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1 Introduction

I have said the 21st century might be the era of quantum mathematics or, if you like, of infinite-
dimensional mathematics. What could this mean? Quantum mathematics could mean, if we get
that far, ‘understanding properly the analysis, geometry, topology, algebra of various non-linear
function spaces’, and by ‘understanding properly’ I mean understanding it in such a way as to
get quite rigorous proofs of all the beautiful things the physicists have been speculating about.

Sir Michael Atiyah

In the literature, topics contained in this thesis are treated rather separately. From a philo-
sophical point of view, a common thread of themes that we consider is represented by the above
quotation of M. Atiyah. We are inspired by mathematical and theoretical physics.

The content of the thesis concerns analysis, differential geometry and representation theory
on infinite dimensional objects. A specific infinite dimensional object which we consider is the
Segal–Shale–Weil representation of the metaplectic group. This representation originated in
number theory and theoretical physics. We analyze its tensor products with finite dimensional
representations, induce it to metaplectic structures defined over symplectic and contact projective
manifolds obtaining differential operators whose properties we study. From other point of view,
differential geometry uses the infinite dimensional algebraic objects to obtain vector bundles and
differential operators, that we investigate by generalizing analytic methods known currently –
namely by a Hodge theory for complexes in categories of specific modules over C∗-algebras.

Results described in the thesis arose from the year 2003 to the year 2016. At the beginning,
we aimed to classify all first order invariant differential operators acting between bundles
over contact projective manifolds that are induced by those irreducible representations of the
metaplectic group which have bounded multiplicities. See Krýsl [41] for a result. Similar results
were achieved by Fegan [14] in the case of irreducible finite rank bundles over Riemannian
manifolds equipped with a conformal structure. In both cases, for any such two bundles, there
is at most one first order invariant differential operator up to a scalar multiple.1 The condition
for the existence in the case of contact projective manifolds is expressed by the highest weight of
the induced representation considered as a module over a suitable simple group, by a conformal
weight, and by the action of −1 ∈ R×. The result is based on a decomposition of the tensor
product of an irreducible highest weight sp(2n,C)-module that has bounded multiplicities with
the defining representation of sp(2n,C) into irreducible submodules. See Krýsl [40]. For similar
classification results in the case of more general parabolic geometries and bundles induced by
finite dimensional modules, see Slovák, Souček [71].

Our next research interest, described in the thesis, was the de Rham sequence tensored
by the Segal–Shale–Weil representation. From the algebraic point of view, the Segal–
Shale–Weil representation (SSW representation) is an L2-globalization of the direct sum of two
specific infinite dimensional Harish-Chandra (g,K)-modules with bounded multiplicities over
the metaplectic Lie algebra, which are called completely pointed. We decompose the de Rham
sequence with values in the mentioned direct sum into sections of irreducible bundles, i.e., bundles
induced by irreducible representations. See Krýsl [38]. For a 2n dimensional symplectic manifold

1and up to operators of the zeroth order. See section 4.3.
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with a metaplectic structure, the bundle of exterior forms of degree i, i ≤ n, with values in
the Segal–Shale–Weil representation decomposes into 2(i + 1) irreducible bundles. For i ≥ n,
the number of such bundles is 2(2n − i + 1). It is known that the decomposition structure of
completely reducible representations is connected to the so-called Schur–Weyl–Howe dualities.
See Howe [29] and Goodman, Wallach [20]. We use the decomposition of the twisted de Rham
sequence to obtain a duality for the metaplectic group which acts in this case, on the exterior
forms with values in the SSW representation. See Krýsl [46]. The dual partner to the metaplectic
group appears to be the orthosymplectic Lie superalgebra osp(1|2).

Any Fedosov connection (i.e., a symplectic and torsion-free connection) on a symplectic mani-
fold with a metaplectic structure defines a covariant derivative on the symplectic spinor bundle
which is the bundle induced by the Segal–Shale–Weil representation. We prove that twisted de
Rham derivatives map sections of an irreducible subbundle into sections of at most three irre-
ducible subbundles. Next, we are interested in the quite fundamental question on the structure
of the curvature tensor of the symplectic spinor covariant derivative similarly as one does in
the study of the curvature of a Levi-Civita or a Riemannian connection. Inspired by results of
Vaisman in [75] on the curvature tensors of Fedosov connections, we derive a decomposition of
the curvature tensor on symplectic spinors. See Krýsl [42]. Generalizing this decomposition, we
are able to find certain subcomplexes of the twisted de Rham sequence, that are called symplec-
tic twistor complexes in a parallel to the spin geometry. These complexes exist under specific
restrictions on the curvature of the Fedosov connection. Namely, the connection is demanded to
be of Ricci-type. See Krýsl [43]. Further results based on the decomposition of the curvature
concern a relation of the spectrum of the symplectic spinor Dirac operator to the spectrum of
the symplectic spinor Rarita–Schwinger operator. See Krýsl [39]. The symplectic Dirac operator
was introduced by K. Habermann. See [23]. The next result is on symplectic Killing spinors. We
prove that if there exists a non-trivial (i.e., not covariantly constant) symplectic Killing spinor,
the connection is not Ricci-flat. See [45].

Since the classical theories on analysis of elliptic operators on compact manifolds are not
applicable in the case of the de Rham complex twisted by the Segal–Shale–Weil representation,
we tried to develop a Hodge theory for infinite rank bundles. We use and elaborate ideas of
Mishchenko and Fomenko ([58] and [59]) on generalizations of the Atiyah–Singer index theorem
to investigate cohomology groups of infinite rank elliptic complexes concerning their topological
and algebraic properties. We work in the categories PH∗A and H∗A whose objects are pre-Hilbert
C∗-modules and Hilbert C∗-modules, respectively, and whose morphisms are adjointable maps
between the objects. These notions go back to the works of Kaplansky [31], Paschke [62] and
Rieffel [63]. Analyzing proofs of the classical Hodge theory, we are lead to the notion of a Hodge-
type complex in an additive and dagger category. We introduce a class of self-adjoint parametrix
possessing complexes, and prove that any self-adjoint parametrix possessing complex in PH∗A is
of Hodge-type. Further, we prove that in H∗A the category of self-adjoint parametrix possessing
complexes coincides with the category of the Hodge-type ones. Using these results, we show that
an elliptic complex on sections of finitely generated projective Hilbert C∗-bundles over compact
manifolds are of Hodge-type if the images of the Laplace operators of the complex are closed. The
cohomology groups of such complexes are isomorphic to the kernels of the Laplacians and they
are Banach spaces with respect to the quotient topology. Further, we prove that the cohomology
groups are finitely generated projective Hilbert C∗-modules. See Krýsl [47]. Using the result
of Bakić and Guljaš [2] for modules over a C∗-algebra of compact operators K, we are able to
remove the condition on the closed image. We prove in [51] that elliptic complexes of differential
operators on finitely generated projective K-Hilbert bundles are of Hodge-type and that their
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cohomology groups are finitely generated projective Hilbert K-modules. See Krýsl [48], [49] and
[50] for a possible application connected to the quotation of Atiyah.

We find it more appropriate to mention author’s results and their context in Introduction,
and treat motivations, development of important notions, and most of the references in Chapters
2 and 3. In the 2nd Chapter, we recall a definition, realization and characterization of the Segal–
Shale–Weil representation. In Chapter 3, symplectic manifolds, Fedosov connections, metaplectic
structures, symplectic Dirac and certain related operators are introduced. Results of K. and L.
Habermann on global analysis related to these operators are mentioned in this part as well.
Chapter 4 of the thesis contains own results of the applicant. We start with the appropriate
representation theory and Howe-type duality. Then we treat results on the twisted de Rham
derivatives, curvature of the symplectic spinor derivative and twistor complexes. Symplectic
Killing spinors are defined in this part as well. We give a classification of the invariant operators
for contact projective geometries together with results on the decomposition of the appropriate
tensor products in the third subsection. The fourth subsection is devoted to the Hodge theory.
The last part of the thesis consists of selected articles published in the period 2003–2016.
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2 Symplectic spinors

The discovery of symplectic spinors as a rigorous mathematical object is attributed to I. E. Segal,
D. Shale and A. Weil. See Shale [66] and Weil [80]. Segal and Shale considered the real symplectic
group as a group of canonical transformations and were interested in a certain quantization of
Klein–Gordon fields. Weil was interested in number theory connected to theta functions, so
that he considered more general symplectic groups than the ones over the real numbers. Let
us notice, that this representation appeared in works of van Hove (see Folland [15], p. 170) at
the Lie algebra level and can be found in certain formulas of Fresnel in wave optics already (see
Guillemin, Sternberg [22], p. 71).

When doing quantization, one has to assign to “any” function defined on the phase space
of a considered classical system an operator acting on a certain function space – a Hilbert
space by a rule. Usually, smooth functions are considered to represent the right class for the
set of quantized functions. The prescription shall assign to the Poisson bracket of two smooth
functions a multiple of the commutator of the operators assigned to the individual functions.
The multiple is determined by “laws of nature”. It equals to (ı})−1, where ı is a fixed root
of −1 and } is the Planck constant over 2π. Thus, in the first steps, the quantization map
is demanded to be a Lie algebra homomorphism up to a multiple. In further considerations,
there is a freedom allowed in the sense that the image of a Poisson bracket need not be the
(ı})−1 multiple of the commutator precisely, but the so-called deformations are allowed. (See
Waldmann [77] and also Markl, Stasheff [54] for a framework of quite general deformations.)
This tolerance is mainly because of the Groenewold–van Hove no go theorem (see Waldmann
[77]). Analytically, deformations are convergent series in the small variable }. Their connection
to the formal deformations is given by the so called Borel lemma [77].

The state space of a classical system with finite degrees of freedom is modeled by a symplectic
manifold (M,ω). The state space of a point particle moving in an n-dimensional vector space
or n point particles on a line is the space R2n or the intersection of open half-spaces in it,
respectively. Considering the coordinates q1, . . . , qn, and p1, . . . , pn on R2n where qi projects
onto the i-th coordinate and pi onto the (n + i)-th one, ω equals to

∑n
i=1 dq

i ∧ dpi, or to its
restriction to the intersection, respectively.

The group of all linear maps Φ on R2n which preserve the symplectic form, i.e., Φ∗ω = ω,
is called the symplectic group. Elements of this group do not change the form of dynamic
equations governing non-quantum systems – the Hamilton’s equations. In this way, they coincide
with linear canonical transformations used in Physics.2 See, e.g., Arnold [1] or Marsden, Ratiu
[55].

The symplectic group G = Sp(2n,R) is an n(2n + 1) dimensional Lie group. Its maximal
compact subgroup is isomorphic to the unitary group U(n) determined by choosing a compatible
positive linear complex structure, i.e., an R-linear map J : R2n → R2n such that 1) J2 = −1R2n

and 2) the bilinear map g : R2n×R2n → R given by g(v, w) = ω(v, Jw) is symmetric and positive
definite, i.e., a scalar product. The unitary group can be proved diffeotopic to the circle S1, and
consequently, its first fundamental group is isomorphic to Z. Thus, for each m ∈ N, Sp(2n,R)

has a unique non-branched m-folded covering λ(m) : ˜mSp(2n,R) → Sp(2n,R) up to a covering
isomorphism. We fix an element e in the preimage of the neutral element in Sp(2n,R) on the
two fold covering. The unique Lie group such that its neutral element is e and such that the

2The system is supposed to be non-dissipative, i.e., its Hamiltonian function does not depend on time.
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covering map is a Lie group homomorphism is called the metaplectic group, or if we wish,

the real metaplectic group. We set λ = λ(2) and G̃ = Mp(2n,R) = ˜2 Sp(2n,R). We denote the

λ-preimage of U(n) by K̃.

So far, the construction of the metaplectic group was rather abstract. One of the basic results
of the structure theory of Lie groups is that this is unavoidable indeed. By this we mean that
there is no faithful representation of Mp(2n,R) by matrices on a finite dimensional vector
space. Otherwise said, the metaplectic group cannot be realized as a Lie subgroup of any finite
dimensional general linear group. Following Knapp [32], we prove this statement.

Theorem 1: The connected double cover Mp(2n,R) does not have a realization as a Lie sub-
group of GL(W ) for a finite dimensional vector space W.

Proof. Let us suppose that there exists a faithful representation η′ : G̃ → Aut(W ) of the
metaplectic group on a finite dimensional space W. This representation gives rise to a faithful
representation η : G̃→ Aut(WC) on the complexified vector space WC. This map is injective by
its construction. The corresponding Lie algebra representation, i.e., the map η∗ : g̃→ End(WC)
is well defined because of the finite dimension of WC. Consequently, we have the commutative
diagram

g̃

λ∗

��

η∗ // End(WC)

g
j′
// sp(2n,C)

φ′

OO

where g is the Lie algebra of the appropriate symplectic group, j′ is the natural inclusion and
φ′ is defined by φ′(A + ıB) = η∗λ

−1
∗ (A) + ıη∗λ

−1
∗ (B), A,B ∈ g. Taking the exponential of the

Lie algebra sp(2n,C) ⊆ End(C2n), we get the group Sp(2n,C). Because this group is simply
connected, we get a representation φ : Sp(2n,C) → Aut(WC) which integrates φ′ in the sense
that φ∗ = φ′. Because λ∗, η∗ and also φ∗ are derivatives at 1 of the corresponding Lie groups
representations, and j′ is the derivative at 1 ∈ G of the canonical inclusion j : G → Sp(2n,C),
we obtain a corresponding diagram at Lie groups level which is commutative as well. Especially,
we have η = φ ◦ j ◦ λ. However, the right hand side of this expression is not injective whereas
the left hand side is. This is a contradiction. �

Remark: The complex orthogonal group SO(n,C) is not simply connected, so that the above

proof does not apply for G = SO(n,R) and its connected double cover G̃ = Spin(n,R). If it
applied, Spin(n,R) would not have any faithful finite dimensional representation.

2.1 The Segal–Shale–Weil representation

For the canonical symplectic vector space (R2n, ω), a group H(n) = R2n×R is assigned in which
the group law is given by

(v, t) · (w, s) = (v + w, s+ t+
1

2
ω(v, w))

where (v, t), (w, s) ∈ H(n). This is the so called Heisenberg group H(n) of dimension 2n+ 1.
Let us set L = Rn×{0}×{0} ⊆ H(n) and L′ = {0}×Rn×{0} for the vector space of initial space
and for the vector space of initial impulse conditions, respectively. In particular, the symplectic
vector space R2n is isomorphic to the direct sum L⊕ L′.
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For any u′ ∈ H(n), we have a unique t ∈ R and q ∈ L, p ∈ L′ such that u′ = (q, p, t). The
Schrödinger representation Sch of the Heisenberg group Sch : H(n)→ U(L2(L)) is given by

(Sch((q, p, t))f)(x) = e2πıt+πıω(q,p)+2πıω(x,p)f(x+ q)

where q, x ∈ L, p ∈ L′, t ∈ R, and f ∈ L2(L). It is an irreducible representation. See Folland
[15]. (By ω(x, p), we mean ω((x, 0), (0, p)) and similarly for ω(q, p).)

We may “twist” this representation in the following way. For any g ∈ G, we set lg : H(n)→
H(n), lg(u, t) = (gu, t), where u ∈ R2n and t ∈ R. Consequently, we obtain a family of represen-
tations Sch◦lg of the Heisenberg group H(n) parametrized by elements g of the symplectic group
G. The action of the center of H(n) is the same for each member of the family (Sch ◦ lg)g∈G.
Namely, (Sch ◦ lg)(0, 0, t) = e2πıt, t ∈ R. Let us recall the Stone–von Neumann theorem. For a
proof, we refer to Folland [15] or Wallach [78].

Theorem 2 (Stone–von Neumann): Let T be an irreducible unitary representation of the Heisen-
berg group on a separable infinite dimensional Hilbert space H. Then T is unitarily equivalent
to the Schrödinger representation.

By Stone–von Neumann theorem, we find a unitary operator Cg : L2(L) → L2(L) that
intertwines Sch ◦ lg and Sch for each g ∈ G.3 By Schur lemma for irreducible unitary rep-
resentations (see Knapp [33]), we see that there is a function m : G × G → U(1) such that
CgCg′ = m(g, g′)Cgg′ , g, g

′ ∈ G. In particular, g 7→ Cg is a projective representation of Sp(2n,R)
on the Hilbert space L2(L). It was proved by Shale in [66] and Weil in [80] that it is possible
to lift the cocycle m and the projective representation g 7→ Cg of G to the metaplectic group to
obtain a true representation of the 2-fold cover. We denote this representation by σ and call it
the Segal–Shale–Weil representation. Note that some authors call it the symplectic spinor,
metaplectic or oscillator representation. The representation is unitary and faithful. See, e.g.,
Weil [80], Borel, Wallach [5], Folland [15], Moeglin et al. [60], Habermann, Habermann [26] or
Howe [30].

The “essential” uniqueness of the Segal–Shale–Weil representation with respect to the choice
of a representation of the Heisenberg group is expressed in the next theorem.

Theorem 3: Let T : H(n)→ U(W ) be an irreducible unitary representation of the Heisenberg

group on a Hilbert space W and σ′ : G̃ → U(W ) be a non-trivial unitary representation of the

metaplectic group such that for all (v, t) ∈ H(n) and g ∈ G̃

σ′(g)T (v, t)σ′(g)−1 = T (λ(g)v, t).

Then there exists a deck transformation γ of λ, such that σ′ is equivalent either to σ ◦ γ or to
σ∗ ◦ γ, where σ∗(g) = τσ(g)τ and (τ(f))(x) = f(x), x ∈ Rn, g ∈ G̃ and f ∈ L2(Rn).
Proof. See Wallach [78], p. 224. �

Remark: Let us recall that a deck transformation γ is any continuous map which satisfies
λ ◦ γ = λ. Note that in the case of the symplectic group covered by the metaplectic group,
a deck transformation is either the identity map or the map “interchanging” the leaves of the
metaplectic group.

3We say that C :W →W intertwines a representation T : H → Aut(W ) of the group H if C ◦T (h) = T (h)◦C
for each h ∈ H.
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2.2 Realization of symplectic spinors

There are several different objects that one could call a symplectic basis. We choose the one which
is convenient for considerations in projective contact geometry. (See Yamaguchi [82] for a similar
choice.) If (V, ω) is a symplectic vector space of dimension 2n over a field k of characteristic
zero, we call a basis (ei)

2n
i=1 of V a symplectic basis if ω(ei, ej) = δi,2n+1−j for 1 ≤ i ≤ n and

1 ≤ j ≤ 2n, and ω(ei, ej) = −δi,2n+1−j for n + 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2n. Thus, with respect
to a symplectic basis, the matrix of the symplectic form is

(ωij) =

(
0 K

−K 0

)

where K is the following n× n matrix

K =


0 . . . 0 1
0 . . . 1 0
... . .

. ...
...

1 . . . 0 0

 .

Further, we denote by ωij , i, j = 1, . . . , 2n, the coordinates which satisfy
∑2n
k=1 ωikω

jk =

δji for each i, j = 1, . . . , 2n. They define a bilinear form ω∗ : V ∗ × V ∗ → k, e.g., by setting

ω∗ =
∑2n
i,j=1 ω

ijei ∧ ej . We use ωij and ωij to rise and lower indices of tensors over V. For

coordinates Kab...c...d
rs...t...u of a tensor K on V, we denote the expression

∑2n
c=1 ω

icKab...c...d
rs...t

by Kab...
i
...d

rs...t
and

∑2n
t=1Kab...c

rs...t...uωti by Kab...c
rs...

i
...u and similarly for other types of

tensors and in the geometric setting when we consider tensor fields on symplectic manifolds.

Remark: Let (R2n, ω) be the canonical symplectic vector space introduced at the beginning of
this Chapter. Then the canonical arithmetic basis of R2n is not a symplectic basis according to
our definition unless n = 1.

Let us denote the λ-preimage of g ∈ Sp(2n,R) by g̃. Suppose A,B ∈ Mn(R), A is invertible

and Bt = B. We define the following representation of G̃ on L2(Rn)

(σ(h1)f)(x) = ±e−πıg0(Bx,x)/2f(x) for any h1 ∈ g̃1, g1 =

(
1 0
B 1

)
(σ(h2)f)(x) =

√
detA−1f(A−1x) for any h2 ∈ g̃2, g2 =

(
A 0
0 A−1t

)
(σ(h3)f)(x) = ±ıneπın/4(Ff)(x) for any h3 ∈ g̃3, g3 = J0 =

(
0 −1
1 0

)
where f ∈ L2(Rn) and x ∈ Rn. The ± signs and the square roots in the definition of σ(hi) depend
on the specific element in the preimage of gi. The coordinates of gi, i = 1, 2, 3, are considered with
respect to the canonical basis of R2n. See Folland [15]. Notice that we use the Fourier transform
defined by (Ff)(y) =

∫
x∈Rn e

−2πıg0(x,y)f(x)dx, y ∈ Rn, with respect to the Lebesgue measure
dx on Rn induced by the scalar product g0(x, y) = ω(x, J0y), (x, 0), (y, 0) ∈ Rn × {0} ' L.
Elements of type g1, g2 and g3 generate Sp(V, ω). See Folland [15]. Note that in Habermann,
Habermann [26], a different convention for the Fourier transform is used. Note that L2(Rn)

decomposes into the direct sum L2(Rn)+⊕L2(Rn)− of irreducible G̃-modules of the even and of
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the odd functions in L2(Rn). For a proof that σ is a representation, see Folland [15] or Wallach
[78] for instance. For a proof that σ intertwines the Schrödinger representation of the Heisenberg
group, see Wallach [78], Habermann, Habermann [26] or Folland [15]. A proof that L2(L)± are
irreducible is contained in Folland [15].

Taking the derivative σ∗ at the unit element of G̃ of the representation σ restricted to smooth
vectors in L2(L), we get the representation σ∗ : g̃→ End (S) of the Lie algebra of the metaplectic
group on the vector space S = S(L) of Schwartz functions on L. See Borel, Wallach [5] and Folland
[15] where the smooth vectors are determined. Note that, we have S ' S+ ⊕ S− similarly as
in the previous decomposition. For n × n real matrices B = Bt, C = Ct and A, we have (see
Folland [15])

σ∗(X) =
1

4πı

n∑
i,j=1

Bij
∂2

∂xi∂xj
for X =

(
0 B
0 0

)

σ∗(Y ) = −πı
n∑

i,j=1

Cijx
ixj for Y =

(
0 0
C 0

)

σ∗(Z) = −
n∑

i,j=1

Aijx
j ∂

∂xi
− 1

2

n∑
i=1

Aii for Z =

(
A 0
0 −At

)
.

It follows that

σ∗(J0) = ı

n∑
i=1

(
1

4π

∂2

∂(xi)2
− π(xi)2

)
.

Definition 1: For any m ∈ N0, we set hm(x) = 21/4
√
m!

( −1
2
√
π

)meπx
2 dm

dxm (e−2πx2

). For n ∈ N and

α ∈ Nn0 , we define the Hermite function hα with index α = (α1, . . . , αn) by hα(x1, . . . , xn) =
hα1(x1) . . . hαn(xn), (x1, . . . , xn) ∈ Rn.

Remark: For Hermite functions, see Whittaker, Watson [81] and Folland [15]. We use the

convention of Folland [15]. Especially, h0(x) = 21/4e−πx
2

.

Well known properties of Hermite functions make us able to derive that for any α = (α1, . . .
. . . , αn) ∈ Nn0

σ∗(J0)hα = −ı(|α|+ n

2
)hα

where |α| =
∑n
i=1 αi. Thus, the Hermite functions are eigenfunctions of σ∗(J0).

2.3 Weyl algebra and Symplectic spinor multiplication

Let k be a field of characteristic zero. For any n ∈ N, the Weyl algebra Wn over k is the
associative algebra generated by elements 1 ∈ k, a1, . . . , an and b1, . . . , bn satisfying to the
relations 1ai = ai1, 1bi = bi1, aibj − bjai = −δij1, aiaj = ajai, bibj = bjbi, 1 ≤ i, j ≤ n.
It is known that Wn has a faithful representation on the space of polynomials k[q1, . . . , qn] given
by 1 7→ 1 (multiplication by 1), ai 7→ qi and bi 7→ ∂

∂qi , where qi denotes the multiplication of a

polynomial by qi and ∂
∂qi is the partial derivative in the i-th variable. See, e.g., Björk [3].
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Any associative algebra A over field k can be equipped with the commutator

[ , ] : A×A→ A

defined by [x, y] = xy − yx, x, y ∈ A, making it a Lie algebra. The Heisenberg Lie algebra
Hn is the real vector space R2n+1[q1, . . . , qn, p1, . . . , pn, t] with the Lie bracket

[ , ] : Hn ×Hn → {0} × {0} × R ⊆ Hn

prescribed on basis by [∂t, ∂qi ] = [∂t, ∂pi ] = [∂qi , ∂qj ] = [∂pi , ∂pj ] = 0 and [∂qi , ∂pj ] = −δij∂t,
1 ≤ i, j ≤ n. Note that [ , ] is not the Lie bracket of vector fields in this case. It is the Lie algebra
of the Heisenberg group H(n) and it is isomorphic (as a Lie algebra) to

Wn(1) = {τ1 +

n∑
i=1

(αiai + βibi)| τ, αi, βi ∈ R, i = 1, . . . , n} ⊆Wn

equipped with the commutator as the Lie algebra bracket. An isomorphism can be given on a
basis by ∂t 7→ 1, ∂qi 7→ ai, ∂pi 7→ bi, i = 1, . . . , n.

For a symplectic vector space (V, ω) of dimension 2n over R, let us choose a symplectic basis
(ei)

2n
i=1 and consider the tensor algebra

A = T (V C) = C⊕ V C ⊕ (V C ⊗ V C)⊕ · · · .

Let us set sCliff(V, ω) = A/I, where I is the two sided ideal generated over A by elements
v ⊗w−w⊗ v + ıω(v, w), v, w ∈ V C. The complex associative algebra sCliff(V, ω) is called the
symplectic Clifford algebra. Let us consider the map 1 7→ 1, en+i 7→ −ai and en+1−i 7→ ıbi,
i = 1, . . . , n, which extends to a homomorphism of associative algebras sCliff(V, ω) and Wn

for k = C. It is not difficult to see that this map is an isomorphism onto Wn. Summing up, Wn

and sCliff(V, ω) are isomorphic as associative algebras. The Heisenberg Lie algebra Hn embeds
homomorphically into sCliff(V, ω) (considered as a Lie algebra with respect to the commutator)
via ∂t 7→ 1, ∂qi 7→ −en+i and ∂pi 7→ ıen+1−i, i = 1, . . . , n.

Remark: Note that there is an isomorphism of the Heisenberg Lie algebra Hn with k1[q1, . . . ,
. . . qn, p1, . . . , pn], the space of degree one polynomials in qi, pi (i = 1, . . . , n), equipped with the
Poisson bracket

{f, g}P =

n∑
i,j=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
where f, g ∈ k1[q1, . . . , qn, p1, . . . , pn].

We come to the following important definition.

Definition 2: Let (ei)
2n
i=1 be a symplectic basis of (V, ω). For i = 1, . . . , n and f ∈ S, we set

ei · f = ıxif and ei+n · f =
∂f

∂xn−i+1

and extend it linearly to V. The map · : V × S → S is called the symplectic spinor multipli-
cation.

Remark: In the preceding definition, f ∈ S(Rn) and xi denotes the projection onto the i-th
coordinate in Rn. Note that the symplectic spinor multiplication depends on the choice of a
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symplectic basis. Because of its equivariant properties (see Habermann [26], p. 13), one can use
the multiplication on the level of bundles. In this case, we denote it by the dot as well. Note that
the equivariance of the symplectic Clifford multiplication with respect to the Segal–Shale–Weil
representation makes the definitions of the symplectic spinor Dirac, the second symplectic spinor
Dirac and the associated operator correct.

3 Symplectic spinors in differential geometry

Let us recall that a symplectic manifold is a manifold equipped with a closed non-degenerate
exterior differential 2-form ω.

One of the big achievements of Bernhard Riemann in geometry is a definition of the curvature
(Krümmungsmaß) in an arbitrary dimension. After publishing of his Habilitationsschrift, Levi-
Civita and Riemannian connections became fundamental objects for metric geometries. Intrinsic
notions and properties (such as straight lines, angle deficits, parallelism etc.) of many geometries
known in that time can be defined and investigated by means of them. Using these connections,
one can find out quite easily, whether the given manifold is locally isometric to the Euclidean
space.

Definition 3: Let (M,ω) be a symplectic manifold. An affine connection ∇ on M is called
symplectic if ∇ω = 0. Such a connection is called a Fedosov connection if it is torsion-free.

For symplectic connections, see, e.g., Libermann [52], Tondeur [74], Vaisman [75] and Gelfand,
Retakh, Shubin [19]. In contrast to Riemannian geometry, we have the following theorem which
goes back to Tondeur [74]. See Vaisman [75] for a proof.

Theorem 4: The space of Fedosov connections on a symplectic manifold (M,ω) is isomorphic
to an affine space modeled on the infinite dimensional vector space Γ(S3TM), where S3TM
denotes the third symmetric product of the tangent bundle of M.

Remark: Note that due to a theorem of Darboux (see McDuff, Salamon [56]), all symplectic
manifolds of equal dimension are locally equivalent. In particular, symplectic connections cannot
serve for distinguishing of symplectic manifolds in the local sense. From the eighties of the last
century, symplectic connections gained an important role in mathematical physics. They became
crucial for quantization procedures. See Fedosov [13] and Waldmann [77].

Let (M2n, ω) be a symplectic manifold and ∇ be a Fedosov connection. The curvature
tensor field of ∇ is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

where X,Y, Z ∈ X(M). A local symplectic frame (U, (ei)
2n
i=1) of (M,ω) is an open subset

U in M and a sequence of vector fields ei on U such that ((ei)m)2n
i=1 is a symplectic basis of

(TmM,ωm) for each m ∈ U.

Let (U, (ei)
2n
i=1) be a local symplectic frame. For X =

∑2n
i=1X

iei, Y =
∑2n
i=1 Y

iei, Z =

10



∑2n
i=1 Z

iei, V =
∑2n
i=1 V

iei ∈ X(M), Xi, Y i, Zi, V i ∈ C∞(U), and i, j, k, l = 1, . . . , 2n, we set

Rijkl = ω(R(ek, el)ej , ei)

σ(X,Y ) = Tr(V 7→ R(V,X)Y ), V ∈ X(M)

σij = σ(ei, ej)

σijkl =
1

2(n+ 1)
(ωilσjk − ωijσlk + ωjlσik − ωjlσik + 2σijωkl)

σ̃(X,Y, Z, V ) =

2n∑
i,j,k,l=1

σijklX
iY jZkV l

W = R− σ̃

where at the last row, R represents the (4, 0)-type tensor field
∑2n
i,j,k,l=1Rijklε

i⊗ εj ⊗ εk⊗ εl and

(εi)2n
i=1 is the frame dual to (ei)

2n
i=1.

Definition 4: We call W the symplectic Weyl curvature. The (2, 0)-type tensor field σ is
called the symplectic Ricci curvature. A symplectic manifold with a Fedosov connection is
called of Ricci-type if W = 0 and it is called Ricci-flat if σ = 0.

Let (M,ω) be a symplectic manifold. We set

Q = {f is a symplectic basis of (TmM,ωm)|m ∈M}

and call it the symplectic repère bundle. For any f = (e1, . . . , e2n) ∈ Q, we denote by πQ(f)
the unique point m ∈ M such that each vector in f belongs to TmM. The topology on Q is
the coarsest one for which πQ is continuous. It can be seen that πQ : Q → M is a principal
Sp(2n,R)-bundle.

Definition 5: A pair (P,Λ) is called a metaplectic structure if πP : P → M is a principal
Mp(2n,R)-bundle over M and Λ : P → Q is a principal bundle homomorphism such that the

following diagram commutes. The horizontal arrows denote the actions of G̃ and G, respectively.

P × G̃

Λ×λ

��

// P

Λ

��

πP

��

M

Q×G // Q

πQ

>>

A compatible positive almost complex structure J on a symplectic manifold (M,ω) is
any endomorphism J : TM → TM such that J2 = −1TM and such that g(X,Y ) = ω(X, JY ),
X, Y ∈ X(M), is a Riemannian metric. In particular, g is a symmetric tensor field. Note that J is
an isometry and a symplectomorphism as well. A compatible positive almost complex structure
always exists on a symplectic manifold (M,ω). See, e.g., McDuff, Salamon [56], pp. 63 and 70,
for a proof.

Remark: Note that a Kähler manifold can be defined as a symplectic manifold equipped with a
Fedosov connection ∇ and a compatible positive almost complex structure J such that ∇J = 0,
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i.e., J is ∇-flat. Especially, any Kähler manifold is symplectic. The first example of a compact
symplectic manifold which does not admit any Kähler structure was given by Thurston [72].
He was inspired by a review note of Libermann [53] who comments a mistake in an article of
Guggenheimer [21]. See also the review [28] of the Guggenheimer’s article by Hodge.

In the following theorem, a condition for the existence of a metaplectic structure is given.

Theorem 5: Let (M,ω) be a symplectic manifold and J be a compatible positive almost complex
structure. Then (M,ω) possesses a metaplectic structure if and only if the second Stiefel-Whitney
class w2(TM) of TM vanishes if and only if the first Chern class c1(TM) ∈ H2(M,Z) of (TM, J)
is even.
Proof. See Kostant [36] and Forger, Hess [16], p. 270. �

Remark: An element a ∈ H2(M,Z) is called even if there is an element b ∈ H2(M,Z) such
that a = 2b. By a Chern class of (TM, J), we mean the Chern class of the complexification
TMC defined with the help of the compatible positive almost complex structure J . See Milnor,
Stasheff [57].

3.1 Habermann’s symplectic Dirac and associated second order oper-
ator

We introduce the symplectic Dirac operators and the associated second order operator of K.
Habermann. Note that there exists a complex version of the metaplectic structure (so-called
Mpc-structure), and also of the mentioned operators. See Robinson, Rawnsley [64] and Cahen,
Gutt, La Fuente Gravy and Rawnsley [10]. Let us notice that Mpc structures exist globally on
any symplectic manifold (see [64]). Generalizations of many results of Habermann, Habermann
in [26] to the Mpc-case are straightforward (see [10]).

Definition 6: Let (M2n, ω) be a symplectic manifold admitting a metaplectic structure (P,Λ).
The associated bundle S = P ×σ S is called the symplectic spinor or the Kostant’s bundle.
Its smooth sections are called symplectic spinor fields.

After introducing the Kostant’s bundle, we can set up definitions of the differential operators.

Definition 7: Let ∇ be a symplectic connection on a symplectic manifold (M,ω) admitting
a metaplectic structure (P,Λ). Consider the principal connection TQ → sp(2n,R) induced
by ∇ and its lift Z : TP → g̃ to the metaplectic structure. The associated covariant derivative
∇S : Γ(S)→ Γ(S⊗T ∗M) on symplectic spinor fields is called the symplectic spinor covariant
derivative. Let (U, (ei)

2n
i=1) be a local symplectic frame. The operator D : Γ(S)→ Γ(S) defined

for any φ ∈ Γ(S) by

Dφ =

2n∑
i,j=1

ωijei · ∇Sejφ

is called the (Habermann’s) symplectic spinor Dirac operator.

Let J be a compatible positive almost complex structure on a symplectic manifold (M,ω).
A local unitary frame is a local symplectic frame which is orthogonal with respect to the
associated Riemann tensor g(X,Y ) = ω(X, JY ), X, Y ∈ X(M).
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Definition 8: Let J be a compatible positive almost complex structure on a symplectic manifold
which admits a metaplectic structure and (U, (ei)

2n
i=1) be a local unitary frame. The operator

D̃ : Γ(S)→ Γ(S) defined for any φ ∈ Γ(S) by

D̃φ =

2n∑
i=1

(Jei) · ∇Seiφ

is called the second symplectic spinor Dirac operator. The operator P = ı[D̃,D] is called
the associated second order operator.

Remark: The associated second order operator P is elliptic in the sense that its principal
symbol σ(P, ξ) : S → S is a bundle isomorphism for any non-zero cotangent vector ξ ∈ T ∗M.
See Habermann, Habermann [26], p. 68.

For symplectic spinor covariant derivative ∇S and a chosen compatible positive almost com-
plex structure, one defines the formal adjoint (∇S)∗ : Γ(S⊗T ∗M)→ Γ(S) of∇S . See Habermann,
Habermann [26].

Definition 9: The Bochner-Laplace operator on symplectic spinors ∆S : Γ(S) → Γ(S) is
the composition ∆S = (∇S)∗ ◦ ∇S .

Definition 10: The curvature tensor field RS on symplectic spinors induced by a Fedosov
connection ∇ is defined by

RS(X,Y )φ = ∇SX∇SY φ−∇SY∇SXφ−∇S[X,Y ]φ

where X,Y ∈ X(M), φ ∈ Γ(S) and ∇S is the symplectic spinor derivative.

In the next theorem, a relation of the associated second order operator P to the Bochner-
Laplace operator ∆S on symplectic spinors is described. It is derived by K. Habermann, and
it is a parallel to the well known Weitzenböck’s and Lichnerowicz’s formulas for the Laplace
operator of the de Rham differentials (Hodge-Laplace) and the Laplace operator of a Levi-Civita
connection (Bochner-Laplace); and for the square of the Dirac operator and the Laplace operator
of a Lichnerowicz connection on spinors (Lichnerowicz-Laplace), respectively. See, e.g., Friedrich
[18] for the latter formula. We present a version of the Habermann’s theorem for Kähler manifold.
See Habermann, Habermann [26] for more general versions.

Theorem 6: Let (M,ω, J) be a Kähler manifold and (U, (ei)
2n
i=1) be a local unitary frame. Then

for any φ ∈ Γ(S)

Pφ = ∆Sφ+ ı

2n∑
i,j=1

(Jei) · ej ·RS(ei, ej)φ.

Proof. See Habermann, Habermann [26]. �

For complex manifolds of complex dimension one4, Habermann obtains the following conse-
quence of the formula in Theorem 6.

4i.e., Riemann surfaces
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Theorem 7: If M is a Riemann surface of genus g ≥ 2, ω is a volume form on M, and (P,Λ) is
a metaplectic structure, then the kernel of the associated second order operator is trivial.
Proof. See Habermann [25]. �

Remark: In [24] and [25], Habermann proves that for T 2 (g = 1) and the trivial metaplectic
structure, the null space for P is isomorphic to the Schwartz space S = S(R). In the case of the
(trivial) metaplectic structure on the sphere, the kernel of the associated second order operator
is rather complicated. See Habermann [25] or Habermann, Habermann [26]. In the case of
genus g = 1 and non-trivial metaplectic structures, the kernel of P is trivial as well. For it, see
Habermann [25].

For further results on spectra and null-spaces of the introduced operators, see Brasch, Haber-
mann, Habermann [6], Cahen, La Fuente Gravy, Gutt, Rawnsley [10] and Korman [35]. The key
features used are the Weitzenböck-type formula (Theorem 6) and an orthogonal decomposition
of the Kostant’s bundle. To our knowledge, this decomposition was used firstly by Habermann
in this context. It is derived from a K̃-isomorphism between L2(Rn) and the Hilbert orthogonal
sum

⊕∞
m=0 Hm of the spaces

Hm =
⊕

α,|α|≤m

Chα, m ∈ N0.

Recall that K̃ denotes the preimage in the metaplectic group of the unitary group U(n) by the
covering λ. (See Habermann, Habermann [26], p. 18 for a description of the isomorphism.)

3.2 Quantization by symplectic spinors

For a symplectic manifold (M,ω) and a smooth function f on M, we denote by Xf the vector
field ω-dual to df, i.e., such a vector field for which

ω(Xf , Y ) = (df)Y

for any Y ∈ X(M). It is called the Hamiltonian vector field of f. A vector field is called symplectic
if its flow preserves the symplectic form. Any Hamiltonian vector field is symplectic but not vice
versa. For a study of these notions, we refer to the monograph McDuff, Salamon [56]. Note that
in this formalism, a Poisson bracket of two smooth functions f, g on M is defined by

{f, g}P = ω(Xf , Xg).

Let (M,ω) be a symplectic manifold admitting a metaplectic structure. For a symplectic
vector field Y , let LY denote the Lie derivative on the sections of the Kostant’s bundle in
direction Y. See Habermann, Klein [27] and Kolář, Michor, Slovák [34].

Definition 11: Let (M,ω) be a symplectic manifold admitting a metaplectic structure. For a
smooth function f on M , we define a map q(f) : Γ(S)→ Γ(S) by

q(f)φ = −ı}LXfφ

for any φ ∈ Γ(S). We call q : f 7→ q(f) the Habermann’s map.

Due to the properties of LX , it is clear that q maps into the vector space endomorphisms of
Γ(S)

q : C∞(M)→ End(Γ(S)).
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Moreover, Habermann derives the following theorem.

Theorem 8: Let (M,ω) be a symplectic manifold admitting a metaplectic struture. Then for
any f, g ∈ C∞(M), the Habermann’s map satisfies

[q(f), q(g)] = ı} q({f, g}P ).

Proof. See Habermann, Habermann [26]. �

Remark: The Habermann’s map q satisfies the quantization condition (see Introduction) and
thus, it gives an example of a non-deformed quantization. By this we mean that q is a morphism
of Poisson algebras (C∞(M), {, }) and (End (Γ(S)), [, ]) up to a multiple. However notice that
usually, a quantization is demanded to be a map on smooth functions C∞(M) defined on the
phase space M into the space of operators on the vector space L2(N) of L2-functions or L2-
sections of a line bundle over N where N denotes the Riemannian manifold of the configuration
space. See Souriau [70] and Blau [4] for conditions on quantization maps, their constructions
and examples.

4 Author’s results in Symplectic spinor geometry

We present results achieved by the author in differential geometry concerning symplectic spinors
that we consider important and relevant. We start with a chapter on representational theoretical,
or if we wish equivariant, properties of exterior differential forms with values in symplectic
spinors.

4.1 Decomposition of tensor products and a Howe-type duality

Let g be the Lie algebra of symplectic group Sp(2n,R), gC the complexification of g, h a Cartan
subalgebra of gC, ∆+ a choice of positive roots, and {$i}ni=1 the set of fundamental weights
with respect to these choices. Let us denote the irreducible complex highest weight module
with highest weight λ ∈ h∗ by L(λ). For any λ =

∑n
i=1 λi$i, we set L(λ1, . . . , λn) = L(λ). For

i = 0, . . . , 2n, we denote by σi the tensor product representation of the complexified symplectic
Lie algebra gC on Ei =

∧i
V ∗ ⊗ S, i.e., σi : gC → End (Ei) and σi(X)(α ⊗ s) = λ∧i∗ (X)α ⊗

s + α ⊗ σ∗(X)s for any X ∈ gC, α ∈
∧i

V ∗ and s ∈ S, where λ∧i∗ denotes the action of gC

on
∧i

V ∗. We consider E =
⊕2n

i=0E
i equipped with the direct sum representation σ•(X) =

(σ0(X), . . . , σ2n(X)), X ∈ gC. Let us notice that here, σ∗ denotes the complex linear extension
of the representation σ∗ : g→ End(S) considered above.

Remark: Note that there is a misprint in Krýsl [46]. Namely, the “action” of g on E (denoted

by W there) is prescribed by X(α ⊗ s) = λ∧i∗ (X)α ⊗ σ∗(X)s for X ∈ g, α ∈
∧i

V, s ∈ S, and
i = 0, . . . , 2n. Actually, we meant the standard tensor product representation as given above,
i.e., X(α ⊗ s) = λ∧i∗ (X)α ⊗ s + α ⊗ σ∗(X)s. However, the results in [46] are derived for the
correct action σ• defined above.

Definition 12: Let us set Ξ = {(i, ji)| i = 0, . . . , n, ji = 0, . . . , i}∪ {(i, ji)| i = n+ 1, . . . , 2n, ji =
0, . . . , 2n− i}, sgn(+) = 0, sgn(−) = 1, and

Eij± = L(
1

2
, · · · , 1

2︸ ︷︷ ︸
j

,−1

2
, · · · ,−1

2︸ ︷︷ ︸
n−j−1

,−1 +
1

2
(−1)i+j+sgn(±))
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for i = 0, . . . , n − 1, j = 0, . . . , i and i = n, j = 0, . . . , n − 1. For i = j = n, we set Enn+ =
L( 1

2 , · · · ,
1
2 ) and Enn− = L( 1

2 , · · · ,
1
2 ,−

5
2 ). For i = n + 1, . . . , 2n and j = 0, . . . , 2n − i, we set

Eij± = E
(2n−i)j
± . For any (i, j) ∈ Z× Z \ Ξ, we define Eij± = 0. Finally for any (i, j) ∈ Z× Z, we

set Eij = Eij+ ⊕ E
ij
− . For (i, j) ∈ Ξ, the gC-modules Eij± are called higher symplectic spinor

modules and their elements higher symplectic spinors.

Theorem 9: The following decomposition into irreducible gC-modules holds

•∧
V ∗ ⊗ S± =

⊕
(i,j)∈Ξ

Eij± .

Proof. Krýsl [46]. �

Remark: The decomposition holds also on the level of minimal and hyperfunction globaliza-
tions since the corresponding globalization functors are adjoint functors to the Harish-Chandra
forgetful functor. See Vogan [76] and Casselmann [12]. It holds also for smooth Fréchet global-

ization G̃→ Aut(S). By abuse of notation, we shall denote the tensor product representation of

G̃ on E by σ• as well. The above decomposition holds also when V ∗ is replaced by V since the
symplectic form gives an isomorphism of the appropriate representations of gC.

Definition 13: For i = 0, . . . , 2n, we denote the uniquely determined equivariant projections of∧i
V ⊗S± → Eij± ⊆

∧i
V ⊗S± by pij± and the projections pij+ +pij− onto Eij by pij , (i, j) ∈ Z×Z.

Let us recall a definition of the simple Lie superalgebra osp(1|2). It is generated by elements
e+, e−, h, f+, f− satisfying the following relations

[h, e±] = ±e±

[h, f±] = ±1

2
f±

[e±, f∓] = −f±

[e+, e−] = 2h

{f+, f−} =
1

2
h

{f±, f±} = ±1

2
e±

where {, } denotes the anticommutator, i.e., {a, b} = ab+ ba, a, b ∈ osp(1|2).

We give a Z2-grading to the vector space E =
∧•

V ⊗ S by setting E0 =
⊕n

i=0

∧2i
V ⊗ S,

E1 =
⊕n

i=1

∧2i−1
V ⊗S and E = E0⊕E1. Further, we choose a symplectic basis (ei)

2n
i=1 of (V, ω)

and denote its dual basis by (εi)2n
i=1 ⊆ V ∗. The Lie superalgebra osp(1|2) has a representation

ρ : osp(1|2)→ End(E) on the superspace E given by

ρ(f+)(α⊗ s) =
ı

2

2n∑
i=1

εi ∧ α⊗ ei · s and ρ(f−)(α⊗ s) =
1

2

2n∑
i=1

ωijιeiα⊗ ej · s

where α ∈
∧•

V ∗, s ∈ S, and ιv denotes the contraction by the vector v. Consequently, elements
e+, e− and h act by

ρ(e±) = ±2{ρ(f±), ρ(f±)} and ρ(h) =
1

2
[ρ(e+), ρ(e−)]

16



where { , } and [ , ] denote the anticommutator and the commutator on the associative algebra
End(E), respectively.

The following theorem is parallel to the Schur and Weyl dualities for tensor representations
of GL(n,C) and SO(n,C), respectively. See Howe [29] where they are treated.

Theorem 10: The following gC × osp(1|2)-module isomorphism holds

•∧
V ∗ ⊗ S '

n⊕
i=0

(
Eii+ ⊗ Fi

)
⊕

n⊕
i=0

(
Eii− ⊗ Fi

)
where Fi = C2n−2i+1 and ρi : osp(1|2)→ End(Fi) is given on a basis (bj)

2n−i
j=i of Fi by prescrip-

tions

ρi(f
+)(bj) = A(n, i+ 1, j)bj+1

ρi(h) = 2{ρi(f+), ρi(f
−)} and

ρi(f
−)(bj) = bj−1

ρi(e
±) = ±2{ρi(f±), ρi(f

±)}

where i = 0, . . . , n and A(n, i, j) = (−1)i−j+1
16 (j − i) + (−1)i−j+1+1

16 (i+ j − 2n− 1).
Proof. See Krýsl [46]. �

Remark: In the preceding definition, if an index exceeds its allowed range, the object is con-
sidered to be zero. Thus, e.g., b2n−i+1 or bi−2 are zero vectors.

Theorem 11: For i = 0, . . . , n, representations Fi are irreducible.
Proof. See Krýsl [46]. �

Remark: Representations ρi in Theorem 10 depend on the choice of a basis, but not their
equivalence class. As follows from Theorem 11, the multiplicity of Eii± in the gC-module E is
2n− 2i+ 1 for i = 0, . . . , n.

4.2 Differential geometry of higher symplectic spinors

For any symplectic manifold (M,ω) admitting a metaplectic structure (P,Λ), the decomposition
from Theorem 9 can be lifted to the associated bundle E = P ×σ• E.

Remark: Since S is a smooth globalization, we may consider E as a representation of the
metaplectic group as well.

Definition 14: Let (M,ω) be a symplectic manifold admitting a metaplectic structure (P,Λ).
For any (i, j) ∈ Z×Z, we set E ij = P ×G̃E

ij and call it the higher symplectic spinor bundle
and elements of its section spaces the higher symplectic spinor fields if (i, j) ∈ Ξ.

We keep denoting the lifts of the projections
∧i

V ∗ ⊗ S → Eij to Γ(E i) → Γ(E ij) by pij ,
where E i = P ×σi Ei.

17



4.2.1 Curvature, higher curvature and symplectic twistor complexes

For a Fedosov connection ∇ on a symplectic manifold (M,ω) admitting a metaplectic structure,

we consider the exterior covariant derivative d∇
S

for the induced symplectic spinor derivative
∇S . See, e.g., Kolář, Michor, Slovák [34] for a general construction of such derivatives.

Theorem 12: Let (M,ω) be a symplectic manifold admitting a metaplectic structure and ∇
be a Fedosov connection. Then for any (i, j) ∈ Z × Z, the restriction of the exterior symplectic
spinor derivative satisfies

d∇
S

: Γ(E ij)→ Γ(E i+1,j−1)⊕ Γ(E i+1,j)⊕ Γ(E i+1,j+1).

Proof. See Krýsl [38]. �

Remark: In particular, sections of each higher symplectic spinor bundle are mapped into sections
of at most three higher symplectic spinor bundles. Note that in the case of orthogonal spinors
in pseudo-Riemannian geometry, the target space structure of the exterior covariant derivative
is similar. See Slupinski [68].

Let (ei)
2n
i=1 be a local symplectic frame on (M,ω) and (εi)2n

i=1 be its dual symplectic coframe.
Recall that above, we defined the symplectic Ricci and symplectic Weyl curvature tensor fields.
Let us denote by σS the endomorphism of the symplectic spinor bundle defined for any φ ∈ S
by

σSφ =
ı

2

2n∑
i,j,k,l=1

σijklε
k ∧ εl ⊗ ei · ej · φ.

Similarly we set

WSφ =
ı

2

2n∑
i,j,k,l=1

W ij
klε

k ∧ εl ⊗ ei · ej · φ.

Recall that
2∧
T ∗M ⊗ S = E20 ⊕ E21 ⊕ E22

according to Theorem 9.

In the next theorem, components of RS in E20, E21 and E22 are found. We notice that

1) we use the summation convention, i.e., if two indices occur which are labeled by the same
letter, we sum over it without denoting the sum explicitly and

2) instead of ei · ej ·, we write eij · and similarly for a higher number of indices.

Theorem 13: Let n > 1, (M2n, ω) be a symplectic manifold admitting a metaplectic structure
and ∇ be a Fedosov connection. Then for any φ ∈ Γ(S), σSφ ∈ Γ(E20 ⊕ E21) and WSφ ∈
Γ(E21 ⊕ E22). Moreover, we have the following projection formulas

p20RSφ =
ı

2n
σijωklε

k ∧ εl ⊗ eij · φ

p21RSφ =
ı

n+ 1
σijεk ∧ εl ⊗ (ωilekj · −

1

2n
ωkleij ·)φ−

ı

1− n
W ijk

lε
m ∧ εl ⊗ emkij · φ

p22RSφ =
ı

2
W ij

klε
k ∧ εl ⊗ eij · φ+

ı

1− n
W ijk

lε
m ∧ εl ⊗ emkij · φ.
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Proof. See Krýsl [42]. �

Remark: Note that for n = 1, E21 = E22 = 0, so that there is no Weyl component of the
curvature tensor of a Fedosov connection in this dimension. The formula for p20 holds also for
n = 1.

Definition 15: For (i, j), (i+ 1, k) ∈ Ξ, a = 0, . . . , n− 1 and b = n, . . . , 2n− 1, let us set

Dij
i+1,k = pi+1,kd∇

S

|Γ(Eij) : Γ(E ij)→ Γ(E i+1,k), Ta = Daa
a+1,a+1 and Tb = Db,2n−b

b+1,2n−b−1.

The operators Ti, i = 0, . . . , 2n− 1, are called the symplectic twistor operators.

Let (V, ω) be a symplectic vector space, (ei)
2n
i=1 be a symplectic basis, (εi)2n

i=1 be a basis of
V ∗ dual to (ei)

2n
i=1, and σ ∈ S2V ∗ be a bilinear form. For α ∈

∧•
V ∗ and s ∈ S, we set

Σσ(α⊗ s) =

2n∑
i,j=1

σijε
j ∧ α⊗ ei · s

and

Θσ(α⊗ s) =

2n∑
i,j=1

α⊗ σijei · ej · s.

We keep denoting the corresponding tensors on symplectic spinor bundles by the same symbols.
In this case, the the symplectic Ricci curvature tensor field plays the role of the tensor σ.

We use abbreviations

E± = ρ(e±) : E → E and F± = ρ(f±) : E → E.

Let (M,ω) be a symplectic manifold which admits a metaplectic structure and ∇ be a Fedosov
connection of Ricci-type. For a higher symplectic spinor field φ ∈ Γ(E), we have (see Krýsl [43])
the following formula

REφ =
1

n+ 1
(E+Θσ + 2F+Σσ)φ.

Remark: By the higher curvature, we understand the curvature of ∇S on higher symplectic

spinors, i.e., RE = d∇
S ◦ d∇S .

The above formula is used for proving the next theorem.

Theorem 14: Let n > 1, (M2n, ω) be a symplectic manifold admitting a metaplectic structure
and ∇ be a Fedosov connection of Ricci-type. Then

0 −→ Γ(E00)
T0−→ Γ(E11)

T1−→ · · · Tl−1−→ Γ(Enn) −→ 0 and

0 −→ Γ(Enn)
Tn−→ Γ(En+1,n+1)

Tn+1−→ · · · T2n−1−→ Γ(E2n,2n) −→ 0

are complexes.
Proof. See Krýsl [43]. �
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We call the complexes from Theorem 14 the symplectic twistor complexes.

Theorem 15: Let n > 1, (M2n, ω) be a symplectic manifold admitting a metaplectic structure
and ∇ be a Fedosov connection of Ricci-type. Then

0 −→ Γ(E00)
T0−→ · · · Tn−2−→ Γ(En−1,n−1)

TnTn−1−→ Γ(En+1,n+1)
Tn+1−→ · · · T2n−1−→ Γ(E2n,2n) −→ 0

is a complex.
Proof. See Krýsl [43]. �

Definition 16: Let (F i → M)i∈Z be a sequence of vector bundles over a smooth manifold
M, D• = (Γ(F i), Di : Γ(F i) → Γ(F i+1))i∈Z be a complex of pseudodifferential operators and
for each ξ ∈ T ∗M, let σ(D)(ξ)• = (Fi, σ(Di, ξ) : F i → F i+1)i∈Z be the complex of symbols
evaluated in ξ which is associated to the complex D•. We call D• elliptic if σ(D)(ξ)• is an exact
sequence in the category of vector bundles for any ξ ∈ T ∗M \ {0}.

Remark: Note that in homological algebra, the above complexes are usually called cochain
complexes.

Theorem 16: Let n > 1, (M2n, ω) be a symplectic manifold admitting a metaplectic structure
and ∇ be a Fedosov connection of Ricci-type. Then the complexes

0 −→ Γ(E0)
T0−→ Γ(E1)

T1−→ · · · Tn−2−→ Γ(En−1) and

Γ(En)
Tn−→ Γ(En+1)

Tn+1−→ · · · T2n−1−→ Γ(E2n) −→ 0

are elliptic.
Proof. See Krýsl [44]. �

4.2.2 Symplectic spinor Dirac, twistor and Rarita–Schwinger operators

Definition 17: Let (M,ω) be a symplectic manifold admitting a metaplectic structure and ∇
be a Fedosov connection. The operators

D = F− ◦D00
10 : Γ(S)→ Γ(S) and R = F− ◦D11

21 : Γ(E11)→ Γ(E11)

are called the symplectic spinor Dirac and the symplectic spinor Rarita–Schwinger
operator, respectively.

Remark: D is the 1/2 multiple of the Habermann’s symplectic spinor Dirac operator.

Let us denote the set of eigenvectors of a vector space endomorphism G : W →W by eigen(G)
and the set of its eigenvalues by spec(G). Recall that by an eigenvalue, we mean simply a complex
number µ, for which there is a nonzero w ∈ W, such that Gw = µw. (We do not investigate
spectra from the functional analysis point of view.)

Definition 18: A symplectic Killing spinor field is any not everywhere zero section φ ∈ Γ(S)
for which there exists µ ∈ C such that

∇SXφ = µX · φ
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for each X ∈ X(M). (The dot denotes the symplectic Clifford multiplication.) The set of sym-
plectic Killing spinor fields is denoted by kill. Number µ from the above equation is called the
symplectic Killing spinor number and its set is denoted by kill .

Remark: The equation for a symplectic Killing spinor field can be written also as

∇Sφ = −2µıF+φ.

Remark: Note that there is a misprint in the abstract in Krýsl [39]. Namely, we write there that
−ılλ is not a symplectic Killing number instead of ıλ

l is not a symplectic Killing spinor number.
In that paper, l denotes the half of the dimension of the corresponding symplectic manifold.

Theorem 17: If (M,ω) is a symplectic manifold admitting a metaplectic structure and ∇ is a
Fedosov connection, then

kill = KerT0 ∩KerD.

Proof. See Krýsl [45]. �

Theorem 18: Let (M2n, ω) be a symplectic manifold admitting a metaplectic structure and ∇
be a Fedosov connection with Ricci tensor σ. Let φ be a symplectic Killing spinor field to the
symplectic Killing spinor number µ. Then in a local symplectic frame (U, (ei)

2n
i=1), we have

Θσφ = 2µ2nφ.

Proof. See Krýsl [45]. �

As a consequence of this theorem, we have

Theorem 19: Let (M,ω) be a symplectic manifold admitting a metaplectic structure and ∇ be
a Ricci-flat Fedosov connection. Then kill = {0} and any symplectic Killing spinor field on M
is locally covariantly constant.
Proof. See Krýsl [45]. �

Remark: By a locally covariantly constant field φ, we mean ∇Sφ = 0 which implies that φ is
locally constant if the Kostant’s bundle is trivial.

Theorem 20: Let n > 1, (M2n, ω) be a symplectic manifold admitting a metaplectic structure
and ∇ be a flat Fedosov connection. Then

(1) If µ ∈ spec(D) \ ın2 kill , then n−1
n µ ∈ spec(R).

(2) If φ ∈ eigen(D) \ kill, then T0φ ∈ eigen(R).

Proof. See Krýsl [39]. �

Remark: For any λ ∈ C, λkill denotes the number set {λα, α ∈ kill}.
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4.3 First order invariant operators in projective contact geometry

Some of the results described above can be modified to get information for contact projective
manifolds which are more complicated objects to handle than the symplectic ones. Contact
manifolds are models for time-dependent Hamiltonian mechanics. The adjective ‘projective’ is
related to the fact that we want to deal with unparametrized geodesics rather than with the ones
with a fixed parametrization. Connections that we consider are partial in the sense that they
act on sections of the contact bundle only.

Definition 19: A contact manifold is a manifoldM together with a corank one subbundleHM
(contact bundle) of the tangent bundle TM which is not integrable in the Frobenius sense in any
point of the manifold, i.e., for each m ∈M, there are ηm, ζm ∈ HmM such that [ηm, ζm] /∈ HM.

Equivalently, HM is a contact bundle if and only if the Levi bracket

L(X,Y ) = q([X,Y ])

is non-degenerate. Here X,Y ∈ Γ(HM) and q : TM → QM = TM/HM denotes the quotient
projection onto QM. The Levi bracket induces a tensor field which we denote by the same letter
L :
∧2

HM → QM.

Definition 20: For a contact manifold (M,HM), a partial connection ∇ : Γ(HM)×Γ(HM)→
Γ(HM) is called a contact connection if the associated exterior covariant derivative d∇ on

Γ(
∧2

HM) preserves the kernel of the Levi form, i.e., d∇ζ (KerL) ⊆ KerL for any ζ ∈ HM.
The set of contact connections is denoted by CM . A contact projective manifold is a contact
manifold (M,HM) together with a set SM of contact connections for which the following holds. If
∇1,∇2 ∈ SM , there exists a differential one-form Υ ∈ Γ(HM∗) such that for any X,Y ∈ Γ(HM)

∇1
XY −∇2

XY = Υ(X)Y + Υ(Y )X + Υ](L(X,Y ))

where Υ] : QM → HM is a bundle morphism defined by L(Υ](η), ζ) = Υ(ζ)η, ζ ∈ QM and
η ∈ HM. Morphisms between contact projective manifolds (M,HM,SM ) and (N,HN,SN ) are
local diffeomorphisms f : M → N such that f∗(HM) = HN, and for any ∇ ∈ SN , the pull-back
connection f∗∇ ∈ SM .

Remark: For a contact projective manifold (M,HM,SM ), it is easy to see that the relation
R = SM × SM ⊆ CM × CM on the set of contact connections CM is an equivalence.

Let (V, ω) be a real symplectic vector space of dimension 2n+ 2 and (ei)
2n+2
i=1 be a symplectic

basis. The action of the symplectic group G′ of (V, ω) on the projectivization of V is transitive
and its stabilizer P ′ is a parabolic subgroup of G′. We denote the preimages of G′ and P ′ by the
covering λ′ : Mp(2n+ 2,R)→ Sp(2n+ 2,R) by G̃′ and P̃ ′, respectively.

Definition 24: A projective contact Cartan geometry is a Cartan geometry (G′, ϑ) whose
model is the Klein geometry G′ → G′/P ′ with G′ and P ′ as introduced above. We say that a
Cartan geometry is a metaplectic projective contact Cartan geometry if it is modeled on
the Klein geometry G̃′/P̃ ′.

Remark: For Cartan geometries, see Sharpe [67] and Čap, Slovák [11]. In Čap, Slovák [11], a
theorem is proved on an equivalence of the category of the so-called regular normal projective
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contact Cartan geometries and the category of regular normal projective contact manifolds. See
Čap, Slovák [11], pp. 277 and 410. See also Fox [17].

The Levi part G̃0 of P̃ ′ is isomorphic Mp(2n,R)× R× with the semisimple part G̃ss0 ' G̃ =

Mp(2n,R) and the center isomorphic to the multiplicative group R×. The Lie algebra p′ of P̃ ′ is
graded, p′ = (sp(2n,R)⊕R)⊕R2n⊕R with g0 ' sp(2n,R)⊕R, g1 ' R2n and g2 ' R. We denote

the Lie algebra of G̃′ by g′ and identify it with the Lie algebra sp(2n+2,R). The semi-simple part
gss0 of g0 is isomorphic sp(2n,R). We denote it by g in order to be consistent with the preceding

sections. The grading of g′ =
⊕2

i=−2 gi, g−2 ' g2 and g−1 ' g1, can be visualized with respect

to the basis (ei)
2n+2
i=1 by the following block diagonal matrix of type (1, n, 1)× (1, n, 1)

g =


g0 g1 g2

g−1 g0 g1

g−2 g−1 g0

 .

The center of the Lie algebra g0 is generated by

Gr =


1 0 0

0 0 0

0 0 -1


which is usually called the grading element because of the property [Gr,X] = jX for each
X ∈ gj and j = −2, . . . , 2.

Let κ : (gC)∗ × (gC)∗ → C be the dual form to the Killing form of gC = sp(2n,C). We choose
a Cartan subalgebra h of gC and a set of positive roots obtaining the set of fundamental weights
{$i}ni=1 for gC. Further, we set 〈X,Y 〉 = (4n+ 4)κ(X,Y ), X, Y ∈ (gC)∗, and define

cµλν =
1

2
[〈λ, λ+ 2δ〉+ 〈ν, ν + 2δ〉 − 〈µ, µ+ 2δ〉]

for any λ, µ, ν ∈ h∗, where δ is the sum of fundamental weights, or equivalently, the half-sum of
positive roots. For any µ ∈ h∗, we set

A = {
n∑
i=1

λi$i|λi ∈ N0, i = 1, . . . , n− 1, λn + 2λn−1 + 3 > 0, λn ∈ Z +
1

2
} ⊆ h∗ and

Aµ = A ∩ {µ+ ν| ν = ±εi, i = 1, . . . , n}

where ε1 = $1, εi = $i −$i−1, i = 2, . . . , n.

Considering C2n with the defining representation of gC = sp(2n,C), i.e., C2n = L($1), we
have the following decomposition.

Theorem 21: For any µ ∈ A, the following decomposition into irreducible gC-modules

L(µ)⊗ C2n =
⊕
λ∈Aµ

L(λ)
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holds.
Proof. See Krýsl [40]. �

Remark: The above decomposition has the same form when we consider the algebra sp(2n,R)
instead of sp(2n,C).

The set {L(λ)|λ ∈ A} coincides with the set of all infinite dimensional irreducible gC-modules
with bounded multiplicities, i.e., those irreducible sp(2n,C)-modules W for which there exists
a bound l ∈ N such that for any weight ν, dimWν ≤ l.5 See Britten, Hooper, Lemire [8] and
Britten, Lemire [9].

In the next four steps, we define P̃ -modules L(λ, c, γ) for any λ ∈ A, c ∈ C and γ ∈ Z2.

1) Let S and S+ be the gC-modules of smooth K̃-finite vectors of the Mp(2n,R)-modules
L2(Rn) and L2(Rn)+, respectively. Recall that L2(Rn) denotes the Segal–Shale–Weil mod-
ule and L2(Rn)+ is the submodule of even functions in L2(Rn). For any λ ∈ A, there is an
irreducible finite dimensional gC-module F (ν) with highest weight ν ∈ h∗ such that L(λ) is

an irreducible summand in S+⊗F (ν) =
⊕k

i=1 Si. For it, see Britten, Lemire [9]. Otherwise
said, there exists a j ∈ {1, . . . , k} such that L(λ) ' Sj . The tensor product of the smooth
globalization S = S(Rn) of S with F (ν) decomposes into a finite number of irreducible

G̃-submodules in the corresponding way

S+ ⊗ F (ν) =

k⊕
i=1

Si

i.e., Si is the gC-module of smooth K̃-finite vectors in Si. We set L(λ) = Sj , obtaining a

G̃-module.

2) We let the element exp(Gr) ∈ G̃0 act by the scalar exp(c) (the conformal weight) on L(λ)
and denote the resulting structure by L(λ, c).

3) Let us consider the element (1,−1) ∈ Sp(2n,R) × R× ⊆ λ′(G̃0) ⊆ P and the preimage

Γ = λ′
−1

((1,−1)) ⊆ G̃0 'Mp(2n,R)×R×. Let us suppose that the element in Γ the first
component of which is the neutral element e ∈Mp(2n,R) acts by γ ∈ Z2 on L(λ, c).

4) Finally, the preimage λ′
−1

(G+) ⊆ P̃ of the unipotent part G+ of P is supposed to act by

the identity on L(λ, c). We denote the resulting admissible P̃ -module by L(λ, c, γ). (See
Vogan [76] for the admissibility condition.)

For details on notions in the next definition, see Slovák, Souček [71].

Definition 25: Let G = (G → M,ϑ) be a Cartan geometry of type (G,H) and E ,F →
M be vector bundles associated to the principal H-bundle G → M. We call a vector space
homomorphism D : Γ(E) → Γ(F) a first order invariant differential operator if there is a
bundle homomorphism Φ : J1E → F such that Ds = Φ(s,∇ϑs) for any section s ∈ Γ(E), where
J1E denotes the first jet prolongation of E →M and ∇ϑ is the invariant derivative for G.

5By Wν we mean the wight space Wν = {w ∈W |H · w = ν(H)w for any H ∈ h}.
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It is convenient to divide the vector space of first order invariant differential operators by
those bundle homomorphisms between J1E and F which act trivially on the tangent space part
of J1E . We call the resulting vector space the space of first order invariant operators up to
the zeroth order and denote it by Diff1

G(E ,F).

Remark: Between any bundles induced by irreducible bounded multiplicities representations
introduced above, there is at most one such an invariant operator up to a multiple and up to the
operators of zeroth order. An equivalent condition for its existence is given in the next theorem.
The author obtained it at the infinitesimal level when writing his dissertation thesis already. See
[37].

Theorem 22: Let (G → M2n+1, ϑ) be a metaplectic contact projective Cartan geometry,
(λ, c, γ), (µ, d, γ′) ∈ A × C × Z2, and E = G ×P̃ L(λ, c, γ) and F = G ×P̃ L(µ, d, γ′) be the
corresponding vector bundles over M. Then the space

Diff1
(G→M,ϑ)(E ,F) '

{
C if µ ∈ Aλ, c = d− 1 = cµλ$1

and γ = γ′

0 in other cases.

Proof. See Krýsl [41]. �

4.4 Hodge theory over C∗-algebras

An additive category is called dagger if it is equipped with a contravariant functor ∗ which is
the identity on the objects, it is involutive on morphisms, ∗∗F = F , and it preserves the identity
morphisms, i.e., ∗IdC = IdC for any object C. No compatibility with the additive structure
is demanded. See Brinkmann, Puppe [7]. For a morphism F, we denote ∗F by F ∗. For any
additive category C, we denote the category of its complexes by K(C). If C is an additive and
dagger category and d• = (U i, di)i∈Z ∈ K(C), we set ∆i = d∗i di + di−1d

∗
i−1, i ∈ Z, and call it the

i-th Laplace operator.

Definition 26: Let C be an additive and dagger category. We call a complex d• = (U i, di)i∈Z ∈
K(C) of Hodge-type if for each i ∈ Z

U i = Ker ∆i ⊕ Im di−1 ⊕ Im d∗i .

We call d• self-adjoint parametrix possessing if for each i, there exist morphisms Gi : U i →
U i and Pi : U i → U i such that IdUi = Gi∆i + Pi, IdUi = ∆iGi + Pi, ∆iPi = 0 and Pi = P ∗i .

Remark: In the preceding definition, we suppose that the images of the chain maps, the images
of their adjoints, and the kernels of the Laplacians exist as objects in the additive and dagger
category C. The sign ⊕ denotes the biproduct in C. See Weibel [79], p. 425.

The first two equations from the definition of a self-adjoint parametrix possessing complex
are called the parametrix equations. Morphisms Pi from the above definition are idempotent
as can be seen by composing the first equation with Pi from the right and using the equation
∆iPi = 0. In particular, they are projections. The operators Gi are called the Green operators.

Definition 27: Let (A, ∗A, | |A) be a C∗-algebra and A+ be the positive cone of A, i.e., the set
of all hermitian elements (∗Aa = a) in A whose spectrum is contained in the non-negative real
numbers. A tuple (U, (, )) is called a pre-Hilbert A-module if U is a right module over the
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complex associative algebra A, and (, ) : U × U → A is an A-sesquilinear map such that for all
u, v ∈ U, (u, v) = ∗A(v, u), (u, u) ∈ A+, and (u, u) = 0 implies u = 0. A pre-Hilbert module is
called a Hilbert A-module if it is complete with respect to the norm |u| =

√
|(u, u)|A, u ∈ U.

A pre-Hilbert A-module morphism between (U, (, )U ) and (V, (, )V ) is any continuous A-linear
map F : U → V.

Remark: We consider that (, ) is antilinear in the left variable and linear in the right one as it
is usual in physics.

An adjoint of a morphism F : U → V acting between pre-Hilbert modules (U, (, )U ) and
(V, (, )V ) is a morphism F ∗ : V → U that satisfies the condition (Fu, v)V = (u, F ∗v)U for
any u ∈ U and v ∈ V. The category of pre-Hilbert and Hilbert C∗-modules and adjointable
morphisms is an additive and dagger category. The dagger functor is the adjoint on morphisms.
For any C∗-algebra A, we denote the categories of pre-Hilbert A-modules and Hilbert A-modules
and adjointable morphisms by PH∗A and H∗A, respectively. In both of these cases, the dagger
structure is compatible with the additive structure.

To any complex d• = (U i, di)i∈Z ∈ K(PH∗A), the cohomology groups Hi(d•) = Ker di/Im di−1

are assigned which are A-modules and which we consider to be equipped with the canonical
quotient topology. They are pre-Hilbert A-modules with respect to the restriction of (, )Ui to
Ker di if and only if Im di−1 has an A-orthogonal complement in Ker di.

We have the following

Theorem 23: Let d• = (U i, di)i∈Z be a self-adjoint parametrix possessing complex in PH∗A.
Then for any i ∈ Z

1) d• is of Hodge-type

2) Hi(d•) is isomorphic to Ker ∆i as a pre-Hilbert A-module

3) Ker di = Ker ∆i ⊕ Im di−1

4) Ker d∗i = Ker ∆i+1 ⊕ Im d∗i+1

5) Im ∆i = Im di−1 ⊕ Im d∗i .

Proof. See Krýsl [50]. �

Remark: If the image of di−1 is not closed, the quotient topology on the cohomology group
Hi(d•) is non-Hausdorff and in particular, it is not in PH∗A. See, e.g., von Neumann [61] on
the relevance of topology for state spaces. See also Krýsl [51] for further references and for
a relevance of our topological observation (Theorem 23 item 2) to the basic principles of the
so-called Becchi–Rouet–Stora–Tyutin (BRST) quantization.

Theorem 24: Let d• = (U i, di)i∈Z be a complex of Hodge-type in H∗A, then d• is self-adjoint
parametrix possessing.
Proof. See Krýsl [51]. �

Definition 28: Let M be a smooth manifold, A be a C∗-algebra and F → M be a Banach
bundle with a smooth atlas such that each of its maps targets onto a fixed Hilbert A-module
(the typical fiber). If the transition functions of the atlas are Hilbert A-module automorphisms,
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we call F →M an A-Hilbert bundle. We call an A-Hilbert bundle F →M finitely generated
projective if the typical fiber is a finitely generated projective Hilbert A-module.

For further information on analysis on C∗-Hilbert bundles, we refer to Solovyov, Troitsky [69],
Troitsky [73] and Schick [65]. In the paper of Troitsky, complexes are treated with an allowance
of the so-called ‘compact’ perturbations.

Theorem 25: Let M be a compact manifold, A be a C∗-algebra and D• = (Γ(F i), Di)i∈Z be an
elliptic complex on finitely generated projective A-Hilbert bundles over M . Let for each i ∈ Z,
the image of ∆i be closed in Γ(F i). Then for any i ∈ Z

1) D• is of Hodge-type

2) Hi(D•) is a finitely generated projective Hilbert A-module isomorphic to Ker ∆i as a
Hilbert A-module

3) KerDi = Ker4i ⊕ ImDi−1

4) KerD∗i = Ker4i+1 ⊕ ImD∗i+1

5) Im ∆i = ImDi−1 ⊕ ImD∗i .

Proof. See Krýsl [50]. �

Let H be a Hilbert space. Any C∗-subalgebra of the C∗-algebra of compact operators on H
is called a C∗-algebra of compact operators.

For C∗-algebras of compact operators, we have the following analogue of the Hodge theory
for elliptic complexes of operators on finite rank vector bundles over compact manifolds.

Theorem 26: Let M be a compact manifold, K be a C∗-algebra of compact operators and
D• = (Γ(F i), Di)i∈Z be an elliptic complex on finitely generated projective K-Hilbert bundles
over M . If D• is elliptic, then for each i ∈ Z

1) D• is of Hodge-type

2) The cohomology group Hi(D•) is a finitely generated projective Hilbert K-module isomor-
phic to the Hilbert K-module Ker ∆i.

3) KerDi = Ker ∆i ⊕ ImDi−1

4) KerD∗i = Ker ∆i+1 ⊕ ImD∗i+1

5) Im ∆i = ImDi−1 ⊕ ImD∗i

Proof. See [51]. �

Remark: In particular, we see that the cohomology groups share properties of the fibers.
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[34] Kolář, I., Michor, P., Slovák, J., Natural operations in differential geometry. Springer-Verlag,
Berlin, 1993.

29



[35] Korman, E., Symplectic Dolbeault operators on Kähler manifolds. Ann. Global Anal. Geom.
44 (2013), no. 3, 339–358, erratum ibid item, 359–360.

[36] Kostant, B., Symplectic spinors. Symposia Mathematica, Vol. XIV (Convegno di Geometria
Simplettica e Fisica Matematica, INDAM, Rome, 1973), 139–152, Academic Press, London,
1974.
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Abstract

We give a classification of 1st order invariant differential operators acting between sections of certain bundles associated to
Cartan geometries of the so-called metaplectic contact projective type. These bundles are associated via representations, which
are derived from the so-called higher symplectic (sometimes also called harmonic or generalized Kostant) spinor modules. Higher
symplectic spinor modules are arising from the Segal–Shale–Weil representation of the metaplectic group by tensoring it by finite
dimensional modules. We show that for all pairs of the considered bundles, there is at most one 1st order invariant differential oper-
ator up to a complex multiple and give an equivalence condition for the existence of such an operator. Contact projective analogues
of the well known Dirac, twistor and Rarita–Schwinger operators appearing in Riemannian geometry are special examples of these
operators.
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1. Introduction

The operators we would like to classify are 1st order invariant differential operators acting between sections of
vector bundles associated to metaplectic contact projective geometries via certain minimal globalizations.

Metaplectic contact projective geometry on an odd dimensional manifold is first a contact geometry, i.e., it is given
by a corank one subbundle of the tangent bundle of the manifold which is nonintegrable in the Frobenius sense in
each point of the manifold. Second part of the metaplectic contact projective structure on a manifold is given by a
class of projectively equivalent contact partial affine connections. Here, partial contact means that the connections are
compatible with the contact structure and that they are acting only on the sections of the contact subbundle. These
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connections are called projectively equivalent because they have the same class of unparameterized geodesics going in
the contact subbundle direction, see, e.g., D. Fox [9], where you can find a relationship between the contact projective
geometries and classical path geometries. The adjective “metaplectic“ suggests that in addition to contact projective
geometries, the metaplectic contact projective structures include some spin phenomena like the spin structures over
Riemannian manifolds. Metaplectic contact projective and contact projective geometries have their description also
via Cartan geometries. Contact projective geometries could be modeled on a (2l + 1)-dimensional projective space
PV of a (2l + 2)-dimensional real symplectic vector space V, which we suppose to be equipped with a symplectic
form ω. Here, the projective space is considered as a homogeneous space G/P , where G is the symplectic Lie group
Sp(V,ω) acting transitively on PV by the factorization of its defining representation (on V), and P is an isotropy
subgroup of this action. In this case, it is easy to see that P is a parabolic subgroup, which turns out to be crucial
for our classification. Contact projective geometry, in the sense of É. Cartan, are curved versions (p : G → M,ω) of
this homogeneous (also called Klein) model G/P . There exist certain conditions (known as normalization conditions)
under which the Cartan’s principal bundle approach and the classical one (via the class of connections and the contact
subbundle) are equivalent, see, e.g., Čap, Schichl [4] for details. We also remind that contact geometries are an arena
for time-dependent Hamiltonian mechanics. Klein model of the metaplectic contact projective geometry consists of
two groups G̃ and P̃ , where G̃ is the metaplectic group Mp(V,ω), i.e., a nontrivial double covering of the symplectic
group G, and P̃ is the preimage of P by this covering.

Symplectic spinor operators over projective contact geometries are acting between sections of the so-called higher
symplectic spinor bundles. These bundles are associated via certain infinite dimensional irreducible admissible rep-
resentations of the parabolic principal group P . The parabolic group P acts then nontrivially only by its Levi factor
G0, while the action of the unipotent part is trivial. The semisimple part gss

0 of the Lie algebra of the Levi part of the
parabolic group P is isomorphic to the symplectic Lie algebra sp(2l,R). Thus to give an admissible representation
of P , we have to specify a representation of gss

0 . Let us recall that the classification of first order invariant operators
was done by Slovák, Souček in [24] (generalizing an approach of Fegan in [8]) for all finite dimensional irreducible
representations and general parabolic subgroup P of a semisimple G (almost Hermitian structures are studied in
detail). Nevertheless, there are some interesting infinite dimensional representations of the complex symplectic Lie
algebra, to which we shall focus our attention. These representations form a class consisting of infinite dimensional
modules with bounded multiplicities. Modules with bounded multiplicities are representations, for which there is
a nonnegative integer, such that the dimension of each weight space of this module is bounded by it from above.
Britten, Hooper and Lemire in [2] and Britten, Hooper in [3] showed that each of these modules appear as direct sum-
mands in a tensor product of a finite dimensional sp(2l,C)-module and the so-called Kostant (or basic) symplectic
spinor module S+ and vice versa. Irreducible representations in this completely reducible tensor product are called
higher symplectic, harmonic or generalized Kostant spinors. It is well known, that all finite dimensional modules over
complex symplectic Lie algebra appear as irreducible submodules of a tensor power of the defining representation.
Thus the infinite dimensional modules with bounded multiplicities are analogous to the spinor–vector representations
of complex orthogonal Lie algebras. Namely, each finite dimensional module over orthogonal Lie algebra is an ir-
reducible summand in the tensor product of a basic spinor representation and some power of the defining module
(spinor–vector representations), or in the power of the defining representation itself (vector representations). In order
to have a complete picture, it remains to show that the basic (or Kostant) spinors are analogous to the orthogonal ones,
even though infinite dimensional. The basic symplectic spinor module S+ was discovered by Bertram Kostant (see
[20]), when he was introducing half-forms for metaplectic structures over symplectic manifolds in the context of geo-
metric quantization. While in the orthogonal case spinor representations can be realized using the exterior algebra of
a maximal isotropic vector space, the symplectic spinor representations are realized using the symmetric algebra of
certain maximal isotropic vector space (called Lagrangian in the symplectic setting). This procedure goes roughly as
follows: one takes the Chevalley realization of the symplectic Lie algebra Cl by polynomial coefficients linear differ-
ential operators acting on polynomials C[z1, . . . , zl] in l complex variables. The space of polynomials splits into two
irreducible summands over the symplectic Lie algebra, namely into the two basic symplectic spinor modules S+ and
S−. There is a relationship between the modules S+ and S− and the Segal–Shale–Weil or oscillator representation.
Namely, the underlying Cl-structure of the Segal–Shale–Weil representation is isomorphic to S+ ⊕ S−.

In order to classify 1st order invariant differential operators, one needs to understand the structure of the space
of P -homomorphisms between the so called 1st jets prolongation P -module of the domain module and the target
representation of P , see Section 4. Thus the classification problem translates into an algebraic one. In our case, rep-
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resentation theory teaches us, that it is sometimes sufficient to understand our representation at its infinitesimal level.
The only thing one needs in this case, is to understand the infinitesimal version of the 1st jets prolongation module.
For our aims, the most important part of the 1st jets prolongation module consists of a tensor product of the defining
representation of Cl and a higher symplectic spinor module. In order to describe the space of P -homomorphisms, one
needs to decompose the mentioned tensor product into irreducible summands. This was done by Krýsl in [21], where
results of Humphreys in [12] and Kac and Wakimoto in [15] were used.

Let us mention that some of these operators are contact analogues of the well-known symplectic Dirac operator,
symplectic Rarita–Schwinger and symplectic twistor operator. Analytical properties of these operators were studied
by many authors, see, e.g., K. Habermann [11] and A. Klein [18]. These symplectic versions were mentioned also by
M.B. Green and C.M. Hull, see [10], in the context of covariant quantization of 10 dimensional super-strings and also
in the theory of Dirac–Kähler fields, see Reuter [22], where we found a motivation for our studies of this topic.

In the second section, metaplectic contact projective geometries are defined using the Cartan’s approach. Basic
properties of higher symplectic spinor modules (Theorem 1) together with a theorem on a decomposition of the tensor
product of the defining representation of sp(2l,C) and an arbitrary higher symplectic spinor module (Theorem 2)
are summarized in Section 3. Section 4 is devoted to the classification result. Theorem 3 and Lemmas 1 and 2 in
this section are straightforward generalizations of similar results obtained by Slovák and Souček in [24]. Theorem 4
(in Section 4) is a well-known theorem on the action of a Casimir element on highest weight modules. While in
the Section 4.1. we are interested only in the classification at the infinitesimal level (Theorem 5), we present our
classification theorem at the globalized level in Section 4.2 (Theorem 6). In the fifth section, three main examples of
the 1st order symplectic spinor operators over contact projective structures are introduced.

2. Metaplectic contact projective geometry

The aim of this section is neither to serve as a comprehensive introduction into metaplectic contact projective
geometries, nor to list all references related to this subject. We shall only present a definition of metaplectic contact
projective geometry by introducing its Klein model, and give only a few references, where one can find links to a
broader literature on this topic (contact projective geometries, path geometries etc.).

For a fixed positive integer l � 3, let us consider a real symplectic vector space (V,ω) of real dimension 2l + 2
together with the defining action of the symplectic Lie group G := Sp(V,ω). The defining action is transitive on
V − {0}, and thus it defines a transitive action G × PV → PV on the projective space PV of V by the prescription
(g, [v]) �→ [gv] for g ∈ G and v ∈ V−{0}. (Here, [v] denotes the one dimensional vector subspace spanned by v.) Let
us denote the stabilizer of a point in PV by P . It is well known that this group is a parabolic subgroup of G, see, e.g.,
D. Fox [9]. The pair (G,P ) is often called Klein pair of contact projective geometry. Let us denote the Lie algebra of
P by p.

Definition 1. Cartan geometry (p : G → M2l+1,ω) is called a contact projective geometry of rank l, if it is a Cartan
geometry modeled on the Klein geometry of type (G,P ) for G and P introduced above.

It is possible to show that each contact projective geometry defines a contact structure on the tangent bundle T M

of the base manifold M and a class [∇] of contact projectively equivalent partial affine connections ∇ acting on the
sections of the contact subbundle (see the Introduction for some remarks). For more details on this topic, see Fox [9].
In Čap, Schichl [4], one can find a treatment on the equivalence problem for contact projective structures. Roughly
speaking, the reader can find a proof there, that under certain conditions, there is an isomorphism between the Cartan
approach and the classical one (via contact subbundle and a class of connections). Because we would like to include
some spin phenomena, let us consider a slightly modified situation. Fix a nontrivial two-fold covering q : G̃ → G

of the symplectic group G = Sp(V,ω) by the metaplectic group G̃ = Mp(V,ω), see Kashiwara, Vergne [17]. Let us
denote the q-preimage of P by P̃ .

Definition 2. Cartan geometry (p : G̃ → M2l+1,ω) is called metaplectic contact projective geometry of rank l, if it is
a Cartan geometry modeled on the Klein geometry of type (G̃, P̃ ) with G̃ and P̃ introduced above.
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Let us remark, that in Definition 2, we do not demand metaplectic contact projective structure to be connected to a
contact projective structure as one demands in the case of spin structures over Riemannian manifolds or in the case of
metaplectic structures over manifolds with a symplectic structure.

3. Higher symplectic spinor modules

Let Cl � sp(2l,C), l � 3, be the complex symplectic Lie algebra. Consider a Cartan subalgebra h of Cl together
with a choice of positive roots Φ+. The set of fundamental weights {�i}li=1 is then uniquely determined. For later
use, we shall need an orthogonal basis (with respect to the form dual to the Killing form of Cl), {εi}li=1, for which

�i = ∑i
j=1 εj for i = 1, . . . , l.

For λ ∈ h∗, let L(λ) be the irreducible Cl-module with the highest weight λ. This module is defined uniquely up
to a Cl-isomorphism. If λ happens to be integral and dominant (with respect to the choice of (h,Φ+)), i.e., if L(λ) is
finite dimensional, we shall write F(λ) instead of L(λ). Let L be an arbitrary (finite or infinite dimensional) weight
module over a complex simple Lie algebra. We call L a module with bounded multiplicities, if there is a k ∈ N0, such
that for each μ ∈ h∗, dimLμ � k, where Lμ is the weight space of weight μ.

Let us introduce the following set of weights

A :=
{

λ =
l∑

i=1

λi�i | λi ∈ N0, i = 1, . . . , l − 1, λl−1 + 2λl + 3 > 0, λl ∈ Z + 1

2

}
.

Definition 3. For a weight λ ∈ A, we call the module L(λ) higher symplectic spinor module. We shall denote the mod-
ule L(− 1

2�l) by S+ and the module L(�l−1 − 3
2�l) by S−. We shall call these two representations basic symplectic

spinor modules.

The next theorem says that the class of higher symplectic spinor modules is quite natural and in a sense broad.

Theorem 1. Let λ ∈ h∗. Then the following are equivalent:

1) L(λ) is an infinite dimensional Cl-module with bounded multiplicities;
2) L(λ) is a direct summand in S+ ⊗ F(ν) for some integral dominant ν ∈ h∗;
3) λ ∈ A.

Proof. See Britten, Hooper, Lemire [2] and Britten, Lemire [3]. �
In the next theorem, the tensor product of a higher symplectic spinor module and the defining representation

C2l � F(�1) of the complex symplectic Lie algebra Cl is decomposed into irreducible summands. We shall need
this statement in the classification procedure. It gives us an important information on the structure of the 1st jets
prolongation module for metaplectic contact projective structures.

Theorem 2. Let λ ∈ A. Then

L(λ) ⊗ F(�1) =
⊕
μ∈Aλ

L(μ),

where Aλ := A∩ {λ + ν | ν ∈ Π(�1)} and Π(�1) = {±εi | i = 1, . . . , l} is the set of weights of the defining represen-
tation.

Proof. See Krýsl, [21]. �
Let us remark, that the proof of this theorem is based on the so-called Kac–Wakimoto formal character formula

published in [15] (generalizing a statement of Jantzen in [14]) and some results of Humphreys, see [12], in which re-
sults of Kostant (from [19]) on tensor products of finite and infinite dimensional modules admitting a central character
are specified.
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4. Classification of first order invariant operators

In this section, we will be investigating first order invariant differential operators acting between sections of certain
vector bundles associated to parabolic geometries (p : G → M,ω), i.e., to Cartan geometries modeled on Klein pairs
(G,P ), where P is an arbitrary parabolic subgroup of an arbitrary semisimple Lie group G.

We first consider a general real semisimple Lie group G together with its parabolic subgroup P and then we
restrict our attention to the metaplectic contact projective case. Let us suppose that the Lie algebra g of the group
G is equipped with a |k|-grading g = ⊕k

i=−k gi , i.e., g1 generates
⊕k

i=1 gi as a Lie algebra and [gi ,gj ] ⊆ gi+j for
i, j ∈ {−k, . . . , k}.1 Denote the semisimple part and the center of the reductive Lie algebra g0 ⊂ g (also called Levi
factor) by gss

0 and z(g0), respectively. The subalgebra
⊕k

i=0 gi forms a parabolic subalgebra of g and will be denoted
by p. Let us suppose that p is isomorphic to the Lie algebra of the fixed parabolic subgroup P of G. The nilpotent
part

⊕k
i=1 gi of p is usually denoted by g+ and the negative

⊕−1
i=−k gi part of g by g−. Let us consider Killing forms

( , )g and ( , )gss
0

of g and gss
0 , respectively. Further, fix a basis {ξ i}ri=1 of g+, such that {ξ i}si=1 is a basis of g1 and

{ξ i}ri=s+1 is a basis of
⊕k

i=2 gi . The second basis, we will use, is a basis of gss
0 , which will be denoted by {ηi}ti=1. The

|k|-grading of g uniquely determines the so-called grading element Gr ∈ z(g0). The defining equation for this element
is [Gr,X] = jX for X ∈ gj and each j ∈ {−k, . . . , k}. It is known that for each |k|-grading of a real (or complex)
semisimple Lie algebra the grading element exists, see, e.g., Yamaguchi [28]. Sometimes, we will denote the grading
element Gr by ηt+1. The set {ηi}t+1

i=1 is then a basis of g0. Let us denote the basis of g− dual to {ξ i}ri=1 with respect to
the Killing form ( , )g by {ξi}ri=1 and the basis of g0 dual to the basis {ηi}t+1

i=1 with respect to the Killing form ( , )g by
{ηi}t+1

i=1.
At the beginning, let us consider two complex irreducible representations (σ,E) and (τ,F) of P in the category

R(P ), the objects of which are locally convex, Hausdorff vector spaces with a continuous linear action of P , which
is admissible, of finite length. Here, admissible action means that the restriction of this action to the Levi subgroup
G0 of P is admissible, see Vogan [27]. The morphisms in the category R(P ) are linear continuous P -equivariant
maps between the objects. It is well known that the unipotent part of the parabolic group acts trivially on both E
and F. We shall call E and F the domain and the target module, respectively and we shall specify further conditions
on these representations later. Generally, for a Lie group G and its admissible representation E, we shall denote
the corresponding Harish-Chandra (g,K)-module (K is maximal compact in G) by E and when we will only be
considering the g-module structure, we shall use the symbol E for it. Further, we will denote the corresponding
actions of an element X from the Lie algebra of G on a vector v simply by X.v, and the action of g ∈ G on a vector v

by g.v—the considered representation will be clear from a context.
Let us stress that most our proofs are formally almost identical to that ones written by Slovák, Souček in [24], but

we formulate them also for infinite dimensional admissible irreducible E and F, and use the decomposition result in
Krýsl [21] when we will be treating the metaplectic contact projective case.

Let (p : G → M,ω) be a Cartan geometry modeled on the Klein pair (G,P ). Because ωu : TuG → g is an
isomorphism for each u ∈ G by definition, we can define a vector field ω−1(X) for each X ∈ g by the equa-
tion ωu(ω

−1(X)u) = X, the so-called constant vector field. For later use, consider two associated vector bundles
EM := G ×σ E and FM := G ×τ F—the so called domain and target bundle, respectively. To each Cartan geometry,
there is an associated derivative ∇ω defined as follows. For any section s ∈ Γ (M,EM) considered as s ∈ C∞(G,E)P

under the obvious isomorphism, we obtain a mapping ∇ωs : G → g∗− ⊗ E, defined by the formula(∇ωs(u)
)
X := Lω−1(X)s(u),

where X ∈ g−, u ∈ G and L is the Lie derivative. The associated derivative ∇ω is usually called absolute invariant
derivative. The 1st jets prolongation module J 1E of E is defined as follows. As a vector space, it is simply the space
E ⊕ (g+ ⊗ E). To be specific, let us fix the Grothendieck’s projective tensor product topology on 1st jets prolongation
module, see Treves [26] or/and D. Vogan [27]. The vector space J 1E comes up with an inherited natural action of the
group P , forming the 1st jets prolongation P -module, see Čap, Slovák, Souček [6]. Let us remark that the function
u �→ (s(u),∇ωs(u)) defines a P -equivariant function on G with values in J 1E and thus a section of the first jet
prolongation bundle J 1(EM) of the associated bundle EM . For details, see Čap, Slovák Souček [6].

1 By definition, gi = 0 for |i| > k is to be understood.
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By differentiation of the P -action on J 1E, we can obtain a p-module structure, the so-called infinitesimal 1st jets
prolongation p-module J 1E, which is as a vector space isomorphic to E ⊕ (g+ ⊗ E). The p-representation is then
given by the formula

(1)R.(v′, S ⊗ v′′) :=
(

R.v′, S ⊗ R.v′′ + [R,S] ⊗ v′′ +
r∑

i=1

ξ i ⊗ [R,ξi]p.v′
)

where R ∈ p, S ∈ g+, v′, v′′ ∈ E and [R,ξi]p denotes the projection of [R,ξi] to p. For a derivation of the above
formula, see Čap, Slovák, Souček [6] for more details. Obviously, this action does not depend on a choice of the
vector space basis {ξ i}ri=1. We will call this action the induced action of p.

Definition 4. We call a vector space homomorphism D : Γ (M,EM) → Γ (M,FM) first order invariant differential
operator, if there is a P -module homomorphism2 D : J 1E → F, such that Ds(u) = D(s(u),∇ωs(u)) for each u ∈ G
and each section s ∈ Γ (M,EM) (considered as a P -equivariant E-valued smooth function on G ).

Let us remark, that this definition could be generalized for an arbitrary order. The corresponding operators are called
strongly invariant. There exist also operators which are invariant in a broader sense (see Čap, Slovák, Souček [5]) and
not strongly invariant.

We shall denote the vector space of first order invariant differential operators by Diff(EM,FM)1
(p:G→M)

. It is

clear that Diff(EM,FM)1
(p:G→M)

� HomP (J 1E,F) as complex vector spaces. Let us denote the restricted 1st jets
prolongation P -module, i.e., the quotient P -module

[
E ⊕ (g+ ⊗ E)

]/[
{0} ⊕

(
k⊕

i=2

gi ⊗ E

)]
,

by J 1
RE. According to our notation, the meanings of J 1

RE and J 1
RE are also fixed. Now, let us introduce a linear

mapping Ψ : g1 ⊗ E → g1 ⊗ E given by the following formula

Ψ (X ⊗ v) :=
s∑

i=1

ξ i ⊗ [X,ξi].v.

Obviously, mapping Ψ does not depend on a choice of the basis {ξ i}si=1.
First, let us derive the following

Theorem 3. Let E and F be two p-modules such that the nilpotent part g+ acts trivially on them. If D ∈ Homp(J 1E,F)

is a p-homomorphism, then D vanishes on the image of Ψ and D factors through the restricted jets, i.e., D(0,Z ⊗
v′′) = 0 for each v′′ ∈ E and Z ∈ ⊕k

i=2 gi . Conversely, suppose D ∈ Homg0(J
1E,F) is a g0-homomorphism, D

factors through the restricted jets, and D vanishes on the image of Ψ , then D is a p-module homomorphism.

Proof. Let D ∈ Homp(J 1E,F) be a p-homomorphism. Take an element ṽ ∈ g+.J 1E. Then D(ṽ) = D(X.v) for some
X ∈ g+ and v ∈ E. Using the fact, that D is a p-homomorphism, we can write D(ṽ) = X.D(v) = 0, because the
nilpotent algebra g+ acts trivially on the module F. Thus D vanishes on the image of g+ on J 1E.

Now, we would like to prove, that D factors through J 1
RE. Take an arbitrary element Z ∈ ⊕k

i=2 gi and v′′ ∈ E.
Because g is a |k|-graded algebra, there are n ∈ N and Xi,Yi ∈ g+ for i = 1, . . . , n, such that Z = ∑n

i=1[Xi,Yi]. It
is easy to compute that

∑n
i=1 Xi.(0, Yi ⊗ v′′) = (0,

∑n
i=1 Yi ⊗ Xi.v

′′ + [Xi,Yi].v′′ + 0) = (0,
∑n

i=1[Xi,Yi] ⊗ v′′) =
(0,Z ⊗ v′′). Thus we may write D(0,Z ⊗ v′′) = D(

∑n
i=1 Xi.(0, Yi ⊗ v′′)) = 0, because D acts trivially on g+.J 1E,

as we have already proved.
Second, we shall prove that D vanishes on the image of Ψ . Substituting v′′ = 0 into formula (1) for the in-

duced action, we get that X.(v′,0) = (X.v′,
∑r

i=1 ξ i ⊗ [X,ξi]p.v′) for v′ ∈ E and X ∈ g1. Assuming that the
nilpotent subalgebra g+ acts trivially on E, one obtains X.(v′,0) = (0,

∑r
i=1 ξ i ⊗ [X,ξi]p.v′) = (0,

∑s
i=1 ξ i ⊗

2 By a P -module homomorphism, we mean a morphism in R(P ).
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[X,ξi]p.v′ + ∑r
i=s+1 ξ i ⊗ [X,ξi]p.v′). The last summand is zero, because [X,ξi]p = 0 for i > s. Thus we have

X.(v′,0) = (0,
∑s

i=1 ξ i ⊗ [X,ξi]p.v′). Because D vanishes on the image of the action of g+ on J 1E, we know that
0 = D(X.(v′,0)) = D(0,

∑s
i=1 ξ i ⊗ [X,ξi]p.v′). Since one can omit the restriction of the Lie bracket in the last term

to the subalgebra p (we are considering ξi only for i = 1, . . . , s), D vanishes on the image of Ψ .
Now, we would like to prove the opposite direction. Hence suppose, a g0-homomorphism D is given. Let us take an

element S ∈ g+ (for S ∈ g0 it is clear) and an arbitrary element ṽ = (v′, Y ⊗ v′′) ∈ J 1E. Thus D(S.ṽ) = D(S.(v′, Y ⊗
v′′)) = D(S.v′, Y ⊗ S.v′′ + [S,Y ] ⊗ v′′ + ∑r

i=1 ξ i ⊗ [S, ξi]p.v′) = D(0,
∑r

i=1 ξ i ⊗ [S, ξi]p.v′) = 0 = S.D(ṽ), where
we have used that the action of g+ is trivial on E, D factors through the restricted jets, vanishes on the image of Ψ ,
and the fact that g+ acts trivially on F. �

Now, we derive the following

Lemma 1. For the mapping Ψ , we have

Ψ (X ⊗ v) =
t+1∑
j=1

[ηj ,X] ⊗ ηj .v

for each X ∈ g1 and v ∈ E.

Proof. Take an element X ∈ g1. Using the invariance of the Killing form ( , )g, expressed by

[X,ξi] =
t+1∑
i=1

(
ηi, [X,ξi]

)
g
ηi =

t+1∑
i=1

([ηi,X], ξi

)
g
ηi,

we compute the value Ψ (X ⊗ v) as

Ψ (X ⊗ v) =
s∑

i=1

ξ i ⊗ [X,ξi].v

=
s∑

i=1

ξ i ⊗
t+1∑
j

(
ηj , [X,ξi]

)
g
ηj .v

=
s∑

i=1

ξ i ⊗
t+1∑
j=1

([ηj ,X], ξi

)
g
ηj .v

=
s∑

i=1

t+1∑
j=1

([ηj ,X], ξi

)
g
ξ i ⊗ ηj .v

=
t+1∑
j=1

[ηj ,X] ⊗ ηj .v. �

For any real Lie algebra g, let us denote its complexification over reals by gC, i.e., gC = g ⊗R C. Let h be a
(complex) Cartan subalgebra of (gss

0 )C. For each λ,μ,α ∈ h∗, we define a complex number

c
μ
λα = 1

2

[
(λ,λ + 2δ)gss

0
+ (α,α + 2δ)gss

0
− (μ,μ + 2δ)gss

0

]
,

where δ denotes the sum of fundamental weights with respect to a choice of positive roots.3

3 We are denoting the Killing form on gss
0 as well as the dual form on (gss

0 )∗ by the same symbol ( , )gss
0

. We shall also not distinguish between

the Killing form of a real algebra and that one of the complexification of this algebra. We hope that this will cause no confusion.
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From now on, we shall suppose that the semisimple part of the Levi factor of P is actually simple and the center
of the Levi factor is one dimensional. These assumptions are rather technical and introduced only in order to simplify
formulations of our statements. Until yet, we have demanded the considered modules to be admissible irreducible
P -modules. In particular, we have used the fact that the unipotent part of P acts trivially on them. From now on, we
will suppose in addition that the modules E and F are irreducible highest weight modules over the complexification
(gss

0 )C of the Lie algebra gss
0 of the semisimple part of the Levi factor G0 of P . Further we shall suppose, that the

grading element acts by a complex multiple on each of the modules E and F. We call a pair (λ, c) ∈ h∗ × C a highest
weight of a representation E over the reductive Lie algebra (g0)

C, if the restriction of the representation of g0 on E

to the simple part (gss
0 )C has highest weight λ and the grading element Gr acts by a complex number c. The complex

number c is often called generalized conformal weight of the p-module E.
Recall a well-known theorem on the action of the universal Casimir element on highest weight modules.

Theorem 4. Let E be a highest weight module over the simple complex Lie algebra (gss
0 )C with a highest weight

λ ∈ h∗ and C ∈ U((gss
0 )C) be the universal Casimir element of (gss

0 )C. Then

C.v = (λ,λ + 2δ)gss
0
v,

where v ∈ E.

Proof. See, e.g., Humphreys [13]. �
Before we state the next lemma, let us do some comments on the relationship between the Killing forms ( , )gss

0
and

( , )g. It is well known that the restriction of ( , )g to gss
0 is a nondegenerate and obviously an invariant bilinear form, and

therefore there is a constant κ ∈ C×, such that for X,Y ∈ gss
0 we have (X,Y )gss

0
= κ(X,Y )g—due to the uniqueness

of invariant nondegenerate forms up to a nonzero complex multiple. The bases {ηi}ti=1 and {ηi}ti=1 of gss
0 are not dual

with respect to the Killing form ( , )gss
0

in general. For further purposes, we can consider these bases being also bases
of the appropriate complexified Lie algebras. According to the relationship between the Killing forms in question,
we know that {ηi}ti=1 and {κ−1ηi}ti=1 are dual with respect to ( , )gss

0
. We would like to compute (

∑t
i=1 ηiηi).v. Due

to Theorem 4, we can write (
∑t

i=1 ηiκ−1ηi).v = (λ,λ + 2δ)gss
0
v, if v ∈ L(λ). Therefore (

∑t
i=1 ηiηi).v = κ(λ,λ +

2δ)gss
0
v. Let us denote (Gr,Gr)g =: ρ−1, i.e., ηt+1 = Gr whereas ηt+1 = ρGr. Thus if Gr acts by a complex number

c, we have that the action of ηt+1ηt+1 is by ρc2. We will use these computations in the proof of the following

Lemma 2. Suppose E is an irreducible pC-module, the action of (g+)C being trivial and the highest weight of E over
(g0)

C is (λ, c) ∈ h∗ × C. Let us further suppose that E ⊗ (g1)
C decomposes into a finite direct sum E ⊗ g1 = ⊕

μ Eμ

of irreducible (gss
0 )C-modules, where Eμ is an irreducible (gss

0 )C-module with a highest weight μ. Let us fix a set of
projections πμ onto the irreducible summands in E⊗(g1)

C. Assume further that (g1)
C is an irreducible (gss

0 )C-module
with a highest weight α. Then

(2)Ψ =
∑
μ

(ρc − κc
μ
λα)πμ.

Proof. Let us do the following computation with “Casimir” operators
∑t+1

i=1 ηiηi ∈ U(g0). For X ∈ g1 and v ∈ E, we
have:

(3)
t+1∑
i=1

(ηiηi).(X ⊗ v) =
t+1∑
i=1

(ηiηi).X ⊗ v + X ⊗
t+1∑
i=1

(ηiηi).v + 2Ψ (X ⊗ v),

where we have used Lemma 1. Now, we would like to compute the first two terms of the R.H.S. of the last written
equation using the universal Casimir element of gss

0 , see Theorem 4.

(4)
t+1∑
i=1

(ηiηi).X ⊗ v = κ(α,α + 2δ)gss
0
X ⊗ v + ρX ⊗ v,
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(5)X ⊗
t+1∑
i=1

(ηiηi).v = κ(λ,λ + 2δ)gss
0
X ⊗ v + ρc2X ⊗ v.

Let us compute the L.H.S. of (3)

(6)
t+1∑
i=1

(ηiηi).(X ⊗ v) =
∑
μ

κ(μ,μ + 2δ)gss
0
πμ(X ⊗ v) +

∑
μ

πμ[ρX ⊗ v + 2ρcX ⊗ v + ρc2X ⊗ v].

Substituting Eqs. (4), (5) and (6) into Eq. (3) we obtain∑
μ

κ(μ,μ + 2δ)gss
0
πμ(X ⊗ v) + 2

∑
μ

ρcπμ(X ⊗ v) +
∑
μ

ρc2πμ(X ⊗ v) + ρX ⊗ v

= 2Ψ (X ⊗ v) + κ(α,α + 2δ)gss
0
X ⊗ v + ρX ⊗ v + κ(λ,λ + 2δ)gss

0
X ⊗ v + ρc2X ⊗ v.

As a result we obtain

Ψ (X ⊗ v) =
∑
μ

(
ρc − κc

μ
λα

)
πμ(X ⊗ v). �

4.1. Infinitesimal level classification

Let (V,ω) be a real symplectic vector space of dimension 2l +2, l � 3. In this subsection, we shall focus our atten-
tion to the specific case of symplectic Lie algebra sp(V,ω) � sp(2l + 2,R) and its parabolic subalgebra p introduced
in Section 2. We shall be investigating the vector space Homp(J 1E,F) for suitable p-modules E,F, i.e., classify the
first order invariant differential operator at the infinitesimal level. For a moment, we shall consider a complex setting.

The complex symplectic Lie algebra gC = sp(2l + 2,C) possesses a |2|-grading,

gC = gC−2 ⊕ gC−1 ⊕ gC
0 ⊕ gC

1 ⊕ gC
2 ,

such that gC
2 � C, gC

1 � C2l , gC
0 = (gss

0 )C ⊕ (z(g0))
C � sp(2l,C) ⊕ C. This splitting could be displayed as follows.

Choose a basis B of V such that ω, expressed in coordinates with respect to B , is given by ω((z1, . . . , z2l+2), (w1, . . . ,

w2l+2)) = w1z2l+2 + · · · + wl+1zl+2 − wl+2zl+1 − · · · − w2l+2z1. For A ∈ sp(2l + 2,C) we have:

A =
⎛⎝ g0 g1 g2

g−1 g0 g1
g−2 g−1 g0

⎞⎠
with respect to B . As one can easily compute, the parabolic subalgebra pC = (g0)

C ⊕ (g1)
C ⊕ (g2)

C is a complex-
ification of the Lie algebra of the group P introduced in Section 2, where we have defined the metaplectic contact
projective geometry. Before we state the next theorem, we should compute the coefficients ρ and κ for the case
g = sp(2l + 2,C) considered with the grading given above. One can easily realize, that

Gr =
⎛⎝ 1 0 0

0 02l 0
0 0 −1

⎞⎠
is the grading element, and that (Gr,Gr)g = 4l + 8. Computing the square-norm of an element of gss

0 via ( , )g and
( , )gss

0
, one obtains for the ratio κ = l+1

l+2 . Further, let us introduce a bilinear form 〈 , 〉 on h∗, in which the orthogonal

basis {εi}li=1 is orthonormal. The relation between the Killing form ( , )gss
0

and 〈 , 〉 is given by (X,Y )gss
0

= 1
4l+4 〈X,Y 〉

for X,Y ∈ h∗. For each λ,μ,α ∈ h∗, let us define a complex number

c̃
μ
λα = 1

2

(〈μ,μ + 2δ〉 − 〈λ,λ + 2δ〉 − 〈α,α + 2δ〉).
Substituting the computed values of ρ and κ and the relation between ( , )gss

0
and 〈 , 〉 into formula (2), we obtain a

prescription for mapping Ψ (in the metaplectic contact projective case)

Ψ = 1

4l + 8

∑
μ

(c − c̃
μ
λα)πμ.
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Theorem 5. For (λ, c), (μ,d) ∈ A×C, let E and F be two pC-modules such that E and F are irreducible if considered
as (g0)

C-modules with highest weight (λ, c) and (μ,d), respectively, and let (g+)C has a trivial action on each of
these modules. Further, suppose λ �= μ. Then

HompC

(
J 1E,F

) �
{

C, if μ ∈ Aλ and d − 1 = c = c̃
μ
λ�1

,

0 in other cases.

Proof. Let us start with the second part of the statement, i.e., μ /∈ Aλ or c �= c̃
μ
λ�1

or d − 1 �= c̃
μ
λ�1

, and consider

an element T ∈ HompC(J 1E,F). Then T ∈ Hom(gss
0 )C(J 1E,F). Because T is a pC-homomorphism, we have that

T ∈ Hom(gss
0 )C(J 1

RE,F) due to Theorem 3 (used in the complexified setting). We also know that

Hom(gss
0 )C(J 1

RE,F) = Hom(gss
0 )C(E,F) ⊕

⊕
ν∈Aλ

Hom(gss
0 )C

(
L(ν),L(μ)

)
due to Theorem 2. If we suppose μ /∈ Aλ and λ �= μ, then due to Theorems 2.6.5, 2.6.6 in Dixmier [7], each
member of the direct sum is zero. Now suppose that μ ∈ Aλ. Thus c �= c̃

μ
λ�1

or d − 1 �= c̃
μ
λ�1

. First suppose that

c �= c̃
μ
λ�1

. Using Theorem 2 and the cited theorems of Dixmier, we see that Hom(gss
0 )C(J 1

RE,F) � Hom(gss
0 )C(E,F) ⊕

Hom(gss
0 )C(L(μ),L(μ)) � Hom(gss

0 )C(L(μ),L(μ)), because the decomposition of (g1)
C ⊗ E is multiplicity-free and

λ �= μ. Thus we can consider T to be a (gss
0 )C-intertwining operator acting on the irreducible highest weight module

L(μ). We have two possibilities: T : L(μ) → L(μ) is either zero and we are done, or KerT = {0}. We will suppose
the latter possibility. Take a nonzero element 0 �= v ∈ L(μ). Using the formula Ψ = (4l + 8)−1 ∑

ν(c − c̃ν
λ�1

)πν ,

we obtain under the assumption c �= c̃
μ
λ�1

that Ψ (v) = (4l + 8)−1(c − c̃
μ
λα)v �= 0. Because KerT = {0}, we have

that T Ψ (v) �= 0 and thus, according to Theorem 3, T it is not a pC-module homomorphism because it does not
vanish on the image of Ψ . Secondly, consider the case d �= c̃

μ
λα + 1. We can make the following easy computation.

d(S1 ⊗v′′) = Gr.(S1 ⊗v′′) = [Gr, S1]⊗v′′ +S1 ⊗Gr.v′′ = (1+ c)S1 ⊗v′′ for S1 ∈ (g1)
C and v′′ ∈ E. Thus c = d −1

and we are obtaining the case c �= c̃
μ
λ�1

, which was already handled.

Now, consider the case μ ∈ Aλ, c = c̃
μ
λα and d − 1 = c̃

μ
λα and take a T ∈ HompC(J 1E,F). As in the previous

case, this implies T ∈ Hom(gss
0 )C(J 1

RE,F). Decomposing J 1
RE = L(λ) ⊕ (F (�1) ⊗ L(λ)) into irreducible modules

and substituting this decomposition into Hom(gss
0 )C(J 1

RE,F), we obtain a direct sum

Hom(gss
0 )C(E,F) ⊕

⊕
ν∈Aλ

Hom(gss
0 )C

(
L(ν),L(μ)

)
.

According to our assumptions μ ∈ Aλ and λ �= μ, and due to the structure of the set Aλ, we know that the di-
rect sum simplifies into a space isomorphic to C (using the above cited theorem of Dixmier once more). Thus we
know that HompC(J 1E,F) ⊆ Hom(gss

0 )C(J 1
RE,F) � C. To obtain an equality in the previous inclusion, consider the

one dimensional vector space of (gss
0 )C-homomorphisms {wπ̃μ|w ∈ C}, where π̃μ is a trivial extension of the pro-

jection (g1)
C ⊗ E → L(μ). The elements of this vector space are clearly (gss

0 )C-homomorphisms, which vanish on
the image of Ψ , if c = c̃

μ
λα , and they factorize through the restricted jets. What remains is to show that for each

w ∈ C, mappings wπ̃μ are not only (gss
0 )C-homomorphisms, but also (g0)

C-homomorphisms. Notice that it is suffi-
cient to test the condition only on (g1)

C ⊗ E because Gr ∈ (g0)
C, and π̃μ is the trivial extension, see formula (1). For

S1 ∈ (g1)
C and v′′ ∈ E, we have Gr.π̃μ(S1 ⊗v′′) = dπ̃μ(S1 ⊗v′′) by definition. Now, let us evaluate π̃μGr.(S1 ⊗v′′) =

π̃μ([Gr, S1]⊗v′′ +S1 ⊗Gr.v′′) = π̃μ(S1 ⊗v′′ + cS1 ⊗v′′) = (1+ c)π̃μ(S1 ⊗v′′) = dπ̃μ(S1 ⊗v′′) = Gr.π̃μ(S1 ⊗v′′),
thus π̃μ commutes with the action of Gr. Therefore π̃μ is a (g0)

C-homomorphism and the statement follows using
Theorem 3. �

Let us remark, that for λ = μ, the space of homomorphisms is also one dimensional. But this case leads to zeroth
order operators, which are not interesting from the point of view of our classification. Let us derive an easy corollary
of the above theorem.

Corollary 1. The preceding theorem remains true for a real form f of (gss
0 )C, if one considers complex representations

and complex linear homomorphisms. In particular, it remains true for the split real form f = gss
0 � sp(2l,R).
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Proof. First, observe that the decomposition of F(�1) ⊗ L(λ) remains the same also over f. For it, let us take an
irreducible summand M in the decomposition and suppose there is a proper nontrivial complex submodule M′ of M.
For v ∈ M′ and X + iY ∈ f+ if, we get that (X + iY ).v = X.v + iY.v. Using the fact that M′ is closed under complex
number multiplication and X.v,Y.v ∈ M′, we would obtain that M′ is (gss

0 )C-invariant, which is a contradiction.
Second, we would like to prove that each f-invariant complex linear endomorphism of an irreducible module,

say F, is a scalar. It is easy to observe, that such an endomorphism is actually (gss
0 )C-endomorphism, i.e., the theorem

of Dixmier used in the proof of the previous theorem, could be applied and the corollary follows. �
4.2. Globalized level classification

In this subsection, we shall extend the results obtained in the previous one to the group level. We will do it using
some basic facts on globalization techniques.

Let (V,ω) be a real symplectic vector space of real dimension 2l + 2, l � 3, G = Sp(V,ω) and P as described
in Section 2. First, we introduce the groups, we shall be considering. Let G+,G0,G

ss
0 ,K be the unipotent part, the

Levi factor, the semisimple part of P and the maximal compact subgroup of G, respectively. Recall that we have fixed
a nontrivial 2-fold covering q : G̃ → G of the symplectic group G by the metaplectic group G̃ = Mp(V,ω). Let us
denote the respective q-preimages by G̃+, G̃0, G̃

ss
0 , K̃ . Further, let us denote the maximal compact subgroup of the

semisimple part Gss
0 of the Levi factor by Kss

0 and its q-preimage by K̃ss
0 . We have

K̃ss
0 � Ũ (l) = {

(u, z) ∈ U(l) × C× | detu = z2},
which is obviously connected, see Tirao, Vogan and Wolf [25].

Second, let us introduce a class of P̃ -modules we shall be dealing with. In Kashiwara, Vergne [17], the so called
metaplectic (or Segal–Shale–Weil or oscillator) representation over G̃ss

0 is introduced. Let S+ be the irreducible
submodule of the Segal–Shale–Weil representation consisting of even functions. Let us take the underlying (gss

0 , K̃ss
0 )-

module and denote it by S+. The gss
0 -module structure of this representation coincides with the irreducible highest

weight module structure of S+, which was introduced in Section 3. For a choice of a weight λ ∈ A, we know that there
exists a dominant integral weight ν (with respect to choices made in Section 3), such that L := L(λ) ⊆ S+ ⊗ F(ν).
Because S+ ⊗ F(ν) decomposes without multiplicities, we have an identification of L(λ) with its isomorphic module
in S+ ⊗ F(ν). Now we would like to make L a (gss

0 , K̃ss
0 )-module. Using a result of Baldoni [1], this could be done

as follows. Because S+ and F(ν) are (gss
0 , K̃ss

0 )-modules, their tensor product is a (gss
0 , K̃ss

0 )-module as well. Using
the fact that K̃ss

0 = Ũ (l) is connected, we are obtaining a (gss
0 , K̃ss

0 )-module structure on each irreducible summand
in S+ ⊗ F(ν), in particular on L. Denote the resulting (gss

0 , K̃ss
0 )-module by L. Using globalization results of Kashi-

wara and Schmid in [16], there exists a minimal globalization for this (gss
0 , K̃ss

0 )-module, which will be denoted by
L =: L(λ). (For this topic, see also Vogan [27] and Schmid [23].) Thus L(λ) is a complex G̃ss

0 -module. Further, we
need to specify the action of the center of G̃0 and that one of the unipotent part G̃+. For each (λ, c) ∈ A × C we
suppose, that the unipotent G̃+ acts trivially on L(λ) and the grading element Gr in the Lie algebra of the center
of the Levi factor G̃0 acts by multiplication by a complex number c ∈ C. Since the center is isomorphic to R× we
need to specify the action of, e.g., −1 ∈ R×. This action should be any γ ∈ R satisfying γ 2 = 1. So we have ob-
tained a P̃ -module structure on L(λ) which we will refer to as L(λ, c)γ . Let us remark, that defining the action of
G̃+ to be trivial, is actually no restriction, when one considers only irreducible admissible P̃ -modules. We shall call
the corresponding associated bundles higher symplectic bundles and the corresponding 1st order invariant differential
operators symplectic spinor operators, stressing the fact that the representations of P̃ we are considering are coming
from higher symplectic spinor modules.

Theorem 6. Let (λ, c, γ ), (μ,d, γ ′) ∈ A × C × Z2,4 λ �= μ and (p : G̃ → M2l+1,ω) be a metaplectic contact pro-
jective geometry of rank l. Consider the P̃ -modules E := L(λ, c)γ and F := L(μ,d)γ ′ . Then for the vector space of

4 The group Z2 is considered as multiplicative, i.e., Z2 = {−1,1}.
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invariant differential operators up to a zeroth order we have

Diff(EM,FM)1
(p:G̃→M2l+1,ω)

�
{

C if μ ∈ Aλ,d − 1 = c = c̃
μ
λ�1

and γ = γ ′,
0 in other cases.

Proof. According to the definition of first order invariant differential operators between sections of associated vector
bundles over Cartan geometries, the vector space Diff(EM,FM)1

(p:G̃→M,ω)
is isomorphic to the space Hom

P̃
(J 1E,F).

From the definition of the minimal globalization, it follows that it gives a natural bijection between Hom’s

of respective categories: the Harish-Chandra category of (p, K̃ ∩ G0)-modules and the category of admissible P̃ -
modules, see Kashiwara, Schmid [16]. Thus we have HomP̃ (J 1E,F) � Hom

(p,K̃∩G0)
(J 1E,F). Because the identity

component (K̃ ∩ G0)1 is connected by definition, we can write Hom
(p,(K̃∩G0)1)

(J 1E,F) � Homp(J 1E,F), see W.

Baldoni [1]. It remains to show that each p-module homomorphism is actually a (p, (K̃ ∩ G0)−1)-module homomor-

phism, where (K̃ ∩ G0)−1 denotes the component of the group K̃ ∩ G0 to which −1 belongs. Let us parameterize

the elements of the (−1)-component of (K̃ ∩ G0) � Ũ (l) × Z2 by pairs (k,−1), k ∈ Ũ (l), and denote the appro-
priate P̃ -representation on E by ρ. We can easily check that for (v′, S ⊗ v′′) ∈ J 1E, we have (k,−1).(v′, S ⊗
v′′) = (ρ(k,−1)v′,Ad(k,−1)S ⊗ ρ(k,−1)v′′) = (γρ(k,1)v′,Ad(k,1)S ⊗ γρ(k,1)v′′) = γ (k,1).(v′, S ⊗ v′′). Fur-
ther for a p-homomorphism T ∈ Homp(J 1E,F), we can write T (k,−1).(v′, S ⊗ v′′) = γ T (k,1).(v′, S ⊗ v′′) =
γ (k,1).T (v′, S ⊗ v′′) = γ γ ′(k,−1).T (v′, S ⊗ v′′). Thus we have also Hom

(p,K̃∩G0)
(J 1E,F) � Homp(J 1E,F) if

γ = γ ′. The Hom at the right hand side was determined in Corollary 1. In the case γ �= γ ′, we have that T = 0 and
the proof is finished. �
5. Examples: contact projective Dirac, twistor and Rarita–Schwinger operators

In this section, we shall introduce three main examples of contact projective analogues of Dirac, twistor and Rarita–
Schwinger operators known from Riemannian and partly from symplectic geometry. In each of the next paragraphs,
we suppose that a metaplectic contact projective geometry (p : G̃ → M2l+1,ω) of rank l is fixed.

Contact projective Dirac operator. For λ = − 1
2�l , we have Aλ = {�1 − 1

2�l,�l−1 − 3
2�l} according to The-

orem 2. Take μ = �l−1 − 3
2�l ∈ Aλ. Using δ = lε1 + (l − 1)ε2 + · · · + εl , we obtain that c̃

μ
λα = 1+2l

2 . Thus for

conformal weight c = 1+2l
2 and γ ∈ Z2 there is an invariant differential operator D

1
2 : Γ (M,L(λ, 1+2l

2 )γ M) →
Γ (M2l+1,L(μ, 3+2l

2 )γ M). This operator could be called contact projective Dirac operator because of the analogy
with the orthogonal case.

Contact projective twistor operator. Taking the same λ = − 1
2�l as in the previous example and μ = �1 − 1

2�l , we
obtain c = 1

2 and the corresponding operator T : Γ (M,L(λ, 1
2 )γ M) → Γ (M,L(μ, 3

2 )γ M) (γ ∈ Z2) is called contact
projective twistor operator also due to the analogy with the orthogonal case.

Contact projective Rarita–Schwinger operator. Here, take λ = �1 − 1
2�l . Aλ = {�2 − 1

2�l,2�1 − 1
2�l,− 1

2�l,

�1 +�l−1 − 3
2�l}. For μ = �1 +�l−1 − 3

2�l , we obtain c = 1+2l
2 , and we shall call this operator contact projective

Rarita–Schwinger operator, D
3
2 : Γ (M,L(λ, 1+2l

2 )γ M) → Γ (M,L(μ, 3+2l
2 )γ M), where again γ ∈ Z2.

Remark. It may be interesting to mention, that computing formally the conformal weights using a Lepowsky general-
ization of a result of Bernstein–Gelfand–Gelfand on homomorphism of nontrue Verma-modules, one gets exactly the
same weights, although Lepowsky is considering only Verma modules induced by finite dimensional representations.
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a b s t r a c t

We study symplectic manifolds (M2l, ω) equipped with a symplectic torsion-free affine
(also called Fedosov) connection ∇ and admitting a metaplectic structure. Let S be the so-
called symplectic spinor bundle overM and let RS be the curvature field of the symplectic
spinor covariant derivative ∇S associated to the Fedosov connection ∇. It is known that
the space of symplectic spinor valued exterior differential 2-forms, Γ (M,

∧2 T ∗M ⊗ S),
decomposes into three invariant subspaces with respect to the structure group, which is
themetaplectic groupMp(2l,R) in this case. For a symplectic spinor fieldφ ∈ Γ (M, S),we
compute explicitly the projections of RSφ ∈ Γ (M,

∧2 T ∗M⊗S) onto the three mentioned
invariant subspaces in terms of the symplectic Ricci and symplectic Weyl curvature tensor
fields of the connection ∇. Using this decomposition, we derive a complex of first order
differential operators provided the Weyl curvature tensor field of the Fedosov connection
is trivial.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the paper, we shall study the action of the curvature tensor field on symplectic spinors over a symplectic manifold
(M2l, ω) admitting a metaplectic structure and equipped with a symplectic torsion-free affine connection ∇ . Such
connections are usually called Fedosov connections. It is well known that in the case of l > 1, the curvature tensor field
of the connection∇ decomposes into two parts, namely into the symplectic Weyl and the symplectic Ricci curvature tensor
field. In the case l = 1, only the symplectic Ricci curvature tensor field appears. See [1] for details.
Now, let us say a few words about the metaplectic structure. In the symplectic case, there exists (in a parallel to the

Riemannian case) a non-trivial two-fold covering of the symplectic group Sp(2l,R), the so-called metaplectic group. We
shall denote it byMp(2l,R). A metaplectic structure on a symplectic manifold (M2l, ω) is a notion parallel to the notion of
a spin structure on a Riemannian manifold. In particular, one of its parts is a principal Mp(2l,R)-bundle. For a symplectic
manifold admitting a metaplectic structure, one can construct the so-called symplectic spinor bundle S, introduced by B.
Kostant in 1974. The symplectic spinor bundle S is the vector bundle associated to the metaplectic structure on M (more
precisely to thementionedprincipalMp(2l,R)-bundle) via the so-called Segal–Shale–Weil representation of themetaplectic
groupMp(2l,R). See [2] for details.
The Segal–Shale–Weil representation is an infinite dimensional unitary representation of the metaplectic group

Mp(2l,R) on the space of all complex valued square Lebesgue integrable functions L2(Rl). Because of the infinite dimension,
the Segal–Shale–Weil representation is not so easy to handle. It is known, see, e.g., [3], that the infinitesimal structure
of the underlying Harish–Chandra module of this representation is equivalent to the space C[x1, . . . , xl] of polynomials
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in l variables, on which the symplectic Lie algebra sp(2l,R) acts via the so-called Chevalley homomorphism,1 see [4].
Thus, the underlying vector space of the infinitesimal structure of the Segal–Shale–Weil representation can be viewed as
the complexified symmetric algebra

(⊕
∞

i=0�
i Rl
)
⊗R C of the Lagrangian subspace Rl of the canonical symplectic vector

space R2l ' Rl ⊕ Rl. This shows that the situation is completely parallel to the complex orthogonal case and the spinor
representation,which can be realized as the exterior algebra of amaximal isotropic subspace. An interested reader is referred
to [5,3] and also to [4] for more details. For some technical reasons, we shall be using the so-called minimal globalization
of the underlying Harish–Chandra (g, K)-module of the Segal–Shale–Weil representation, which we will call metaplectic
representation and denote it by S (the elements of S will be called symplectic spinors). This representation, as well as the
Segal–Shale–Weil one, decomposes into two irreducible subrepresentations. In the case of the module S, we shall denote
them by S+ and S−.
For any symplectic connection ∇ on a symplectic manifold (M, ω) admitting a metaplectic structure, we can form the

associated covariant derivative ∇S acting on the sections of the symplectic spinor bundle S. The curvature tensor field
RS : 0(M, S) → 0(M,

∧2 TM∗ ⊗ S) of the associated covariant derivative ∇S is defined by the classical formula. The
tensor field RS decomposes also into two parts, one of which depends on the symplectic Ricci and the remaining one on the
symplecticWeyl tensor field. It is known (cf. [6]) that the space of the symplectic spinor valued exterior 2-forms,

∧2 R2l⊗S±,
decomposes into three irreducible summands with respect to the natural action ofMp(2l,R) on this space. We shall briefly
describe the decomposition in this paper. Let us denote thementioned three summands of the decomposition of

∧2 R2l⊗S±
by E20

±
, E21
±
and E22

±
and the corresponding vector bundles associated to the chosen metaplectic structure via the mentioned

modules by E20
±
, E21
±
and E22

±
, respectively. We define E2j := E

2j
+ ⊕ E

2j
− for j = 0, 1, 2.

In the paper, we shall prove that the part of RS corresponding to the symplectic Ricci tensor fieldmaps a symplectic spinor
field φ ∈ 0(M, S) into 0(M, E20 ⊕ E21) and that one corresponding to the symplectic Weyl tensor field maps a symplectic
spinor field into 0(M, E21 ⊕ E22). Parallel and similar conclusions were done in the Riemannian case, see [7].
For an arbitrary symplectic spinor field φ ∈ 0(M, S), the projections of RSφ to the invariant subspaces 0(M, E2j)

(j = 0, 1, 2) are computed explicitly. More precisely, we have described a structure of the action of the curvature tensor
field RS on the space of symplectic spinor fields in terms of the invariant parts of the curvature of the underlying affine
connection ∇ . In what follows, this result will be called the decomposition result. Although this result seems to be rather
abstract or technical, knowing the decomposition of RSφmakes it possible to derive several conclusions for certain invariant
differential operators, which are defined with help of the Fedosov connection.
This is the case of the application thatwe shallmention. Let us briefly describe its context. In 1994, Habermann introduced

a symplectic analogue of the Riemannian Dirac operator known from Riemannian geometry, the so-called symplectic Dirac
operator. The symplectic Dirac operator was introduced with help of the so-called symplectic Clifford multiplication, see
[8]. It is possible to define the same operator using the de Rham sequence tensored (twisted) by symplectic spinor fields as
one usually does in the Riemannian spin geometry to get a definition of the Riemannian Dirac, twistor and Rarita–Schwinger
operator and their further higher spin analogues. Not only the symplectic Dirac operator but also symplectic analogues of the
Riemannian twistor operators can be defined using the de Rham sequence twisted by symplectic spinor fields. We will call
these symplectic versions symplectic twistor operators and denote the first two of them by T0 and T1. Under the assumption
the symplectic Weyl tensor W of the Fedosov connection is trivial, we prove the existence of a complex consisting of the
two mentioned symplectic twistor operators T0 and T1. One of the advantages of knowing the decomposition result is a
complete avoidance of possibly lengthy computations in coordinates when proving that T0 and T1 form a complex (provided
W = 0). One can say that the coordinate computations were absorbed into the proof of the decomposition result. Though
finding the complex seems to be a rather particular result, there is a strong hope of deriving a longer complex under the
same assumption.
The reader interested in applications of symplectic spinors in physics is referred to [9], where they are used in the context

of 10 dimensional superstring theory. In [10], symplectic spinors are used in the theory of the so-called Dirac–Kähler fields.
In the second section, some basic facts on the metaplectic representation and higher symplectic spinors are recalled.

In Section 3, basic properties of symplectic torsion-free, i.e., Fedosov, connections and their curvature tensor fields are
mentioned. In Corollary 11 (Section 4), the action of the curvature tensor field RS of the associated symplectic spinor
covariant derivative∇S acting on the space of symplectic spinor fields (the decomposition result) is described. In this section,
the mentioned complex consisting of the two symplectic twistor operators is presented (Theorem 12).

2. Metaplectic representation, higher symplectic spinors and basic notation

We start with a summary of notions from representation theory that we shall need in this paper. From the point of view
of this article, these notions are of rather a technical character. Let G be a reductive Lie group in the sense of Vogan (see [11]),
g be the Lie algebra of G and K be amaximal compact subgroup of G. Typical examples of reductive groups are finite covers of
semisimple Lie subgroups of the general linear group of a finite dimensional vector space. LetR(G) be the category the object

1 The Chevalley homomorphism realizes the complex symplectic Lie algebra as a Lie subalgebra of the algebra of polynomial coefficients differential
operators acting on C[x1, . . . , xl].
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of which are complete, locally convex, Hausdorff topological spaces with continuous linear G-action, such that the resulting
representation is admissible and of finite length; the morphisms are continuous G-equivariant linear maps between the
objects. LetHC(g, K) be the category of Harish–Chandra (g, K)-modules and let us consider the forgetful Harish–Chandra
functor HC : R(G) → HC(g, K). It is well known that there exists an adjoint functor mg : HC(g, K) → R(G) to the
Harish–Chandra functorHC . This functor is usually called theminimal globalization functor and its existence is a deep result
in representation theory. For details and for the existence of the minimal globalization functormg , see [12,11].
For a representation E ∈ R(G) of G, we shall denote the corresponding Harish–Chandra (g, K)-moduleHC(E) by E. When

we will only be considering its g-module structure, we shall use the symbol E for it.
Now, suppose that gC is a simple Lie algebra, K is connected and two complex (g, K)-modules E, F ∈ HC(g, K) are given

such that both E and F are irreducible highest weight gC-modules. Because mg is an adjoint functor to the functor HC , we
have HomG(mg(E),mg(F)) ' Hom(g,K)(E, F). It is well known that the category of (g, K)-modules is a full subcategory of
the category of g-modules provided K is connected. Due to that, we have Hom(g,K)(E, F) ' Homg(E, F). Because E and F are
complex irreducible highest weight modules over gC, Dixmier’s version of the Schur lemma implies dimHomg(E, F) = 1
iff E ' F (see [13], Theorem 2.6.5 and Theorem 2.6.6). Summing up, we have dimHomG(mg(E),mg(F)) = 1 iff E ' F. For
brevity, we will refer to this simple statement as the globalized Schur lemma.
Further, if (p : G→ M,G) is a principal G-bundle, we shall denote the vector bundle associated to this principal bundle

via a representation σ : G → Aut(W) of G onW byW , i.e.,W = G×σ W. Let us also mention that we shall often use the
Einstein summation convention for repeated indices (lower and upper) without mentioning it explicitly.
Now, we shall focus our attention to the studied case, i.e., to the symplectic one. To fix a notation, let us recall some

notions from the symplectic linear algebra. Let us consider a real symplectic vector space (V, ω0) of dimension 2l, i.e., V is a
2l dimensional real vector space andω0 is a non-degenerate antisymmetric bilinear form onV. Let us choose two Lagrangian
subspaces2 L,L′ ⊆ V such that L ⊕ L′ = V. It follows that dim(L) = dim(L′) = l. Throughout this article, we shall use
a symplectic basis {ei}2li=1 of V chosen in such a way that {ei}

l
i=1 and {ei}

2l
i=l+1 are respective bases of L and L′. Because the

definition of a symplectic basis is not unique, let us fix one which shall be used in this text. A basis {ei}2li=1 of V is called a
symplectic basis of (V, ω0) if ωij := ω0(ei, ej) satisfies ωij = 1 if and only if i ≤ l and j = i+ l;ωij = −1 if and only if i > l
and j = i− l and finally, ωij = 0 in other cases. Let {ε i}2li=1 be the basis of V

∗ dual to the basis {ei}2li=1. For i, j = 1, . . . , 2l, we
define ωij by

∑2l
k=1 ωikω

jk
= δ

j
i , for i, j = 1, . . . , 2l. Notice that not only ωij = −ωji, but also ω

ij
= −ωji, i, j = 1, . . . , 2l.

Let us denote the symplectic group of (V, ω0) by G, i.e., G := Sp(V, ω0) ' Sp(2l,R). Because the maximal compact
subgroup K of G is isomorphic to the unitary group K ' U(l) which is of homotopy type Z, there exists (up to an
isomorphism) a unique nontrivial two-fold covering G̃ of G. See, e.g., [14] for details. This two-fold covering is called a
metaplectic group of (V, ω0) and it is denoted byMp(V, ω0) in this text. In the considered case, we have G̃ ' Mp(2l,R). Let
us remark that Mp(V, ω0) is reductive in the sense of Vogan. For later use, let us reserve the symbol λ for the mentioned
covering. Thus λ : G̃ → G is a fixed member of the isomorphism class of all nontrivial 2:1 coverings of G. Because
λ : G̃ → G is a homomorphism of Lie groups and G is a subgroup of the general linear group GL(V) of V, the mapping
λ is also a representation of the metaplectic group G̃ on the vector space V. Let us define K̃ := λ−1(K). Then K̃ is a
maximal compact subgroup of G̃. One can easily see that K̃ ' Ũ(l) := {(g, z) ∈ U(l) × C×| det(g) = z2} and thus K̃ is
connected. The Lie algebra of the metaplectic group G̃ is isomorphic to the Lie algebra g of G and we will identify them. One
has g = sp(V, ω0) ' sp(2l,R).
From now on, we shall restrict ourselves to the case l ≥ 2 without mentioning it explicitly. The case l = 1 should

be handled separately (though analogously) because the shape of the root system of sp(2,R) ' sl(2,R) is different from
that one of the root system of sp(2l,R) for l > 1. As usual, we shall denote the complexification of g by gC. Obviously,
gC
' sp(2l,C). Let us choose a Cartan subalgebra hC of gC and an ordering on the set of roots of (gC, hC). IfE is an irreducible

highest weight gC-module with a highest weight λ, we shall denote it by the symbol L(λ). Let us denote the fundamental
weight basis of gC with respect to the above choices by {$i}li=1.

2.1. Metaplectic representation and symplectic spinors

There exists a distinguished infinite dimensional unitary representation of the metaplectic group G̃ which does not
descend to a representation of the symplectic group G. This representation, called Segal–Shale–Weil,3 plays a fundamental
role in geometric quantization of Hamiltonian mechanics, see, e.g., [15], and in the theory of modular forms and theta
correspondence, see, e.g., [16]. We shall not give a definition of this representation in this text and refer the interested
reader to [5] or [14]. We only mention some of its properties which we shall need.
The Segal–Shale–Weil representation, which we shall denote by U here, is a complex infinite dimensional unitary

representation of G̃ on the space of complex valued square Lebesgue integrable functions defined on the Lagrangian subspace

2 Maximal isotropic with respect to ω0 .
3 The names oscillator or metaplectic representation are also used in the literature. We shall use the name Segal–Shale–Weil in this text, and reserve
the name metaplectic for certain representation arising from the Segal–Shale–Weil one.
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L, i.e.,
U : G̃→ U(L2(L)),

whereU(W) denotes the group of unitary operators on a Hilbert spaceW. In order to be precise, let us refer to the space
L2(L) as the Segal–Shale–Weil module. It is known that the Segal–Shale–Weil module belongs to the categoryR(G̃). (See [3]
for details and the Segal–Shale–Weil representation in general.) It is easy to see that this representation splits into two
irreducible modules L2(L) ' L2(L)+⊕ L2(L)−. The first module consists of even and the second one of odd complex valued
square Lebesgue integrable functions on the Lagrangian subspace L. Let us remark that one of the typical constructions
of the Segal–Shale–Weil representation is based on the so-called Schrödinger representation of the Heisenberg group of
(V = L⊕ L′, ω0) and a use of the Stone-von Neumann theorem.
For technical reasons, we shall need the minimal globalization of the underlying (g, K̃)-module HC(L2(L)) of the

introduced Segal–Shale–Weil module. We shall call this minimal globalization metaplectic representation and denote it by
meta, i.e.,

meta : G̃→ Aut(mg(HC(L2(L)))),
where mg is the minimal globalization functor (see this section and the references therein). For our convenience, let us
denote the module mg(HC(L2(L))) by S. Similarly we define S+ and S− to be the minimal globalizations of the underlying
Harish–Chandra modules of the modules L2(L)+ and L2(L)− introduced above. Accordingly to L2(L) ' L2(L)+ ⊕ L2(L)−,
we have S ' S+⊕S−. We shall call theMp(V, ω0)-module S the symplectic spinor module and its elements symplectic spinors.
For the name ‘‘spinor’’, see [2] or the Introduction.
A further notion related to the symplectic vector space (V = L⊕L′, ω0) is the so-called symplectic Cliffordmultiplication

of elements of S by vectors from V. For a symplectic spinor f ∈ S, we define
(ei.f )(x) := ıxif (x), 4

(ei+l.f )(x) :=
∂ f
∂xi
(x), x =

l∑
i=1

xiei ∈ L, i = 1, . . . , l.

Extending this multiplication R-linearly, we get the mentioned symplectic Clifford multiplication. Let us remark that the
multiplication and the differentiation make sense for any f ∈ S because of an interpretation of the minimal globalization.
(See [11] for details.) Let us notice that in the physical literature, the symplectic Clifford multiplication is usually called the
Schrödinger quantization prescription.
The following lemma is an easy consequence of the definition of the symplectic Clifford multiplication.

Lemma 1. For v,w ∈ V and s ∈ S, we have

v.w.s− w.v.s = −ıω0(v,w)s.

Proof. See [14], pp. 11. �

Sometimes, we shall write v.w.s instead of v.(w.s) for v,w ∈ V and a symplectic spinor s ∈ S and similarly for a higher
number of multiplying elements. Instead of ei.ej.s, we shall write eij.s simply and similarly for expressions with higher
numbers of multiplying elements, e.g., eijk.s abbreviates ei.ej.ek.s.

2.2. Higher symplectic spinors

In this subsection, we shall present a result on a decomposition of the tensor product of the symplectic spinor module
S with exterior forms of degree one and two into irreducible G̃-modules, G̃ being the metaplectic group Mp(V, ω0). Let
λ∗ : G̃ → GL(V∗) be the representation of G̃ dual to the representation λ : G̃ → G. Recall that λ is the chosen two-fold
covering of the symplectic group. Further let us reserve the symbol ρ for the mentioned tensor product representation of G̃,
i.e.,

ρ : G̃→ Aut
( •∧

V∗ ⊗ S
)

and
ρ(g)(α ⊗ s) := λ(g)∗∧rα ⊗meta(g)s

for g ∈ G̃, α ∈
∧r V∗, s ∈ S, r = 0, . . . , 2l and extended linearly. For definiteness, let us equip the tensor product

∧
• V∗⊗S

with the so-called Grothendieck tensor product topology. See [11,17] for details on this topological structure. In a parallel
to the Riemannian case, we shall call the elements of

∧
• V∗ ⊗ S higher symplectic spinors.

In the next theorem, the modules of the exterior 1-forms and 2-forms with values in the module S of symplectic spinors
are decomposed into irreducible summands.

4 The symbol ı denotes the imaginary unit, ı =
√
−1.
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Theorem 2. For 12 dim(V) =: l > 2, the following isomorphisms

V∗ ⊗ S ' E10
±
⊕ E11

±
and

2∧
V∗ ⊗ S± ' E20

±
⊕ E21

±
⊕ E22

±

hold. For j1 = 0, 1 and j2 = 0, 1, 2 the modules E
1j1
± and E2j2 are uniquely determined by the conditions that first, they are

submodules of the corresponding tensor products and second,

E10
+
' E20

−
' S− ' L

(
$l−1 −

3
2
$l

)
, E10

−
' E20

+
' S+ ' L

(
−
1
2
$l

)
,

E11
+
' E21

−
' L

(
$1 −

1
2
$l

)
, E11

−
' E21

+
' L

(
$1 +$l−1 −

3
2
$l

)
,

E22
+
' L

(
$2 −

1
2
$l

)
and E22

−
' L

(
$2 +$l−1 −

3
2
$l

)
.

Proof. See [18] or [19]. �

Remark. In this paper, the multiplicity freeness of the previous two decompositions will be used substantially. One can
show that the decompositions are multiplicity-free also in the case l = 2. (One only has to modify the prescription for the
highest weights of the summands in the decompositions. See [19] for this case.) Let us also mention that Theorem 2 is a
simple consequence of a theorem of [4].

Let us set Eiji := Eiji+ ⊕ Eiji−, for i = 1, 2, j1 = 0, 1 and j2 = 0, 1, 2. For the mentioned i, ji, let us consider the projections
piji :

∧i V∗ ⊗ S → Eiji . The definition of p
iji is correct because of the multiplicity freeness of the decomposition of the

appropriate tensor products. In this paper, we shall need some explicit formulas for these projections. In order to find them,
let us introduce the following mappings.
For r = 0, . . . , 2l and α ⊗ s ∈

∧r V∗ ⊗ S, we set

X :
r∧

V∗ ⊗ S→
r+1∧

V∗ ⊗ S, X(α ⊗ s) := −
2l∑
i=1

ε i ∧ α ⊗ ei.s;

Y :
r∧

V∗ ⊗ S→
r−1∧

V∗ ⊗ S, Y (α ⊗ s) :=
2l∑
i,j=1

ωijιeiα ⊗ ej.s and

H :
r∧

V∗ ⊗ S→
r∧

V∗ ⊗ S, H := {X, Y } = XY + YX .

Because we would like to use these operators in a geometric setting, we shall make use of the following lemma.

Lemma 3. The homomorphisms X, Y ,H are G̃-equivariant with respect to the representation ρ of G̃.

Proof. This can be verified by a direct computation. See [18] or [19] for a proof. �

In the next lemma, the values of H on the degree homogeneous components of
∧
• V∗ ⊗ S are computed.

Lemma 4. Let (V, ω0) be a 2l dimensional symplectic vector space. Then for r = 0, . . . , 2l, we have

H
|

r∧
V∗⊗S
= ı(r − l)Id

|

r∧
V∗⊗S

.

Proof. This can be verified by a direct computation as well. See [18] or [19] for a proof. �

In the next lemma, the projections p2j, j = 0, 1, 2, are computed explicitly with help of the operators X and Y .

Lemma 5. For l > 1, the following identities hold on
∧2 V∗ ⊗ S.

p20 =
1
l
X2Y 2, (1)

p21 =
ı
l− 1

(
XY −

ı
l
X2Y 2

)
and (2)

p22 = Id
|

2∧
V∗⊗S
−

ı
l− 1

XY −
1
l− 1

X2Y 2. (3)
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Proof. 1. From the definition of Y , the fact that it is G̃-equivariant (Lemma 3) and Theorem 2, we know that Y 2 maps∧2 V∗ ⊗ S+ into S+ and
∧2 V∗ ⊗ S− into S−. Because X2 is G̃-equivariant (Lemma 3), it maps S± into a submodule of∧2 V∗⊗ (S+⊕ S−)which is a (possibly empty) direct sum of submodules isomorphic to S±. Regarding the multiplicity-

free decomposition structure of
∧2 V∗⊗ S± (Theorem 2), we see that p′ := X2Y 2 maps

∧2 V∗⊗ S± into E20± . Computing
the value of p′ on the elementψ := ωijε i ∧ ε j ⊗ s for an s ∈ S, we find that p′ψ = lψ . Using the globalized Schur lemma
(see the beginning of Section 2), we obtain that necessarily p20 = 1

l X
2Y 2.

2. As in the first item, it is easy to see that p′′ := XY (Id
|
∧2 V∗⊗S −

1
l X
2Y 2) maps

∧2 V∗ ⊗ S into E21. Let us consider a
symmetric 2-vector σ ∈ �2 V and denote its (i, j)-th component with respect to the basis {ei}2li=1 by σ

ij. Computing the
value p′′ψ for ψ := σ ijεk ∧ ε lωjl ⊗ eik.s − 1

2lσ
ijωkmε

k
∧ εm ⊗ eij.s, s ∈ S, we get p′′ψ = ı(1 − l)ψ . Using the globalized

Schur lemma again, we have p21 = ı
l−1p

′′. Using the defining identity H = XY + YX and Lemma 4, we get the formula
for p21 written in the statement of the lemma.

3. The third equation follows from the fact p20 + p21 + p22 = Id
|
∧2 V∗⊗S and the preceding two items. �

3. Symplectic curvature tensor field

After we have finished the ‘algebraic’ part of this paper, we shall recall some results of Vaisman [1] and of Gelfand, Retakh
and Shubin [20]. Let (M, ω) be a symplectic manifold and ∇ be a symplectic torsion-free affine connection. By symplectic
and torsion-free, we mean ∇ω = 0 and T (X, Y ) := ∇XY − ∇YX − [X, Y ] = 0 for all X, Y ∈ X(M), respectively. Such
connections are sometimes called Fedosov connections and were used, e.g., in the so-called Fedosov quantization. See [21]
for this use. Let us remark that the Fedosov connection is not unique, in contrast to the case of Riemannian manifolds and
Riemannian connections. The triple (M, ω,∇)will be called a Fedosov manifold.
To fix our notation, let us recall the classical definition of the curvature tensor R∇ of the connection ∇ . Let

R∇(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

for X, Y , Z ∈ X(M). Let us choose a local symplectic frame (U, {ei}2li=1), where U is an open subset of M . Whenever a local
symplectic frame will be chosen, we denote its dual coframe by (U, {ε i}2li=1). We have ε

j(ei) = δ
j
i for i, j = 1, . . . , 2l. We

shall often write expressions for sections of vector bundles which are valid only locally, although the sections are global.
(For instance in the case when the expressions will contain local frames.) We shall not mention this restriction of validness
explicitly further in the text.
We shall use the following convention. For i, j, k, l = 1, . . . , 2l, we set

Rijkl := ω(R∇(ek, el)ej, ei). (4)

Let us remark that the convention is different from that one used in [14]. We shall often write expressions in which indices
i, j, k or l etc. occur. We will implicitly mean i, j, k or l are running from 1 to the dimension of the manifold M without
mentioning it explicitly.
Obviously, one has

Rijkl = −Rijlk and (5)

Rijkl + Riklj + Riljk = 0 (1st Bianchi identity). (6)

One can also prove the identity

Rijkl = Rjikl. (7)

See [20] for the proof.
For a symplectic manifold with a Fedosov connection, one has also the following simple consequence of the first Bianchi

identity:

Rijkl + Rjkli + Rklij + Rlijk = 0 (extended 1st Bianchi identity). (8)

From the symplectic curvature tensor field R∇ , we can build the symplectic Ricci curvature tensor field σ∇ defined by
the classical formula

σ∇(X, Y ) := Tr(V 7→ R∇(V , X)Y )

for each X, Y ∈ X(M) (the variable V denotes a vector field onM). For the chosen frame and i, j = 1, . . . , 2l, we define

σij := σ
∇(ei, ej).
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Further, let us define

σ̃∇ijkl :=
1

2(l+ 1)
(ωilσjk − ωikσjl + ωjlσik − ωjkσil + 2σijωkl),

σ̃∇(X, Y , Z, V ) := σ̃ijklX iY jZkV l and

W∇ := R∇ − σ̃∇

for local vector fields X = X iei, Y = Y jej, Z = Zkek and V = V lel. We will call the tensor field W∇ the symplectic Weyl
curvature tensor field. These tensor fields were introduced in [1] already. We shall sometimes drop the index ∇ in the
previous expressions. Thus we shall often writeW , σ and σ̃ instead ofW∇ , σ∇ and σ̃∇ , respectively.

Remark. As in the Riemannian geometry, we would like to raise and lower indices. Because the symplectic form ω is
antisymmetric, we should be more careful in this case. For coordinates Kab...c...drs...t...u of a tensor field on the considered
symplectic manifold (M, ω), we denote the expression ωicKab...c...drs...t by Kab...i...d

rs...t and Kab...c rs...t...uωti by Kab...c rs...i
...u

(similarly for other types of tensor fields).

In the next lemma, a symmetry of σ and an equivalent definition of σ are stated.

Lemma 6. The symplectic Ricci curvature tensor field σ is symmetric and

Rijklωkl = 2σ ij.

Proof. The proof follows from the definition of the symplectic Ricci curvature tensor field and Eq. (7). See [1] for a proof. �

Remark. In [1], one can find a proof of a statement saying that the space of tensors R ∈ V⊗4 (dimV = 2l) satisfying the
relations (5), (6) and (7) is an Sp(V, ω0)-irreducible module if l = 1 and decomposes into a direct sum of two irreducible
Sp(V, ω0)-submodules if l > 1.

In the next lemma, two properties of the symplectic Weyl tensor field are described.

Lemma 7. The symplectic Weyl curvature tensor field is totally trace-free, i.e.,

W ijklωij = W ijklωik = W ijklωil = W ijklωjk = W ijklωjl = W ijklωkl = 0

and the following equation

Wijkl +Wlijk +Wklij +Wjkli = 0 (extended 1st Bianchi identity forW ) (9)

holds.

Proof. The proof is straightforward and can be done just using the definitions of the symplectic Weyl curvature tensor field
W , the tensor field σ̃ and Lemma 6. �

4. Metaplectic structure and the curvature tensor acting on symplectic spinor fields

Let us start describing the geometric structure with the help of which the action of the symplectic curvature tensor
field on symplectic spinors, and the symplectic twistor operators are defined. This structure, called metaplectic, is a precise
symplectic analogue of the notion of a spin structure in the Riemannian geometry.
For a symplectic manifold (M2l, ω) of dimension 2l, let us denote the bundle of symplectic repères in TM by P and the

foot-point projection of P onto M by p. Thus (p : P → M,G), where G ' Sp(2l,R), is a principal G-bundle over M . As in
Section 2, let λ : G̃→ G be amember of the isomorphism class of the non-trivial two-fold coverings of the symplectic group
G. In particular, G̃ ' Mp(2l,R). Further, let us consider a principal G̃-bundle (q : Q→ M, G̃) over the symplectic manifold
(M, ω). We call a pair (Q,Λ) a metaplectic structure ifΛ : Q→ P is a surjective bundle homomorphism over the identity
onM and if the following diagram,

Q × G̃

Λ×λ

��

// Q

Λ

��

q

��??
??

??
??

M

P × G // P

p

>>~~~~~~~~
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with the horizontal arrows being respective actions of the displayed groups, commutes. See [14,2] for details onmetaplectic
structures. Let us only remark that typical examples of symplecticmanifolds admitting ametaplectic structure are cotangent
bundles of orientable manifolds (phase spaces), Calabi–Yau manifolds and complex projective spaces CP2k+1, k ∈ N0.
Let us denote the vector bundle associated to the introduced principal G̃-bundle (q : Q→ M, G̃) via the representation

ρ acting on S by S and call this associated vector bundle a symplectic spinor bundle. Thus, we have S = Q×ρ S. (Recall that
the representation ρ was introduced in Section 2.) The sections φ ∈ 0(M, S), will be called symplectic spinor fields. Further
for i = 1, 2 and j1 = 0, 1 and j2 = 0, 1, 2, we define the associated vector bundles E iji by the prescription: E iji := Q×ρ Eiji .
Because the projections p10, p11, p20, p21 and p22 and the operators X, Y and H are G̃-equivariant (Lemma 3), they lift

to operators acting on sections of the corresponding associated vector bundles. We shall use the same symbols as for the
previously defined operators as for their ‘‘lifts’’ to the associated vector bundle structure.

4.1. Curvature tensor on symplectic spinor fields

Let (M, ω,∇)be a Fedosovmanifold admitting ametaplectic structure (Q,Λ). The (symplectic) connection∇ determines
the associated principal bundle connection Z on the G-bundle (p : P → M,G). This connection lifts to a principal bundle
connection on the principal bundle (q : Q→ M, G̃) and defines the associated covariant derivative on the symplectic bundle
S, which we shall denote by ∇S and call it a symplectic spinor covariant derivative. The curvature field RS on the symplectic
spinor bundle is given by the classical formula

RS := d∇
S
∇
S,

where d∇
S
is the associated exterior covariant derivative.

In the next lemma, the action of RS on the space of symplectic spinors is described using the symplectic curvature tensor
field R only.

Lemma 8. Let (M, ω,∇) be a Fedosov manifold admitting a metaplectic structure. Then for a symplectic spinor field φ ∈
0(M, S), we have

RSφ =
ı
2
Rijklεk ∧ ε l ⊗ ei.ej.φ.

Proof. See [14] pp. 42. �

Let us define the operators σ S andW S by the formulas

σ Sφ :=
ı
2
σ ijklε

k
∧ ε l ⊗ ei.ej.φ and

W Sφ :=
ı
2
W ijklεk ∧ ε l ⊗ ei.ej.φ,

where φ ∈ 0(M, S) is a symplectic spinor field.

Theorem 9. Let (M, ω,∇) be a Fedosov manifold admitting a metaplectic structure. Then for a symplectic spinor field φ ∈
0(M, S), we have

σ Sφ ∈ 0(M, E20 ⊕ E21).

Proof. Using the definition of σ̃ and Lemma 1 repeatedly we have for a symplectic spinor field φ ∈ 0(M, S),

4(l+ 1)
ı

σ Sφ = 2(l+ 1)σ̃ ijklε
k
∧ ε l ⊗ eij.φ

= (ωi lσ
j
k − ω

i
kσ
j
l + ω

j
lσ
i
k − ω

j
kσ
i
l + 2σ ijωkl)εk ∧ ε l ⊗ eij.φ

= (−σ jkε
k
∧ ε i + σ jkε

i
∧ εk − σ ikε

k
∧ ε j + σ ikε

j
∧ εk + 2σ ijωklεk ∧ ε l)⊗ eij.φ

= 2σ jkε i ∧ εk ⊗ eij.φ − 2σ ikεk ∧ ε j ⊗ eij.φ + 2σ ijωklεk ∧ ε l ⊗ eij.φ

= 2σ jkε i ∧ εk ⊗ (eij.+ eji.)φ + 2σ ijωklεk ∧ ε l ⊗ eij.φ

= 2σ jlωlkε i ∧ εk ⊗ (eij.+ eji.)φ + 2σ ijωklεk ∧ ε l ⊗ eij.φ

= 4σ jlωlkε i ∧ εk ⊗ eij.φ + 2σ ijωklεk ∧ ε l ⊗ eij.φ.
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It is straightforward but tedious to verify the next identities:

X2Y 2(2σ ijωklεk ∧ ε l ⊗ eij.φ) = 2lσ ijωklεk ∧ ε l ⊗ eij.φ,

X2Y 2(4σ jlωlkε i ∧ εk ⊗ eij.φ) = 2σ ikωjmε j ∧ εm ⊗ eik.φ,

XY (2σ ijωklεk ∧ ε l ⊗ eij.φ) = 2ıσ ijωklεk ∧ ε l ⊗ eij.φ and

XY (4σ jlωlkε i ∧ εk ⊗ eij.φ) = 4ı(1− l)σ jlωlkεm ∧ εk ⊗ emj.φ + 2ıσ jlωmiεm ∧ ε i ⊗ elj.φ.

Using the formulas (1) and (2), we get:

p20σ Sφ =
ı
2l
σ ijωklε

k
∧ ε l ⊗ eij.φ and (10)

p21σ Sφ =
ı
l+ 1

σ ijεk ∧ ε l ⊗

(
ωilekj.−

1
2l
ωkleij.

)
φ. (11)

Adding these two formulas and comparing them with the result of the computation of 4(l+1)ı σ Sφ, we get (p20 + p21)σ Sφ =
σ Sφ. Now, the statement follows. �

Theorem 10. Let (M, ω,∇) be a Fedosov manifold admitting a metaplectic structure. Then for a symplectic spinor field φ ∈
0(M, S), we have

W Sφ ∈ 0(M, E21 ⊕ E22).

Proof. Let us compute Y 2W Sφ for a symplectic spinor field φ ∈ 0(M, S).

2
ı
Y 2W Sφ = Y (ωnmW ijklιen(ε

k
∧ ε l)⊗ emij.φ)

= Y (ωnmW ijkl(δknε
l
− δlnε

k)⊗ emij.φ)

= Y (ωnm(W ijnlε l −W ijknεk)⊗ emij.φ)

= 2ωnmY (W ijnlε l ⊗ emij.φ)

= 2ωpkωnmW ijnlιepεl ⊗ ekmij.φ

= 2ωpkωnmW ijnpekmij.φ = 2W ijklelkij.φ.

Now, let us use the extended first Bianchi identity for the symplectic Weyl curvature tensor field, Eq. (9), i.e.,

W ijkl +W jkli +W klij +W lijk = 0.

Multiplying this identity by the operator elkij., using the relation eij. − eji. = −ıωij (Lemma 1) and the fact that the
symplectic Weyl tensor field is totally trace free (Lemma 7), we get the following chain of equations.

W ijklelkij.+W jklielkij.+W klijelkij.+W lijkelkij. = 0,

W ijklelkij.+W jkliel(eik.− ıωki)ej.+W klij(elikj.− ıωkielj.)+W lijk(eklij.− ıωlkeij.) = 0,

W ijklelkij.+W jkli(eilkj.− ıωliekj.)+W klij(eilkj.− ıωliekj.)+W likj(eklji.− ıωijekl.) = 0,

W ijklelkij.+W jkli(eiljk.− ıωkjeil.)+W klij(eiklj.− ıωlkeij.)W lijk(ekjli.− ıωljeki.) = 0 and

3W ijklelkij.+W klij(eikjl.− ıωljeik.) = 0.

Continuing in a similar way, we get 4W ijklelkij. = 0. Summing up, we have Y 2W S = 0. Using the relation (1) for p20, we have
p20W Sφ = 0. Hence the statement follows. �

Let us consider a symplectic spinor fieldφ ∈ 0(M, S). By a straightforwardway, we get XYW Sφ = 2W ijklεm∧ε l⊗emkij.φ.
Using this result, Theorem 10, the definition ofW S and the relations (2) and (3) for p21 and p22, respectively, we get

p21W Sφ =
1
l− 1

W ijklεm ∧ ε l ⊗ emkij.φ and (12)

p22W Sφ =
ı
2
W ijklεk ∧ ε l ⊗ eij.φ −

1
l− 1

W ijklεm ∧ ε l ⊗ emkij.φ. (13)

Summing up the preceding two theorems, we can formulate the decomposition result in the following
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Corollary 11. In the situation described in the formulation of Theorem 10, we have for a symplectic spinor field φ ∈ 0(M, S)

p20RSφ =
ı
2l
σ ijωklε

k
∧ ε l ⊗ eij.φ,

p21RSφ =
ı
l+ 1

σ ijεk ∧ ε l ⊗

(
ωilekj.−

1
2l
ωkleij.

)
φ +

1
l− 1

W ijklεm ∧ ε l ⊗ emkij.φ and

p22RSφ =
ı
2
W ijklεk ∧ ε l ⊗ eij.φ −

1
l− 1

W ijklεm ∧ ε l ⊗ emkij.φ.

Proof. The equations in the formulation of the corollary follow from Eqs. (10)–(13) and the definitions of σ S and
W S . �

Now, let us turn our attention to the mentioned application of the decomposition result (Corollary 11). Let (M, ω,∇)
be a Fedosov manifold admitting a metaplectic structure (Q,Λ). Then we have the associated bundles E iji → M (i = 1, 2,
j1 = 0, 1 and j2 = 0, 1, 2) and the symplectic spinor covariant derivative ∇S as well as the associated exterior covariant
derivative d∇

S
at our disposal. Let us introduce the following first orderMp(2l,R)-invariant differential operators:

T0 : 0(M, S)→ 0(M, E11), T0 := p11∇S and

T1 : 0(M, E11)→ 0(M, E22), T1 := p22d∇
S

|0(M,E11).

We shall call these operators symplectic twistor operators. These definitions are symplectic counterparts of the definitions of
twistor operators in Riemannian spin-geometry.
Using Corollary 11, we get

Theorem 12. Let (M, ω,∇) be a Fedosov manifold admitting a metaplectic structure. Suppose the symplectic Weyl tensor field
W = 0. Then

0 // 0(M, S)
T0 // 0(M, E11)

T1 // 0(M, E22)

is a complex of first order differential operators.

Proof. Let us suppose W = 0. Then p22RS = 0 (due to Corollary 11). Using the definition of RS , we have 0 = p22RS =
p22(d∇

S
∇
S) = p22d∇

S
(p11 + p10)∇S = p22d∇

S
p11∇S + p22d∇

S
p10∇S . According to Krýsl [6], p22d∇

S
p10 = 0. Thus we have

0 = p22d∇
S
p11∇S = T1T0, which gives the statement. �

Remark. In [6], the Mp(2l,R)-module
∧
• V∗ ⊗ S was decomposed into irreducible summands. Let us denote these

irreducible summands by Eij (the specification of the indices i, j can be found in the mentioned article or in [19]). Similarly
as above, we can introduce the projections pij :

∧i V∗⊗S→ Eij. In thementioned article, we proved that pi+1,jd∇S
|0(M,E ik) = 0

for all appropriate specified i, k and j > k+ 1 or j < k− 1. In the proof of the preceding theorem, we used this information
in the case of i = 1, k = 0 and j = 2.

Acknowledgements

The author of this article was supported by the grant GA ČR GA201/08/0397 of the Grant Agency of Czech Republic. The
work is a part of the research project MSM 0021620839 financed by MŠMT ČR.

References

[1] I. Vaisman, Symplectic curvature tensors, Monatsh. Math. 100 (1985) 299–327.
[2] B. Kostant, Symplectic Spinors, Symposia Mathematica, Vol. XIV, Cambridge Univ. Press, Cambridge, 1974, pp. 139–152.
[3] M. Kashiwara, M. Vergne, On the Segal–Shale–Weil representation and harmonic polynomials, Invent. Math. 44 (1) (1978) 1–49.
[4] D.J. Britten, J. Hooper, F.W. Lemire, Simple Cn-modules with multiplicities 1 and application, Canad. J. Phys. 72 (1994) 326–335.
[5] A. Weil, Sur certains groups d’opérateurs unitaires, Acta Math. 111 (1964) 143–211.
[6] S. Krýsl, Symplectic spinor valued forms and operators acting between them, Arch. Math. (Brno) 42 (2006) 279–290.
[7] V. Severa, Invariant differential operators on spinor-valued forms, Ph.D. Thesis, Charles University, Prague, 1998.
[8] K. Habermann, The Dirac operator on symplectic spinors, Ann. Global Anal. Geom. 13 (1995) 155–168.
[9] M.B. Green, C.M. Hull, Covariant quantum mechanics of the superstring, Phys. Lett. B 225 (1989) 57–65.
[10] M. Reuter, Symplectic Dirac–Kähler fields, J. Math. Phys. 40 (1999) 5593–5640. Electronically available at: hep-th/9910085.
[11] D. Vogan, Unitary representations and complex analysis. Electronically available at: http://www-math.mit.edu/~dav/venice.pdf.
[12] M. Kashiwara,W. Schmid, Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups, in: Lie Theory and

Geometry, in Honor of Bertram Kostant, in: Progress in Mathematics, vol. 123, Birkhäuser, 1994, pp. 457–488.
[13] J. Dixmier, Enveloping Algebras, Akademie-Verlag Berlin, Berlin, 1977.
[14] K. Habermann, L. Habermann, Introduction to Symplectic Dirac Operators, in: Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, 2006.
[15] N.M.J. Woodhouse, Geometric Quantization, 2nd ed., in: Oxford Mathematical Monographs, Clarendon Press, Oxford, 1997.
[16] R. Howe, θ-correspondence and invariance theory, Proc. Sympos. Pure Math. 33 (Part 1) (1979) 275–285.

http://arxiv.org/hep-th/9910085
http://www-math.mit.edu/~dav/venice.pdf


S. Krýsl / Journal of Geometry and Physics 60 (2010) 1251–1261 1261

[17] F. Treves, Topological Vector Spaces, Distributions, Kernels, Academic Press, New York, 1967.
[18] S. Krýsl, Relation of the spectra of symplectic Rarita–Schwinger and Dirac operators on flat symplectic manifolds, Arch. Math. (Brno) 43 (2007)

467–484.
[19] S. Krýsl, Howe type duality for metaplectic group acting on symplectic spinor valued forms, J. Lie Theory (submitted for publication). Electronically

available at: arXiv:0805.2904v1 [math.RT].
[20] I. Gelfand, V. Retakh, M. Shubin, Fedosov manifolds, Adv. Math. 136 (1) (1998) 104–140.
[21] B.V. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (2) (1994) 213–238.

http://arxiv.org/0805.2904v1


Monatsh Math (2010) 161:381–398
DOI 10.1007/s00605-009-0158-3

Complex of twistor operators in symplectic spin
geometry

Svatopluk Krýsl

Received: 20 April 2009 / Accepted: 8 September 2009 / Published online: 8 October 2009
© Springer-Verlag 2009

Abstract For a symplectic manifold admitting a metaplectic structure (a symplectic
analogue of the Riemannian spin structure), we construct a sequence consisting of dif-
ferential operators using a symplectic torsion-free affine connection. All but one of
these operators are of first order. The first order ones are symplectic analogues of
the twistor operators known from Riemannian spin geometry. We prove that under
the condition the symplectic Weyl curvature tensor field of the symplectic connection
vanishes, the mentioned sequence forms a complex. This gives rise to a new complex
for the so called Ricci type symplectic manifolds, which admit a metaplectic structure.

Keywords Fedosov manifolds · Metaplectic structures · Symplectic spinors ·
Kostant spinors · Segal-Shale-Weil representation · Complexes of differential
operators

Mathematics Subject Classification (2000) 53C07 · 53D05 · 58J10

1 Introduction

In this paper, we shall introduce a sequence of differential operators acting on
symplectic spinor valued exterior differential forms defined over a symplectic manifold
(M, ω) admitting the so called metaplectic structure. To define these operators, we
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382 S. Krýsl

make use of a symplectic torsion-free affine connection ∇ on (M, ω). Under certain
condition on the curvature of the connection ∇, described below, we prove that the
mentioned sequence forms a complex.

Let us say a few words about the metaplectic structure. The symplectic group
Sp(2l,R) admits a non-trivial two-fold covering, the so called metaplectic group,
which we shall denote by Mp(2l,R). Let g be the Lie algebra of Mp(2l,R). A
metaplectic structure on a symplectic manifold (M2l , ω) is a notion parallel to a
spin structure on a Riemannian manifold. In particular, one of its part is a principal
Mp(2l,R)-bundle (q : Q → M,Mp(2l,R)).

For a symplectic manifold admitting a metaplectic structure, one can construct the
so called symplectic spinor bundle S → M, introduced by Bertram Kostant in 1974.
The symplectic spinor bundle S is the vector bundle associated to the principal meta-
plectic bundle (q : Q → M,Mp(2l,R)) on M via the so called Segal-Shale-Weil
representation of the metaplectic group Mp(2l,R). See Kostant [12] for details.

The Segal-Shale-Weil representation is an infinite dimensional unitary representa-
tion of the metaplectic group Mp(2l,R) on the space of all complex valued square
Lebesgue integrable functions L2(Rl). Because of the infinite dimension, the Segal-
Shale-Weil representation is not so easy to handle. It is known, see, e.g., Kashiwara
and Vergne [11], that the gC-module structure of the underlying Harish-Chandra mod-
ule of this representation is equivalent to the space C[x1, . . . , xl ] of polynomials in l
variables, on which the Lie algebra gC � sp(2l,C) acts via the so called Chevalley
homomorphism.1 Thus, the infinitesimal structure of the Segal-Shale-Weil represen-
tation can be viewed as the complexified symmetric algebra (

⊕∞
i=0 �i

R
l) ⊗R C �

C[x1, . . . , xl ] of the Lagrangian subspace (Rl , 0) of the canonical symplectic vector
space R

2l � (Rl , 0) ⊕ (0,Rl). This shows that the situation is “supersymmetric” to
the complex orthogonal case, where the spinor representation can be realized as the
exterior algebra of a maximal isotropic subspace. An interested reader is referred to
Weil [22], Kashiwara and Vergne [11] and also to Britten et al. [1] for details. For
some technical reasons, we shall be using the so called minimal globalization of the
underlying Harish-Chandra module of the Segal-Shale-Weil representation, which we
will call metaplectic representation and denote it by S. The elements of S are usually
called symplectic spinors.

Now, let us consider a symplectic manifold (M, ω) together with a symplectic
torsion-free affine connection ∇ on it. Such connections are usually called Fedosov
connections. Because the Fedosov connection is not unique for a choice of (M, ω)
(in the contrary to Riemannian geometry), it seems natural to add the connection to
the studied symplectic structure and investigate the triples (M, ω,∇) consisting of
a symplectic manifold (M, ω) and a Fedosov connection ∇. Such triples are usually
called Fedosov manifolds and they were used in the deformation quantization. See,
e.g., Fedosov [4]. Let us recall that in Vaisman [20], the space of the so called sym-
plectic curvature tensors was decomposed wr. to Sp(2l,R). For l = 1, the module of
the symplectic curvature tensors is irreducible, while for l ≥ 2, it decomposes into

1 The Chevalley homomorphism is a Lie algebra monomorhism of the complex symplectic Lie algebra
sp(2l,C) into the Lie algebra of the associative algebra of polynomial coefficients differential operators
acting on C[x1, . . . , xl ]. See, e.g., Britten et al. [1].
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Complex of twistor operators in symplectic spin geometry 383

two irreducible submodules. These modules are usually called symplectic Ricci and
symplectic Weyl modules, respectively. This decomposition translates to differential
geometry level giving rise to the symplectic Ricci and symplectic Weyl curvature ten-
sor fields, which add up to the curvature tensor field of ∇. See Vaisman [20] and also
Gelfand et al. [6] for a comprehensive treatment on Fedosov manifolds.

Further, let us suppose that a Fedosov manifold (M, ω,∇) admits a metaplectic
structure and denote the corresponding principle bundle by (q :Q→ M2l ,Mp(2l,R)).
Let S → M be the symplectic spinor bundle associated to q : Q → M and let
us consider the space �•(M,S) of exterior differential forms with values in S,
i.e., �•(M,S) := �(M,Q ×ρ (

∧•
(R2l)∗ ⊗ S)), where ρ is the obvious tensor

product representation of Mp(2l,R) on
∧•
(R2l)∗ ⊗ S. In Krýsl [15], the Mp(2l,R)-

module
∧•
(R2l)∗ ⊗ S was decomposed into irreducible submodules. The elements

of
∧•
(R2l)∗ ⊗ S are specific examples of the so called higher symplectic spinors.

For i = 0, . . . , 2l, let us denote the so called Cartan component (certain explicitly
given submodule) of the tensor product

∧i
(R2l)∗ ⊗ S by Eimi . (For i = 0, . . . , 2l,

the numbers mi will be specified in the text.) For i = 0, . . . , 2l − 1, we introduce an
operator Ti acting between the sections of the vector bundle E imi associated to Eimi

and the sections of the vector bundle E i+1,mi+1 associated to Ei+1,mi+1 . In a parallel
to the Riemannian case, we shall call these operators symplectic twistor operators.
See, e.g., Friedrich [5] for a study of the Riemannian twistor operators and Sommen
and Souček [18] for a study of the de Rham complex tensored by (orthogonal) spinor
fields and a description of the Riemannian twistor operators appearing there. The sym-
plectic twistor operators Ti , i = 0, . . . , 2l − 1, are first order differential operators
and they are defined using the symplectic torsion-free affine connection ∇ as follows.
First, the connection ∇ induces a covariant derivative ∇S on the bundle S → M in
the usual way. Second, the covariant derivative ∇S determines the associated exterior
covariant derivative, which we denote by d∇S

. For i = 0, . . . , 2l − 1, we define the
symplectic twistor operator Ti as the restriction of d∇S

to �(M, E imi ) composed with
the projection to �(M, E i+1,mi+1).

Because we would like to derive a condition under which Ti+1Ti = 0, i =
0, . . . , 2l − 1, we should focus our attention to the curvature tensor R�

•(M,S) :=
d∇S

d∇S
of d∇S

acting on the space�•(M,S). The curvature R�
•(M,S) depends only

on the curvature of the symplectic connection ∇, which consists of the symplectic
Ricci and symplectic Weyl curvature tensor fields as we have already mentioned. In
the paper, we will analyze the action of the symplectic Ricci curvature tensor field
on symplectic spinor valued exterior differential forms and especially on �(M, E imi ),

i = 0, . . . , 2l −2.We shall prove that the symplectic Ricci curvature tensor field when
restricted to �(M, E imi )maps this submodule into at most three Mp(2l,R)-submod-
ules sitting in symplectic spinor valued forms of degree i + 2, i = 0, . . . , 2l − 2.
These submodules will be explicitly described. The crucial method used to derive this
result, was a computation based description of the (anti-)commutators of operators
from which one may construct the Ricci curvature tensor field.

This will help us to prove that Ti+1Ti = 0 (i = 0, . . . , l − 2) and Ti+1Ti = 0
(i = l, . . . , 2l − 2) assuming the symplectic Weyl curvature tensor field vanishes. In
this way, we will obtain two complexes. Unfortunately, it is questionable under which
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384 S. Krýsl

condition Tl Tl−1 = 0. This will influence the way, how we construct one complex of
the two complexes introduced above. Let us notice that similar complex was investi-
gated in Severa [17] in the case of spheres equipped with the conformal structure of
their round metrics.

The reader interested in applications of the symplectic spinor fields in theoretical
physics is referred to Green and Hull [7], where the symplectic spinors are used in the
context of 10 dimensional super string theory. In Reuter [16], symplectic spinors are
used in the theory of the so called Dirac-Kähler fields.

Let us describe the structure of the paper briefly. In the second section, some basic
facts on the metaplectic representation and higher symplectic spinors are recalled. In
this section, we also introduce several mappings acting on the graded space

∧•
(R2l)∗⊗

S, derive the (anti-)commutation relations between them and determine a superset of
the image of two of them (Lemma 4), which are components of an infinitesimal ver-
sion of the symplectic Ricci curvature tensor field. In the Sect. 3, basic properties
of torsion-free symplectic connections and their curvature tensor field are recalled
and the metaplectic structure is introduced. In Sect. 3.1., the theorem on the complex
consisting of the symplectic twistor operators is presented and proved.

2 Metaplectic representation, higher symplectic spinors and basic notation

To fix a notation, let us recall some notions from symplectic linear algebra. Let us
consider a real symplectic vector space (V, ω) of dimension 2l, i.e., V is a 2l dimen-
sional real vector space and ω is a non-degenerate antisymmetric bilinear form on V.

Let us choose two Lagrangian subspaces2
L,L′ ⊆ V such that L⊕L

′ = V. It follows
that dim(L) = dim(L′) = l. Throughout this article, we shall use a symplectic basis
{ei }2l

i=1 of V chosen in such a way that {ei }l
i=1 and {ei }2l

i=l+1 are respective bases of L

and L
′. Because the definition of a symplectic basis is not unique, let us fix one which

shall be used in this text. A basis {ei }2l
i=1 of V is called symplectic basis of (V, ω)

if ωi j := ω(ei , e j ) satisfies ωi j = 1 if and only if i ≤ l and j = i + l; ωi j = −1
if and only if i > l and j = i − l and finally, ωi j = 0 in other cases. Let {εi }2l

i=1
be the basis of V

∗ dual to the basis {ei }2l
i=1. For i, j = 1, . . . , 2l, we define ωi j by

∑2l
k=1 ωikω

jk = δ
j
i , for i, j = 1, . . . , 2l. Notice that not only ωi j = −ω j i , but also

ωi j = −ω j i , i, j = 1, . . . , 2l.
As in the orthogonal case, we would like to rise and lower indices. Because the

symplectic formω is antisymmetric, we should be more careful in this case. For coordi-
nates Kab...c...d

rs...t ...u of a tensor K over V,we denote the expressionωic Kab...c...d
rs...t

by Kab...
i
...d

rs...t
and Kab...c

rs...t ...uωti by Kab...c
rs...

i
...u and similarly for other types

of tensors and also in the geometric setting when we will be considering tensor fields
over a symplectic manifold (M, ω).

Let us denote the symplectic group of (V, ω) by G, i.e., G := Sp(V, ω) �
Sp(2l,R). Because the maximal compact subgroup K of G is isomorphic to the uni-
tary group K � U (l) which is of homotopy type Z, there exists a nontrivial two-fold

2 That is, maximal isotropic wr. to ω.
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covering G̃ of G. See, e.g., Habermann and Habermann [9] for details. This two-fold
covering is called metaplectic group of (V, ω) and it is denoted by Mp(V, ω). Let
us remark that Mp(V, ω) is reductive in the sense of Vogan [21]. In the considered
case, we have G̃ � Mp(2l,R). For a later use, let us reserve the symbol λ for the
mentioned covering. Thus λ : G̃ → G is a fixed member of the isomorphism class
of all nontrivial 2 : 1 covering homomorphisms of G. Because λ : G̃ → G is a
homomorphism of Lie groups and G is a subgroup of the general linear group GL(V)
of V, the mapping λ is also a representation of the metaplectic group G̃ on the vector
space V. Let us define K̃ := λ−1(K ). Obviously, K̃ is a maximal compact subgroup
of G̃. Further, one can easily see that K̃ � Ũ (l) := {(g, z) ∈ U (l)×C

×|det(g) = z2}
and thus in particular, K̃ is connected. The Lie algebra g̃ of G̃ is isomorphic to the Lie
algebra g of G and we will identify them. One has g = sp(V, ω) � sp(2l,R).

Now let us recall some notions from representation theory of reductive groups
which we shall need in this paper. From the point of view of this article, these notions
are rather of a technical character. Let R(G̃) be the category the object of which
are complete, locally convex, Hausdorff topological spaces with a continuous linear
G̃-action, such that the resulting representation is admissible and of finite length;
the morphisms are continuous G̃-equivariant linear maps between the objects. Let
HC(g, K̃ ) be the category of Harish-Chandra (g, K̃ )-modules and let us consider the
forgetful Harish-Chandra functor HC : R(G̃) → HC(g, K̃ ). It is well known that
there exists an adjoint functor mg : HC(g, K̃ ) → R(G̃) to the Harish-Chandra functor
HC . This functor is usually called the minimal globalization functor and its existence
is a deep result in representation theory. For details and for the existence of the minimal
globalization functor mg, see Kashiwara and Schmid [10] or Vogan [21].

From now on, we shall restrict ourselves to the case l ≥ 2 not always mentioning it
explicitly. The case l = 1 should be handled separately (though analogously) because
the shape of the root system of sp(2,R) � sl(2,R) is different from that one of of the
root system of sp(2l,R) for l ≥ 2. As usual, we shall denote the complexification of
g by gC. Obviously, gC � sp(2l,C).

Further, for any Lie group G and a principal G-bundle (p : P → M,G) over a
manifold M, we shall denote the vector bundle associated to this principal bundle via
a representation σ : G → Aut(W) of G on W by W, i.e., W = G ×σ W. Let us
also mention that we shall often use the Einstein summation convention for repeated
indices (lower and upper) without mentioning it explicitly.

2.1 Metaplectic representation and symplectic spinors

There exists a distinguished faithful infinite dimensional unitary representation of
the metaplectic group G̃ which does not descend to a representation of the sym-
plectic group G. This representation, called Segal-Shale-Weil,3 plays an important
role in geometric quantization of Hamiltonian mechanics, see, e.g., Woodhouse [23].

3 The names oscillator or metaplectic representation are also used in the literature. We shall use the name
Segal-Shale-Weil in this text, and reserve the name metaplectic for certain representation arising from the
Segal-Shale-Weil one.
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We shall not give a definition of this representation here and refer the interested reader
to Weil [22], Habermann and Habermann [9] or Kashiwara and Vergne [11].

The Segal-Shale-Weil representation, which we shall denote by U, is a complex
infinite dimensional unitary representation of G̃ on the space of complex valued square
Lebesgue integrable functions defined on the Lagrangian subspace L, i.e., a homo-
morphism

U : G̃ → U
(

L2 (L)
)
,

where U(W) denotes the group of unitary operators on a Hilbert space W. In order
to be precise, let us refer to the space L2(L) as to the Segal-Shale-Weil module. It
is known that the Segal-Shale-Weil module belongs to the category R(G̃). See, e.g.,
Kashiwara and Vergne [11]. It is easy to see that the Segal-Shale-Weil representa-
tion splits into two irreducible Mp(2l,R)-submodules L2(L) � L2(L)+ ⊕ L2(L)−.
The first module consists of even and the second one of odd complex valued square
Lebesgue integrable functions on the Lagrangian subspace L. Let us remark that a
typical construction of the Segal-Shale-Weil representation is based on the so called
Schrödinger representation of the Heisenberg group of (V = L ⊕ L

′, ω) and a use of
the Stone-von Neumann theorem.

For technical reasons, we shall need the minimal globalization of the underlying
Harish-Chandra (g, K̃ )-module HC(L2(L)) of the introduced Segal-Shale-Weil mod-
ule. We shall call this minimal globalization metaplectic representation and denote it
by meta, i.e.,

meta : G̃ → Aut
(

mg
(

HC
(

L2 (L)
)))

,

where mg is the minimal globalization functor (see this section and the references
therein). For our convenience, let us denote the module mg(HC(L2(L))) by S.
Similarly we define S+ and S− to be the minimal globalizations of the underlying
Harish-Chandra (g, K̃ )-modules of the modules L2(L)+ and L2(L)−.Accordingly to
L2(L) � L2(L)+ ⊕ L2(L)−, we have S � S+ ⊕ S−. We shall call the Mp(V, ω)-
module S the symplectic spinor module and its elements symplectic spinors. For the
name “spinor”, see Kostant [12] or Sect. 1.

Further notion, related to the symplectic vector space split into the two chosen
Lagrangian subspaces (V = L ⊕ L

′, ω), is the so called symplectic Clifford multipli-
cation of elements of S by vectors from V. For i = 1, . . . , l and a symplectic spinor
f ∈ S, we define

(ei . f )(x) := ı xi f (x) and

(ei+l . f )(x) := ∂ f

∂xi
(x),

where x = ∑l
i=1 xi ei ∈ L and ı = √−1 denotes the imaginary unit. Extending

this multiplication R-linearly, we get the mentioned symplectic Clifford multiplica-
tion. Let us mention that the multiplication and the differentiation make sense for
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any f ∈ S because of the “analytic” interpretation of the minimal globalization. (See
Vogan [21] for details.) Let us remark that in the physical literature, the symplectic
Clifford multiplication is usually called Schrödinger quantization prescription.

The following lemma is an easy consequence of the definition of the symplectic
Clifford multiplication.

Lemma 1 For v,w ∈ V and s ∈ S, we have

v.(w.s)− w.(v.s) = −ıω(v,w)s.

Proof See Habermann and Habermann [9, pp. 11]. ��
We shall often write v.w.s instead of v.(w.s) for v,w ∈ V and a symplectic spinor

s ∈ S and similarly for higher number of multiplying elements. Further instead of
ei .e j .s, we shall write ei j .s simply and similarly for expressions with higher number
of multiplying elements, e.g., ei jk .s abbreviates ei .e j .ek .s.

2.2 Higher symplectic spinors

In this subsection, we shall present a result on a decomposition of the tensor product
of the metaplectic representation meta : G̃ → Aut(S) with the wedge power of the
representation λ∗ : G̃ → GL(V∗) of G̃ (dual to the representation λ) into irreducible
summands. Let us reserve the symbol ρ for the mentioned tensor product representa-
tion of G̃, i.e.,

ρ : G̃ → Aut

( •∧
V

∗ ⊗ S

)

ρ (g) (α ⊗ s) := λ (g)∗∧r α ⊗ meta (g) s

for r = 0, . . . , 2l, g ∈ G̃, α ∈ ∧r
V

∗, s ∈ S, and extend this defining formula lin-
early. For definiteness, let us equip the tensor product

∧•
V

∗ ⊗ S with the so called
Grothendieck tensor product topology. See Vogan [21] and Treves [19] for details
on this topological structure. In a parallel to the Riemannian case, we shall call the
elements of

∧•
V

∗ ⊗ S higher symplectic spinors.
Let us introduce the following subsets of the set of pairs of non-negative integers.

We define

� := {(i, j) ∈ N0 × N0|i = 0, . . . , l; j = 0, . . . , i}
∪{(i, j) ∈ N0 × N0|i = l + 1, . . . , 2l; j = 0, . . . , 2l − i},

�+ := �− {(i, i)|i = 0, . . . , l} and

�− := �− {(i, 2l − i)|i = l, . . . , 2l}.

For each (i, j) ∈ �, a gC-module E
i j
± was introduced in Krýsl [15]. These modules

are irreducible infinite dimensional highest modules over sp(V, ω)C and they are
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Fig. 1 Decomposition structure of
∧•

V
∗ ⊗ S for l = 3

described via their highest weights in the mentioned article explicitly. In Theorem 2,
the module of symplectic spinor valued exterior forms

∧•
V

∗ ⊗S is decomposed into
irreducible submodules.

Theorem 2 For l ≥ 2, the following decomposition into irreducible Mp(V, ω)-sub-
modules

i∧
V

∗ ⊗ S± �
⊕

j,(i, j)∈�
Ei j

±, i = 0, . . . , 2l, holds.

The modules Ei j
± are determined, as objects in the category R(G̃), by the fact that first

they are submodules of the corresponding tensor product and second the gC-structure
of HC(Ei j

±) is isomorphic to E
i j
±.

Proof See Krýsl [13,15]. ��

At the Fig. 1, the decomposition in the case l = 3 is displayed. In the i th column,
when counted from zero, the summands of

∧i
V

∗ ⊗ S, i = 0, . . . , 6, are written. The
meaning of the arrows at the figure will be explained later.

Remark Let us mention that for any (i, j), (i, k) ∈ �, j �= k, we have E
i j
± �� E

ik± (as
gC-modules) for all combinations of ± on the left hand as well as on the right hand
side. Using this fact, we see that for i = 0, . . . , 2l the G̃-modules

∧i
V

∗ ⊗ S± are
multiplicity free. Moreover for (i, j), (k, j) ∈ �, we have E

i j
± � E

k j
∓ . These facts will

be crucial in this paper.

For our convenience, let us set Ei j
± := {0} for (i, j) ∈ Z × Z − � and Ei j :=

Ei j
+ ⊕ Ei j

−.
Now, we shall introduce four operators which help us to describe the action of the

symplectic Ricci curvature tensor field acting on symplectic spinor valued exterior
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differential forms. For r = 0, . . . , 2l, α ⊗ s ∈ ∧r
V

∗ ⊗ S and σ ∈ �2
V

∗, we set

X :
r∧

V
∗ ⊗ S →

r+1∧
V

∗ ⊗ S, X (α ⊗ s) :=
2l∑

i=1

εi ∧ α ⊗ ei .s,

Y :
r∧

V
∗ ⊗ S →

r−1∧
V

∗ ⊗ S, Y (α ⊗ s) :=
2l∑

i, j=1

ωi j ιeiα ⊗ e j .s,

�σ :
r∧

V
∗ ⊗ S →

r+1∧
V

∗ ⊗ S, �σ (α ⊗ s) :=
2l∑

i, j=1

σ i
jε

j ∧ α ⊗ ei .s and

�σ :
r∧

V
∗ ⊗ S →

r∧
V

∗ ⊗ S, �σ (α ⊗ s) :=
2l∑

i, j=1

α ⊗ σ i j ei j .s

and extend it linearly. Here σi j := σ(ei , e j ), i, j = 1, . . . , 2l, and the contraction of
an exterior form α ∈ ∧•

V
∗ by a vector v ∈ V is denoted by ιvα.

Remark (1) One easily finds out that the operators are independent of the choice of
a symplectic basis {ei }2l

i=1. The operators X and Y were used to prove the Howe
correspondence for Mp(V, ω) acting on

∧•
V

∗ ⊗S via the representation ρ. See
Krýsl [13] for details.

(2) The symmetric tensor σ is an infinitesimal version of a part of the curvature of
a Fedosov connection. This part is called symplectic Ricci curvature tensor field
and will be introduced below. The operators �σ and�σ will help us to describe
the action of the symplectic Ricci curvature tensor field acting on symplectic
spinor valued exterior differential forms.

In what follows, we shall write ιei jα instead of ιei ιe jα, i, j = 1, . . . , 2l, and simi-
larly for higher number of elements contracting a form α ∈ ∧•

V
∗.

Using the Lemma 1, it is easy to compute that

X2(α ⊗ s) = − ı

2
ωi jε

i ∧ ε j ∧ α ⊗ s and Y 2(α ⊗ s) = ı

2
ωi j ιei jα ⊗ s (1)

for any element α ⊗ s ∈ ∧•
V

∗ ⊗ S.
In order to be able to use the operators X and Y in a geometric setting and some

further reasons, we shall need the following

Lemma 3 (1) The operators X, Y are G̃-equivariant wr. to the representation ρ
of G̃.

(2) For (i, j) ∈ �−, the operator X is an isomorphism if restricted to Ei j . For
(i, j) ∈ �+, the operator Y is an isomorphism if restricted to Ei j .

Proof For the G̃-equivariance of X and Y, see Krýsl [14]. The fact that the mentioned
restrictions are isomorphisms is proved in Krýsl [13]. ��
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In Lemma 4, four relations are proved which will be used later in order to deter-
mine a superset of the image of a restriction of the symplectic Ricci curvature ten-
sor field acting on symplectic spinor valued exterior differential forms. Without these
(anti-)commutation relations many of the computations presented below would became
very difficult to manage because of their increasing length. Often, we shall write� and
� simply instead of the more explicit�σ and�σ . The symmetric tensor σ is assumed
to be chosen. The symbol {, } denotes the anticommutator on End(

∧•
V

∗ ⊗S) viewed
as an associative algebra.

Lemma 4 The following relations

{�, X} = 0, (2)
[
{�,Y },Y 2

]
= 0, (3)

[X,�] = 2ı� and (4)
[
�,Y 2

]
= 0 (5)

hold on
∧•

V
∗ ⊗ S.

Proof We shall prove these identities for α ⊗ s ∈ ∧r
V

∗ ⊗ S, r = 0, . . . , 2l only.
The statement then follows by linearity of the considered operators.

(1) Let us compute

(X� +�X)(α ⊗ s) = X (σ i
jε

j ∧ α ⊗ ei .s)+�(εi ∧ α ⊗ ei .s)

= σ i
jε

k ∧ ε j ∧ α ⊗ eki .s + σ j
kε

k ∧ εi ∧ α ⊗ e ji .s

= σ i
kε

j ∧ εk ∧ α ⊗ e ji .s + σ i
kε

k ∧ ε j ∧ α ⊗ ei j .s

= σ i
kε

j ∧ εk ∧ α ⊗ (e ji .− ei j .)s

= −ıσ i
kω j iε

j ∧ εk ∧ α ⊗ s

= ıσ jkε
j ∧ εk ∧ α ⊗ s

= 0,

where we have renumbered indices, used the Lemma 1 and the fact that σ is
symmetric. In what follows, we shall use similar procedures without mentioning
them explicitly.

(2) Let us compute

P(α ⊗ s) := {�,Y }(α ⊗ s)

= Y (σ i
jε

j ∧ α ⊗ ei .s)+�(ωi j ιeiα ⊗ e j .s)

= σ i
jω

kl ιek (ε
j ∧ α)⊗ eli .s + ωi jσ k

lε
l ∧ ιeiα ⊗ ek j .s

= σ i
jω

kl(δ
j
kα − ε j ∧ ιekα)⊗ eli .s + ωi jσ k

lε
l ∧ ιeiα ⊗ ek j .s

= −σ ilα ⊗ eli .s−σ i
jω

klε j ∧ ιekα ⊗ eli .s+ωi jσ k
lε

l ∧ιeiα ⊗ ek j .s

= −σ ilα ⊗ eli .s−σ k
lω

i jεl ∧ιeiα ⊗ e jk .s+ωi jσ k
lε

l ∧ ιeiα ⊗ ek j .s
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= −σ ilα ⊗ eli .s − ıωi jωk jσ
k

lε
l ∧ ιeiα ⊗ s

= −σ i jα ⊗ e ji .s − ıσ i
jε

j ∧ ιeiα ⊗ s.

Now, we use the derived prescription for P and the Eq. (1) to compute

[
P, 2ıY 2

]
(α ⊗ s) = 2ı PY 2(α ⊗ s)− 2ıY 2 P(α ⊗ s)

=−P
(
ωi j ιei jα⊗s

)
−2ıY 2

(
−σ i jα⊗e ji .s−ıσ i

jε
j ∧ιeiα⊗s

)

= ωi jσ kl ιei jα ⊗ elk .s + ıωi jσ k
lε

l ∧ ιeki jα ⊗ s

− σ i jωkl ιeklα ⊗ ei j .s − ıσ i
jω

kl ιekl (ε
j ∧ ιeiα)⊗ s

= ωi jσ kl ιei jα ⊗ ekl .s + ıωi jσ k
lε

l ∧ ιeki jα ⊗ s

− σ i jωkl ιeklα ⊗ e ji .s−ıωklσ i
j (δ

j
l ιekiα − δ

j
k ιeliα

+ ε j ∧ ιekliα)⊗ s

= ωi jσ kl ιei jα ⊗ ekl .s + ıωi jσ k
lε

l ∧ ιeki jα ⊗ s

− σ klωi j ιei jα ⊗ ekl .s − ıωi jσ k
lε

l ∧ ιei jkα ⊗ s

= 0.

(3) Due to the definition of �, we have

[X,�] (α ⊗ s) = εk ∧ α ⊗ σ i j eki j .s − εi ∧ α ⊗ σ jke jki .s

= εk ∧ α ⊗ σ i j eki j .s−εk ∧ α ⊗ σ i j ei jk .s

= σ i jεk ∧ α ⊗ (eik j .s − ıωki e j .s − ei jk .s)

= σ i jεk ∧ α ⊗ (ei jk .s − ıωk j ei .s − ıωki e j .s − ei jk .s)

= 2ı�(α ⊗ s).

(4) This relation follows easily from the definition of � and the relation (1). ��
Remark It may be interesting to find a representation theoretical aspects of the pre-
vious relations regarding the fact that the symmetric bilinear form σ ∈ �2

V
∗ when

supposed to be Sp(V, ω)-equivariant, became zero.
In Proposition 5, a superset of the image of� and� restricted to Ei j , for (i, j) ∈ �,

is determined.

Proposition 5 For (i, j) ∈ �, we have

�|Ei j : Ei j → Ei+1, j−1 ⊕ Ei+1, j ⊕ Ei+1, j+1 and

�|Ei j : Ei j → Ei, j−1 ⊕ Ei, j ⊕ Ei, j+1.

Proof (1) For i = 0, . . . , l, let us choose an element ψ = α ⊗ s ∈ Ei i . Using the
relation (3), we have 0 = [P, Y 2]ψ = (PY 2 − Y 2 P)ψ = (�Y 3 + Y�Y 2 −
Y 2�Y − Y 3�)ψ. Because Y is G̃-equivariant (Lemma 3 item 1), decreasing
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the form degree of ψ by one and there is no summand isomorphic to Ei i+ or
Ei i− in

∧i−1
V

∗ ⊗ S (see the Remark below the Theorem 2), Yψ = 0. Using
this equation, we see that the first three summands in the above expression for
[P, Y 2] are zero. Therefore we have 0 = Y 3�ψ.Because Y is injective on Ei j for
(i, j) ∈ �+ (Lemma 3 item 2), we see that�ψ ∈ Ei+1,i−1 ⊕ Ei+1,i ⊕ Ei+1,i+1.

(It is recommendable to have a look at the Fig. 1.)
Now, let us consider a general (i, j) ∈ � andψ ∈ Ei j .Let us take an elementψ ′ ∈
E j j such thatψ = X (i− j)ψ ′. This element exists because according to Lemma 3
item 2, the operator X is an isomorphism when restricted to Ei j for (i, j) ∈ �−.
Because of the relation (2), we have �ψ = �X (i− j)ψ ′ = ±X (i− j)�ψ ′. From
the previous item, we know that�ψ ′ ∈ E j+1, j−1 ⊕E j+1, j ⊕E j+1, j+1.Because
X is G̃-equivariant (Lemma 3 item 1) and the only summands in

∧i+1
V

∗ ⊗ S
isomorphic to E j+1, j−1 ⊕ E j+1, j ⊕ E j+1, j+1 are those described in the formu-
lation of this proposition (see the Remark below the Theorem 2), the statement
follows.

(2) For i = 0, . . . , l, let us consider an element ψ = α ⊗ s ∈ Ei i . Using the rela-
tion (5), we have 0 = [�,Y 2]ψ = �Y 2ψ − Y 2�ψ. Using similar reasoning
to that one in the first item, we get Yψ = 0. Using the expression for [�,Y 2]
above, we get Y 2�ψ = 0 and consequently, �ψ ∈ Ei i ⊕ Ei,i−1. Now, let us
suppose ψ ∈ Ei j for (i, j) ∈ �. There exists an element ψ ′ ∈ E j j such that
ψ = X (i− j)ψ ′ (Lemma 3 item 2). Using the relations (4) and (2), we have�ψ =
�X (i− j)ψ ′ = X (i− j)�ψ ′ if i − j is even and (X (i− j)� − 2ı X (i− j−1)�)ψ ′ if
i − j is odd. Using the fact�|Ei j : Ei j → Ei+1, j−1 ⊕Ei+1, j ⊕Ei+1, j+1, proved
in the previous item, the statement follows by similar lines of reasoning as in the
first item. ��

3 Metaplectic structures and symplectic curvature tensors

After we have finished the algebraic part of the paper, let us describe the geometric
structure we shall be investigating. We begin with a recollection of results of Vaisman
in [20] and of Gelfand et al. in [6]. Let (M, ω) be a symplectic manifold and ∇ be a
symplectic torsion-free affine connection. By symplectic and torsion-free, we mean
∇ω = 0 and T (X,Y ) := ∇X Y − ∇Y X − [X, Y ] = 0 for all X,Y ∈ X(M), respec-
tively. Such connections are usually called Fedosov connections. In what follows, we
shall call the triples (M, ω,∇) Fedosov manifolds.

To fix our notation, let us recall the classical definition of the curvature tensor R∇
of the connection ∇, which we shall use in this text. Let

R∇ (X,Y ) Z := ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ] Z

for X, Y, Z ∈ X(M).
Let us choose a local symplectic frame {ei }2l

i=1 over an open subset U ⊆ M. We
shall often write expressions in which indices i, j, k, l e.t.c. occur. We will implicitly
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mean i, j, k, l are running from 1 to 2l without mentioning it explicitly. We set

Ri jkl := ω
(
R (ek, el) e j , ei

)
.

Let us mention that we are using the convention of Vaisman [20] which is different
from that one used in Habarmann and Habermann [9].

From the symplectic curvature tensor field R∇ , we can build the symplectic Ricci
curvature tensor field σ∇ defined by the classical formula

σ∇ (X,Y ) := Tr
(

V �→ R∇ (V, X) Y
)

for each X, Y ∈ X(M) (the variable V denotes a vector field on M). For the chosen
frame and i, j = 1, . . . , 2l, we set

σi j := σ∇ (
ei , e j

)
.

Further, let us define

2(l + 1)̃σ∇
i jkl := ωilσ jk − ωikσ jl + ω jlσik − ω jkσil + 2σi jωkl , (6)

σ̃∇(X,Y, Z , V ) := σ̃∇
i jkl X i Y j Zk V l and

W ∇ := R∇ − σ̃∇ (7)

for local vector fields X = Xi ei ,Y = Y j e j , Z = Zkek and V = V lel . We will call
the tensor field σ̃∇ the extended symplectic Ricci curvature tensor field and W ∇ the
symplectic Weyl curvature tensor field. These tensor fields were already introduced
in Vaisman [20]. We shall often drop the index ∇ in the previous expressions. Thus,
we shall often write R,W, σ and σ̃ instead of R∇ ,W ∇ , σ∇ and σ̃∇ , respectively.

In Lemma 6, the symmetry of σ is stated.

Lemma 6 For a Fedosov manifold (M, ω,∇), the symplectic Ricci curvature tensor
field σ is symmetric.

Proof See Vaisman [20]. ��

Let us describe the geometric structure with help of which the actions of the sym-
plectic twistor operators are defined. This structure, called metaplectic, is a precise
symplectic analogue of the notion of a spin structure in the Riemannian geometry.
For a symplectic manifold (M2l , ω) of dimension 2l, let us denote the bundle of sym-
plectic reperes in T M by P and the foot-point projection of P onto M by p. Thus
(p : P → M,G), where G � Sp(2l,R), is a principal G-bundle over M . As in
the Sect. 2, let λ : G̃ → G be a member of the isomorphism class of the non-trivial
two-fold coverings of the symplectic group G. In particular, G̃ � Mp(2l,R). Further,
let us consider a principal G̃-bundle (q : Q → M, G̃) over the symplectic manifold
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(M, ω). We call a pair (Q,�) metaplectic structure if � : Q → P is a surjective
bundle homomorphism over the identity on M and if the following diagram,

with the horizontal arrows being respective actions of the displayed groups, commutes.
See, e.g., Habermann and Habermann [9] and Kostant [12] for details on the meta-
plectic structures. Let us only remark, that typical examples of symplectic manifolds
admitting a metaplectic structure are cotangent bundles of orientable manifolds (phase
spaces), Calabi-Yau manifolds and complex projective spaces CP

2k+1, k ∈ N0 (all
considered with their standard symplectic forms).

Let us denote the vector bundle associated to the introduced principal G̃-bundle
(q : Q → M, G̃) via the representation meta on S by S.We shall call this associated
vector bundle symplectic spinor bundle. Thus, we have S = Q ×meta S. Sections
φ ∈ �(M,S) will be called symplectic spinor fields. Let us denote the space of sym-
plectic valued exterior differential forms �(M,Q×ρ (

∧•
V

∗ ⊗ S)) by�•(M,S) and
call it the space of symplectic spinor valued forms simply. Further for (i, j) ∈ Z × Z,

we define the associated vector bundles E i j by the prescription E i j := Q ×ρ Ei j .

Because the operators X, Y are G̃-equivariant (Lemma 3 item 1), they lift to oper-
ators acting on sections of the corresponding associated vector bundles. We shall
use the same symbols as for the defined operators as for their “lifts” to the asso-
ciated vector bundle structure. Because for each i = 0, . . . , 2l, the decomposition∧i

V
∗⊗S � ⊕

j,(i, j)∈� Ei j is multiplicity free (see the Remark below the Theorem 2),

there exist uniquely defined projections pi j : �i (M,S) → �(M, E i j ), (i, j) ∈ Z×Z.

Now, let us suppose that (M, ω) is not only equipped with a Fedosov connection
∇ but also admit a metaplectic structure ((q : Q → M, G̃),�). The connection
∇ determines the associated principal bundle connection Z on the principal bundle
(p : P → M,G). This principle bundle connection lifts to a principal bundle con-
nection on the principal bundle (q : Q → M, G̃) and defines the associated covariant
derivative on the symplectic bundle S,which we shall denote by ∇S and call it the sym-
plectic spinor covariant derivative. See Habermann and Habermann [9] for details. The
symplectic spinor covariant derivative induces the exterior symplectic spinor deriv-
ative d∇S

acting on �•(M,S). The curvature tensor field R�
•(M,S) acting on the

symplectic spinor valued forms is given by the classical formula

R�
•(M,S) := d∇S

d∇S
.

In Theorem 7, a superset of the image of d∇S
restricted to �(M, E i j ), (i, j) ∈ �,

is described.
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Theorem 7 Let (M, ω,∇) be a Fedosov manifold admitting a metaplectic structure.
Then for the exterior symplectic spinor derivative d∇S

and (i, j) ∈ �, we have

d∇S

|�(M,E i j)
: �

(
M, E i j

)
→ �

(
M, E i+1, j−1 ⊕ E i+1, j ⊕ E i+1, j+1

)
.

Proof See Krýsl [15]. ��

Remark From the proof of the theorem, it is easy to see that it can be extended to
the case (M, ω) is presymplectic and the symplectic connection ∇ has a non-zero
torsion. For l = 3 and any (i, j) ∈ �−, the mapping d∇S

restricted to �(M, E i j ) is
displayed as an arrow at the Figure 1 above. (The exterior covariant derivative d∇S

maps �(M, E i j ) into three “neighbor” subspaces.)

3.1 Curvature tensor on symplectic spinor valued forms and the complex
of symplectic twistor operators

Let (M, ω,∇) be a Fedosov manifold admitting a metaplectic structure (Q,�). In
Lemma 8, the action of RS := d∇S ∇S on the space of symplectic spinor fields is
described using just the symplectic curvature tensor field R of ∇.

Lemma 8 Let (M, ω,∇) be a Fedosov manifold admitting a metaplectic structure.
Then for a symplectic spinor field φ ∈ �(M,S), we have

RSφ = ı

2
Ri j

klε
k ∧ εl ⊗ ei j .φ.

Proof See Habermann, Habermann [9, pp. 42]. ��

For our convenience, let us set mi := i for i = 0, . . . , l and mi := 2l − i for
i = l + 1, . . . , 2l. Now, we can define the symplectic twistor operators, with help of
which we introduce the mentioned complex. For i = 0, . . . , 2l − 1, we set

Ti : �(M, E imi ) → �
(

M, E i+1,mi+1
)
, Ti := pi+1,mi+1 d∇S

|�(
M,E imi

)

and call these operators symplectic twistor operators. Informally, one can say that the
operators are going on the two bottom edges of the triangle at the Fig. 1. Let us notice
that up to a constant complex multiple XD = ∇S − T0 where D is the so called
symplectic Dirac operator introduced by K. Habermann in [8]. In Riemannian spin
geometry, the twistor operators fulfill a parallel relation.
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Theorem 9 Let (M2l , ω,∇) be a Fedosov manifold admitting a metaplectic structure.
If l ≥ 2 and the symplectic Weyl tensor field W ∇ = 0, then

0 −→ �(M, E00)
T0−→ �(M, E11)

T1−→ · · · Tl−1−→ �(M, E ll) −→ 0 and

0 −→ �(M, E ll)
Tl−→ �(M, E l+1,l+1)

Tl+1−→ · · · T2l−1−→ �(M, E2l,2l) −→ 0

are complexes.

Proof (1) In this item, we prove that for an element ψ ∈ �•(M,S),

R�
•(M,S)ψ = ı

l + 1

(
ı X2�σ + X�σ

)
ψ.

For ψ = α ⊗ φ ∈ �•(M,S), we can write

R�
•(M,S)(α ⊗ φ) = d∇S

d∇S
(α ⊗ φ)

= d∇S
(dα ⊗ φ + (−1)deg(α)α ∧ ∇Sφ)

= d2α ⊗ φ + (−1)deg(α)+1dα ∧ ∇Sφ + (−1)deg(α)dα ∧ ∇Sφ

+ (−1)deg(α)(−1)deg(α)α ∧ d∇S ∇Sφ

= α ∧ ı

2
Ri j

klε
k ∧ εl ⊗ ei j .φ

= ı

2
Ri j

klε
k ∧ εl ∧ α ⊗ ei j .φ,

where we have used the Lemma 8. Using this computation, the definition of the
symplectic Weyl curvature tensor field W ∇ (Eq. (7)), the definition of the extended
symplectic Ricci curvature tensor field σ̃∇ (Eq. (6)) and the assumption W ∇ = 0,
we get

−4(l + 1)ı R�
•(M,S)(α ⊗ φ) = 2(l + 1)Ri j

klε
k ∧ εl ∧ α ⊗ ei j .φ

= 2(l + 1)(W i j
kl + σ̃ i j

kl)ε
k ∧ εl ∧ α ⊗ ei j .φ

= 2(l + 1)̃σ i j
klε

k ∧ εl ∧ α ⊗ ei j .φ

= (ωi
lσ

j
k − ωi

kσ
j
l + ω j

lσ
i
k − ω j

kσ
i
l

+ 2σ i jωkl)ε
k ∧ εl ∧ α ⊗ ei j .φ

= 4ωi
lσ

j
kε

k ∧ εl ∧ α ⊗ ei j .φ

+ 2σ i jωklε
k ∧ εl ∧ α ⊗ ei j .φ

= 4ı X2(α ⊗ σ i j ei j .φ)+ 4X (σ j
kε

k ∧ α ⊗ e j .φ)

= (4ı X2�σ + 4X�σ )ψ,

where we have used the relation (1) in the second last step. Extending the result
by linearity, we get the statement of this item for an arbitrary ψ ∈ �•(M,S).
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(2) Using the formula for R�
•(M,S) derived in the previous item, the Proposition 5,

the G̃-equivariance of X (Lemma 3 item 1) and the decomposition structure of∧•
V

∗ ⊗ S (see the Remark below the Theorem 2), we see that for (i, j) ∈ �

and an element ψ ∈ �(M, E i j ), the section R�
•(M,S)ψ ∈ �(M, E i+2, j−1 ⊕

E i+2, j ⊕ E i+2, j+1). Thus especially, pi+2,mi+2 R�
•(M,S)ψ = 0 for i = 0, . . . ,

l − 2, l, . . . , 2l − 2 and ψ ∈ �(M, E imi ). For i = 0, . . . , l − 2, we get

0 = pi+2,i+2 R�
•(M,S) = pi+2,i+2d∇S

d∇S

= pi+2,i+2d∇S
(pi+1,0 + · · · + pi+1,i+1)d∇S

= pi+2,i+2d∇S
pi+1,0d∇S + · · · + pi+2,i+2d∇S

pi+1,i+1d∇S

= Ti+1Ti ,

where we have used the Theorem 7 in the last step. Similarly, one proceeds in the
case i = l, . . . , 2l − 2. ��

Corollary 10 Let (M, ω,∇) be a Fedosov manifold admitting a metaplectic structure.
If l ≥ 2 and the symplectic Weyl tensor field W ∇ = 0, then

0 −→ �
(

M, E00
)

T0−→ · · · Tl−2−→ �
(

M, E l−1,l−1
) Tl Tl−1−→

Tl Tl−1−→ �
(

M, E l+1,l+1
) Tl+1−→ · · · T2l−1−→ �

(
M, E2l,2l

)
−→ 0

is a complex.

Proof Follows easily from the Theorem 9. ��
The question of the existence of a symplectic connection with vanishing symplectic

Weyl curvature tensor field was treated, e.g., in Cahen et al. [2]. These connections
are called connections of Ricci type. For instance it is known that if a compact simply
connected symplectic manifold (M, ω) admits a connection of Ricci type, then (M, ω)
is affinely symplectomorphic to a P

n
C equipped with the symplectic form, given by

the standard complex structure and the Fubini-Study metric, and the Levi-Civita con-
nection of this metric. Let us refer an interested reader to the paper of Cahen et al.
[3], where also a relation of symplectic connections to contact projective geometries
is treated.

Further research could be devoted to the investigation and the interpretation of the
cohomology of the introduced complex and to the investigation of analytic properties
of the symplectic twistor operators.
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ELLIPTICITY OF THE SYMPLECTIC TWISTOR COMPLEX

Svatopluk Krýsl

Abstract. For a Fedosov manifold (symplectic manifold equipped with a
symplectic torsion-free affine connection) admitting a metaplectic structure,
we shall investigate two sequences of first order differential operators acting
on sections of certain infinite rank vector bundles defined over this manifold.
The differential operators are symplectic analogues of the twistor operators
known from Riemannian or Lorentzian spin geometry. It is known that the
mentioned sequences form complexes if the symplectic connection is of Ricci
type. In this paper, we prove that certain parts of these complexes are elliptic.

1. Introduction

In this article, we prove the ellipticity of certain parts of the so called symplectic
twistor complexes. The symplectic twistor complexes are two sequences of first
order differential operators defined over Ricci type Fedosov manifolds admitting
a metaplectic structure. The mentioned parts of these complexes will be called
truncated symplectic twistor complexes and will be defined later in this text.

Now, let us say a few words about the Fedosov manifolds. Formally speaking,
a Fedosov manifold is a triple (M2l, ω,∇) where (M2l, ω) is a (for definiteness
2l dimensional) symplectic manifold and ∇ is a symplectic torsion-free affine
connection. Connections satisfying these two properties are usually calledFedosov
connections in honor of Boris Fedosov who used them to obtain a deformation
quantization for symplectic manifolds. (See Fedosov [5].) Let us also mention that
in contrary to torsion-free Levi-Civita connections, the Fedosov ones are not unique.
We refer an interested reader to Tondeur [18] and Gelfand, Retakh, Shubin [6] for
more information.

To formulate the result on the ellipticity of the truncated symplectic twistor
complexes, one should know some basic facts on the structure of the curvature
tensor field of a Fedosov connection. In Vaisman [19], one can find a proof of a
theorem which says that such curvature tensor field splits into two parts if l ≥ 2,
namely into the symplectic Ricci and symplectic Weyl curvature tensor fields. If
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l = 1, only the symplectic Ricci curvature tensor field occurs. Fedosov manifolds
with zero symplectic Weyl curvature are usually called of Ricci type. (See also
Cahen, Schwachhöfer [3] for another but related context.)

After introducing the underlying geometric structure, let us start describing the
fields on which the differential operators from the symplectic twistor complexes
act. These fields are certain exterior differential forms with values in the so called
symplectic spinor bundle which is an associated vector bundle to the metaplectic
bundle. We shall introduce the metaplectic bundle briefly now. Because the first
homotopy group of the symplectic group Sp(2l,R) is isomorphic to Z, there exists
a connected two-fold covering of this group. The covering space is called the
metaplectic group, and it is usually denoted by Mp(2l,R). Let us fix an element of
the isomorphism class of all connected 2 : 1 coverings of Sp(2l,R) and denote it by λ.
In particular, the mapping λ : Mp(2l,R)→ Sp(2l,R) is a Lie group homomorphism,
and in this case it is also a Lie group representation. A metaplectic structure on
a symplectic manifold (M2l, ω) is a notion parallel to that of a spin structure
known from Riemannian geometry. In particular, one of its part is a principal
Mp(2l,R)-bundle Q covering twice the bundle of symplectic repères P on (M,ω).
This principal Mp(2l,R)-bundle is the mentioned metaplectic bundle and will be
denoted by Q in this paper.

As we have already written, the fields we are interested in are certain exterior
differential forms on M2l with values in the symplectic spinor bundle which is a
vector bundle over M associated to the chosen principal Mp(2l,R)-bundle Q via an
’analytic derivate’ of the Segal-Sahle-Weil representation. The Segal-Shale-Weil re-
presentation is a faithful unitary representation of the metaplectic group Mp(2l,R)
on the vector space L2(L) of complex valued square Lebesgue integrable functions
defined on a Lagrangian subspace L of the canonical symplectic vector space
(R2l, ω0). For technical reasons, we shall use the so called Casselman-Wallach glo-
balization of the underlying Harish-Chandra (g, K̃)-module of the Segal-Shale-Weil
representation. Here, g is the Lie algebra of the metaplectic group G̃ and K̃ is
a maximal compact subgroup of the group G̃. The vector space carrying this
globalization is the Schwartz space S := S(L) of smooth functions on L rapidly
decreasing in infinity with its usual Fréchet topology. This Schwartz space is the
’analytic derivate’ mentioned above. We shall denote the resulting representation
of Mp(2n,R) on S by L and call it the metaplectic representation, i.e., we have
L : Mp(2l,R) → Aut(S). Let us mention that S decomposes into two irreducible
Mp(2l,R)-submodules S+ and S−, i.e., S = S+ ⊕ S−. The elements of S are
usually called symplectic spinors. See Kostant [11] who used them in the context
of geometric quantization.

The underlying algebraic structure of the symplectic spinor valued exterior
differential forms is the vector space E :=

∧•(R2l)∗ ⊗ S =
⊕2l

r=0
∧r(R2l)∗ ⊗

S. Obviously, this vector space is equipped with the following tensor product
representation ρ of the metaplectic group Mp(2l,R). For r = 0, . . . , 2l, g ∈ Mp(2l,R)
and α ⊗ s ∈

∧r(R2l)∗ ⊗ S, we set ρ(g)(α ⊗ s) := λ(g)∗∧rα ⊗ L(g)s and extend
this prescription by linearity. With this notation in mind, the symplectic spinor
valued exterior differential forms are sections of the vector bundle E associated
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to the chosen principal Mp(2l,R)-bundle Q via ρ, i.e., E := Q ×ρ E. Now, we
shall restrict our attention to the mentioned specific symplectic spinor valued
exterior differential forms. For each r = 0, . . . , 2l, there exists a distinguished
irreducible submodule of

∧r(R2l)∗ ⊗ S± which we denote by Er
±. Actually, the

submodules Er
± are the Cartan components of

∧r(R2l)∗ ⊗ S±, i.e., the highest
weight of each of them is the largest one of the highest weights of all irreducible
constituents of

∧r(R2l)∗ ⊗ S± wrt. the standard choices. For r = 0, . . . , 2l, we
set Er := Er

+ ⊕Er
− and Er := Q×ρ Er. Further, let us denote the corresponding

Mp(2l,R)-equivariant projection from
∧r(R2l)∗ ⊗ S onto Er by pr. We denote the

lift of the projection pr to the associated (or ’geometric’) structures by the same
symbol, i.e., pr : Γ(M,Q×ρ (

∧r(R2l)∗ ⊗ S))→ Γ(M, Er).
Now, we are in a position to define the main subject of our investigation, namely

the symplectic twistor complexes. Let us consider a Fedosov manifold (M,ω,∇)
and suppose that (M,ω) admits a metaplectic structure. Let d∇S be the exterior
covariant derivative associated to ∇. For each r = 0, . . . , 2l, let us restrict the
associated exterior covariant derivative d∇S to Γ(M, Er) and compose the restriction
with the projection pr+1. The resulting operator, denoted by Tr, will be called
symplectic twistor operator. In this way, we obtain two sequences of differential
operators, namely 0 −→ Γ(M, E0) T0−→ Γ(M, E1) T1−→ · · · Tl−1−→ Γ(M, E l) −→ 0 and
0 −→ Γ(M, E l) Tl−→ Γ(M, E l+1) Tl+1−→ · · · T2l−1−→ Γ(M, E2l) −→ 0. It is known, see
Krýsl [14], that these sequences form complexes provided the Fedosov manifold
(M2l, ω,∇) is of Ricci type. These two complexes are the mentioned symplectic
twistor complexes. Let us notice, that we did not choose the full sequence of all
symplectic spinor valued exterior differential forms together with the exterior
covariant derivative acting between them because for a general or even Ricci type
Fedosov manifold, this sequence would not form a complex in general.

As we have mentioned, we shall prove that some parts of these two complexes
are elliptic. To obtain these parts, one should remove the last (i.e., the zero) term
and the second last term from the first complex and the first term (the zero space
again) from the second complex. The complexes obtained in this way will be called
truncated symplectic twistor complexes. Let us mention that by an elliptic complex,
we mean a complex of differential operators such that its associated symbol sequence
is an exact sequence of the sheaves in question. (See, e.g., Wells [21] for details.)

Let us make some remarks on the methods we have used to prove the ellipticity
of the truncated symplectic twistor complexes. We decided to use the so called
Schur-Weyl-Howe correspondence, which is referred to as the Howe correspondence
for simplicity in this text. The Howe correspondence in our case, i.e., for the
metaplectic group Mp(2l,R) acting on the space E of symplectic spinor valued
exterior forms, leads to the ortho-symplectic super Lie algebra osp(1|2) and a
certain representation of this algebra on E. We decided to use the Howe type
correspondence mainly because the spaces Er (defined above) can be characterized
via the mentioned representation of osp(1|2) easily and in a way described in this
paper. See R. Howe [10] for more information on the Howe type correspondence
in general. Let us also mention that besides this duality, the Cartan lemma on
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exterior differential forms was used. For other examples of elliptic complexes, we
refer an interested reader, e.g., to Stein and Weiss [17], Schmid [15], Hotta [9], and
Branson [2].

For an application of symplectic spinors in mathematical physics, see, e.g., Shale
[16] and Green, Hull [7] and the already mentioned article of Kostant [11]. In
the first reference, one can find an application of these spinors in quantizing of
Klein-Gordon fields and in the second one in the 10 dimensional super-string theory.
The purpose for taking symplectic spinor valued forms might be justified by the
intention to describe higher spin boson fields.

In the second section, we recall some known facts on symplectic spinors and
the space of symplectic spinor valued exterior forms and its decomposition into
irreducible submodules (Theorem 1). In the third chapter, basic information on
Fedosov manifolds and their curvature are mentioned and the symplectic twistor
complexes are introduced. In the fourth section, the symbol sequence of the
symplectic twistor complexes is computed and the ellipticity of the truncated
symplectic twistor complexes is proved (Theorem 7).

2. Symplectic spinor valued forms

In this paper the Einstein summation convention is used for finite sums, not
mentioning it explicitly unless otherwise is stated. (We will not use this convention
in the proof of the Lemma 6 and in the item 3 of the proof of the Theorem 7 only.)
The category of representations of Lie groups we shall consider is that one the
object of which are finite length admissible representations of a fixed reductive
group G on Fréchet vector spaces and the morphisms are continuous G-equivariant
maps between the objects. All manifolds, vector bundles and their sections in
this text are supposed to be smooth. The only manifolds which are allowed to
be of infinite dimension are the total spaces of vector bundles. If this is the case,
the bundles are supposed to be Fréchet. The base manifolds are always finite
dimensional. The sheaves we will consider are sheaves of smooth sections of vector
bundles. If E →M is a Fréchet vector bundle, we denote the sheaf of sections by
Γ, i.e., Γ(U) := Γ(U,E) for each open set U in M . For m ∈M , we denote the stalk
of Γ at m by Γm.

2.1. Symplectic linear algebra and basic notation. In order to set the notation, let
us start recalling some simple results from symplectic linear algebra. Let (V, ω0) be
a real symplectic vector space of dimension 2l, l ≥ 1. Let us choose two Lagrangian
subspaces L and L′, such that V ' L⊕L′ 1. It is easy to see that dim L = dim L′ = l.
Further, let us choose an adapted symplectic basis {ei}2li=1 of (V ' L⊕L′, ω0), i.e.,
{ei}2li=1 is a symplectic basis of (V, ω0) and {ei}li=1 ⊆ L and {ei}2li=l+1 ⊆ L′. The
basis dual to the basis {ei}2li=1 will be denoted by {εi}2li=1, i.e., for i, j = 1, . . . , 2l
we have εj(ei) = ιeiε

j = δji , where ιvα for an element v ∈ V and an exterior
form α ∈

∧•V∗, denotes the contraction of the form α by the vector v. Further
for i, j = 1, . . . , 2l, we set ωij := ω0(ei, ej) and define ωij , i, j = 1, . . . , 2l, by

1Let us recall that by Lagrangian, we mean maximal isotropic wrt. ω0.
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the equation ωijω
kj = δki for all i, k = 1, . . . , 2l. Let us remark that not only

ωij = −ωji, but also ωij = −ωji for i, j = 1, . . . , 2l.
As in the Riemannian case, we would like to rise and lower indices of tensor

coordinates. In the symplectic case, one should be more careful because of the
anti-symmetry of ω0. For coordinates Kab...c...d

rs...t...u of a tensor K over V. we
denote the expression ωicKab...c...d

rs...t by Kab...
i
...d

rs...t and Kab...c
rs...t...uωti by

Kab...c
rs...

i
...u and similarly for other types of tensors and also in the geometric

setting when we will be considering tensor fields over a symplectic manifold (M2l, ω).
Let us remark that ωij = −ωji = δji , i, j = 1, . . . , 2l. Further, one can also define
an isomorphism ] : V∗ → V,V∗ 3 α 7→ α] ∈ V, by the formula

α(w) = ω0(α], w) for each α ∈ V∗ and w ∈ V .
For α = αiε

i and j = 1, . . . , 2l, we get αj = α(ej) = ω0((α])iei, ej) = ωij(α])i =
(α])j which implies α] = (α])iei = αiei. Thus, we see that the rising of indices via
the form ω0 is realized by the isomorphism ].

Finally, let us introduce the groups we will be using. Let us denote the symplectic
group of (V, ω0) by G, i.e., G := Sp(V, ω0) ' Sp(2l,R). Because the fundamental
group of G = Sp(V, ω0) is Z, there exists a connected 2: 1, necessarily non-universal,
covering of G by the so called metaplectic group Mp(V, ω0) denoted by G̃ in this text.
Let us denote the mentioned two-fold covering map byλ, in particular λ : G̃→ G.
(See, e.g., Habermann, Habermann [8].)

2.2. Segal-Shale-Weil representation and symplectic spinor valued forms. The
Segal-Shale-Weil representation is a distinguished representation of the meta-
plectic group G̃ = Mp(V, ω0).2 This representation is unitary, faithful and does not
descend to a representation of the symplectic group. Its underlying vector space
is the vector space of complex valued square Lebesgue integrable functions L2(L)
defined on the chosen Lagrangian subspace L. Let us set S := V∞(HC(L2(L))),
where V∞ is the Casselman-Wallach globalization functor and HC denotes the
forgetful Harish-Chandra functor from the category of G̃-modules defined above
into the category of Harish-Chandra (g, K̃)-modules3. We shall denote the resulting
representation by L and call it the metaplectic representation. Thus, we have

L : Mp(V, ω0)→ Aut(S) .
The elements of S will be called symplectic spinors. It is well known that S splits
into two irreducible Mp(V, ω0)-submodules S+ and S−. Thus, we have S = S+⊕S−.
See the foundational paper of A. Weil [20] for more detailed information on the
Segal-Shale-Weil representation and Casselman [4] on this type of globalization. Let
us mention that choosing this particular globalization seems to be rather technical
from the point of view of the aim of our article.

In the proof of the ellipticity of the truncated symplectic twistor complexes,
we shall need some facts on the underlying vector space of the metaplectic repre-
sentation. Let us mention that it is known that S is isomorphic to the Schwartz

2The names oscillator and metaplectic are also used in the literature. See, e.g., Howe [10].
3Here, g is the Lie algebra of G̃ and K̃ is the maximal compact Lie subgroup of G̃.
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space S(L) of smooth functions rapidly decreasing in the infinity equipped with the
standard (locally convex) Fréchet topology generated by the supremum semi-norms.
(See, e.g., Habermann, Habermann [8] or Borel, Wallach [1].) For the convenience of
the reader, let us briefly recall the definition of the involved semi-norms. For each a,
b ∈ Nl0, the semi-norm qa,b is defined by the formula qa,b(f) := supx∈L|(xa∂bf)(x)|,
f ∈ S(L). Let us order the set (qa,b)a,b in the standard ’lexicographical’ way
and denote the resulting sequence of semi-norms by (qk)k∈N0 . These semi-norms
generate a complete metric topology on S(L). Taking a = b = 0, one sees that
the convergence with respect to the semi-norms implies the uniform convergence
immediately. Further, it is well known that the Schwartz space S(L) possesses a
Schauder basis. For a complex metric (e.g., Fréchet) space F , an ordered countable
set (fi)i∈N ⊆ F is called a Schauder basis of F if each element f ∈ F can be uni-
quely expressed as f =

∑∞
i=1 aifi for some ai ∈ C. Notice that from the uniqueness

of the coefficients ai immediately follows that 0 =
∑∞
i=1 aifi implies ai = 0 for all

i ∈ N. From the basic mathematical analysis courses, one knows that in the case of
the Schwartz space S(L), one can take, e.g., the lexicographically ordered sequence
of Hermite functions in l variables as the Schauder basis. We denote this basis by
(hi)i∈N.

Now, we may define the so called symplectic Clifford multiplication · : V×S→ S.
For s ∈ S, x = xjej ∈ L, xj ∈ R and i, j = 1, . . . , l, let us set

ei · s(x) := ıxis(x) and ei+l · s(x) := ∂s

∂xi
(x) .

In physics, this mapping (up to a constant multiple) is usually called the canonical
quantization. Let us remark that the definition is correct due to the preceding
paragraph. For each v, w ∈ V and s ∈ S, one can easily derive the following
commutation relation

(1) v · w · s− w · v · s = −ıω0(v, w)s .

(See, e.g., Habermann, Habermann [8].) We shall use this relation repeatedly and
without mentioning its use. Now, we prove that the symplectic Clifford multipli-
cation by a fixed non-zero vector v ∈ V is injective as a mapping from S into S.
We shall use the G̃-equivariance of the symplectic Clifford multiplication, i.e., the
fact L(g)(v · s) = [λ(g)v] · L(g)s which holds for each g ∈ G̃, v ∈ V and s ∈ S
(see Habermann, Habermann [8]). Thus, let us suppose that a fixed s ∈ S and a
fixed 0 6= v ∈ V are given such that v · s = 0. Because the action of the symplectic
group G on V − {0} is transitive and λ is a covering, there exists an element
g ∈ G̃ such that λ(g)v = e1. Applying L(g) on the equation v · s = 0, we get
L(g)(v · s) = 0. Using the above mentioned equivariance of the symplectic Clifford
multiplication, we get 0 = L(g)(v · s) = [λ(g)v] · (L(g)s) = e1 · (L(g)s). Denoting
L(g)s =: ψ and using the definition of the symplectic Clifford multiplication, we
obtain ıx1ψ = 0, which implies ψ(x) = 0 for each x = (x1, . . . , xl) ∈ L such that
x1 6= 0. By continuity of ψ ∈ S, we get ψ = 0. Because L is a group representation,
we get s = 0 from 0 = ψ = L(g)s, i.e., the injectivity of the symplectic Clifford
multiplication.
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Having defined the metaplectic representation and the symplectic Clifford mul-
tiplication, we shall introduce the underlying algebraic structure of the basic
geometric object we are interested in, namely the space E :=

∧•V∗ ⊗ S of sym-
plectic spinor valued exterior forms. The vector space E is considered with its
canonical (Fréchet) direct sum topology induced by the metric topology on the
(finite dimensional) space of exterior forms and the Fréchet topology on S. The
metaplectic group G̃ acts on E by the representation

ρ : G̃→ Aut(E) defined by the formula

ρ(g)(α⊗ s) := (λ(g)∗)∧rα⊗ L(g)s ,

where α ∈
∧r V∗, s ∈ S, r = 0, . . . , 2l, and it is extended by linearity also for

non-homogeneous elements.
For ψ = α⊗s ∈ E, v ∈ V and β ∈

∧• V∗, we set ιvψ := ιvα⊗s, β∧ψ := β∧α⊗s
and v · ψ := α⊗ v · s and extend these definitions by linearity to non-homogeneous
elements. Obviously, the contraction, the exterior multiplication and the Clifford
multiplication by a fixed vector or co-vector are continuous on E.

Now, we shall describe the decomposition of the space E into irreducible
G̃-submodules. For i = 0, . . . , l, let us set mi := i, and for i = l + 1, . . . 2l,
mi := 2l − i, and define the set Ξ of pairs of non-negative integers

Ξ :=
{

(i, j) ∈ N0 × N0 | i = 0, . . . , 2l, j = 0, . . . ,mi

}
.

One can say the set Ξ has a shape of a triangle if visualized in a 2-plane. (See
the Figure 1. below.) We use the elements of Ξ for parameterizing the irreducible
submodules of E.

In Krýsl [12] for each (i, j) ∈ Ξ, two irreducible G̃-modules Eij
± were uniquely

defined via the highest weights of their underlying Harish-Chandra modules and
by the fact that they are irreducible submodules of

∧i V∗ ⊗ S±. For convenience
for each (i, j) ∈ Z× Z \ Ξ, we set Eij

± := 0, and for each (i, j) ∈ Z× Z, we define
Eij := Eij

+ ⊕Eij
−.

In the following theorem, the decomposition of E into irreducible G̃-submodules
is described.

Theorem 1. For r = 0, . . . , 2l, the following decomposition into irreducible
G̃-modules

r∧
V∗ ⊗ S± '

⊕
j

(r,j)∈Ξ

Erj
± holds .

Proof. See Krýsl [12]. �

The following remark on the multiplicity structure of the module E is cru-
cial. It follows from the prescriptions for the highest weights of the underlying
Harish-Chandra modules of Eij

± (see Krýsl [13]).

Remark. 1. For any (r, j), (r, k) ∈ Ξ such that j 6= k, we have

Erj
± 6' Erk

±
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E00
± E10

± E20
± E30

± E40
± E50

± E60
±

E11
± E21

± E31
± E41

± E51
±

E22
± E32

± E42
±

E33
±

Fig. 1: Decomposition of
∧•V∗ ⊗ S± for 2l = 6.

(any combination of ± at both sides of the preceding relation is allowed).
Thus in particular,

∧r V∗ ⊗ S is multiplicity-free for each r = 0, . . . , 2l.

2. Moreover, it is known that Erj
± ' Esj

∓ for each (r, j), (s, j) ∈ Ξ. One
cannot change the order of + and − at precisely one side of the preceding
isomorphism without changing its trueness.

3. From the preceding two items, one gets immediately that there are no
submodules of

∧i V∗ ⊗ S isomorphic to Ei+1,i+1
± for each i = 0, . . . , l − 1.

In the Figure 1, one can see the decomposition structure of
∧•V∗ ⊗ S± in the

case of l = 3. For i = 0, . . . , 6, the ith column constitutes of the irreducible modules
in which the S±-valued exterior forms of form-degree i decompose.

In the next theorem, the decomposition of V∗ ⊗Eij , (i, j) ∈ Ξ, into irreducible
G̃-submodules is described. Let us remind the reader that due to our convention
Eij = 0 for (i, j) ∈ Z× Z \ Ξ. We will use this theorem in the proofs of Lemma 6
and Theorem 7 on the ellipticity of the truncated symplectic twistor complexes.

Theorem 2. For (i, j) ∈ Ξ, we have

(V∗ ⊗Eij) ∩ (
i+1∧

V∗ ⊗ S) ' Ei+1,j−1 ⊕Ei+1,j ⊕Ei+1,j+1 .

Proof. See Krýsl [13]. �

Remark. Roughly speaking, the theorem says that the wedge multiplication sends
each irreducible module Eij into at most three “neighbor” modules in the (i+ 1)st
column. (See the Figure 1.)

2.3. Operators related to a Howe type correspondence. In this section, we will
introduce five continuous linear operators acting on the space E of symplectic
spinor valued exterior forms. Let us mention that these operators are related to the
so called Howe type correspondence for the metaplectic group Mp(V, ω0) acting on
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E via the representation ρ. For r = 0, . . . , 2l and α⊗ s ∈
∧r V∗ ⊗ S, we set

F+ :
r∧

V∗ ⊗ S→
r+1∧

V∗ ⊗ S , F+(α⊗ s) := ı

2

2l∑
i=1

εi ∧ α⊗ ei · s

and

F− :
r∧

V∗ ⊗ S→
r−1∧

V∗ ⊗ S , F−(α⊗ s) := 1
2

2l∑
i=1

ωijιeiα⊗ ej · s

and extend them linearly. Further, we shall introduce the operators H, E+ and
E− acting also continuously on the space E =

∧•V∗ ⊗ S. We define
H := 2{F+, F−} and E± := ±2{F±, F±} ,

where { , } denotes the anti-commutator in the associative algebra End(E). By a
direct computation, we get

(2) E−(α⊗ s) = ı

2ω
ijιeiιejα⊗ s

for any α⊗s ∈
∧•V∗⊗S. Thus, we see that the operator E− acts on the form-part

of a symplectic spinor valued exterior form only. Because of that we will write
E−α⊗ s instead of E−(α⊗ s) simply.

In the next lemma, we sum-up some known facts and derive some new information
on the operators F±, E± and H which we shall need in the proof of the ellipticity
of the truncated symplectic twistor complexes.

Lemma 3. 1. The operators F±, E± and H are G̃-equivariant.
2. For i = 0, . . . , l, the operator F−|Eimi = 0 and for i = l, . . . , 2l, the operator
F+
|Eimi = 0.

3. The associative algebra
EndG̃(E) := {A : E → E continuous | Aρ(g) = ρ(g)A for all g ∈ G̃}
is, as an associative algebra, finitely generated by F+ and F− and the
G̃-equivariant projections p± : S→ S±.

4. For α⊗ s ∈
∧r V∗ ⊗ S, the following relations hold on E
[E+, E−] = H , [E−, F+] = −F− ,(3)

H(α⊗ s) = 1
2(r − l)α⊗ s ,(4)

{F+, ιv}(α⊗ s) = ı

2α⊗ v · s and [F−, v·](α⊗ s) = ı

2 ιvα⊗ s .(5)

Proof. See Krýsl [13] for the proof of the items 1 and 2, and Krýsl [12] for a
proof of the item 3 and of the relations in the rows (3) and (4). Now, suppose
we are given an element v = viei ∈ V, vi ∈ R, i = 1, . . . , 2l, and a homogeneous
element α ⊗ s ∈

∧j V∗ ⊗ S, j = 0, . . . , 2l. First, let us prove the first relation
in the row (5). Using the definition of F+, we may write {F+, ιv}(α ⊗ s) =
F+(ιvα⊗s)+ ı

2 ιv(εi∧α⊗ei·s) = ı
2 [εi∧ιvα⊗ei·s+viα⊗ei·s−εi∧ιvα⊗ei·s] = ı

2α⊗v·s.
Thus, the first relation of (5) follows now by linearity. Now, let us prove the second
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relation at the row (5). Using the definition of F− and the commutation relation
(1), we get F−(α⊗v ·s) = 1

2 (ωijιeiα⊗ej ·v ·s) = 1
2ω

ijιeiα⊗(v ·ej ·s−ıω0(ej , v)s) =
v ·F−(α⊗ s) + ı

2ω
ijιeiα⊗vjs = v ·F−(α⊗ s) + ı

2 ιvα⊗ s. Thus, the second relation
at the row (5) is proved. �

Remark. The operators F±, E± and H satisfy the commutation and anti-commu-
tation relations identical to that ones which are satisfied by the usual generators of
the ortho-symplectic super Lie algebra osp(1|2).

3. Symplectic twistor complexes and their elliptic parts

In this section, we define the notion of a Fedosov manifold, recall some informa-
tion on its curvature, introduce a symplectic analogue of the spin structure (the
metaplectic structure) and define the symplectic twistor complexes.

Let (M,ω) be a symplectic manifold. Let us consider an affine torsion-free sym-
plectic connection∇ on (M,ω) and denote the induced connection on Γ(M,

∧2
T ∗M)

by ∇ as well. Let us recall that by torsion-free and symplectic, we mean T (X,Y ) :=
∇XY −∇YX − [X,Y ] = 0 for all X,Y ∈ X(M) and ∇ω = 0. Such connections are
usually called Fedosov connections, and the triple (M,ω,∇) a Fedosov manifold.
See the Introduction and the references therein for more information on these
connections. The curvature tensor R∇ of a Fedosov connection is defined in the
classical way, i.e., formally by the same formula as in the Riemannian geometry. It
is known, see Vaisman [19], that R∇ splits into two parts, namely into the extended
symplectic Ricci and Weyl curvature tensor fields, here denoted by σ̃∇ and W∇

respectively. Let us display the definitions of these two curvature parts although
we shall not use them explicitly. For a symplectic frame (U, {ei}2li=1), U ⊆M , we
have the following local formulas

σij := Rkikj ,

2(l + 1)σ̃∇ijkn := ωinσjk − ωikσjn + ωjnσik − ωjkσin + 2σijωkn and
W∇ := R∇ − σ̃∇ ,

where i, j, k, n = 1, . . . , 2l. Let us call a Fedosov manifold (M,ω,∇) of Ricci type if
W∇ = 0.

Remark. Because the Ricci curvature tensor field σij is symmetric (see Vaisman
[19]), a possible candidate for the scalar curvature, namely σijωij , is zero.

Example. It is easy to see that each Riemann surface equipped with its volume
form as the symplectic form and with the Riemann connection is a Fedosov manifold
of Ricci type. Further for any l ≥ 1, the Fedosov manifold (CPl, ωFS ,∇) is also a
Fedosov manifold of Ricci type. Here, ωFS is the Kähler form associated to the
Fubini-Study metric and to the complex structure on the complex projective space
CPl, and ∇ is the Riemannian connection associated to the Fubini-Study metric.

Now, let us introduce the metaplectic structure the definition of which we have
sketched briefly in the Introduction. For a symplectic manifold (M2l, ω) of dimension
2l, let us denote the bundle of symplectic repères in TM by P and the foot-point
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projection from P onto M by p. Thus (p : P →M,G), where G ' Sp(2l,R), is a
principal G-bundle over M . As in the subsection 2.1, let λ : G̃→ G be a member
of the isomorphism class of the non-trivial two-fold coverings of the symplectic
group G. In particular, G̃ ' Mp(2l,R). Now, let us consider a principal G̃-bundle
(q : Q →M, G̃) over the chosen symplectic manifold (M,ω). We call the pair (Q,Λ)
metaplectic structure if Λ: Q → P is a surjective bundle morphism compatible with
the actions of G on P and that of G̃ on Q and with the covering λ in the same
way as in the Riemannian spin geometry. (For a more elaborate definition see, e.g.,
Habermann, Habermann [8].) Let us remark, that typical examples of symplectic
manifolds admitting a metaplectic structure are cotangent bundles of orientable
manifolds (phase spaces), Calabi-Yau manifolds and the complex projective spaces
CP2k+1, k ∈ N0.

Now, let us denote the Fréchet vector bundle associated to the introduced
principal G̃-bundle (q : Q →M, G̃) via the metaplectic representation L on S by
S. Thus, we have S = Q×L S. We shall call this associated vector bundle S →M
the symplectic spinor bundle. The sections φ ∈ Γ(M,S) will be called symplectic
spinor fields. Let us put E := Q×ρ E. For r = 0, . . . , 2l, we define Er := Q×ρ Er,
where Er abbreviates Ermr . The smooth sections Γ(M, E) will be called symplectic
spinor valued exterior differential forms. Because the operators E±, F± and H are
G̃-equivariant (see the Lemma 3 item 1), they lift to operators acting on sections of
the corresponding associated vector bundles. The same is true about the projections
pij , (i, j) ∈ Z× Z. We shall use the same symbols as for the mentioned operators
as for their “lifts” to the associated vector bundle structure.

Now, we shall make a use of the Fedosov connection. The Fedosov connection
∇ determines the induced principal G-bundle connection on the principal bundle
(p : P → M,G). This connection lifts to a principal G̃-bundle connection on the
principal bundle (q : Q → M, G̃) and defines the associated covariant derivative
on the symplectic bundle S, which we shall denote by ∇S , and call it the sym-
plectic spinor covariant derivative. See, e.g., Habermann, Habermann [8] for this

classical construction. The symplectic spinor covariant derivative ∇S induces the
exterior covariant derivative d∇S acting on Γ(M, E). For r = 0, . . . , 2l, we have
d∇

S : Γ(M,Q×ρ (
∧r V∗ ⊗ S))→ Γ(M,Q×ρ (

∧r+1 V∗ ⊗ S)). Now, we are able to
define the symplectic twistor operators. For r = 0, . . . , 2l, we set

Tr : Γ(M, Er)→ Γ(M, Er+1) , Tr := pr+1,mr+1d∇
S

|Γ(M,Er)

and call these operators symplectic twistor operators. Informally, one can say that
the operators are going on the lower edges of the triangle at the Figure 1. Let
us notice that F−(∇S − T0) is, up to a non-zero scalar multiple, the so called
symplectic Dirac operator introduced by K. Habermann. See, e.g., Habermann,
Habermann [8].

In the next theorem, we state that the sequences consisting of the symplectic
twistor operators form complexes. These sequences will be called symplectic twistor
sequences or complexes.
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Theorem 4. Let l ≥ 2 and (M2l, ω,∇) be a Fedosov manifold of Ricci type
admitting a metaplectic structure. Then

0 −→ Γ(M, E00) T0−→ Γ(M, E11) T1−→ · · · Tl−1−→ Γ(M, E ll) −→ 0
and

0 −→ Γ(M, E ll) Tl−→ Γ(M, E l+1,l+1) Tl+1−→ · · · T2l−1−→ Γ(M, E2l,2l) −→ 0
are complexes.

Proof. See Krýsl [14]. �

4. Ellipticity of the symplectic twistor complex

After the preceding summarizing parts, we now tend to the proof the ellipticity
of the truncated symplectic twistor complexes. Let us recall that by an elliptic
complex of differential operators we mean a complex of differential operators acting
on the sections of Fréchet bundles such that the associated complex of symbols of
the considered differential operators forms an exact sequence of sheaves. Let us
recall that a sequence (Γ(F•), π•) in the category of complexes of sheaves of sections
of Fréchet bundles F• is called exact if the stalks [Ker(πi)]m, [Im(πi−1)]m satisfy
the equality [Ker(πi)]m = [Im(πi−1)]m for each i ∈ Z and each m ∈ M , where
always when arriving at a preshaef and not at a sheaf, we consider its sheafification
not distinguishing it at the notation level. Let us notice that in the case of symbols,
we may speak about fibers and not necessarily about stalks because the symbols
are bundle and not only sheaf morphisms. See the classical text-book of Wells [21]
for more on ellipticity of complexes of differential operators.

After this introductory paragraph, we start with a simple lemma in which the
symbol of the exterior covariant symplectic spinor derivative associated to a Fedosov
manifold admitting a metaplectic structure is computed.

Lemma 5. Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic structure,
S →M be the corresponding symplectic spinor bundle and d∇S denotes the exterior
covariant derivative. Then for each ξ ∈ Γ(M,T ∗M) and α ⊗ φ ∈ Γ(M, E), the
symbol σξ of d∇S is given by

σξ(α⊗ φ) = ξ ∧ α⊗ φ .

Proof. For f ∈ C∞(M), ξ ∈ Γ(M,T ∗M) and α ⊗ s ∈ Γ(M, E), let us compute
d∇

S (fα⊗ s)− fd∇S (α⊗ s) = df ∧α⊗ s+ fd∇
S (α⊗ s)− fd∇S (α⊗ s) = df ∧α⊗ s.

Using this computation, we get the statement of the lemma. �

From now on, we shall denote the projections pimi onto Ei by pi simply, i =
0, . . . , 2l. (In order not to cause a possible confusion, we will make no use of the
projections from E onto

∧i V∗ ⊗ S or of their lifts to the associated geometric
structures.) Due to the previous lemma and the definition of the symplectic twistor
operators, we get easily that for each i = 0, . . . , 2l and ξ ∈ Γ(M,T ∗M), the symbol
σξi of the symplectic twistor operator Ti is given by the formula

σξi (α⊗ s) := pi+1(ξ ∧ α⊗ s)
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for each α⊗ s ∈ Γ(M, E i).
In order to prove the ellipticity of the appropriate parts of the symplectic twistor

complexes, we need to compare the kernels and the images of the symbols maps
σξi for any ξ ∈ Γ(M,T ∗M) \ {0}. Therefore, we prove the following statement in
which the projections pi are more specified.

Lemma 6. For i = 0, . . . , l − 1, ξ ∈ V∗ and α⊗ s ∈ Ei, we have

(6) pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s+ βF+(α⊗ ξ] · s) + γ(E+ιξ]α⊗ s)

where β = 2
i−l and γ = ı

i−l .
For i = l + 1, . . . , 2l and ψ ∈ Ei−1,mi−1 ⊕Ei−1,mi−1−1 ⊕Ei−1,mi−1−2, we have

(7) pi−1ψ = ψ + 4
l − i

F−F+ψ + 1
l − i

E−E+ψ .

Proof. We prove the first relation only. The second formula can be derived following
the same lines of reasoning used for proving the first one. We split the proof of (6)
into four parts.

1. In this item, we prove that for a fixed i ∈ {0, . . . , l} and any k = 0, . . . , i,
there exists αik ∈ C such that

pi =
i∑

k=0
αik(F+)k(F−)k

with αi0 = 1 for each i = 0, . . . , l. Because for each i = 0, . . . , l, the
projections pi are G̃-equivariant, they can be expressed as (finite) linear
combinations of the elements of the finite dimensional vector space EndG̃(E).
Due to the Lemma 3 item 3 (cf. also Krýsl [12]), we know that the complex
associative algebra EndG̃(E) is generated by F+ and F− and by the
projections p±. It is easy to see that the projections p± can be omitted
from any expression for pi and thus, each projection pi can be expressed

just using F+ and F−. Due to the defining relation H = 2{F+, F−} and
the relation (4) on the values of H on homogeneous elements, one can
order the operators F+ and F− in an expression for pi in the way that
the operators F+ appear on the left-hand and the operators F− on the
right-hand side. In this way, we express pi as a linear combination of the
expressions of type (F+)a(F−)b for some a, b ∈ N0. Since the projection
pi does not change the form degree of a symplectic spinor valued exterior
form and F− and F+ decreases and increases the form degree by one,
respectively, the relation a = b follows. Because the operator F− decreases
the form degree by one, the summands (F+)k(F−)k for k > i actually do
not occur in the expression for the projection pi written above. Thus,

(8) pi =
i∑

k=0
αik(F+)k(F−)k

for some αik ∈ C, k = 0, . . . , i.



322 S. KRÝSL

Now, we shall prove the equation αi0 = 1, i = 0, . . . , l. By evaluating
the left-hand side of (8) on an element φ ∈ Ei we get φ, whereas at the
right-hand side the only summand which remains is the one indexed by
zero. (The other summands vanish because F− is G̃-equivariant, decreases
the form degree by one and there is no summand in

∧i−1 V∗⊗S isomorphic
to Ei

+ or to Ei
−. See the Remark item 3 below the Theorem 1.)

2. Now, suppose ξ ∈ V∗ and α⊗s ∈ Ei, i = 0, . . . , l−1. Due to the Theorem 2,
we know that φ := ξ∧α⊗s ∈ Ei+1,i−1⊕Ei+1,i⊕Ei+1,i+1. Applying pi+1 to
the element φ, only the zeroth, first, and second summand in the expression
pi+1φ =

∑i+1
k=0 α

i+1
k (F+)k(F−)kφ remains. (For k > 2, the kth summand

vanishes in the expression for pi+1φ because F− is G̃-equivariant, decreases
the form degree by one and there is no summand in

∧i−2 V∗⊗S isomorphic
to Ei+1,i−1

± or Ei+1,i
± or Ei+1,i+1

± . See the item 3 of the Remark below the
Theorem 1.)

3. Due to the previous item, we already know that for the element φ = ξ∧α⊗s
chosen above, we get

pi+1φ =
2∑
k=0

αi+1
k (F+)k(F−)kφ .

Using the relations (4) and (2), we may write
pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s+ αi+1

1 F+F−(ξ ∧ α⊗ s)
+ αi+1

2 (F+)2(F−)2(ξ ∧ α⊗ s)

= ξ ∧ α⊗ s+ αi+1
1

1
2F

+ωij [(ιeiξ)α⊗ ej · s− ξ ∧ ιeiα⊗ ej · s]

− αi+1
2 E+ ı

32ω
ijιeiιej (ξ ∧ α⊗ s)

= ξ ∧ α⊗ s− αi+1
1

1
2F

+[α⊗ ξ] · s+ 2ξ ∧ F−(α⊗ s)]

− αi+1
2 E+ ı

32ω
ijιei(ξjα⊗ s− ξ ∧ ιejα⊗ s) .

Because α⊗ s ∈ Ei, we get F−(α⊗ s) = 0 by Lemma 3 item 2. Using the
last written equation, we may write

pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s− αi+1
1
2 F+(α⊗ ξ] · s)

− ıαi+1
2

32 E+(2ξiιeiα⊗ s+ 2αi+1
2
ı

ξ ∧ E−α⊗ s) .

The last summand in this expression vanishes due to the Lemma 3 item 2 be-
cause first E− = −4F−F− (Eqn. (2)) and second α⊗ s ∈ Ei. Summing-up,
we have

pi+1φ = ξ ∧ α⊗ s− αi+1
1

1
2F

+(α⊗ ξ] · s)− αi+1
2

ı

16E
+ιξ]α⊗ s ,

which is a formula of the form written in the statement of the lemma.
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4. In this item, we shall determine the numbers β, γ ∈ C. Using the fact
that pi+1 is an idempotent ((pi+1)2 = pi+1), we get αi+1

1 = 4/(l − i) and
αi+1

2 = 16/(l − i) after a tedious but straightforward calculation.
Thus, comparing the last written formula of the preceding item and the

Eqn. (6), we get β = 2/(i− l) and γ = ı/(i− l).
�

Remark. For i = l, . . . , 2l, ξ ∈ V∗ and α ⊗ s ∈ Ei, the formula for pi+1 reads
simply

pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s
because of the Theorem 2 and the items 1 and 2 of the Remark below the Theorem 1.
(Notice that one may also use the relation (7).)

Now, we are prepared to prove the ellipticity of the truncated symplectic twistor
complexes.

Theorem 7. Let (M2l, ω,∇) be a Fedosov manifold of Ricci type admitting a
metaplectic structure, l ≥ 2. Then the truncated symplectic twistor complexes

0 −→ Γ(M, E0) T0−→ Γ(M, E1) T1−→ · · · Tl−2−→ Γ(M, E l−1)

and

Γ(M, E l) Tl−→ Γ(M, E l+1) Tl+1−→ · · · T2l−1−→ Γ(M, E2l) −→ 0

are elliptic.

Proof. We should prove the equations Ker(σξi )m = Im(πξi−1)m for the appropriate
indices i and for each point m ∈M . Here the constituents of the previous equation
are fibers of the corresponding shaeves.

1. First, we prove that the sequences mentioned in the formulation of the theorem
are complexes. For i = 0, . . . , l−2, l, . . . , 2l−1, ψ ∈ Γ(M, E i) and a differential
1-form ξ ∈ Γ(M,T ∗M), we may write 0 = pi+2(0) = pi+2((ξ ∧ ξ) ∧ ψ) =
pi+2(ξ∧ Id(ξ∧ψ)) = pi+2(ξ∧

∑mi+1
j=0 pi+1,j(ξ∧ψ)). Due to the Theorem 2, we

know that the last written expression equals pi+2(ξ ∧ pi+1(ξ ∧ ψ)) = σξi+1σ
ξ
iψ

and thus σξi+1σ
ξ
i = 0.

2. Second, we prove the relation Ker(σξi )m ⊆ Im(σξi−1)m for each 0 6= ξ ∈ T ∗mM
and i = 0, . . . , l−2. Here σξ−1 = 0 is to be understood. Suppose a homogeneous
element α⊗ s ∈ E im is given such that σξi (α⊗ s) = 0. (In the next item, we
will treat the general non-homogeneous case.) Due to the paragraph below
the Lemma 5, we know that 0 = σξi (α⊗ s) = pi+1(ξ ∧ α⊗ s). We shall find
an element ψ ∈ E i−1

m such that pi(ξ ∧ ψ) = α⊗ s.
Using formula (6) for the projection (Lemma 6), we may rewrite the

equation pi+1(ξ ∧ α⊗ s) = 0 into

(9) ξ ∧ α⊗ s+ βF+(α⊗ ξ] · s) + γE+ιξ]α⊗ s = 0 .
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Applying the operator E− (formula (2)) on the both sides of the previous
equation and using the first commutation relation in the row (3) from Lemma 3,
we get
ı

2ω
ijιeiιej (ξ ∧ α)⊗ s+ βE−F+(α⊗ ξ] · s) + γ(E+E− − 2H)ιξ]α⊗ s = 0 .

Using the graded Leibniz property of ιξ] , the relation (4) for the values of
H on form-homogeneous elements and the second relation in the row (3) from
Lemma 3, we obtain
ı

2(−2ιξ] − 2ıξ ∧ E−)(α⊗ s) + βF+E−(α⊗ ξ] · s)− βF−(α⊗ ξ] · s)

+ γE+E−ιξ]α⊗ s+ γ(l − i+ 1)ιξ]α⊗ s = 0 .

The operator E− commutes with the operator of the symplectic Clifford
multiplication (by the vector field ξ]) and also with the contraction ιξ] because
E− = ı

2ω
ijιeiιej (formula (2)). Using these two facts, we get

ı

2(−2ιξ] − 2ıξ ∧ E−)(α⊗ s) + βF+ξ] · E−(α⊗ s)− βF−(α⊗ ξ].s)

+ γE+ιξ]E
−α⊗ s+ γ(l − i+ 1)ιξ]α⊗ s = 0 .

Because F−(α⊗s) = 0 (Lemma 3 item 2), we have E−α⊗s = 4F−F−(α⊗
s) = 0. Thus, we obtain the identity

−ıιξ]α⊗ s− βF−(α⊗ ξ] · s) + γ(l − i+ 1)ιξ]α⊗ s = 0 .
Substituting the second relation in the row (5) into the previous equation

and using the fact F−(α⊗ s) = 0 again, we get

−ıιξ]α⊗ s− βξ] · F−(α⊗ s)− β ı2 ιξ]α⊗ s

+ γ(l − i+ 1)ιξ]α⊗ s = 0 .
Using the prescription for the numbers β and γ (Lemma 6) and the already
twice used relation F−(α⊗ s) = 0, we get (−ı+ γ(l − i+ 1)− β ı2 )ιξ]α⊗ s =
−2ıιξ]α⊗ s = 0 from which the equation

(10) ιξ]α⊗ s = 0
follows.

Substituting this relation into the prescription for the projection pi (Eqn.
(9)), we get for i = 0, . . . , l − 2 the equation

(11) 0 = pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s+ βF+(α⊗ ξ] · s) .
Applying the contraction operator ιξ] to the previous equation and using

the first formula in the row (5) from Lemma 3, we obtain

0 = −ξ ∧ ιξ]α⊗ s− βF+ιξ](α⊗ ξ] · s) + β
ı

2α⊗ ξ
].(ξ] · s) .

Using the fact that the contraction and symplectic Clifford multiplication
commute, we have

0 = −ξ ∧ ιξ]α⊗ s− βF+ξ] · (ιξ]α⊗ s) + β
ı

2α⊗ ξ
] · (ξ] · s) .
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Substituting the Eqn. (10) into the previous equation, we obtain

α⊗ ξ] · (ξ] · s) = 0 .
Substituting the definition of F+ into the equation (11) multiplying it by

ξ] and using the equation ιξ]α⊗ s = 0 (Eqn. (10)) again, we get

0 = ξ ∧ α⊗ ξ] · s+ β
ı

2ε
i ∧ α⊗ ξ] · ei · ξ] · s ,

0 = ξ ∧ α⊗ ξ] · s+ β
ı

2ε
i ∧ α⊗ (ei · ξ] · ξ] · −ıω0(ξ], ei)ξ]·)s .

Substituting the identity α⊗ ξ] · ξ] · s = 0 into the previous equation, we
obtain

0 = (1 + 1
2β)ξ ∧ α⊗ ξ] · s .

If i = 0, . . . , l − 2, the coefficient 1 + β/2 6= 0, and thus by dividing, we get
ξ ∧α⊗ ξ] · s = 0. Because the symplectic Clifford multiplication by a non-zero
vector is injective (see the subsection 2.2), we have

(12) 0 = ξ ∧ α⊗ s .
3. In this item, we will still suppose i = 0, . . . , l − 2. Let us consider a general

element φ ∈ Ker(σξi )m ⊆ E im and denote the basis of
∧i

T ∗mM by (αik)nik=1,
ni ∈ N. Due to the finite dimensionality of

∧i
T ∗mM , there exist complex

numbers ajk, j ∈ N, k = 1, . . . , ni, such that φ =
∑ni
k=1

∑∞
j=1 ajkα

ik ⊗ hj
where (hj)j∈N is the Schauder basis of Sm corresponding to the Schauder basis
of S(L) ' Sm. Because the operators F±, H, E±, ιξ and ξ∧ are continuous
on Em, we get 0 =

∑ni
k=1

∑∞
j=1 ajkξ∧αik⊗hj precisely in the same way as we

obtained the formula (12) in the homogeneous situation (item 2 of this proof).
Using the definition of the Schauder basis again, we have for each j ∈ N the
equation

∑ni
k=1 ajkξ∧αik = 0. Using the Cartan lemma on exterior differential

systems, we get the existence of a family (βj)j∈N of (i− 1) forms such that
ξ ∧ βj =

∑ni
k=1 ajkα

ik. It is possible to see (e.g. by taking the standard
Hodge-type metric on the space of forms) that one can choose the family
(βj)j∈N in such a way that ψ :=

∑∞
j=1 βj ⊗ hj converges. Thus, we may write

σξi−1(
∑∞
j=1 βj ⊗ hj) = pi(

∑∞
j=1 ξ ∧ βj ⊗ hj) = pi(

∑∞
j=1

∑ni
k=1 ajkα

ik ⊗ hj) =
pi(φ) = φ. Summing-up, we have that ψ =

∑∞
j=1 βj ⊗ hj is the desired

preimage. Thus, φ ∈ Im(σξi−1)m.
4. Now, we prove that Ker(σξi )m ⊆ Im(σξi−1)m for i = l + 1, . . . , 2l, 0 6= ξ ∈

Γ(M,T ∗M). If φ = α⊗ s ∈ Ker(σξi )m, then 0 = pi+1(ξ ∧ φ) = ξ ∧ α⊗ s. Due
to the Cartan lemma, we know that there is a form β ∈

∧i−1
T ∗mM such that

ξ∧β⊗ s = α⊗ s. Define ψ := pi−1(β⊗ s). Using the formula (7), the equation
ξ ∧ β = α and the assumption F+(α⊗ s) = 0 (implied by α⊗ s ∈ Eimi), one
can prove that ξ ∧ ψ = α⊗ s in an analogous way as we proceeded the item
2 of this proof. The dehomogenization goes in the steps similar to that ones
written in the preceding item.

�
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In the future, we would like to interpret the appropriate (reduced) cohomology
groups of the truncated symplectic twistor complexes. Eventually, one can search
for an application of the symplectic twistor complexes in representation theory.
One can also try to prove that the full (i.e., not truncated) symplectic twistor
complexes are not elliptic by finding an example of a suitable Ricci type Fedosov
manifold admitting a metaplectic structure.
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Symplectic Killing spinors

Svatopluk Krýsl

Abstract. Let (M,ω) be a symplectic manifold admitting a metaplectic structure
(a symplectic analogue of the Riemannian spin structure) and a torsion-free
symplectic connection ∇. Symplectic Killing spinor fields for this structure are
sections of the symplectic spinor bundle satisfying a certain first order partial
differential equation and they are the main object of this paper. We derive a
necessary condition which has to be satisfied by a symplectic Killing spinor field.
Using this condition one may easily compute the symplectic Killing spinor fields
for the standard symplectic vector spaces and the round sphere S2 equipped
with the volume form of the round metric.

Keywords: Fedosov manifolds, symplectic spinors, symplectic Killing spinors,
symplectic Dirac operators, Segal-Shale-Weil representation

Classification: 58J60, 53C07

1. Introduction

In this article we shall study the so called symplectic Killing spinor fields on
Fedosov manifolds admitting a metaplectic structure. A Fedosov manifold is a
structure consisting of a symplectic manifold (M2l, ω) and the so called Fedosov
connection on (M,ω). A Fedosov connection ∇ is an affine connection on (M,ω)
such that it is symplectic, i.e., ∇ω = 0, and torsion-free. Let us notice that in
contrary to the Riemannian geometry, a Fedosov connection is not unique. Thus,
it seems natural to add the Fedosov connection into the studied structure and
obtain the notion of a Fedosov manifold. See, e.g., Tondeur [13] for symplec-
tic connections for presymplectic structures and Gelfand, Retakh, Shubin [3] for
Fedosov connections.

It is known that if l > 1, the curvature tensor of a Fedosov connection decom-
poses into two invariant parts, namely into the so called symplectic Ricci curvature
and symplectic Weyl curvature tensor fields. If l = 1, only the symplectic Ricci
curvature occurs. See Vaisman [14] for details.

In order to define a symplectic Killing spinor field, we shall briefly describe the
so called metaplectic structures with help of which these fields are defined. Any
symplectic group Sp(2l,R) admits a non-trivial, i.e., connected, two-fold covering,

The author of this article was supported by the grant GAČR 306-33/80397 of the Grant
Agency of the Czech Republic. The work is a part of the research project MSM0021620839
financed by MŠMT ČR.



20 S. Krýsl

the so called metaplectic group, denoted by Mp(2l,R) in this paper. A metaplectic
structure over a symplectic manifold is a symplectic analogue of the Riemannian
spin structure. In particular, one of its parts is a principal Mp(2l,R)-bundle
which covers twice the bundle of symplectic frame of (M2l, ω). Let us denote this
principal Mp(2l,R)-bundle by q : Q →M .

Now, let us say a few words about the symplectic spinor fields. These fields
are sections of the so called symplectic spinor bundle S →M . This vector bundle
is the bundle associated to the principal Mp(2l,R)-bundle q : Q → M via the so
called Segal-Shale-Weil representation. The Segal-Shale-Weil representation is a
distinguished representation of the metaplectic group and plays a similar role in
the quantization of boson particles as the spinor representations of spin groups
play in the quantization of fermions. See, e.g., Shale [12]. The Segal-Shale-Weil
representation is unitary and does not descend to a representation of the sym-
plectic group. The vector space of the underlying Harish-Chandra (g,K)-module
of the Segal-Shale-Weil representation is isomorphic to S•(Rl), the symmetric
power of a Lagrangian subspace Rl of the symplectic vector space R2l. Thus, the
situation is parallel to the complex orthogonal case, where the spinor representa-
tion can be realized on the exterior power of a maximal isotropic subspace. The
Segal-Shale-Weil representation and some of its analytic versions are sometimes
called oscillatory representation, metaplectic representation or symplectic spinor
representation. For a detailed explanation of the last name, see, e.g., Kostant [8].

The symplectic Killing spinor field is a non-zero section of the symplectic spinor
bundle S →M satisfying certain linear first order partial differential equation for-
mulated by the connection ∇S : Γ(M,S)×Γ(M,TM) → Γ(M,S), the associated
connection to the Fedosov connection ∇. This partial differential equation is a
symplectic analogue of the classical symplectic Killing spinor equation from at
least two aspects. One of them is rather formal. Namely, the defining equation
for a symplectic Killing spinor is of the “same shape” as that one for a Killing
spinor field on a Riemannian spin manifold. The second similarity can be ex-
pressed by comparing this equation with the so called symplectic Dirac equation
and the symplectic twistor equation and will be discussed below in this paper. Let
us mention that any symplectic Killing spinor field determines a unique complex
number, the so called symplectic Killing spinor number. Let us notice that the
symplectic Killing spinor fields were considered already in a connection with the
existence of a linear embedding of the spectrum of the so called symplectic Dirac
operator into the spectrum of the so called symplectic Rarita-Schwinger operator.
The symplectic Killing spinor fields represent an obstruction for the mentioned
embedding. See Krýsl [10] for this aspect.

In many particular cases, the equation for symplectic Killing spinor fields seems
to be rather complicated. On the other hand, in many cases it is known that its
solutions are rare. Therefore it is reasonable to look for a necessary condition
satisfied by a symplectic Killing spinor field which is simpler than the defining
equation itself. Let us notice that similar necessary conditions are known and
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parallel methods were used in Riemannian or Lorentzian spin geometry. See, e.g.,
Friedrich [2].

In this paper, we shall prove that any symplectic Killing spinor field necessarily
satisfies certain zeroth order differential equation. More precisely, we prove that
any symplectic Killing spinor is necessarily a section of the kernel of a symplectic
spinor bundle morphism. We derive this equation by prolongating the symplectic
Killing spinor equation. We make such a prolongation that enables us to compare
the result with an appropriate part of the curvature tensor of the associated
connection ∇S acting on symplectic spinors. An explicit formula for this part of
the curvature action was already derived in Krýsl [11]. Especially, it is known
that the symplectic Weyl curvature of ∇ does not show up in this part and thus,
the mentioned morphism depends on the symplectic Ricci part of the curvature
of the Fedosov connection ∇ only. This will make us able to prove that the
only symplectic Killing number of a Fedosov manifold of Weyl type is zero. This
will in turn imply that any symplectic Killing spinor on the standard symplectic
vector space of an arbitrary finite dimension and equipped with the standard flat
connection is constant. This result can be obtained easily when one knows the
prolongated equation, whereas computing the symplectic Killing spinors without
this knowledge is rather complicated. This fact will be illustrated when we will
compute the symplectic Killing spinors on the standard symplectic 2-plane using
just the defining equation for symplectic Killing spinor field.

The cases when the prolongated equation does not help so easily as in the case
of the Weyl type Fedosov manifolds are the Ricci type ones. Nevertheless, we
prove that there are no symplectic Killing spinors on the 2-sphere, equipped with
the volume form of the round metric as the symplectic form and the Riemann-
ian connection as the Fedosov connection. Let us remark that in this case, the
prolongated equation has a shape of a stationary Schrödinger equation. More pre-
cisely, it has the shape of the equation for the eigenvalues of certain oscillator-like
quantum Hamiltonian determined completely by the symplectic Ricci curvature
tensor of the Fedosov connection.

Let us notice that there are some applications of symplectic spinors in physics
besides those in the mentioned article of Shale [12]. For an application in string
theory physics, see, e.g., Green, Hull [4].

In the second section, some necessary notions from symplectic linear algebra
and representation theory of reductive Lie groups are explained and the Segal-
Shale-Weil representation and the symplectic Clifford multiplication are intro-
duced. In the third section, the Fedosov connections are introduced and some
properties of their curvature tensors acting on symplectic spinor fields are sum-
marized. In the fourth section, the symplectic Killing spinors are defined and
symplectic Killing spinors on the standard symplectic 2-plane are computed. In
this section, a connection of the symplectic Killing spinor fields to the eigen-
functions of symplectic Dirac and symplectic twistor operators is formulated and
proved. Further, the mentioned prolongation of the symplectic Killing spinor
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equation is derived and the symplectic Killing spinor fields on the standard sym-
plectic vector spaces are computed. At the end, the case of the round sphere S2

is treated.

2. Symplectic spinors and symplectic spinor valued forms

Let us start recalling some notions from symplectic linear algebra. Let us
mention that we shall often use the Einstein summation convention without men-
tioning it explicitly. Let (V, ω0) be a symplectic vector space of dimension 2l,
i.e., ω0 is a non-degenerate anti-symmetric bilinear form on the vector space V
of dimension 2l. Let L and L′ be two Lagrangian subspaces1 of (V, ω0) such that
L ⊕ L′ = V. Let {ei}2li=1 be an adapted symplectic basis of (V = L ⊕ L′, ω0),
i.e., {ei}2li=1 is a symplectic basis and {ei}li=1 ⊆ L and {ei}2li=l+1 ⊆ L′. Because
the definition of a symplectic basis is not unique, we shall fix one which we shall
use in this text. A basis {ei}2li=1 of (V, ω0) is called symplectic, if ω0(ei, ej) = 1
iff 1 ≤ i ≤ l and j = l + i; ω0(ei, ej) = −1 iff l + 1 ≤ i ≤ 2l and j = i − l
and ω0(ei, ej) = 0 in the remaining cases. Whenever a symplectic basis will be
chosen, we will denote the basis of V∗ dual to {ei}2li=1 by {ǫi}2li=1. Further for
i, j = 1, . . . , 2l, we set ωij := ω0(ei, ej) and similarly for other type of tensors.

For i, j = 1, . . . , 2l, we define ωij by the equation
∑2l

k=1 ωikω
jk = δij.

As in the orthogonal case, we would like to rise and lower indices. Because
the symplectic form ω0 is antisymmetric, we should be more careful in this case.
For coordinates Kab...c...d

rs...t...u of a tensor K over V, we denote the expression

ωicKab...c...d
rs...t by Kab...

i
...d

rs...t
and Kab...c

rs...t...uωti by Kab...c
rs...

i
...u and sim-

ilarly for other types of tensors and also in a geometric setting when we will be
considering tensor fields over a symplectic manifold (M,ω).

Let us denote the symplectic group Sp(V, ω0) of (V, ω0) by G. Because the
maximal compact subgroup of G is isomorphic to the unitary group U(l) which
is of homotopy type Z, we have π1(G) ≃ Z. From the theory of covering spaces,
we know that there exists up to an isomorphism a unique connected double cover
of G. This double cover is the so called metaplectic group Mp(V, ω0) and will be

denoted by G̃ in this text. We shall denote the covering homomorphism by λ,
i.e., λ : G̃ → G is a fixed member of the isomorphism class of all connected 2:1
coverings.

Now, let us recall some notions from representation theory of reductive Lie
groups which we shall need in this paper. Let us mention that these notions are
rather of technical character for the purpose of our article. For a reductive Lie
group G in the sense of Vogan [15], let R(G) be the category the object of which
are complete, locally convex, Hausdorff vector spaces with a continuous action of
G which is admissible and of finite length; the morphisms are continuous linear
G-equivariant maps between the objects. Let us notice that, e.g., finite covers
of the classical groups are reductive. It is known that any irreducible unitary
representation of a reductive group is in R(G). Let g be the Lie algebra of G

1i.e., maximal isotropic with respect to ω0, in particular dimL = dimL′ = l
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and K be a maximal compact subgroup of G. It is well known that there exists
the so called L2-globalization functor, denoted by L2 here, from the category
of admissible Harish-Chandra modules to the category R(G). See Vogan [15]
for details. Let us notice that this functor behaves compatibly with respect to
Hilbert tensor products. See, e.g., Vogan [15] again. For an object E in R(G),
let us denote its underlying Harish-Chandra (g,K)-module by E and when we
will be considering only its gC-module structure, we shall denote it by E. If gC

happens to be a simple complex Lie algebra of rank l, let us denote its Cartan
subalgebra by hC. The set Φ of roots for (gC, hC) is then uniquely determined.
Further let us choose a set Φ+ ⊆ Φ of positive roots and denote the corresponding
set of fundamental weights by {̟i}li=1. For λ ∈ hC, let us denote the irreducible
highest weight module with the highest weight λ by L(λ).

Let us denote by U(W) the group of unitary operators on a Hilbert space
W and let L : Mp(V, ω0) → U(L2(L)) be the Segal-Shale-Weil representation of
the metaplectic group. It is an infinite dimensional unitary representation of the
metaplectic group on the complex valued square Lebesgue integrable functions
defined on the Lagrangian subspace L. This representation does not descend
to a representation of the symplectic group Sp(V, ω0). See, e.g., Weil [16] and
Kashiwara, Vergne [7]. For convenience, let us set S := L2(L) and call it the
symplectic spinor module and its elements symplectic spinors. It is well known
that as a G̃-module, S decomposes into the direct sum S = S+ ⊕ S− of two
irreducible submodules. The submodule S+ (S−) consists of even (odd) functions
in L2(L). Further, let us notice that in Krýsl [9], a slightly different analytic
version (based on the so called minimal globalizations) of this representation was
used.

As in the orthogonal case, we may multiply spinors by vectors. The multipli-
cation . : V × S → S will be called symplectic Clifford multiplication and it is
defined as follows. For f ∈ S and i = 1, . . . , l, we set

(ei.f)(x) := ıxif(x),

(el+i.f)(x) :=
∂f

∂xi
(x), x ∈ L

and extend it linearly to get the symplectic Clifford multiplication. The symplectic
Clifford multiplication (by a fixed vector) has to be understood as an unbounded
operator on L2(L). See Habermann, Habermann [6] for details. Let us also
notice that the symplectic Clifford multiplication corresponds to the so called
Heisenberg canonical quantization known from quantum mechanics. (For brevity,
we shall write v.w.s, instead of v.(w.s), v, w ∈ V and s ∈ S.)

It is easy to check that the symplectic Clifford multiplication satisfies the re-
lation described in the following

Lemma 1. For v, w ∈ V and s ∈ S, we have

v.(w.s) − w.(v.s) = −ıω0(v, w)s.
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Proof: See Habermann, Habermann [6]. �
Let us consider the representation

ρ : G̃→ Aut(

•∧
V∗ ⊗ S)

of the metaplectic group G̃ on
∧• V∗ ⊗ S given by

ρ(g)(α⊗ s) := λ∗∧r(g)α⊗ L(g)s,

where r = 0, . . . , 2l, α ∈ ∧r V∗, s ∈ S and λ∗∧r denotes the rth wedge power of
the representation λ∗ dual to λ, and extended linearly. For definiteness, let us
consider the vector space

∧• V∗ ⊗ S equipped with the topology of the Hilbert
tensor product. Because the L2-globalization functor behaves compatibly with
respect to the Hilbert tensor products, one can easily see that the representation
ρ belongs to the class R(G̃).

In the next theorem, the space o symplectic valued exterior two-forms is de-
composed into irreducible summands.

Theorem 2. For 1
2 dim(V) = l > 2, the following isomorphism

2∧
V∗ ⊗ S± ≃ E20

± ⊕E21
± ⊕ E22

±

holds. For j2 = 0, 1, 2, the E2j2 are uniquely determined by the conditions that
first, they are submodules of the corresponding tensor products and second,

E20
− ≃ S− ≃ L(̟l−1 −

3

2
̟l), E20

+ ≃ S+ ≃ L(−1

2
̟l),

E21
− ≃ L(̟1 −

1

2
̟l), E21

+ ≃ L(̟1 +̟l−1 −
3

2
̟l),

E22
+ ≃ L(̟2 −

1

2
̟l) and E22

− ≃ L(̟2 +̟l−1 −
3

2
̟l).

Proof: This theorem is proved in Krýsl [10] or Krýsl [9] for the so called minimal
globalizations. Because the L2-globalization behaves compatibly with respect to
the considered Hilbert tensor product topology, the statement remains true. �

Remark. Let us notice that for l = 2, the number of irreducible summands in
symplectic spinor valued two-forms is the same as that one for l > 2. In this case
(l = 2), one only has to change the prescription for the highest weights described
in the preceding theorem. For l = 1, the number of the irreducible summands is
different from that one for l ≥ 2. Nevertheless, in this case the decomposition is
also multiplicity-free. See Krýsl [9] for details.

In order to make some proofs in the section on symplectic Killing spinor fields
simpler and more clear, let us introduce the operators
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F+ :

•∧
V∗ ⊗ S →

•+1∧
V∗ ⊗ S, F+(α⊗ s) :=

2l∑

i=1

ǫi ∧ α⊗ ei.s,

F− :

•∧
V∗ ⊗ S →

•−1∧
V∗ ⊗ S, F−(α⊗ s) := −

2l∑

i,j=1

ωijιeiα⊗ ej.s,

H :
•∧
V∗ ⊗ S →

•∧
V∗ ⊗ S, H := {F+, F−}.

Remark. (1) One easily finds out that the operators are independent of the
choice of an adapted symplectic basis {ei}2li=1.

(2) Let us remark that the operators F+, F− and H defined here differ from
the operators F+, F−, H defined in Krýsl [9]. Though, by a constant real
multiple only.

(3) The operators F+ and F− are used to prove the Howe correspondence
for Mp(V, ω0) acting on

∧• V∗⊗S via the representation ρ. More or less,
the ortho-symplectic super Lie algebra osp(1|2) plays the role of a (super
Lie) algebra, a representation of which is the appropriate commutant. See
Krýsl [9] for details.

In the next lemma the G̃-equivariance of the operators F+, F− and H is stated,
some properties of F± are mentioned and the value of H on degree-homogeneous
elements is computed. We shall use this lemma when we will be treating the
symplectic Killing spinor fields in the fourth section.

Lemma 3. Let (V = L ⊕ L′, ω0) be a 2l dimensional symplectic vector space.
Then

(1) the operators F+, F+ and H are G̃-equivariant,
(2) (a) F−

|E11 = 0,

(b) F+
|E00 is an isomorphism onto E10,

(c) (F+)2|S = − ı
2ω ⊗ Id|S and it is an isomorphism onto E20.

(3) For r = 0, . . . , 2l, we have

H|∧r V∗⊗S = ı(r − l) Id|∧r V∗⊗S .

Proof: See Krýsl [9]. �
Let us remark that the items 1 and 3 of the preceding lemma follow by a

direct computation, and the second item follows from the first item, decomposition
theorem (Theorem 2), a version of the Schur lemma and a direct computation.
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3. Curvature of Fedosov manifolds and its actions on symplectic
spinors

After we have finished the “algebraic part” of this paper, let us recall some
basic facts on Fedosov manifolds, their curvature tensors, metaplectic structures
and the action of the curvature tensor on symplectic spinor fields.

Let us start recalling some notions and results related to the so called Fedosov
manifolds. Let (M2l, ω) be a symplectic manifold of dimension 2l. Any torsion-
free affine connection ∇ on M preserving ω, i.e., ∇ω = 0, is called Fedosov
connection. The triple (M,ω,∇), where ∇ is a Fedosov connection, will be called
Fedosov manifold . As we have already mentioned in the Introduction, a Fedosov
connection for a given symplectic manifold (M,ω) is not unique. Let us remark
that Fedosov manifolds are used for a construction of geometric quantization of
symplectic manifolds due to Fedosov. See, e.g., Fedosov [1].

To fix our notation, let us recall the classical definition of the curvature tensor
R∇ of the connection ∇, we shall be using here. We set

R∇(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for X,Y, Z ∈ X(M).
Let us choose a local adapted symplectic frame {ei}2li=1 on a fixed open subset

U ⊆M . By a local adapted symplectic frame {ei}2li=1 over U , we mean such a local
frame that for each m ∈ U the basis {(ei)m}2li=1 is an adapted symplectic basis
of (TmM,ωm). Whenever a symplectic frame is chosen, we denote its dual frame
by {ǫi}2li=1. Although some of the formulas below hold only locally, containing a
local adapted symplectic frame, we will not mention this restriction explicitly.

From the symplectic curvature tensor field R∇, we can build the symplectic
Ricci curvature tensor field σ∇ defined by the classical formula

σ∇(X,Y ) := Tr(V 7→ R∇(V,X)Y )

for each X,Y ∈ X(M) (the variable V denotes a vector field on M). For the
chosen frame and i, j = 1, . . . , 2l, we define

σij := σ∇(ei, ej).

Let us define the extended Ricci tensor field by the equation

σ̃(X,Y, Z, U) := σ̃ijknX
iY jZkUn, X, Y, Z, U ∈ X(M),

where for i, j, k, n = 1, . . . , 2l,

2(l + 1)σ̃ijkn := ωinσjk − ωikσjn + ωjnσik − ωjkσin + 2σijωkn.

A Fedosov manifold (M,ω,∇) is called of Weyl type, if σ = 0. Let us notice,
that it is called of Ricci type, if R = σ̃. In Vaisman [14], one can find more
information on the Sp(2l,R)-invariant decomposition of the curvature tensors of
Fedosov connections.
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Now, let us describe the geometric structure with help of which the symplectic
Killing spinor fields are defined. This structure, called metaplectic, is a symplec-
tic analogue of the notion of a spin structure in the Riemannian geometry. For
a symplectic manifold (M2l, ω) of dimension 2l, let us denote the bundle of sym-
plectic frame in TM by P and the foot-point projection of P onto M by p. Thus
(p : P →M,G), where G ≃ Sp(2l,R), is a principal G-bundle overM . As in Sub-

section 2, let λ : G̃→ G be a member of the isomorphism class of the non-trivial
two-fold coverings of the symplectic group G. In particular, G̃ ≃ Mp(2l,R). Fur-
ther, let us consider a principal G̃-bundle (q : Q → M, G̃) over the symplectic
manifold (M,ω). We call a pair (Q,Λ) metaplectic structure if Λ : Q → P is
a surjective bundle homomorphism over the identity on M and if the following
diagram,

Q× G̃

Λ×λ

��

// Q

Λ

��

q

��@
@@

@@
@@

@

M

P ×G // P
p

>>}}}}}}}}

with the horizontal arrows being respective actions of the displayed groups, com-
mutes. See, e.g., Habermann, Habermann [6] and Kostant [8] for details on
metaplectic structures. Let us only remark that typical examples of symplectic
manifolds admitting a metaplectic structure are cotangent bundles of orientable
manifolds (phase spaces), Calabi-Yau manifolds and complex projective spaces

CP2k+1, k ∈ N0.
Let us denote the vector bundle associated to the introduced principal G̃-

bundle (q : Q → M, G̃) via the representation ρ acting on S by S, and call this
associated vector bundle symplectic spinor bundle. Thus, we have S = Q ×ρ S.
The sections φ ∈ Γ(M,S) will be called symplectic spinor fields. Further for
j2 = 0, 1, 2, we define the associated vector bundles E2j2 by the prescription
E2j2 := Q ×ρ E2j2 . Further, we define Er := Γ(M,Q ×ρ

∧r V∗ ⊗ S), i.e., the
space o symplectic spinor valued differential r-forms, r = 0, . . . , 2l. Because the
symplectic Clifford multiplication is G̃-equivariant (see Habermann, Habermann
[6]), we can lift it to the associated vector bundle structure, i.e., to let it act
on the elements from Γ(M,S). For j2 = 0, 1, 2, let us denote the vector bundle
projections Γ(M, E2) → Γ(M, E2j2) by p2j2 , i.e., p2j2 : Γ(M, E2) → Γ(M, E2j2) for
all appropriate j2. This definition makes sense because due to the decomposition
result (Theorem 2) and Remark below Theorem 2, the G̃-module of symplectic
spinor valued exterior 2-forms is multiplicity-free.

Let Z be the principal bundle connection on the principal G-bundle (p : P →
M,G) associated to the chosen Fedosov connection ∇ and Z̃ be a lift of Z to the
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principal G̃-bundle (q : Q →M, G̃). Let us denote by ∇S the covariant derivative

associated to Z̃. Thus, in particular, ∇S acts on the symplectic spinor fields.
Any section φ of the associated vector bundle S = Q×ρ S can be equivalently

considered as a G̃-equivariant S-valued function on Q. Let us denote this function

by φ̂, i.e., φ̂ : Q → S. For a local adapted symplectic frame s : U → P , let us

denote by s : U → Q one of the lifts of s to Q. Finally, let us set φs := φ̂ ◦ s.
Further for q ∈ Q and ψ ∈ S, let us denote by [q, ψ] the equivalence class in S
containing (q, ψ). (As it is well known, the total space S of the symplectic spinor
bundle is the product Q× S modulo an equivalence relation.)

Lemma 4. Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic struc-
ture. Then for each X ∈ X(M), φ ∈ Γ(M,S) and a local adapted symplectic
frame s : U → P , we have

∇S
Xφ = [s,X(φs)]−

ı

2

l∑

i=1

[ei+l.(∇Xei).− ei.(∇Xei+l).]φ and

∇S
X(Y.φ) = (∇S

XY ).φ +X.∇S
Y φ.

Proof: See Habermann, Habermann [6]. �
The curvature tensor on symplectic spinor fields is defined by the formula

RS(X,Y )φ = ∇S
X∇S

Y φ−∇S
Y∇S

Xφ−∇S
[X,Y ]φ,

where φ ∈ Γ(M,S) and X,Y ∈ X(M).
In the next lemma, a part of the action of RS on the space of symplectic spinors

is described using just the symplectic Ricci curvature tensor field σ.

Lemma 5. Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic struc-
ture. Then for a symplectic spinor field φ ∈ Γ(M,S), we have

p20RSφ =
ı

2l
σijωklǫ

k ∧ ǫl ⊗ ei.ej .φ.

Proof: See Krýsl [11]. �

4. Symplectic Killing spinor fields

In this section, we shall focus our attention to the symplectic Killing spinor
fields. More specifically, we compute the symplectic Killing spinor fields on some
Fedosov manifolds admitting a metaplectic structure and derive a necessary con-
dition satisfied by a symplectic Killing spinor field.

Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic structure. We
call a non-zero section φ ∈ Γ(M,S) symplectic Killing spinor field if

∇S
Xφ = λX.φ
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for a complex number λ ∈ C and each vector field X ∈ X(M). The complex
number λ will sometimes be called symplectic Killing spinor number. (Allowing
the zero section to be a symplectic Killing spinor would make the notion of a
symplectic Killing spinor number meaningless.)

Let us note that one can rewrite equivalently the preceding defining equation
for a symplectic Killing spinor into

∇Sφ = λF+φ.

Indeed, if this equation is satisfied, we get by inserting the local vector field
X = X iei the equation ∇S

Xφ = ιX(λǫi ⊗ ei.φ) = λǫi(X)ei.φ = λX iei.φ = λX.φ,
i.e., the defining equation. Conversely, one can prove that ∇S

Xφ = λX.φ is equiv-
alent to ιX∇Sφ = ιX(λF+φ). Because this equation holds for each vector field
X , we get ∇Sφ = λF+φ. We shall call both the defining equation and the equiv-
alent equation for a symplectic Killing spinor field the symplectic Killing spinor
equation.

In the next example, we compute the symplectic Killing spinors on the standard
symplectic 2-plane.

Example 1. Let us solve the symplectic Killing spinor equation for the stan-
dard symplectic vector space (R2[s, t], ω0) equipped with the standard flat Eu-
clidean connection ∇. In this case, (R2, ω0,∇) is also a Fedosov manifold. The
bundle of symplectic frame in TR2 defines a principal Sp(2,R)-bundle. Because
H1(R2,R) = 0, we know that there exists, up to a bundle isomorphism, only
one metaplectic bundle over R2, namely the trivial principal Mp(2,R)-bundle
R2 ×Mp(2,R) → R2 and thus also a unique metaplectic structure Λ : Mp(2,R)×
R2 → Sp(2,R) × R2 given by Λ(g, (s, t)) := (λ(g), (s, t)) for g ∈ Mp(2,R) and
(s, t) ∈ R2. Let S → R2 be the symplectic spinor bundle. In this case S → R2

is isomorphic to the trivial vector bundle S× R2 = L2(R)× R2 → R2. Thus, we
may think of a symplectic spinor field φ as of a mapping φ : R2 → S = L2(R).
Let us define ψ : R3 → C by ψ(s, t, x) := φ(s, t)(x) for each (s, t, x) ∈ R3. One
easily shows that φ is a symplectic Killing spinor if and only if the function ψ
satisfies the system

∂ψ

∂s
= λıxψ and

∂ψ

∂t
= λ

∂ψ

∂x
.

If λ = 0, the solution of this system of partial differential equations is neces-
sarily ψ(s, t, x) = ψ(x), (s, t, x) ∈ R3, for any ψ ∈ L2(R).

If λ 6= 0, let us consider the independent variable and corresponding depen-
dent variable transformation s = s, y = t + λ−1x, z = t − λ−1x and ψ(s, t, x) =

ψ̃(s, t + λ−1x, t − λ−1x) = ψ̃(s, y, z). The Jacobian of this transformation is
−2/λ 6= 0 and the transformation is obviously a diffeomorphism. Substitut-
ing this transformation in the studied system, one gets the following equivalent
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transformed system

∂ψ̃

∂s
=

ı

2
λ2(y − z)ψ̃

∂ψ̃

∂y
+
∂ψ̃

∂z
= λ(

∂ψ̃

∂y
λ−1 +

∂ψ̃

∂z
(−λ−1)).

(Let us notice that the substitution we have used is similar to that one which
is usually used to obtain the d’Alemebert’s solution of the wave equation in two

dimensions.) The first equation implies ∂ψ̃
∂z = 0, and thus ψ̃(s, y, z) = ψ(s, y) for a

function ψ. Substituting this relation into the second equation of the transformed
system, we get

∂ψ

∂s
=
ı

2
(y − z)λ2ψ.

The solution of this equation is ψ(s, y) = e
ı
2λ

2(y−z)sψ̃(y) for a suitable function ψ̃.
Because of the dependence of the right hand side of the last written equation on z,

we see that ψ does not exist unless λ = 0 or ψ̃ = 0 (More formally, one gets these

restrictions by substituting the last written formula for ψ into the first equation
of the transformed system.) Thus, necessarily ψ = 0 or λ = 0. The case λ = 0 is
excluded by the assumption at the beginning of this calculation.

Summing up, we have proved that any symplectic Killing spinor field φ on
(R2, ω0,∇) is constant, i.e., for each (s, t) ∈ R2, we have φ(s, t) = ψ for a function
ψ ∈ L2(R). The only symplectic Killing spinor number is zero in this case.

Remark. More generally, one can treat the case of a standard symplectic vec-
tor space (R2l[s1, . . . , sl, t1, . . . , tl], ω0) equipped with the standard flat Euclidean
connection ∇. One gets by similar lines of reasoning that any symplectic Killing
spinor for this Fedosov manifold is also constant, i.e.,

ψ(s1, . . . , sl, t1, . . . , tl) = ψ,

for (s1, . . . , sl), (t1, . . . , tl) ∈ Rl and ψ ∈ L2(Rl). But we shall see this result more
easily below when we will be studying the prolongated equation mentioned in the
Introduction.

Now, in order to make a connection of the symplectic Killing spinor equation
to some slightly more known equations, let us introduce the following operators.

The operator

D : Γ(M,S) → Γ(M,S), D := −F−∇S

is called symplectic Dirac operator and its eigenfunctions are called symplectic
Dirac spinors. Let us notice that the symplectic Dirac operator was introduced
by Katharina Habermann in 1992. See, e.g., Habermann [5].
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The operator

T : Γ(M,S) → Γ(M, E11), T := ∇S − p10∇S

is called (the first) symplectic twistor operator.
In the next theorem, the symplectic Killing spinor fields are related to the

symplectic Dirac spinors and to the kernel of the symplectic twistor operator.

Theorem 6. Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic struc-
ture. A symplectic spinor field φ ∈ Γ(M,S) is a symplectic Killing spinor field if
and only if φ is a symplectic Dirac spinor lying in the kernel of the symplectic
twistor operator.

Proof: We prove this equivalence in two steps.

(1) Suppose φ ∈ Γ(M,S) is a symplectic Killing spinor to a symplectic Killing
number λ ∈ C. Thus it satisfies the equation ∇Sφ = λF+φ. Applying the
operator −F− to the both sides of the preceding equation and using the
definition of the symplectic Dirac operator, we get Dφ = −λF−F+φ =
λ(−H + F+F−)φ = −λHφ = −λ(−ılφ) = ıλlφ due to the definition of
H and Lemma 3(2)(a) and (3). Thus φ is a symplectic Dirac spinor.

Now, we compute Tφ. Using the definition of T, we get Tφ = (∇S −
p10∇S)φ = λ(F+φ−p10F+φ) = λp11F+φ = 0, because F+φ ∈ Γ(M, E10)
due to Lemma 3(2)(a).

(2) Conversely, let φ ∈ Γ(M, E00) be in the kernel of the symplectic twistor op-
erator and also a symplectic Dirac spinor. Thus, we have∇Sφ−p10∇Sφ =
0 and Dφ = −F−∇Sφ = µφ for a complex number µ ∈ C. From
the first equation, we deduce that ψ := ∇Sφ ∈ Γ(M, E10). Because
F+
|Γ(M,E00) is surjective onto Γ(M, E10) (see Lemma 3(2)(b)), there ex-

ists a ψ′ ∈ Γ(M, E00) such that ψ = F+ψ′. Let us compute F+F−ψ =
F+F−F+ψ′ = F+(H − F+F−)ψ′ = F+(−ılψ′) = −ılψ, where we have
used the defining equation for H and Lemma 3(2)(a) and (3). Thus we
get

−F+F−ψ = ılψ.(1)

From the symplectic Dirac equation, we get µφ = −F−ψ. Thus −F+F−ψ
= µF+φ. Using the equation (1), we obtain ılψ = µF+φ, i.e., ∇Sφ =
−ıµl F+φ. Thus, φ is a symplectic Killing spinor to the symplectic Killing
spinor number −ıµ/l. �

In the next theorem, we derive the mentioned prolongation of the symplectic
Killing spinor equation. It is a zeroth order equation. More precisely, it is an
equation for the sections of the kernel of an endomorphism of the symplectic
spinor bundle S →M . A similar computation is well known from the Riemannian
spin geometry. See, e.g., Friedrich [2].
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Theorem 7. Let (M2l, ω,∇) be a Fedosov manifold admitting a metaplectic
structure and a symplectic Killing spinor field φ ∈ Γ(M,S) to the symplectic
Killing spinor number λ. Then

σijei.ej .φ = 2lλ2φ.

Proof: Let φ ∈ Γ(M2l,S) be a symplectic spinor Killing field, i.e., ∇S
Xφ = λX.φ

for a complex number λ and any vector field X ∈ X(M). For vector fields X,Y ∈
X(M), we may write

RS(X,Y )φ = (∇X∇Y −∇Y∇X −∇[X,Y ])φ

= λ∇X(Y.φ) − λ∇Y (X.φ)− λ[X,Y ].φ

= λ(∇XY ).φ+ λY.(∇Xφ) − λ(∇YX).φ− λX.∇Y .φ− λ[X,Y ].φ

= λT (X,Y ).φ+ λ2(Y.X.− Y.X.)φ

= λT (X,Y ).φ+ ıλ2ω(X,Y )φ = ıλ2ω(X,Y )φ,

where we have used the symplectic Killing spinor equation and the compatibility
of the symplectic spinor covariant derivative and the symplectic Clifford multipli-
cation (Lemma 4).

Thus RSφ = ıλ2ω ⊗ φ. Because of Lemma 3(2)(c), we know that the right
hand side is in Γ(M, E20). Thus also RSφ = p20RSφ. Using Lemma 5, we get
ı
2lω⊗σijei.ej.φ = ıλ2ω⊗φ. Thus σijei.ej.φ = 2lλ2φ and the theorem follows. �

Remark. Let us recall that in the Riemannian spin geometry (positive definite
case), the existence of a non-zero Killing spinor implies that the manifold is Ein-
stein. Further, let us notice that if the symplectic Ricci curvature tensor σ is
(globally) diagonalizable by a symplectomorphism, the prolongated equation has
the shape of the equation for eigenvalues of the Hamiltonian of an elliptic l di-
mensional harmonic oscillator with possibly varying axes lengths. An example
of a diagonalizable symplectic Ricci curvature will be treated in Example 3. Al-
though, in this case the axis will be constant and the harmonic oscillator will be
spherical.

Now, we derive a simple consequence of the preceding theorem in the case of
Fedosov manifolds of Weyl type, i.e., σ = 0.

Corollary 8. Let (M,ω,∇) be a Fedosov manifold of Weyl type. Let (M,ω)
admit a metaplectic structure and a symplectic Killing spinor φ field to the sym-
plectic Killing spinor number λ. Then the symplectic Killing spinor number λ = 0
and φ is locally covariantly constant.

Proof: Follows immediately from the preceding theorem and the symplectic
Killing spinor equation. �

Example 2. Let us go back to the case of (R2l, ω0,∇) from Remark below Ex-
ample 1. Corollary 8 implies that any symplectic Killing spinor field for this
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structure is covariantly constant, i.e., in fact constant in this case, and any sym-
plectic Killing number is zero. In this case, we see that the prolongated equation
from Theorem 7 makes it possible to compute the symplectic Killing spinor fields
without any big effort, compared to the calculations in Example 1 where the
2-plane was treated.

In the next example, we compute the symplectic Killing spinor fields on S2

equipped with the standard symplectic structure and the Riemannian connection
of the round metric. This is an example of a Fedosov manifold (specified more
carefully below) for which one cannot use Corollary 8, because it is not of Weyl
type. But still, one can use Theorem 7.

Example 3. Consider the round sphere (S2, r2(dθ2 + sin2 θdφ2)) of radius r >
0, θ being the longitude a φ the latitude. Then ω := r2 sin θdθ ∧ dφ is the
volume form of the round sphere. Because ω is also a symplectic form, (S2, ω)
is a symplectic manifold. Let us consider the Riemannian connection ∇ of the
round sphere. Then ∇ preserves the symplectic volume form ω being a metric
connection of the round sphere. Because∇ is torsion-free, we see that (S2, ω,∇) is
a Fedosov manifold. Now, we will work in a coordinate patch without mentioning
it explicitly. Let us set e1 := 1

r
∂
∂θ and e2 := 1

r sin θ
∂
∂φ . Clearly, {e1, e2} is a local

adapted symplectic frame and it is a local orthogonal frame as well. With respect
to this basis, the Ricci form σ of ∇ takes the form

[σij ]i,j=1,2 =

(
1/r 0
0 1/r

)
.

Let us consider S2 as the complex projective space CP1. It is easy to see that
the (unique) complex structure on CP1 is compatible with the volume form. The

first Chern class of the tangent bundle to CP1 is known to be even. Thus, the
symplectic manifold (S2, ω) admits a metaplectic structure and we may consider a
symplectic Killing spinor field φ ∈ Γ(S2,S) corresponding to a symplectic Killing
spinor number λ. Because the first homology group of the sphere S2 is zero, the
metaplectic structure is unique and thus the trivial one. Because of the triviality of
the associated symplectic spinor bundle S → S2, we may write φ(m) = (m, f(m))
where f(m) ∈ L2(R) for each m ∈ S2. Using Theorem 7 and the prescription for
the Ricci form, we get that σijei.ej .[f(m)] = 1

rH [f(m)] = 2λ2f(m), where H =
∂2

∂x2 − x2 is the quantum Hamiltonian of the one dimensional harmonic oscillator.

The solutions of the Sturm-Liouville type equationH [f(m)] = 2rλ2f(m), m ∈ S2,
are well known. The eigenfunctions of H are the Hermite functions fl(m)(x) =

hl(x) := ex
2/2 dl

dxl (e
−x2

) for m ∈ S2 and x ∈ R and the corresponding eigenvalues

are −(2l+ 1), l ∈ N0. Thus 2rλ
2 = −(2l+ 1) and consequently

λ = ±ı
√

2l+ 1

2r
.



34 S. Krýsl

Using the fact that {e1, e2} is a local orthonormal frame and ∇ is metric and
torsion-free, we easily get

∇e1e1 = 0 ∇e1e2 = 0
∇e2e1 = cot θ

r e2 ∇e2e2 = − cot θ
r e1.

From the definition of differentiability of functions with values in a Hilbert
space, we see easily as a consequence of the preceding computations that any
symplectic Killing spinor field is necessarily of the form φ(m) = (m, c(m)fl(m))
for a smooth function c ∈ C∞(S2,C). Substituting this Ansatz into the symplectic
Killing spinor equation, we get for each vector field X ∈ X(S2) the equation

∇X(cfl) = (Xc)fl + c∇Xfl = λc(X.fl).

Due to Lemma 4, we have for a local adapted symplectic frame s : U ⊆ S2 →
P = Sp(2,R)× S2,

∇Xfl = [s,X(fl)s]−
ı

2
[e2.(∇Xe1).− e1.(∇Xe2).]fl.

(See the paragraph above Lemma 4 for an explanation of the notation used in
this formula.)

Because m 7→ (m, fl(m)) is constant as a section of the trivial bundle S → S2,
the first summand of the preceding expression vanishes. Thus for X = e1, we get

(e1c)fl +
ıc

2
[e2.(∇e1e1).− e1.(∇e1e2).]fl = λc(e1.fl).

Using the knowledge of the values of ∇e1ej , for j = 1, 2, computed above, the
second summand at the left hand side of the last written equation vanishes and
thus, we get

1

r

∂c

∂θ
fl = λcıxfl.

This equation implies c(θ, φ) = ψ(x, φ)eırxλθ for x such that hl(x) 6= 0 and a
suitable function ψ. (The set of such x ∈ R, such that hl(x) 6= 0 is the complement
in R of a finite set.) Because r > 0 is given and λ is certainly non-zero (see the
prescription for λ above), the only possibility for c to be independent of x is
ψ = 0. Therefore c = 0 and consequently φ = 0. On the other hand, φ = 0 (the
zero section) is clearly a solution, but according to the definition not a symplectic
Killing spinor. Thus, there is no symplectic Killing spinor field on the round
sphere.

Remark. In the future, one can study holonomy restrictions implied by the ex-
istence of a symplectic Killing spinor. One can also try to extend the results to
general symplectic connections, i.e., to drop the condition on the torsion-freeness
or study also the symplectic Killing fields on Ricci type Fedosov manifolds admit-
ting a metaplectic structure in more detail.
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manifolds, for which the sequence above fails to be a complex, are more in the focus of Riemannian ge-
ometers. Roughly speaking, the Riemannian counterpart of the Maxwell equations does not seem to be so
widely used.

In symplectic geometry, the role of an adapted connection is not as obvious as in the Riemannian geom-
etry, foremost because of a theorem of Darboux due to which all symplectic manifolds are infinitesimally
equivalent. The torsion-free symplectic connections on a symplectic manifold (M,ω) form an infinite dimen-
sional affine space. For it see, e.g., Tondeur [13] or Gelfand et al. [4]. The role of symplectic connections
seems to be rather in quantization of mechanics. See Fedosov [1] and notice that the higher oscillatory
module studied here is related to the Weyl algebra structure used in the quantization procedure named
after him.

In Fomenko and Mishchenko [3], the concept of A-Hilbert bundles and differential operators acting on
their sections was established for a unital C∗-algebra A. These bundles have the so-called Hilbert A-modules
as fibers. See Solovyov and Troitsky [11] for these notions. The authors of [3] investigate finitely generated
projective A-Hilbert bundles over compact manifolds and A-elliptic operators acting between their smooth
sections. They prove that such operators have the so-called A-Fredholm property. In particular, their kernels
are finitely generated projective Hilbert A-modules. In Krýsl [8], the results of [3] were used in the case of
A-elliptic complexes and conclusions for the cohomology groups of these complexes were made.

In this paper, we introduce a sequence of infinite rank vector bundles over a symplectic manifold and
differential operators acting between their sections. The symplectic manifold (M,ω) is supposed to admit a
metaplectic structure, a symplectic analogue of the Riemannian spin structure. The principal group of the
metaplectic bundle is the metaplectic group Mp(2n,R). Since the articles of Shale [12] and Weil [14] were
published, a faithful unitary representation of the metaplectic group on the space H = L2(Rn) was known.
This representation is the Segal–Shale–Weil representation. Besides this name, also the names metaplectic
representation or symplectic spinor representation are used. We call this representation the basic oscillatory
module in this text to stress the fact that it is used as a state space of the quantum harmonic oscillator.
Associating the basic oscillatory module to the metaplectic structure, we get the so-called basic oscillatory
bundle denoted by H. See Kostant [7] and Habermann and Habermann [5]. The sequence of bundles we
investigate is formed by the tensor product of the bundles

∧k
T ∗M of exterior k-forms on M and of

the bundle H. Let ∇ be a symplectic connection on (M,ω). The lift of the symplectic connection ∇ to the
sections of the basic oscillatory bundle H induces the exterior covariant derivatives d∇H

k : Γ (
∧k

T ∗M⊗H) →
Γ (

∧k+1
T ∗M ⊗ H). By definition, if the curvature of ∇ is zero, the sequence d•H = (d∇H

k , Γ (
∧k

T ∗M ⊗
H))k∈N0 forms a complex. This is what we understand under the name ‘de Rham complex twisted by the
oscillatory module’. We prove that this complex is A-elliptic and use a result from [8] to get an information
on the cohomology groups of this complex when M is compact. As far as we know, this is the first non-trivial
explicitly constructed A-elliptic complex in infinite rank vector bundles.

In Section 2, we recall the notion of a Hilbert A-module, introduce the higher oscillatory module as a
module over the metaplectic group as well as over the unital C∗-algebra A of continuous endomorphisms
of L2(Rn). We prove that the oscillatory module is a finitely generated projective Hilbert A-module with
respect to a natural Hilbert A-product (Theorem 3). In Section 3, a definition of an A-Hilbert bundle
is given, the notion of the exterior covariant derivative in such bundles is introduced, and its symbol is
computed (Theorem 5). In Section 3.1, we give a definition of an A-elliptic complex, construct the de Rham
complex twisted by the basic oscillatory module and state a theorem on properties of the cohomology groups
of this complex (Theorem 6).

2. Higher oscillatory modules

Let A be a unital C∗-algebra with involution, norm and unity denoted by ∗, | |A and 1, respectively.
Let us recall a definition of the A-Hilbert module. For general C∗-algebras, this notion was first considered
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by Paschke in [10]. A pre-Hilbert A-module is a left A-module U equipped with a map ( , ) : U × U → A

satisfying for each u, v, w ∈ U and a ∈ A

1) (u, v + w) = (u, v) + (u,w),
2) (a.u, v) = a(u, v),
3) (u, v) = (v, u)∗,
4) (u, u) � 0 and (u, u) = 0 implies u = 0.

The relation a � b holds for a, b ∈ A if and only if a− b is hermitian and its spectrum lies in R
+
0 . Recall

that for an element a ∈ A, its spectrum is the set {λ ∈ C | a − λ1 is not invertible}. Notice that from 2)
and 3), we get (u, a.v) = (u, v)a∗ for any a ∈ A and u, v ∈ U . A pre-Hilbert A-module is called a Hilbert
A-module if it is complete with respect to the norm | |U : U → R defined by |u| =

√
|(u, u)|A, u ∈ U . If

U is a pre-Hilbert A-module, we speak of ( , ) as of an A-product. When U is a Hilbert A-module, we call
the A-valued map ( , ) a Hilbert A-product. If necessary, we write ( , )U instead of ( , ).

In the category of pre-Hilbert A-modules, the set of morphisms B is formed by continuous A-equivariant
maps between the objects, i.e., B(a.u) = a.B(u) for each a ∈ A and u ∈ U . Continuity is meant with respect
to the (possibly non-complete) norms. Declaring the category of Hilbert A-modules to be the full subcategory
of the category of pre-Hilbert A-modules, the set of morphisms in this category is defined. Let us notice
that adjoints are considered with respect to the A-products, i.e., for a morphism B : U → V of pre-Hilbert
A-modules, its adjoint, denoted by B∗, is a map B∗ : V → U which satisfies (Bu, v)V = (u,B∗v)U for each
u ∈ U and v ∈ V . It is known that unlike for Hilbert spaces, morphisms of Hilbert A-modules do not have
adjoints in general, but if they exist, it is elementary to prove that they are unique. When we write a direct
sum of Hilbert A-modules, we suppose that the summands are mutually orthogonal with respect to ( , ). In
general, orthocomplements do not have the “exhaustion property”, i.e., there exist a Hilbert A-module U

and a (closed) Hilbert A-submodule V of U such that U �= V ⊕ V ⊥. (See, e.g., Lance [9] for an example.)
But fortunately we have the following

Theorem 1. Let U, V be Hilbert A-modules and B : U → V be a Hilbert A-module morphism. If the adjoint
of B exists and ImB is closed, then U = KerB ⊕ ImB∗.

Proof. See Lance [9, Theorem 3.2] for a proof. �
Now, we focus our attention to the higher oscillatory module. Let (V, ω) be a real symplectic vector space

of dimension 2n and g : V × V → R be a scalar product on V . For any ξ ∈ V ∗, we define the vector in
ξg ∈ V by the formula ξ(v) = g(ξg, v) for any v ∈ V . Further, we denote the appropriate extension of g to∧•

V ∗ by g as well. (The orientation for (V, g) is induced by ω∧n.) Let G̃ be a realization of the metaplectic
group associated to the symplectic space (V, ω), and let λ be the covering homomorphism of the symplectic
group Sp(V, ω) by G̃.

Further, we denote the exterior multiplication of exterior k-forms by a 1-form ξ by extξk and recall the
following lemma. For technical reasons, let us set

∧−1
V ∗ = 0.

Lemma 2. For any ξ ∈ V ∗ \ {0}, the complex ext•ξ = (extξk,
∧k

V ∗)2n+1
k=−1 is exact.

Proof. Suppose ξ ∈ V ∗. Because ξ∧ξ∧α = 0 for any α ∈
∧k

V ∗, ext•ξ is a complex. Now, suppose ξ∧α = 0
for a k-form α. Making the insertion of ξg into this equation, we get (ιξgξ)α − ξ ∧ ιξgα = 0. From that
α = −(g(ξ, ξ))−1ξ ∧ ιξgα provided g(ξ, ξ) �= 0, which holds if and only if ξ �= 0. Thus α ∈ Im(extξk−1). �
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Let L be a Lagrangian subspace of (V, ω). The oscillatory representation of the metaplectic group G̃ is
a faithful unitary representation of G̃ on the complex Hilbert space H = L2(L, g|L×L). Let us denote it by
ρ0 : G̃ → Aut(H) and the scalar product on H by ( , )H , i.e.,

(k, l)H =
∫

x∈L

k(x)l(x) dx for each k, l ∈ H.

Notice that the oscillatory representation splits into the irreducible G̃-submodules of even and odd square
integrable functions on L. See Shale [12], Weil [14] and Kashiwara and Vergne [6] for more information
on ρ0.

Let us consider the tensor product ρ of the wedge powers of the dual of the representation λ : G̃ → Aut(V )
and of the oscillatory representation ρ0. In particular, ρ : G̃ → Aut(C•), where C• =

∧•
V ∗⊗H is considered

with the canonical Hilbert space topology. Note that ρ is not unitary unless V = R. The G̃-module C• is
called the higher oscillatory module and C0 = H the basic oscillatory module.

Now, we would like to investigate C• from the A-module point of view, where A = End(H) is the unital
C∗-algebra of continuous endomorphisms of H. The involution ∗ : A → A in A is given by the adjoint of
endomorphisms, i.e., ∗a = a∗ for any a ∈ A. For the norm in A, we take the supremum norm, i.e., for any
a ∈ A, we set |a|A = sup|k|H�1 |a(k)|H , where | |H denotes the norm on H derived from the scalar product
( , )H . Let us remark, that we consider everywhere defined operators only. In particular, the star ∗ is a well
defined (and continuous) anti-involutive map in the C∗-algebra A.

The space C• introduced above is not only a G̃-module, but it is also an A-module with the action given
by

a.(α⊗ k) = α⊗ a(k), α⊗ k ∈ C• and a ∈ A.

For any k ∈ H, let k∗ : H → C denote the ( , )H -dual element to k, i.e., k∗(l) = (k, l)H . Now, let us introduce
an A-product ( , ) on the higher oscillatory module C•. For any α⊗ k, β ⊗ l ∈ C•, we set

(α⊗ k, β ⊗ l) = g(α, β)k ⊗ l∗ ∈ A

where by k⊗ l∗, we mean the element of A defined by (k⊗ l∗)(m) = l∗(m)k ∈ H for all m ∈ H. The product
is extended to non-homogeneous elements linearly. Let us make the following observation of which we make
use later. For k, l ∈ H, we have

(
k ⊗ l∗

)∗ = l ⊗ k∗.

Indeed, for any m,n ∈ H, we may write ((k ⊗ l∗)∗m,n)H = (m, (k ⊗ l∗)n)H = (m, k(l, n)H)H =
(l, n)H(m, k)H = ((m, k)H l, n)H = (l(k,m)H , n)H = ((l ⊗ k∗)m,n)H .

Notice that a Hilbert A-module U is called finitely generated and projective if there exists an integer
n ∈ N0 and a Hilbert A-submodule V ⊆ An such that U ⊕ V � An. Here, An denotes the direct sum of
n copies of the tautological A-module A. For equivalent definitions, see Solovyov and Troitsky [11].

Theorem 3. The space C• together with ( , ) is a finitely generated projective Hilbert A-module.

Proof. Let e0 be a unit length vector in H and v an arbitrary element of H. The map b = v ⊗ e∗0 has the
property b(e0) = v and |b|A � |v|H , i.e., b is bounded and thus, continuous. Let {ei}22n

i=1 be an orthonormal
basis of

∧•
V ∗. Then obviously, (ei ⊗ e0)4

n

i=1 is a set of generators of C•. Thus, C• is finitely generated
over A.
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Now, we prove that C• is a Hilbert A-module.

1) A-linearity of ( , ). For any a ∈ A, α⊗ k, β ⊗ l ∈ C• and m ∈ H, we have

(
a.(α⊗ k), β ⊗ l

)
(m) =

(
α⊗ a(k), β ⊗ l

)
(m)

= g(α, β)
(
a(k) ⊗ l∗

)
(m)

= g(α, β)a(k)(l,m)H .

On the other hand, we have

[
a(α⊗ k, β ⊗ l)

]
(m) = g(α, β)

[
a
(
k ⊗ l∗

)]
(m)

= a(k)g(α, β)(l,m)H .

2) Hermitian symmetry. For any α⊗ k, β ⊗ l ∈ C•, we have

(α⊗ k, β ⊗ l)∗ = g(α, β)
(
k ⊗ l∗

)∗ = g(α, β)
(
l ⊗ k∗

)
= g(β, α)

(
l ⊗ k∗

)
= (β ⊗ l, α⊗ k).

3) Positive definiteness. Let c =
∑4n

i=1 ei ⊗ k∗i for ki ∈ H, i = 1, . . . , 4n. Then (c, c) =
∑4n

i,j=1 g(ei, ej)(ki ⊗
k∗j ) =

∑4n

i,j δij(ki ⊗ k∗j ) =
∑4n

i=1(ki ⊗ k∗i ). The spectrum of each of the summands consists of the
non-negative numbers (ki, ki)H and 0. Thus, ki ⊗ k∗i � 0. Because the non-negative elements in a
C∗-algebra form a cone, (c, c) � 0. Suppose (c, c) = 0 and that the summand in

∑4n

i=1(ki ⊗ k∗i ) with
index i0 is non-zero. Writing −(ki0 ⊗ k∗i0) =

∑
i∈{1,...,4n}\{i0} ki ⊗ k∗i gives a contradiction.

4) Completeness is obvious because the normed space C• is a finite direct sum of copies of the Hilbert
A-module H = L2(L, g|L×L).

Since as we already showed, C• is a finitely generated Hilbert A-module, it is projective. For it, see Frank
and Larsen [2, Theorem 5.9]. �

Let us notice that if we take the compact operators on H for the C∗-algebra, the basic oscillatory module
is also a finitely generated Hilbert A-module.

3. Covariant derivatives and the twisted de Rham complex

Let M be a manifold and p : E → M be an A-Hilbert bundle, where A is a unital C∗-algebra. This
means in particular, that p is a smooth Banach bundle the fibers of which are isomorphic to a fixed Hilbert
A-module U . As it is standard, we denote the space of smooth sections of E by Γ (E). For any m ∈ M ,
the fiber p−1({m}) is denoted by Em, and the Hilbert A-product defined on it by ( , )m. The morphisms
between A-Hilbert bundles pi : E i → M , i = 1, 2, are supposed to be smooth bundle maps S : E1 → E2, i.e.,
p1 = p2 ◦ S and for each point m ∈ M , S|(E1)m : (E1)m → (E2)m is a morphism of A-Hilbert modules. See
Solovyov and Troitsky [11] for more information on A-Hilbert bundles.

Let us set A = M × A → M for the trivial bundle, and introduce a map ( , )A : Γ (E) × Γ (E) → Γ (A)
on Γ (E) by the prescription

(s, t)A(m) =
(
s(m), t(m)

)
m

∈ A,

where s, t ∈ Γ (E) and m ∈ M . Of course, Γ (A) ∼= C∞(M,A).
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Now, let us choose a Riemannian metric g on M and denote by |volg| a choice of the volume element
associated to g. The extension of g to

∧•
T ∗M with respect to the orientation induced by |volg| will still

be denoted by g. From now on, we suppose that M is compact. The space Γ (E) of smooth sections of E
carries a pre-Hilbert A-module structure. The action of A on Γ (E) is defined by (a.s)(m) = a.(s(m)), a ∈ A,
s ∈ Γ (E) and m ∈ M , and the A-product is given by

(s, t)Γ (E) =
∫

M

(s, t)A|volg|.

Let us notice that in the formula for the A-product ( , )Γ (E), any absolutely convergent integral for Banach
space valued functions may be considered, e.g., the Bochner integral.

Lemma 4. If (M, g) is a compact Riemannian manifold and E is an A-Hilbert bundle over M , then E ′ =
TM ⊗ E and E ′′ = T ∗M ⊗ E are A-Hilbert bundles as well.

Proof. Let us set a.(v ⊗ c) = v ⊗ a.c and a.(α ⊗ c) = α ⊗ a.c for any a ∈ A, c ∈ Em, v ∈ TmM , α ∈ T ∗
mM

and m ∈ M . Further, set (u ⊗ c, v ⊗ d)m = gm(u, v)(c, d)m ∈ A and (α ⊗ c, β ⊗ d)m = gm(α, β)(c, d)m for
c, d ∈ Em, u, v ∈ TmM and α, β ∈ T ∗

mM , m ∈ M . It is straightforward to verify that these structures define
A-Hilbert bundles. �

In what follows, when given an A-Hilbert bundle E , we always consider the bundles E ′ and E ′′ with the
A-Hilbert bundle structure defined in Lemma 4.

Definition 1. Let p : E → M be an A-Hilbert bundle. We call a map ∇ : Γ (E) → Γ (T ∗M ⊗ E) covariant
derivative in the bundle E if for each function f ∈ C∞(M) and sections s1, s2 ∈ Γ (E), we have

∇(s1 + s2) = ∇s1 + ∇s2,

∇(fs1) = df ⊗ s1 + f∇s1.

Any covariant derivative ∇ in an A-Hilbert bundle E induces the exterior covariant derivatives d∇k :
Γ (

∧k
T ∗M ⊗ E) → Γ (

∧k+1
T ∗M ⊗ E) by the formula

d∇k (α⊗ s) = dα⊗ s + (−1)kα ∧∇s

where α⊗ s ∈ Γ (
∧k

T ∗M ⊗E) and k = 0, . . . ,dimM . To non-homogeneous elements, the exterior covariant
derivative is extended by linearity.

Let E ,F be A-Hilbert bundles over M . Suppose that d : Γ (E) → Γ (F) is an A-differential operator.
Then it is known that the symbol σ : E ′′ → F of d and d are adjointable A-Hilbert bundle and pre-Hilbert
A-module morphisms, respectively. Notice that we consider finite order operators only. Further, for each
r ∈ N0, one defines the Sobolev type product ( , )r on Γ (E) by the formula

(
s, s′

)
r

=
∫

M

(
s, (1 + �g)rs′

)
A|volg|,

where �g is the (positive definite) Laplace–Beltrami operator on (M, g). The A-modules Γ (E) equipped with
( , )r are pre-Hilbert A-modules. Let us denote the norm associated to ( , )r by | |r. Notice that ( , )0 = ( , )Γ (E).
The spaces W r(E) are defined as completions of Γ (E) with respect to the norms | |r. Because of the shape
of the formula for ( , )r, we call the A-modules W r(E) the Sobolev type completions (of the pre-Hilbert
A-module (Γ (E), ( , )r)). Let us notice that for any r ∈ N0, each differential operator d : Γ (E) → Γ (F)
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has a continuous extension to W r(E) and that this extension is unique. For these notions and results, see
Solovyov and Troitsky [3].

We use the symbols ξg and extξk introduced in Section 2 to denote the g-dual vector field and the exterior
multiplication of exterior differential k-forms by a differential 1-form ξ also in the case of a Riemannian
manifold (M, g).

Theorem 5. Let (M, g) be a compact Riemannian manifold, p : E → M be an A-Hilbert bundle and ∇ be a
covariant derivative in E. Then d∇k is a differential operator of order one. For each ξ ∈ Γ (T ∗M), the symbol
σξ
k of d∇k is given by σξ

k = extξk ⊗ IdE and its adjoint satisfies (σξ
k)∗ = ιξg ⊗ IdE .

Proof. For any function f on M and any section ψ of
∧k

T ∗M ⊗ E , we get d∇k (fψ) − fd∇k ψ = (df) ∧ ψ +
fd∇k ψ − fd∇k ψ = df ∧ ψ which shows that the exterior covariant derivative d∇k is a differential operator of
first order. For ξ ∈ Γ (T ∗M), let us compute the symbol σξ

k of d∇k . It is sufficient to work locally. Using the
previous formula for ξ = df and ψ = α⊗s ∈ Γ (

∧k
T ∗M ⊗E), we obtain σξ

k(α⊗s) = ξ∧α⊗s. In particular,
the symbol acts on the form part only. Because the adjoint of the wedge multiplication by a differential
form ξ is the interior product with the dual vector field ξg, we get the formula (σξ

i )∗(α⊗ s) = ιξgα⊗ s. �
Remark. From the proof of the previous theorem, we see that the symbol of d∇k is an adjointable homomor-
phism between the A-Hilbert bundles (

∧k
T ∗M ⊗ E) ⊗ T ∗M and

∧k+1
T ∗M ⊗ E .

3.1. De Rham complex twisted by the oscillatory representation

Let pk : Ek → M , k ∈ N0, be a set of A-Hilbert bundles and d• = (dk, Γ (Ek))k∈N0 be a complex of
A-differential operators. We call such a complex A-elliptic if out of the zero section of the cotangent bundle
T ∗M , the symbol sequence σ• of d• is an exact complex in the category of A-Hilbert bundles. Let us notice
that if the A-Hilbert bundles are vector bundles associated to a principal bundle, it is sufficient to demand
the exactness of the symbol sequence at the level of fibers only, i.e., in the category of Hilbert A-modules.

Suppose that for each k ∈ N0, Ek → M is a finitely generated projective A-Hilbert bundle over a compact
manifold M , i.e., the fibers of each Ek are such Hilbert A-modules. For any complex d• = (dk, Γ (Ek))k∈N0

of differential operators, one may consider the sequence of its associated Laplacians �k = dk−1d
∗
k−1 + d∗kdk,

k ∈ N0, d−1 = 0. Let us denote the order of �k by rk. In Krýsl [8, Theorem 11], the following implication
is proved. If for each k ∈ N0, the extension of the Laplacian �k to W rk(Ek) has closed image, then the
cohomology groups

Hk
(
d•, A

)
= Ker(dk : Γ (Ek) → Γ (Ek+1))

Im(dk−1 : Γ (Ek−1) → Γ (Ek))

of d• are finitely generated A-modules and Banach spaces. The norm considered on the cohomology groups
Hk(d•, A) is the quotient norm derived from the norm | |0 on the smooth sections Γ (Ek).

In a similar way as one defines the spin structure in Riemannian geometry, one may introduce the
so-called metaplectic structure in the case of a symplectic manifold. See Habermann and Habermann [5]
for a more explicit definition. Suppose that (M,ω) possesses such a metaplectic structure and denote it
by G̃. In particular, G̃ is a principal G̃-bundle over M , where G̃ is the metaplectic group. Let C• denote the
sequence of vector bundles associated to the principal bundle G̃ via the representation ρ : G̃ → Aut(C•),
i.e., C• = G̃ ×ρ C

•. Especially, C0 = G̃ ×ρ H is the so-called basic oscillatory bundle which we denote by H
here. In Habermann and Habermann [5], this bundle is called the symplectic spinor bundle. Notice that in
this notation, Ck =

∧k
T ∗M ⊗H.

Now, let ∇ be a symplectic connection on (M,ω), i.e., ∇ is a covariant derivative in TM → M preserving
the symplectic form ω. We allow the connection to have a torsion. Let us denote a lift of this connection
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to G̃ by ω̃∇. Associating ω̃∇ to C0, we get a covariant derivative ∇H in the sections of the basic oscillatory
bundle. This covariant derivative gives rise to the sequence d•H = (d∇H

k , Γ (Ck))2n+1
k=−1. Because Ck is a

Hilbert A-module (Theorem 3), the bundle Ck is an A-Hilbert bundle, where A = End(H). But see also the
discussion below Theorem 3.

Theorem 6. Let (M2n, ω) be a compact symplectic manifold which admits a metaplectic structure, and ∇ be
a flat symplectic connection. If the continuous extension to the Sobolev type completions W 2(Ck) of each of
the associated Laplacians �k has closed image, then the cohomology groups Hk(d•H , A) are finitely generated
A-modules and Banach topological vector spaces.

Proof. Due to Theorem 3, for each k ∈ N0 the bundle Ck → M is a finitely generated projective A-Hilbert
bundle. Due to Theorem 5, the symbol σk of d∇

H

k is given by σξ
k = extξk ⊗ IdH. Thus the exactness of

(σξ
k, Ck)2n+1

k=−1 is equivalent to the exactness of ext•ξ . Lemma 4 implies that (σξ
k, Ck)2n+1

k=−1 is exact for each
ξ ∈ T ∗M \ {0} and thus, d•H is an A-elliptic complex. Therefore Theorem 11 in [8], mentioned above, may
be applied and the conclusions for the cohomology groups Hk(d•H , A) follow. �
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Abstract For a class of co-chain complexes in the category of pre-Hilbert A-modules, we
prove that their cohomology groups equipped with the canonical quotient topology are pre-
Hilbert A-modules, and derive the Hodge theory and, in particular, the Hodge decomposition
for them. As an application, we show that A-elliptic complexes of pseudodifferential operators
acting on sections of finitely generated projective A-Hilbert bundles over compact manifolds
belong to this class if the images of the continuous extensions of their associated Laplace
operators are closed. Moreover, we prove that the cohomology groups of these complexes
share the structure of the fibers, in the sense that they are also finitely generated projective
Hilbert A-modules.

Keywords Hodge theory · Hilbert C∗-modules · C∗-Hilbert bundles · Elliptic systems of
partial differential equations
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1 Introduction

The Hodge theory is known to hold for any co-chain complex in the category of finite
dimensional vector spaces and linear maps. This theory holds also for elliptic complexes of
pseudodifferential operators acting between smooth sections of finite rank vector bundles
over compact manifolds. See, e.g., Wells [15] or Palais [10] and the references therein. Let
us notice that in this case, the considered co-chain complexes consist of spaces of smooth
sections of the bundles, which are infinite dimensional if the manifold contains more than a
finite number of points.

Let us remark that in connection with renormalization and regularization of certain quan-
tum theories, Hilbert and Banach bundles of infinite rank enjoy an increasing interest. See,
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e.g., the papers on stochastical quantum mechanics and parallel transport of Prugovečki [11],
Drechsler and Tuckey [3], and on spin foams of Denicola et al. [1]. This list of references
should not be considered as complete. The theory of indices and the K -theory are well
established for a class of the so-called A-Hilbert bundles, and especially for the subclass
consisting of the finitely generated projective ones. See, e.g., Fomenko and Mishchenko [6]
and the monograph of Solovyov and Troitsky [13].

One of the reasons for writing of this paper is to separate features that are important for
proving the Hodge theory for an algebraically defined and fairly general class of complexes
(specified below) from the ones which are specific for A-elliptic complexes appearing in
differential geometry and analysis on manifolds. A further reason is to describe also the
topological properties of the Hodge isomorphism.

Recall that for a C∗-algebra A, a pre-Hilbert A-module U is a left module over A that is
equipped with a map (, )U : U × U → A which is sesquilinear over A and positive definite
in the sense that firstly, for any u ∈ U , the inequality (u, u)U ≥ 0 holds in A, and secondly,
if (u, u)U = 0, then u = 0. Let us notice that the product (, )U induces a norm | |U on U . A
pre-Hilbert A-module is called a Hilbert A-module, if it is complete with respect to the norm
| |U . Hilbert spaces are particular examples of Hilbert A-modules for A = C. An A-Hilbert
bundle is, roughly speaking, a Banach bundle whose fibers are Hilbert A-modules.

Let us consider a co-chain complex d• = (Ck, dk)k∈Z, where Ck are pre-Hilbert A-
modules and the differentials dk : Ck → Ck+1 are A-linear and continuous maps with
respect to the induced norms. We suppose that the differentials are adjointable for to may
speak about harmonic and co-exact elements. By a Hodge theory for a given complex, we
mean the Hodge decomposition and the Hodge isomorphism for this complex. The Hodge
decomposition is an orthogonal sum decomposition [with respect to of (, )Ck ] of each pre-
Hilbert A-module Ck in the complex into the module of harmonic, the module of exact,
and the module of co-exact elements. By a Hodge isomorphism, one usually means a linear
isomorphism of the vector space of harmonic forms and the appropriate cohomology group.
Since the cohomology groups of a complex of pre-Hilbert A-modules may not be finite
dimensional, we demand the isomorphism to be a homeomorphism. There is one reason more
although connected, why we want the isomorphism to have this additional topological feature.
Namely, the cohomology groups are quotients by images of the differentials in the complex.
Since the images need not be closed, the cohomology groups need not be Hausdorff spaces.
Let us notice that the Hausdorff property is well known to be equivalent to the uniqueness of
limits of sequences in the considered space and therefore in physical theories, it seems to be
reasonable to demand the “Hausdorffness” for each space of measured quantities.

We prove the Hodge theory for the so-called self-adjoint parametrix possessing complexes
of pre-Hilbert A-modules. We start dealing with one operator L : V → V only and prove that
the image, Im L, is closed and that the decomposition V = Ker L ⊕Im L (no closure) holds if
L is self-adjoint parametrix possessing. An endomorphism L : V → V is called self-adjoint
parametrix possessing if there exist maps g, p : V → V satisfying 1 = gL + p = Lg + p,

Lp = 0 and p = p∗. After that we handle the case of complexes. To each complex d• =
(Ck, dk)k∈N0 of pre-Hilbert A-modules and adjointable differentials, we assign the sequence
of self-adjoint endomorphisms Li = di−1d∗

i−1 + d∗
i di : Ci → Ci , i ∈ N0, called the asso-

ciated Laplace operators. The complexes with self-adjoint parametrix possessing Laplace
operators are called self-adjoint parametrix possessing. Under the condition that (Ck , dk)k∈N0

is self-adjoint parametrix possessing, we show that Ci = Ker Li ⊕ Im d∗
i ⊕ Im di−1 (the

Hodge decomposition) and that each cohomology group Hi (d•, A) of d• is isomorphic to the
space Ker Li of harmonic elements as a pre-Hilbert A-module (the Hodge isomorphism). In
particular, the cohomologies of a self-adjoint parametrix possessing complex are Hausdorff
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spaces being homeomorphic to kernels of continuous maps. Using these abstract considera-
tions, we prove that the Hodge theory holds also for complexes D• = (�(Fk), Dk)k∈N0 of
the so-called A-elliptic operators acting on smooth sections of finitely generated projective
A-Hilbert bundles Fk , under an assumption on the image of extensions of the Laplacians
�k = Dk−1 D∗

k−1 + D∗
k Dk . Supposing that A is unital, we prove that the cohomology groups

of these complexes are finitely generated and projective. Let us notice that the theory of
parametrix possessing operators is more general then the theory of A-elliptic operators. We
demonstrate this fact by giving an explicit example.

Two properties of C∗-algebras, they share with the complex numbers, appear to be impor-
tant for proving the Hodge decomposition at the abstract level. Namely, we use that for any
non-negative hermitian elements a, b of A, the inequality |a + b|A ≥ |a|A holds, as well
as that a + b = 0 implies a = b = 0, where | |A denotes the norm in the C∗-algebra
A. For these theorems see, e.g., Dixmier [2]. In Krýsl [8], the existence of an A-module
isomorphism between the cohomology groups and the space of harmonic elements of the
so-called parametrix possessing complexes (Definition 2 in [8]) is proved. However, condi-
tions under which this A-module isomorphism is a homeomorphism are not treated there.
Without supposing the self-adjointness, the proof of the existence of this isomorphism as
given in [8] is rather intricate. On the contrary, in the present paper, the existence of the
isomorphism together with determining its topological character are easy consequences of
the Hodge decomposition. Let us notice that A-elliptic complexes are treated also in Troit-
sky [14] in connection with operator indices and K -theory. In the article of Schick [12], one
can find a more geometrically oriented approach to a related subject area (twisted de Rham
complexes, connections and curvature). The cohomology groups and their topology are not
investigated in the two papers mentioned last.

In the second section, we recall notions related to (pre-)Hilbert modules, and derive several
simple properties for projections, orthogonal complementability, and norm topologies on
quotients of these modules. Then, we prove that for a self-adjoint parametrix possessing
endomorphism L : V → V, the decomposition V = Ker L ⊕ Im L holds (Theorem 6). In
the third section, we derive the Hodge decomposition for self-adjoint parametrix possessing
complexes (Theorem 11) and the existence of the Hodge isomorphism (Corollary 14). In the
fourth section, we recall definitions of A-Hilbert bundles and A-elliptic complexes. In that
section, a theorem on the Hodge theory and a specification of the cohomology groups for
the mentioned class of A-elliptic complexes is proved (Theorem 18). At the end, we give the
example of a self-adjoint parametrix possessing map which is not A-elliptic.

Preamble: All manifolds and bundles (total spaces, base spaces, and bundle projections)
are smooth. Base spaces of all bundles are considered to be finite dimensional. The A-pseudo-
differential operators are supposed to be of finite order. Further, if an index of a labeled object
exceeds its allowed range, it is set to be zero.

2 Parametrix possessing endomorphisms of pre-Hilbert modules

Let A be a unital C∗-algebra. We denote the involution in A, the norm in A, and the partial
ordering on hermitian elements in A by ∗, | |A, and ≥, respectively.

A pre-Hilbert A-module is first a complex vector space U on which A acts. We consider
that A acts from the left, and denote the action by a dot. Second, it has to be equipped with a
map (, )U : U × U → A such that for all a ∈ A and u, v ∈ U, the following relations hold

(1) (a · u, v)U = a∗(u, v)U
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(2) (u, v)U = (v, u)∗U
(3) (u, u)U ≥ 0, and
(4) (u, u)U = 0 if and only if u = 0.

Any map (, )U : U × U → A with properties 1–4 is called an A-product. If A is the
standard normed algebra of complex numbers, properties 3 and 4 are equivalent to the positive
definiteness of (, )U . For a pre-Hilbert A-module (U, (, )U ), one defines the norm | |U : U →
[0,∞) induced by (, )U by the prescription U 	 u 
→ |u|U = √|(u, u)U |A. By a pre-Hilbert
A-submodule U of a pre-Hilbert module V, we mean an A-submodule of V which is also a
pre-Hilbert module if equipped with the restriction of the A-product in V to U . In particular,
U has to be closed in V with respect to | |V . By a pre-Hilbert A-module homomorphism L
between pre-Hilbert A-modules U and V, we mean an A-linear map, i.e., L(a ·u) = a · L(u)

for each a ∈ A and u ∈ U that is continuous with respect to the norms | |U and | |V .

We denote the set of pre-Hilbert A-module homomorphisms of U into V by HomA(U, V ).

As usual, EndA(U ) denotes the space HomA(U, U ). An adjoint of a pre-Hilbert A-module
homomorphism L : U → V is a map L∗ from V to U satisfying for each u ∈ U and v ∈ V
the identity (Lu, v)V = (u, L∗v)U . If the adjoint exists, it is unique, and it is a pre-Hilbert
A-module homomorphism as well. See, e.g., Lance [9]. We hope that denoting the adjoint
of a homomorphism by the same symbol as the involution in A does not cause a confusion.
Quite often in the literature, a pre-Hilbert A-module homomorphism L : U → V is supposed
to be adjointable. We do not follow this convention. Let us notice that when we speak of an
A-module, we consider it with its algebraic structure only. Finally, a pre-Hilbert A-module
(U, (, )U ) is called a Hilbert A-module if it is complete with respect to | |U .

Elements u, v ∈ U are called orthogonal if (u, v)U = 0. When we write a direct sum
V = U ⊕ U ′ where U and U ′ are pre-Hilbert A-submodules of V, we suppose that the
summands are mutually orthogonal. For any pre-Hilbert A-submodule U of V, we denote by
U⊥ the orthogonal complement of U. It is defined by U⊥ = {v ∈ V |(v, u)V = 0 for all u ∈
U } as one expects. We call U orthogonally complementable if there exists a pre-Hilbert A-
submodule U ′ ⊆ V such that V = U ⊕ U ′. It is well known that Hilbert and consequently
pre-Hilbert A-submodules need not be complementable. For it, see, e.g., Lance [9]. It is easy
to realize that for any pre-Hilbert A-submodules U ⊆ V of a pre-Hilbert A-module W, the
operation of taking the orthogonal complement changes the inclusion sign, i.e.,

U⊥ ⊇ V ⊥. (1)

An element p in EndA(V ) is called a projection if p2 = p. Especially, we do not require a
projection to be self-adjoint.

2.1 Complementability and quotients

We start with the following simple observation. Let p be a projection and let us denote the
A-submodule Im p by U. For each z ∈ U, there exists x ∈ V such that z = px . Thus,
pz = p2x that implies pz = px = z. In other words, if p is a projection onto an A-
submodule U, then its restriction to U is the identity on U . Further, if V = U ⊕ U ′ and if
we set p(xU + xU ′) = xU , where xU ∈ U and xU ′ ∈ U ′, then p is a projection. We call this
map a projection onto U along U ′. We prove the following simple technical lemma which
we will need later.

Lemma 1 Let V be a pre-Hilbert A-module and U be an orthogonally complementable
pre-Hilbert A-submodule of V .
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(1) If V = U ⊕U ′ holds for a pre-Hilbert A-module U ′, then U ′ = U⊥, and the projection
p onto U along U⊥ is self-adjoint.

(2) If p is a projection in V which is self-adjoint, then Im p is orthogonally complementable
by (Im p)⊥ and p is a projection onto Im p along (Im p)⊥. Further, 1− p is a self-adjoint
projection onto (Im p)⊥ along Im p.

Proof Because the sum U ⊕ U ′ is orthogonal, U ′ ⊆ U⊥. Let x ∈ U⊥ and let us write it
according to the decomposition U ⊕ U ′ as x = xU + xU ′ . We have (xU , xU )V = (x −
xU ′ , xU )V = (x, xU )V − (xU ′ , xU )V = 0 since x ∈ U⊥ and since U and U ′ are mutually
orthogonal. Thus xU = 0 and consequently, x ∈ U ′ which proves the opposite inclusion.
Further, for any x ∈ V and y = yU + yU ′ ∈ V, yU ∈ U, yU ′ ∈ U ′, we may write
(px, y)V = (xU , yU + yU ′)V = (xU , yU )V = (x, yU )V = (x, py)V , i.e., p is self-adjoint.

For the second statement, let us set U = p(V ) and U ′ = (1 − p)(V ). From x =
px+(x− px), which holds for any x ∈ V, we have V = U +U ′. For x ∈ U and y ∈ U ′, there
are u, v ∈ V such that x = pu and y = (1− p)v. We may write (x, y)V = (pu, (1− p)v)V =
(pu, v)V − (pu, pv)V = (pu, v)V − (p∗ pu, v)V = (pu, v)V − (p2u, v)V = 0. Thus, the
above written sum V = U +U ′ is orthogonal. Due to Lemma 1 item 1, U ′ = (Im p)⊥. Since
for any v ∈ V, p(1− p)v = pv − p2v = pv − pv = 0, the projection p kills elements from
U ′.Summing up, p is a projection onto Im p along (Im p)⊥.Since (1−p)2 = 1−p−p+p2 =
1 − p and (1 − p)∗ = 1 − p∗ = 1 − p, we see that 1 − p is a self-adjoint projection. The
operator 1− p projects onto U ′ which equals to (Im p)⊥ as already mentioned. Further, since
(1 − p)pv = pv − p2v = pv − pv = 0 for any v ∈ V, 1 − p is a projection onto (Im p)⊥
along Im p. ��

Let us remark that item 1 of the previous lemma expresses the uniqueness for the com-
plements of orthogonally complementable pre-Hilbert A-modules.

Now, we focus our attention to quotients of pre-Hilbert A-modules. Let U ⊆ V be
an orthogonally complementable pre-Hilbert A-submodule of a pre-Hilbert A-module V,

and p be the projection onto U⊥ along U. When we speak of a quotient V/U, we con-
sider it with the quotient A-module structure, and with the following A-product (, )V/U . We
set ([u], [v])V/U = (pu, pv)V , u, v ∈ V . The map (, )V/U is easily seen to be correctly
defined. First, it maps into the set of non-negative elements of A. Second, let us suppose that
([u], [u])V/U = 0 for an element u ∈ V . Then (pu, pu)V = 0 and consequently, pu = 0.

Thus u ∈ U and therefore [u] = 0 proving that (, )V/U is an A-product. Summing up, in
the case of an orthogonally complementable pre-Hilbert A-submodule U of a pre-Hilbert A-
module V, we obtain a pre-Hilbert A-module structure on V/U . We shall call this structure
the canonical quotient structure. However, let notice that for a normed space (Y, | |Y ) and its
closed subspace X , one usually considers the quotient space Y/X equipped with the norm
| |q : Y/X → [0,∞) defined by

|[y]|q = inf{|y − x |Y | x ∈ X},
where y ∈ Y and [y] denotes the equivalence class of y in Y/X. We call | |q the quotient
norm. It is well known that if Y is a Banach space, the quotient equipped with the quotient
norm is a Banach space as well.

The following lemma is often formulated for complementable closed subspaces of Banach
spaces. Since we shall need it for pre-Hilbert spaces and in order to stress that the completeness
is inessential, we give a detailed proof.

Lemma 2 Let U be an orthogonally complementable pre-Hilbert A-submodule of a pre-
Hilbert A-module (V, (, )V ). Then

123



364 Ann Glob Anal Geom (2015) 47:359–372

(1) the quotient norm | |q coincides with the norm induced by (, )V/U and
(2) V/U and U⊥ are isomorphic as pre-Hilbert A-modules.

Proof Let p : V → V be the projection onto U⊥ along U. Then p′ = 1− p is the projection
onto U along U⊥ (Lemma 1). For any v ∈ V, we have

|[v]|2q = infu∈U |v − u|2V
= infu∈U |(v − u, v − u)V |A

= infu∈U |(p′v + pv − u, p′v + pv − u)V |A

= infu∈U |(p′v − u, p′v + pv − u)V + (pv, p′v + pv − u)V |A

= infu∈U |(p′v − u, p′v − u)V + (pv, pv)V |A

= |(pv, pv)V |A = |[v]|2V/U ,

where in the second last step, we used the fact that |a+b|A ≥ |a|A holds for any non-negative
elements a, b ∈ A. This is a direct consequence of the well known fact that ≥ is compatible
with the vector space structure in A. (See, for instance, Dixmier [2], pp. 18.) Thus, the first
assertion is proved.

It is easy to check that � : V/U → U⊥, �([v]) = pv, is a well-defined A-module
homomorphism of V/U into U⊥. Further, let us consider the A-module homomorphism
� : U⊥ → V/U defined by �(u) = [u], u ∈ U⊥. For any u ∈ U⊥, we have �(�(u)) =
�([u]) = pu = u since p is a projection onto U⊥. For each [v] ∈ V/U, we may write
�(�([v])) = �(pv) = [pv]. Because the difference of v and pv lies in U, we get � ◦ � =
1|V/U . Thus, � and � are mutually inverse and consequently, V/U and U⊥ are isomorphic
as A-modules.

Since the topology generated by | |q and the one generated by | |V/U coincide, and since
� is the quotient map, � is continuous with respect to the induced norm topologies on
(U⊥, (, )V ) and (V/U, (, )V/U ). Further, let N ⊆ U⊥ be an open subset of U⊥. Then
p−1(N ) is an open set because p is continuous with respect to | |V and with respect to the
restriction of | |V to U⊥, being a projection of V onto U⊥ (along U ). The set of all [x] ∈ V/U
such that x ∈ p−1(N ) is an open subset of V/U as follows from the definition of the quotient
topology and the fact that | |q = | |V/U . Thus, � is continuous as well. Summing up, V/U
and U⊥ are isomorphic as pre-Hilbert A-modules. ��

Remark 3 Let U be an orthogonally complementable pre-Hilbert A-module of a pre-Hilbert
A-module V . Due to Lemma 2, if (V/U, | |q) is a Banach space, then (V/U, (, )V/U ) is
a Hilbert A-module. Further, if V is a Hilbert A-module, then (V/U, (, )V/U ) is a Hilbert
A-module as well.

2.2 Parametrix possessing endomorphisms

Now, we focus our attention to a relationship of the orthogonal complementability of images
of pre-Hilbert A-module endomorphisms and the property described in the following defin-
ition.

Definition 4 Let L be an endomorphism of a pre-Hilbert module (V, (, ))V . We call L
parametrix possessing if there exist pre-Hilbert A-module endomorphisms g, p : V → V
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such that

1 = gL + p

1 = Lg + p and

Lp = 0,

where 1 denotes the identity on V . We call a parametrix possessing map L self-adjoint
parametrix possessing if L and p are self-adjoint.

Remark 5 The first two equations in Definition 4 will be referred to as the parametrix equa-
tions (for L). Notice that there exist pre-Hilbert A-module endomorphisms which are not
parametrix possessing (see Example 8) and also such for which the maps g and p are not
uniquely determined. Homomorphisms with the latter property exist already for finite dimen-
sional Hilbert spaces (A = C). The name ’parametrix’ is borrowed from the theory of partial
differential equations where the operator g is often called the Green function.

In the next theorem, we derive the following splitting property for the self-adjoint para-
metrix possessing endomorphisms.

Theorem 6 Let L : V → V be a self-adjoint parametrix possessing endomorphism of a
pre-Hilbert A-module (V, (, )V ) with the corresponding maps denoted by g and p. Then

(1) p is a projection onto Ker L along (Im p)⊥ and
(2) V = Ker L ⊕ Im L .

Proof (1) Composing the first parametrix equation with p from the right and using the third
equation from the definition of a parametrix possessing endomorphism, we get that p2 =
p, i.e., p is a projection. Restricting 1 = gL + p to Ker L , we get 1|Ker L = p|Ker L which
implies that Ker L ⊆ Im p. Further, Lp = 0 forces Im p ⊆ Ker L . Thus, Im p = Ker L .

Using Lemma 1 item 2, p is a projection onto Im p = Ker L along (Im p)⊥.

(2) Since p is a projection onto Im p along (Im p)⊥, we have the orthogonal decomposition
V = Im p ⊕ (Im p)⊥. Using the above derived result Im p = Ker L , we conclude that
V = Im p ⊕ (Im p)⊥ = Ker L ⊕ (Ker L)⊥. It is thus sufficient to prove the equality

(Ker L)⊥ = Im L (2)

First, we prove that Im L ⊆ (Ker L)⊥. Let y = Lx for an element x ∈ V . For any
z ∈ Ker L , we may write (y, z)V = (Lx, z)V = (x, L∗z)V = (x, Lz)V = 0. Thus,
y ∈ (Ker L)⊥. Now, we prove that (Ker L)⊥ ⊆ Im L . Let x ∈ (Ker L)⊥. Using the
second parametrix equation, we obtain Lgx = (1 − p)x = x since 1 − p is a projection
onto (Ker L)⊥ (Lemma 1 item 2). Therefore, x = Lgx ∈ Im L . Summing up, Im L =
(Ker L)⊥ and the equation V = Ker L ⊕ Im L follows.

��
Remark 7 Let us notice that due to Theorem 6, the image of a self-adjoint parametrix pos-
sessing endomorphism is closed (see also Eq. 2).

Example 8 We give an example of a self-adjoint Hilbert A-module endomorphism which is
not self-adjoint parametrix possessing. See, e.g., Lance [9] for this example in a bit different
context. Let us consider the commutative C∗-algebra A = C([0, 1]) equipped with the
supremum norm and the complex conjugation as the involution. Take V = A = C([0, 1])
with the action given by the point-wise multiplication, i.e., ( f ·g)(x) = f (x)g(x), x ∈ [0, 1],
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f, g ∈ A = V and the A-product ( f, g) = f g ∈ A. The operator L : C([0, 1]) → C([0, 1])
is given by (L f )(x) = x f (x), x ∈ [0, 1], f ∈ C([0, 1]), It is obviously self-adjoint, and
thus adjointable. If L were self-adjoint parametrix possessing, we would get that Im p =
Ker L according to item 1 in the proof of Theorem 6. The definition L f = x f implies that
Ker L = { f ∈ V | f = 0 on (0, 1]}. Since V consists of continuous functions, we see that
Ker L = { f ∈ V | f = 0 on [0, 1]} = 0 ∈ V . Consequently, Im p = 0 and therefore,
p is zero. Now, the parametrix equations imply that L is bijective. On the other hand, any
non-zero constant function in V is not in the image of L . This is a contradiction. See also
Exel [5] for treating a connected matter in the context of (generalized) pseudoinverses.

3 Hodge theory for self-adjoint parametrix possessing complexes

In this section, we focus our attention to co-chain complexes d• = (Ck, dk)k∈N0 of pre-
Hilbert A-modules and adjointable pre-Hilbert A-module homomorphisms, i.e., for each
k ∈ N0, the morphism dk : Ck → Ck+1 is supposed to be an adjointable pre-Hilbert A-
module homomorphism, and dk+1dk = 0. Let us consider the sequence of Laplace operators
Lk = d∗

k dk + dk−1d∗
k−1, k ∈ N0, associated to d•. Notice that in concordance with the

preamble, L0 equals d∗
0 d0.

Lemma 9 Let d• = (Ck, dk)k∈N0 be a co-chain complex of pre-Hilbert A-modules and
adjointable pre-Hilbert A-module homomorphisms. Then

Ker Lk = Ker dk ∩ Ker d∗
k−1.

Proof The inclusion Ker Lk ⊇ Ker dk ∩ Ker d∗
k−1 follows directly from the definition of the

Laplace operator Lk . To prove the opposite one, let us consider an element x ∈ Ker Lk,

and let us write 0 = (x, Lk x)Ck = (x, d∗
k dk x + dk−1d∗

k−1x)Ck = (dk x, dk x)Ck+1 +
(d∗

k−1x, d∗
k−1x)Ck−1 . It is known that the intersection of the cone of non-negative hermitian

elements in A with the opposite cone consists only of the zero element. See, e.g., Dixmier [2],
Proposition 1.6.1., pp. 15 and 16. Thus, (dk x, dk x)Ck+1 = 0 and (d∗

k−1x, d∗
k−1x)Ck−1 = 0,

and consequently, dk x = d∗
k−1x = 0 due to the positive definiteness of the A-products in

Ck+1 and Ck−1, respectively. ��
As announced earlier, we prove the Hodge theory for complexes introduced in the next

definition.

Definition 10 Let d• = (Ck, dk)k∈N0 be a co-chain complex of pre-Hilbert A-modules
and adjointable pre-Hilbert A-module homomorphisms. We call d• a parametrix possessing
complex if for each k ∈ N0, the associated Laplace operator Lk is a parametrix possessing
pre-Hilbert A-module endomorphism of Ck . We call d• a self-adjoint parametrix possessing
complex if the operators Lk are self-adjoint parametrix possessing pre-Hilbert A-module
endomorphisms for all k ∈ N0.

Since we suppose that the differentials are pre-Hilbert A-module homomorphisms, the
associated Laplace operators are pre-Hilbert A-module endomorphisms as well. Because the
associated Laplace operators Lk are self-adjoint by their definitions, we could have demanded
the maps Lk to be parametrix possessing and pk to be self-adjoint in the previous definition
only.

In the next theorem, the “abstract” Hodge decomposition is formulated. We use Theorem
6 in its proof.
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Theorem 11 Let d• = (Ck, dk)k∈N0 be a self-adjoint parametrix possessing complex. Then
for any k ∈ N0, we have the decomposition

Ck = Ker Lk ⊕ Im d∗
k ⊕ Im dk−1.

Proof (1) Due to Lemma 9, we have Ker Lk ⊆ Ker d∗
k−1. Therefore, using the formulas (1)

and (2), we get (Ker d∗
k−1)

⊥ ⊆ (Ker Lk)
⊥ = Im Lk . Further, due to Lemma 9 again,

we have Ker Lk ⊆ Ker dk . Using (1) and (2), we get (Ker dk)
⊥ ⊆ (Ker Lk)

⊥ = Im Lk .

Summing up, (Ker d∗
k−1)

⊥ + (Ker dk)
⊥ ⊆ Im Lk .

(2) The inclusion Im dk−1 ⊆ (Ker d∗
k−1)

⊥ holds since for any x ∈ Ck−1 and y ∈ Ker d∗
k−1,

we have (dk−1x, y)Ck = (x, d∗
k−1 y)Ck−1 = 0. Similarly, Im d∗

k ⊆ (Ker dk)
⊥. Combin-

ing these two facts with the result of item 1 of this proof, we get Im dk−1 + Im d∗
k ⊆

(Ker d∗
k−1)

⊥ + (Ker dk)
⊥ ⊆ Im Lk . Now, we show that the sum Im d∗

k + Im dk−1

is orthogonal. Let us take two elements d∗
k x and dk−1z (for x ∈ Ck+1 and z ∈

Ck−1) from Im d∗
k and Im dk−1, respectively. The computation (d∗

k x, dk−1z)Ck =
(x, dkdk−1z)Ck+1 = 0 shows that Im d∗

k and Im d∗
k−1 are mutually orthogonal. Sum-

ming up, Im d∗
k ⊕ Im dk−1 ⊆ Im Lk .

(3) It is easy to prove that Im Lk ⊆ Im d∗
k ⊕Im dk−1. Indeed, for any y ∈ Im Lk, there exists

x ∈ Ck such that y = Lk x = d∗
k dk x +dk−1d∗

k−1x = d∗
k (dk x)+dk−1(d∗

k−1x) ∈ Im d∗
k +

Im dk−1. This observation together with item 2 proves that Im Lk = Im d∗
k ⊕ Im dk−1.

(4) Because Lk is a self-adjoint parametrix possessing pre-Hilbert A-module endomorphism
of Ck, we get the equality Ck = Im Lk ⊕ Ker Lk due to Theorem 6. Substituting for
Im Lk from item 3 of this proof, we obtain the decomposition from the statement of the
theorem.

��
Remark 12 (1) In item 3 of the proof of the previous theorem, we obtained for a self-adjoint

parametrix possessing complex d• the decomposition

Im Lk = Im d∗
k ⊕ Im dk−1.

(2) Notice that if d• = (Ck, dk)k∈N0 is a co-chain complex, then its adjoint (Ck+1, d∗
k )k∈N0

is a chain complex as follows from d∗
k d∗

k+1 = (dk+1dk)
∗.

Theorem 13 Let d• = (Ck, dk)k∈N0 be a self-adjoint parametrix possessing complex. Then
for any k ∈ N0,

Ker dk = Ker Lk ⊕ Im dk−1 and

Ker d∗
k = Ker Lk+1 ⊕ Im d∗

k+1.

Proof Due to Theorem 11, we know that the sums at the right hand side in both rows are
orthogonal.

The inclusion Ker Lk ⊕ Im dk−1 ⊆ Ker dk is an immediate consequence of the definition
of a co-chain complex and of Lemma 9. To prove the opposite inclusion, let us consider an
element y ∈ Ker dk . Due to Theorem 11, there exist elements y1 ∈ Ker Lk, y2 ∈ Im dk−1,

and y3 ∈ Im d∗
k such that y = y1 + y2 + y3. It is sufficient to prove that y3 = 0. Let z3 ∈ Ck+1

be such that y3 = d∗
k z3. We have 0 = (dk y, z3) = (dk y1 + dk y2 + dk y3, z3) = (dk y3, z3) =

(y3, d∗
k z3) = (y3, y3) which implies y3 = 0. Thus, the first equality follows.

The inclusion Ker Lk+1 ⊕ Im d∗
k+1 ⊆ Ker d∗

k follows from Lemma 9 and from item 2
of Remark 12. To prove the inclusion Ker d∗

k ⊆ Ker Lk+1 ⊕ Im d∗
k+1, we proceed similarly

as in the previous paragraph. For y ∈ Ker d∗
k , there exist y1 ∈ Ker Lk+1, y2 ∈ Im dk, and
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y3 ∈ Im d∗
k+1 such that y = y1 + y2 + y3 (Theorem 11). Let us consider an element z2 ∈ Ck

for which y2 = dk z2. We have 0 = (d∗
k y, z2) = (d∗

k y1 + d∗
k y2 + d∗

k y3, z2) = (d∗
k y2, z2) =

(y2, y2). Thus y2 = 0 which proves the equation in the second row. ��
Now, for a complex d• = (Ck, dk)k∈N0 of pre-Hilbert A-modules, we consider the coho-

mology groups

Hi (d•, A) = Ker (di : Ci → Ci+1)

Im (di−1 : Ci−1 → Ci )
,

i ∈ N0. Notice that in general, the A-module Zi (d•, A) = Im (di−1 : Ci−1 → Ci ) of
co-boundaries need not be orthogonally complementable or even not a closed subspace of
the pre-Hilbert A-module of boundaries Bi (d•, A) = Ker di . Consequently, the appropriate
cohomology group need not be a Hausdorff space (with respect to the quotient topology).
Nevertheless, for self-adjoint parametrix possessing complexes, we derive the following
corollary.

Corollary 14 If d• = (Ck, dk)k∈N0 is a self-adjoint parametrix possessing complex of pre-
Hilbert A-modules, then for each i the cohomology group Hi (d•, A) and the space Ker Li ⊆
Ci are isomorphic as pre-Hilbert A-modules. If d• is a self-adjoint parametrix possessing
complex of Hilbert A-modules, then for each i, the cohomology group Hi (d•, A) is a Hilbert
A-module and in particular, a Banach space.

Proof Because of Theorem 13, U = Im di−1 is an orthogonally complementable submodule
of V = Ker di . Thus we may use Lemma 2 item 2 to conclude that the cohomology group
Hi (d•, A) = Ker di/Im di−1 equipped with the canonical quotient structure is a pre-Hilbert
A-module isomorphic to the orthogonal complement of Im di−1 in Ker di . This complement
equals Ker Li thanks to Theorem 13 and the uniqueness for orthogonal complements (Lemma
1 item 1). The second statement follows in the same way using Remark 3. ��
Remark 15 The isomorphism Hi (d•, A) ∼= Ker Li is the Hodge isomorphism mentioned in
the Introduction.

4 Application to A-elliptic complexes

Let M be a finite dimensional manifold and p : F → M be a Banach bundle over M with
a differentiable bundle structure S. Recall that each Banach bundle has to be equipped with
a Banach structure || || : F → [0,+∞). As it is standard, we denote the fiber p−1(m) in m
by Fm and the restriction of || || to Fm by || ||m . A Banach structure is a smooth map from F
to R

+
0 such that for each m ∈ M, (Fm, || ||m) is a Banach space.

We call a Banach bundle p : F → M with a differentiable bundle structure S an A-Hilbert
bundle if there exists a Hilbert A-module (S, (, )S) and a bundle atlas A in the differentiable
bundle structure S such that

(1) for each m ∈ M, the fiber Fm is equipped with a Hilbert A-product, denoted by (, )m,

such that the Banach spaces (Fm, | |m) and (Fm, || ||m) are isomorphic as normed spaces,
(2) for each m ∈ M and each chart (φU , U ) ∈ A, M ⊃ U 	 m, the map φU |Fm

:
(Fm, (, )m) → (S, (, )S) is a Hilbert A-module isomorphism, and

(3) the transition maps between all charts in the bundle atlas A are maps into the group
AutA(S) of Hilbert A-module automorphisms of S.
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The first condition is set in order the norm | |m varies smoothly with respect to m ∈ M as the
Banach structure || || has to do due to its definition.

Let us recall that for two bundle charts φU : p−1(U ) → U×S and φV : p−1(V ) → V ×S,

their transition map φU V : U ∩ V → Aut(S) (the group of homeomorphisms of (S, | |S)) is
defined by the formula (φU ◦φ−1

V )(m, v) = (m, φU V (m)v), where m ∈ U ∩ V and v ∈ S. A
homomorphism of A-Hilbert bundles p1 : F1 → M and p2 : F2 → M is a map R : F1 → F2

between the total spaces of p1 and p2, such that p2 ◦ R = p1 and such that R is a Hilbert
A-module homomorphism in each fiber, i.e., for any m ∈ M, R|p−1

1 (m)
: (F1)m → (F2)m

is a Hilbert A-module homomorphism. An A-Hilbert bundle is called finitely generated
projective if the typical fiber, the Hilbert A-module (S, (, )S), is a finitely generated and
projective Hilbert A-module. See, e.g., Solovyov and Troitsky [13] for these notions.

The space �(F) of smooth sections of an A-Hilbert bundle p : F → M carries a left
A-module structure given by (a · s)(m) = a · (s(m)) for a ∈ A, s ∈ �(F) and m ∈ M. From
now on, let us suppose that M is compact and equipped with a Riemannian metric g. We
choose a volume element |volg| on the Riemannian manifold (M, g). For each t ∈ N0, one
then defines an A-product (, )t of Sobolev type on �(F). The Sobolev completion W t (F) is
the completion of the space of smooth sections �(F) of F with respect to the norm induced
by (, )t . The Sobolev completion together with the continuous extension of (, )t forms a
Hilbert A-module. See Solovyov and Troitsky [13] or Fomenko and Mishchenko [6] for
these constructions. For a different metric or a different choice of the volume element, one
may get different Sobolev completions. However, they are isomorphic as Hilbert A-modules
(see Schick [12]). By definition, the A-product (, )�(F) on �(F) equals to the restriction of
the Hilbert A-product (, )0 on W 0(F) to �(F).

For a definition of an A-pseudodifferential operator we refer to Solovyov, Troitsky [13],
pp. 79 and 80. For any A-pseudodifferential operator D : �(F1) → �(F2), we have the order
ord(D) ∈ Z of D, the adjoint D∗ : �(F2) → �(F1) of D (Theorem 2.1.37 in [13]), and the
continuous extension Dt : W t (F1) → W t−ord(D)(F2) of D (Theorem 2.1.60, p. 89 in [13])
at our disposal. Only finite order A-pseudodifferential operators are considered. Note that
the adjoint is an A-pseudodifferential operator and a pre-Hilbert A-module homomorphism,
and that the continuous extension Dt is a Hilbert A-module homomorphism.

Let us denote the cotangent bundle T ∗M → M by π. For an A-pseudodifferential operator
D, one defines the notion of its symbol σ(D) : π∗(F1) → F2. See Solovyov, Troitsky [13]
pp. 79 and 80 for a definition which generalizes the classical one. Notice that the cotangent
bundle T ∗M is considered with the trivial A-Hilbert bundle structure, i.e., we set a ·αm = αm

for each a ∈ A, αm ∈ T ∗
m M, and m ∈ M. It is known that σ(D) : π∗(F1) → F2 is an

adjointable A-Hilbert bundle homomorphism.
Let (pk : Fk → M)k∈N0 be a sequence of A-Hilbert bundles over M and let D• =

(�(Fk), Dk)k∈N0 be a complex of A-pseudodifferential operators in Fk , i.e., Dk : �(Fk) →
�(Fk+1) is an A-pseudodifferential operator and Dk+1 Dk = 0, k ∈ N0. For each ξ ∈ T ∗M,

the sequence σ •(ξ) = (Fk, σ (Dk)(ξ,−))k∈N0 is easily seen to be a complex in the category
of A-Hilbert bundles.

Definition 16 A complex D• = (�(Fk), Dk)k∈N0 of A-pseudodifferential operators in A-
Hilbert bundles is called A-elliptic if σ •(ξ) is an exact complex in the category of A-Hilbert
bundles for each ξ ∈ T ∗M \ {(m, 0) ∈ T ∗M | m ∈ M}, i.e., outside the image of the zero
section of T ∗M.

In accordance with classical conventions, we denote the Laplace operators Lk associated
to a complex D• = (�(Fk), Dk)k∈N0 of A-pseudodifferential operators by �k . Their orders,
ord(�k), will be denoted by rk for brevity.
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Remark 17 (1) A single A-pseudodifferential operator D : �(E) → �(F) may be consid-
ered as the complex

0 → �(E)
D→ �(F) → 0.

In this case, the definition of an A-elliptic complex coincides with the definition of an
A-elliptic operator as given, e.g., in Solovyov and Troitsky [13].

(2) If D• is an A-elliptic complex, then for each i ∈ N0, the Laplace operator �i is an
A-elliptic operator. See Corollary 10 in Krýsl [8] for a proof.

Next, we prove that certain specified A-elliptic complexes are self-adjoint parametrix
possessing and that, consequently, the Hodge theory holds for them. We use results from
Section 3 and Theorems 8 and 11 from [8] in the proof.

Theorem 18 Let A be a unital C∗-algebra and D• = (�(Fk), Dk)k∈N0 be an A-elliptic
complex in finitely generated projective A-Hilbert bundles Fk over a compact manifold
M. Let us suppose that for each k ∈ N0, the image of the continuous extension (�k)rk :
W rk (Fk) → W 0(Fk) of the Laplace operator �k is closed in W 0(Fk). Then for any i ∈ N0

(1) Hi (D•, A) is a finitely generated projective Hilbert A-module isomorphic to Ker �i as
a Hilbert A-module

(2) �(Fi ) = Ker �i ⊕ Im Di ⊕ Im D∗
i−1

(3) Ker Di = Ker �i ⊕ Im D∗
i , and

(4) Ker D∗
i = Ker �i+1 ⊕ Im Di .

Proof For a self-adjoint A-elliptic operator K : �(F) → �(F) of order r such that Im Kr

is closed in W 0(F), two maps denoted by G and P are constructed in the proof of Theorem
8 in Krýsl [8]. They satisfy the parametrix equations (for K ) and the equation K P = 0. In
the terminology of the current paper, K is a parametrix possessing pre-Hilbert A-module
endomorphism of the pre-Hilbert A-module (�(F), (, )�(F)). The construction of P goes as
follows. For Kr : W r (F) → W 0(F), one considers the adjoint (Kr )

∗ : W 0(F) → W r (F)

and the projection pKer (Kr )∗ of W 0(F) onto the kernel Ker (Kr )
∗ along the closed Hilbert A-

module Im Kr . Thus, according to Lemma 1 item 2, the projection pKer (Kr )∗ is self-adjoint.
The operator P is defined as the restriction of pKer (Kr )∗ to �(F) ⊆ W 0(F). Restricting
pKer (Kr )∗ to �(F) does not change its property of being an idempotent and keeps the operator
self-adjoint because the A-product (, )�(F) coincides with the restriction of (, )0 to �(F).

Summing up, P is a projection and a self-adjoint pre-Hilbert A-module endomorphism.
Since K is supposed to be self-adjoint, it is a self-adjoint parametrix possessing pre-Hilbert
A-module endomorphism according to Definition 4.

Now, we prove the theorem. Since �i = Di−1 D∗
i−1 + D∗

i Di is self-adjoint and A-elliptic
(Remark 17 item 2) and since we suppose that Im(�i )ri is closed in W 0(Fi ), we may use
the conclusion of the previous paragraph for K = �i , F = Fi and r = ri . Thus, �i is a
self-adjoint parametrix possessing pre-Hilbert A-module endomorphism. Consequently, D•
is a self-adjoint parametrix possessing complex (Definition 10). Using Theorems 11 and 13,
one obtains the statements in parts 2, 3 and 4.

Due to Corollary 14, the cohomology group Hi (D•, A) is a pre-Hilbert A-module isomor-
phic to the kernel of the Laplace operator �i . According to Theorem 11 in [8], Hi (D•, A)

is a finitely generated A-module and a Banach space (with respect to the quotient norm
| |q). Consequently (Remark 3), Hi (D•, A) equipped with the canonical quotient structure
is a Hilbert A-module. It is known that a finitely generated Hilbert A-module over a unital
C∗-algebra is projective. For this, see Theorem 5.9 in Frank, Larson [7]. Thus, also item 1 is
proved. ��
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Remark 19 Notice that the decompositions and the adjoints of the maps contained in items
2, 3 and 4 of the previous theorem are meant with respect to the A-product (, )�(Fi ) on the
pre-Hilbert A-module �(Fi ). Instead for pre-Hilbert modules we could have formulated
Sects. 2 and 3 for Hilbert A-modules only and then derive a theorem parallel to Theorem 18
for the spaces W 0(Fk) and for the appropriate “L2-cohomology” groups.

Remark 20 Let us remark that there are holomorphic Banach bundles whose Čech cohomol-
ogy groups are known to be non-Hausdorff. See Erat [4]. We should mention that the fact
that the Čech cohomology groups are considered in that text makes the situation different
from the case of cohomology of complexes which we study.

In the future, we would like to find a convenient class of Hilbert A-modules and A-
pseudodifferential operators for which the condition on the image of (the extension of) �k

in Theorem 18 is automatically satisfied.

Remark 21 Non-elliptic and parametrix possessing operator

In this example, we show that the notion of a self-adjoint parametrix possessing operator
is more general than the one of an A-elliptic operator. (We will not always indicate that
we speak about homomorphisms or endomorphisms of Hilbert A-modules and omit the
expression “Hilbert A-module”.) Let U be an infinite dimensional separable Hilbert space
considered as a Hilbert A-module for A = C and let l : U → U be the orthogonal projection
onto a finite dimensional subspace V of U. For a compact manifold M, we consider the
trivial A-Hilbert bundle q : U = M ×U → M. The projection l can be lifted to the operator
L in the space of smooth sections �(U) : L(s)(m) = (m, l(s(m))), where s ∈ �(U) and
m ∈ M. It is of order zero, and thus it equals to its symbol. More precisely, its symbol is
the map π∗(U) 	 (ξ, τ ) 
→ (q(τ ), l(pr2τ)), where pr2 : M × U → U is the projection
onto the second component of the product and ξ ∈ T ∗

q(τ )M. This map is obviously not an
isomorphism (in any fiber) of U (out of the zero section of T ∗M). We set g = L on �(U)

and (ps)(m) = (m, (1 − l)(s(m))). It is trivial to verify that 1 = Lg + p, 1 = gL + p, and
p = p∗.
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a b s t r a c t

For a C∗-algebra A of compact operators and a compact manifold M , we prove that the
Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on
smooth sections of finitely generated projective A-Hilbert bundles over M . For these C∗-
algebras andmanifolds,we get a topological isomorphismbetween the cohomology groups
of an A-elliptic complex and the space of harmonic elements of the complex. Consequently,
the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and
especially, Banach spaces. We also prove that in the category of Hilbert A-modules and
continuous adjointable Hilbert A-module homomorphisms, the property of a complex of
being self-adjoint parametrix possessing characterizes the complexes of Hodge type.

© 2016 Published by Elsevier B.V.

1. Introduction

This paper is devoted to the Hodge theory for Hilbert and pre-Hilbert A-modules, and to an application of this theory to
A-elliptic complexes of operators acting on sections of specific A-Hilbert bundles over compact manifolds if A is a C∗-algebra
of compact operators. It is a continuation of papers [1] and [2] the main result of which we recall in this article. Let A be
a C∗-algebra and M be a compact manifold. In [2], the Hodge theory is proved to hold for an arbitrary A-elliptic complex
of operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M under the condition that
the images of the extensions (to the appropriate Sobolev spaces) of the Laplacians of the complex are closed. This condition
seems to be difficult to verify in particular cases. One of the main results achieved in this paper is that one can omit the
assumption on the images if A is a C∗-algebra of compact operators.

We define what it means that the Hodge theory holds for a complex in a general additive and dagger category and study
this concept in more detail in categories of pre-Hilbert and Hilbert A-modules and continuous adjointable A-equivariant
maps. These categories constitute a special class of the so-called R-module categories which are in addition, equipped with
an involution on the morphisms spaces. Let us notice that these categories enjoy an interest in the so called categorical
quantum mechanics. See, e.g., Selinger [3], Abramsky, Heunen [4] and Abramsky, Coecke [5] for instance. However, we are
foremost interested in their occurrence in differential geometry and global analysis. We say that the Hodge theory holds for
a complex d•

= (U i, di : U i
→ U i+1)i∈Z in an additive and dagger category C or that d• is of Hodge type if for each i ∈ Z, we

have

U i
= Im di−1 ⊕ Im d∗

i ⊕ Ker∆i,
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where ∆i = d∗

i di + di−1d∗

i−1, and d∗

i and d∗

i−1 are the adjoints of di and di−1, respectively. The operators ∆i, i ∈ Z, are called
the Laplace operators of d•. Notice that no closures are present in the above decomposition since spaces are supposed to be
closed whenever we write a direct sum between them.

For aC∗-algebraA, we consider the category PH∗

A of right pre-HilbertA-modules and continuous adjointableA-equivariant
maps. The full subcategory of PH∗

A , the object of which are right Hilbert A-modules is denoted by H∗

A and it is called the
category of Hilbert A-modules. See Kaplansky [6], Paschke [7], Lance [8] and Manuilov, Troitsky [9] for information on
(pre-)Hilbert C∗-modules. Recall that each object in PH∗

A inherits a norm derived from the inner product with values in
the algebra A defined on the object. The categories PH∗

A and H∗

A are additive and dagger with respect to the orthogonal
direct sum and the involution defined by the inner product. In Krýsl [2], the so-called self-adjoint parametrix possessing
complexes in PH∗

A are introduced. According to results in that paper, any self-adjoint parametrix possessing complex in PH∗

A
is of Hodge type and its cohomology groups are pre-Hilbert A-modules isomorphic to the kernels of the Laplace operators as
pre-Hilbert A-modules. Especially, the cohomology groups are normed spaces. Note that in general, the cohomology groups
of a complex of Hilbert spaces need not be even Hausdorff in the quotient topology. In the present paper, we prove the
opposite implication for the category C = H∗

A , i.e., that if the Hodge theory holds for a complex in the category H∗

A , the
complex is already self-adjoint parametrix possessing. Thus, in H∗

A the condition of being self-adjoint parametrix possessing
characterizes the Hodge type complexes.

Let us recall that the Hodge theory is well known to hold for elliptic complexes of pseudodifferential operators acting on
smooth sections of finite rank vector bundles over compact manifolds. Classical examples of such complexes are deRham
and Dolbeault complexes over compact manifolds equipped with appropriate geometric structures. See, e.g., Palais [10] and
Wells [11].

Fomenko,Mishchenko prove in [12], that the continuous extensions of anA-elliptic operator to the Sobolev section spaces
are A-Fredholm. In [13], Bakić and Guljaš prove that any A-Fredholm endomorphism F : U → U in H∗

A has closed image
if A is a C∗-algebra of compact operators. We generalize this result to the case of an A-Fredholm morphism F : U → V
acting between Hilbert A-modules U and V . For C∗-algebras of compact operators, we further derive a ‘‘transfer’’ theorem
which, roughly speaking, enables to deduce properties of certain pre-Hilbert A-module maps from appropriate properties
of their continuous Hilbert A-module extensions. Applying the theorem generalizing the result of Bakić and Guljaš, we get
that the images of the Sobolev extensions of Laplace operators of an A-elliptic complex are closed. The transfer theorem
enables us to prove themain theorem of the article. Namely, that in the case of compactmanifolds, C∗-algebras A of compact
operators, and A-elliptic complexes, the Laplace operators themselves have closed images, they are self-adjoint parametrix
possessing, and consequently as follows from [1], the complexes are of Hodge type. We prove a further characterizations of
the cohomology groups as well.

The motivation for our research comes from quantum field theories which aim to include constraints—especially, from
the Becchi, Rouet, Stora and Tyutin or simply BRST quantization. See Henneaux, Teitelboim [14], Horuzhy, Voronin [15],
Carchedi, Roytenberg [16] and the references there. Let us explain their connection to our paper in more detail. In the
BRST quantization, one constructs complexes whose cohomology groups represent state spaces of a given physical system.
Because the state spaces in quantum theories are usually formed by infinite dimensional vector spaces, the co-cycle spaces
for the cohomology groups have to be infinite dimensional as well. It is agreed that the state spaces shall be equipped with
a topology because of a testing of the proposed theory by measurements. Since the measurements do not give a precise
value of the measured observable (a result of a measurement is always a value together with an error estimate), the state
spaces should have a good behavior of limits of converging sequences. Especially, it is desired that the limit (of a converging
sequence) to be unique. On the other hand, it is well known that the uniqueness of limits in a topological space forces the
space to be T1. However, the T1 separation axiom in a topological vector space implies that the topological vector space is
already Hausdorff. (For it, see, e.g., Theorem 1.12 in Rudin [17].) The quotient of a topological vector space is non-Hausdorff
in the quotient topology if and only if the space by which one divides is not closed. If we insist that the state spaces are
cohomology groups, we shall be able to assure that the spaces of co-boundaries are closed.

For an explanation of the requirements on a physical theory considered above, we refer to Ludwig [18] and to the first,
general, part of the still appealing paper of vonNeumann [19].Wehope that ourwork can be relevant for physicists at least in
the case when a particular BRST complex appears to be self-adjoint parametrix possessing in the categories PH∗

A or H∗

A for an
arbitrary C∗-algebra A, or an A-elliptic complex in finitely generated projective A-Hilbert bundles over a compactmanifold if
A is a C∗-algebra of compact operators. Let us mention a further inspiring topic from physics—namely, the parallel transport
in Hilbert bundles considered in a connection with quantum theory. See, e.g., Drechsler, Tuckey [20].

Let us notice that in Troitsky [21], indices of A-elliptic complexes are investigated. In that paper the operators are, quite
naturally, allowed to be changed by an A-compact perturbation in order the index of the operator is an element of the
appropriate K -group. See also Schick [22]. In this paper, we do not follow this approach and do not perturb the operators. If
the reader is interested in a possible application of the Hodge theory for A-elliptic complexes, we refer to Krýsl [23].

In the second chapter, we give a definition of the Hodge type complex, recall definitions of a pre-Hilbert and a Hilbert
C∗-module, and give several examples of them. We prove that complexes in the category of Hilbert spaces and continuous
maps are of Hodge type if the images of their Laplace operators are closed (Lemma 1). Further, we recall the definition of
a self-adjoint parametrix possessing complex in PH∗

A and some of its properties including the fact which is important for
us—namely, that they are of Hodge type (Theorem 2). We prove that if a complex in H∗

A is of Hodge type, it is already self-
adjoint parametrix possessing (Theorem 3). At the end of the second section (Example 3), we give examples of complexes
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in H∗
C whose cohomology groups are not Hausdorff spaces, and consequently they are neither self-adjoint parametrix

possessing nor of Hodge type. In the third chapter, we recall the result of Bakić and Guljaš (Theorem 4), give the mentioned
generalization of it (Corollary 5), and prove the transfer theorem (Theorem6). In the fourth section, basic facts on differential
operators acting on sections of A-Hilbert bundles over compact manifolds are recalled. In this chapter, the theorem on
the Hodge theory for C∗-algebras of compact operators and A-elliptic complexes in finitely generated projective A-Hilbert
bundles over compact manifolds is proved (Theorem 9).
Preamble: All manifolds and bundles are assumed to be smooth. Base manifolds of bundles are assumed to be finite
dimensional. We do not suppose the Hilbert spaces to be separable.

2. Self-adjoint maps and complexes possessing a parametrix

Let us recall that a category C is called a dagger category if there is a contra-variant functor ∗ : C → C which is the
identity on the objects and involutive on morphisms. Thus, for any objects U and V and any morphism F : U → V , we have
the relations ∗F : V → U , ∗IdU = IdU and ∗(∗F) = F . The functor ∗ is called the involution or the dagger. The morphism
∗F is denoted by F∗, and it is called the adjoint of F . See Burgin [24] or Brinkmann, Puppe [25].

Let us give some examples of categories which are additive and dagger.

Example 1. (1) The category of finite dimensional inner product spaces over R or C and linear maps is an example of an
additive and of a dagger category. The addition (product) of objects is given by the orthogonal sum and the addition
of morphism is the addition of linear maps. The involution is defined as the adjoint of maps with respect to the inner
products. The existence of the adjoint to any linear map is based on the Gram–Schmidt process which guarantees the
existence of an orthonormal basis. The matrix of the adjoint of a morphism with respect to orthonormal bases in the
domain and target spaces is given by taking the transpose or the transpose and the complex conjugate of the matrix of
the original map with respect to these bases.

(2) The category of Hilbert spaces and continuous maps equipped with the addition of objects and maps, and with the
involution given as in item 1 is an example of an additive and dagger category. For the existence of the adjoints, see
Meise, Vogt [26]. (The proof is based on the Riesz representation theorem for Hilbert spaces.)

Definition 1. Let C be an additive and a dagger category. We say that the Hodge theory holds for a complex d•
= (U i, di :

U i
→ U i+1)i∈Z in C or that d• is of Hodge type if for each i ∈ Z, we have

U i
= Im di−1 ⊕ Im d∗

i ⊕ Ker∆i

where ∆i = d∗

i di + di−1d∗

i−1, and d∗

i and d∗

i−1 are the adjoints of di and di−1, respectively. We call the morphism ∆i the ith
Laplace operator of d•, i ∈ Z. We say that the Hodge theory holds for a subset K ⊆ K(C) of complexes in C if it holds for
each element d•

∈ K.

Remark 1. (1) In Definition 1, we demand no compatibility of the involution with the additive structure. However, in
the categories of pre-Hilbert and Hilbert A-modules that we consider mostly, the relations (F + G)∗ = F∗

+ G∗ and
(zF)∗ = z∗F∗ are satisfied for each objects U, V , morphisms G, F : U → V , and complex number z ∈ C.

(2) The existence of the Laplace operators of d• is guaranteed by the definitions of the additive and of the dagger category.
If the dagger structure is compatible with the additive structure in the sense of item 1, we see that the Laplace operators
are self-adjoint, i.e., ∆∗

i = ∆i, i ∈ Z.

Lemma 1. Let d•
= (U i, di)i∈Z be a complex in the category of Hilbert spaces and continuous maps. If the images of the Laplace

operators of d• are closed, the Hodge theory holds for d•.
Proof. On the level of symbols, we do not distinguish the dependence of the inner products on theHilbert spaces and denote
each of them by (, ). It is easy to realize that Ker∆i = Ker d∗

i−1 ∩ Ker di. Namely, the inclusion Ker∆i ⊇ Ker di ∩ Ker d∗

i−1 is
immediate due to the definition of ∆i. The opposite one can be seen as follows. For any u ∈ Ker∆i, we have 0 = (∆iu, u) =

(d∗

i diu+di−1d∗

i−1u, u) = (diu, diu)+(d∗

i−1u, d
∗

i−1u). Since inner products are positive definite,wehave diu = 0 and d∗

i−1u = 0.
Because we assume the image of ∆i to be closed, taking the orthogonal complement of Ker∆i = Ker di ∩ Ker d∗

i−1, we
get (Ker d∗

i−1)
⊥

⊆ (Ker∆i)
⊥

= Im∆i = Im∆i and (Ker di)⊥ ⊆ (Ker∆i)
⊥

= Im∆i = Im∆i. Summing-up,

(Ker d∗

i−1)
⊥

+ (Ker di)⊥ ⊆ Im∆i.

Further, it is immediate to see that Im di−1 ⊆ (Ker d∗

i−1)
⊥ and Im d∗

i ⊆ (Ker di)⊥. Indeed, for any u ∈ Im di−1 there exists
an element u′

∈ U i−1 such that u = di−1u′. For each v ∈ Ker d∗

i−1, we have (u, v) = (di−1u′, v) = (u′, d∗

i−1v) = 0. Thus, the
inclusion follows. The other inclusion can be seen similarly. Using the result of the previous paragraph, we obtain

Im di−1 + Im d∗

i ⊆ (Ker d∗

i−1)
⊥

+ (Ker di)⊥ ⊆ Im∆i. (1)

We prove that the sum Im di−1 + Im d∗

i is direct. For it, we take u = di−1u′ and v = d∗

i v
′ for u′

∈ U i−1 and v′
∈ U i+1,

and compute (u, v) = (di−1u′, d∗

i v
′) = (didi−1u′, v′) = 0 which holds since d• is a complex. Therefore, we have

Im d∗

i ⊕ Im di−1 (⊆Im∆i).
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The inclusion Im∆i ⊆ Im di−1 ⊕ Im d∗

i is immediate. Thus, we conclude that Im∆i = Im di−1 ⊕ Im d∗

i . Since for each
i ∈ Z, ∆i is self-adjoint and its image is closed, we have U i

= Im∆i ⊕ Ker∆i. Substituting the equation for Im∆i found at
end of the previous paragraph, we get U i

= Im d∗

i ⊕ Im di−1 ⊕ Ker∆i proving that the Hodge theory holds for d•. �

Remark 2. By Lemma 1, the Hodge theory holds for any complex in the category C = Vfin of finite dimensional inner
product spaces over real or complex numbers and linear maps since any linear subspace of a finite dimensional vector
space is closed. However, it is possible to prove that the Hodge theory holds for K = K(C) in a simpler way. The relation
Ker∆i = Ker di ∩ Ker d∗

i−1 is proved in the same way as in the proof of Lemma 1. Since for any A, B ⊆ U i, the equation
(A ∩ B)⊥ = A⊥

+ B⊥ holds, we have (Ker di ∩ Ker d∗

i−1)
⊥

= (Ker di)⊥ + (Ker d∗

i−1)
⊥. Due to the finite dimension, we can

write (Ker di)⊥ = Im d∗

i and (Ker d∗

i−1)
⊥

= Im di−1, and thus (Ker∆i)
⊥

= (Ker di−1 ∩ Ker d∗

i )
⊥

= Im di−1 + Im d∗

i . The sum
is direct as follows from 0 = (didi−1u, v) = (di−1u, d∗

i v), u ∈ U i−1, v ∈ U i+1 — in the same way as in the proof of Lemma 1.
Substituting (Ker∆i)

⊥
= Im di−1 ⊕ Im d∗

i into Ui = Ker∆i ⊕ (Ker∆i)
⊥, we get U i

= Im d∗

i ⊕ Im di−1 ⊕Ker∆i. Let us notice
that in Lemma 1, we proved that the images of di and d∗

i−1 are closed.

Next we recall the definitions of the Hilbert and pre-Hilbert modules over C∗-algebras. (For C∗-algebras, we refer to
Dixmier [27].)

Definition 2. For a C∗-algebra A, a pre-Hilbert A-module is a complex vector space U , which is a right A-module (the action
is denoted by a dot) and which is in addition, equipped with a map (, ) : U × U → A such that for each z ∈ C, a ∈ A and
u, v, w ∈ U the following relations hold

(1) (u, zv + w) = z(u, v) + (u, w)
(2) (u, v · a) = (u, v)a
(3) (u, v) = (v, u)∗
(4) (u, u) ≥ 0, and (u, u) = 0 implies u = 0

where a∗ denotes the conjugation of the element a ∈ A. A pre-Hilbert A-module (U, (, )) is called a Hilbert A-module if U is
a Banach space with respect to the norm U ∋ u → |u| =

√
|(u, u)|A ∈ [0, +∞). We call the map (, ) : U ×U → A the inner

product (on U), or an A-inner product if we would like to stress the target.

Note that if A is the algebra of complex numbers, Definition 2 coincides with the one of pre-Hilbert and of Hilbert spaces.
Morphisms of pre-Hilbert A-modules (U, (, )U) and (V , (, )V ) are assumed to be continuous, A-linear and adjointable

maps. Recall that a map L : U → V is called A-linear if the equivariance condition L(u) · a = L(u · a) holds for any a ∈ A and
u ∈ U . An adjoint L∗

: V → U of a pre-Hilbert A-module morphism L : U → V is a mapwhich satisfies (Lu, v)V = (u, L∗v)U
for any u ∈ U and v ∈ V . It is known that the adjoint need not exist in general, and that if it exists, it is unique and a pre-
Hilbert A-module homomorphism, i.e., continuous and A-linear. Morphisms of Hilbert A-modules have to be morphisms
of these modules considered as pre-Hilbert A-modules. The category the objects of which are pre-Hilbert A-modules and
the morphisms of which are continuous, A-linear and adjointable maps will be denoted by PH∗

A . The category H∗

A of Hilbert
A-modules is defined to be the full subcategory of PH∗

A the object of which are Hilbert A-modules. If we drop the condition
on the adjointability of morphisms, we denote the resulting categories by PHA and HA. See Manuilov, Troitsky [9] for more
information on these objects. By an isomorphism F : U → V in PH∗

A or H∗

A , we mean a morphism which is right and left
invertible by a morphism in PH∗

A or H∗

A , respectively. In particular, we demand an isomorphism in these categories neither
to preserve the appropriate inner products nor the induced norms.

Submodules of a (pre-)Hilbert A-module V have to be closed subspaces and (pre-)Hilbert A-modules with respect to the
restrictions of the algebraic and the inner product structures defined on V . Further, if U is a submodule of the (pre-)Hilbert
A-module V , we can construct the space U⊥

= {v ∈ V , (v, u) = 0 for all u ∈ U} which is a (pre-)Hilbert A-module.
We call U orthogonally complemented in V if V = U ⊕ U⊥. There are Hilbert A-submodules which are not orthogonally
complemented. (See Lance [8].) For the convenience of the reader, we give several examples of Hilbert A-modules and an
example of a pre-Hilbert A-module. For further examples, see Solovyov, Troitsky [28], Manuilov, Troitsky [9], Lance [8], and
Wegge-Olsen [29].

Example 2. (1) LetH be a Hilbert spacewith the Hilbert inner product denoted by (, )H . The inner product is supposed to be
hermitian conjugate in the first (left) variable. The right action of the C∗-algebra A = B(H) of bounded linear operators
on the continuous dual H∗ of H is given by l · a = l ◦ a for any l ∈ H∗ and a ∈ B(H). Let us denote the unique vector
from H representing element k ∈ H∗ by k∗, i.e., (k∗, w) = k(w) for any w ∈ H. Its existence is guaranteed by the Riesz
representation theorem. The inner product (k, l) ∈ B(H) of two elements k, l ∈ H∗ is defined by (k, l)(v) = l(v)k∗,
where v ∈ H. In this case, the product takes values in the C∗-algebra K(H) of compact operators on H . In fact, the inner
product maps into the algebra of finite rank operators.

(2) For a locally compact topological space X , consider the C∗-algebra A = C0(X) of continuous functions vanishing at
infinity with the product given by the point-wise multiplication, the complex conjugation as the involution, and the
supremum norm | |A : C0(X) → [0, +∞), i.e.,

|f |A = sup{|f (x)|, x ∈ X}
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where f ∈ A. For U , we take the C∗-algebra C0(X) itself with the module structure defined by the point-wise
multiplication, i.e., (f · g)(x) = f (x)g(x), f ∈ U , g ∈ A and x ∈ X . The inner product is defined by (f , g) = f g .
Note that this is a particular example of a Hilbert A-module with U = A, right action a · b = ab for a ∈ U = A and b ∈ A,
and inner product (a, b) = a∗b, a, b ∈ U .

(3) If (U, (, )) is a Hilbert A-module, the orthogonal direct sums of a finite number of copies of U form a Hilbert A-module in
a natural way. One can also construct the space ℓ2(U), i.e., the space consisting of sequences (an)n∈N with an ∈ U , n ∈ N,
for which the series


∞

i=1(ai, ai) converges in A. The inner product is given by ((an)n∈N, (bn)n∈N) =


∞

i=1(ai, bi), where
(an)n∈N, (bn)n∈N ∈ ℓ2(U). See Manuilov, Troitsky [9].

(4) Let A be a C∗-algebra. For a compact manifold Mn, pick a Riemannian metric g and choose a volume element |volg | ∈

Γ (M, |
n T ∗M|). Then for any A-Hilbert bundle E → M with fiber a Hilbert A-module E, one defines a pre-Hilbert A-

module Γ (M, E) of smooth sections of E → M by setting (s · a)m = sm · a for a ∈ A, s ∈ Γ (M, E), and m ∈ M. One
sets

(s′, s) =


m∈M

(s′m, sm)m|volg |m

where s, s′ ∈ Γ (M, E), (, )m denotes the inner product in fiber Em, and m ∈ M. Taking the completion of Γ (M, E)
with respect to the norm induced by the A-inner product (, ) (as given in Definition 2), we get the Hilbert A-module
(W 0(M, E), (, )0). Further Hilbert A-modules (W t(M, E), (, )t), t ∈ Z, are derived from the space Γ (M, E) by
mimicking the construction of Sobolev spaces for finite rank bundles. SeeWells [11] for the finite rank case and Solovyov,
Troitsky [28] for the case of A-Hilbert bundles.

Let us turn our attention to the so-called self-adjoint parametrix possessing morphisms in the category C = PH∗

A .

Definition 3. A pre-Hilbert A-module endomorphism F : U → U is called self-adjoint parametrix possessing if F is self-
adjoint, i.e., F∗

= F , and there exist a pre-Hilbert A-module homomorphism G : U → U and a self-adjoint pre-Hilbert
A-module homomorphism P : U → U such that

1U = GF + P
1U = FG + P
FP = 0.

Remark 3. (1) Definition 3 makes sense in an arbitrary additive and dagger category as well.
(2) The map G from Definition 3 is called a parametrix or a Green operator and the first two equations in this definition are

called the parametrix equations.
(3) Composing the first parametrix equation from the right with P and using the third equation, we get that P2

= P.

(4) If F : U → U is a self-adjoint parametrix possessing endomorphism in PH∗

A , then U = Ker F ⊕ Im F (see Theorem 6 in
Krýsl [2]). In particular, the image of F is closed. Note that we do not assume that U is complete.

(5) A self-adjoint morphism in H∗

A is self-adjoint parametrix possessing if its image is closed. Indeed, the Mishchenko
theorem (Theorem 3.2 on pp. 22 in Lance [8]) enables us to write for such a self-adjoint morphism F : U → U with
closed image, the orthogonal decomposition U = Ker F ⊕ Im F . Thus, we can define the projection onto Ker F along
Im F . It is immediate that the projection is self-adjoint. Inverting F on its image and defining it by zero on the kernel
of F , we get a map G which satisfies the parametrix equations. It is continuous due to the open map theorem. Thus as
follows from item 4, a self-adjoint map F from H∗

A is self-adjoint parametrix possessing if and only if its image is closed.

Let us remind the reader that if d•
= (U i, di)i∈Z is a co-chain complex in the category C = PH∗

A , each of the Laplace
operators ∆i = di−1d∗

i−1 + d∗

i di is self-adjoint since the category is not only additive and dagger, but these structures are
also compatible (Remark 1 item 1).

Definition 4. A co-chain complex d•
∈ K(PH∗

A ) is called self-adjoint parametrix possessing if all of its Laplace operators are
self-adjoint parametrix possessing maps.

Remark 4. (1) Since ∆i+1di = (d∗

i+1di+1 + did∗

i )di = did∗

i di = did∗

i di + didi−1d∗

i−1 = di(d∗

i di + di−1d∗

i−1) = di∆i, the
Laplace operators are co-chain endomorphisms of d•. Similarly, one derives that the Laplace operators are chain
endomorphisms of the chain complex (U i, d∗

i : U i
→ U i−1)i∈Z ‘‘dual’’ to d•.

(2) Let us assume that the Laplace operators ∆i of a complex d• in PH∗

A satisfy equations ∆iGi + Pi = Gi∆i + Pi = 1Ui and
that the identity ∆iPi = 0 holds. Notice that we do not suppose that the idempotent Pi is self-adjoint. Still, we can prove
that the Green operators Gi satisfy Gi+1di = diGi, i.e., that the Green operators are co-chain endomorphisms of the
complex d• we consider. For it, see Theorem 3 in Krýsl [1].
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(3) In the following picture, facts from the previous two items are summarized in a diagrammatic way.

Ui−1

di−1
//

∆i−1

��

Ui
d∗
i−1

oo
di //

∆i

��

Ui+1

∆i+1

��

d∗
i

oo

Ui−1

di−1
//

Gi−1

OO

Ui

Gi

OO

di //

d∗
i−1

oo Ui+1
d∗
i

oo

Gi+1

OO

Let us consider the cohomology groups H i(d•) = Ker di/Im di−1 of a complex d•
∈ K(PH∗

A ), i ∈ Z. If Im di−1 is
orthogonally complemented in Ker di, one can define an inner product in H i(d•) by ([u], [v])H i(d•) = (piu, piv), where
u, v ∈ U i and pi is the projection along Im di−1 onto the orthogonal complement (Im di−1)

⊥ in Ker di. Let us call this inner
product the canonical quotient product. For facts on inner products on quotients in PH∗

A , see [2].

In the next theorem, we collect results on self-adjoint parametrix complexes from [2].

Theorem 2. Let A be a C∗-algebra. If d•
= (U i, di)i∈Z ∈ K(PH∗

A ) is self-adjoint parametrix possessing complex, then for any
i ∈ Z,

(1) U i
= Ker∆i ⊕ Im d∗

i ⊕ Im di−1, i.e., d• is a Hodge type complex.
(2) Ker di = Ker∆i ⊕ Im di−1.
(3) Ker d∗

i = Ker∆i+1 ⊕ Im d∗

i+1.
(4) Im∆i = Im d∗

i ⊕ Im di−1.
(5) H i(d•) is a pre-Hilbert A-module with respect to the canonical quotient product (, )H i(d•).
(6) The spaces Ker∆i and H i(d•) are isomorphic as pre-Hilbert A-modules. Moreover, if d• is self-adjoint parametrix possessing

complex in K(H∗

A ), then H i(d•) is an A-Hilbert module and Ker∆i ≃ H i(d•) are isomorphic as A-Hilbert modules.

Proof. See Theorem 11 in Krýsl [2] for item 1; Theorem 13 in [2] for items 2 and 3; Remark 12(1) in [2] for item 4; and
Corollary 14 in [2] for items 5 and 6. �

Next we prove that in the category C = H∗

A , the property of a complex to be self-adjoint parametrix possessing
characterizes the complexes of Hodge type.

Theorem 3. Let A be a C∗-algebra. If the Hodge theory holds for a complex d•
∈ K(H∗

A ), then d• is self-adjoint parametrix
possessing.

Proof. Because the Hodge theory holds for d•, we have the decomposition of U i into Hilbert A-modules

U i
= Ker∆i ⊕ Im di−1 ⊕ Im d∗

i

i ∈ Z. In particular, the ranges of di−1 and d∗

i are closed topological vector spaces. It is immediate to verify that

Ker d∗

i di = Ker di, Ker d∗

i−1 = Ker di−1d∗

i−1.

Since the ranges of di−1 and d∗

i are closed, we get

Im d∗

i di = Im d∗

i , Im di−1d∗

i−1 = Im di−1

using the theorem of Mishchenko (Theorem 3.2 in Lance [8]) for d∗

i and di−1. In particular, we see that the images of d∗

i di
and di−1d∗

i−1 are closed as well.
For i ∈ Z and u ∈ U i, we have

(∆iu, ∆iu) = (d∗

i diu, d
∗

i diu) + (di−1d∗

i−1u, di−1d∗

i−1u)

since (d∗

i diu, di−1d∗

i−1u) = (diu, didi−1d∗

i−1u) = 0 for any u ∈ U i. Due to the definition of the Laplace operators and
the positive definiteness of the A-Hilbert product, we have Ker∆i = Ker di ∩ Kerd∗

i−1 (as in the proof of Lemma 1). For
u ∈ (Ker∆i)

⊥
= (Ker di)⊥ + (Ker d∗

i−1)
⊥, there exist u1 ∈ (Ker di)⊥ = Im d∗

i and u2 ∈ (Ker d∗

i−1)
⊥

= Im di−1 such that
u = u1 + u2. Consequently,

(∆iu, ∆iu) = (d∗

i di(u1 + u2), d∗

i di(u1 + u2)) + (di−1d∗

i−1(u1 + u2), di−1d∗

i−1(u1 + u2))

= (d∗

i diu1, d∗

i diu1) + (d∗

i diu2, d∗

i diu2) + (d∗

i diu1, d∗

i diu2) + (d∗

i diu2, d∗

i diu1)

+ (di−1d∗

i−1u1, di−1d∗

i−1u1) + (di−1d∗

i−1u2, di−1d∗

i−1u2)

+ (di−1d∗

i−1u1, di−1d∗

i−1u2) + (di−1d∗

i−1u2, di−1d∗

i−1u1)

= (d∗

i diu1, d∗

i diu1) + (di−1d∗

i−1u2, di−1d∗

i−1u2)
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since (d∗

i diu2, d∗

i diu2) = (d∗

i diu1, d∗

i diu2) = 0 due to u2 ∈ Im di−1, and (di−1d∗

i−1u1, di−1d∗

i−1u1) = (di−1d∗

i−1u1, di−1d∗

i−1u2)
= 0 due to u1 ∈ Im d∗

i . Because both summands at the right-hand side of

(∆iu, ∆iu) = (d∗

i diu1, d∗

i diu1) + (di−1d∗

i−1u2, di−1d∗

i−1u2)

are non-negative, we obtain (∆iu, ∆iu) ≥ (d∗

i diu1, d∗

i diu1) and (∆iu, ∆iu) ≥ (di−1d∗

i−1u2, di−1d∗

i−1u2). Consequently

|∆iu| ≥ |d∗

i diu1| (2)

|∆iu| ≥ |di−1d∗

i−1u2|. (3)

(See paragraph 1.6.9 on pp. 18 in Dixmier [27].) Notice that d∗

i di and d∗

i−1di−1 are injective on (Ker d∗

i di)
⊥

= (Ker di)⊥ and
(Ker di−1d∗

i−1)
⊥

= (Ker d∗

i−1)
⊥, respectively, and zero on the complements of the respective spaces. Due to an equivalent

characterization of closed image maps on Banach spaces, there are positive real numbers α, β such that |d∗

i diu1| ≥ α|u1|

and |di−1d∗

i−1u2| ≥ β|u2| hold for any u1 ∈ (Ker di)⊥ and u2 ∈ (Ker d∗

i−1)
⊥ (see Theorem 2.5 in Abramovich, Aliprantis [30]).

Substituting these inequalities into (2) and (3) and adding the resulting ones, we see that 2|∆iu| ≥ α|u1| + β|u2|.
Thus |∆iu| ≥

1
2min{α, β}(|u1| + |u2|) ≥

1
2min{α, β}|u1 + u2| =

1
2min{α, β}|u| by the triangle inequality. Using the

characterization of closed image maps again, we get that the image of ∆i is closed. This implies that d• is self-adjoint
parametrix possessing using Remark 3 item 5. �

Remark 5. From Theorems 2, 3 and Remark 3 item 5, we get that a complex in H∗

A is of Hodge type if and only if the images
of its Laplace operators are closed if and only if it is self-adjoint parametrix possessing.

Example 3. We give examples of complexes which are not self-adjoint parametrix possessing.

(1) For a compact manifold M of positive dimension, let us consider the Sobolev spaces W k,l(M) for k, l non-negative
integers. For l = 2, these spaces are complex Hilbert spaces. Due to the Rellich–Kondrachov embedding theorem and
the fact that the dimension of W k,2(M) is infinite, the canonical embedding i : W k,2(M) ↩→ W l,2(M) has a non-closed
image for k > l. We take

d•
= 0 // W k,2(M)

i // W l,2(M) // 0.

Labeling the first element in the complex by zero, the second cohomology H2(d•) = Ker 0/Im i = W l,2(M)/i(W k,2(M))
is non-Hausdorff in the quotient topology. The complex is not self-adjoint parametrix possessing due to Theorem 2 item
5. Consequently, it is not of Hodge type (Theorem 3).

(2) This example shows a simpler construction of a complex in K(H∗
C) which is not of Hodge type. Without any reference

to a manifold, we can define mapping i : ℓ2(N) → ℓ2(N) by setting i(en) = en/n, where (en)+∞

n=1 denotes the canonical
orthonormal system of ℓ2(N). It is easy to check that i is continuous. Further, the set i(ℓ2(N)) is not closed. For it, the
sequence (1, 1/2, 1/3, . . .) ∈ ℓ2(N) is not in the image. Indeed, the preimage of this element had to be the sequence
(1, 1, 1, . . .) which is not in ℓ2(N). On the other hand, (1, 1/2, 1/3, . . .) lies in the closure of i(ℓ2(N)) since it is the limit

of the sequence i((1, 0 . . .)), i((1, 1, 0, . . .)), i((1, 1, 1, 0 . . .)), . . . . The complex 0 → ℓ2(N)
i

−→ ℓ2(N) → 0 is not of
Hodge type and it is not self-adjoint parametrix possessing by similar reasons as those given in the example above.

3. C∗-Fredholm operators over C∗-algebras of compact operators

In this section, we focus on complexes over C∗-algebras of compact operators, and study C∗-Fredholm maps acting
between Hilbert modules over such algebras. For the convenience of the reader, we recall some known notions.

Definition 5. Let (U, (, )U) and (V , (, )V ) be Hilbert A-modules.

(1) For any u ∈ U and v ∈ V , the operator Fu,v : U → V defined by U ∋ u′
→ Fu,v(u′) = u · (v, u′) is called an elementary

operator. A morphism F : U → V in H∗

A is called of A-finite rank if it can be written as a finite C-linear combination of
the elementary operators.

(2) The set KA(U, V ) of A-compact operators on U is defined to be the closure of the vector space of the A-finite rank
morphisms in the operator norm on HomH∗

A
(U, V ), induced by the norms | |U and | |V .

(3) We call F ∈ HomH∗
A
(U, V ) A-Fredholm if there exist Hilbert A-module homomorphisms GV : V → U and GU : U → V

and A-compact homomorphisms PU : U → U and PV : V → V such that

GUF = 1U + PU
FGV = 1V + PV

i.e., if F is left and right invertible modulo A-compact operators.
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Remark 6. (1) Equivalent definition of A-compact operators. The A-finite rank operators are easily seen to be adjointable.
Suppose for a moment that we define the ‘‘A-compact’’ operators as morphisms in the category HA of Hilbert A-modules
and continuous A-module homomorphisms that lie in the operator norm closure in HomHA(U, V ) ⊇ HomH∗

A
(U, V )

of the A-finite rank operators. One can prove that these operators are adjointable. Thus, the set of these ‘‘A-compact’’
elements coincides with the set of the A-compact operators defined above (Definition 5). For it see, e.g., Corollary 15.2.4
in Wegge-Olsen [29].

(2) A-compact vs. compact. It is well known that in general, the notion of an A-compact operator does not coincide with
the notion of a compact operator in a Banach space. Indeed, let us consider an infinite dimensional unital C∗-algebra A
(1 ∈ A), and take U = A with the right action given by the multiplication in A and the inner product (a, b) = a∗b for
a, b ∈ A. Then the identity 1U : U → U is A-compact since it is equal to F1,1. But it is not a compact operator in the
classical sense since U is infinite dimensional.

Example 4. (1) A-Fredholm operator with non-closed image. Let us consider the space X = [0, 1] ⊆ R, the C∗-algebra
A = C([0, 1]) and the tautological Hilbert A-module U = A = C([0, 1]) (second paragraph of Example 2). We
give a simple proof of the fact (well known in other contexts) that there exists an endomorphism on U which is A-
Fredholm but the image of which is not closed. Let us take an arbitrary map T ∈ EndH∗

A
(U). Writing f = 1 · f , we

have T (1 · f ) = T (1) · f = T (1)f . Thus, T can be written as the elementary operator Ff0,1 where f0 = T (1). Since T
is arbitrary, we see that KA(U,U) = EndH∗

A
(U). Consequently, any endomorphism T ∈ EndH∗

A
(U) is A-Fredholm since

T1U = 1UT = 1U + (T − 1U). Let us consider operator Ff = xf , f ∈ U . This operator satisfies F = F∗, and it is clearly
a morphism of the Hilbert A-module U . It is immediate to realize that Ker F = 0. Suppose that the image of F = F∗

is closed. Using Theorem 3.2 in Lance [8], we obtain C([0, 1]) = Im F∗
⊕ Ker F = Im F . Since the constant function

1 ∉ Im F , we get a contradiction. Therefore Im F is not closed although F is an A-Fredholm operator. Let us recall that
the image of a Fredholm operator on a Banach space, in the classical sense, is closed.

(2) Hilbert space over its compact operators. Let (H, (, )H) be a Hilbert space and let us take A = K(H) and U = H∗ with
the action and the inner product as in Example 2 item 1. We have Fk,l(m) = k · (l,m) for any k, l,m ∈ H∗. An easy
computation shows that Fk,l(m) = k(l∗)m where l∗ is defined in Example 2. Thus, Fk,l are scalar operators and their
finite linear combinations are scalar operators as well. Therefore, their closure KK(H)(H∗) = C1H∗ , where 1H∗ denotes
the identity on H∗.

Remark 7. Let us remark that the definition of an A-Fredholm operator on pp. 841 inMishchenko, Fomenko [12] is different
from the definition of an A-Fredholm operator given in item 3 of Definition 5 of our paper. However, an A-Fredholm operator
in the sense of Fomenko and Mishchenko is necessarily invertible modulo an A-compact operator (see Theorem 2.4 in
Fomenko, Mishchenko [12]), i.e., it is an A-Fredholm operator in our sense.

Definition 6. A C∗-algebra is called a C∗-algebra of compact operators if it is a C∗-subalgebra of the C∗-algebra of compact
operators K(H) on a Hilbert space H.

If A is a C∗-algebra of compact operators, an analog of an orthonormal system in a Hilbert space is introduced for the case
of Hilbert A-modules in the paper of Bakić, Guljaš [13]. For a fixed Hilbert A-module, the cardinality of any of its orthonormal
systems does not depend on the choice of such a system. We denote the cardinality of an orthonormal system of a Hilbert
A-module U over a C∗-algebra A of compact operators by dimAU . Let us note that in particular, an orthonormal system forms
a set of generators of the module (see [13]).

Theorem 4. Let A be a C∗-algebra of compact operators, U be a Hilbert A-module, and F ∈ EndH∗
A
(U). Then F is A-Fredholm, if

and only if its image is closed and dimAKer F and dimA(Im F)⊥ are finite.

Proof. Bakić, Guljaš [13], pp. 268. �

Corollary 5. Let A be a C∗-algebra of compact operators, U and V be Hilbert A-modules, and F ∈ HomH∗
A
(U, V ). Then F is an

A-Fredholm operator, if and only if its image is closed and dimAKer F and dimA(Im F)⊥ are finite.

Proof. Let F : U → V be an A-Fredholm operator and GU , PU and GV , PV be the corresponding left and right inverses and
projections, respectively, i.e., GUF = 1U + PU and FGV = 1V + PV .

Let us consider the element F =
0 F∗

F 0


∈ EndH∗

A
(U ⊕ V ). For this element, we can write

0 GU
G∗

V 0

 
0 F∗

F 0


=


1U + PU 0

0 1V + P∗

V


=


1U 0
0 1V


+


PU 0
0 P∗

V


.

Since the last writtenmatrix is an A-compact operator in EndH∗
A
(U⊕V ), F is left invertiblemodulo an A-compact operator on

U⊕V . The right invertibility is proved in a similar way. Summing-up, F is A-Fredholm. According to Theorem 4, F has closed
image. This implies that F has closed image as well due to the orthogonality of the modules U and V in U ⊕ V . Let us denote
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the orthogonal projections of U ⊕ V onto U and V by projU and projV , respectively. Due to Theorem 4, dimA(Ker F) and
dimA(Im F)⊥ are finite. Since Ker F = projU(Ker F) and Im F = projV (Im F), the finiteness of dimAKer F and dimA(Im F)⊥

follows from the finiteness of dimA(Ker F) and dimA(Im F)⊥.
If dimA Ker F and dimA(Im F)⊥ are finite, we deduce that dimA Ker F and dimA(Im F)⊥ are finite as well using Ker F∗

=

(Im F)⊥ and Ker F = (Im F∗)⊥. If Im F is closed, the image Im F = Im F∗
⊕ Im F is closed by Theorem 3.2 in [8].

Thus, F satisfies the assumptions of Theorem 4, and we conclude that F is A-Fredholm. Consequently, there exists a map
G =

A B
C D


∈ EndH∗

A
(U ⊕ V ) such that FG = 1U⊕V + PU⊕V for an A-compact operator PU⊕V in U ⊕ V . Expanding this

equation, we get FB = 1V + projVPU⊕V |V . It is immediate to realize that projVPU⊕V |V is an A-compact operator in V . Thus, F
is right invertible modulo an A-compact operator in V . Similarly, one proceeds in the case of the left inverse. Summing-up,
F is an A-Fredholm morphism. �

Now, we state and prove the theorem on the ‘‘transfer’’ as promised in the introduction.

Theorem 6. Let A be a C∗-algebra of compact operators, (V , (, )V ) and (W , (, )W ) be Hilbert A-modules, and (U, (, )U) be a
pre-Hilbert A-module which is a vector subspace of V andW such that the norms | |W and | |U coincide on U, and | |V restricted to
U dominates | |U . Suppose that D ∈ EndPH∗

A
(U) is a self-adjoint morphism having a continuous adjointable extensionD : V → W

such that
(i) D is A-Fredholm,
(ii) D−1(U),D∗−1(U) ⊆ U and
(iii) KerD and KerD∗ are subsets of U .

Then D is a self-adjoint parametrix possessing operator in U .

Proof. We construct the parametrix and the projection.
(1) Using assumption (i),D has closed image by Corollary 5. By Theorem 3.2 in Lance [8], the image ofD∗

: W → V is closed
as well, and the following decompositions

V = KerD ⊕ ImD∗,

W = KerD∗
⊕ ImD

hold. RestrictingD to the Hilbert A-module ImD∗, we obtain a continuous bijective Hilbert A-module homomorphism
ImD∗

→ ImD.
Let us setG(x) =


(D|ImD∗)

−1(x) x ∈ ImD
0 x ∈ KerD∗.

TheoperatorG : W → V is continuous by the openmap theorem.Due to its construction,G is amorphism in the category
HA. Because of the adjointability ofD, and the definition ofG,G is adjointable as well. Summing-up,G ∈ HomH∗

A
(W , V ).

Note thatG : W → ImD∗.
(2) It is easy to see that the decomposition V = KerD ⊕ ImD∗ restricts to U in the sense that U = KerD ⊕ (ImD∗

∩ U).
Indeed, let u ∈ U . Then u ∈ V and thus u = v1 + v2 for v1 ∈ KerD and v2 ∈ ImD∗. Since KerD ⊆ U (assumption (iii))
and KerD ⊆ KerD, we have KerD = KerD. Similarly, one proves that KerD∗

= KerD. In particular, v1 ∈ KerD. Since
U is a vector space, v2 = u − v1 and u, v1 ∈ U , v2 is an element of U as well. Thus, U ⊆ KerD ⊕ (ImD∗

∩ U). Since
KerD, ImD∗

∩ U ⊆ U , the decomposition holds.
(3) Further, we have ImD∗

∩ U = ImD. Indeed, if u ∈ U and u = D∗w for an element w ∈ W then w ∈ U due to item
(ii) and consequently, u = D∗w = D∗w = Dw that implies ImD∗

∩ U ⊆ ImD. The opposite inclusion is immediate.
(Similarly, one proves that ImD∩U = ImD.) Putting this result together with the conclusion of item 2 of this proof, we
obtain U = KerD ⊕ ImD.

(4) It is easy to realize thatG|U is into U . Namely, if v = Gu for an element u ∈ U ⊆ V , we have u = u1 + u2 for u1 ∈ KerD
and u2 ∈ ImD∗ according to the decomposition of V above. Since u2 = u− u1 and u1 ∈ U (due to (iii)), we see that u2 is
an element of U as well. Consequently, we may write v = G|Uu = Gu1 +Gu2 = D−1

|ImD∗
u2. SinceD−1(U) ⊆ U (item (ii)),

we obtain that v ∈ U proving thatG|U is into U . Let us set G = G|U . Due to the assumptions on the norms | |U , | |V , and
| |W and the continuity ofG : (W , | |W ) → (V , | |V ), it is easy to see that G : U → U is continuous as well.

(5) Defining P to be the projection of U onto KerD along the ImD, we get a self-adjoint projection on the pre-Hilbert
module U due to the decomposition U = KerD ⊕ ImD derived in item 3 of this proof. The relations DP = 0 and
1U = GD + P = DG + P are then easily verified using the relation KerD∗

= KerD. �

Remark 8. In the assumptions of the preceding theorem, specific properties are generalized which hold for self-adjoint
elliptic operators acting on smooth sections of vector bundles over compact manifolds. For instance, assumption (ii)
corresponds to the smooth regularity and (iii) is a generalization of the fact that differential operators are of finite order.
See, e.g., Palais [10] or Wells [11]. As we will see in the next chapter, these properties remain true in the case of elliptic
complexes on sections of finitely generated projective Hilbert C∗-bundles over compact manifolds.
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4. Complexes of pseudodifferential operators in C∗-Hilbert bundles

For a definition of a C∗-Hilbert bundle, bundle atlae and differential structures of bundles, we refer to Mishchenko,
Fomenko, [12], Schick [22] or Krýsl [31]. For definitions of the other notions used in this and in the next paragraph, see
Solovyov, Troitsky [28]. Let us recall that for an A-pseudodifferential operator D : Γ (M, E) → Γ (M, F ) acting between
smooth sections of A-Hilbert bundles E and F over a manifold M , we have the order ord(D) ∈ Z of D and the symbol map
σ(D) : π∗(E) → π∗(F ) of D at our disposal. Here, the map π : T ∗M → M denotes the projection of the cotangent
bundle. Moreover, if M is compact, then for A-Hilbert bundles E → M and F → M , an A-pseudodifferential operator
D : Γ (M, E) → Γ (M, F ), and an integer t ∈ Z, we can form

(1) the so called Sobolev type completions (W t(M, E), (, )t) of (Γ (M, E), (, ))
(2) the adjoint D∗

: Γ (M, F ) → Γ (M, E) of D and
(3) the continuous extensions Dt : W t(M, E) → W t−ord(D)(M, F ) of D.

Smooth sections (Γ (M, G), (, )) of anA-Hilbert bundleG → M formapre-HilbertA-module and spaces (W t(G), (, )t) are
Hilbert A-modules. See Example 2 item 4 for a definition of the inner product (, ). The adjoint D∗ of an A-pseudodifferential
operator D is considered with respect to the inner products (, ) on the pre-Hilbert A-modules of smooth sections of the
appropriate bundles. Operators D and D∗ are pre-Hilbert A-module morphisms, extensions Dt are adjointable Hilbert A-
module morphisms, and the symbol map σ(D) is a morphism of A-Hilbert bundles.

The definition of A-ellipticity we give below, is a straightforward generalization of the ellipticity of differential operators
and differential complexes that act on bundles with finite dimensional fibers. The first part of the definition appears already
in Solovyov, Troitsky [28].

Definition 7. Let D : Γ (M, E) → Γ (M, F ) be an A-pseudodifferential operator. We say that D is A-elliptic if σ(D)(ξ , −) :

E → F is an isomorphism of A-Hilbert bundles for any non-zero ξ ∈ T ∗M . Let (pi : E i
→ M)i∈Z be a sequence of A-Hilbert

bundles and (Γ (M, E i), di : Γ (M, E i) → Γ (M, E i+1))i∈Z be a complex of A-pseudodifferential operators. We say that d• is
A-elliptic if and only if the complex of symbol maps (E i, σ (di)(ξ , −))i∈Z is exact for each non-zero ξ ∈ T ∗M.

Remark 9. One can show that the Laplace operators ∆i = di−1d∗

i−1 + d∗

i di, i ∈ Z, of an A-elliptic complex are A-elliptic
operators in the sense of Definition 7. For a proof in the C∗-case, see Lemma 9 in Krýsl [1]. Let us notice that the assumption
on unitality of A is inessential in the proof of Lemma 9 in [1].

Recall that an A-Hilbert bundle G → M is called finitely generated projective if its fibers are finitely generated and
projective Hilbert A-modules. See Manuilov, Troitsky [9] for information on projective Hilbert A-modules. Let us recall a
theorem of Fomenko and Mishchenko on a relation of the A-ellipticity and the A-Fredholm property.

Theorem 7. Let A be a C∗-algebra, M a compact manifold, E → M a finitely generated projective A-Hilbert bundle over M, and
D : Γ (M, E) → Γ (M, E) an A-elliptic operator. Then the continuous extension

Dt : W t(M, E) → W t−ord(D)(M, E)

is an A-Fredholm morphism for any t ∈ Z.

Proof. See Fomenko, Mishchenko [12] and Remark 7. �

Corollary 8. Under the assumptions of Theorem 7, KerDt = KerD for any t ∈ Z. If moreover D is self-adjoint, then also
KerDt

∗
= KerD for any t ∈ Z.

Proof. See Theorem 7 in Krýsl [1] for the first claim, and the formula (5) in [1] for the second one. �

Let us notice that the first assertion in Corollary 8 appears as Theorem 2.1.145 on pp. 101 in Solovyov, Troitsky [28].
Now, we use Theorems 2, 6 and a part of Corollary 5 to derive the ‘‘main theorem’’ in which the Hodge theory for A-elliptic
complexes is established for the case of algebras of compact operators, compact manifolds and finitely generated projective
C∗-Hilbert bundles.

Theorem 9. Let A be a C∗-algebra of compact operators, M be a compact manifold, (pi : E i
→ M)i∈Z be a sequence of finitely

generated projective A-Hilbert bundles over M and d•
= (Γ (M, E i), di : Γ (M, E i) → Γ (M, E i+1))i∈Z be a complex of A-

differential operators. If d• is A-elliptic, then for each i ∈ Z

(1) d• is of Hodge type, i.e., Γ (M, E i) = Ker∆i ⊕ Im d∗

i ⊕ Im di−1.
(2) Ker di = Ker∆i ⊕ Im di−1.
(3) Ker d∗

i = Ker∆i+1 ⊕ Im d∗

i+1.
(4) Im∆i = Im di−1 ⊕ Im d∗

i .
(5) The cohomology group H i(d•) is a finitely generated projective Hilbert A-module that is isomorphic to the A-Hilbert module

Ker∆i.
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Proof. Since d• is an A-elliptic complex, the associated Laplace operators are A-elliptic (Remark 9) and self-adjoint.
According to Theorem 7, the extensions (∆i)t are A-Fredholm for any t ∈ Z.

Let us set D = ∆i, U = Γ (M, E i), V = W ord(∆i)(M, E i), and W = W 0(M, E i) considered with the appropriate inner
products. Then U is a vector subspace of V ∩ W . Since ∆i is A-elliptic, Ker∆i = Ker (∆i)t = Ker (∆i)

∗
t due to Corollary 8.

Because the operator D is of finite order, D−1(Γ (M, E i)), D∗−1(Γ (M, E i)) ⊆ Γ (M, E i). The norm on U = Γ (M, E i)
coincides with the norm on W = W 0(M, E i) restricted to U and the norm | |U on U is dominated by the norm | |V on
V = W ord(D)(M, E i) restricted to U . Thus, the assumptions of Theorem 6 are satisfied and we may conclude, that ∆i is a
self-adjoint parametrix possessing morphism, and thus, d• is self-adjoint parametrix possessing according to the definition.
The assertions in items 1–4 follow from the corresponding assertions of Theorem 2.

Using Theorem 2 item 5, H i(d•) ≃ Ker∆i as pre-Hilbert modules. Let us notice again that the norm on W 0(M, E i)
restricted to Γ (M, E i) coincides with the norm on Γ (M, E i). Since Ker∆i = Ker (∆i)0 (Corollary 8) and the latter space
is a Hilbert A-module, the cohomology group is a Hilbert A-module as well and the isomorphism is a Hilbert A-module
isomorphism.

Because (∆i)0 is A-Fredholm and A is a C∗-algebra of compact operators, dimAKer(∆i)0 < ∞ by Corollary 5. It follows
by Corollary 8 that the kernel of ∆i is finitely generated. Hence, the cohomology group H i(d•) is finitely generated as well.

Since the image of (∆i)0 is closed (Corollary 5), we haveW 0(M, E i) = Ker (∆i)0 ⊕ Im (∆i)
∗

0 and the image (∆i)
∗

0 is closed
both due to the Mishchenko theorem (Theorem 3.2 in Lance [8]). Consequently, Ker∆i = Ker (∆i)0 is a projective A-Hilbert
module by Theorems 3.1 and 1.3 in Fomenko, Mishchenko [12]. �

Remark 10. Let us notice that if the assumptions of Theorem 9 are satisfied, the cohomology groups share the properties of
the fibers in the sense that they are finitely generated projective A-Hilbert modules.

Acknowledgment

The author thanks for a financial support from the foundation PRVOUK P47 at the School of Mathematics of the Faculty
of Mathematics and Physics granted by the Charles University in Prague.

References

[1] S. Krýsl, Hodge theory for elliptic complexes over unital C∗-algebras, Ann. Global Anal. Geom. 45 (3) (2014) 197–210.
[2] S. Krýsl, Hodge theory for complexes over C∗-algebras with an application to A-ellipticity, Ann. Global Anal. Geom. 47 (4) (2015) 359–372.
[3] P. Selinger, Finite dimensional Hilbert spaces are complete for dagger compact closed categories, Log. Methods Comput. Sci. 8 (3) (2012).
[4] S. Abramsky, C. Heunen, H∗-algebras and non-unital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics,

in: Mathematical Foundations of Information Flow, in: Proc. Sympos. Appl. Math., vol. 71, AMS, Providence, RI, 2012, pp. 1–24.
[5] S. Abramsky, B. Coecke, Categorical quantum mechanics, in: Handbook of Quantum Logic and Quantum Structures—Quantum Logic, Elsevier,

North-Holland, Amsterodam, 2009, pp. 261–263.
[6] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953) 839–858.
[7] W. Paschke, Inner product modules over B∗-algebras, Trans. Amer. Math. Soc. 182 (1973) 443–468.
[8] C. Lance, Hilbert C∗-modules. A toolkit for operator algebraists, in: London Mathematical Society Lecture Note Series, vol. 210, Cambridge University

Press, Cambridge, 1995.
[9] A. Manuilov, A. Troitsky, Hilbert C∗-modules, in: Translations of Mathematical Monographs, vol. 226, American Mathematical Society, Providence,

Rhode-Island, 2005.
[10] R. Palais, Seminar on the Atiyah–Singer index theorem, in: Annals of Mathematics Studies, vol. 57, Princeton University Press, Princeton, NJ, 1965.
[11] R. Wells, Differential analysis on complex manifolds, in: Graduate Texts in Mathematics, vol. 65, Springer, New York, 2008.
[12] A. Fomenko, A. Mishchenko, The index of elliptic operators over C∗-algebras, Izv Akad. Nauk SSSR, Ser. Mat. 43 (4) (1979) 831–859. 967.
[13] D. Bakić, B. Guljaš, Hilbert C∗-modules over C∗-algebras of compact operators, Acta Sci. Math. (Szeged) 68 (1–2) (2002) 249–269.
[14] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, NJ, 1992.
[15] S. Horuzhy, A. Voronin, Remarks on mathematical structure of BRST theories, Comm. Math. Phys. 123 (4) (1989) 677–685.
[16] D. Carchedi, D. Roytenberg, Homological Algebra for Superalgebras of Differentiable Functions, preprint, electronically available at arXiv:1212.3745.
[17] W. Rudin, Functional Analysis, Mc-Graw-Hill Book Company, 1973.
[18] G. Ludwig, Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien, Theorien, Z. Physik 181

(1964) 233–260.
[19] J. Neumann von, Zur operatorenmethode in der klassischen mechanik, Ann. of Math. (2) 33 (3) (1932) 587–642.
[20] W. Drechsler, P. Tuckey, On quantum and parallel transport in a Hilbert bundle over spacetime, Classical Quantum Gravity 13 (1996) 611–632.
[21] E. Troitsky, The index of equivariant elliptic operators over C∗-algebras, Ann. Global Anal. Geom. 5 (1) (1987) 3–22.
[22] T. Schick, L2-index theorems, KK -theory, and connections, New York J. Math. 11 (2005) 387–443.
[23] S. Krýsl, Cohomology of the de Rham complex twisted by the oscillatory representation, Differential Geom. Appl. 33 (Suppl.) (2014) 290–297.
[24] M. Burgin, Categories with involution, and correspondences in γ -categories, Tr. Mosk. Mat. Obs. 22 (1970) 161–228.
[25] H. Brinkmann, D. Puppe, Abelsche und exakte Kategorien, Korrespondenzen, in: Lecture Notes in Mathematics, vol. 96, Springer-Verlag, Berlin,

New York, 1969.
[26] R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, New York, 1997.
[27] J. Dixmier, Les C∗-algèbres et leurs Représentations, Gauthier-Villars, Paris, 1969.
[28] Y. Solovyov, E. Troitsky, C∗-algebras and elliptic operators in differential topology, in: Transl. of Mathem. Monographs, vol. 192, AMS, Providence,

Rhode-Island, 2001.
[29] N. Wegge-Olsen, K -theory and C∗-algebras—A Friendly Approach, Oxford University Press, Oxford, 1993.
[30] Y. Abramovich, C. Aliprantis, An invitation to operator theory, in: Graduate Studies in Mathematics, vol. 50, American Mathematical Society,

Providence, RI, 2002.
[31] S. Krýsl, Analysis over C∗-algebras, J. Geom. Symmetry Phys. 33 (2014) 1–25.

http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref1
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref2
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref3
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref4
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref5
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref6
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref7
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref8
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref9
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref10
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref11
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref12
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref13
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref14
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref15
http://arxiv.org/1212.3745
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref17
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref18
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref19
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref20
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref21
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref22
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref23
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref24
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref25
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref26
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref27
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref28
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref29
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref30
http://refhub.elsevier.com/S0393-0440(15)00270-3/sbref31



