the harmonic oscillator will be
spherical.

Now, we derive a simple consequence of the preceding theorem in the case of
Fedosov manifolds of Weyl type, i.e., o = 0.

Corollary 8. Let (M,w,V) be a Fedosov manifold of Weyl type. Let (M,w)
admit a metaplectic structure and a symplectic Killing spinor ¢ field to the sym-
plectic Killing spinor number X\. Then the symplectic Killing spinor number A = (
and ¢ is locally covariantly constant.

PRrROOF: Follows immediately from the preceding theorem and the symplectic
Killing spinor equation. (|

Example 2. Let us go back to the case of (R?,wp, V) from Remark below Ex-
ample 1. Corollary 8 implies that any symplectic Killing spinor field for this
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structure is covariantly constant, i.e., in fact constant in this case, and any sym-
plectic Killing number is zero. In this case, we see that the prolongated equation
from Theorem 7 makes it possible to compute the symplectic Killing spinor fields
without any big effort, compared to the calculations in Example 1 where the
2-plane was treated.

In the next example, we compute the symplectic Killing spinor fields on S?
equipped with the standard symplectic structure and the Riemannian connection
of the round metric. This is an example of a Fedosov manifold (specified more
carefully below) for which one cannot use Corollary 8, because it is not of Weyl
type. But still, one can use Theorem 7.

Example 3. Consider the round sphere (S2,72(df? + sin® d¢?)) of radius r >
0, § being the longitude a ¢ the latitude. Then w := r2sinfdf A d¢ is the
volume form of the round sphere. Because w is also a symplectic form, (S2,w)
is a symplectic manifold. Let us consider the Riemannian connection V of the
round sphere. Then V preserves the symplectic volume form w being a metric
connection of the round sphere. Because V is torsion-free, we see that (52, w, V) is
a Fedosov manifold. Now, we will work in a coordinate patch without mentioning
it explicitly. Let us set e; := %% and e := ﬁa%' Clearly, {e1,es} is a local
adapted symplectic frame and it is a local orthogonal frame as well. With respect
to this basis, the Ricci form o of V takes the form

[07)i =12 = (%T 197") '

Let us consider S? as the complex projective space CP'. It is easy to see that
the (unique) complex structure on CP' is compatible with the volume form. The
first Chern class of the tangent bundle to CP' is known to be even. Thus, the
symplectic manifold (5%, w) admits a metaplectic structure and we may consider a
symplectic Killing spinor field ¢ € I'(S2%,S) corresponding to a symplectic Killing
spinor number \. Because the first homology group of the sphere S? is zero, the
metaplectic structure is unique and thus the trivial one. Because of the triviality of
the associated symplectic spinor bundle S — S2, we may write ¢(m) = (m, f(m))
where f(m) € L?(R) for each m € S?. Using Theorem 7 and the prescription for
the Ricci form, we get that oe;.e;.[f(m)] = LH[f(m)] = 2A%f(m), where H =
88—:2 — 22 is the quantum Hamiltonian of the one dimensional harmonic oscillator.
The solutions of the Sturm-Liouville type equation H[f(m)] = 2rA?f(m), m € S?,

are well known. The eigenfunctions of H are the Hermite functions f;(m)(z) =
hy(z) := emz/zdd—;(e_ﬁ) for m € S? and z € R and the corresponding eigenvalues
are — (21 +1), I € Ng. Thus 2r\2 = —(2[ + 1) and consequently

\ = 4y 2l+1.
2r
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Using the fact that {e1, e2} is a local orthonormal frame and V is metric and
torsion-free, we easily get

Velel =0 Veleg =0

cot @ cot 0
ve2€1 = 762 Ve2eg = —

P €1.

From the definition of differentiability of functions with values in a Hilbert
space, we see easily as a consequence of the preceding computations that any
symplectic Killing spinor field is necessarily of the form ¢(m) = (m, c(m) fi(m))
for a smooth function ¢ € C>(S?,C). Substituting this Ansatz into the symplectic
Killing spinor equation, we get for each vector field X € X(S?) the equation

Vx(efi) = (Xe)fi + cVx fi = Ae(X.f).

Due to Lemma 4, we have for a local adapted symplectic frame s : U C §% —
P =Sp(2,R) x S2,

Vxf =[5 X(fi)s] — %[eg.(vxel). —e1.(Vxea)lfr.

(See the paragraph above Lemma 4 for an explanation of the notation used in
this formula.)

Because m + (m, fi(m)) is constant as a section of the trivial bundle S — S2,
the first summand of the preceding expression vanishes. Thus for X = e, we get

(exc) fi + %[62~(Ve161)~ —e1.(Ve,e2).]fi = Acler. fi).
Using the knowledge of the values of V., e;, for j = 1,2, computed above, the
second summand at the left hand side of the last written equation vanishes and
thus, we get
%%ﬁ = \ax fi.

This equation implies ¢(6, ¢) = ¥(x, $)e"** for x such that hi(x) # 0 and a
suitable function ¢. (The set of such z € R, such that h;(z) # 0 is the complement
in R of a finite set.) Because r > 0 is given and A is certainly non-zero (see the
prescription for A above), the only possibility for ¢ to be independent of z is
1 = 0. Therefore ¢ = 0 and consequently ¢ = 0. On the other hand, ¢ = 0 (the
zero section) is clearly a solution, but according to the definition not a symplectic
Killing spinor. Thus, there is no symplectic Killing spinor field on the round
sphere.

Remark. In the future, one can study holonomy restrictions implied by the ex-
istence of a symplectic Killing spinor. One can also try to extend the results to
general symplectic connections, i.e., to drop the condition on the torsion-freeness
or study also the symplectic Killing fields on Ricci type Fedosov manifolds admit-
ting a metaplectic structure in more detail.
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Abstract. Let S denote the oscillatory module over the complex symplectic
Lie algebra g = sp(V®,w). Consider the g-module W = A*(V*)¢ ®S of forms
with values in the oscillatory module. We prove that the associative commutant
algebra Endg(W) is generated by the image of a certain representation of the
ortho-symplectic Lie super algebra osp(1]2) and two distinguished projection
operators. The space W is then decomposed with respect to the joint action of
g and osp(1]2). This establishes a Howe type duality for sp(VC,w) acting on
w.
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1. Introduction

Let (V,w) be a real finite dimensional symplectic vector space. We denote the sym-
plectic group Sp(V,w) by G, and its connected double cover, i.e., the metaplectic
group Mp(V,w), by G. Further, let K denote the maximal compact subgroup
of G and g the complexification of the Lie algebra of G. The complexification of
the Lie algebra of the metaplectic group G is isomorphic to g and thus, we may
denote it by g as well.

There exists a distinguished faithful unitary representation of the metaplec-
tic group G — the so called Segal-Shale-Weil or symplectic spinor representation.
(Let us note that also the names oscillatory or metaplectic representation are used
in the literature.) For a justification of the latter name, see Kostant [8]. Now,
let us consider the underlying Harish-Chandra (g, K)-module of the Segal-Shale-
Weil representation. When we think of this (g, K)-module as equipped with its
g-module structure only, we denote it by S and call it the oscillatory module. Tt
is known that S splits into two irreducible g-modules, S ~ St & S~.
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Further, let us set W = A*(V*)® ® S and denote the appropriate tensor
product representation of g on W by p. In this paper, we first decompose the
module W into irreducible g-modules. Next, we shall find generators of the
commutant algebra

Endy(W) = {T € End(W) | Tp(X) = p(X)T for all X € g}

of the symplectic Lie algebra g acting on W. Let p* : S — S* be the unique
g-equivariant projections. These projections induce projection operators acting
on the whole space W in an obvious way. We denote them by p* as well. Further,
we shall introduce a representation o : 0sp(1]2) — End(W) of the complex ortho-
symplectic super Lie algebra osp(1|2) on the space W and prove that the image
of o together with p™ and p~ generate the commutant Endy(W). At the end, we
decompose the (g x 0sp(1]2))-module W into a direct sum
Djol(E;; ® E;) ® &),

where IE;; and E;. are certain irreducible infinite dimensional highest weight g-
modules and G’ is a finite dimensional irreducible osp(1[2)-module. This estab-
lishes a Howe type duality for g acting on W. One may call this duality of type
2: 1 because each irreducible osp(1|2)-module G’ from the decomposition above
is paired to two irreducible g-modules, namely to IEZ;; and E .

The basic tool used to obtain these results was the decomposition of the
g-module W into irreducible summands. This decomposition was achieved using
a theorem of Britten, Hooper, Lemire [1] on a decomposition of the tensor product
of an irreducible finite dimensional sp(V®, w)-module and the oscillatory module
S. Let us remark that the so called Howe dualities are generalizations of classical
results of Schur and Weyl. Whereas Schur studied the case of GL(V) acting on the
k-fold product ®*V, Weyl (see, e.g., Weyl [15]) considered the SO(V)-module
®"V, k € N. See Howe [5] for a historical treatment on the cases studied by
Schur and Weyl and for their generalizations. In Howe [5], one can find several
applications of these dualities and also a classical version of our 2:1 or say, quantum
duality. Let us remark that a similar result to the one presented here was obtained
by Slupinski in [13]. In his paper, Slupinski considers the case of spinor valued
forms as a module over the appropriate spin group. Roughly speaking, he proves
that s[(2,C) is the Howe dual partner to the spin group. One may rephrase this
fact by saying that the situation studied in [13] is super symmetric to the one we
are interested in.

The motivation for our study of the Howe duality for forms with values in
the oscillatory module comes from differential geometry and mathematical physics.
See, e.g., Habermann, Habermann [4] or Krysl [10] for applications and examples
in differential geometry. For applications of symplectic spinors in mathematical
physics, we refer an interested reader to Shale [12], who used them to quantize
Klein-Gordon fields, and to Kostant [8] for a use in geometric quantization of
Hamiltonian mechanics.

In the second section of the paper, we introduce basic notation, summarize
known facts on the oscillatory module and derive the decomposition of W =
A°(V)€ ® S into irreducible g-modules (Theorem 2.3). The generators of the
commutant Endg(W) are given in the third section (Theorem 3.7). In the fourth
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section, the representation o : 0sp(1|2) — End(W) is introduced and the fact that
it is a representation is proved (Theorem 4.1). In this section, the space W is also
decomposed into submodules with respect to the joint action of g and o0sp(1]2),
L.e., the Howe duality is proved (Theorem 4.5).

2. Decomposition of W = A*(V¥)C® S

Let us suppose that g is a complex simple Lie algebra and let us choose a Cartan
subalgebra b of g and a set of positive roots ®*. We denote the complex irreducible
highest weight g-module with a highest weight 4 € h* by L(u). If 1 happens to
be dominant and integral with respect to the choice (h, ®*), we denote the module
L(p) by F(u), emphasizing the fact that the module L(y) is finite dimensional.
For a dominant integral weight 1 with respect to (h, ®*), we denote the set of
weights of the irreducible representation F'(u) by IT(u).

Now, let us restrict our attention to the studied symplectic case. Consider
a 2l dimensional real symplectic vector space (V,w). Let V=L @ L’ be a direct
sum decomposition of the vector space V into two Lagrangian subspaces L and
L. Further, let {e;}?L, be an adapted symplectic basis of (V,w), i.e., {e;}%, is a
symplectic basis of (V,w) and {e;}!_; CL and {e;}%,,, C L. Because the notion
of a symplectic basis is not unique, let us fix it now. We call a basis {e}2, of V
a symplectic basis of (V,w) if for w;; = w(e;, ;), we have

wi; =1 ifanonlyif 1 <! and j =141,
w;j=—1ifandonlyif i > and j=17—1 and
wi; = 0 in other cases.

The basis of V* dual to the basis {e;}?L, will be denoted by {€'}2,.

Let us denote the symplectic group Sp(V,w) by G and the metaplectic
group by G. We shall denote the complex symplectic Lie algebra, i.e., the Lie
algebra sp(VC w), by g. The complexified symplectic form on V€ will still be
denoted by w. Because the complexification of the Lie algebra of G is isomorphic
to g, we will identify them and denote both of them by g. If a Cartan subalgebra
h C g and a set of positive roots ®* are chosen, the set of fundamental weights
{w:}\_, is uniquely determined. Now, we shall consider a basis {e:}t_, of b*
defined by the equations w; = 23':1 & T= 15 wus gl FOT = 2221 1:€;, we shall
often denote L(u) by L(u1,..., ), or even by L{uy...u;) only.

The Segal-Shale-Weil representation is a faithful unitary representation of
the metaplectic group G on the complex vector space L%(IL) of complex valued
square Lebesgue integrable functions defined on L. Because we would like to
omit problems caused by dealing with unbounded operators, we shall consider the
underlying Harish-Chandra (g, K)-module of the Segal-Shale-Weil representation.
When we consider this (g, K')-module with its g-module structure only, we denote
it by S and call it the oscillatory module. The appropriate representation will be
denoted by L. In particular, we have the Lie algebra homomorphism

L : g — End(S) at our disposal.



1052 KRrvysL

It is known that S splits into two irreducible g-modules, S~ St @ S.

Further, one can define a representation of g on the space C[z1,...,2!] of
polynomials such that C[z},...,2!] ~ S as g-modules. From now on, we shall
consider S in this polynomial realization. Let us notice that in this realization, ST
is isomorphic to the space of even polynomials in C[z%,..., 2] and S~ to the space
of the odd ones. Moreover, one can prove that St ~ L(A°) and S~ ~ L(A\'), where
A= —lw; and X' = w;_; — 3w;. For more information on the Segal-Shale-Weil
representation, see Weil [14] and Kashiwara, Vergne [7]. For information on the
oscillatory module, see Britten, Hooper, Lemire [1].

In order to derive the studied type of Howe duality, we shall need the
symplectic Clifford multiplication V& x S — S which enables us to multiply
elements from the oscillatory module by elements from VT. It is given by the
following prescription

(€;.8)(z) = gg—%(a:), (ei41-8)(x) = w's(z),i=1,...,1, (1)

where z = Zﬁzl zle; € L,s € S, and it is extended linearly to the whole space
VE. The symplectic Clifford multiplication is basically the canonical quantization
prescription.

Now, for ¢ = 0,1 and a dominant integral weight \ = Z;=1 Ajw; € b, let
us introduce a set T§ C h*. A weight 1 € b* is an element of 7} if and only if
the numbers d;, j =1,...,[, defined by A — p = Zé’:l dje; satisfy the following
conditions

1) dj+ 65601, €Np for j=1,...,1,

2) 0<d; <Ajforj=1,...,1-1, 0<di+6,, <2\ +1 and

3) Z;'=1 d; is even.

In what follows, we will need a result on the decomposition of the tensor
product of a finite dimensional g-module with one of the modules L()?), i =0, 1,
into irreducible g-modules. This result was published in Britten, Hooper, Lemire

[1].
Theorem 2.1.  Fori=0,1 and a dominant integral weight p, we have

F)®L(XN) ~ @ LN +x).

KRETENTI (1)

Proof.  See Britten, Hooper, Lemire [1]. |

Let us remark that there is a misprint in the original article of Britten,
Hooper, Lemire [1].
For convenience, let us introduce a function sgn : {+, —} — {0,1} given by
the prescription sgn(+) = 0 and sgn(—) = 1 and the g-modules
E;s = L(%, . 7%, _%, . ,_%’ ] 4 %(_1)i+7+8gn(i))’

N—_——r
j 1—j—1
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where 1 =0,...,[—-1, j=0,...,2and i=1, j=0,...,l—1. For i = j = [, we set
E} =L(%---—) and JE[I —L(—--'l——) For ¢ = l+1 ,2land j=0,...,2l—1,
we assume E;; = E(im_l)] In order to write the results as short as possible, for
1=0,...,1, let us set m; = ¢ and for i =1+ 1,...,2l, m; = 2] — i. With these

conventions, we define
=) i=0:0:20 =0, cn:, W0}

and consider Ej; =0 for (i,j) € Z*\ Z. Finally, we set E;; = E}, & E;;. Now, let
us derive the next

Lemma 2.2. Forr=1,...,1, we have

1<ii<...<i, <I}.

M(w,) 2 {Z +e's

s=1.

Proof. It is not hard to see (see, e.g., Corollary 5.1.11. pp. 237 and Theorem
5.1.8. (3) pp. 236 in Goodman, Wallach [3]) that for r = 1,...,l, the g-module
F(w,) is isomorphic to the C-linear span of isotropic r-vectors in V¢ (i.e., of
the multi-vectors w = uy A ... A u,, where w(u;,u;) =0 for 4,5 =1,...,7), on
which g acts via the linear extension of the dual to the defining representation of
g € End(V®) on VC. Second, it is easy to realize that one can choose the Cartan
subalgebra b of g and the set of positive roots ®* in a way that the following is
true. For i = 1,...,[, the basis vector e; € V€ is a weight vector of weight ¢; and
the vector e;y; is a weight vector of weight —e¢;, both for the defining representation
of g on VC. Using this fact, the result follows. ]

Now, we define the module W, which we have mentioned in the Introduc-
tion. As a vector space

W= AV)¢w®s.
The representation p: g — End(W) of g on W is defined by the prescription
p(X)a®s)=Xa® L(X)s,

where X € g, a € A(V)), s€S and i =0,...,2l. In the prescription above,
the symbol X refers to the action of X € g C End(V®) on A'(V*)C, ie., to
the representation dual to the defining one and extended to the exterior i-forms
linearly.

Now, we can state the decomposition theorem. Its proof is based on a direct
use of Theorem 2.1 and Lemma 2.2.

Theorem 2.3. For i=0,...,2l, the following decomposition into irreducible

g-modules
i

AV @St ~ @]Efj holds.
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Proof. Using Theorem 5.1.8. pp. 236 and Corollary 5.1.9. pp. 237 in
Goodman, Wallach [3], we get for i = 2k, k € N,

i

AVIE @St = (F(wo) @ F(ws) @ ... ® F(w;)) ® S, (2)

where @y = 0 and F(wq) ~ C denotes the trivial g-module.
Using the cited theorems in Goodman, Wallach [3] again, we obtain for
1=2k+1, k€ Ny,

i

AV @S = (F(m) @ F(ws) @ ... & Fw:) @ S*. 3)
We shall consider the mentioned tensor products for i = 0,...,! only,
because the result for i = [+ 1,...,2l, follows from the one for ¢ = 0,...,[

immediately due to the g-isomorphism A*(V*)€ ® S* ~ A?7/(V*)C @ S* and the
definition of IE;']: - Let us consider the tensor products by St and S~ separately.

1) First, let us consider the tensor product A'(V*)€ ® S*. Using Lemma 2.2
and Theorem 2.1, we easily compute that for j =1,...,1, Tg]_ ={eg+...+
6j,€1 + ...+ Ej—l — El} Q H(w]) and thllS,

where the relation w; = Zgzl €; was used. Adding up these terms according
to (2) and (3), we obtain the statement of the theorem for both of the cases
1 is odd and i is even.

2) Now, let us consider the tensor product A\*(V*)€®S~. Using Lemma 2.2, we
easily compute that for j = 1,...,] — 1, we have T;,j ={a+...+e,e+
-t +€l} - H(wj) and T?;l = {61 +...te, a4 .. F€gg —El} - H(wl)
Therefore using Theorem 2.1, we get

for j =1,...,01 = 1. For j = [, we obtain F(w;) ® S~ =L;...i-He

L(% e % — g) using Theorem 2.1 again. Adding up these terms according to

(2) and (3), we obtain the statement of the theorem for both cases i is odd
and ¢ is even. ]

From now on, we shall consider ]Ei C A (V@S (i,7) € =

Remark 2.4. Due to Theorem 2.3 and the definitions of EE. we know that for

; i
i=0,...,2l, the g-module A\"(V*)C®S is multiplicity-free.
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3. The commutant algebra Endg(W)

We shall prove that the associative commutant algebra Endy(W) is generated by
the below introduced elements - a "raising” operator, a ”lowering” operator and
two projections.

Fori=0,...,2l and a ® s = a® (s4,5_) € A(V)C® (St ®S™), we set

i+1 2l
F+ . /\(V* 85— A(V)°®S, Ftfla®s) = 2Zean®ej.s.
j=1
i i1 2
F~ /\(V*) ®S—%/\V* ®S, F la®s) = Zw]kcea@)eks and
7.k=1
P AV)E @S 5 A(VIE RS, prlags) = a®s,
and extend them linearly to the whole space W. Next, we consider the operator
H defined by the formula

H=2(F*F~+ FF").
The values of the operator H are determined in the next
Lemma 3.1.  Let (V,w) be a symplectic vector space of dimension 2. Then for
1=0,...,2l], we have
H) psvmyegs = 30— DI piyycqs:
Proof.  The proof is straightforward, see Krysl [9]. O ]

Lemma 3.2.  The maps F*,p* and H are g-equivariant with respect to the
representation p of g on W.

Proof. The operators p* are clearly g-equivariant. The g-equivariance of F*
and H can be checked straightforwardly. See Krysl [9] for a proof. [

Definition 3.3.  Let us denote the associative algebra generated by F* and p*
by €.
Let us recall the definition of the commutant algebra
Endg(W) = {T € End(W) | Tp(X) = p(X)T for all X € g}.

Due to the previous lemma, we already know that € C Endy(W). Now, we shall
prove that € exhausts the whole commutant Endg(W). For convenience, let us set

=E\{(G20-4)]i=1,...,20} and Z;, =E\{(5,9)|i=0,...,1}.
Lemma 3.4.  For each (3,j) € E, we have
F* E; S B, if (4,7) € E- and

o
;Efj E; S EL,, if (3,7) €2
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Proof.  First, for (i,5) € Z, we prove that

1 Id if i+ 7 is odd
o 1 2 ) [Ez5 J
F F’IEij { % ( — l) Id“E if ¢ + j is even. (4)

Let us fix an integer j € {0,...,1} and proceed by the induction on the form
degree 1.

1 For i =j and ¢ € Ey, let us compute F"F*¢ = (JH — FYF7 )¢ =
11 — )¢ — FTF~¢ due to the definition of H and Lemma 3.1. We have
F I5; = 0 because I~ is g-equivariant (Lemma 3.2), lowers the form degree

by one and there is no summand isomorphic to Ej or E; in A“H(V*)C®$
(see Theorem 2.3). Summing up, we have F~F +¢ (2 — )¢ according to

(4).

II. Now, let us suppose the statement is true for (i,j) € Z, i +j odd. For
(z'+1 Jj) € E and ¢ € E;yy;, let us compute F~Ft¢ = 3Ho— F*F~¢ =
1(i+1-1)¢— F*F~¢ due to the definition of H and Lemma 3.1. Usmg

the induction hypothesis, we have F~ Fg T = 4(1““3)Idu;” Thus, Fjf is
injective. Because F'* is g-equivariant, ra1ses the form degree by one and
there is no other summand in A (V*)®® S isomorphic to E;; than E,;,,,
we see that Fig : E;; — E;.; ;. Because of the proved injectivity, F]E is

actually an lsomorphlsrn Thus, there exists d) € E;; such that ¢ = F +q5
We may write F*F~¢ = F*F~(F*¢) = F*(F-F*¢) = (Z=d)F+g =
i(”’ 1+=7)4 by the induction hypot11e51s Substituting this relatlon into the
already derned F Ft¢ = 1(i+1—1)¢p — FTF ¢, we get F~Ft¢p =

i+1-0D¢ 1““’)@ = —ﬂﬂ )¢ according to the formula (4).
3

Now let us Suppose the statement is true for (¢,j) € =, i+ j even. For
(2+ 1,j) € E and ¢ € By, we compute F~Ft¢ = LH¢ — F*F~¢ =

1(i+1—1)¢p — FTF~¢ due to the definition of H and Lemma 3.1. Similarly
to the case i+ j is odd, we get the existence of ¢ € E;; such that ¢ = F+¢).
Using the 1ndu(,t10n hypothesis, we may write F*F~¢ = F*F~(F +5) =
FHF-F*$) = 1(42 —)Ft¢ = =L — 1)g. Substltutmg this expression
into the computatlon above, we get F"FT¢ = 1(i+1—1)¢ — (“’7 Do =
1( 5(1;—1)1)@75 Thus, the formula follows.

Using the derived formula (4), we see that F' _FIEw is injective if and only
ifi+j# 2 and j #i+1, ie., (i,5) € E_, the second condition being empty.
Especially, F'* is injective for (¢,5) € =_. Thus, F* is an isomorphism on E;;,
(4,4) € E-. From this, we may further conclude that F'~ is injective on the image
of F'¥, i.e., it is an isomorphism on E;; for (4,7) € Z,. ]

Remark 3.5. It is easy to see that F~ is zero when restricted to El, i =

.,1. Namely, we know that F~ lowers the form degree by one, it is g-
equivariant and there is no submodule of the module A" }(V*)€ ® S isomorphic
to Ef or to E; (see Theorem 2.3). A similar discussion can be made for F+

restricted to B, ¢ =1,...,2l
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For (4,7) € Z, let us denote the unique g-equivariant projections from the
- l.e.
g )

Si: NV est 5 EE ¢ A(V) e st.

Lemma 3.6.  For each (i,j) € Z, the projections Si:;? ec.

Proof. For i =0,...,2l, let us define the projection operators

SEAN(VIERST - N'(V)Ce st

by the formula

21
2H —j+1
+ . -+
2 (H i—j >p'

J=0,j71

Using Lemma 3.1, we see that the image of each Sf is the prescribed space and
the normalization is correct, i.e., that the formula defines a projection. Recall that
due to its definition, H can be expressed using the operators F'* and F~ only
and thus, for i =0,...,2l, SijE € €. Further, let us fix an integer ¢ € {0,...,2[}.
We prove that for each j, such that (i, 7) € Z, the projection Sf; € €. We proceed
by induction on j.

L

II.

For j = 0, we define Sjj = (F7)*(F~)" Using the fact that applying F~ (or
F*) lowers (or raises) the form degree by 1, we see that S% : A*(V*)C@S$* —
EZ. Using the Schur lemma, for complex irreducible highest weight modules
(see Dixmier [2]), we conclude that there exists a complex number \;y € C
such that SZ%UEio = )\iOIdlE%. Due to Lemma 3.4, we know that A\ # 0. Thus,

St = XI,HSZ) o SF. Because the operators F*, F~,p* and p~ were used only,
we get Sj5 € €.

Let us suppose that for k£ = 0,..., j, the operators Si can be written as lin-
ear combinations of compositions of the operators F'* and p*. Now, we shall

use the operators Siio, ey Si? in order to define the operator Sf:] 41+ Let us

take an element € € A\'(V*)C®S* and define ¢ := S =E-37_ Sk e
i i1 Bz Now, form an element ¢’ := S}/, ¢ := (F*+)==1(F~)*7~1(. In
the same way as in item I., we conclude that (' € IE.liJ +1- Let us define

I . 7 ? 5 A , :t
Sij+1 = Sij41 0 Si - Using the Schur lemma for Si.j+1[Ef?j+1 N P

Ef] +1» we conclude that there is a complex number A;;;; € C such that

;:j+l[1Ef,-+1 = Ajjnldgs . Due to Lemma 3.4, we know that A ;41 # 0.

Thus, Sf] 1 = xﬁSz”; +1 © S, Going through the construction back, we
see that for constructing the operator S;—z +1» only the operators F'* and p*
were used. m

Now we prove that the algebra € exhausts the whole commutant Endg(W).

Theorem 3.7. We have

Endy(W) = €.
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Proof.  Due to Lemma 3.2, we know that € C Endy(W). We prove the opposite
inclusion. For T' € Endg(W), we may write T' = @, (. e=(Si +5; ) T(S+55)-
For fixed (4,7) and (r,s), let us consider the operator A = SFTS, : W — E;.
Due to Theorem 2.3, the operator is non-zero ony if j = s and there isa k € Z such
that ¢ —r = 2k + 1. Suppose k£ > 0. Due to the Schur lemma, A does not change
if we replace the operator T, occurring in the middle of the expression for A, by a
complex multiple of (F*)%+1 (Lemma 3.4). Thus, we have A = BSF LS
for a complex number ¢ € C. Because S{;, S7; € € (Lemma 3.6), we see that
A € €. Similarly, one can proceed in the case k < 0 and also when treating the
remaining operators S;;T'S, S;TSy; and S;;TSH,. o

T8

4. Howe duality for sp(V®, w) acting on W

We start this section by introducing a representation of the complex ortho-symplectic
super Lie algebra g’ = 0sp(1]2) on the vector space W. The super Lie bracket of
two Zy-homogeneous elements u,v € g’ = g @ g} will be denoted by [u, ] if and
only if at least one of them is an element of the even part gf). In the other cases,
we will denote it by {u,v}. Further, there exists a basis {h,e*,e™, f*, f~} of g’
such that the set {e*,h,e”} spans the even part gj, the set {f*, f~} spans the
odd part g} and the only non-zero relations among the basis elements are

[h,ef] = te* [t e =2h (5)
b, f5 = x£37% {5} =14n (6)
[, fF1=~f*  {f* [*}=+5e* (7)

For i = 0,...,2l, let us introduce operators E* : A"(V¥)C® S — A2V )€ ® S
by the prescription
E* = 12{F* F*},

where {,} denotes the anti-commutator in the associative algebra End(W).
The representation o : 0sp(1|2) - End(W) is defined by

o(e*) = E%, o(f*)=F* ando(h) = H
and it is extended linearly to the whole algebra g’ = 0sp(1|2). Let us set Wy =
(EBEZQ A*(V)C) @S and W, = (@i;é #H(Y*)C)®S. The vector space End(W)

will be considered with the super Lie algebra structure inherited from the super
vector space structure W = Wy & W,. We write End(W) = Endo(W) @ End, (W).

Theorem 4.1.  The mapping
o : osp(1]2) — End(W)
15 a super Lie algebra representation.

Proof. First, it is easy to see that o(g;) C End;(W), i = 0,1. Second, we
shall check that the operators o(e*),o(h) and o(f*) satisfy the appropriate
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commutation and anti-commutation relations — namely the ones written in the
rows (5), (6), and (7) above. For ¢ =0,...,2l and a®s € A\'(V)* ®S, we have

H, Ffl(a®s) = HF (a®s)—-F'H(a®s)

= H(—;— Y dna®e.s) — Frili—a®s)

j=1

= [%%(H—l—l)ej/\a®ej.s—%%(z’—l)ej/\a@)ej.s}
=1

= %Zej/\a®ej.s= iFt(a®s).

Jj=1

Thus, we got the (+)-version of the first equation written in the row (6) as
required. Similarly, one can prove the (—)-version of the first equation written
in that row. The second relation written in the row (7) and the second relation in
the row (6) follow from the definitions of E* and H, respectively. The remaining
relations, i.e., the ones in the row (5) and the first relation in the row (7), can
be proved just using the already derived ones and expanding the commutator and
anti-commutator of compositions of endomorphisms. We shall show explicitly,
how to prove the first relation in the row (7) only. Using the definitions of
the considered mappings only, we may write [E*,F~] = [2{F* F*}, F7] =
A[FPFY F ) = A(F*FYF~ — F FtFt) =4[F*(-F Ft + lH) - F-F+F*] =
AF FtF~ —3HF* 4+ 1F*H — F"F*F*) = 2[F* H| = —F*. ]

Summing up, we have the following

Corollary 4.2.  The representation o : 0sp(1]2) — End(W) maps the super Lie
algebra osp(1|2) into the commutant algebra Endy(W).

Proof. Follows from Lemma 3.2 and Theorem 4.1 immediately. ]

Now we define a family {oj};zo of finite dimensional irreducible repre-
sentations of the (complex) ortho-symplectic super Lie algebra g’ = 0sp(1]2). For
j=0,...,1, let G denote a complex vector space of dimension 2/ —2j+1, and let
us consider a basis { fi}?l:;J of GJ. The super vector space structure on G/ is defined
as follows. For j =0,...,1, we set (G/)o = Span({f;|i € {4,...,2] — j} N 2N;})
and (G7); = Span({f;|i € {j,...,20 — j} N (2Ny + 1)}). For convenience, we sup-
pose fr =0 for k € Z\ {j,...,2l — j}. We will not denote the dependence of the
basis elements on the number j explicitly. As a short hand, for cach (i,5) € Z,
we introduce the rational numbers

A(l,i,5) = tﬂﬂ(i -+ %ﬂ

16 (i+j7—-20-1).

Finally, for j = 0,...,/, let us define the mentioned representations o; : 0sp(1|2) —
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End(G’) by the formulas

oi(fI)f) = Ali+ L) i, i=7,...,20—
oi(f)fi) = fici=j,...,20—

oj(h) = 2{o;(f*),05(f7)}

o;(e*) = £2{0;(f*),0;(f*)}-

We prove the following

Lemma 4.3. For j = 0,...,1, the mapping o; : 0sp(1]2) — End(G?) is an
irreducible representation of the super Lie algebra osp(1]2).

Proof. First, we prove that for j = 0,...,[, the mapping 0; is a representation
of the super Lie algebra o0sp(1]2). It is easy to see that whereas the even part of
g’ acts by transforming the even part of G’ into itself and the odd part into itself
as well, the odd part of g’ acts by interchanging the mentioned two parts of GY.
Now we check whether the relations a the rows (5), (6) and (7) are preserved by
the mapping o;, j =0,...,l. The second relation in the row (7) and the second
relation in (6) are satisfied due to the definitions of o;(e*) and o;(h), respectively.
Let us start proving the (+)-version of the first relation written in the row (6).
For i =j,...,2l — j, we may write

[o;(R)o; (f7) = o;(fF)o;(R)]f; =
= 2(o5(f)oi(f7) + 03(f )y (F))os (f)
—a;(f ) o (F)ai (F7) + o5(F 7)o (F )] f:
= 200;(f)a;(f)os(f%) = 0;(F)os(f )i (F i
= 2[A (li+1 ])‘7 (f )0](f+)fz+l - 0](f+)0j(f+)fi—l]
= 2[ (l’l,+2]) (ll—l—lj) A(lrivj)A(l’i+1=j>]fi+1
= 24(Li+ L)AL +2,5) — A4, )] fira
= JALI+1,5)fi1 = 20;,(f ) fie
The (—)-version of this relation can be proved in a similar way. To check
the relations written in the row (5) and the first relation in the row (7), it is
sufficient to use the already derived relations and expand the commutator and
anti-commutator of compositions of endomorphisms only.
To prove the irreducibility of the representations 0, one proceeds exactly

as in the sl(2,C) case and its finite dimensional irreducible representations. See,
e.g., Samelson [11]. =

Now we prove a technical

Lemma 4.4. Foreach k €Ny and i =0,...,2l, we have
(F~)kF+ —

(_1)kF+(F-—)k s [(_1)k + lk 8 ("—l)k-H +1

16 16

(2020 —k+1)| (F)*!

when acting on. \'(V*)€ @ S.
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Proof. =~ We will suppose the operators act on the space A\'(V*)C® S without
writing it explicitly and proceed by induction on k.

I. For k =0, the lemma holds obviously.

II. a. We suppose the lemma holds for an even integer k € Ny. We have
(FOYFHFpY = FP-(FO)FFT

— PR 4+ (1) 1) ()Y

16

= (PP BH(F) 2 (F )
k

= —FH(F)etl 4 i—(z’ —k-D(F )+ é—(F“)’“
= —FT(F )4 -1%(22' =2l — (k+ 1)+ 1)(F)k,

where we have used the induction hypothesis, definition of H and
Lemma 3.1 on the values of H. The last written expression coincides
with the one in the statement of the lemma for &+ 1 is odd.

b. Now, suppose k is odd. We have
(F—)k+1F+ — F—(F—)kF+
—1)k+1
A S e
16
= FHEF ) —LH(F )+ é—(Zz’ —2l—k+1)(F)*

— P %(21’ ok — 2A)(F) 4+

(26 — 20 — k+ 1)(F7)¥]

+é(2¢ —2 —k+1)(F)r = FH(F )1 ¢ f—ﬁ(k +1)(F)*,

where we have used the same tools as in the previous item. |

Now, let us define a family { p;t }i—o of representations p;t (g — End(]Efj) of

the Lie algebra g = sp(V®,w) acting on the vector spaces IE]iJ by the prescription
pi(X)v = p(X)v,

where X € g and v € ]E]i]
Further, let us introduce a mapping Sgn : {+, -} x Ny — {+, -} given
by the prescription Sgn(+,2k) = £+ and Sgn(+,2k + 1) = F, k € Z. Now, for

(i,§) € 2, we define ¢ : Ef — Ejsjgn(i’i_j) ® G’ by the formula
;;U =(F ) e f,
v E Ei Finally, we set ¢ = @(i’j)ez(wg é ’lf;) In particular, ‘
¥ Dez(E O E;) = B;[(Ef; 9 E;;) ® G].

Now, consider W = A*(V*)C ®lS with the action p ® ¢ and the space

Dj-ol(Ej; # Bj;) @ G
with the action @ézo[(p;“ @ p; ) ® ;] - both of the algebra g x g’. In the next
theorem, the aforementioned Howe duality is stated.
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Theorem 4.5.  The following (sp(VC, w) x 0sp(1[2)) -module isomorphism
!
W~ (PI(ES, @ E;;) ® G7] holds.
=0

Proof. Due to Theorem 2.3, we know that W is isomorphic to

Dijye=(Ej O Ey)
as a g-module. Further, it is evident that 1 is a vector space isomorphism. We
prove that for each (4, 7) € E, the mapping 1,/);*; : IE;S — IEijgn(i’lﬁ")@Gj is (gxg)-
equivariant. The g-equivariance follows easily because F'~ in the definition of 1,[);;
commutes with the representation p of g (Lemma 3.2).

We shall prove the g’-equivariance. For each (4,7) € Z and v € ]Ei
may write ¢ o(f~v= Lbsz v=(F)""FvQfii = (F ) e fi. On the
other hand, we have

Uj(f‘)(lﬁ%?)) =i (f)(F )0 fi) = (F )@ fiy.
Now, we check the g -equivariance for f*. Using Lemma 4.4, we compute

( "')v — @Z)iFJ“U — (F )i+1—jp+v ® fir1=
S DE) 0] ® fur =
Alli+ L) (F Y v ® figr,

where we have used the fact that (F~)"1 =iy = O implied by v € ]EjE (see
Remark 3.5). On the other hand, we have o;(f");5v = o;(f+)((F~) v ® Foh ==
(F7)Y =9 ® A(l,i+1,7) fir1. Thus, the equivariance Wlth respect to f* is proved.
Because the operators H, E* and E~ are linear combinations of compositions of
the operators F'*' and F~, the g’'-equivariance of wf; follows. ]

Remark 4.6.  Due to the fact that the category of Harish-Chandra modules is a
full subcategory of the category of U (g)-modules and due to some basic properties
of minimal globalization functors, the results of the paper have their appropriate
minimal globalization counterparts. See Kashiwara, Schmid [6].

Acknowledgement. I am very grateful to Roger Howe for a discussion related
to type of duality studied in this paper.
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manifolds, for which the sequence above fails to be a complex, are more in the focus of Riemannian ge-
ometers. Roughly speaking, the Riemannian counterpart of the Maxwell equations does not seem to be so
widely used.

In symplectic geometry, the role of an adapted connection is not as obvious as in the Riemannian geom-
etry, foremost because of a theorem of Darboux due to which all symplectic manifolds are infinitesimally
equivalent. The torsion-free symplectic connections on a symplectic manifold (M, w) form an infinite dimen-
sional affine space. For it see, e.g., Tondeur [13] or Gelfand et al. [4]. The role of symplectic connections
seems to be rather in quantization of mechanics. See Fedosov [1] and notice that the higher oscillatory
module studied here is related to the Weyl algebra structure used in the quantization procedure named
after him.

In Fomenko and Mishchenko [3], the concept of A-Hilbert bundles and differential operators acting on
their sections was established for a unital C*-algebra A. These bundles have the so-called Hilbert A-modules
as fibers. See Solovyov and Troitsky [11] for these notions. The authors of [3] investigate finitely generated
projective A-Hilbert bundles over compact manifolds and A-elliptic operators acting between their smooth
sections. They prove that such operators have the so-called A-Fredholm property. In particular, their kernels
are finitely generated projective Hilbert A-modules. In Krysl [8], the results of [3] were used in the case of
A-elliptic complexes and conclusions for the cohomology groups of these complexes were made.

In this paper, we introduce a sequence of infinite rank vector bundles over a symplectic manifold and
differential operators acting between their sections. The symplectic manifold (M, w) is supposed to admit a
metaplectic structure, a symplectic analogue of the Riemannian spin structure. The principal group of the
metaplectic bundle is the metaplectic group Mp(2n,R). Since the articles of Shale [12] and Weil [14] were
published, a faithful unitary representation of the metaplectic group on the space H = L*(R™) was known.
This representation is the Segal-Shale—Weil representation. Besides this name, also the names metaplectic
representation or symplectic spinor representation are used. We call this representation the basic oscillatory
module in this text to stress the fact that it is used as a state space of the quantum harmonic oscillator.
Associating the basic oscillatory module to the metaplectic structure, we get the so-called basic oscillatory
bundle denoted by H. See Kostant [7] and Habermann and Habermann [5]. The sequence of bundles we
investigate is formed by the tensor product of the bundles /\k T*M of exterior k-forms on M and of
the bundle H. Let V be a symplectic connection on (M,w). The lift of the symplectic connection V to the
sections of the basic oscillatory bundle H induces the exterior covariant derivatives d,YH (I /\k T*M®H) —
T(A*™' T*M ® H). By definition, if the curvature of V is zero, the sequence dy = (dka,F(/\k T*M ®
H))ren, forms a complex. This is what we understand under the name ‘de Rham complex twisted by the
oscillatory module’. We prove that this complex is A-elliptic and use a result from [8] to get an information
on the cohomology groups of this complex when M is compact. As far as we know, this is the first non-trivial
explicitly constructed A-elliptic complex in infinite rank vector bundles.

In Section 2, we recall the notion of a Hilbert A-module, introduce the higher oscillatory module as a
module over the metaplectic group as well as over the unital C*-algebra A of continuous endomorphisms
of L?(R™). We prove that the oscillatory module is a finitely generated projective Hilbert A-module with
respect to a natural Hilbert A-product (Theorem 3). In Section 3, a definition of an A-Hilbert bundle
is given, the notion of the exterior covariant derivative in such bundles is introduced, and its symbol is
computed (Theorem 5). In Section 3.1, we give a definition of an A-elliptic complex, construct the de Rham
complex twisted by the basic oscillatory module and state a theorem on properties of the cohomology groups
of this complex (Theorem 6).

2. Higher oscillatory modules

Let A be a unital C*-algebra with involution, norm and unity denoted by *, | |4 and 1, respectively.
Let us recall a definition of the A-Hilbert module. For general C*-algebras, this notion was first considered
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by Paschke in [10]. A pre-Hilbert A-module is a left A-module U equipped with a map (,) : U xU — A
satisfying for each u,v,w € U and a € A

1) (u,v +w) = (u,v) + (u,w),

2) (a.u,v) = a(u,v),

3) (u,v) = (v,u)",

4) (u,u) = 0 and (u,u) = 0 implies u = 0.

The relation a > b holds for a,b € A if and only if a — b is hermitian and its spectrum lies in RJ. Recall
that for an element a € A, its spectrum is the set {A € C | a — Al is not invertible}. Notice that from 2)
and 3), we get (u,a.v) = (u,v)a* for any a € A and u,v € U. A pre-Hilbert A-module is called a Hilbert
A-module if it is complete with respect to the norm | |y : U — R defined by |u| = /|(u,u)|a, u € U. If
U is a pre-Hilbert A-module, we speak of (,) as of an A-product. When U is a Hilbert A-module, we call
the A-valued map (,) a Hilbert A-product. If necessary, we write (, )y instead of ().

In the category of pre-Hilbert A-modules, the set of morphisms B is formed by continuous A-equivariant
maps between the objects, i.e., B(a.u) = a.B(u) for each a € A and u € U. Continuity is meant with respect
to the (possibly non-complete) norms. Declaring the category of Hilbert A-modules to be the full subcategory
of the category of pre-Hilbert A-modules, the set of morphisms in this category is defined. Let us notice
that adjoints are considered with respect to the A-products, i.e., for a morphism B : U — V of pre-Hilbert
A-modules, its adjoint, denoted by B*, is a map B* : V' — U which satisfies (Bu,v)y = (u, B*v)y for each
uw € U and v € V. It is known that unlike for Hilbert spaces, morphisms of Hilbert A-modules do not have
adjoints in general, but if they exist, it is elementary to prove that they are unique. When we write a direct
sum of Hilbert A-modules, we suppose that the summands are mutually orthogonal with respect to (,). In
general, orthocomplements do not have the “exhaustion property”, i.e., there exist a Hilbert A-module U
and a (closed) Hilbert A-submodule V' of U such that U # V @& V=*. (See, e.g., Lance [9] for an example.)
But fortunately we have the following

Theorem 1. Let U,V be Hilbert A-modules and B : U — V be a Hilbert A-module morphism. If the adjoint
of B exists and Im B is closed, then U = Ker B @ Im B*.

Proof. See Lance [9, Theorem 3.2] for a proof. O

Now, we focus our attention to the higher oscillatory module. Let (V,w) be a real symplectic vector space
of dimension 2n and g : V x V' — R be a scalar product on V. For any £ € V*, we define the vector in
&9 € V by the formula £(v) = g(£9,v) for any v € V. Further, we denote the appropriate extension of g to
A° V* by g as well. (The orientation for (V, g) is induced by w"".) Let G’ be a realization of the metaplectic
group associated to the symplectic space (V,w), and let A be the covering homomorphism of the symplectic
group Sp(V,w) by G.

Further, we denote the exterior multiplication of exterior k-forms by a 1-form £ by exti and recall the
following lemma. For technical reasons, let us set /\_1 V*=0.

Lemma 2. For any & € V*\ {0}, the compler extf = (exti, A V)2t s exact.

Proof. Suppose £ € V*. Because EANEAa =0 for any a € /\]C V™, extg is a complex. Now, suppose { Aav =0
for a k-form «. Making the insertion of &9 into this equation, we get (tgsf)ar — & A tgsae = 0. From that
a=—(g(& €))7 ¢ A tgsar provided g(&, &) # 0, which holds if and only if £ # 0. Thus « € Im(extifl). O
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Let L be a Lagrangian subspace of (V,w). The oscillatory representation of the metaplectic group G is
a faithful unitary representation of G on the complex Hilbert space H = L? (L,giLx1)- Let us denote it by
po : G — Aut(H) and the scalar product on H by (,) g, i.e.,

(MMz/H@@@:M%&MEH

€L

Notice that the oscillatory representation splits into the irreducible G-submodules of even and odd square
integrable functions on L. See Shale [12], Weil [14] and Kashiwara and Vergne [6] for more information
on pg.

Let us consider the tensor product p of the wedge powers of the dual of the representation A : G — Aut(V)
and of the oscillatory representation po. In particular, p : G — Aut(C*®), where C* = A\°* V*®H is considered
with the canonical Hilbert space topology. Note that p is not unitary unless V = R. The G-module C* is
called the higher oscillatory module and C° = H the basic oscillatory module.

Now, we would like to investigate C'* from the A-module point of view, where A = End(H) is the unital
C*-algebra of continuous endomorphisms of H. The involution * : A — A in A is given by the adjoint of
endomorphisms, i.e., xa = a* for any a € A. For the norm in A, we take the supremum norm, i.e., for any
a € A, we set |a|a = supyy|, <1 |a(k)|m, where | | denotes the norm on H derived from the scalar product
(,)m. Let us remark, that we consider everywhere defined operators only. In particular, the star  is a well
defined (and continuous) anti-involutive map in the C*-algebra A.

The space C* introduced above is not only a G-module, but it is also an A-module with the action given
by

a(a®k)=a®alk), a®kecC®andac A

For any k € H, let k* : H — C denote the (,)g-dual element to k, i.e., k*(I) = (k, 1) z. Now, let us introduce
an A-product (,) on the higher oscillatory module C*. For any a ® k, 8 ® I € C*, we set

(a@k,fel)=gla, k1" € A

where by k®1*, we mean the element of A defined by (k®1*)(m) =1*(m)k € H for all m € H. The product
is extended to non-homogeneous elements linearly. Let us make the following observation of which we make
use later. For k,l € H, we have

(k") =lak".

Indeed, for any m,n € H, we may write ((k ® I*)*m,n)g = (m,(k @ ")n)g = (m,k(l,n)g)g =
(Ln)g(m, k) g = ((m, k) pl,n)g = ((k,m)g,n)g = (@K )m,n)g.

Notice that a Hilbert A-module U is called finitely generated and projective if there exists an integer
n € Ny and a Hilbert A-submodule V' C A™ such that U & V ~ A". Here, A™ denotes the direct sum of
n copies of the tautological A-module A. For equivalent definitions, see Solovyov and Troitsky [11].

Theorem 3. The space C* together with (,) is a finitely generated projective Hilbert A-module.

Proof. Let ey be a unit length vector in H and v an arbitrary element of H. The map b = v ® ef; has the
property b(eg) = v and |b|4 < |v|g, i.e., b is bounded and thus, continuous. Let {62}12:1 be an orthonormal
basis of A®V*. Then obviously, (e; ® eo)gl is a set of generators of C*®. Thus, C*® is finitely generated
over A.
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Now, we prove that C* is a Hilbert A-module.
1) A-linearity of (,). For any a € A, a® k,f®1 € C* and m € H, we have

(a-(a®k),B@1)(m) = (a®a(k), B &1)(m)
9(e, )(() ") (m)
= g(e, Ba(k)(l,m) m-

On the other hand, we have

[ala®k,B@1)](m) = g(a, B) [a(k ® )] (m)
= a(k)g(a, B)(,m)m.

2) Hermitian symmetry. For any a ® k, 8 ® [l € C*®, we have

(@@k Bl =gla,B)(kal*)" =gla,f) (k")

=9B.a)(l0k") = (B@lLack).

3) Positive definiteness. Let ¢ = Zil e; k! fork;e Hyi=1,...,4". Then (¢,c) = Zf;zl glei,e;) (ki ®
k;) = Z?Z 0ij(ki ® k) = Zil(/ﬁ ® kf). The spectrum of each of the summands consists of the
non-negative numbers (k;, k;)g and 0. Thus, k; ® kf > 0. Because the non-negative elements in a
C*-algebra form a cone, (¢,¢) = 0. Suppose (¢,¢) = 0 and that the summand in Zil(ki ® k) with
index 4o is non-zero. Writing —(ki, ® k) = >"ic(1,_ any\ qio} i ® k] gives a contradiction.

4) Completeness is obvious because the normed space C*® is a finite direct sum of copies of the Hilbert
A-module H = LQ(L,g|LxL).

Since as we already showed, C*® is a finitely generated Hilbert A-module, it is projective. For it, see Frank
and Larsen [2, Theorem 5.9]. O

Let us notice that if we take the compact operators on H for the C*-algebra, the basic oscillatory module
is also a finitely generated Hilbert A-module.

3. Covariant derivatives and the twisted de Rham complex

Let M be a manifold and p : £ — M be an A-Hilbert bundle, where A is a unital C*-algebra. This
means in particular, that p is a smooth Banach bundle the fibers of which are isomorphic to a fixed Hilbert
A-module U. As it is standard, we denote the space of smooth sections of £ by I'(£). For any m € M,
the fiber p~1({m}) is denoted by &,,, and the Hilbert A-product defined on it by (,),,. The morphisms
between A-Hilbert bundles p; : £ — M, i = 1,2, are supposed to be smooth bundle maps S : £1 — &2, i.e.,
p1 = p2 oS and for each point m € M, S|y, : (E1)n — (%), is a morphism of A-Hilbert modules. See
Solovyov and Troitsky [11] for more information on A-Hilbert bundles.

Let us set A = M x A — M for the trivial bundle, and introduce a map (,)4 : ['() x I'(§) — I'(A)
on I'(€) by the prescription

(s,t)a(m) = (s(m),t(m)) € A,

where s,t € I'(€) and m € M. Of course, I'(A) = C>(M, A).
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Now, let us choose a Riemannian metric g on M and denote by [voly| a choice of the volume element
associated to g. The extension of g to A*T*M with respect to the orientation induced by |voly| will still
be denoted by g. From now on, we suppose that M is compact. The space I'(£) of smooth sections of &€
carries a pre-Hilbert A-module structure. The action of A on I'(€) is defined by (a.s)(m) = a.(s(m)), a € A,
s € I'(€) and m € M, and the A-product is given by

(5, ) ey = / (s, 1) alvol, .

M

Let us notice that in the formula for the A-product (,)p(e), any absolutely convergent integral for Banach
space valued functions may be considered, e.g., the Bochner integral.

Lemma 4. If (M, g) is a compact Riemannian manifold and € is an A-Hilbert bundle over M, then &' =
TM®E and & =T*M ® £ are A-Hilbert bundles as well.

Proof. Let us set a.(v®c) =v®a.cand a.(a®c) =a®acforanya € A, c€ &y, v e T, M, a € T) M
and m € M. Further, set (4 ® ¢,v ® d)mm, = gm(u,v)(¢,d)m, € A and (@ ® ¢, d)m = gm (e, B)(c,d)y, for
¢, d € &En,u,v €Ty M and o, f € Tx M, m € M. It is straightforward to verify that these structures define
A-Hilbert bundles. O

In what follows, when given an A-Hilbert bundle £, we always consider the bundles £ and £” with the
A-Hilbert bundle structure defined in Lemma 4.

Definition 1. Let p : £ — M be an A-Hilbert bundle. We call a map V : I'(§) — I'(T*M ® &) covariant
derivative in the bundle & if for each function f € C*°(M) and sections s1, s2 € I'(E), we have

V(s1 + s2) = Vs1 + Vsa,
V(fs1) =df ® s1 + fVsi.

Any covariant derivative V in an A-Hilbert bundle £ induces the exterior covariant derivatives d) :
TN T*M ® &) — D(AN"™ T*M @ €) by the formula

dy (a®s) =da®@s+ (—1)fa A Vs

where a®s € N(A"T*M ®&) and k =0, ..., dim M. To non-homogeneous elements, the exterior covariant
derivative is extended by linearity.

Let &, F be A-Hilbert bundles over M. Suppose that 0 : I'(£) — I'(F) is an A-differential operator.
Then it is known that the symbol o : £ — F of 0 and 0 are adjointable A-Hilbert bundle and pre-Hilbert
A-module morphisms, respectively. Notice that we consider finite order operators only. Further, for each
r € Ny, one defines the Sobolev type product (, ), on I'(£) by the formula

(s,s’)r = /(s, (1+ Ag)rs')A|volg\,

M

where A\, is the (positive definite) Laplace-Beltrami operator on (M, g). The A-modules I'(€) equipped with
(,)r are pre-Hilbert A-modules. Let us denote the norm associated to (, ), by | |. Notice that (,)o = (,)r(e)-
The spaces W7 (E) are defined as completions of I'(€) with respect to the norms | |,.. Because of the shape
of the formula for (,),, we call the A-modules W7 (&) the Sobolev type completions (of the pre-Hilbert
A-module (I'(E), (,)r)). Let us notice that for any r € Ny, each differential operator d : I'(€) — I'(F)
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has a continuous extension to W7 (£) and that this extension is unique. For these notions and results, see
Solovyov and Troitsky [3].

We use the symbols £9 and exti introduced in Section 2 to denote the g-dual vector field and the exterior
multiplication of exterior differential k-forms by a differential 1-form £ also in the case of a Riemannian
manifold (M, g).

Theorem 5. Let (M, g) be a compact Riemannian manifold, p : £ — M be an A-Hilbert bundle and V be a
covariant derivative in €. Then dY is a differential operator of order one. For each & € I'(T*M), the symbol
ag of dY is given by ag = exti ®1Idg and its adjoint satisfies (ai)* = 1go ® Idg.

Proof. For any function f on M and any section v of /\k T*M ® &, we get dy (fi) — fdY = (df) A +
fdY — fdY+ = df A+ which shows that the exterior covariant derivative dY is a differential operator of
first order. For £ € I'(T*M), let us compute the symbol oi of dy . Tt is sufficient to work locally. Using the
previous formula for £ =df and ¢y = a®s € F(/\k T*M ® &), we obtain Ui (a®s) = E&Aa®s. In particular,
the symbol acts on the form part only. Because the adjoint of the wedge multiplication by a differential
form ¢ is the interior product with the dual vector field €9, we get the formula (0%)*(a ® s) = sa®s. O

Remark. From the proof of the previous theorem, we see that the symbol of dkv is an adjointable homomor-
phism between the A-Hilbert bundles (A" T*M ® ) @ T*M and \*' T*M @ €.

3.1. De Rham complex twisted by the oscillatory representation

Let pi : E¥ — M, k € Ny, be a set of A-Hilbert bundles and 2* = (04, I'(£¥))ken, be a complex of
A-differential operators. We call such a complex A-elliptic if out of the zero section of the cotangent bundle
T* M, the symbol sequence o® of 9° is an exact complex in the category of A-Hilbert bundles. Let us notice
that if the A-Hilbert bundles are vector bundles associated to a principal bundle, it is sufficient to demand
the exactness of the symbol sequence at the level of fibers only, i.e., in the category of Hilbert A-modules.

Suppose that for each k € Ng, ¥ — M is a finitely generated projective A-Hilbert bundle over a compact
manifold M, i.e., the fibers of each £* are such Hilbert A-modules. For any complex 2* = (04, I'(E¥))ren,
of differential operators, one may consider the sequence of its associated Laplacians Ay = 05105 _; + 0304,
k € Ng, 0_1 = 0. Let us denote the order of Ay by rg. In Krysl [8, Theorem 11], the following implication
is proved. If for each k € Ny, the extension of the Laplacian A, to W"*(E¥) has closed image, then the
cohomology groups

. _ Ker(op : I'(EF) — I'(EFY))
H* (0%, 4) = Im(0g_1 : I(EF1) — [(EF))

of 0° are finitely generated A-modules and Banach spaces. The norm considered on the cohomology groups
H¥(d°, A) is the quotient norm derived from the norm | |y on the smooth sections I'(E¥).

In a similar way as one defines the spin structure in Riemannian geometry, one may introduce the
so-called metaplectic structure in the case of a symplectic manifold. See Habermann and Habermann [5]
for a more explicit definition. Suppose that (M,w) possesses such a metaplectic structure and denote it
by G. In particular, G is a principal G-bundle over M, where G is the metaplectic group. Let C* denote the
sequence of vector bundles associated to the principal bundle G via the representation P G — Aut(C*),
ie,C*=G X, C*. Especially, C° = G X, H is the so-called basic oscillatory bundle which we denote by H
here. In Habermann and Habermann [5], this bundle is called the symplectic spinor bundle. Notice that in
this notation, C* = A" T*M @ H.

Now, let V be a symplectic connection on (M, w), i.e., V is a covariant derivative in TM — M preserving
the symplectic form w. We allow the connection to have a torsion. Let us denote a lift of this connection
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to G by @Y. Associating @V to C°, we get a covariant derivative V7 in the sections of the basic oscillatory

bundle. This covariant derivative gives rise to the sequence dy = (dka,F (CF))2" L. Because CF is a

Hilbert A-module (Theorem 3), the bundle C* is an A-Hilbert bundle, where A = End(H). But see also the
discussion below Theorem 3.

Theorem 6. Let (M?",w) be a compact symplectic manifold which admits a metaplectic structure, and V be
a flat symplectic connection. If the continuous extension to the Sobolev type completions W2(C*) of each of

the associated Laplacians Ay has closed image, then the cohomology groups H*(d%;, A) are finitely generated
A-modules and Banach topological vector spaces.

Proof. Due to Theorem 3, for each k € Ny the bundle C¥ — M is a finitely generated projective A-Hilbert

bundle. Due to Theorem 5, the symbol oy, of d,YH is given by ai = exti ®Idy. Thus the exactness of

(Ui,Ck)Zi‘tll is equivalent to the exactness of ext. Lemma 4 implies that (Ui,Ck)iztll is exact for each

& e T*M \ {0} and thus, d}; is an A-elliptic complex. Therefore Theorem 11 in (8], mentioned above, may
be applied and the conclusions for the cohomology groups H*(d$;, A) follow. 0O
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Abstract For a class of co-chain complexes in the category of pre-Hilbert A-modules, we
prove that their cohomology groups equipped with the canonical quotient topology are pre-
Hilbert A-modules, and derive the Hodge theory and, in particular, the Hodge decomposition
for them. As an application, we show that A-elliptic complexes of pseudodifferential operators
acting on sections of finitely generated projective A-Hilbert bundles over compact manifolds
belong to this class if the images of the continuous extensions of their associated Laplace
operators are closed. Moreover, we prove that the cohomology groups of these complexes
share the structure of the fibers, in the sense that they are also finitely generated projective
Hilbert A-modules.

Keywords Hodge theory - Hilbert C*-modules - C*Hilbert bundles - Elliptic systems of
partial differential equations
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1 Introduction

The Hodge theory is known to hold for any co-chain complex in the category of finite
dimensional vector spaces and linear maps. This theory holds also for elliptic complexes of
pseudodifferential operators acting between smooth sections of finite rank vector bundles
over compact manifolds. See, e.g., Wells [15] or Palais [10] and the references therein. Let
us notice that in this case, the considered co-chain complexes consist of spaces of smooth
sections of the bundles, which are infinite dimensional if the manifold contains more than a
finite number of points.

Let us remark that in connection with renormalization and regularization of certain quan-
tum theories, Hilbert and Banach bundles of infinite rank enjoy an increasing interest. See,

S. Krysl ()
Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
e-mail: Svatopluk.Krysl@mff.cuni.cz

@ Springer



360 Ann Glob Anal Geom (2015) 47:359-372

e.g., the papers on stochastical quantum mechanics and parallel transport of Prugovecki [11],
Drechsler and Tuckey [3], and on spin foams of Denicola et al. [1]. This list of references
should not be considered as complete. The theory of indices and the K-theory are well
established for a class of the so-called A-Hilbert bundles, and especially for the subclass
consisting of the finitely generated projective ones. See, e.g., Fomenko and Mishchenko [6]
and the monograph of Solovyov and Troitsky [13].

One of the reasons for writing of this paper is to separate features that are important for
proving the Hodge theory for an algebraically defined and fairly general class of complexes
(specified below) from the ones which are specific for A-elliptic complexes appearing in
differential geometry and analysis on manifolds. A further reason is to describe also the
topological properties of the Hodge isomorphism.

Recall that for a C*-algebra A, a pre-Hilbert A-module U is a left module over A that is
equipped with amap (, )y : U x U — A which is sesquilinear over A and positive definite
in the sense that firstly, for any u € U, the inequality (u, u)y > 0 holds in A, and secondly,
if (u, u)y = 0, then u = 0. Let us notice that the product (, )y induces anorm | |y on U. A
pre-Hilbert A-module is called a Hilbert A-module, if it is complete with respect to the norm
| |u. Hilbert spaces are particular examples of Hilbert A-modules for A = C. An A-Hilbert
bundle is, roughly speaking, a Banach bundle whose fibers are Hilbert A-modules.

Let us consider a co-chain complex d°* = (CK, di)rez, where Ck are pre-Hilbert A-
modules and the differentials d; : CK — C**! are A-linear and continuous maps with
respect to the induced norms. We suppose that the differentials are adjointable for to may
speak about harmonic and co-exact elements. By a Hodge theory for a given complex, we
mean the Hodge decomposition and the Hodge isomorphism for this complex. The Hodge
decomposition is an orthogonal sum decomposition [with respect to of (, )« ] of each pre-
Hilbert A-module C* in the complex into the module of harmonic, the module of exact,
and the module of co-exact elements. By a Hodge isomorphism, one usually means a linear
isomorphism of the vector space of harmonic forms and the appropriate cohomology group.
Since the cohomology groups of a complex of pre-Hilbert A-modules may not be finite
dimensional, we demand the isomorphism to be a homeomorphism. There is one reason more
although connected, why we want the isomorphism to have this additional topological feature.
Namely, the cohomology groups are quotients by images of the differentials in the complex.
Since the images need not be closed, the cohomology groups need not be Hausdorff spaces.
Let us notice that the Hausdorff property is well known to be equivalent to the uniqueness of
limits of sequences in the considered space and therefore in physical theories, it seems to be
reasonable to demand the “Hausdorffness” for each space of measured quantities.

We prove the Hodge theory for the so-called self-adjoint parametrix possessing complexes
of pre-Hilbert A-modules. We start dealing with one operator L : V — V only and prove that
the image, Im L, is closed and that the decomposition V = Ker L &Im L (no closure) holds if
L is self-adjoint parametrix possessing. An endomorphism L : V — V is called self-adjoint
parametrix possessing if there exist maps g, p : V — V satisfying 1 = gL + p=Lg + p,
Lp = 0 and p = p*. After that we handle the case of complexes. To each complex d® =
(CK, dy) ken, of pre-Hilbert A-modules and adjointable differentials, we assign the sequence
of self-adjoint endomorphisms L; = d;_1d}" | +dd; : C! — (!, i € Ny, called the asso-
ciated Laplace operators. The complexes with self-adjoint parametrix possessing Laplace
operators are called self-adjoint parametrix possessing. Under the condition that (C*, dj) keNy
is self-adjoint parametrix possessing, we show that C' = KerL; & Im df @ Imd;_; (the
Hodge decomposition) and that each cohomology group H' (d®, A) of d® is isomorphic to the
space Ker L; of harmonic elements as a pre-Hilbert A-module (the Hodge isomorphism). In
particular, the cohomologies of a self-adjoint parametrix possessing complex are Hausdorff
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spaces being homeomorphic to kernels of continuous maps. Using these abstract considera-
tions, we prove that the Hodge theory holds also for complexes D® = (I'(F Ky, Di)ken, of
the so-called A-elliptic operators acting on smooth sections of finitely generated projective
A-Hilbert bundles F*, under an assumption on the image of extensions of the Laplacians
Ay = Dy—1D}_, + Dj Di. Supposing that A is unital, we prove that the cohomology groups
of these complexes are finitely generated and projective. Let us notice that the theory of
parametrix possessing operators is more general then the theory of A-elliptic operators. We
demonstrate this fact by giving an explicit example.

Two properties of C*-algebras, they share with the complex numbers, appear to be impor-
tant for proving the Hodge decomposition at the abstract level. Namely, we use that for any
non-negative hermitian elements a, b of A, the inequality |a + b|4 > |a|4 holds, as well
as that a + b = 0 implies a = b = 0, where | |4 denotes the norm in the C*-algebra
A. For these theorems see, e.g., Dixmier [2]. In Krysl [8], the existence of an A-module
isomorphism between the cohomology groups and the space of harmonic elements of the
so-called parametrix possessing complexes (Definition 2 in [8]) is proved. However, condi-
tions under which this A-module isomorphism is a homeomorphism are not treated there.
Without supposing the self-adjointness, the proof of the existence of this isomorphism as
given in [8] is rather intricate. On the contrary, in the present paper, the existence of the
isomorphism together with determining its topological character are easy consequences of
the Hodge decomposition. Let us notice that A-elliptic complexes are treated also in Troit-
sky [14] in connection with operator indices and K -theory. In the article of Schick [12], one
can find a more geometrically oriented approach to a related subject area (twisted de Rham
complexes, connections and curvature). The cohomology groups and their topology are not
investigated in the two papers mentioned last.

In the second section, we recall notions related to (pre-)Hilbert modules, and derive several
simple properties for projections, orthogonal complementability, and norm topologies on
quotients of these modules. Then, we prove that for a self-adjoint parametrix possessing
endomorphism L : V — V| the decomposition V = Ker L @ Im L holds (Theorem 6). In
the third section, we derive the Hodge decomposition for self-adjoint parametrix possessing
complexes (Theorem 11) and the existence of the Hodge isomorphism (Corollary 14). In the
fourth section, we recall definitions of A-Hilbert bundles and A-elliptic complexes. In that
section, a theorem on the Hodge theory and a specification of the cohomology groups for
the mentioned class of A-elliptic complexes is proved (Theorem 18). At the end, we give the
example of a self-adjoint parametrix possessing map which is not A-elliptic.

Preamble: All manifolds and bundles (total spaces, base spaces, and bundle projections)
are smooth. Base spaces of all bundles are considered to be finite dimensional. The A-pseudo-
differential operators are supposed to be of finite order. Further, if an index of a labeled object
exceeds its allowed range, it is set to be zero.

2 Parametrix possessing endomorphisms of pre-Hilbert modules
Let A be a unital C*-algebra. We denote the involution in A, the norm in A, and the partial
ordering on hermitian elements in A by *, | |4, and >, respectively.

A pre-Hilbert A-module is first a complex vector space U on which A acts. We consider
that A acts from the left, and denote the action by a dot. Second, it has to be equipped with a
map (, )y : U x U — A such that foralla € A and u, v € U, the following relations hold

(D) (@-u,v)y =a*(u,v)y
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2) vy =, u)
(3) (u,u)y =0, and
(4) (u,u)y =0ifand only if u = 0.

Any map (,)y : U x U — A with properties 1-4 is called an A-product. If A is the
standard normed algebra of complex numbers, properties 3 and 4 are equivalent to the positive
definiteness of (, ). For a pre-Hilbert A-module (U, (, )r7), one defines thenorm | |7 : U —
[0, co) induced by (, )y by the prescription U > u +— |u|y = /|(u, u)y|a. By a pre-Hilbert
A-submodule U of a pre-Hilbert module V, we mean an A-submodule of V which is also a
pre-Hilbert module if equipped with the restriction of the A-productin V to U. In particular,
U has to be closed in V with respect to | |y . By a pre-Hilbert A-module homomorphism L
between pre-Hilbert A-modules U and V, we mean an A-linear map, i.e., L(a-u) = a- L(u)
for each @ € A and u € U that is continuous with respect to the norms ||y and ||y.
We denote the set of pre-Hilbert A-module homomorphisms of U into V by Hom4 (U, V).
As usual, End (U) denotes the space Homy (U, U). An adjoint of a pre-Hilbert A-module
homomorphism L : U — V is amap L* from V to U satisfying foreachu € U and v € V
the identity (Lu, v)y = (u, L*v)y. If the adjoint exists, it is unique, and it is a pre-Hilbert
A-module homomorphism as well. See, e.g., Lance [9]. We hope that denoting the adjoint
of a homomorphism by the same symbol as the involution in A does not cause a confusion.
Quite often in the literature, a pre-Hilbert A-module homomorphism L : U — V is supposed
to be adjointable. We do not follow this convention. Let us notice that when we speak of an
A-module, we consider it with its algebraic structure only. Finally, a pre-Hilbert A-module
(U, (,)v) is called a Hilbert A-module if it is complete with respect to | |y.

Elements u, v € U are called orthogonal if (u, v)y = 0. When we write a direct sum
V = U & U’ where U and U’ are pre-Hilbert A-submodules of V, we suppose that the
summands are mutually orthogonal. For any pre-Hilbert A-submodule U of V, we denote by
U+ the orthogonal complement of U. It is defined by U+ = {v € V |(v, u)y = O forallu €
U} as one expects. We call U orthogonally complementable if there exists a pre-Hilbert A-
submodule U’ € V such that V = U & U’. Tt is well known that Hilbert and consequently
pre-Hilbert A-submodules need not be complementable. For it, see, e.g., Lance [9]. It is easy
to realize that for any pre-Hilbert A-submodules U C V of a pre-Hilbert A-module W, the
operation of taking the orthogonal complement changes the inclusion sign, i.e.,

utovt ey

An element p in End4 (V) is called a projection if p* = p. Especially, we do not require a
projection to be self-adjoint.

2.1 Complementability and quotients

We start with the following simple observation. Let p be a projection and let us denote the
A-submodule Im p by U. For each z € U, there exists x € V such that z = px. Thus,
pz = p2x that implies pz = px = z. In other words, if p is a projection onto an A-
submodule U, then its restriction to U is the identity on U. Further, if V = U @ U’ and if
we set p(xy + xyr) = xy, where xy € U and xy» € U’, then p is a projection. We call this
map a projection onto U along U’. We prove the following simple technical lemma which
we will need later.

Lemma 1 Let V be a pre-Hilbert A-module and U be an orthogonally complementable
pre-Hilbert A-submodule of V.
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(1) IfV = U®U' holds for a pre-Hilbert A-module U’ then U' = U™, and the projection
p onto U along U~ is self-adjoint.

(2) If p is a projection in V which is self-adjoint, then Im p is orthogonally complementable
by (Im p)* and p is a projection ontoIm p along (Im p)*. Further, 1 — p is a self-adjoint
projection onto (Im p)* along Im p.

Proof Because the sum U @ U’ is orthogonal, U’ C UL. Let x € U~ and let us write it
according to the decomposition U & U’ as x = xy + xy/. We have (xy, xy)y = (x —
Xy, xu)y = (x, xp)y — (xg7, xp)y = 0 since x € UL and since U and U’ are mutually
orthogonal. Thus xy = 0 and consequently, x € U’ which proves the opposite inclusion.
Further, for any x € Vand y = yy + ypr € V,yuv € U,yy € U’, we may write
(px, Y)v = (xu, yu + yu)v = (v, yv)v = (x, yu)v = (x, py)v, i.e., p is self-adjoint.

For the second statement, let us set U = p(V) and U’ = (1 — p)(V). From x =
px—+(x—px), whichholds forany x € V, wehave V. = U+ U’.Forx € U andy € U’, there
areu, v € Vsuchthatx = puandy = (1—p)v. Wemay write (x, y)y = (pu, (1—p)v)y =
(pu,v)y — (pu, pv)y = (pu, v)v — (p*pu, v)y = (pu, v)v — (p*u, v)y = 0. Thus, the
above written sum V = U + U’ is orthogonal. Due to Lemma 1 item 1, U’ = (Im p)L. Since
forany v € V, p(1— p)v = pv— p>v = pv— pv = 0, the projection p kills elements from
U’. Summing up, p is a projection onto Im p along (Im p)=*. Since (1—p)? = 1—p—p+p? =
I1—pand (1l — p)* =1—p* =1— p, wesee that | — p is a self-adjoint projection. The
operator 1 — p projects onto U’ which equals to (Im p)* as already mentioned. Further, since
(1= p)pv = pv— p*v=pv—pv=_0forany v € V, 1 — p is a projection onto (Im p)~
along Im p. O

Let us remark that item 1 of the previous lemma expresses the uniqueness for the com-
plements of orthogonally complementable pre-Hilbert A-modules.

Now, we focus our attention to quotients of pre-Hilbert A-modules. Let U < V be
an orthogonally complementable pre-Hilbert A-submodule of a pre-Hilbert A-module V,
and p be the projection onto U~ along U. When we speak of a quotient V /U, we con-
sider it with the quotient A-module structure, and with the following A-product (, )y,y. We
set ([u], [v)v,u = (pu, pv)y, u,v € V. The map (,)y,y is easily seen to be correctly
defined. First, it maps into the set of non-negative elements of A. Second, let us suppose that
([u], [u])vju = O for an element u € V. Then (pu, pu)y = 0 and consequently, pu = 0.
Thus u € U and therefore [u] = O proving that (, )y,y is an A-product. Summing up, in
the case of an orthogonally complementable pre-Hilbert A-submodule U of a pre-Hilbert A-
module V, we obtain a pre-Hilbert A-module structure on V/U. We shall call this structure
the canonical quotient structure. However, let notice that for a normed space (Y, | |y) and its
closed subspace X, one usually considers the quotient space Y/ X equipped with the norm
llg : Y/X — [0, 0o0) defined by

[[yllg = inf{ly —x[y|x € X},

where y € Y and [y] denotes the equivalence class of y in Y/ X. We call | |, the quotient
norm. It is well known that if Y is a Banach space, the quotient equipped with the quotient
norm is a Banach space as well.

The following lemma is often formulated for complementable closed subspaces of Banach
spaces. Since we shall need it for pre-Hilbert spaces and in order to stress that the completeness
is inessential, we give a detailed proof.

Lemma 2 Let U be an orthogonally complementable pre-Hilbert A-submodule of a pre-
Hilbert A-module (V, (,)v). Then
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(1) the quotient norm | |4 coincides with the norm induced by (, )y,u and
(2) V/U and U+ are isomorphic as pre-Hilbert A-modules.

Proof Let p : V — V be the projection onto U~ along U. Then p’ = 1 — p is the projection
onto U along U~ (Lemma 1). For any v € V, we have

]l = infueulv — ul§
= infyey|(v —u, v —u)y|a
= infuey|(p'v + pv —u, p'v+ pv —u)y|a
= inf,cy|(p'v —u, p'v+ pv —uw)y + (pv, p'v+ pv —u)v|a
= inf,ey|(p'v —u, p'v —u)y + (pv, pv)via
= (pv, pv)via = [V},

where in the second last step, we used the fact that |a +b|4 > |a| 4 holds for any non-negative
elements a, b € A. This is a direct consequence of the well known fact that > is compatible
with the vector space structure in A. (See, for instance, Dixmier [2], pp. 18.) Thus, the first
assertion is proved.

It is easy to check that ® : V/U — UL, o(v) = pv, is a well-defined A-module
homomorphism of V/U into U~L. Further, let us consider the A-module homomorphism
W : Ut — V/U defined by W(u) = [u], u € U-~L. For any u € UL, we have ® (¥ (u)) =
®([u]) = pu = u since p is a projection onto U-. For each [v] € V/U, we may write
V(P ([v])) = ¥(pv) = [pv]. Because the difference of v and pv liesin U, we get W o & =
1yv/u. Thus, ¥ and & are mutually inverse and consequently, V /U and U L are isomorphic
as A-modules.

Since the topology generated by | |, and the one generated by | |,y coincide, and since
W is the quotient map, W is continuous with respect to the induced norm topologies on
(UL, (,)v) and (V/U, (, )v,u). Further, let N C UL be an open subset of U-L. Then
p~H(N) is an open set because p is continuous with respect to | |y and with respect to the
restriction of | |y to U, being a projection of V onto U~ (along U). The setof all [x] € V /U
such that x € p~!(N) is an open subset of V /U as follows from the definition of the quotient
topology and the fact that | |, = | |v;y. Thus, ® is continuous as well. Summing up, V /U
and U+ are isomorphic as pre-Hilbert A-modules. O

Remark 3 Let U be an orthogonally complementable pre-Hilbert A-module of a pre-Hilbert
A-module V. Due to Lemma 2, if (V/U, |l|4) is a Banach space, then (V/U, (,)v,vu) is
a Hilbert A-module. Further, if V is a Hilbert A-module, then (V /U, (,)v,u) is a Hilbert
A-module as well.

2.2 Parametrix possessing endomorphisms
Now, we focus our attention to a relationship of the orthogonal complementability of images
of pre-Hilbert A-module endomorphisms and the property described in the following defin-

ition.

Definition 4 Let L be an endomorphism of a pre-Hilbert module (V, (,))y. We call L
parametrix possessing if there exist pre-Hilbert A-module endomorphisms g, p : V — V
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such that
l=gL+p
1l=Lg+p and
Lp =0,

where 1 denotes the identity on V. We call a parametrix possessing map L self-adjoint
parametrix possessing if L and p are self-adjoint.

Remark 5 The first two equations in Definition 4 will be referred to as the parametrix equa-
tions (for L). Notice that there exist pre-Hilbert A-module endomorphisms which are not
parametrix possessing (see Example 8) and also such for which the maps g and p are not
uniquely determined. Homomorphisms with the latter property exist already for finite dimen-
sional Hilbert spaces (A = C). The name "parametrix’ is borrowed from the theory of partial
differential equations where the operator g is often called the Green function.

In the next theorem, we derive the following splitting property for the self-adjoint para-
metrix possessing endomorphisms.

Theorem 6 Let L : V — V be a self-adjoint parametrix possessing endomorphism of a
pre-Hilbert A-module (V, (, )y ) with the corresponding maps denoted by g and p. Then

(1) p is a projection onto Ker L along (Im p)* and
2) V=KerL®ImL.

Proof (1) Composing the first parametrix equation with p from the right and using the third
equation from the definition of a parametrix possessing endomorphism, we get that p2 =
p, i.e., pis aprojection. Restricting 1 = gL+ p toKer L, we get l|ker . = p|Ker . Which
implies that Ker L € Im p. Further, Lp = 0 forces Im p € Ker L. Thus, Im p = Ker L.
Using Lemma 1 item 2, p is a projection onto Im p = Ker L along (Im p)..

(2) Since p is a projection onto Im p along (Im p)*, we have the orthogonal decomposition
V =1Im p @ (Im p)*. Using the above derived result Im p = Ker L, we conclude that
V =1Im p @ (Im p)+ = Ker L @ (Ker L)L. It is thus sufficient to prove the equality

(Ker L): =Im L )

First, we prove that Im L C (Ker L)*. Let y = Lx for an element x € V. For any
z € Ker L, we may write (y,2)y = (Lx,2)y = (x,L*z)y = (x, Lz)y = 0. Thus,
y € (Ker L)*. Now, we prove that (Ker L)X € ImL. Let x € (Ker L)*. Using the
second parametrix equation, we obtain Lgx = (1 — p)x = x since 1 — p is a projection
onto (Ker L)+ (Lemma 1 item 2). Therefore, x = Lgx € Im L. Summing up, Im L =
(Ker L)* and the equation V = Ker L @ Im L follows.

m}

Remark 7 Let us notice that due to Theorem 6, the image of a self-adjoint parametrix pos-
sessing endomorphism is closed (see also Eq. 2).

Example 8 We give an example of a self-adjoint Hilbert A-module endomorphism which is
not self-adjoint parametrix possessing. See, e.g., Lance [9] for this example in a bit different
context. Let us consider the commutative C*-algebra A = C([0, 1]) equipped with the
supremum norm and the complex conjugation as the involution. Take V = A = C([0, 1])
with the action given by the point-wise multiplication, i.e., (f-g)(x) = f(x)g(x), x € [0, 1],
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f, g € A=V and the A-product (f, g) = fg € A. The operator L : C([0, 1]) — C([0, 1])
is given by (Lf)(x) = xf(x), x € [0, 1], f € C([0, 1]), It is obviously self-adjoint, and
thus adjointable. If L were self-adjoint parametrix possessing, we would get that Im p =
Ker L according to item 1 in the proof of Theorem 6. The definition Lf = xf implies that
KerL = {f € V|f =0 on (0, 1]}. Since V consists of continuous functions, we see that
KerL = {f € V|f = 0on [0,1]} = 0 € V. Consequently, Im p = 0 and therefore,
p is zero. Now, the parametrix equations imply that L is bijective. On the other hand, any
non-zero constant function in V is not in the image of L. This is a contradiction. See also
Exel [5] for treating a connected matter in the context of (generalized) pseudoinverses.

3 Hodge theory for self-adjoint parametrix possessing complexes

In this section, we focus our attention to co-chain complexes d® = (Ck, di)ken, of pre-
Hilbert A-modules and adjointable pre-Hilbert A-module homomorphisms, i.e., for each
k € Ny, the morphism di : C¥ — C**! is supposed to be an adjointable pre-Hilbert A-
module homomorphism, and di1d; = 0. Let us consider the sequence of Laplace operators
Ly = difdy + dr—1dj}_,, k € Ny, associated to d*. Notice that in concordance with the
preamble, Lo equals djdp.

Lemma9 Ler d* = (C*, di)ken, be a co-chain complex of pre-Hilbert A-modules and
adjointable pre-Hilbert A-module homomorphisms. Then

Ker Ly = Kerdi NKerd}_,.

Proof The inclusion Ker Ly 2 Ker d N Ker d,f_l follows directly from the definition of the
Laplace operator L. To prove the opposite one, let us consider an element x € Ker Ly,
and let us write 0 = (x, Lyx)cx = (x,dfdpx + dp—1df_1x)cx = (dix, drx) et +
(dy_,x,dj_x)cr—1. It is known that the intersection of the cone of non-negative hermitian
elements in A with the opposite cone consists only of the zero element. See, e.g., Dixmier [2],
Proposition 1.6.1., pp. 15 and 16. Thus, (dix, dyx)crs1 = 0 and (df_x, df_x)ce-1 = 0,
and consequently, dyx = d;’_;x = 0 due to the positive definiteness of the A-products in
C**1and C*=1, respectively. ]

As announced earlier, we prove the Hodge theory for complexes introduced in the next
definition.

Definition 10 Let d* = (C*, di)ken, be a co-chain complex of pre-Hilbert A-modules
and adjointable pre-Hilbert A-module homomorphisms. We call d® a parametrix possessing
complex if for each k € Ny, the associated Laplace operator Ly is a parametrix possessing
pre-Hilbert A-module endomorphism of C k. We call d® a self-adjoint parametrix possessing
complex if the operators Ly are self-adjoint parametrix possessing pre-Hilbert A-module
endomorphisms for all k € Np.

Since we suppose that the differentials are pre-Hilbert A-module homomorphisms, the
associated Laplace operators are pre-Hilbert A-module endomorphisms as well. Because the
associated Laplace operators Ly are self-adjoint by their definitions, we could have demanded
the maps Ly to be parametrix possessing and py to be self-adjoint in the previous definition
only.

In the next theorem, the “abstract” Hodge decomposition is formulated. We use Theorem
6 in its proof.
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Theorem 11 Lerd® = (CF, dy) keN, be a self-adjoint parametrix possessing complex. Then
for any k € Ng, we have the decomposition

C* =Ker Ly ® Imdf @ Imdj_;.

Proof (1) Due to Lemma 9, we have Ker L, C Kerd;"_,. Therefore, using the formulas (1)
and (2), we get (Ker a’,f_l)l C (Ker Ly)* = Im Ly. Further, due to Lemma 9 again,
we have Ker Ly € Ker dj. Using (1) and (2), we get (Ker di)" € (Ker L)t =Im Ly.
Summing up, (Kerd,;l)l + (Kerdp)*+ CImLy.

(2) The inclusion Imd;_; € (Ker d,fil)l holds since for any x € C*land y € Ker di_,.
we have (di—1x, ¥)cx = (x, djf_;y)cr—1 = 0. Similarly, Im d; € (Ker dy)*. Combin-
ing these two facts with the result of item 1 of this proof, we get Imd;1 + Imd} C
(Ker d,le)l + (Kerdy)* < ImLj. Now, we show that the sum Im di + Imdy_
is orthogonal. Let us take two elements dx and dy_1z (for x € CK1land 7 €
C k_l) from Im dl’: and Imdj_;, respectively. The computation (d;‘x, dk—12)ck =
(x, drdi—12)ck+1 = 0 shows that Imd; and Imd}’_, are mutually orthogonal. Sum-
ming up, Imd; ® Imdy—; C Im Ly.

(3) Itiseasy to prove thatIm Ly C Imd; @Imdy_;.Indeed, forany y € Im Ly, there exists
x € Cksuchthaty = Lyx = didix +di1df_x = df (drx) +di—1(df_x) € Imd}f +
Im dj_1. This observation together with item 2 proves that Im Ly = Im d,’: ®Imd;_q.

(4) Because Ly is a self-adjoint parametrix possessing pre-Hilbert A-module endomorphism
of Ck, we get the equality C k = Im L; @ Ker Ly due to Theorem 6. Substituting for
Im Lj from item 3 of this proof, we obtain the decomposition from the statement of the
theorem.

[m}

Remark 12 (1) Initem 3 of the proof of the previous theorem, we obtained for a self-adjoint
parametrix possessing complex d° the decomposition

Im Ly =Imd; ® Imdi_;.

(2) Notice that if d® = (C¥, di)ken, 18 a co-chain complex, then its adjoint (Cck+, di)ken,
is a chain complex as follows from dd}’ = (dr+1dp)*.

Theorem 13 Ler d® = (C¥, dy) keNy be a self-adjoint parametrix possessing complex. Then
forany k € Ny,

Kerd;, = Ker Ly & Imd,_; and
Kerd = Ker Ly @ Imdj ;.

Proof Due to Theorem 11, we know that the sums at the right hand side in both rows are
orthogonal.

The inclusion Ker Ly @ Imdy—; € Ker dj is an immediate consequence of the definition
of a co-chain complex and of Lemma 9. To prove the opposite inclusion, let us consider an
element y € Ker di. Due to Theorem 11, there exist elements y; € Ker L, y» € Imdy_1,
and y3 € Imd; suchthat y = y; +y>+ y3. Itis sufficient to prove that y3 = 0. Let z3 € Cck+1
be such that y3 = d{z3. We have 0 = (dyy, z3) = (dky1 +dry2 +diy3, 23) = (diky3, 23) =
(v3. df{z3) = (y3, y3) which implies y; = 0. Thus, the first equality follows.

The inclusion Ker Ly4+1 & Im d1><k+1 C Kerd} follows from Lemma 9 and from item 2
of Remark 12. To prove the inclusion Ker d; € Ker Ly41 © Imd]’_;, we proceed similarly

+1°
as in the previous paragraph. For y € Kerd}', there exist y; € Ker L1, y2 € Imdj, and
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y3 € Im dlj+1 such that y = y| + y» + y3 (Theorem 11). Let us consider an element zo € C*
for which y, = diz2. We have 0 = (d}fy, z2) = (diy1 + dfy2 + d}y3.22) = (d[y2, 22) =
(2, y2). Thus y, = 0 which proves the equation in the second row. O

Now, for a complex d® = (Ck, di)ken, of pre-Hilbert A-modules, we consider the coho-
mology groups
Ker (d; : C' — C'*1)
Im(di_l : Ci_1 — Ci)’

H(d® A) =

i € Np. Notice that in general, the A-module Z!(d®, A) = Im (di—; : C'~! — C?) of
co-boundaries need not be orthogonally complementable or even not a closed subspace of
the pre-Hilbert A-module of boundaries B’ (d*, A) = Ker d;. Consequently, the appropriate
cohomology group need not be a Hausdorff space (with respect to the quotient topology).
Nevertheless, for self-adjoint parametrix possessing complexes, we derive the following
corollary.

Corollary 14 Ifd* = (CF, di)ken, is a self-adjoint parametrix possessing complex of pre-
Hilbert A-modules, then for each i the cohomology group H' (d®, A) and the space Ker L; €
C! are isomorphic as pre-Hilbert A-modules. If d® is a self-adjoint parametrix possessing
complex of Hilbert A-modules, then for each i, the cohomology group H (d®, A) is a Hilbert

A-module and in particular, a Banach space.

Proof Because of Theorem 13, U = Im d;_1 is an orthogonally complementable submodule
of V = Kerd;. Thus we may use Lemma 2 item 2 to conclude that the cohomology group
Hi(d®, A) = Kerd; /Im d;_| equipped with the canonical quotient structure is a pre-Hilbert
A-module isomorphic to the orthogonal complement of Im d; _ in Ker d;. This complement
equals Ker L; thanks to Theorem 13 and the uniqueness for orthogonal complements (Lemma
1 item 1). The second statement follows in the same way using Remark 3. O

Remark 15 The isomorphism H'(d®, A) = Ker L; is the Hodge isomorphism mentioned in
the Introduction.

4 Application to A-elliptic complexes

Let M be a finite dimensional manifold and p : F — M be a Banach bundle over M with
a differentiable bundle structure &. Recall that each Banach bundle has to be equipped with
a Banach structure || || : F — [0, 400). As it is standard, we denote the fiber p~! (m) in m
by F,, and the restriction of || || to F},, by || ||;». A Banach structure is a smooth map from F
to R(J)r such that for eachm € M, (Fy,, || |l») is a Banach space.

We call aBanachbundle p : F — M with a differentiable bundle structure & an A-Hilbert
bundle if there exists a Hilbert A-module (S, (, )s) and a bundle atlas A in the differentiable
bundle structure & such that

(1) for each m € M, the fiber F,, is equipped with a Hilbert A-product, denoted by (, ),
such that the Banach spaces (Fy;,, | |) and (F,, || ||m) are isomorphic as normed spaces,

(2) for each m € M and each chart (¢py,U) € A, M D U > m, the map ¢y p, :
(Fmy G)m) — (S, (,)s) is a Hilbert A-module isomorphism, and

(3) the transition maps between all charts in the bundle atlas A are maps into the group
Auty (S) of Hilbert A-module automorphisms of S.
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The first condition is set in order the norm | |, varies smoothly with respect to m € M as the
Banach structure || || has to do due to its definition.

Let us recall that for two bundle charts ¢y : p~1(U) — U x Sand ¢y : p_l(V) — VxS,
their transition map ¢yy : U NV — Aut(S) (the group of homeomorphisms of (S, ||s)) is
defined by the formula (¢y o¢;1)(m, v) = (m, pyy (m)v), wherem e UNV andv € S. A
homomorphism of A-Hilbertbundles py : F1 — Mand py : F) — MisamapR : F| — F»
between the total spaces of p; and pj, such that p o R = p; and such that R is a Hilbert
A-module homomorphism in each fiber, i.e., for any m € M, Rty (F)m = (F2)m
is a Hilbert A-module homomorphism. An A-Hilbert bundle is called finitely generated
projective if the typical fiber, the Hilbert A-module (S, (,)s), is a finitely generated and
projective Hilbert A-module. See, e.g., Solovyov and Troitsky [13] for these notions.

The space I'(F) of smooth sections of an A-Hilbert bundle p : F — M carries a left
A-module structure given by (a - s)(m) = a- (s(m)) fora € A, s € I'(F) andm € M. From
now on, let us suppose that M is compact and equipped with a Riemannian metric g. We
choose a volume element |vol,| on the Riemannian manifold (M, g). For each t € Ny, one
then defines an A-product (, ); of Sobolev type on I'(F). The Sobolev completion W (F) is
the completion of the space of smooth sections I'(F') of F with respect to the norm induced
by (,);. The Sobolev completion together with the continuous extension of (, ); forms a
Hilbert A-module. See Solovyov and Troitsky [13] or Fomenko and Mishchenko [6] for
these constructions. For a different metric or a different choice of the volume element, one
may get different Sobolev completions. However, they are isomorphic as Hilbert A-modules
(see Schick [12]). By definition, the A-product (, )r(r) on I'(F) equals to the restriction of
the Hilbert A-product (, )o on WO(F) to ['(F).

For a definition of an A-pseudodifferential operator we refer to Solovyov, Troitsky [13],
pp- 79 and 80. For any A-pseudodifferential operator D : I'(F1) — I'(F2), we have the order
ord(D) € Z of D, the adjoint D* : I'(F») — I'(F}) of D (Theorem 2.1.37 in [13]), and the
continuous extension D, : W!(Fy) — W!=OMd(®)(Fy) of D (Theorem 2.1.60, p. 89 in [13])
at our disposal. Only finite order A-pseudodifferential operators are considered. Note that
the adjoint is an A-pseudodifferential operator and a pre-Hilbert A-module homomorphism,
and that the continuous extension D; is a Hilbert A-module homomorphism.

Let us denote the cotangent bundle 7*M — M by 7. For an A-pseudodifferential operator
D, one defines the notion of its symbol o (D) : nw*(F;) — F,. See Solovyov, Troitsky [13]
pp. 79 and 80 for a definition which generalizes the classical one. Notice that the cotangent
bundle T* M is considered with the trivial A-Hilbert bundle structure, i.e., we set a -a,;, = o
foreacha € A, oy, € T M, and m € M. It is known that o (D) : 7*(Fi) — F» is an
adjointable A-Hilbert bundle homomorphism.

Let (pr : F ks M)jen, be a sequence of A-Hilbert bundles over M and let D® =
(T(FY, Dy)ken, be a complex of A-pseudodifferential operators in F* k ie., Dy :T(F —
['(FF1yis an A-pseudodifferential operator and Dy1 Dy = 0, k € Ny. Foreach& € T*M,
the sequence o®(§) = (Fk, o (D) (&, —))ken, 1s easily seen to be a complex in the category
of A-Hilbert bundles.

Definition 16 A complex D* = (I'(F Ky, Dy)ren, of A-pseudodifferential operators in A-
Hilbert bundles is called A-elliptic if 0® (&) is an exact complex in the category of A-Hilbert
bundles for each &€ € T*M \ {(m,0) € T*M|m € M}, i.e., outside the image of the zero
section of T*M.

In accordance with classical conventions, we denote the Laplace operators Ly associated
to acomplex D® = (I'(F Ky, Dy)ken, of A-pseudodifferential operators by Ay. Their orders,
ord(Ay), will be denoted by r for brevity.
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Remark 17 (1) A single A-pseudodifferential operator D : I'(E) — I'(F) may be consid-
ered as the complex

0 — I'(E) 2 I'(F) - 0.

In this case, the definition of an A-elliptic complex coincides with the definition of an
A-elliptic operator as given, e.g., in Solovyov and Troitsky [13].

(2) If D*® is an A-elliptic complex, then for each i € Ny, the Laplace operator A; is an
A-elliptic operator. See Corollary 10 in Krysl [8] for a proof.

Next, we prove that certain specified A-elliptic complexes are self-adjoint parametrix
possessing and that, consequently, the Hodge theory holds for them. We use results from
Section 3 and Theorems 8 and 11 from [8] in the proof.

Theorem 18 Let A be a unital C*-algebra and D® = (T(FY, Dy)ren, be an A-elliptic
complex in finitely generated projective A-Hilbert bundles F* over a compact manifold
M. Let us suppose that for each k € Ny, the image of the continuous extension (Ay)y, :
Wk (F*)y — WO(FK) of the Laplace operator Ay is closed in WO(F¥). Then for any i € No

(1) HY(D®, A) is a finitely generated projective Hilbert A-module isomorphic to Ker A; as
a Hilbert A-module

(2) T(F') =Ker A; @ Im D; @ Im D}

(3) Ker D; = Ker A; @ Im D, and

(4) Ker Df = Ker A1 © Im D;.

Proof For a self-adjoint A-elliptic operator K : I'(F) — I'(F) of order r such that Im K,
is closed in WO(F), two maps denoted by G and P are constructed in the proof of Theorem
8 in Krysl [8]. They satisfy the parametrix equations (for K') and the equation K P = 0. In
the terminology of the current paper, K is a parametrix possessing pre-Hilbert A-module
endomorphism of the pre-Hilbert A-module (I'(F), (, )r(r)). The construction of P goes as
follows. For K, : W' (F) — WY(F), one considers the adjoint (K,)* : WOF) - W'(F)
and the projection pxer (k, ) of WO(F ) onto the kernel Ker (K,)* along the closed Hilbert A-
module Im K. Thus, according to Lemma 1 item 2, the projection pker (k,)* is self-adjoint.
The operator P is defined as the restriction of pger(k,)* to I'(F) C WOF). Restricting
DKer (K,)* to I'(F') does not change its property of being an idempotent and keeps the operator
self-adjoint because the A-product (, )r(r) coincides with the restriction of (, )o to I'(F).
Summing up, P is a projection and a self-adjoint pre-Hilbert A-module endomorphism.
Since K is supposed to be self-adjoint, it is a self-adjoint parametrix possessing pre-Hilbert
A-module endomorphism according to Definition 4.

Now, we prove the theorem. Since A; = D;_ D;k_l + D;k D; is self-adjoint and A-elliptic
(Remark 17 item 2) and since we suppose that Im(4;),, is closed in WOFY), we may use
the conclusion of the previous paragraph for K = A;, F = F' and r = r;. Thus, A; is a
self-adjoint parametrix possessing pre-Hilbert A-module endomorphism. Consequently, D*®
is a self-adjoint parametrix possessing complex (Definition 10). Using Theorems 11 and 13,
one obtains the statements in parts 2, 3 and 4.

Due to Corollary 14, the cohomology group H' (D*, A) is a pre-Hilbert A-module isomor-
phic to the kernel of the Laplace operator A;. According to Theorem 11 in [8], H (D, A)
is a finitely generated A-module and a Banach space (with respect to the quotient norm
[lg). Consequently (Remark 3), H {(D*, A) equipped with the canonical quotient structure
is a Hilbert A-module. It is known that a finitely generated Hilbert A-module over a unital
C*-algebra is projective. For this, see Theorem 5.9 in Frank, Larson [7]. Thus, also item 1 is
proved. O
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Remark 19 Notice that the decompositions and the adjoints of the maps contained in items
2, 3 and 4 of the previous theorem are meant with respect to the A-product (, )iy on the

pre-Hilbert A-module I'(F7). Instead for pre-Hilbert modules we could have formulated
Sects. 2 and 3 for Hilbert A-modules only and then derive a theorem parallel to Theorem 18
for the spaces WO(F¥) and for the appropriate “L?-cohomology” groups.

Remark 20 Let us remark that there are holomorphic Banach bundles whose Cech cohomol-
ogy groups are known to be non-Hausdorff. See Erat [4]. We should mention that the fact
that the Cech cohomology groups are considered in that text makes the situation different
from the case of cohomology of complexes which we study.

In the future, we would like to find a convenient class of Hilbert A-modules and A-
pseudodifferential operators for which the condition on the image of (the extension of) Ax
in Theorem 18 is automatically satisfied.

Remark 21 Non-elliptic and parametrix possessing operator

In this example, we show that the notion of a self-adjoint parametrix possessing operator
is more general than the one of an A-elliptic operator. (We will not always indicate that
we speak about homomorphisms or endomorphisms of Hilbert A-modules and omit the
expression “Hilbert A-module”.) Let U be an infinite dimensional separable Hilbert space
considered as a Hilbert A-module for A = Candlet/ : U — U be the orthogonal projection
onto a finite dimensional subspace V of U. For a compact manifold M, we consider the
trivial A-Hilbertbundle g : &/ = M x U — M. The projection / can be lifted to the operator
L in the space of smooth sections I'(¢/) : L(s)(m) = (m, [(s(m))), where s € I"'(i{) and
m € M. It is of order zero, and thus it equals to its symbol. More precisely, its symbol is
the map 7*(U) > (§,t) — (gq(v),l(prp7)), where pr, : M x U — U is the projection
onto the second component of the product and & € T M. This map is obviously not an
isomorphism (in any fiber) of & (out of the zero section of T*M). We set g = L on I'(U)
and (ps)(m) = (m, (1 — )(s(m))). It is trivial to verify that | = Lg 4+ p, 1 = gL + p, and
p=r"
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1. Introduction

This paper is devoted to the Hodge theory for Hilbert and pre-Hilbert A-modules, and to an application of this theory to
A-elliptic complexes of operators acting on sections of specific A-Hilbert bundles over compact manifolds if A is a C*-algebra
of compact operators. It is a continuation of papers [1] and [2] the main result of which we recall in this article. Let A be
a C*-algebra and M be a compact manifold. In [2], the Hodge theory is proved to hold for an arbitrary A-elliptic complex
of operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M under the condition that
the images of the extensions (to the appropriate Sobolev spaces) of the Laplacians of the complex are closed. This condition
seems to be difficult to verify in particular cases. One of the main results achieved in this paper is that one can omit the
assumption on the images if A is a C*-algebra of compact operators.

We define what it means that the Hodge theory holds for a complex in a general additive and dagger category and study
this concept in more detail in categories of pre-Hilbert and Hilbert A-modules and continuous adjointable A-equivariant
maps. These categories constitute a special class of the so-called R-module categories which are in addition, equipped with
an involution on the morphisms spaces. Let us notice that these categories enjoy an interest in the so called categorical
quantum mechanics. See, e.g., Selinger [3], Abramsky, Heunen [4] and Abramsky, Coecke [5] for instance. However, we are
foremost interested in their occurrence in differential geometry and global analysis. We say that the Hodge theory holds for
acomplex d® = (U', d; : U — U™ 1),z in an additive and dagger category € or that d* is of Hodge type if for each i € Z, we
have

U'=Imdi_, @ Imd’ @ Ker 4;,
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where A; = dfd; + d;_1d}_,, and d} and d}_, are the adjoints of d; and d;_1, respectively. The operators A;, i € Z, are called
the Laplace operators of d*. Notice that no closures are present in the above decomposition since spaces are supposed to be
closed whenever we write a direct sum between them.

Fora C*-algebra A, we consider the category PH of right pre-Hilbert A-modules and continuous adjointable A-equivariant
maps. The full subcategory of PH}, the object of which are right Hilbert A-modules is denoted by H; and it is called the
category of Hilbert A-modules. See Kaplansky [6], Paschke [7], Lance [8] and Manuilov, Troitsky [9] for information on
(pre-)Hilbert C*-modules. Recall that each object in PH; inherits a norm derived from the inner product with values in
the algebra A defined on the object. The categories PH; and Hj; are additive and dagger with respect to the orthogonal
direct sum and the involution defined by the inner product. In Krysl [2], the so-called self-adjoint parametrix possessing
complexes in PH; are introduced. According to results in that paper, any self-adjoint parametrix possessing complex in PHy
is of Hodge type and its cohomology groups are pre-Hilbert A-modules isomorphic to the kernels of the Laplace operators as
pre-Hilbert A-modules. Especially, the cohomology groups are normed spaces. Note that in general, the cohomology groups
of a complex of Hilbert spaces need not be even Hausdorff in the quotient topology. In the present paper, we prove the
opposite implication for the category ¢ = Hj, i.e, that if the Hodge theory holds for a complex in the category Hy, the
complex is already self-adjoint parametrix possessing. Thus, in H; the condition of being self-adjoint parametrix possessing
characterizes the Hodge type complexes.

Let us recall that the Hodge theory is well known to hold for elliptic complexes of pseudodifferential operators acting on
smooth sections of finite rank vector bundles over compact manifolds. Classical examples of such complexes are deRham
and Dolbeault complexes over compact manifolds equipped with appropriate geometric structures. See, e.g., Palais [ 10] and
Wells [11].

Fomenko, Mishchenko prove in [ 12], that the continuous extensions of an A-elliptic operator to the Sobolev section spaces
are A-Fredholm. In [13], Baki¢ and Gulja$ prove that any A-Fredholm endomorphism F : U — U in H} has closed image
if A is a C*-algebra of compact operators. We generalize this result to the case of an A-Fredholm morphism F : U — V
acting between Hilbert A-modules U and V. For C*-algebras of compact operators, we further derive a “transfer” theorem
which, roughly speaking, enables to deduce properties of certain pre-Hilbert A-module maps from appropriate properties
of their continuous Hilbert A-module extensions. Applying the theorem generalizing the result of Baki¢ and Guljas, we get
that the images of the Sobolev extensions of Laplace operators of an A-elliptic complex are closed. The transfer theorem
enables us to prove the main theorem of the article. Namely, that in the case of compact manifolds, C*-algebras A of compact
operators, and A-elliptic complexes, the Laplace operators themselves have closed images, they are self-adjoint parametrix
possessing, and consequently as follows from [ 1], the complexes are of Hodge type. We prove a further characterizations of
the cohomology groups as well.

The motivation for our research comes from quantum field theories which aim to include constraints—especially, from
the Becchi, Rouet, Stora and Tyutin or simply BRST quantization. See Henneaux, Teitelboim [14], Horuzhy, Voronin [15],
Carchedi, Roytenberg [16] and the references there. Let us explain their connection to our paper in more detail. In the
BRST quantization, one constructs complexes whose cohomology groups represent state spaces of a given physical system.
Because the state spaces in quantum theories are usually formed by infinite dimensional vector spaces, the co-cycle spaces
for the cohomology groups have to be infinite dimensional as well. It is agreed that the state spaces shall be equipped with
a topology because of a testing of the proposed theory by measurements. Since the measurements do not give a precise
value of the measured observable (a result of a measurement is always a value together with an error estimate), the state
spaces should have a good behavior of limits of converging sequences. Especially, it is desired that the limit (of a converging
sequence) to be unique. On the other hand, it is well known that the uniqueness of limits in a topological space forces the
space to be T1. However, the T1 separation axiom in a topological vector space implies that the topological vector space is
already Hausdorff. (For it, see, e.g., Theorem 1.12 in Rudin [ 17].) The quotient of a topological vector space is non-Hausdorff
in the quotient topology if and only if the space by which one divides is not closed. If we insist that the state spaces are
cohomology groups, we shall be able to assure that the spaces of co-boundaries are closed.

For an explanation of the requirements on a physical theory considered above, we refer to Ludwig [ 18] and to the first,
general, part of the still appealing paper of von Neumann [ 19]. We hope that our work can be relevant for physicists at least in
the case when a particular BRST complex appears to be self-adjoint parametrix possessing in the categories PH; or H; for an
arbitrary C*-algebra A, or an A-elliptic complex in finitely generated projective A-Hilbert bundles over a compact manifold if
Ais a C*-algebra of compact operators. Let us mention a further inspiring topic from physics—namely, the parallel transport
in Hilbert bundles considered in a connection with quantum theory. See, e.g., Drechsler, Tuckey [20].

Let us notice that in Troitsky [21], indices of A-elliptic complexes are investigated. In that paper the operators are, quite
naturally, allowed to be changed by an A-compact perturbation in order the index of the operator is an element of the
appropriate K-group. See also Schick [22]. In this paper, we do not follow this approach and do not perturb the operators. If
the reader is interested in a possible application of the Hodge theory for A-elliptic complexes, we refer to Krysl [23].

In the second chapter, we give a definition of the Hodge type complex, recall definitions of a pre-Hilbert and a Hilbert
C*-module, and give several examples of them. We prove that complexes in the category of Hilbert spaces and continuous
maps are of Hodge type if the images of their Laplace operators are closed (Lemma 1). Further, we recall the definition of
a self-adjoint parametrix possessing complex in PH; and some of its properties including the fact which is important for
us—namely, that they are of Hodge type (Theorem 2). We prove that if a complex in H; is of Hodge type, it is already self-
adjoint parametrix possessing (Theorem 3). At the end of the second section (Example 3), we give examples of complexes
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in H whose cohomology groups are not Hausdorff spaces, and consequently they are neither self-adjoint parametrix
possessing nor of Hodge type. In the third chapter, we recall the result of Baki¢ and Guljas (Theorem 4), give the mentioned
generalization of it (Corollary 5), and prove the transfer theorem (Theorem 6). In the fourth section, basic facts on differential
operators acting on sections of A-Hilbert bundles over compact manifolds are recalled. In this chapter, the theorem on
the Hodge theory for C*-algebras of compact operators and A-elliptic complexes in finitely generated projective A-Hilbert
bundles over compact manifolds is proved (Theorem 9).

Preamble: All manifolds and bundles are assumed to be smooth. Base manifolds of bundles are assumed to be finite
dimensional. We do not suppose the Hilbert spaces to be separable.

2. Self-adjoint maps and complexes possessing a parametrix

Let us recall that a category ¢ is called a dagger category if there is a contra-variant functor * : ¢ — € which is the
identity on the objects and involutive on morphisms. Thus, for any objects U and V and any morphism F : U — V, we have
the relations xF : V — U, xIdy = Idy and *(xF) = F. The functor * is called the involution or the dagger. The morphism
*F is denoted by F*, and it is called the adjoint of F. See Burgin [24] or Brinkmann, Puppe [25].

Let us give some examples of categories which are additive and dagger.

Example 1. (1) The category of finite dimensional inner product spaces over R or C and linear maps is an example of an
additive and of a dagger category. The addition (product) of objects is given by the orthogonal sum and the addition
of morphism is the addition of linear maps. The involution is defined as the adjoint of maps with respect to the inner
products. The existence of the adjoint to any linear map is based on the Gram-Schmidt process which guarantees the
existence of an orthonormal basis. The matrix of the adjoint of a morphism with respect to orthonormal bases in the
domain and target spaces is given by taking the transpose or the transpose and the complex conjugate of the matrix of
the original map with respect to these bases.

(2) The category of Hilbert spaces and continuous maps equipped with the addition of objects and maps, and with the
involution given as in item 1 is an example of an additive and dagger category. For the existence of the adjoints, see
Meise, Vogt [26]. (The proof is based on the Riesz representation theorem for Hilbert spaces.)

Definition 1. Let ¢ be an additive and a dagger category. We say that the Hodge theory holds for a complex d* = Ui, d; :
U! — U™,z in € or that d* is of Hodge type if for each i € Z, we have

U'=Imd_ @ Imd’ @ Ker A;

where A; = did; + di_1d}_;, and d} and d} , are the adjoints of d; and d;_1, respectively. We call the morphism A; the ith
Laplace operator of d*, i € Z. We say that the Hodge theory holds for a subset & C X (€) of complexes in ¢ if it holds for
each element d* € A.

Remark 1. (1) In Definition 1, we demand no compatibility of the involution with the additive structure. However, in
the categories of pre-Hilbert and Hilbert A-modules that we consider mostly, the relations (F 4+ G)* = F* + G* and
(zF)* = z*F* are satisfied for each objects U, V, morphisms G, F : U — V, and complex number z € C.

(2) The existence of the Laplace operators of d*® is guaranteed by the definitions of the additive and of the dagger category.
If the dagger structure is compatible with the additive structure in the sense of item 1, we see that the Laplace operators
are self-adjoint, i.e., AT = A;,i € Z.

Lemma 1. Let d* = (U', d;)icz be a complex in the category of Hilbert spaces and continuous maps. If the images of the Laplace
operators of d® are closed, the Hodge theory holds for d°.
Proof. On the level of symbols, we do not distinguish the dependence of the inner products on the Hilbert spaces and denote
each of them by (, ). It is easy to realize that Ker A; = Kerd; ; N Ker d;. Namely, the inclusion Ker A; © Kerd; N Kerd; , is
immediate due to the definition of A;. The opposite one can be seen as follows. For any u € Ker A;, we have 0 = (A;ju, u) =
(d}diu+-d;_1d}_ u, u) = (diu, dju)+(d;_,u, d_,u).Since inner products are positive definite, we have dju = Oand d}_;u = 0.
Because we assume the image of A; to be closed, taking the orthogonal complement of Ker A; = Kerd; N Kerd] ;, we
get (Kerd? )+ € (Ker A))* =Im A; = Im A; and (Ker d;)* € (Ker A;))* = Im A; = Im A;. Summing-up,

(Kerd; )* + (Kerd;)™ C Im A;.

Further, it is immediate to see that Imd;_; C (Ker d?;])L and Imd} € (Ker d)*. Indeed, for any u € Imd;_; there exists
an element v’ € U~ such that u = d;_;u’. For each v € Ker di ;, we have (u, v) = (di_1u', v) = (', d’_;v) = 0. Thus, the
inclusion follows. The other inclusion can be seen similarly. Using the result of the previous paragraph, we obtain

Imd;_; +Imd} C (Kerd; ,)* + (Kerdy)* C Im A;. (1)

We prove that the sum Imd;_; + Imd; is direct. For it, we take u = d;_;u’ and v = dfv’ for v’ € U—'and v e U™,
and compute (u,v) = (di_1v/,dfv') = (didi—,u’,v") = 0 which holds since d* is a complex. Therefore, we have
Imdf @ Imd;_; (SIm A4;).
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The inclusion Im A; € Imd;_; @ Imd] is immediate. Thus, we conclude that Im A; = Imd;_; @ Imd;. Since for each

i € Z, A; is self-adjoint and its image is closed, we have U' = Im A; @ Ker A;. Substituting the equation for Im A; found at
end of the previous paragraph, we get U' = Imd; @ Imd;_; @ Ker A; proving that the Hodge theory holds ford®. O

Remark 2. By Lemma 1, the Hodge theory holds for any complex in the category ¢ = Vg, of finite dimensional inner
product spaces over real or complex numbers and linear maps since any linear subspace of a finite dimensional vector
space is closed. However, it is possible to prove that the Hodge theory holds for & = KX (€) in a simpler way. The relation
Ker A; = Kerd; N Kerd; _, is proved in the same way as in the proof of Lemma 1. Since for any A, B C U', the equation

(AN B)t = A' + B* holds, we have (Kerd; N Kerd ,)* = (Kerd;)* + (Kerd} ;)*. Due to the finite dimension, we can
write (Kerd;)* = Imd} and (Kerd} ,)* = Imd;_4, and thus (Ker A;)* = (Kerd;_; N Kerd{)* = Imd;_; + Imd;}. The sum
is direct as follows from 0 = (didi_1u, v) = (di—1u, djv),u € U=, v € U*! — in the same way as in the proof of Lemma 1.
Substituting (Ker A;))* = Imd;_; @ Imd} into U; = Ker A; @ (Ker A;)*, we get U' = Im d} & Imd;_; @ Ker A;. Let us notice
that in Lemma 1, we proved that the images of d; and d;_; are closed.

Next we recall the definitions of the Hilbert and pre-Hilbert modules over C*-algebras. (For C*-algebras, we refer to
Dixmier [27].)

Definition 2. For a C*-algebra A, a pre-Hilbert A-module is a complex vector space U, which is a right A-module (the action
is denoted by a dot) and which is in addition, equipped withamap (,) : U x U — A such that foreachz € C,a € A and
u, v, w € U the following relations hold

(1) (u,zv+w) =z(u,v) + (u, w)
(2) (u,v-a) = (u,v)a
(3) (w,v) = (v,w)*

(4) (u,u) > 0,and (u, u) = 0impliesu =0

where a* denotes the conjugation of the element a € A. A pre-Hilbert A-module (U, (,)) is called a Hilbert A-module if U is
a Banach space with respect to thenorm U 3 u +— |u| = /|(u, u)|a € [0, 4+00). We callthemap (, ) : U x U — A the inner
product (on U), or an A-inner product if we would like to stress the target.

Note that if A is the algebra of complex numbers, Definition 2 coincides with the one of pre-Hilbert and of Hilbert spaces.

Morphisms of pre-Hilbert A-modules (U, (,)y) and (V, (, )y) are assumed to be continuous, A-linear and adjointable
maps. Recall thatamap L : U — V is called A-linear if the equivariance condition L(u) - a = L(u - a) holds for any a € A and
u € U. Anadjoint L* : V — U of a pre-Hilbert A-module morphism L : U — V is a map which satisfies (Lu, v)y = (u, L*v)y
forany u € U and v € V. It is known that the adjoint need not exist in general, and that if it exists, it is unique and a pre-
Hilbert A-module homomorphism, i.e., continuous and A-linear. Morphisms of Hilbert A-modules have to be morphisms
of these modules considered as pre-Hilbert A-modules. The category the objects of which are pre-Hilbert A-modules and
the morphisms of which are continuous, A-linear and adjointable maps will be denoted by PHj. The category H; of Hilbert
A-modules is defined to be the full subcategory of PH; the object of which are Hilbert A-modules. If we drop the condition
on the adjointability of morphisms, we denote the resulting categories by PH, and Hy. See Manuilov, Troitsky [9] for more
information on these objects. By an isomorphism F : U — V in PH; or H;, we mean a morphism which is right and left
invertible by a morphism in PH} or H}, respectively. In particular, we demand an isomorphism in these categories neither
to preserve the appropriate inner products nor the induced norms.

Submodules of a (pre-)Hilbert A-module V have to be closed subspaces and (pre-)Hilbert A-modules with respect to the
restrictions of the algebraic and the inner product structures defined on V. Further, if U is a submodule of the (pre-)Hilbert
A-module V, we can construct the space Ut = {v € V, (v,u) = Oforallu € U} which is a (pre-)Hilbert A-module.
We call U orthogonally complemented in V if V = U @ U+*. There are Hilbert A-submodules which are not orthogonally
complemented. (See Lance [8].) For the convenience of the reader, we give several examples of Hilbert A-modules and an
example of a pre-Hilbert A-module. For further examples, see Solovyov, Troitsky [28], Manuilov, Troitsky [9], Lance [8], and
Wegge-Olsen [29].

Example 2. (1) Let H be a Hilbert space with the Hilbert inner product denoted by (, ). The inner product is supposed to be
hermitian conjugate in the first (left) variable. The right action of the C*-algebra A = B(H) of bounded linear operators
on the continuous dual H* of H is given by [ - a = lo afor any | € H* and a € B(H). Let us denote the unique vector
from H representing element k € H* by k,, i.e., (k,, w) = k(w) for any w € H. Its existence is guaranteed by the Riesz
representation theorem. The inner product (k,I) € B(H) of two elements k,l € H* is defined by (k, )(v) = I(v)k,,
where v € H. In this case, the product takes values in the C*-algebra K (H) of compact operators on H. In fact, the inner
product maps into the algebra of finite rank operators.

For a locally compact topological space X, consider the C*-algebra A = Cy(X) of continuous functions vanishing at
infinity with the product given by the point-wise multiplication, the complex conjugation as the involution, and the
supremum norm | |4 : Co(X) — [0, +00), i.e,,

[fla = sup{lf (x|, x € X}

—
N
—
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where f € A. For U, we take the C*-algebra G (X) itself with the module structure defined by the point-wise
multiplication, ie., (f - g2)(x) = f(X)g(x),f € U,g € Aand x € X. The inner product is defined by (f,g) = fg.
Note that this is a particular example of a Hilbert A-module with U = A, right actiona-b =abfora € U =Aandb € A,
and inner product (a, b) = a*b,a, b € U.

(3) If (U, (,)) is a Hilbert A-module, the orthogonal direct sums of a finite number of copies of U form a Hilbert A-module in
a natural way. One can also construct the space £2(U), i.e., the space consisting of sequences (a,)ney Witha, € U,n € N,
for which the series Z:’; (a;, a;) converges in A. The inner product is given by ((an)nen, (bn)nen) = Zf’i] (aj, b;), where
(@) nen, (bn)nen € £2(U). See Manuilov, Troitsky [9].

(4) Let A be a C*-algebra. For a compact manifold M", pick a Riemannian metric g and choose a volume element |vol,| €
I'(M, | \" T*M|). Then for any A-Hilbert bundle & — M with fiber a Hilbert A-module E, one defines a pre-Hilbert A-
module I' (M, &) of smooth sections of & — M by setting (s - @), = S, -afora € A,s € I'(M, &),and m € M. One
sets

(s',s) = / (5;17, 5m)m|V01g|m
meM

where s, s’ € I'(M, &), (,)m denotes the inner product in fiber &,, and m € M. Taking the completion of I"(M, &)
with respect to the norm induced by the A-inner product (, ) (as given in Definition 2), we get the Hilbert A-module
(W°(M, &), (,)o). Further Hilbert A-modules (W!(M, €), (,):), t € Z, are derived from the space I"(M, &) by
mimicking the construction of Sobolev spaces for finite rank bundles. See Wells [ 11] for the finite rank case and Solovyov,
Troitsky [28] for the case of A-Hilbert bundles.

Let us turn our attention to the so-called self-adjoint parametrix possessing morphisms in the category ¢ = PHj.
Definition 3. A pre-Hilbert A-module endomorphism F : U — U is called self-adjoint parametrix possessing if F is self-

adjoint, i.e.,, F* = F, and there exist a pre-Hilbert A-module homomorphism G : U — U and a self-adjoint pre-Hilbert
A-module homomorphism P : U — U such that

1y=GF+P
1y =FG+P
FP = 0.

Remark 3. (1) Definition 3 makes sense in an arbitrary additive and dagger category as well.

(2) The map G from Definition 3 is called a parametrix or a Green operator and the first two equations in this definition are
called the parametrix equations.

(3) Composing the first parametrix equation from the right with P and using the third equation, we get that P> = P.

(4) If F : U — U is a self-adjoint parametrix possessing endomorphism in PH}, then U = Ker F @ ImF (see Theorem 6 in
Krysl [2]). In particular, the image of F is closed. Note that we do not assume that U is complete.

(5) A self-adjoint morphism in Hj is self-adjoint parametrix possessing if its image is closed. Indeed, the Mishchenko
theorem (Theorem 3.2 on pp. 22 in Lance [8]) enables us to write for such a self-adjoint morphism F : U — U with
closed image, the orthogonal decomposition U = Ker F @ ImF. Thus, we can define the projection onto Ker F along
ImF. It is immediate that the projection is self-adjoint. Inverting F on its image and defining it by zero on the kernel
of F, we get a map G which satisfies the parametrix equations. It is continuous due to the open map theorem. Thus as
follows from item 4, a self-adjoint map F from H} is self-adjoint parametrix possessing if and only if its image is closed.

Let us remind the reader that if d® = (U’, d;);cz is a co-chain complex in the category ¢ = PH?, each of the Laplace
operators A; = di_1d;_; + d}d; is self-adjoint since the category is not only additive and dagger, but these structures are
also compatible (Remark 1 item 1).

Definition 4. A co-chain complex d* € KX (PHy) is called self-adjoint parametrix possessing if all of its Laplace operators are
self-adjoint parametrix possessing maps.

Remark 4. (1) Since AH]dl‘ = (d;k+]di+l + dldf)dl = dld;kdl = d;d;kd, + d,‘di,1d;k7] = dl(d;kd, + d,;]d?il) = d,’Ai, the
Laplace operators are co-chain endomorphisms of d°. Similarly, one derives that the Laplace operators are chain
endomorphisms of the chain complex (U', df : U' — U™ ");cz “dual” to d°.

(2) Let us assume that the Laplace operators A; of a complex d* in PH} satisfy equations A;G; 4 P; = G;A; + P; = 1y, and
that the identity A;P; = 0 holds. Notice that we do not suppose that the idempotent P; is self-adjoint. Still, we can prove
that the Green operators G; satisfy G;,1d; = d;G;, i.e., that the Green operators are co-chain endomorphisms of the
complex d* we consider. For it, see Theorem 3 in Krysl [1].
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(3) In the following picture, facts from the previous two items are summarized in a diagrammatic way.

di—1 di
Ui—q - Ui - Uit1
iy d
Gi—1 | | Aim1 Gi || 4 Git1 | | Ait1
di—1 di
Ui Ui Uit
d* d*

i—1 i

Let us consider the cohomology groups H'(d®) = Kerd;/Imd;_; of a complex d* € K(PH}),i € Z.If Imdi_4 is
orthogonally complemented in Ker d;, one can define an inner product in H'(d*) by ([u], [VDyi@gey = (piu, piv), where

u, v € U'and p; is the projection along Im d;_; onto the orthogonal complement (Imd;_;)* in Ker d;. Let us call this inner
product the canonical quotient product. For facts on inner products on quotients in PH}, see [2].

In the next theorem, we collect results on self-adjoint parametrix complexes from [2].
Theorem 2. Let A be a C*-algebra. If d* = (U', dp)icz € X (PH}) is self-adjoint parametrix possessing complex, then for any
i€z,
(1) U' = Ker A; @ Im df ®Imd;_y, ie, d*is aHodge type complex.
2) Kerd; = Ker A; @ Imd;_;.
) Kerd; = Ker 4;y1 @ Imd;, ;.
) Im A; = Im df ® Imd;_;.
) H'(d*) is a pre-Hilbert A-module with respect to the canonical quotient product (, )i gs)-
)

complex in K (Hy), then Hi(d*) is an A-Hilbert module and Ker A; ~ H(d*) are isomorphic as A-Hilbert modules.

Proof. See Theorem 11 in Krysl [2] for item 1; Theorem 13 in [2] for items 2 and 3; Remark 12(1) in [2] for item 4; and
Corollary 14 in [2] foritems 5and 6. O

Next we prove that in the category ¢ = Hj, the property of a complex to be self-adjoint parametrix possessing

characterizes the complexes of Hodge type.
Theorem 3. Let A be a C*-algebra. If the Hodge theory holds for a complex d* € X (H}), then d*® is self-adjoint parametrix
possessing.
Proof. Because the Hodge theory holds for d*, we have the decomposition of U into Hilbert A-modules

U' = Ker A; ® Imd;_; & Imd;
i € Z.In particular, the ranges of d;_; and d; are closed topological vector spaces. It is immediate to verify that

Ker di d; = Ker d;, Kerd; , = Kerd;_qd}"_,.
Since the ranges of d;_; and d are closed, we get

Imd;d; = Imd}, Imdi_1d] ; =Imd;_4
using the theorem of Mishchenko (Theorem 3.2 in Lance [8]) for d} and d;_;. In particular, we see that the images of dd;

and d;_.d;_, are closed as well.
Fori € Z and u € U', we have

(A, Ajn) = (dfdu, df diu) + (di—1di_qu, di_1d}_u)
since (dfdju, di_1df ju) = (diu,didi_1d}_ju) = Oforanyu e U'. Due to the definition of the Laplace operators and
the positive definiteness of the A-Hilbert product, we have Ker A; = Kerd; N Kerd;_; (as in the proof of Lemma 1). For
u € (Ker At = (Kerdy)* + (Kerd; ,)*, there exist u; € (Kerd;)* = Imd} and u, € (Kerd? ,)* = Imd;_; such that
u = uq + uy. Consequently,
(Aju, A) = (didi(u +u), didi(ur + u2)) + (diadi_ (U1 + Uz), diadi_; (u1 + u2))
= (di'diuy, ddiuy) + (di diu, df diun) + (df diuy, df diuz) + (df diuy, d} diuy)
+ (dioad;_quq, dicadf_qur) + (dimad]_juz, dimqdf_jup)
+ (dioad;_quq, dicadf_qup) + (dimad]_juz, dimqd_juq)
= (didjuy, di diu1) + (di—1di_ Uz, di—1di_ uz)
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since (dfd;uy, dfdiuy) = (dfdiuq, didju;) = 0 due touy € Imd;_q, and (di—1d;_juq, di1df_juq) = (diad_quq, diad;_quy)
= O due to u; € Imdj. Because both summands at the right-hand side of

(Aju, A) = (dfdiuy, di diuq) + (di—1d_quy, dioqd]quy)
are non-negative, we obtain (Aju, Aju) > (dfdjuq, didjuq) and (Aju, Aju) > (di—1d]_quy, di1d]_u). Consequently

[Au| = |dfdius| (2)
[Au| = |di—idf_qus]. (3)

(See paragraph 1.6.9 on pp. 18 in Dixmier [27].) Notice that dd; and d} ,d;_; are injective on (Ker d;“di)l = (Kerd;)* and
(Ker di_ldjil)L = (Ker d;‘q)l, respectively, and zero on the complements of the respective spaces. Due to an equivalent
characterization of closed image maps on Banach spaces, there are positive real numbers «, 8 such that |d]djuq| > o|u4]
and |d;_1d}_;uy| > Bluy| hold for any u; € (Ker d)* and u, € (Ker 61;11)l (see Theorem 2.5 in Abramovich, Aliprantis [30]).
Substituting these inequalities into (2) and (3) and adding the resulting ones, we see that 2|Au| > «aluy| + Bluy].
Thus |Au| > smin{a, B}(|ui| + luz]) > Jmin{e, B}u; 4+ uz| = Jmin{e, B}|u| by the triangle inequality. Using the
characterization of closed image maps again, we get that the image of A; is closed. This implies that d* is self-adjoint
parametrix possessing using Remark 3 item 5. O

Remark 5. From Theorems 2, 3 and Remark 3 item 5, we get that a complex in Hy is of Hodge type if and only if the images
of its Laplace operators are closed if and only if it is self-adjoint parametrix possessing.

Example 3. We give examples of complexes which are not self-adjoint parametrix possessing.

(1) For a compact manifold M of positive dimension, let us consider the Sobolev spaces W*!(M) for k, | non-negative
integers. For | = 2, these spaces are complex Hilbert spaces. Due to the Rellich-Kondrachov embedding theorem and
the fact that the dimension of W*2(M) is infinite, the canonical embedding i : W*2(M) < W%2(M) has a non-closed
image for k > [. We take

d*= 0—— wk2m) EELEEN wh2M) —— 0.

Labeling the first element in the complex by zero, the second cohomology H2(d*) = Ker 0/Imi = W-2(M)/i(W*2(M))
is non-Hausdorff in the quotient topology. The complex is not self-adjoint parametrix possessing due to Theorem 2 item
5. Consequently, it is not of Hodge type (Theorem 3).
(2) This example shows a simpler construction of a complex in X (H{) which is not of Hodge type. Without any reference
to a manifold, we can define mapping i : £2(N) — £2(N) by setting i(e;) = e,/n, where (en)n*;"]J denotes the canonical
orthonormal system of ¢2(N). It is easy to check that i is continuous. Further, the set i(¢2(N)) is not closed. For it, the
sequence (1, 1/2,1/3,...) € £2(N) is not in the image. Indeed, the preimage of this element had to be the sequence
(1, 1,1, ...) which s not in £2(N). On the other hand, (1, 1/2, 1/3, ...) lies in the closure of i(¢2(N)) since it is the limit
of the sequence i((1,0...)),i((1,1,0,...)),i((1,1,1,0...)), .... The complex 0 — ¢*(N) — ¢2(N) — 0 is not of
Hodge type and it is not self-adjoint parametrix possessing by similar reasons as those given in the example above.

3. C*-Fredholm operators over C*-algebras of compact operators

In this section, we focus on complexes over C*-algebras of compact operators, and study C*-Fredholm maps acting
between Hilbert modules over such algebras. For the convenience of the reader, we recall some known notions.

Definition 5. Let (U, (, )y) and (V, (, )y) be Hilbert A-modules.

(1) Foranyu € U and v € V, the operator F, , : U — V defined by U > v’ — F, ,(¥') = u - (v, v') is called an elementary
operator. Amorphism F : U — V in H} is called of A-finite rank if it can be written as a finite C-linear combination of
the elementary operators.

(2) The set K4(U, V) of A-compact operators on U is defined to be the closure of the vector space of the A-finite rank
morphisms in the operator norm on Homy: (U, V), induced by the norms | |y and | |y.

(3) WecallF € HomHX(U, V) A-Fredholm if there exist Hilbert A-module homomorphisms Gy : V — Uand Gy : U — V
and A-compact homomorphisms Py : U — U and Py : V — V such that

GuF =1y + Py
FGy = 1y + Py

i.e., if F is left and right invertible modulo A-compact operators.
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Remark 6. (1) Equivalent definition of A-compact operators. The A-finite rank operators are easily seen to be adjointable.
Suppose for a moment that we define the “A-compact” operators as morphisms in the category H, of Hilbert A-modules
and continuous A-module homomorphisms that lie in the operator norm closure in Homgy, (U, V) 2 HomHX(U , V)
of the A-finite rank operators. One can prove that these operators are adjointable. Thus, the set of these “A-compact”
elements coincides with the set of the A-compact operators defined above (Definition 5). For it see, e.g., Corollary 15.2.4
in Wegge-Olsen [29].

(2) A-compact vs. compact. It is well known that in general, the notion of an A-compact operator does not coincide with
the notion of a compact operator in a Banach space. Indeed, let us consider an infinite dimensional unital C*-algebra A
(1 € A), and take U = A with the right action given by the multiplication in A and the inner product (a, b) = a*b for
a,b € A. Then the identity 1y : U — U is A-compact since it is equal to F; ;. But it is not a compact operator in the
classical sense since U is infinite dimensional.

Example 4. (1) A-Fredholm operator with non-closed image. Let us consider the space X = [0, 1] C R, the C*-algebra
A = ¢([0, 1]) and the tautological Hilbert A-module U = A = ¢€([0, 1]) (second paragraph of Example 2). We
give a simple proof of the fact (well known in other contexts) that there exists an endomorphism on U which is A-
Fredholm but the image of which is not closed. Let us take an arbitrary map T € EndH;; (U). Writing f = 1-f, we
have T(1-f) = T(1) - f = T(1)f. Thus, T can be written as the elementary operator Fy, ; where fo = T(1). Since T
is arbitrary, we see that K4(U, U) = Endy: (U). Consequently, any endomorphism T € Endy(U) is A-Fredholm since
T1ly = 1yT = 1y + (T — 1y). Let us consider operator Ff = xf, f € U. This operator satisfies F = F*, and it is clearly
a morphism of the Hilbert A-module U. It is immediate to realize that Ker F = 0. Suppose that the image of F = F*
is closed. Using Theorem 3.2 in Lance [8], we obtain ([0, 1]) = ImF* @ Ker F = ImF. Since the constant function
1 & ImF, we get a contradiction. Therefore ImF is not closed although F is an A-Fredholm operator. Let us recall that
the image of a Fredholm operator on a Banach space, in the classical sense, is closed.

(2) Hilbert space over its compact operators. Let (H, (, )y) be a Hilbert space and let us take A = K(H) and U = H* with
the action and the inner product as in Example 2 item 1. We have F,;(m) = k- (I, m) for any k, [, m € H*. An easy
computation shows that F;(m) = k(l,)m where I, is defined in Example 2. Thus, Fy; are scalar operators and their
finite linear combinations are scalar operators as well. Therefore, their closure Kgy(H*) = Cly+, where 1y+ denotes
the identity on H*.

Remark 7. Let us remark that the definition of an A-Fredholm operator on pp. 841 in Mishchenko, Fomenko [ 12] is different
from the definition of an A-Fredholm operator given in item 3 of Definition 5 of our paper. However, an A-Fredholm operator
in the sense of Fomenko and Mishchenko is necessarily invertible modulo an A-compact operator (see Theorem 2.4 in
Fomenko, Mishchenko [12]), i.e., it is an A-Fredholm operator in our sense.

Definition 6. A C*-algebra is called a C*-algebra of compact operators if it is a C*-subalgebra of the C*-algebra of compact
operators K (H) on a Hilbert space H.

If Ais a C*-algebra of compact operators, an analog of an orthonormal system in a Hilbert space is introduced for the case
of Hilbert A-modules in the paper of Baki¢, Guljas [ 13]. For a fixed Hilbert A-module, the cardinality of any of its orthonormal
systems does not depend on the choice of such a system. We denote the cardinality of an orthonormal system of a Hilbert
A-module U over a C*-algebra A of compact operators by dim,U. Let us note that in particular, an orthonormal system forms
a set of generators of the module (see [13]).

Theorem 4. Let A be a C*-algebra of compact operators, U be a Hilbert A-module, and F € EndHX (U). Then F is A-Fredholm, if
and only if its image is closed and dim,Ker F and dim,(Im F)* are finite.

Proof. Baki¢, Guljas [13], pp.268. O

Corollary 5. Let A be a C*-algebra of compact operators, U and V be Hilbert A-modules, and F € Homy: (U, V). Then F is an
A-Fredholm operator, if and only if its image is closed and dimyKer F and dim, (Im F)* are finite.

Proof. Let F : U — V be an A-Fredholm operator and Gy, Py and Gy, Py be the corresponding left and right inverses and
projections, respectively, i.e., GyF = 1y + Py and FGy = 1y + Py.

Let us consider the element § = ((F) FO ) € EndHX (U @ V). For this element, we can write

0 G\ (0 F\_(tw+Py 0 \_(ly 0) (P 0
Gi oJ\F o)=\ o w+pr;) = \o 1y 0 Py

Since the last written matrix is an A-compact operator in EndHX (UV), Fisleftinvertible modulo an A-compact operator on
U @ V. The right invertibility is proved in a similar way. Summing-up, § is A-Fredholm. According to Theorem 4, F has closed
image. This implies that F has closed image as well due to the orthogonality of the modules U and V in U @ V. Let us denote
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the orthogonal projections of U & V onto U and V by proj; and projy, respectively. Due to Theorem 4, dim,(Ker §) and
dim,(Im )~ are finite. Since Ker F = proj, (Ker §) and ImF = proj, (Im ), the finiteness of dimuKer F and dim4(Im F)*
follows from the finiteness of dimu (Ker §) and dim,(Im 3)*.

If dima Ker F and dim,(Im F)* are finite, we deduce that dim, Ker § and dim,(Im §)* are finite as well using Ker F* =
(ImF)* and KerF = (ImF*)*. If ImF is closed, the image In§ = ImF* @ ImF is closed by Theorem 3.2 in [8].

Thus, § satisfies the assumptions of Theorem 4, and we conclude that § is A-Fredholm. Consequently, there exists a map

6 = ('2 g) € EndHX (U @ V) such that §& = 1ygv + Pugy for an A-compact operator Pygy in U @ V. Expanding this

equation, we get FB = 1y + projy Pygy y. It is immediate to realize that projy Pygyv y is an A-compact operator in V. Thus, F
is right invertible modulo an A-compact operator in V. Similarly, one proceeds in the case of the left inverse. Summing-up,
F is an A-Fredholm morphism. O

Now, we state and prove the theorem on the “transfer” as promised in the introduction.

Theorem 6. Let A be a C*-algebra of compact operators, (V, (,)y) and (W, (,)w) be Hilbert A-modules, and (U, (, )y) be a
pre-Hilbert A-module which is a vector subspace of V and W such that the norms | |w and | |y coincide on U, and | |y restricted to
U dominates | |y. Suppose that D € EndeZ (U) is a self-adjoint morphism having a continuous adjointable extensionD : V — W
such that

(i) Dis A-Fredholm,

(ii) D~'(U), D*~'(U) € U and
(iii) Ker D and Ker D* are subsets of U.
Then D is a self-adjoint parametrix possessing operator in U.
Proof. We construct the parametrix and the projection.

(1) Using assumption (i), D has closed image by Corollary 5. By Theorem 3.2 in Lance [8], the image of D* : W — Vis closed
as well, and the following decompositions

V = KerD @ ImD*,
W = KerD* @ ImD

hold. Restricting D to the Hilbert A-module Im 5* we obtain a continuous bijective Hilbert A-module homomorphism
ImD* — ImD.
Let us set

Gx) =

(Bumﬁ*)”(x) xeImD
0 x € Ker D*.

The operatorE : W — Vs continugus by the open map theorem. Due to its construction, Gisa morphismin the category
H,. Because of the adjointability of D, and the definition of G, G is adjointable as well. Summing-up, G € Homy: W, V).

Note that G : W — Im D*. - _ ~

(2) Itis easy to see that the decomposition V = Ker D @ Im D* restricts to U in the sense that U = KerD @& (ImD* N U).
Indeed, let u € U, Thenu € V and thus u = v; 4 v, for v; € KerD and v, € Im D*. Since Ker D C U (assumption (iii))
and Ker D € Ker D, we have Ker D = Ker D. Similarly, one proves that Ker D* = Ker D. In particular, v; € KerD. Since
U is a vector space, v; = u — vy and u, v; € U, v, is an element of U as well. Thus, U € KerD @ (ImD* N U). Since
Ker D, Im D*NU C U, the decomposition holds.

(3) Further, we have Im D* NU_= ImD. Indeed, ifu € Uandu = D*w for an element w € W then w € U due to item
(ii) and consequently, u = D*iv = D*w = Dw that implies Im D*Nu C ImD. The opposite inclusion is immediate.
(Similarly, one proves that Im D NU = Im D.) Putting this result together with the conclusion of item 2 of this proof, we
obtain U = KerD @ Im D.

(4) Itis easy to reallze that G‘U isinto U. Namely, if v = Gu for an element u € U CV,wehaveu = uy + u, foru; € Ker D
and u, € Im D* according to the decomposition of V above, Since u, = u —u; and ul € U (due to (iii)), we see that u, is
an element of U as well. Consequently, we may write v = G|Uu = Guy + Guz = D Fel2: Since D~ L(U) € U (item (ii)),

we obtain that v € U proving that G|U isinto U. Letus set G = G|U. Due to the assumptions on the norms | |y, | |v, and
| |w and the continuity of G : (W, | |w) — (V, | |y), it is easy to see that G : U — U is continuous as well.

(5) Defining P to be the projection of U onto Ker D along the Im D, we get a self-adjoint projection on the pre-Hilbert
module U due to the decomposition U = KerD @ Im D derived in item 3 of this proof. The relations DP = 0 and
1y = GD + P = DG + P are then easily verified using the relation Ker D* = KerD. O

Remark 8. In the assumptions of the preceding theorem, specific properties are generalized which hold for self-adjoint
elliptic operators acting on smooth sections of vector bundles over compact manifolds. For instance, assumption (ii)
corresponds to the smooth regularity and (iii) is a generalization of the fact that differential operators are of finite order.
See, e.g., Palais [10] or Wells [11]. As we will see in the next chapter, these properties remain true in the case of elliptic
complexes on sections of finitely generated projective Hilbert C*-bundles over compact manifolds.
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4. Complexes of pseudodifferential operators in C*-Hilbert bundles

For a definition of a C*-Hilbert bundle, bundle atlae and differential structures of bundles, we refer to Mishchenko,
Fomenko, [12], Schick [22] or Krysl [31]. For definitions of the other notions used in this and in the next paragraph, see
Solovyov, Troitsky [28]. Let us recall that for an A-pseudodifferential operator D : I'(M, &) — I'(M, ) acting between
smooth sections of A-Hilbert bundles & and # over a manifold M, we have the order ord(D) € Z of D and the symbol map
o(D) : 7*(&) — m*(F) of D at our disposal. Here, the map w : T*M — M denotes the projection of the cotangent
bundle. Moreover, if M is compact, then for A-Hilbert bundles & — M and ¥ — M, an A-pseudodifferential operator
D:I'(M, &) — I'(M, ¥),and an integer t € Z, we can form

(1) the so called Sobolev type completions (W' (M, &), (,)¢) of (I'(M, &), (,))
(2) the adjoint D* : '(M, ¥) — I'(M, &) of D and
(3) the continuous extensions D; : W!(M, &) — W =°d® (M F) of D.

Smooth sections (I"(M, §), (, )) of an A-Hilbert bundle § — M form a pre-Hilbert A-module and spaces (W(4), (, );) are
Hilbert A-modules. See Example 2 item 4 for a definition of the inner product (, ). The adjoint D* of an A-pseudodifferential
operator D is considered with respect to the inner products (, ) on the pre-Hilbert A-modules of smooth sections of the
appropriate bundles. Operators D and D* are pre-Hilbert A-module morphisms, extensions D, are adjointable Hilbert A-
module morphisms, and the symbol map o (D) is a morphism of A-Hilbert bundles.

The definition of A-ellipticity we give below, is a straightforward generalization of the ellipticity of differential operators
and differential complexes that act on bundles with finite dimensional fibers. The first part of the definition appears already
in Solovyov, Troitsky [28].

Definition 7. LetD : I'(M, &) — I'(M, ¥) be an A-pseudodifferential operator. We say that D is A-elliptic if o (D)(§, —) :
& — ¥ is an isomorphism of A-Hilbert bundles for any non-zero & € T*M. Let (p; : § — M);cz be a sequence of A-Hilbert
bundles and (I"(M, &%), d; : I'(M, §') — I'(M, &™1));c;, be a complex of A-pseudodifferential operators. We say that d® is
A-elliptic if and only if the complex of symbol maps (&', o (d;) (£, —))iez is exact for each non-zero & € T*M.

Remark 9. One can show that the Laplace operators A; = d;_¢d} ; + did;, i € Z, of an A-elliptic complex are A-elliptic
operators in the sense of Definition 7. For a proof in the C*-case, see Lemma 9 in Krysl [1]. Let us notice that the assumption
on unitality of A is inessential in the proof of Lemma 9 in [1].

Recall that an A-Hilbert bundle § — M is called finitely generated projective if its fibers are finitely generated and
projective Hilbert A-modules. See Manuilov, Troitsky [9] for information on projective Hilbert A-modules. Let us recall a
theorem of Fomenko and Mishchenko on a relation of the A-ellipticity and the A-Fredholm property.

Theorem 7. Let A be a C*-algebra, M a compact manifold, & — M a finitely generated projective A-Hilbert bundle over M, and
D:I'(M, &) — I'(M, &) an A-elliptic operator. Then the continuous extension

Dy : WE(M, &) - WD (M, §)
is an A-Fredholm morphism for any t € Z.

Proof. See Fomenko, Mishchenko [12] and Remark7. O

Corollary 8. Under the assumptions of Theorem 7, KerD, = KerD for any t € Z. If moreover D is self-adjoint, then also
Ker D;* = KerD forany t € 7Z.

Proof. See Theorem 7 in Krysl [1] for the first claim, and the formula (5) in [1] for the second one. O

Let us notice that the first assertion in Corollary 8 appears as Theorem 2.1.145 on pp. 101 in Solovyov, Troitsky [28].
Now, we use Theorems 2, 6 and a part of Corollary 5 to derive the “main theorem” in which the Hodge theory for A-elliptic
complexes is established for the case of algebras of compact operators, compact manifolds and finitely generated projective
C*-Hilbert bundles.

Theorem 9. Let A be a C*-algebra of compact operators, M be a compact manifold, (p; : & — M)icz be a sequence of finitely
generated projective A-Hilbert bundles over M and d* = (I'(M, &%),d; : '(M, &) — I'(M, &)z be a complex of A-
differential operators. If d® is A-elliptic, then for eachi € Z

(1) d* is of Hodge type, i.e., I'(M, &) = Ker A; ® Im df @ Imd;_;.

(2) Kerd; = Ker A; @ Imd;_1.

(3) Kerd; = Ker Aj1q @ Imdj, ;.

(4) Im A; =Im di*I @ Im d;k

(5) The cohomology group H'(d*) is a finitely generated projective Hilbert A-module that is isomorphic to the A-Hilbert module
Ker A;.
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Proof. Since d* is an A-elliptic complex, the associated Laplace operators are A-elliptic (Remark 9) and self-adjoint.
According to Theorem 7, the extensions (A;), are A-Fredholm for any t € Z.

LetussetD = A, U = I'(M, §),V = W (M, &), and W = WO(M, &) considered with the appropriate inner
products. Then U is a vector subspace of V. 1 W. Since 4; is A-elliptic, Ker A; = Ker (4;); = Ker (4;); due to Corollary 8.
Because the operator D is of finite order, D~'(I"(M, &%), D*"Y(I"(M, &) € I'(M, &). The normon U = I'(M, &)
coincides with the norm on W = WO(M, &) restricted to U and the norm | |y on U is dominated by the norm ||y on
V = weod® (M, €' restricted to U. Thus, the assumptions of Theorem 6 are satisfied and we may conclude, that A; is a
self-adjoint parametrix possessing morphism, and thus, d* is self-adjoint parametrix possessing according to the definition.
The assertions in items 1-4 follow from the corresponding assertions of Theorem 2.

Using Theorem 2 item 5, Hi(d®) ~ Ker A; as pre-Hilbert modules. Let us notice again that the norm on W°(M, &)
restricted to I"(M, &') coincides with the norm on I"(M, €'). Since Ker A; = Ker (4;)o (Corollary 8) and the latter space
is a Hilbert A-module, the cohomology group is a Hilbert A-module as well and the isomorphism is a Hilbert A-module
isomorphism.

Because (A;)q is A-Fredholm and A is a C*-algebra of compact operators, dimyKer(A;)o < oo by Corollary 5. It follows
by Corollary 8 that the kernel of A; is finitely generated. Hence, the cohomology group Hi(d®) is finitely generated as well.

Since the image of (A;), is closed (Corollary 5), we have W°(M, &%) = Ker (A;)o ®Im (Aj)j and the image (4;); is closed
both due to the Mishchenko theorem (Theorem 3.2 in Lance [8]). Consequently, Ker A; = Ker (A;)o is a projective A-Hilbert
module by Theorems 3.1 and 1.3 in Fomenko, Mishchenko [12]. O

Remark 10. Let us notice that if the assumptions of Theorem 9 are satisfied, the cohomology groups share the properties of
the fibers in the sense that they are finitely generated projective A-Hilbert modules.
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