
STOCHASTIC DOMINANCE

IN PORTFOLIO EFFICIENCY TESTING

Miloš Kopa
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Preface

The habilitation thesis deals with portfolio efficiency testing with respect to
stochastic dominance criteria. The main author’s results published in at-
tached papers are summarized in a unified manner in Chapters 2-5 what
makes this publication more compact. Chapter 1 serves as an introduction
to the decision making theory under risk. All author’s results related to
stochastic dominance in portfolio efficiency may be found in the papers at-
tached at CD. The main body of this habilitation thesis is divided into four
chapters corresponding, respectively, to the most important areas of portfolio
efficiency testing with respect to stochastic dominance criteria:

1. Chapter 2: Portfolio efficiency tests with respect to the first-order
stochastic dominance (FSD) criterion

2. Chapter 3: Portfolio efficiency tests with respect to the second-order
stochastic dominance (SSD) criterion

3. Chapter 4: Portfolio efficiency tests with respect to higher order stochas-
tic dominance (NSD) criteria

4. Chapter 5: Robustness and contamination in portfolio efficiency tests
with respect to the second-order stochastic dominance criterion

The thesis is mainly based on five papers published by the author and
few coauthors during the years 2008–2013:

• The first paper, Kopa, M. and Post, T. (2009): A portfolio effi-
ciency test based on FSD optimality, Journal of Financial and
Quantitative Analysis, 44, 5, 1103 – 1124, presents a new ap-
proach to portfolio efficiency testing based on the first-order stochastic
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dominance optimality. It introduces a necessary and sufficient con-
dition for FSD optimality of a given portfolio that is based on a set
of representative utility functions. The suggested mixed-integer linear
programming algorithm for FSD portfolio optimality testing and some
necessary conditions for FSD portfolio optimality have been recognized
as a crucial step for applications, especially in finance. In the paper, it
is applied to US market portfolio efficiency analysis. Surprisingly, using
this new testing procedures, the market portfolio is classified as FSD
non-optimal. Moreover, nine more attractive portfolios are identified.
It means that every decision maker prefers at least one of them to the
US market portfolio what is an important and unexpected result.

• The second paper, Kopa, M. and Chovanec, P. (2008): A second-
order stochastic dominance portfolio efficiency measure, Ky-
bernetika, 44, 2, 243 - 258, deals with portfolio efficiency tests with
respect to the second-order stochastic dominance (SSD). It presents a
new SSD portfolio efficiency test, that is based on a dual stochastic
dominance representation. The test also gives the information about
possible improvement of investment strategy such that every risk averse
decision maker would prefer it to the tested portfolio. Moreover, the
paper suggests a new tool for measuring the degree of SSD portfolio in-
efficiency of a given portfolio which is consistent with the second-order
stochastic dominance relation.

• The third paper, Post, T. and Kopa, M. (2013): General Lin-
ear Formulations of Stochastic Dominance Criteria, European
Journal of Operational Research, Online first, applies the higher
order stochastic dominance criteria to the portfolio efficiency testing.
The approach is based on a piece-wise polynomial representation of
utility functions and their derivatives and can be implemented by solv-
ing a relatively small system of linear inequalities. Moreover, linear
dual formulations in terms of lower partial moments and co-lower par-
tial moments are derived. Comparing to all previous papers dealing
with portfolio efficiency with respect to stochastic dominance the new
tests applies for any order (N ≥ 2) of stochastic dominance and also
for convex stochastic dominance approach.

• Finally, the fourth paper, Kopa (2010): Measuring of second-
order stochastic dominance portfolio efficiency, Kybernetika,
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46, 3, 488 - 500, presents some possible robustness extensions of
existing SSD portfolio efficiency tests. Stability of SSD efficiency clas-
sification with respect to changes in probability measure is analysed.
Contrary to all previous SSD portfolio efficiency tests focused on SSD
inefficiency measuring, the paper introduces a new measure of SSD ef-
ficiency applicable for SSD efficient portfolios. Moreover, another new
SSD portfolio efficiency tests allowing small changes or contaminations
of the original probability distribution are derived in the last paper:
Dupačová, J. and Kopa, M. (2012): Robustness in stochas-
tic programs with risk constraints, Annals of Operations Re-
search 200, 1, 55 - 74.

The support of my family, my co-authors, my colleagues, and grants
MSM0021620839, GA201/07/P107, GA402/10/1610, P402/12/0558 is grate-
fully acknowledged.

Prague, May 2013 Miloš Kopa
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Chapter 1

Introduction to decision
making under risk

The theory of decision making under risk is one of the most appealing issues
within financial mathematics. It is based on the basic economical princi-
ples, however it also exploits optimization techniques and statistical tools.
Mathematical formulations of decision making problems under risk lead to
stochastic programming models which are searching for the optimal solution
with respect to a chosen objective (criterion) and feasibility constraints. In
financial applications, they turn out to so called portfolio selection problems.
These problems basically capture two fundamental principles: non-satiation
and risk attitude. While the non-satiation axiom is easy to implement and
generally accepted in economics and finance, the risk attitude can be under-
stood or expressed in various ways.

The first portfolio selection problem was introduced by Markowitz (1952).
The model jointly focuses on maximizing expected return and minimizing
variance of the portfolio, where variance serves as a measure of risk. Consider
N risky assets with returns modeled by random vector %. Let λ ∈ RM be
a vector of weights determining the way how the initial wealth is invested.
Following Markowitz (1952), short sales are allowed, that is, the set of all
feasible portfolios Λ is given by condition: 1′λ = 1. Consequently, the return
and variance of portfolio (with weights) λ are E(%′λ) and var(%′λ). Hence,
Markowitz portfolio selection problem may be formulated as follows:

max
λ∈Λ

E(%′λ)− ϑvar(%′λ)

where ϑ ≥ 0 is a risk aversion parameter.
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In the last 60 years, measuring of portfolio risks has become very im-
portant, especially during the crises periods. The suitability of variance
as a measure of risk was analyzed. It was shown that variance suffered
from several shortcomings unless the Gaussian distribution of returns was
assumed. Therefore some other measures of risks were introduced, for exam-
ple: semi-variance, mean absolute deviation, mean absolute semi-deviation,
Gini mean,... In the last 15 years Value at Risk (VaR) and Condition Value
at Risk (CVaR) have proved to be the most popular risk measures because
of their meaningful financial interpretation and nice theoretical properties.
Let F%′λ(x) be the cumulative probability distribution function of portfolio
λ. Then Value at Risk of portfolio λ at level α is defined as the α-quantile
of the portfolio loss, that is,

VaRα(−%′λ) = F
(−1)
−%′λ(v) = min{u : F−%′λ(u) ≥ v}. (1.1)

Unfortunately, Value of Risk does not fulfill all generally accepted coher-
ence assumptions (monotonicity, translation invariance, positive homogeneity
and subadditivity, cf. Artzner, et al. (1999)). Moreover, it does not take into
account the losses that occur with probability smaller than 1−α. Therefore
Rockafellar and Uryasev (2000, 2002) introduced Conditional Value at Risk
as an example of a coherent risk measure derived from VaR. It is also known
under the names Average Value at Risk or Tail Value at Risk. It can be
computed as follows:

CVaRα(−%′λ) = min
a∈R

a+
1

1− α
E(−%′λ− a)+ (1.2)

Economically, CVaRα(−%′λ) equals the mean of losses that are higher than
VaRα(−%′λ). See Rockafellar and Uryasev (2000, 2002) for more details.
Alternatively, a risk may be expressed as a deviation from the expected
value of the portfolio return. Recently, Rockafellar, Uryasev and Zabarankin
(2006) introduced general deviation measures as functionals D(%′λ) that
are translation equivariant, positively homogeneous, subadditive and mono-
tone. Contrary to the coherent risk measures R(%′λ), deviation measures are
not affected by the expected value. As shown in Rockafellar, Uryasev and
Zabarankin (2006), deviation measures correspond one-to-one with strictly
expectation bounded risk measures (i.e. translation invariant, positively ho-
mogeneous, subadditive risk measures satisfying R(%′λ) > −E%′λ) under
the relations: R(%′λ) = D(%′λ)− E%′λ or D(%′λ) = R(%′λ− E%′λ).
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Using risk measure R(%′λ) and mean return E%′λ, one can view the
portfolio selection problem as a bi-objective optimization model that can be
formulated as:

max
λ∈Λ

E(%′λ)− ϑR(%′λ)

for some set of feasible portfolios Λ, where ϑ ≥ 0 is a risk aversion parameter.
However, finding an appropriate parameter value ϑ may be a difficult task
in some empirical applications. If so, one can use an alternative mean-risk
formulation, for example:

min
λ∈Λ,E%′λ≥µ

R(%′λ).

which focuses on risk minimization under condition on mean return.
Alternatively, one may model the risk attitude using utility functions

introduced in von Neumann and Morgenstern (1944). Contrary to the bi-
objective mean-risk models, application of utility function leads to classical
nonlinear programming problem - to maximize expected utility of the final
wealth. Unfortunately, identifying the particular utility function of the de-
cision maker is usually very difficult. When utility function is not precisely
known, one can consider at least some suitable, economically meaningful
classes of utility functions, for example the class of all nondecreasing and
concave utility functions. In this case, the optimal solution of the maximiz-
ing expected utility problem can not be exactly found. However, one can at
least compare two portfolios between each other. If one of them gives higher
or equal expected utility of final wealth (or returns) than the other one for
all considered utility functions then a relation of stochastic dominance (SD)
between them exists. The notion of stochastic dominance was introduced in
statistics more than 50 years ago and it was firstly applied to economics and
finance in Quirk and Saposnik (1962), Hadar and Russell (1969) and Hanoch
and Levy (1969). The basic principles of stochastic dominance theory and
applications to portfolio efficiency are summarized in the following sections.

1.1 First-order stochastic dominance relation

If only non-satiation of decision maker is assumed, that is, the set of all
non-decreasing utility functions (U1) is considered, the first-order stochastic
dominance (FSD) relation allows to compare two portfolios between each
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other. For two portfolios λ and τ with respective cumulative probability
distribution functions of their returns F%′λ(x), F%′τ (x) we say that portfolio
λ dominates portfolio τ by the first-order stochastic dominance: λ �FSD τ
if

Eu(%′λ)− Eu(%′τ ) ≥ 0

for all utility functions u ∈ U1, such that these expected values exist, with
strict inequality for at least one u ∈ U1.1 In the investment theory, it means
that at least one non-satiated decision maker prefers portfolio λ to τ and the
others are indifferent between them or prefer λ to τ , too. The corresponding
weak first-order stochastic dominance relation (λ �FSD τ ) does not require
existence of a utility function u ∈ U1 that satisfies:

Eu(%′λ)− Eu(%′τ ) > 0.

According to Russel and Seo (1989), U1 may be represented by a set of simple
utility functions in the following sense:

Eu(%′λ)−Eu(%′τ ) ≥ 0 ∀u ∈ U1 ⇐⇒ Eu(%′λ)−Eu(%′τ ) ≥ 0 ∀u ∈ V

where

V = {uη,ν(x) : uη,ν(x) = max{ν,min{x− η, 0}}, η ∈ R, ν ∈ R−}. (1.3)

The first computable necessary and sufficient conditions for the first-order
stochastic dominance relation were proposed in Hanoch and Levy (1969):

• λ �FSD τ ⇔ F%′λ(x) ≤ F%′τ (x) ∀x ∈ R

• λ �FSD τ ⇔ F%′λ(x) ≤ F%′τ (x) ∀x ∈ R where at least one strict
inequality holds.

Consider now the quantile model of stochastic dominance, see Ogryczak
and Ruszczyński (2002). Applying a quantile function and Value at Risk
(1.1), one can reformulate the necessary and sufficient conditions for FSD
relation:

λ �FSD τ ⇔ F
(−1)
%′λ (p) ≥ F

(−1)
%′τ (p) ∀p ∈ (0, 1〉. (1.4)

⇔ VaRα(−%′λ) ≤ VaRα(−%′τ ) ∀α ∈ (0, 1〉. (1.5)

1This relation is sometimes called “strict FSD”, see Levy (2006).
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1.2 Second-order stochastic dominance rela-

tion

The second-order stochastic dominance relation is generated by the set U2

of all concave utility functions. These functions express the risk attitude
of risk averse decision makers. For two portfolios λ and τ with respective
cumulative probability distributions functions we say that λ dominates τ by
the second-order stochastic dominance: λ �SSD τ if

Eu(%′λ)− Eu(%′τ ) ≥ 0

for every u ∈ U2 with strict inequality for at least one u ∈ U2. That is, every
non-satiated and risk averse investor prefers λ to τ or is indifferent between
them and at least one investor (strictly) prefers λ to τ . Similarly to the FSD
case, the weak SSD (λ �SSD τ ) occurs if the strict preference is not required.
Russel and Seo (1989) proved that U2 may be replaced by a set of concave
and two-piece linear utility functions:

Eu(%′λ)−Eu(%′τ ) ≥ 0 ∀u ∈ U2 ⇐⇒ Eu(%′λ)−Eu(%′τ ) ≥ 0 ∀u ∈ V2

where V2 = {uη(x) : uη(x) = min{x− η, 0}, η ∈ R}.
Consider now a twice cumulated distribution function of returns of port-

folio λ:

F
(2)
%′λ(t) =

∫ t

−∞
F%′λ(x)dx

and the corresponding second quantile function:

F
(−2)
%′λ (p) =

∫ p

−∞
F

(−1)
%′λ (t)dt for 0 < p ≤ 1 (1.6)

= 0 for p = 0

= +∞ otherwise.

As shown in Bawa (1975), the twice cumulated distribution function is equal
to the first-order lower partial moment, that is:

F
(2)
%′λ(t) = Emax(t− %′λ, 0)

and Ogryczak and Ruszczyński (2002) proved that the second quantile func-
tion is its Fenchel dual term. Moreover, CVaR can be computed from the
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second quantile function as follows:

CVaRα(−%′λ) = −
F

(−2)
%′λ (1− α)

1− α

for all α ∈ 〈0, 1), see Ogryczak and Ruszczyński (2002) and Kopa and
Chovanec (2008).

Similarly as in the FSD case, several necessary and sufficient conditions
for the second-order stochastic dominance relation can be derived, see e.g.
Hanoch and Levy (1969), Levy (2006) or Ogryczak and Ruszczyński (2002):

(i) λ �SSD τ if and only if F
(2)
%′λ(t) ≤ F

(2)
%′τ (t), ∀t ∈ R,

(ii) λ �SSD τ if and only if F
(2)
%′λ(t) ≤ F

(2)
%′τ (t), ∀t ∈ R with strict inequality

for at least one t ∈ R,

(iii) λ �SSD τ if and only if F
(−2)
%′λ (p) ≥ F

(−2)
%′τ (p) for all p ∈ 〈0, 1〉,

(iv) λ �SSD τ if and only if F
(−2)
%′λ (p) ≥ F

(−2)
%′τ (p) for all p ∈ 〈0, 1〉 with strict

inequality for at least one p,

(v) λ �SSD τ if and only if CVaRα(−%′λ) ≤ CVaRα(−%′τ ) for all α ∈
〈0, 1〉,

(vi) λ �SSD τ if and only if CVaRα(−%′λ) ≤ CVaRα(−%′τ ) for all α ∈ 〈0, 1〉
with strict inequality for at least one α.

1.3 Other stochastic dominance relations

In previous sections, stochastic dominance relations were generated by U1 or
U2. In general, one can consider any subset of U1. Let UN ⊂ U1 be the set of
N times differentiable utility functions such that: (−1)ku(k) ≤ 0 for all k =
1, 2, ..., N . As the limiting case, U∞ ⊂ U1 is the set of infinitely differentiable
utility functions with alternating signs of the derivatives. These functions
are also called completely monotonic utility functions. More details about
completely monotonic utility functions can be found in Whitmore (1989)
and references therein. For example, all hyperbolic absolute risk aversion
(HARA) utility functions are completely monotonic. Especially, exponential,
logarithmic or power utility functions, as special elements of HARA class,
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are very popular in financial applications. In general, utility function u(x)
belongs to HARA class if

−u(x)(2)

u(x)(1)
=

1

ax+ b
, ax+ b > 0.

For each set UN ⊂ U1, N = 3, 4, ... we can define weak Nth-order stochas-
tic dominance relation between portfolios λ and τ as a generalization of weak
first-order SD relation: λ �NSD τ if Eu(%′λ)−Eu(%′τ ) ≥ 0 for every util-
ity function u ∈ UN . If strict inequality holds true for at least one u ∈ UN
then the relation is called Nth-order stochastic dominance.

For random variables with bounded support (a, b) Levy (2006) presents a
necessary and sufficient condition for weak Nth-order stochastic dominance
relation in terms of N times cumulated distribution functions

F
(N)
%′λ (t) =

∫ t

−∞
F

(N−1)
%′λ (x)dx

as follows: λ �NSD τ if and only if F
(k)
%′λ(b) ≤ F

(k)
%′τ (b), for all k = 2, 3, ..., N−1

and F
(N)
%′λ (x) ≤ F

(N)
%′τ (x) for all x ∈ 〈a, b〉. Again, in the case of NSD relation,

at least one strict inequality is required.

The infinite-order stochastic dominance relation (ISD) is defined as a limit
case of NSD when N →∞: λ �ISD τ if Eu(%′λ)−Eu(%′τ ) ≥ 0 for every
utility function u ∈ U∞ and λ �ISD τ if Eu(%′λ)−Eu(%′τ ) ≥ 0 for every
utility function u ∈ U∞ and strict inequality holds for at least one u ∈ U∞.

For infinite-order of stochastic dominance, Whitmore (1989) derived a
necessary and sufficient condition based on the Bernstein Theorem: λ �ISD
τ if and only if

E
(
e−a%

′λ − e−a%′τ
)
≤ 0 for all a ≥ 0.

The recursive nature of the definition of the N -times cumulated distri-
bution function makes it clear that (weak) Nth-order stochastic dominance
implies (weak) Nth-order stochastic dominance for N > N . Moreover, any
Nth-order stochastic dominance implies infinite-order stochastic dominance.
Thistle (1993) also proved that if λ �ISD τ then λ �NSD τ for some finite
N .
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1.4 Portfolio efficiency with respect to stochas-

tic dominance criteria

From a theoretical perspective, stochastic dominance analysis is an appeal-
ing approach to analyzing investment and portfolio choice problems when the
utility function of decision maker is not precisely known. Most notably, the
most popular criterion of the second-order stochastic dominance (SSD) as-
sumes only non-satiation and risk aversion for the investor’s preferences and
it in effect considers the entire return distribution rather than a finite set
of moments. Until recently, practical applications of stochastic dominance
relations were hampered by the absence of tractable algorithms to deal with
diversification across multiple assets. The criteria for pairwise comparisons
have only a limited use when looking for efficient portfolios with respect to
SD relations. In the last decade, under assumptions of discrete distribution
of returns, Post (2003), Kuosmanen (2004) and Kopa and Chovanec (2008)
developed linear programming tests to analyze if a portfolio is efficient rel-
ative to all possible portfolios formed from the considered assets. The tests
are formulated for the case when no short sales are allowed, that is :

Λ = {λ ∈ RM |1′λ = 1, λm ≥ 0, m = 1, 2, . . . ,M} (1.7)

however, one can easily modify the results for any nonempty bounded poly-
tope set Λ.

Definition 1.1:

A given portfolio τ is SSD efficient if there is no portfolio λ ∈ Λ such that
λ �SSD τ .

Following Kopa and Chovanec (2008) one can view SSD portfolio effi-
ciency tests as a multi-objective generalization of mean-risk models, where
multiple CVaRs (at different α levels) are employed. Later on, Kopa and Post
(2013) introduced a general SSD efficiency test which is a generalization of
all previous SSD efficiency tests what makes the theory of SSD portfolio ef-
ficiency more compact. Moreover, they presented also a new SSD portfolio
efficiency test that is much less computationally demanding and applicable
even for thousands of scenarios. Although the test does not identify a domi-
nating portfolio, the computational tractability allows for further sensitivity,
robustness or bootstrap techniques.
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When the first-order stochastic dominance relation is used one must dis-
tinguish between two concepts of efficiency: “ FSD admissibility” and “ FSD
optimality”.

Definition 1.2:

A given portfolio τ is FSD admissible if there is no portfolio λ ∈ Λ such that
λ �FSD τ . A given portfolio τ is FSD optimal if there exists at least one
utility function u ∈ U1 such that Eu(%′τ )− Eu(%′λ) ≥ 0 for all λ ∈ Λ with
strict inequality for at least one λ ∈ Λ.

There is a subtle difference between FSD admissibility and FSD optimal-
ity. For example, if the optimal solution of the maximizing expected utility
problem is unique, the FSD admissibility is a necessary condition for FSD
optimality. The illustration of this situation is captured at Figure 1.1.

Figure 1.1: FSD admissibility and FSD optimality.
The figure shows the efficiency classification according to the FSD admissi-
bility test and our FSD optimality test for M = 3. We applied these tests to
all portfolios τ ∈ Λ ∩ {0, 0.01, . . . , 1}3, that is, when using a grid with step
size 0.01 for the portfolio weights. The FSD optimal set is represented by
the black dots. The FSD admissible set is the union of the black dots and
the grey dots.
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Kuosmanen (2004) proposed FSD portfolio admissibility test that identi-
fies also a dominating portfolio (if the tested one is FSD inadmissible). Kopa
and Post (2009) enriched it by the FSD optimality test which searches for
an “optimal utility function”.

For N ≥ 2 the notion of “NSD admissibility” is equivalent to the “NSD
optimality”, hence there is no need to consider both definitions. Therefore,
the general definition of NSD efficiency for N ≥ 2 can be seen as an extension
of SSD efficiency and, following Post and Kopa (2013), we formulate it in the
“NSD optimality” form.

Definition 1.3:

A given portfolio τ is NSD efficient (N ≥ 2), if there exists at least one
utility function u ∈ UN such that Eu(%′τ )−Eu(%′λ) ≥ 0 for all λ ∈ Λ with
strict inequality for at least one λ ∈ Λ.

The following three chapters of the thesis present in a succinct form the al-
gorithms for testing whether a given portfolio is FSD optimal (Kopa and Post
(2009)), SSD efficient (Post (2003), Kuosmanen (2004), Kopa and Chovanec
(2008), Kopa and Post (2013)) or NSD efficient (Post and Kopa (2013)). In
all cases the computational tractability of the algorithms is a desired fea-
ture. While NSD portfolio efficiency tests for N ≥ 2 can be formulated
using linear programming problems, FSD admissibility and FSD optimality
would call for solving mixed-integer linear programming problems what sig-
nificantly increase the complexity of the algorithms. In all these portfolio
efficiency tests, a scenario approach is assumed, that is, asset returns have
a discrete probability distribution. The disadvantage of these tests is the
fact that a small perturbation in the probability distribution can completely
change the efficiency classification. Therefore some robustness extensions
of portfolio efficiency tests are presented in Chapter 5. For example, Kopa
(2010, 2012) considered a “neighborhood approach”; Dupačová and Kopa
(2012, 2013) applied contamination techniques. These robustness extensions
make portfolio efficiency testing more computationally demanding, however
they give more valuable results in real-life applications.
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Chapter 2

Portfolio efficiency test with
respect to the first-order
stochastic dominance criterion

In this chapter, we present the new test derived in Kopa and Post (2009). It
is the first test that allows for full diversification across the assets and uses
a new concept of FSD optimality of a given portfolio relative to all possible
portfolios. It enables to identify the efficient portfolios with respect to the
class of all nondecreasing utility functions.

2.1 Preliminaries

Consider again M choice alternatives with random returns %. In order to
derive a tractable FSD optimality test we assume that % is carried by T
scenarios with equal probabilities. The outcomes of the choice alternatives
for various scenarios are given by

X =


x1

x2

...
xT


where xt = (xt1, x

t
2, . . . , x

t
M) is the t-th row of matrix X. Without loss of

generality we can assume that the columns of X are linearly independent.
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The evaluated portfolio is denoted by τ ∈ Λ and is assumed to be risky
(the return of portfolio τ is not deterministic). Let y[k] be the k-th smallest
element among y1, y2, ..., yT , that is, y[1] ≤ y[2] ≤ . . . ≤ y[T ]. Let

m = min
t,m

xtm, m = max
t,m

xtm and k(τ ) = min{t : (Xτ )[t] > (Xτ )[1]}.

The constants m and m denote the minimum and maximum possible returns.
After ordering the returns of the tested portfolio τ from the smallest to the
largest one, k(τ ) determines the order of the second smallest return. Without
ties, we have k(τ ) = 2, but if the smallest value occurs multiple times, then
k(τ ) > 2.

Since utility functions are unique up to the level of a positive linear trans-
formation, without loss of generality, we may focus on the following set of
standardized utility functions:

U1(τ ) = {u ∈ U1 : u(m) = 0; u((Xτ )[T ])− u((Xτ )[k(τ )]) = 1}. (2.1)

Note that the standardization depends on the evaluated portfolio and
hence it will differ when evaluating different portfolios. Furthermore, the
standardization requires utility to be strictly increasing at least somewhere
in the interior of the range for the evaluated portfolio. This requirement is
natural, because, testing optimality relative to all u ∈ U1 is trivial. Specifi-
cally, every portfolio λ ∈ Λ is an optimal solution for u0 = I(x ≥ (Xτ )[1]),
that is, two-piece constant utility function. Thus U1(τ ) is the largest subset
of U1 for which testing optimality is non-trivial and Definition 1.2 may be
reformulated as follows:

Definition 2.1:

Portfolio τ ∈ Λ is FSD optimal if there exists u ∈ U1(τ ) such that

T∑
t=1

u(xtτ )−
T∑
t=1

u(xtλ) ≥ 0 ∀λ ∈ Λ.

Otherwise, τ is FSD non-optimal.

2.2 Representative utility functions

For pairwise FSD comparisons, Russell and Seo (1989) show that the set of
three-piece linear utility functions is representative for all admissible utility
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functions, see (1.3). In our portfolio context, with diversification allowed,
the following class of piecewise constant utility functions matters:

R1(τ ) = {u ∈ U1|u(y) =
T∑

t = 1

atI(y ≥ (Xτ )[t]), a ∈ A(τ )} (2.2)

A(τ ) = {a ∈ RT
+ :

T∑
t = k(τ )

at = 1, (Xτ )[t] = (Xτ )[s] (2.3)

∧ t < s⇒ as = 0, t, s = 1, 2, . . . , T}

where

I(y ≥ y0) = 1 for y ≥ y0

= 0 otherwise.

This class consists of at most (T + 1) - piecewise constant, upper semi-
continuous utility functions. It extends the representative utility functions
used by Russell and Seo (1989) to testing pairwise FSD relationship. In
fact, our utility functions can be obtained as a sum of the first derivatives
of the Russell and Seo (1989) representative utility functions on the relevant
interval (m,m).1 The utility functions are also reminiscent of the piecewise
linear functions used by Post (2003) to test SSD portfolio efficiency.

Theorem 2.1:

Portfolio τ ∈ Λ is FSD optimal if and only if there exists u ∈ R1(τ ) such
that

T∑
t=1

u(xtτ )−
T∑
t=1

u(xtλ) ≥ 0 ∀λ ∈ Λ.

Otherwise, τ is FSD non-optimal.

1Russell and Seo (1989) functions are continuous three-piece functions that consist of
two constant pieces and one linear, increasing piece in between. Choose T such func-
tions with increasing pieces with slopes a1, a2, ..., aT for the intervals ((Xτ)[1], (Xτ)[2]),
((Xτ)[2], (Xτ)[3]),...,((Xτ)[T−1], (Xτ)[T ]), ((Xτ)[T ],m). Our piecewise constant utility
function is the sum of the first derivatives on these intervals.
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Apart from replacing U1(τ ) with R1(τ ), we may also replace Λ in The-
orem 2.1 with a reduced portfolio set that considers only portfolios with a
higher minimum than that of the evaluated portfolio:

Λ(τ ) =
{
λ ∈ Λ : (Xτ )[1] ≤ (Xλ)[1]

}
.

Using the representative utility functions and the reduced portfolio set, we
can construct the following FSD non-optimality measure for any Λ0 ⊆ Λ(τ ):

ξ(τ ,Λ0) =
1

T
min

u∈R1(τ )
max
λ∈Λ0

T∑
t=1

(
u(xtλ)− u(xtτ )

)
. (2.4)

Replacing Λ with Λ(τ ) reduces the parameter space but it causes no harm,
because

max
λ∈Λ

T∑
t=1

(
u(xtλ)− u(xtτ )

)
= max
λ∈Λ(τ )

T∑
t=1

(
u(xtλ)− u(xtτ )

)
for all u ∈ R1(τ ) with sufficiently large a1 and we minimize the maximum
of expected utility differences. If the evaluated portfolio has the highest
minimum then we can directly conclude that ξ(τ ,Λ(τ )) = 0, that is, the
evaluated portfolio is FSD optimal (see the following Corollary).

Corollary 2.1:

(i) Portfolio τ is FSD optimal if and only if ξ(τ ,Λ(τ )) = 0.
Otherwise, ξ(τ ,Λ(τ )) > 0.

(ii) If Λ0 ⊆ Λ(τ ) then ξ(τ ,Λ0) ≤ ξ(τ ,Λ(τ )).

2.3 Mathematical Programming Formulations

Let

hs(λ, τ ) =
T∑
t=1

I(xtλ ≥ (Xτ )[s]), s = 1, . . . , T (2.5)

h(λ, τ ) = (h1(λ, τ ), . . . , hT (λ, τ )) (2.6)

H(τ ) = {h ∈ {0, . . . , T}T : h = h(λ, τ ), λ ∈ Λ(τ )}. (2.7)
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Since hs(λ, τ ) represents the number of returns of portfolio λ exceeding
the s-th smallest return of portfolio τ , it can take at most T + 1 values
(0, 1, . . . , T ) for any s = 1, . . . , T . Thus H(τ ) is a finite set. For small-
scale applications, identifying all its elements is quite trivial task. However,
for large-scale applications, the task is more challenging and can become
computationally demanding. Some computational strategies to identifying
the elements of H(τ ) are discussed below. Perhaps interestingly, given H(τ ),
the FSD non-optimality measure ξ(τ ,Λ(τ )) can be computed using simple
linear programming.

Theorem 2.2:

Let H0 ⊆ H(τ ). Let

δ∗(H0) = min
a∈A(τ )

δ (2.8)

s.t.
T∑

s=k(τ )

as(hs − hs(τ , τ )) ≤ δ ∀h ∈ H0. (2.9)

Portfolio τ is FSD optimal if and only if δ∗(H(τ )) = 0. If δ∗(H0) > 0 for
some H0 ⊆ H(τ ) then τ is FSD non-optimal.

The idea of this result is to find a representative utility function for which
τ maximizes expected utility. Note that ξ(τ ,Λ(τ )) = δ∗/T . Since a ∈ A(τ )
and h ∈ {0, . . . , T}T for all h ∈ H(τ ), using Corollary 2.1(i), we have 0 ≤
ξ(τ ,Λ(τ )) ≤ 1.

Among other things, Theorem 2.2 implies the following result about the
relationship between the efficiency concepts of optimality and admissibility.

Corollary 2.2:

If (T ≤ 4) then FSD optimality is equivalent to FSD admissibility.

The remaining problem is to identify the elements of the set H(τ ). We
may adopt several strategies for this task. The next section provides a mixed
integer linear programming (MILP) algorithm that identifies a set of can-

didate vectors H̃(τ ) ⊇ H(τ ), and checks if h ∈ H(τ ) for every candidate

h ∈ H̃(τ ). A drawback of this approach is that the number of candidates
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increases exponentially with the number of scenarios (T ). Hence, some sort
of approximation may be needed.

For example, we may form a sample Hs(τ ) of elements h(λ, τ ) by using
a sample Λs ∈ Λ(τ ) and constructing the associated values for h(λ, τ ). The
test procedure is then applied to the sample Hs(τ ) instead of the complete set
H(τ ). According to Corollary 2.1(ii), this will lead to a necessary condition
for FSD optimality. There exist various sampling techniques, including a
regular grid, Monte Carlo methods or Quasi-Monte Carlo methods; see, for
example, Jackel (2002) and Glasserman (2004).

2.4 Mathematical programming Algorithm

This section provides a mixed-integer linear programming algorithm (MILP)
for identifying the elements of H(τ ), applies Theorem 2.2 and suggests some
additional stopping rules for testing FSD optimality.

STEP 1: Perform a FSD admissibility test

Use, for example, the MILP FSD admissibility test of Kuosmanen (2004). If
τ is FSD inadmissible then stop the algorithm; τ is FSD non-optimal.

STEP 2: Identify initial candidates for H(τ )

For all j = k(τ ), ..., T solve the following MILP problem:

max hj + 1
T 2

∑T
t = k(τ ) ht (2.11)

s.t. (vs,t − 1)(m−m) ≤ xsλ− (Xτ )[t] ≤ vs,t(m−m)
s = 1, . . . , T ; t = k(τ ), . . . , T

ht =
∑T

s = 1 vs,t t = k(τ ), . . . , T
vs,t ∈ {0, 1} s = 1, . . . , T ; t = k(τ ), . . . , T
λ ∈ Λ(τ )

The problem is solved only for j ≥ k(τ ); solving it for j < k(τ ) will
identify no new candidates, because the optimal solutions of (2.11) for any
j < k(τ ) are equal to that for j = k(τ ).
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Use (h∗jt , λ
∗j
t , v

∗j
s,t) for the optimal solution of this problem. Let Λ1 ∈ Λ(τ )

be a set of pairwise different λ∗j (all redundancies are removed). Set

hmaxt = max
j
h∗jt

H1 = {h(λ, τ ) : λ ∈ Λ1}

STEP 3: Stopping rules

Consider h(τ , τ ) as defined by (2.5)-(2.6). If there exists t ∈ {k(τ ), . . . , T}
such that hmaxt ≤ ht(τ , τ ) then stop the algorithm; τ is FSD optimal. Oth-
erwise, solve problem (2.8)-(2.9) for H0 = H1. If δ∗(H1) > 0 then stop the
algorithm; τ is FSD non-optimal.

STEP 4: Construct and reduce the candidate set H

LetH t = {0, 1, . . . , hmaxt }. Denote byH the Cartesian productH =
⊗T

k(τ )H t.

Clearly H(τ ) ⊆ H, and hence H is a candidate set. Exclude the candidates

H̃ = H̃1 ∪ H̃2 ∪H̃3 ∪ H̃4, where

H̃1 =
{
h ∈ H|ht1 < ht2 for some t1 < t2

}
H̃2 =

{
h ∈ H|ht ≥ ht(τ , τ ) ∀t ∈ {k(τ ), . . . , T}

}
H̃3 =

{
h ∈ H|∃ĥ ∈ H1 : ht ≥ ĥt ∀t ∈ {k(τ ), . . . , T} with at least

one strict inequality}

H̃4 =

h ∈ H|∃b = (b0, bk(τ ), ..., bT ) : ht ≤
T∑

j=k(τ )

bjh
∗j
t + b0ht(τ , τ ),

b0 +
T∑

l=k(τ )

bl = 1, b ≥ 0, h∗j ∈ H1, ∀t ∈ {k(τ ), . . . , T}

 .

The elements of H̃1 ∪ H̃2 ∪ H̃3 are not feasible, that is, there exist no cor-
responding portfolios: the elements of H̃1 contradict the definition of vector
h(λ, τ ), see (2.5)-(2.6); feasibility of an element of H̃2 implies FSD inad-
missibility of τ (in step 1, we have found that τ is FSD admissible); every

element of H̃3 gives a strictly higher value of the objective function in (2.11)
than at least one initial candidate, hence it cannot be a feasible candidate.
Adding the elements of H̃4 to H1 does not affect the solution of (2.8)-(2.9).
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Set p = 1.

STEP 5: Check feasibility of the remaining candidates

If H \H̃ is empty, that is, all possible h ∈ H have been considered, then stop

the algorithm; portfolio τ is FSD optimal. Otherwise, choose h ∈ H \ H̃ and

add it to H̃. Let p = p + 1, Hp = Hp−1 ∪ h and go to the next step if there
exists a feasible solution of the system:

(vs,t − 1)(m−m) ≤ xsλ− (Xτ )[t] ≤ vs,t(m−m) s = 1, . . . , T ; (2.12)
t = t1, . . . , T

ht =
∑T

s=1 vs,t t = t1, . . . , T
vs,t ∈ {0, 1} s = 1, . . . , T ;

t = t1, . . . , T
λ ∈ Λ(τ ).

Otherwise, repeat Step 5.

STEP 6: Test optimality using the feasible candidates

Solve problem (2.8)-(2.9) for H0 = Hp. If δ∗(Hp) > 0 then stop the algorithm;
τ is FSD non-optimal. Otherwise, for δ∗(Hp) = 0, go to Step 5.
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Chapter 3

Portfolio efficiency tests with
respect to the second-order
stochastic dominance criterion

This chapter recalls LP tests for testing if a given portfolio is SSD efficient as
derived in Post (2003), Kuosmanen (2004) and Kopa and Chovanec (2008).
Moreover, following Kopa and Post (2013) it presents the more general test
based on primal-dual formulations with its interpretation and properties. Fi-
nally, it enriches the theory of SSD portfolio efficiency testing by a reduced
version of the general test introduced in Kopa and Post (2013). In all these
tests the discrete distribution of returns with equiprobable scenarios is as-
sumed and the notation from Chapter 2 is preserved.

3.1 The Post test

The Post test uses a small, computationally efficient linear program, de-
rived from the first-order necessary condition for portfolio optimization for
an increasing and concave utility function. From the managerial perspec-
tive, a limitation of the test is that it focuses exclusively on the efficiency
classification of the evaluated portfolio and gives only a minimal information
about directions for improvement if the portfolio is classified as inefficient.
In addition, whereas the test gives a general necessary condition for portfolio
efficiency, it gives a sufficient condition for data generated by a continuous
population distribution.
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Before using the test, it is necessary to reorder the scenarios according to
the returns of the evaluated portfolio τ , such that x1τ ≤ x2τ ≤ ... ≤ xTτ .

Theorem 3.1:

Let

θ∗ = min
θ,βt

θ (3.1)

s.t.
T∑
t=1

βt(x
tτ − xtm) + Tθ ≥ 0, m = 1, 2, ...,M

βt − βt+1 ≥ 0, t = 1, 2, ..., T − 1

βt ≥ 0, t = 1, 2, ..., T − 1

βT = 1.

The portfolio τ is strictly SSD efficient if and only if θ∗ = 0. Moreover, if
the portfolio τ is SSD efficient then θ∗ = 0.

The constraints need to be modified if some ties in elements of Xτ occur.
See Post (2003) for more details and for the dual formulation.

3.2 The Kuosmanen test

Applying Hardy, Littlewood and Polya’s (1934) majorization theorem, Ku-
osmanen (2004) derived an alternative test that also identifies a SSD domi-
nating portfolio (if the tested portfolio is classified as SSD inefficient). This
test involves solving two linear programs. These problems generally are very
large and more computationally demanding than the Post test.

The exact formulation depends on ties in Xτ . We say that a k-way tie
occurs if k elements of Xτ are equal.

Theorem 3.2:

Let

θ∗ = max
W,λ

T∑
t=1

(
xtλ− xtτ

)
(3.2)
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s.t. Xλ ≥ WXτ
T∑
j=1

wij = 1,
T∑
i=1

wij = 1, wij ≥ 0 i, j = 1, 2, ..., T

λ ∈ Λ

and

θ∗∗ = min
W,λ,S+,S−

T∑
j=1

T∑
i=1

(s+
ij + s−ij) (3.3)

s.t. Xλ = WXτ

s+
ij − s−ij = wij −

1

2
i, j = 1, 2, ..., T

s+
ij, s

−
ij, wij ≥ 0 i, j = 1, 2, ..., T

T∑
j=1

wij = 1,
T∑
i=1

wij = 1 i, j = 1, 2, ..., T

λ ∈ Λ

where S+ = {s+
ij}Ti,j=1, S− = {s−ij}Ti,j=1 and W = {wij}Ti,j=1. Let εk denote the

number of k-way ties in Xτ . Then portfolio τ is SSD efficient if and only if

θ∗ = 0 ∧ θ∗∗ =
T 2

2
−

T∑
k=1

kεk.

Let λ∗ and λ∗∗ be the optimal solution of (3.2) and (3.3), respectively.
If θ∗ > 0 then %′λ∗ �SSD %′τ . If θ∗ = 0 and θ∗∗ < T 2

2
−
∑T

k=1 kεk then
%′λ∗∗ �SSD %′τ .

If θ∗ > 0 then problem (3.3) need not to be solved, because portfolio τ is
SSD inefficient and the optimal solution λ∗ is an SSD dominating portfolio,
see Kuosmanen (2004) for more details.

If a given portfolio τ is SSD inefficient then, from the entire set of SSD
dominating portfolios, the Kuosmanen test identifies that with the highest
mean return.

29



3.3 The Kopa and Chovanec test

We start with reformulation of SSD criterion in terms of CVaR for scenario
approach because the Kopa and Chovanec test, contrary to the previous tests,
is based on second quantile functions (1.6).

Lemma 3.1:

A portfolio λ ∈ Λ dominates portfolio τ ∈ Λ if and only if

CVaRα(−%λ) ≤ CVaRα(−%τ ) ∀α ∈ {0, 1

T
,

2

T
, . . . ,

T − 1

T
}.

Applying

CVaR k−1
T

(−%λ) = min
bk,w

t
k

bk +
1

T (1− k−1
T

)

T∑
t=1

wtk

s.t. wtk ≥ 0, wtk + bk ≥ −xtλ, ∀t, k = 1, 2, ..., T

in Lemma 3.1 for each k = 1, 2, ..., T , Kopa and Chovanec (2008) derived the
following SSD portfolio efficiency test.

Theorem 3.3:

Let

D∗(τ ) = max
Dk,λn,bk,w

t
k

T∑
k=1

Dk (3.4)

s.t. CVaR k−1
T

(−%′τ )− bk −
1

(1− k−1
T

)T

T∑
t=1

wtk ≥ Dk, k = 1, . . . , T

wtk + bk ≥ −xtλ, t, k = 1, . . . , T

wtk ≥ 0, t, k = 1, . . . , T

Dk ≥ 0, k = 1, . . . , T

λ ∈ Λ.
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If D∗(τ ) > 0 then τ is SSD inefficient and %′λ∗ �SSD %′τ . Otherwise,
D∗(τ ) = 0 and τ is SSD efficient.

If a tested portfolio τ is SSD inefficient the test identifies SSD dominat-
ing portfolio λ∗ that is SSD efficient. In general, the dominating portfolio
is very different from that of the Kuosmanen test. While the Kuosmanen
test identifies a dominating portfolio with the highest mean, the Kopa and
Chovanec test focuses more on possible risk reductions. In this case, the risk
is expressed by the sum of CVaRs, contrary to a single CVaR application in
e.g. mean-risk models.

3.4 A general test for SSD portfolio efficiency

In this section, following Kopa and Post (2013), we present a generalization
of all three tests presented in Sections 3.1-3.3. Contrary to the previous tests,
the portfolio possibilities are represented by a polytope of general form:

Λ = {λ ∈ RM |Aλ ≤ b} (3.5)

with (L×M ) matrix A of coefficients for L linear inequality restrictions placed
on M assets, and b for a vector of right-hand side coefficients. To guarantee
the existence of optimal solutions for our test, we assume that Λ is nonempty
and bounded polytope.

We propose the following measure for testing SSD relation:

ω(λ, τ |w) = min
βt

T−1

T∑
t=1

βt
(
(Xλ)[t] − xtτ

)
(3.6)

s.t. βt − βt+1 ≥ wt, t = 1, 2, ..., T − 1

βT ≥ wT .

The variables βt, t = 1, 2, ..., T represent subgradients of feasible utility func-
tions. The weights w = (w1, w2, ..., wT ) are lower bounds for the decrements
of the subgradients. To be consistent with strict risk aversion, the weights
must be strictly positive, i.e. w > 0. Apart from these requirements, the
exact values of the weights have no effect on the sign of the dominance mea-
sure (3.6) and the dominance classification. Still, the weights do affect the
measured degree of dominance and can be used to control the desired degree
measure. Section 3.5 will elaborate further on the specification of weights.
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Lemma 3.2:

Portfolio λ SSD dominates portfolio τ if and only if ω(λ, τ |w) > 0 where
w > 0.

To test SSD portfolio efficiency, Kopa and Post (2013) propose to solve
the following problem:

ξ(τ |w) = min
γt,s,θi

L∑
i=1

biθi − T−1

T∑
t=1

T∑
s=t

1

s

T∑
k=1

γk,sx
tτ (3.7)

s.t.
∑L

i=1 aijθi − T−1
∑T

t=1

∑T
s=1 γt,sx

t
j = 0, j = 1, 2, ...,M

1
s

∑T
t=1 γt,s ≥ ws, s = 1, 2, ..., T

γt,s − 1
s

∑T
k=1 γk,s ≤ 0, t, s = 1, 2, ..., T

γt,s ≥ 0, t, s = 1, 2, ..., T
θi ≥ 0, i = 1, 2, ..., L

Theorem 3.4:

A given portfolio τ is SSD efficient if and only if ξ(τ |w) = 0 where w > 0.

The objective value ξ(τ |w) can be seen as a measure of inefficiency of
portfolio τ when using weights w. Moreover, if portfolio τ is SSD efficient
then the optimal values γ∗t,s determine the derivatives of the utility function
that maximizes expected utility in τ . Specifically,

β∗t =
T∑
s=t

1

s

T∑
k=1

γ∗k,s.

The variables θi give information about the sensitivity of ξ(τ |w) to changes
in bi of portfolio set (3.5).

Consider now the exact LP dual formulation of program (3.7):

ξ(τ |w) = max
ds,vt,s,λ

T∑
s=1

wsds (3.8)
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s.t. −T−1xtλ+ 1
s
ds − vt,s + 1

s

∑T
k=1 vk,s ≤ −T−1 1

s

∑s
k=1 xkτ

t, s = 1, 2, ..., T∑M
j=1 aijλj ≤ bi, i = 1, 2, ..., L

vt,s ≥ 0, t, s = 1, 2, ..., T
ds ≥ 0, s = 1, 2, ..., T.

Whereas the primal model (3.7) has a compelling interpretation in terms of
utility functions, the dual formulation (3.8) is probably best understood in
terms of cumulative returns:

Ω(λ, s) = T−1

s∑
k=1

(Xλ)[k]. (3.9)

For the evaluated portfolio τ , we have:

Ω(λ, s) = T−1

s∑
k=1

xkτ . (3.10)

Theorem 3.5:

The inefficiency measure can be expressed in terms of cumulative returns as
follows:

ξ(τ |w) = max
ds,λ

T∑
s=1

wsds (3.11)

s.t. Ω(λ, s)− Ω(τ , s) ≥ ds, s = 1, 2, ..., T

ds ≥ 0, s = 1, 2, ..., T

λ ∈ Λ.

The dual thus maximizes the weighted sum of differences in cumulative
returns between the evaluated portfolio τ and a second portfolio λ that SSD
dominates τ .

Theorem 3.6:

A given portfolio τ is SSD efficient if and only if ξ(τ |w) = 0 where w > 0.
If ξ(τ |w) > 0 then solution portfolio λ∗ of (3.8) is SSD efficient and it
dominates τ by SSD.
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3.5 Specification of the weights in the general

test

The primary function of the weights is to avoid negative values for marginal
utility, or risk seeking segments of the utility function. To get a proper nec-
essary and sufficient condition, the weights should be strictly positive, i.e.
w > 0. Allowing for zero weights, or w ≥ 0 amounts to assuming weak
risk aversion rather than strict risk aversion. This difference is unlikely to
have a noticeable effect in empirical applications with data generated by a
(approximately) continuous probability distribution. Still, from a theoreti-
cal perspective, it is important to exclude zero weights to eliminate weakly
concave utility functions.

The relative values of the weights do not affect the efficiency classification,
but they do affect the optimal objective value as a measure of the degree of
inefficiency. In the primal model, weight ws gives a lower bound for the
marginal utility decrement (u′(zs)− u′(zs+1)). In the dual model, the weight
determines the relevance of the s-th cumulated return Ω(·, s). Clearly, a
higher value for the low-rank weights has the effect of focusing more on risk
reduction, while a higher value for the high-rank weights has the effect of
focusing more on improvements in central tendency.

To get an economically meaningful degree measure, it seems useful to re-
main consistent with the maintained economic assumptions. It seems natural
to measure deviations from efficiency by using

wus =

{
(u′(xsτ )− u′(xs+1τ ))/u′(x1τ ), s = 1, 2, ..., T − 1

u′(xsτ )/u′(x1τ ), s = T.

}
(3.12)

for an explicit utility function u ∈ U2. One possible choice is the one-
parameter exponential function, i.e.

u(x) =
1− exp(−α(100 + x))

α
(3.13)

u′(x) = exp(−α(100 + x)).

In these expressions, α > 0 is an index of risk aversion and (100 +x) is gross
return measured in percentages. If we assume near risk neutrality, or α→ 0,
the weights converge to wv1 = wv2 = ... = wvT−1 = 0 and wvT = 1. In this case,
the SSD inefficiency measure gives an information about the largest possi-
ble increase in average return achieved by a portfolio that obeys the model
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restrictions: Ω(λ, T ) = 1
T

∑T
t=1(xtλ). This (implicit) weighting scheme was

used in Post (2003) and Kuosmanen (2004). Both tests focus on improve-
ments in central tendency by assigning a very large weight to the highest-rank
scenario and a very small weight to the other scenarios. Increasing the level of
risk aversion increases the weight for lower-ranked scenarios shifts the focus
to risk reduction. In the case of extreme risk aversion, α → ∞, the weights
converge to wv1 = 1 and wv2 = ... = wvT = 0. In this case, the focus is on the
potential increase in minimum return: TΩ(λ, 1) = (Xλ)[1].

Using utility-based weights wus implies that the weights generally depend
on the return levels xsτ and we cannot fix the weighting scheme without
reference to the data set. By contrast, Kopa and Chovanec (2008) used the
fixed set of weights

ws =

(
s

T∑
t=1

1

t

)−1

, s = 1, 2, ..., T.

3.6 Reduced SSD portfolio efficiency test

Following Kopa and Post (2013), we will derive a small version of the general
test if an explicit dominating portfolio is not required. In this reduced form,
ties in returns of portfolio τ play an important role, and therefore, we will
consider a partition of scenarios {1, 2, ..., T} =

⋃K
k=1 Φk where Φk contains

all scenarios with the k-th smallest return of portfolio τ . Put differently, Xτ
takes K different values, Φ1 contains the smallest ones, ΦK the largest ones,
and all 1 < t1, t1 + 1,...,t2 < T such that xt1−1τ < xt1τ = xt1+1τ = ... =
xt2τ < xt2+1τ are collected in one Φk, k = 2,...,K − 1. Clearly, without ties,
we have K = T and Φk = {k}. Moreover, for each Φk, we consider a second
partition Φk =

⋃Lk

lk=1 Φlk
k based on ties in the entire return vector (a common

situation when using sub-scenarios and pseudo-samples), that is, t1, t2 ∈ Φlk
k

if and only if xt1 = xt2 . Consider:

υ(τ |w) = min
θi,βl

k

L∑
i=1

biθi − T−1

K∑
k=1

Lk∑
lk=1

βlkk
∑
t∈Φ

lk
k

xtτ (3.14)

35



s.t.
L∑
i=1

aijθi − T−1

K∑
k=1

Lk∑
lk=1

βlkk
∑
t∈Φ

lk
k

xtj = 0, j = 1, ...,M

βlkk − β
lk+1

k+1 ≥ wk, k = 1, ..., K − 1, lk = 1, ..., Lk, lk+1 = 1, ..., Lk+1

βlKK ≥ wK , lK = 1, ..., LK

θi ≥ 0, i = 1, 2, ..., L.

Theorem 3.7 (Reduced test):

A given portfolio τ is SSD efficient if and only if υ(τ |w) = 0 for w > 0.

The dual LP program to (3.14) is

υ(τ |w) = max
λ,ρlklk+1

,ρtK

K−1∑
k=1

wk

Lk∑
lk=1

Lk+1∑
lk+1=1

ρlklk+1
+ wK

LK∑
lK=1

ρlK (3.15)

s.t.

L2∑
l2=1

ρl1l2 ≤ T−1
∑
t∈Φ

l1
1

(xtλ− xtτ ), l1 = 1, ..., L1

Lk+1∑
lk+1=1

ρlklk+1
−

Lk−1∑
lk−1=1

ρlk−1lk ≤ T−1
∑
t∈Φ

lk
k

(xtλ− xtτ ), lk = 1, ..., Lk,

k = 2, 3, ..., K − 1

ρlK −
LK−1∑
lK−1=1

ρlK−1lK ≤ T−1
∑
t∈Φ

lK
K

(xtλ− xtτ ), lK = 1, ..., LK

ρlklk+1
, ρlK ≥ 0, lk = 1, ..., Lk, k = 1, ..., K − 1

λ ∈ Λ.

The comparison of computational complexity of all considered tests is
presented in Table 3.1.
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Chapter 4

Portfolio efficiency test with
respect to N-th order
stochastic dominance

This chapter summarizes the NSD portfolio efficiency tests for N ≥ 2 derived
in Post and Kopa (2013). It exploits Definition 1.3 of N -th order stochastic
dominance relation. Similarly to the general SSD portfolio efficiency test
presented in Section 3.4, the NSD portfolio efficiency test is formulated in
the primal-dual way. In this chapter the discrete probability distribution of
returns of M assets is still assumed. However, the scenarios xt, t = 1, 2, ..., T
need not be equiprobable, they occur with probability pt. The results are
derived for Λ given by (1.7). However, they can be easily modified for any
nonempty bounded polytope set.

4.1 Linear formulation in terms of piece-wise

polynomial utility

Post and Kopa (2013) consider the following reformulation of Definition 1.3.

Lemma 4.1:

An evaluated portfolio τ ∈ Λ is efficient in terms of N-th order stochastic
dominance, N ≥ 2 relative to all feasible portfolios λ ∈ Λ if it is an optimal
solution of the maximizing expected utility problem for some admissible utility
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function u ∈ UN , that is:

T∑
t=1

ptu(xtτ ) ≥
T∑
t=1

ptu(xtλ) ∀λ ∈ Λ⇐⇒

T∑
t=1

ptu
′(xtτ )(xtτ − xtj) ≥ 0, j = 1, 2, ...,M.

The lemma follows from the Karush-Kuhn-Tucker first-order condition
for selecting the optimal combination of assets: maxλ∈Λ

∑T
t=1 ptu (xtλ) . An

admissible function u ∈ UN is now chosen as any function from UN which
is not constant on the relevant interval

〈
(Xτ )[1], (Xτ )[T ]

〉
in order to avoid

some trivial cases. This reformulation was first introduced by Post (2003)
for SSD (N = 2) and applies also for higher-order criteria (N > 2), but it
does not apply for FSD (N = 1). Kopa and Post (2009) presented a different
utility-based formulation for this case, see Section 2.2.

Lemma 4.2:

For any utility function u ∈ UN , N ≥ 2, and a discrete set of outcomes
z1 ≤ · · · ≤ zT , we represent the levels of utility and its derivatives by piece-
wise polynomial functions:

u (zt) =
N−2∑
n=0

βn (zt − zT )n +
T∑
k=t

γk(zt − zk)N−1

uq (zt) =
N−2∑
n=q

n!

(n− q)!
βn (zt − zT )

n−q
+

(N − 1)!

(N − q − 1)!

T∑
k=t

γk(zt − zk)N−q−1,

q = 1, . . . , N − 1

where

βn =
un(zT )

n!
, n = 0, 1, . . . , N − 2

γk =
uN−1

(
z∗k−1

)
− uN−1 (z∗k)

(N − 1)!
, k = 2, . . . , T − 1 , γT =

uN−1
(
z∗T−1

)
(N − 1)!
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for some values z∗k ∈ 〈zk, zk+1〉 , k = 1, . . . , T − 1 such that

(−1)nβn ≤ 0, n = 1, . . . , N − 2 (4.1)

(−1)N−1 γk ≤ 0, k = 1, 2, . . . , T. (4.2)

Moreover, for all parameters satisfying (4.1)-(4.2) we can construct an ad-
missible utility function u ∈ UN .

Combining Lemma 1 with Lemma 2, Post and Kopa (2013) proposed to
solve the following linear program:

θ∗ = min
βn,γk,θ

θ (4.3)

s.t.
(
xtτ − xtj

)
pr

T∑
t=1

(
N−2∑
n=1

nβn
(
xtτ − xTτ

)n−1
+

(N − 1)
T∑
k=t

γk
(
xtτ − xkτ

)N−2

)
+ θ ≥ 0, j = 1, · · · ,M

(−1)nβn ≤ 0, n = 1, . . . , N − 2

(−1)N−1γk ≤ 0, k = 1, 2, . . . , T
T∑
t=1

(
N−2∑
n=1

nβn
(
xtτ − xTτ

)n−1
+ (N − 1)

T∑
k=t

γk
(
xtτ − xkτ

)N−2

)
pr = 1,

where the last restriction on average marginal utility is a harmless standard-
ization to avoid the trivial solution of an indifferent decision maker.

Theorem 4.1:

A portfolio τ is NSD efficient if and only if θ∗ given by (4.3) is equal to zero.

4.2 Dual formulation in terms of lower par-

tial moments

Consider the following definition for the n-th order lower partial moment
(Bawa (1975)) for portfolio τ and threshold value w:
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LPMn
τ (w) =

T∑
t=1

pt
(
w − xtτ

)n
1(xtτ≤w).

For analyzing the NSD efficiency, we extend the lower partial moments to
the n-th order co-lower partial moments between a portfolio λ and portfolio
τ as follows (Bawa and Lindenberg (1977)):

coLPMn
τ,λ (w) =

T∑
t=1

(
xtλ
)
pt
(
w − xtτ

)n
1(xtτ≤w).

Using n-th order co-lower partial moments between a portfolio λ and
portfolio τ , a dual program to (4.3) with slightly different standardization
((−1)N(N − 1)γT = 1) is:

η∗ = max
λ,η

η (4.4)

s.t. coLPMn
τ,λ

(
xTτ

)
≤ coLPMn

τ,τ

(
xTτ

)
, n = 0, . . . , N − 3

coLPMN−2
τ,λ

(
xtτ
)
≤ coLPMN−2

τ,τ

(
xtτ
)
, t = 1, . . . , T − 1

coLPMN−2
τ,λ

(
xTτ

)
+ η ≤ coLPMN−2

τ,τ

(
xTτ

)
.

λ ∈ Λ.

Theorem 4.2:

A portfolio τ is NSD efficient if and only if η∗ given by (4.4) is equal to zero.
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Chapter 5

Robustness in portfolio
efficiency tests with respect to
SSD criterion

In all SSD portfolio efficiency tests, the scenario approach is assumed, the
returns of assets are modeled by discrete distribution. Therefore, especially
for SSD efficient portfolios, one can ask how sensitive are the SSD efficiency
tests with respect to changes in scenarios, or how the original scenarios can
be changed such that a given SSD efficient portfolio remains SSD efficient
for perturbed scenarios, too. To circumvent this problem, we present in this
chapter several approaches to robustness in SSD portfolio efficiency testing.
In this chapter, we follow the notation from Chapter 3.

5.1 δ-SSD portfolio efficiency test

In this section we follow Kopa (2010) in introducing a δ-SSD portfolio effi-
ciency as a new type of portfolio efficiency with respect to the second-order
stochastic dominance criteria. Fixing the number of equiprobable scenarios,
we identify the maximal perturbation of original scenarios satisfying δ-SSD
portfolio efficiency condition for a given portfolio. The magnitude of this
maximal perturbation, expressed in terms of a distance between original and
perturbed scenarios, can be considered as a measure of δ-SSD efficiency and
the limiting case for δ → 0 leads to a new SSD efficiency measure. We
consider only special perturbations where all scenarios are equiprobable and
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the number of scenarios is fixed. Contrary to the SSD inefficiency measures
discussed in Chapter 3, δ-SSD and SSD portfolio efficiency measures are de-
fined as measures of stability. While all tests mentioned in Chapter 3 give an
information about a measure (degree) of inefficiency (if a tested portfolio is
SSD inefficient), the new measures based on δ-SSD portfolio efficiency assign
to each SSD efficient portfolio a number that can be seen as a measure of
stability or a measure of SSD portfolio efficiency. We start with definition of
δ-SSD relation and δ-SSD portfolio efficiency for arbitrary δ > 0.

Definition 5.1:

Let δ > 0. Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the δ-second-order
stochastic dominance (%′λ �δ−SSD %′τ ) if there exists a double stochastic
matrix W = {w}ij such that Xλ ≥ WXτ and 1′Xλ− 1′Xτ ≥ δ.

The strictly positive parameter δ in Definition 5.1 is chosen sufficiently
small, that is, such that if Xλ ≥ WXτ and 1′Xλ − 1′Xτ < δ then vec-
tors Xλ and WXτ are empirically indistinguishable. Moreover, as it was
shown in Kuosmanen (2004) and references therein, the existence of a double
stochastic matrix W = {w}ij such that Xλ ≥ WXτ is equivalent to weak
SSD relation between %′λ and %′τ as defined in Section 1.2. Therefore, if λ
δ-SSD dominates portfolio τ for some δ > 0 then λ SSD dominates τ .

Definition 5.2:

A given portfolio τ ∈ Λ is δ-SSD inefficient if and only if there exists port-
folio λ ∈ Λ such that %′λ �δ−SSD %′τ . Otherwise, portfolio τ is δ-SSD
efficient.

We modify the Kuosmanen test, see Section 3.2, to δ-SSD portfolio effi-
ciency test.

Lemma 5.1:

Let

θ∗δ = max
W,λ

T∑
t=1

(
xtλ− xtτ

)
(5.1)
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s.t. Xλ ≥ WXτ
T∑
t=1

(
xtλ− xtτ

)
≥ δ

T∑
j=1

wij = 1,
T∑
i=1

wij = 1, wij ≥ 0, i, j = 1, 2, . . . , T

λ ∈ Λ.

If an optimal solution of (5.1) exists then portfolio τ is δ-SSD inefficient and
%′λ∗ �δ−SSD %′τ . Otherwise, τ is δ-SSD efficient portfolio.

Until now a fixed scenario matrix was considered and all portfolio effi-
ciency tests were done for this scenario matrix. Unfortunately, usually we do
not have perfect information about the distribution of returns. Therefore,
the stability of SSD portfolio efficiency and δ-SSD portfolio efficiency with
respect to changes in scenario matrix is of interest.

Since the SSD portfolio efficiency tests and the δ-SSD portfolio efficiency
test are derived under the assumption of equiprobable scenarios collected
in matrix X we will consider only perturbation matrices Xp of the original
matrix X which have exactly T rows, that is, we admit only approximations
with T equiprobable scenarios. Let Xp be the set of all such perturbation
matrices. and let matrix Υ = {υij}Ti,j=1 be defined as Υ = Xp −X. Finally,
let D(X,Xp) = maxi,j |υij| denote a distance between matrices X and Xp on
Xp.

Definition 5.3:

The δ-SSD portfolio efficiency measure γδ of δ-SSD efficient portfolio τ ∈ Λ
is defined as the optimal value of the following optimization problem:

γδ(τ ) = max ε (5.2)

s.t. τ is δ − SSD efficient for all Xp ∈ Xp such that D(X,Xp) ≤ ε.

This measure gives us an information how large is the neighborhood of
X such that the portfolio τ remains classified as δ-SSD efficient for all ma-
trices from this neighborhood. The problem (5.2) consists of infinitely many
δ-SSD efficiency constraints. Moreover, according to the Lemma 5.1, each
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constraint involves a maximization problem what makes problem (5.2) prac-
tically unsolvable. Therefore we reinterpret the δ-SSD portfolio efficiency
measure for a given δ-SSD efficient portfolio τ ∈ Λ as the minimal distance
between the original matrix X and any other matrix Xp that makes portfolio
τ δ-SSD inefficient, that is,

γδ(τ ) = min
Xp∈Xp

D(X,Xp) (5.3)

s.t. τ is δ − SSD inefficient for Xp.

Using Lemma 5.1, Υ = Xp−X and D(X,Xp) = maxi,j |υij|, the SSD portfo-
lio efficiency measure γδ(τ ) can be computed using the following non-linear
program:

γδ(τ ) = min
λ∈Λ,Υ,ε

ε (5.4)

s.t. (X + Υ)λ−W (X + Υ)τ ≥ 0
T∑
t=1

(
(xt + υt)λ− (xt + υt)τ

)
≥ δ

T∑
j=1

wij = 1,
T∑
i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

−ε ≤ υij ≤ ε i, j = 1, 2, . . . , T,

where υt = (υt1, υt2, . . . , υtT ) is the t-th row of matrix Υ. For a given portfolio
τ we have γδ(τ ) ≥ 0 for all δ > 0. Moreover, if δ1 < δ2 then the set of feasible
solutions of (5.5) is larger for δ1 than for δ2 and consequently γδ1(τ ) ≤ γδ2(τ ).
Therefore, we can define a measure of SSD efficiency in the following way.

Definition 5.4:

The SSD portfolio efficiency measure γ of SSD efficient portfolio τ ∈ Λ is
defined as: γ(τ ) = limδ→0+ γδ(τ ) = infδ>0 γδ(τ ).
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5.2 ε-SSD portfolio efficiency test with un-

equal probabilities

Contrary to the previous section, Dupačová and Kopa (2012) assume that
random vector of returns takes scenarios with probabilities p = (p1, p2, ..., pT ).
As in Section 2.1, for any portfolio λ ∈ Λ, let (−Xλ)[k] be the k-th small-
est element of (−Xλ) , i.e. (−Xλ)[1] ≤ (−Xλ)[2] ≤ . . . ≤ (−Xλ)[T ]

and let I(λ) be a permutation of the index set I = {1, 2, ..., T} such that
−xi(λ)λ = (−Xλ)[i]. Accordingly, we can order the corresponding probabil-
ities and we denote pλi = pi(λ). Hence, pλi = P (−%′λ = (−Xλ)[i]). Consider
also the cumulative probabilities: qλ0 = 0 and qλs =

∑s
t=1 p

λ
i , s = 1, 2, ...T .

The same notation is applied for the tested portfolio τ = (τ1, τ2, ..., τM)′.
Allowing unequal scenario probabilities, Dupačová and Kopa (2012) mod-

ified the Kopa and Chovanec test (2008) in the following way:

Theorem 5.1:

Let

ξ(τ , X,p) = min
as,λ

T∑
s=0

as (5.5)

s.t. CVaRqλ
s
(−%′λ)− CVaRqλ

s
(−%′τ ) ≤ as, s = 0, 1, ..., T

as ≤ 0, s = 0, 1, ..., T

λ ∈ Λ.

A given portfolio τ is SSD efficient if and only if ξ(τ , X,p) = 0. If ξ(τ , X,p)
< 0 then the optimal portfolio λ∗ in (5.5) is SSD efficient and it dominates
portfolio τ by SSD.

The objective function of (5.5) represents the sum of differences between
CVaRs of a portfolio λ and CVaRs of the tested portfolio τ . The differences
are considered in points qλs , s = 0, 1, ..., T . All differences must be non-
positive and at least one negative to guarantee that portfolio λ dominates
portfolio τ .

Assume now, that random returns %̄ have the probability distribution
P̄ and take again values xt, t = 1, 2, ..., T but with other probabilities
p̄ = (p̄1, p̄2, ..., p̄T ). We define the distance between P and P̄ as d(P̄ , P ) =
maxi |p̄i − pi|.
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Definition 5.5:

A given portfolio τ ∈ Λ is ε-SSD inefficient if there exists portfolio λ ∈ Λ
and P̄ such that d(P̄ , P ) ≤ ε with %̄′λ �SSD %̄′τ . Otherwise, portfolio τ is
ε-SSD efficient.

The introduced ε-SSD efficiency is a robustification of the classical SSD
portfolio efficiency. It guarantees stability of the SSD efficiency classification
with respect to small changes (prescribed by parameter ε) in probability
vector p. A given portfolio τ is ε-SSD efficient if and only if no portfolio
λ SSD dominates τ neither for the original probabilities p nor for arbitrary
probabilities p̄ from ε-neighborhood of the original vector p. For testing ε-
SSD efficiency of a given portfolio τ we modify (5.5) in order to introduce a
new measure of ε-SSD efficiency:

ξε(τ , X,p) = min
as,λ,p̄

T∑
s=0

as (5.6)

s.t. CVaRq̄λ
s
(−%̄′λ)− CVaRq̄λ

s
(−%̄′τ ) ≤ as, s = 0, 1, ..., T

q̄λs =
s∑
i=1

p̄λi , s = 1, ..., T

q̄λ0 = 0
S∑
i=1

p̄i = 1

−ε ≤ p̄i − pi ≤ ε, i = 1, 2, ..., T

p̄i ≥ 0, i = 1, 2, ..., T

as ≤ 0, s = 0, 1, ..., T

λ ∈ Λ.

Theorem 5.2:

Portfolio τ ∈ Λ is ε-SSD efficient if and only if ξε(τ , X,p) given by (5.6) is
equal to zero.
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5.3 Resistance of SSD portfolio efficiency with

respect to additional scenarios

In the previous sections, we assumed a fixed set of scenarios. In many
practical applications, an additional scenario may be of interest, e.g. for
stress testing. Therefore, the aim of this section is to analyze the robustness
of SSD portfolio efficiency with respect to an additional scenario denoted
by xT+1. For a contamination parameter κ ∈ [0, 1], we assume that the
random return %̃(κ) takes values x1,x2, ...,xT+1 with probabilities p̃(κ) =
((1−κ)p1, (1−κ)p2, ..., (1−κ)pT , κ). More details about contamination tech-
niques can be found in e.g. Dupačová (1990, 1996, 1998, 2006), Dupačová
and Poĺıvka (2007) or Dupačová and Kopa (2012). The cumulative proba-
bilities for portfolio λ are

q̃λs (κ) =
s∑
i=1

p̃λi (κ) =
s∑
i=1

P (−%̃(κ)′λ = (−X̃λ)[i]), s = 1, 2, ..., T + 1

q̃λ0 (κ) = 0

where X̃ is the extended scenario matrix, that is,

X̃ =

(
X

xT+1

)
and the same notation is used for portfolio τ .

Definition 5.6:

A given portfolio τ ∈ Λ is directionally SSD inefficient with respect to xT+1

if it exists κ0 > 0 such that for every κ ∈ [0, κ0] there is a portfolio λ(κ) ∈ Λ
satisfying %̃(κ)′λ(κ) �SSD %̃(κ)′τ .

Definition 5.7:

A given portfolio τ ∈ Λ is directionally SSD efficient with respect to xT+1 if
there does not exist κ0 > 0 such that for every κ ∈ [0, κ0] there is a portfolio
λ(κ) ∈ Λ satisfying %̃(κ)′λ(κ) �SSD %̃(κ)′τ .

According to these definitions, a given portfolio is classified as direc-
tionally SSD efficient (inefficient) with respect to scenario xT+1 if it is SSD
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efficient (inefficient) and a sufficiently small contamination of the original
probability distribution of returns by the additional scenario does not change
the SSD efficiency classification, that is, the SSD efficient (inefficient) portfo-
lio remains SSD efficient (inefficient). Applying (5.5) to contaminated data,
portfolio λ(κ) ∈ Λ satisfying %̃(κ)′λ(κ) �SSD %̃(κ)′τ exists if and only if
ξ(τ , X̃, p̃(κ)) < 0, where

ξ(τ , X̃, p̃(κ)) = min
as,λ

T∑
s=0

as (5.7)

s.t. CVaRq̃λ
s
(−%̃(κ)′λ)− CVaRq̃λ

s
(−%̃(κ)′τ ) ≤ as, s = 0, 1, ..., T

as ≤ 0, s = 0, 1, ..., T

λ ∈ Λ.

Using contamination bounds Dupačová and Kopa (2012) derive a suffi-
cient condition for directional SSD efficiency and directional SSD inefficiency
with respect to additional scenario xT+1.

Theorem 5.3:

Let τ ∈ Λ be an SSD efficient portfolio for the noncontaminated distribution
P . Let

xT+1τ ≥ xT+1λ for all λ ∈ Λ. (5.8)

Then τ ∈ Λ is directionally SSD efficient with respect to xT+1.

Theorem 5.4:

Let τ ∈ Λ be an SSD inefficient portfolio for the noncontaminated distribu-
tion P . If there exists a portfolio λ ∈ Λ such that

CVaRqλ
s
(−%′λ)− CVaRqλ

s
(−%′τ ) < 0, s = 0, 1, ..., T (5.9)

xT+1λ ≥ min((Xτ )[1],xT+1τ ) (5.10)

then τ is directionally SSD inefficient with respect to xT+1.

Condition (5.10) is needed to guarantee that even in the contaminated
case the smallest return of portfolio λ is larger than or equal to that of
portfolio τ what is a necessary condition of SSD relation. The proofs and
more details can be found in Dupačová and Kopa (2012).
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[7] J. Dupačová: Stress testing via contamination. In: K. Marti et al.
(Eds.), Coping with Uncertainty, Modeling and Policy Issues, pp. 29–
46, LNEMS 581, 2006, Springer, Berlin.
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A Portfolio Optimality Test Based on the
First-Order Stochastic Dominance Criterion
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Abstract

Existing approaches to testing for the efficiency of a given portfolio make strong parametric
assumptions about investor preferences and return distributions. Stochastic dominance-
based procedures promise a useful nonparametric alternative. However, these procedures
have been limited to considering binary choices. In this paper we take a new approach
that considers all diversified portfolios and thereby introduce a new concept of first-order
stochastic dominance (FSD) optimality of a given portfolio relative to all possible portfo-
lios. Using our new test, we show that the U.S. stock market portfolio is significantly FSD
nonoptimal relative to benchmark portfolios formed on market capitalization and book-to-
market equity ratios. Without appealing to parametric assumptions about the return distri-
bution, we conclude that no nonsatiable investor would hold the market portfolio in the
face of the attractive premia of small caps and value stocks.

I. Introduction

Portfolio analysis and asset pricing tests typically focus on the mean-variance
criterion. It is well-known that this criterion implicitly assumes a quadratic utility
function or a normal probability distribution, which is quite restrictive in many
cases. A good illustration of the limitations of the mean-variance criterion comes
from Levy ((1998), p. 2):

[Consider] two alternative investments: x providing $1 or $2 with equal
probability and y providing $2 or $4 with equal probability, with an identical
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investment of, say, $1.1. A simple calculation shows that both the mean and
the variance of y are greater than the corresponding parameters of x; hence
the mean-variance rule remains silent regarding the choice between x and y.
Yet, any rational investor would (and should) select y, because the lowest
return on y is equal to the largest return on x.

The criteria of stochastic dominance (SD) are useful nonparametric alterna-
tives. Most notably, first-order stochastic dominance (FSD) is one of the basic
concepts of decision making under uncertainty, relying only on the assumption of
nonsatiation, or increasing utility. It does not require further specification of the
shape of the utility function or the shape of the probability distribution. FSD anal-
ysis is generally more difficult to implement than mean-variance analysis. There
exist well-known simple tests for establishing FSD relationships between a pair
of choice alternatives (see, e.g., Levy (1998), sect. 5.2). Unfortunately, these tests
have limited use for portfolio analysis and asset pricing tests, because investors
generally can form a large number of portfolios by diversifying across individ-
ual assets. Therefore, there is a need to develop a test for establishing if a given
portfolio is “FSD efficient” relative to all possible portfolios. Such a test would
be a useful alternative for existing mean-variance portfolio efficiency tests (e.g.,
Gibbons, Ross, and Shanken (1989)), especially if the return distribution is skewed
and fat-tailed.

A complication in testing FSD portfolio efficiency is that we must distinguish
between efficiency criteria based on “admissibility” and “optimality.” There is a
subtle difference between these two concepts. A choice alternative is FSD admis-
sible if and only if no other alternative is preferred by all nonsatiable decision-
makers. A choice alternative is FSD optimal if and only if it is the optimal choice
for at least some nonsatiable decision-maker. For pairwise comparison, the two
concepts are identical; alternative x1 is FSD undominated by alternative x2 if and
only if some nonsatiable decision-maker prefers x1 to x2. However, more gener-
ally, when multiple choice alternatives are available, FSD admissibility is a nec-
essary but not sufficient condition for FSD optimality. In other words, a choice
alternative may be admissible even if it is not optimal for any increasing utility
function.

Bawa, Bodurtha, Rao, and Suri (1985) and Kuosmanen (2004) propose FSD
tests that apply under more general conditions than a pairwise test does. The two
tests differ in a subtle way. While Bawa et al. (1985) consider all convex combina-
tions of the distribution functions of a given set of choice alternatives, Kuosmanen
(2004) considers the distribution function for all convex combinations of a given
set of choice alternatives. Each of these two tests captures an important aspect of
portfolio choice that is not captured by a pairwise FSD test. Still, both tests miss
some key aspect of a proper FSD portfolio optimality test, and both tests gener-
ally give a necessary but not sufficient condition. The linear programming (LP)
test of Bawa et al. (1985) is based on optimality, but it does not account for full
diversification across the choice alternatives. Bawa et al. (1985) use a set of un-
diversified base assets as the choice alternatives. In principle, diversification can
enter through the back door by including combinations of the base assets as addi-
tional choice alternatives. However, since the number of possible combinations
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is infinitely large, this approach generally gives only a necessary condition, and
potentially it yields a very large computation load. The mixed integer linear pro-
gramming (MILP) test of Kuosmanen (2004) does account for full diversification,
but it relies on admissibility rather than optimality.

In this study, we derive a proper test for FSD optimality of a given portfolio
relative to all portfolios formed from a set of choice alternatives and apply that test
to analyze the U.S. stock market portfolio. In contrast to Bawa et al. (1985), our
test considers all diversified portfolios in addition to the individual undiversified
choice alternatives, and in contrast to Kuosmanen (2004), it relies on optimality
rather than admissibility. Both features lead to a more powerful FSD test, based
on a necessary and sufficient condition, than is currently available.

The new test contributes to recent methodological developments that make
the SD methodology more applicable to problems in financial economics by im-
proving the statistical power and providing more efficient computation algorithms.
Our test is a natural complement to the second-order stochastic dominance (SSD)
efficiency test of Post (2003). Due to concavity of utility, the analysis of SSD is
generally simpler than that of FSD. First, SSD admissibility and SSD optimal-
ity are equivalent in a portfolio context, and the definition of “SSD efficiency”
is less ambiguous than that of “FSD efficiency.”1 Second, SSD efficiency can be
tested by simply evaluating the first-order optimality condition for all individual,
undiversified choice alternatives. Third, the representative utility functions have
a piecewise-linear shape, and the first-order optimality condition can be checked
by searching over these functions using a single small-scale LP problem.

We apply our test to U.S. stock market data in order to analyze the FSD
optimality of the market portfolio relative to portfolios formed on market capi-
talization and book-to-market (BM) equity ratio. This application seems relevant
because a large class of capital market equilibrium models predicts that the market
portfolio is FSD optimal. Surprisingly, we find that the market portfolio is signif-
icantly FSD nonoptimal. Without appealing to parametric assumptions about the
return distribution, we conclude that no nonsatiable investor would hold the
market portfolio in the face of the attractive premia of small caps and value stocks.

The remainder of this paper is structured as follows. Section II introduces
preliminary notation, assumptions, and definitions. Next, Section III reformulates
the FSD optimality criterion in terms of piecewise-constant representative util-
ity functions, in the spirit of the representative utility functions used by Russell
and Seo (1989). Section IV develops an LP test for searching over all represen-
tative utility functions in order to test portfolio optimality and suggests several
approaches to identifying the input to this test. Section V uses a numerical ex-
ample to illustrate our test and compare it with the two existing tests. Section
VI discusses our empirical analysis of the U.S. stock market portfolio. Finally,
Section VII presents concluding remarks and suggestions for further research.

1Theorem 1 of Post (2003) shows the equivalence using Sion’s (1958) minimax theorem. Other
treatments of SSD admissibility and optimality include Peleg and Yaari (1975), Dybvig and Ross
(1982), and Bawa and Goroff (1982), (1983).
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II. Preliminaries

Consider N choice alternatives and T scenarios with equal probability. The
outcomes of the choice alternatives in the various scenarios are given by

X =

⎛⎜⎜⎜⎝
x1

x2

...

xT

⎞⎟⎟⎟⎠,
where xt = (xt

1, x
t
2, . . . , x

t
N) is the tth row of matrix X. Without loss of generality,

we can assume that the columns of X are linearly independent. In addition to the
individual choice alternatives, the decision-maker may also combine the choice
alternatives into a portfolio. We will use λ ∈ RN for a vector of portfolio weights,
and the portfolio possibilities are given by Λ = {λ ∈ RN |1′λ = 1, λn ≥ 0, n =
1, 2, . . . ,N}.2 The evaluated portfolio is denoted by τ ∈ Λ and is assumed to be
risky.3 Let y[k] be the kth smallest element among y1, y2, . . . , yN ; that is, y[1] ≤
y[2] ≤ · · · ≤ y[N]. Let

m = min
t,n

xt
n, m = max

t,n
xt

n, and k(τ ) = min
{

t : (Xτ )[t] > (Xτ )[1]
}
.

The constants m and m are the minimum and maximum possible returns. After
ordering the returns of the tested portfolio τ from the smallest to the largest one,
k(τ ) determines the order of the second smallest return. Without ties, we have
k(τ ) = 2, but if the smallest value occurs multiple times, then k(τ ) > 2.

Decision-makers obey the rules of expected utility theory. Their preferences
belong to the class of weakly increasing utility functions U1, and their decision-
making problem can be represented as

max
λ∈Λ

T∑
t=1

u(xtλ).(1)

Since utility functions are unique up to the level of a positive linear transfor-
mation, without loss of generality we may focus on the following set of standard-
ized utility functions:

U1(τ ) =
{

u ∈ U1 : u(m) = 0 ; u
(
(Xτ )[T]

)
− u
(
(Xτ )[k(τ )]

)
= 1
}
.(2)

2By using the simplex Λ, we exclude short selling. Short selling typically is difficult to implement
in practice due to margin requirements and explicit or implicit restrictions on short selling for institu-
tional investors. Still, we may generalize our analysis to include (bounded) short selling. In fact, the
analysis applies to any portfolio set that takes the form of a polytope (roughly speaking, a nonempty
and closed set that is defined by linear restrictions) if we replace the N choice alternatives with the set
of M extreme points of the polytope.

3Testing optimality for a riskless portfolio is trivial, because we then only need to check if there
exists some portfolio that achieves a higher minimum return than the riskless rate. If no such portfolio
exists, the riskless alternative is the optimal solution for extreme risk averters and hence FSD optimal.
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Note that the standardization depends on the evaluated portfolio and hence
will differ when evaluating different portfolios. Furthermore, the standardization
requires utility to be strictly increasing at least somewhere in the interior of the
range for the evaluated portfolio. This requirement is natural, because testing op-
timality relative to all u ∈ U1 is trivial. Specifically, every portfolio λ ∈ Λ is
an optimal solution for u0 = I(x ≥ (Xτ )[1]), that is, a two-piece constant utility
function. Thus U1(τ ) is the largest subset of U1 for which testing optimality is
nontrivial.

Definition 1. Portfolio τ ∈ Λ is FSD optimal if and only if it is the optimal
solution of expression (1) for at least some utility function u ∈ U1(τ ); that is,
there exists u ∈ U1(τ ) such that

T∑
t=1

u(xtτ )−
T∑

t=1

u(xtλ) ≥ 0, ∀λ ∈ Λ.

Otherwise, τ is FSD nonoptimal.

The intuition behind FSD optimality is that the evaluated portfolio is of po-
tential interest to investors if it achieves a higher expected utility than all other
portfolios for some increasing utility function. This concept allows for several
variations. Most notably, we can choose between weakly and strictly increasing
utility, and we can choose between weakly and strongly higher expected utility.
Empirically, these variations are often not distinguishable. A weakly increasing
utility function u(x) generally is empirically indistinguishable from the strictly
increasing function u(x) + ax for some infinitely small value a > 0. Similarly, in-
finitely small data perturbations generally suffice to change a weak inequality to
a strong one. In addition, it can be shown that requiring strictly increasing utility
and strong inequality is the same as weakly increasing utility and weak inequality.
This study will not try to answer the question of which type of utility function or
inequality is most relevant. Rather, we will focus on accounting for all possible
portfolios in an optimality test that is based on weakly increasing utility and weak
inequality.

III. Representative Utility Functions

This section reformulates the optimality criterion in terms of a set of elemen-
tary representative utility functions. For pairwise FSD comparisons, Russell and
Seo (1989) show that the set of three-piece linear utility functions is representative
for all admissible utility functions. In our portfolio context, with diversification
allowed, a class of piecewise-constant utility functions is relevant:

R1(τ ) =

{
u ∈ U1|u(y) =

T∑
t=1

atI
(

y ≥ (Xτ )[t]
)
, a ∈ A(τ )

}
and(3)

A(τ ) =

⎧⎨⎩a ∈ RT
+ :

T∑
t=k(τ )

at = 1, (Xτ )[t] = (Xτ )[s](4)
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∧ t < s ⇒ as = 0, t, s= 1, 2, . . . , T

}
,

where

I( y ≥ y0) = 1, for y ≥ y0

= 0 otherwise.

This class consists of at most (T + 1)-piece constant, upper semicontinuous
utility functions. This class is reminiscent of the representative utility functions
used by Russell and Seo (1989) to test pairwise FSD relationship. In fact, our
utility functions can be obtained as a sum of the first derivatives of the Russell
and Seo (1989) representative utility functions on the relevant interval (m,m).4

The utility functions are also reminiscent of the piecewise-linear functions used
by Post (2003) to test SSD portfolio efficiency.

Theorem 1. Portfolio τ ∈ Λ is FSD optimal if and only if it is the optimal solution
of expression (1) for at least some utility function u ∈ R1(τ ); that is, there exists
u ∈ R1(τ ) such that

T∑
t=1

u(xtτ )−
T∑

t=1

u(xtλ) ≥ 0, ∀λ ∈ Λ.

Otherwise, τ is FSD nonoptimal.

Proof. The sufficient condition follows directly from R1(τ ) ⊂ U1(τ ). To establish
the necessary condition, suppose that τ is optimal for u(y) ∈ U1(τ ) and let

uR(y) =
T∑

t=1

atI
(

y ≥ (Xτ )[t]
)
,

with a1 = u(Xτ )[1], at = 0, t = 2, . . . , k(τ ) − 1, and at = u(Xτ )[t] − u(Xτ )[t−1],
t = k(τ ), . . . , T . By construction, uR(y) ∈ R1(τ ). Furthermore, uR(y) ≤ u(y),
∀y ∈ 〈m,m〉, and uR(y) = u(y), for y= (Xτ )[1], (Xτ )[2], . . . , (Xτ )[T]. Therefore,

T∑
t=1

uR(x
tτ )−

T∑
t=1

uR(x
tλ) ≥

T∑
t=1

u(xtτ )−
T∑

t=1

u(xtλ), ∀λ ∈ Λ.

Since τ is optimal for u(y) ∈ U1(τ ), the right-hand side (RHS) is nonnegative
for all λ ∈ Λ, and hence τ is also optimal for uR(y) ∈ R1(τ ), which completes
the proof.

4Russell and Seo (1989) functions are continuous three-piece functions that consist of two con-
stant pieces and one linear, increasing piece in between. Choose T such functions with increasing
pieces with slopes a1, a2, . . . , aT for the intervals ((Xτ)[1], (Xτ)[2]), ((Xτ)[2], (Xτ)[3]), . . . ,
((Xτ)[T−1], (Xτ)[T]), ((Xτ)[T],m). Our piecewise-constant utility function is the sum of the first
derivatives on these intervals.



Kopa and Post 1109

The proof makes use of the fact that any utility function can be transformed
into a piecewise-constant function with increments only at xtτ , t=1, . . . , T . This
transformation does not affect the expected utility for the evaluated portfolio, but
it may lower the expected utility of other portfolios. Since the objective is to ana-
lyze whether the evaluated portfolio is optimal for some utility function, only the
representative utility functions need to be checked; all other utility functions are
known to put the evaluated portfolio in a worse perspective than any representa-
tive utility function.

To illustrate the representation theorem, consider the cubic utility function
u(y) = 10 + y− 0.1y2 + 0.05y3 and a portfolio with returns (Xτ )[1] =−5, (Xτ )[2]

= 1, and (Xτ )[3] = 6. Figure 1 shows a version of this function that is transformed
such that it belongs to U1(τ ): u0(y) = 2.6 + 0.04y− 0.004y2 + 0.002y3 (the solid
line). Since the latter function is obtained after a positive linear transformation,
it yields the same results as the former function. The dashed line represents the
piecewise-constant function uR(y) = 2.087I(y ≥ −5) + 0.546I(y ≥ 1) + 0.454I
(y ≥ 6). This function is constructed such that it yields exactly the same utility
levels for the evaluated portfolio as u0(y) does. Furthermore, the utility levels
for all other portfolios are smaller than or equal to those for u0(y). Thus, if the
evaluated portfolio is optimal for u0(y), then it is also optimal for uR(y). A similar
analysis applies for every admissible utility function u(y) ∈ U1(τ ).

FIGURE 1

Representative Utility Function

Figure 1 shows the original utility function u0 and the associated representative utility function u1.

Apart from replacing U1(τ ) with R1(τ ), we may also replace Λ with a re-
duced portfolio set that only considers portfolios with a higher minimum than the
evaluated portfolio:

Λ(τ ) =
{
λ ∈ Λ : (Xτ )[1] ≤ (Xλ)[1]

}
.
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Using the representative utility functions and the reduced portfolio set, we
can construct the following FSD nonoptimality measure for any Λ0 ⊆ Λ(τ ):

ξ(τ , Λ0) =
1
T

min
u∈R1(τ )

max
λ∈Λ0

T∑
t=1

(u(xtλ)− u(xtτ )) .(5)

Replacing Λ with Λ(τ ) reduces the parameter space, but it causes no harm,
because

max
λ∈Λ

T∑
t=1

(u(xtλ)− u(xtτ )) = max
λ∈Λ(τ )

T∑
t=1

(u(xtλ)− u(xtτ ))

for all u ∈ R1(τ ) with sufficiently large a1, and we minimize the maximum of
expected utility differences. If the evaluated portfolio has the highest minimum,
then we can directly conclude that ξ(τ , Λ(τ )) = 0; that is, the evaluated portfolio
is FSD optimal (see the following corollary).

Corollary 1. i) Portfolio τ is FSD optimal if and only if ξ(τ , Λ(τ ))=0. Otherwise,
ξ(τ , Λ(τ )) > 0. ii) If Λ0 ⊆ Λ(τ ), then ξ(τ , Λ0) ≤ ξ(τ , Λ(τ )).

The next section will show that ξ(τ , Λ(τ )) can be computed by solving an
LP problem.

IV. Mathematical Programming Algorithm

There exist well-known simple algorithms for establishing FSD-dominance
relationships between a pair of choice alternatives (see, e.g., Levy (1998), sect.
5.2). Bawa et al. (1985) derive an LP algorithm for FSD optimality relative to a
discrete set of choice alternatives. Kuosmanen’s (2004) test for FSD admissibility
in a portfolio context is computationally more demanding, because we need to
account for changes to the ranking of the portfolio returns as the portfolio weights
change, a task that requires integer programming. A similar complication arises
for testing FSD optimality in a portfolio context. This section develops an LP test
for testing portfolio optimality. However, the input to the LP test may require an
initial phase of MILP or subsampling.

Before presenting the algorithm, we stress that in some cases, simple neces-
sary or sufficient conditions will suffice to classify the evaluated portfolio as FSD
optimal or FSD nonoptimal. For example, a pairwise dominance relationship or
a nonoptimality classification by the Bawa et al. (1985) test suffices to conclude
that the portfolio is FSD nonoptimal. Similarly, if the evaluated portfolio is classi-
fied as efficient according to a mean-variance test or an SSD test, we can conclude
that the portfolio is FSD optimal.

Let

hs(λ, τ ) =

T∑
t=1

I
(
xtλ ≥ (Xτ )[s]

)
, s= 1, . . . , T,(6)

h(λ, τ ) = (h1(λ, τ ), . . . , hT(λ, τ )), and(7)

H(τ ) = {h ∈ {0, . . . , T}T : h= h(λ, τ ), λ ∈ Λ(τ )}.(8)
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Since hs(λ, τ ) represents the number of returns of portfolio λ exceeding the
sth smallest return of portfolio τ , it can take at most T + 1 values (0, 1, . . . , T)
for any s = 1, . . . , T . Thus, the set H(τ ) has a finite number of elements. For
small-scale applications, identifying all elements is a fairly trivial task. However,
for large-scale applications, the task is more challenging and can become compu-
tationally demanding. Some computational strategies that identify the elements of
H(τ ) are discussed below. Interestingly, given H(τ ), the test statistic ξ(τ , Λ(τ ))
can be computed using simple LP problem. To see this, consider the following
chain of equalities:

ξ(τ , Λ(τ ))

=
1

T
min

u∈R1(τ)
max
λ∈Λ(τ)

T∑
t=1

(
u(xtλ)− u(xtτ )

)

=
1

T
min
a∈A(τ)

max
λ∈Λ(τ)

T∑
t=1

T∑
s=1

as

(
I
(
xtλ ≥ (Xτ )[s]

)
− I
(
xtτ ≥ (Xτ )[s]

))

=
1

T
min
a∈A(τ)

max
λ∈Λ(τ)

T∑
t=1

T∑
s=k(τ)

as

(
I
(
xtλ ≥ (Xτ )[s]

)
− I
(
xtτ ≥ (Xτ )[s]

))

=
1

T
min
a∈A(τ)

max
λ∈Λ(τ)

T∑
s=k(τ)

as

(
T∑

t=1

I
(
xtλ ≥ (Xτ )[s]

)
−

T∑
t=1

I
(
xtτ ≥ (Xτ )[s]

))

=
1

T
min
a∈A(τ)

max
λ∈Λ(τ)

T∑
s=k(τ)

as(hs(λ, τ )− hs(τ , τ ))

=
1

T
min

a∈A(τ),δ

⎧⎨
⎩δ :

T∑
s=k(τ)

as(hs − hs(τ , τ )) ≤ δ, ∀h ∈ H(τ )

⎫⎬
⎭ .

The RHS of the final equality involves the minimization of a linear objec-
tive under a finite set of linear constraints. Thus, testing FSD optimality requires
solving a simple LP problem, and Corollary 1.i) implies the following sufficient
and necessary condition for FSD optimality:

Theorem 2. Let H0 ⊆ H(τ ). Let

δ∗(H0) = min
a∈A(τ )

δ(9)

s.t.
T∑

s=k(τ )

as
(
hs − hs(τ , τ )

) ≤ δ, ∀h ∈ H0.(10)

Portfolio τ is FSD optimal if and only if δ∗(H(τ )) = 0. If δ∗(H0) > 0 for some
H0 ⊆ H(τ ), then τ is FSD nonoptimal.

The idea of this result is to find a representative utility function for which τ
maximizes expected utility. Note that ξ(τ , Λ(τ ))=δ∗/T . Since a ∈ A(τ ) and h ∈
{0, . . . , T}T for all h ∈ H(τ ), using Corollary 1.i), we have 0 ≤ ξ(τ , Λ(τ )) ≤ 1.

Among other things, the theorem implies the following about the relationship
between the efficiency concepts of optimality and admissibility.

Corollary 2. If (T ≤ 4), then FSD optimality is equivalent to FSD admissibility.
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Proof . Without loss of generality, let T=4, and let τ be FSD admissible. Consider
all possible h(λ, τ ) that are not dominated by each other:5 h1(λ, τ )=(4, 2, 2, 2),
h2(λ, τ )=(4, 3, 3, 0), h3(λ, τ )=(4, 4, 2, 0), and h4(λ, τ )=(4, 4, 1, 1). Entering
these candidates in the LP test in Theorem 2, we can see that τ is the optimal
portfolio for a representative utility function with a2 = a3 = a4 = 1/3, and hence
τ is FSD optimal.

The numerical example in the next section shows that the two efficiency
concepts diverge for T ≥ 5.

A remaining problem is identifying the elements of the set H(τ ). We may
adopt several strategies for this task. The Appendix provides an MILP algorithm
that identifies a set of candidate vectors H̃(τ ) ⊇ H(τ ) and checks if h ∈ H(τ )
for every candidate h ∈ H̃(τ ). A drawback of this approach is that the number
of candidates increases exponentially with the number of scenarios (T). Hence,
for large numbers of scenarios, this strategy may become computationally pro-
hibitive, and some sort of approximation may then be required.

For example, we may form a sample Hs(τ ) of elements h(λ, τ ) by using a
sample Λs ∈ Λ(τ ) and constructing the associated values for h(λ, τ ). The test
procedure is then applied to the sample Hs(τ ) instead of the complete set H(τ ).6

According to Corollary 1.ii), this will lead to a necessary condition for FSD
optimality. Various techniques, including a regular grid, Monte Carlo methods,
or quasi-Monte Carlo methods, exist for performing the sampling task (see, e.g.,
Jackel (2002), Glasserman (2004)).

While the MILP algorithm starts from a large set of candidate vectors and
checks feasibility for every candidate, sampling from the portfolio space avoids
searching over infeasible candidates. Of course, the limitation of this strategy is
that the critical sample size needed to obtain an accurate approximation increases
exponentially as the number of individual choice alternatives (N) increases. Still,
this approach can yield an accurate approximation in an efficient manner if N is
low. This is especially true when the correlation between the individual choice
alternatives is high and hence small changes in the portfolio weights do not lead
to large changes in the values of h(λ, τ ).

An alternative approach is to enrich the Bawa et al. (1985) test by including
the same sample of diversified portfolios Λs as additional choice alternatives. This
will lead to a more powerful necessary condition for FSD optimality than consid-
ering the undiversified choice alternatives only. However, using the sample Λs in
our test generally leads to a more favorable trade-off between computation time
and numerical accuracy.

Specifically, if we apply the Bawa et al. (1985) test to a grid with step size s,
the relevant linear program has M · T columns and M rows (see the LP problem

5A dominated h(λ, τ ) cannot change the solution of equations (9)–(10).
6Since every h(λ, τ ) is known to be feasible, we can skip Steps 2–5 of the algorithm and take

only Steps 1 and 6. Step 1 in this case boils down to performing pairwise dominance tests between
every sampled portfolio and the evaluated portfolio. The computational burden of the step can be
ignored.
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in Bawa et al. (1985), sect. IC, p. 423), or dimensions M · T × M, while the
dimensions of our linear program in equations (9)–(10) are T ×M, where

M =
N−1∏
i=1

(
1 +

1
si

)
is the number of portfolios from the grid. For example, if we use T = 120 time-
series observations, N = 10 base assets, and grid step size s = 0.1, the Bawa
et al. (1985) test has dimensions 1.11 · 107 × 9.24 · 104, while our program has
dimensions 120× 9.24 · 104.

V. Numerical Example

A numerical example can illustrate our test and the difference with the Bawa
et al. (1985) test and Kuosmanen (2004) test. We focus on an example with five
scenarios (T = 5), because FSD optimality is equivalent to FSD admissibility for
(T ≤ 4) (see Corollary 2).

Table 1 shows the returns to three choice alternatives (X1, X2, X3) and the
tested portfolio Z = 0.16X1 + 0.21X2 + 0.63X3 in the five scenarios (1, 2, 3, 4, 5).

TABLE 1

Example Showing that the Bawa et al. and Kuosmanen Tests Do Not Give a Sufficient
Condition for FSD Optimality

Table 1 shows the returns in five scenarios to three choice individual alternatives (X1, X2, and X3) and the tested portfolio
Z=0.16X1 +0.21X2 +0.63X3. No convex combination of X1, X2, and X3 FSD dominates Z, and hence Z is FSD admissible.

t X1 X2 X3 Z

1 −1 6 −4 −1.42
2 −2 5.90 2 2.18
3 3.50 2.20 3 2.91
4 8.70 2 5 4.96
5 10 7 7.50 7.80

One can immediately see that no individual choice alternative (X1, X2, and
X3) FSD dominates Z; no other alternative involves a 100% chance of a return
above −2% and a 20% chance of a return above 7%. However, this does not
mean that Z is an optimal portfolio. Therefore, it is interesting to employ the three
efficiency tests.

To implement the Kuosmanen (2004) test, we need to solve the following LP
problem for each of the 5! = 120 permutations of Z, say yj = (y1

j , y
2
j , y

3
j , y

4
j , y

5
j ),

j= 1, 2, . . . , 120, or an equivalent mixed integer linear problem:

Ψj = max
λ1,λ2,λ3

1
5

5∑
t=1

(
λ1xt

1 + λ2xt
2 + λ3xt

3 − yt
j

)
s.t. λ1xt

1 + λ2xt
2 + λ3xt

3 ≥ yt
j, t = 1, 2, 3, 4, 5,

λ1 + λ2 + λ3 = 1, and

λ1, λ2, λ3 ≥ 0.
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We find Ψ∗j = 0 for every j= 1, 2, . . . , 120, and hence Z is in the FSD admissible
set (not FSD dominated by any convex combination of X1, X2, and X3).

To test FSD optimality according to Bawa et al. (1985), we need to estab-
lish whether some convex combination of the cumulative distribution functions
(CDFs) of X1, X2, and X3 dominates the CDF of Z (see Bawa et al. (1985), eq. 5,
p. 421). Table 2 shows the CDFs of the three choice alternatives (ΦX1 , ΦX2 , ΦX3 )
and the CDF of Z (ΦZ). Note that these CDFs need to be evaluated only at the
observed return levels: {zj}19

j=1.

TABLE 2

Example Showing that the Bawa et al. and Kuosmanen Tests Do Not Give a Sufficient
Condition for FSD Optimality—Continued

Table 2 shows the CDFs of the three individual choice alternatives (X1, X2, X3) and the tested portfolio Z for all observed
return levels. No convex combination of ΦX1 , ΦX2 , ΦX3 dominates ΦZ , and hence Z is classified as optimal.

j zj ΦX1 ΦX2 ΦX3 ΦZ

1 −4 0 0 1/5 0
2 −2 1/5 0 1/5 0
3 −1.42 1/5 0 1/5 1/5
4 −1 2/5 0 1/5 1/5
5 2 2/5 1/5 2/5 1/5
6 2.18 2/5 1/5 2/5 2/5
7 2.2 2/5 2/5 2/5 2/5
8 2.91 2/5 2/5 2/5 3/5
9 3 2/5 2/5 3/5 3/5

10 3.5 3/5 2/5 3/5 3/5
11 4.962 3/5 2/5 3/5 4/5
12 5 3/5 2/5 4/5 4/5
13 5.9 3/5 3/5 4/5 4/5
14 6 3/5 4/5 4/5 4/5
15 7 3/5 1 4/5 4/5
16 7.5 3/5 1 1 4/5
17 7.795 3/5 1 1 1
18 8.7 4/5 1 1 1
19 10 1 1 1 1

To implement the test, we need to solve the following LP problem (see the
LP problem in Bawa et al. (1985), sect. IC, p. 423):

η = max
λ1,λ2,λ3

19∑
j=1

(ΦZ(zj)− λ1ΦX1(zj)− λ2ΦX2(zj)− λ3ΦX3(zj))

s.t. λ1ΦX1(zj) + λ2ΦX2(zj) + λ3ΦX3(zj) ≤ ΦZ(zj), j= 1, . . . , 19,

λ1 + λ2 + λ3 = 1, and

λ1, λ2, λ3 ≥ 0.

Solving this problem, we find η∗ = 0, and hence Z is classified as optimal;
not every nonsatiable decision-maker will prefer X1, X2, or X3 to Z. Based on the
positive outcomes of the two tests, we may be tempted to conclude that Z is the
optimal portfolio for some increasing utility function. Perhaps surprisingly, this
conclusion is wrong, as demonstrated by the application of our MILP algorithm.
We will follow the steps outlined in the Appendix.
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Since we have already tested FSD admissibility, we start with the second step
of identifying the initial candidates for H(τ ). For j = 2, 3, 4, 5, we solve (A-1),
where k(τ )= 2, T = 5, m=−4, m= 10, and Xτ =Z. (Recall that the constants m
and m are the minimal and maximal possible returns, and k(τ ) is the order of the
second smallest return of τ .) Table 3 shows the optimal solutions for h(λ, τ ) and
λ. It follows that hmax = (5, 5, 4, 3, 2). In this example, we find Λ1 = {(0.1483,
0.8517, 0), (0.1187, 0.8813, 0), (0.9266, 0.0734, 0)}, and H1 = {(5, 5, 4, 2, 0),
(5, 5, 3, 3, 0), (5, 3, 3, 2, 2)} for the set of corresponding values of h∗.

TABLE 3

Initial Candidates

Table 3 presents the initial candidates H1 and the associated Λ1(τ) obtained in Step 2 of our algorithm.

j h∗1 h∗2 h∗3 h∗4 h∗5 λ∗1 λ∗2 λ∗3

2 5 5 4 2 0 0.1483 0.8517 0
3 5 5 4 2 0 0.1483 0.8517 0
4 5 5 3 3 0 0.1187 0.8813 0
5 5 3 3 2 2 0.9266 0.0734 0

In the third step, we apply the stopping rules for the initial candidates. Since
h(τ , τ ) = (5, 4, 3, 2, 1), hmax

t > ht(τ , τ ) for all t = k(τ ), . . . , T , the sufficient
condition of FSD optimality is not fulfilled. Since ξ(τ , Λ1) = 0, the necessary
condition of FSD optimality is also not fulfilled, and there exists a decision-maker
who prefers τ to all portfolios in Λ1.

Thus, we proceed with the fourth step of constructing and reducing the candi-
date set H. Since hmax=(5, 5, 4, 3, 2), the candidate set consists of 6∗6∗5∗4∗3=
2,160 elements. We exclude candidates for which a corresponding portfolio can-
not exist, that is, the members of the sets H̃ = H̃1 ∪ H̃2 ∪ H̃3 ∪ H̃4. The re-
maining candidates are h1

c = (5, 5, 4, 1, 1), h
2
c = (5, 5, 2, 2, 2), h

3
c = (5, 5, 2, 2, 1),

h4
c = (5, 5, 2, 1, 1), h

5
c = (5, 5, 1, 1, 1), h

6
c = (5, 4, 4, 1, 1), h

7
c = (5, 4, 2, 2, 2), and

h8
c = (5, 3, 3, 3, 1).

Finally, we employ the last two steps of our algorithm. Step 5 tests the fea-
sibility of a remaining candidate using (A-2). If the candidate is infeasible, then
we choose the next one. If the candidate is feasible, then we add it to H1 and re-
compute ξ(τ ,H1). Let us start with h1

c = (5, 5, 4, 1, 1). This candidate is feasible,
as it corresponds to λ = (0.265, 0.735, 0). Adding this candidate, we consider
Λ2 = Λ1 ∪ (0.265, 0.735, 0) and H2 = H1 ∪ (5, 5, 4, 1, 1). Applying Theorem 2,
we solve the following linear problem:

min δ

s.t. a2 +a3 −a5 ≤ δ

a2 +a4 −a5 ≤ δ

−a2 +a5 ≤ δ

a2 +a3 −a4 ≤ δ

a2 +a3 +a4 +a5 = 1.
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We find δ∗ = 1/9, ξ(τ , Λ2) = δ
∗/5= 1/45 > 0. This means that we cannot

find a representative utility function that rationalizes the evaluated portfolio. Thus,
adding portfolio (0.265, 0.735, 0) to Λ1 suffices to demonstrate nonoptimality in
this case. Note that this portfolio does not dominate the evaluated portfolio, as
the evaluated portfolio is FSD admissible. However, we do know that every well-
behaved investor will prefer (0.265, 0.735, 0) or an element of Λ1 to the evaluated
portfolio. Since the evaluated portfolio is classified as FSD nonoptimal, the algo-
rithm is complete. Thus, in this example, Z is classified as optimal according to
the Bawa et al. (1985) and Kuosmanen (2004) tests. Still, it can be demonstrated
to be nonoptimal for any increasing utility function.

We may repeat this exercise for more portfolios τ ∈ Λ ∩ {0, 0.01, . . . , 1}3,
that is, when using a grid with step size 0.01 for the portfolio weights. Figure 2
illustrates the comparison between FSD admissibility and FSD optimality.

FIGURE 2

Admissibility and Optimality

Figure 2 shows the efficiency classification according to the FSD admissibility test and our FSD optimality test. We applied
these tests to all portfolios τ ∈ Λ ∩ {0, 0.01, . . . , 1}3, that is, when using a grid with step size 0.01 for the portfolio
weights. Our optimal set is represented by the black dots. The admissible set is the union of the black dots and the grey
dots.

The Kuosmanen (2004) test recognizes that many diversified portfolios are
FSD dominated by other diversified portfolios, most notably those that assign a
high weight to X3. In this example, only 22% of the considered portfolios are
FSD admissible (the union of the grey and black dots). The FSD optimal set is
even smaller than the admissible set. The set of grey dots, including Z, is now
excluded, leaving only the black dots. The reduction in the efficient set to 16%
of all considered portfolios (a 26% reduction) is possible because the optimality
test acknowledges that a choice alternative may not be optimal for all investors
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even if no single other choice is preferred by all. Note that the efficient regions
are not convex; witness, for example, the small isolated optimal area near λ =
(0, 0.7, 0.3).

A similar analysis can be done for FSD optimality, according to Bawa et al.
(1985). Figure 3 shows that 93% of all portfolios are classified as optimal. Only
17% of these portfolios are FSD optimal. The optimal set is substantially larger
than ours, because the Bawa et al. (1985) optimality test does not account for full
diversification.

FIGURE 3

Bawa et al. Optimality and FSD Optimality

Figure 3 shows the optimality classification according to the Bawa et al. (1985) test and our test for FSD optimality. Our
optimal set is represented by the black dots. The Bawa et al. (1985) optimal set is the union of the black dots and the grey
dots.

As discussed in Section III, we can increase the power of the Bawa et al.
(1985) test by adding a grid of diversified portfolios to the individual choice
alternatives. Of course, this approach will still yield only a necessary condition,
because it is computationally impossible to include all infinitely many relevant
portfolios. In addition, using the same grid of diversified portfolios in our test will
lead to a smaller linear program. Figure 4 shows the set of portfolios that are not
classified as FSD nonoptimal using the enriched Bawa et al. (1985) test and our
test using the same grid step size.

There are only small differences in the power of the two tests for s = 0.1.
However, our test is roughly 120 times faster than the enriched Bawa et al. (1985)
test. For s=0.01, our test is very powerful: 97% of nonoptimal portfolios are cor-
rectly classified as nonoptimal. Unfortunately, we were unable to implement the
enriched Bawa et al. (1985) test for this step size due to the excessive computation
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FIGURE 4

Subsampling Approach

Figure 4 shows the outcomes of the Bawa et al. (1985) test and our test when applied to a grid of portfolios with step size
s= 0.1 or s = 0.01. The grey dots are portfolios that passed the necessary test; the other portfolios failed the test and are
classified as FSD nonoptimal. The percentages of FSD nonoptimal portfolios that are detected using the necessary tests
are given below each graph.

load. The differences in computation load will be even larger for real-life appli-
cations with higher dimensions.

VI. Empirical Application

To further illustrate our test, we apply it to U.S. stock market data in order
to analyze FSD optimality of the market portfolio relative to portfolios formed on
market capitalization of equity (size) and BM equity ratio. This test seems relevant
for asset pricing theory, because all single-period portfolio-oriented representative-
investor models of capital market equilibrium predict that the market portfolio is
optimal for a representative investor with well-behaved preferences.

The investment universe of stocks is proxied by the well-known six value-
weighted Fama and French portfolios constructed as the intersection of two groups
formed on size (small caps and large caps) and three groups formed on BM
(growth, neutral, and value stocks). We proxy the market portfolio by the Center
for Research in Security Prices (CRSP) all-share index, a value-weighted average
of common stocks listed on NYSE, AMEX, and NASDAQ, and the riskless asset
by the one-year U.S. government bond index from Ibbotson Associates. We
consider yearly (January–December) excess returns from 1963 to 2002 (40 annual
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observations).7,8 Excess returns are computed by subtracting the riskless rate
from the nominal returns; that is, the riskless asset always has a return of 0.

Table 4 shows some descriptive statistics for our data set. Particularly puz-
zling is the value premium in the small cap segment. The small value stocks
earned an average annual excess return of 13.86%, 8.55 percentage points in ex-
cess of the 5.31% for small growth stocks. It seems difficult to explain away this
premium with risk because the small growth stocks actually have a higher stan-
dard deviation than the small value stocks. Indeed, the market portfolio is SSD
inefficient, as shown by Post (2003). This means that in the face of attractive
premiums from investing in small cap stocks and value stocks, investing in the
market portfolio seems nonoptimal for any risk-averse investor.

TABLE 4

Descriptive Statistics

Table 4 shows descriptive statistics for the annual (January–December) excess returns of the six Fama and French stock
portfolios formed on market capitalization of equity and book-to-market equity ratio (SG = small growth, SN = small neutral,
SV = small value, BG = big growth, BN = big neutral, and BV = big value) and the CRSP all-equity index (CRSP). Excess
returns are computed by subtracting the return to the one-year U.S. government bond from the nominal returns. The
sample period is from 1963 to 2002 (40 annual observations). Equity data are from Kenneth French and bond data are
from Ibbotson Associates.

Mean Std. Dev. Skew. Kurt. Min. Max.

SG 5.309 28.520 0.323 0.175 −49.28 83.68
SN 11.301 22.728 −0.308 0.062 −37.38 65.48
SV 13.861 23.158 −0.373 −0.222 −33.86 61.14
BG 5.303 18.820 −0.317 −0.537 −40.49 34.67
BN 6.340 16.120 −0.241 −0.090 −34.13 34.73
BV 8.946 17.723 −0.690 −0.026 −34.24 40.34
CRSP 5.536 17.191 −0.602 −0.404 −39.19 31.89

Still, the market portfolio may be FSD optimal; for example, it may be
optimal for investors who are risk-seeking for losses and risk-averse for gains.
Our first step in analyzing FSD optimality is to apply the Bawa et al. (1985)
test. This test classifies the market portfolio as optimal, meaning that some in-
vestors prefer the market portfolio to all seven benchmark portfolios (six Fama
and French and the riskless asset). However, as discussed before, the test does
not account for diversification between the seven portfolios. To analyze the ef-
fect of diversification, we can enrich the Bawa et al. (1985) test by adding di-
versified portfolios, or we can apply the Kuosmanen (2004) test. Using the grid
Λg=Λ(τ )∩{0, 0.1, . . . , 1}7, the enriched Bawa et al. (1985) test already leads to a

7As discussed in Benartzi and Thaler ((1995), p. 83), one year is a plausible choice for the in-
vestor’s evaluation period, because “individual investors file taxes annually, receive their most compre-
hensive reports from their brokers, mutual funds, and retirement accounts once a year, and institutional
investors also take the annual reports most seriously.” Excess returns are computed by subtracting the
riskless rate from the nominal returns.

8There are two reasons for starting in 1963 and omitting the pre-1963 data. First, prior to 1963,
the Compustat database is affected by survivorship bias caused by the backfilling procedure excluding
delisted firms, which typically are less successful (Kothari, Shanken, and Sloan (1995)). Further,
from June 1962, AMEX-listed stocks are added to the CRSP database, which includes only NYSE-
listed stocks before this month. Since AMEX stocks generally are smaller than NYSE stocks, the
relative number of small caps in the analysis increases from June 1962. Since the value effect is most
pronounced in the small-cap segment, the post-1962 data set is most challenging.
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linear program with more than 320,000 constrains and 8,000 variables. We there-
fore apply the Kuosmanen (2004) test, which involves solving a mixed-integer
program with 1,600 integer variables. Interestingly, this test classifies the market
portfolio as FSD inadmissible and identifies the dominating portfolio shown in
Figure 5.

FIGURE 5

Pairwise FSD Dominance

Figure 5 shows the CDF of the stock market portfolio (black line) and the dominating portfolio (grey line): λd = (0, 0.04, 0.43,
0.37, 0.04, 0, 0.13). Since the dominating portfolio is preferred by all investors, the market portfolio is FSD inadmissible.

Since FSD inadmissibility implies FSD nonoptimality, there is no need to
apply our test in this case. Still, it is useful to apply our test for the purpose of
illustration and comparison of the complexity of these three tests.

Since the number of choice alternatives (7) is small in comparison to the
number of scenarios (40), we apply the method of sampling portfolios using the
grid: Λg=Λ(τ )∩{0, 0.1, . . . , 1}7. The associating vectors h(λ, τ ) are collected
in Hg, and Hg is used to proxy for H(τ ) in the LP problem in equations (9)–(10).
This linear program has only 8,000 constrains and 40 variables. Therefore, our
test is much faster than both the Kuosmanen (2004) and the enriched Bawa et al.
(1985) tests for the same grid. Interestingly, the nonoptimality measure is strictly
positive; ξ(τ , Λg) = 0.00275. According to Corollary 1.ii), this implies that the
market portfolio is not optimal for any increasing utility function.

Table 5 illustrates the nonoptimality classification. It shows nine combina-
tions of the seven benchmark portfolios. For the vectors h(λ, τ ) associated with
these combinations, the restrictions in equations (9)–(10) are binding. This means
that the value of the nonoptimality measure critically depends on these vectors.
By contrast, the other vectors can be excluded without affecting the nonoptimality
measure. None of these nine combinations FSD dominates the evaluated port-
folio. Still, for every increasing utility function, at least one of these combina-
tions is better than the market portfolio. Not surprisingly, each of these portfolios
assigns a substantial weight to small cap stocks and/or value stocks.

The above analysis focuses on sample optimality. It is desirable to account
for sampling error and establish the statistical confidence we have in population
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TABLE 5

Nine Combinations Showing FSD Nonoptimality of the Market Portfolio

Table 5 shows the portfolio weights of nine combinations of the six Fama and French stock portfolios formed on size and
BM (SG = small growth, SN = small neutral, SV = small value, BG = big growth, BN = big neutral, and BV = big value) and
the riskless alternative (RL). For every increasing utility function, at least one of these nine combinations is preferred to the
market portfolio, and hence the market portfolio is FSD nonoptimal.

Combination SG SN SV BG BN BV RL

1 0 0 0.1 0.3 0.1 0.4 0.1
2 0 0 0.3 0.2 0 0.2 0.3
3 0 0 0.4 0 0 0.3 0.3
4 0 0 0.4 0 0.1 0.3 0.2
5 0 0 0.6 0 0.1 0 0.3
6 0 0 0.6 0.2 0 0.1 0.1
7 0 0.1 0.5 0.1 0.1 0.1 0.1
8 0 0.1 0.9 0 0 0 0
9 0 0.2 0.8 0 0 0 0

optimality. For mean-variance efficiency tests, the sampling distribution is well-
known (see, e.g., Gibbons et al. (1989)). The sampling distribution for SD tests
is more difficult to derive because the shape of the population return distribution
is not restricted. We therefore resort to the bootstrap method, a well-established
tool to analyze the sensitivity of empirical estimators to sampling variation in
situations where the sampling distribution is difficult to obtain analytically.

Under the assumption of serially i.i.d. returns, the empirical return distribu-
tion is a consistent estimator of the population return distribution, and bootstrap-
ping samples can be obtained simply by randomly sampling with replacements
from the empirical return distribution. Nelson and Pope (1991) demonstrate in a
convincing way that this approach can quantify the sensitivity of the empirical
return distribution to sampling variation, and that SD analysis based on the boot-
strapped return distribution is more powerful than analysis based on the original
empirical return distribution. We implement this method by generating 10,000
random pseudo-samples and apply our tests for each pseudo-sample. We do not
apply the enriched Bawa et al. (1985) test or the Kuosmanen (2004) test, because
of the associated computational burden. Rather, we apply our LP necessary test
in equations (9)–(10) using the nine combinations from Table 5. In 97.9% of the
pseudo-samples, the market portfolio did not pass this necessary test. Then, for
the remaining 2.1% of the pseudo-samples, we apply our LP necessary test in
equations (9)–(10) using the grid Λg = Λ(τ ) ∩ {0, 0.1, . . . , 1}7. In 0.8% of the
pseudo-samples, the market portfolio failed this necessary test. For the remaining
1.3% of the pseudo-samples, we applied our necessary and sufficient test. The
market portfolio was classified as FSD optimal in all of these pseudo-samples.
Thus, the bootstrap p-value is 1.3%, and the market portfolio can be classified as
significantly FSD nonoptimal with 98.7% confidence.

The classification of the market portfolio as FSD nonoptimal reinforces
Post’s (2003) finding that the market portfolio is SSD inefficient. This finding is
potentially important for asset pricing theory. All single-period, portfolio-oriented,
representative-investor models predict FSD optimality. FSD nonoptimality would
contradict all these models and may call for multiperiod models, consumption-
oriented models or heterogeneous-investor models. However, we stress that this
application only serves to illustrate our nonoptimality test. Among other things,
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the choice of the benchmark portfolios and market portfolio, investment horizon,
and sample period requires more analysis than is possible here.

VII. Conclusions

We have developed a test for “FSD efficiency” of a given portfolio that is
more powerful than those currently available. In contrast to Bawa et al. (1985),
our test compares the evaluated portfolio not only with the finite set of indi-
vidual choice alternatives, but also with all portfolios formed by combining the
individual alternatives. In contrast to Kuosmanen (2004), our efficiency test is
based on the criterion of FSD optimality rather than the weaker criterion of FSD
admissibility.

The test can be performed by solving a simple linear programming (LP)
problem. However, the input to the LP problem may require an initial phase of
mixed integer linear programming (MILP). For large numbers of scenarios, this
strategy may become computationally prohibitive, and we may have to resort to
an approximation based on sampling portfolios from the portfolio possibilities set.
This subsampling approach improves the trade-off between computational com-
plexity and numerical accuracy compared with enriching the Bawa et al. (1985)
test with diversified choice alternatives.

Using our new test, we show that the U.S. stock market portfolio is signif-
icantly FSD nonoptimal relative to benchmark portfolios formed on market cap-
italization and book-to-market equity ratio; no nonsatiable investor would hold
the market portfolio in the face of the small cap premium and the value stock pre-
mium. FSD nonoptimality would contradict all single-period, portfolio-oriented,
and representative-investor models of capital market equilibrium and would call
for multiperiod, consumption-oriented, or heterogeneous-investor models. The
focus of our study is, however, on methodology; a rejection of market portfolio
optimality requires a more rigorous empirical analysis than is possible in this
study.

Appendix

This appendix provides an MILP algorithm for identifying the elements of H(τ ) and
suggests some stopping rules for testing FSD optimality.

Step 1. Perform an FSD admissibility test.

As an initial stopping rule, test FSD admissibility of τ , for example, using the MILP
test of Kuosmanen (2004). If τ is FSD inadmissible, then stop the algorithm; τ is FSD
nonoptimal.

Step 2. Identify initial candidates for H(τ ).

For all j= k(τ ), . . . , T , solve the following MILP problem:

max hj +
1

T2

T∑
t=k(τ)

ht(A-1)

s.t. (vs,t − 1)(m− m) ≤ xsλ− (Xτ )[t] ≤ vs,t(m− m),

s= 1, . . . , T, t = k(τ ), . . . , T ;
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ht =
T∑

s=1

vs,t,

t = k(τ ), . . . , T ;

vs,t ∈ {0, 1},
s= 1, . . . , T, t = k(τ ), . . . , T ;

λ ∈ Λ(τ ).

The problem is solved only for j ≥ k(τ ); solving it for j < k(τ ) will identify no new
candidates, because the optimal solution of (A-1) for any j < k(τ ) is equal to that for
j= k(τ ).

Use (h∗j
t , λ

∗j
t , v

∗j
s,t) for the optimal solution of this problem. Let Λ1 ∈ Λ(τ ) be a set

of pairwise different λ∗j (all redundancies are removed). Set

hmax
t = max

j
h∗j

t and H1 = {h(λ, τ ) : λ ∈ Λ1}.

Step 3. Apply stopping rules.

Consider h(τ , τ ) as defined by equations (6)–(7). If there exists t ∈ {k(τ ), . . . , T}
such that hmax

t ≤ ht(τ , τ ), then stop the algorithm; τ is FSD optimal. Otherwise, solve the
problem in equations (9)–(10) for H0 = H1. If δ∗(H1) > 0, then stop the algorithm; τ is
FSD nonoptimal.

Step 4. Construct and reduce the candidate set H.

Let Ht = {0, 1, . . . , hmax
t }. Use H for the Cartesian product H =

⊗T
k(τ) Ht. Clearly,

H(τ ) ⊆ H, and hence H is a candidate set. Exclude the candidates H̃ = H̃1 ∪ H̃2 ∪ H̃3 ∪
H̃4, where

H̃1 =
{
h ∈ H|ht1 < ht2 , for some t1 < t2

}
,

H̃2 =
{
h ∈ H|ht ≥ ht(τ , τ ), ∀t ∈ {k(τ ), . . . , T}},

H̃3 =
{
h ∈ H|∃ĥ ∈ H1 : ht ≥ ĥt, ∀t ∈ {k(τ ), . . . , T}

with at least one strict inequality
}
, and

H̃4 =

⎧⎨
⎩h ∈ H|∃b= (b0, bk(τ), . . . , bT) : ht ≤

T∑
j=k(τ)

bjh
∗j
t + b0ht(τ , τ ),

b0 +
T∑

l=k(τ)

bl = 1, b ≥ 0, h∗j ∈ H1, ∀t ∈ {k(τ ), . . . , T}
⎫⎬
⎭.

The elements of H̃1 ∪ H̃2 ∪ H̃3 are not feasible; that is, there exist no corresponding
portfolios. The elements of H̃1 contradict the definition of vector h(λ, τ ) (see equations
(6)–(7)). In Step 1, we have found that τ is FSD admissible. Feasibility of an element of
H̃2 implies FSD inadmissibility of τ . Every element of H̃3 gives a value of the objective
function in (A-1) that is strictly higher than at least one initial candidate. Thus, it cannot
be a feasible candidate. Adding the elements of H̃4 to H1 does not affect the solution of
equations (9)–(10).

Set p= 1.

Step 5. Check the feasibility of the remaining candidates.
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If H \ H̃ is empty, that is, all possible h ∈ H have been considered, then stop the
algorithm; portfolio τ is FSD optimal. Otherwise, choose h ∈ H \ H̃ and add it to H̃. Let
p = p + 1, Hp = Hp−1 ∪ h and go to the next step if there exists a feasible solution of the
system:

(vs,t − 1)(m− m) ≤ xsλ− (Xτ )[t] ≤ vs,t(m− m)(A-2)

s= 1, . . . , T, t = t1, . . . , T ;

ht =
T∑

s=1

vs,t

t = t1, . . . , T ;

vs,t ∈ {0, 1}
s= 1, . . . , T, t = t1, . . . , T ;

λ ∈ Λ(τ ).

Otherwise, repeat this step.

Step 6. Test optimality using the feasible candidates.

Solve the problem in equations (9)–(10) for H0 = Hp. If δ∗(Hp) > 0, then stop the
algorithm; τ is FSD nonoptimal. Otherwise, go to Step 5.
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Managing Editors:

Lucie Fajfrová
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Editorial Board:
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A SECOND–ORDER STOCHASTIC DOMINANCE
PORTFOLIO EFFICIENCY MEASURE

Miloš Kopa and Petr Chovanec

In this paper, we introduce a new linear programming second-order stochastic domi-
nance (SSD) portfolio efficiency test for portfolios with scenario approach for distribution
of outcomes and a new SSD portfolio inefficiency measure. The test utilizes the relationship
between CVaR and dual second-order stochastic dominance, and contrary to tests in Post
[14] and Kuosmanen [7], our test detects a dominating portfolio which is SSD efficient. We
derive also a necessary condition for SSD efficiency using convexity property of CVaR to
speed up the computation. The efficiency measure represents a distance between the tested
portfolio and its least risky dominating SSD efficient portfolio. We show that this measure
is consistent with the second-order stochastic dominance relation. We find out that this
measure is convex and we use this result to describe the set of SSD efficient portfolios.
Finally, we illustrate our results on a numerical example.

Keywords: stochastic dominance, CVaR, SSD portfolio efficiency measure

AMS Subject Classification: 91B28, 91B30

1. INTRODUCTION

The questions how to maximize profit and how to diversify risk has been around
for centuries; however, both these questions took another dimension with the work
of Markowitz [10]. In his work, Markowitz identified two main components of port-
folio performance, mean reward and risk represented by variance, and by applying
a simple parametric optimization model found the optimal trade-off between these
two components. Unfortunately, these optimal portfolios are not consistent with
expected utility maximization unless the utility is quadratic or returns are normally
distributed; because of this Markowitz [11] suggested as more plausible the semivari-
ance instead of variance. Decades later Ogryczak and Ruszczyński [12] proved that
the optimal mean-semivariance portfolio is also optimal in second-order stochastic
dominance sense and vice-versa.

Stochastic dominance is another possible approach to portfolio selection. In eco-
nomics and finance it was introduced independently in Hadar and Russel [4], Hanoch
and Levy [5], Rothschild and Stiglitz [15] and Whitmore [19].1

1for more information see Levy [8] or Levy [9].
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The usual definition of stochastic dominance uses cumulative distribution func-
tion2, but the following alternative definition fits our questions better – it has nice
financial consequences with risk-averse agents, and is easier to understand in our
context. We say that risky asset X stochastically dominates (in the first-order)
risky asset Y , if and only if Eu(X) ≥ Eu(Y ) for every utility function (i. e. for ev-
ery non-decreasing function). If this holds only for the concave utility function (for
every risk-averter), we say that X stochastically dominates Y in the second-order.
This can be applied in the portfolio selection problem as a search for a portfolio that
no risk-averse agent would want to choose.

In this paper, we propose a new test of second-order stochastic dominance of a
portfolio relative to all portfolios created from a set of assets with discrete distribu-
tions. Until 2003, stochastic dominance tests considered only pairs of assets and not
the sets of assets; however, especially in finance we would like to know whether our
portfolio is the best one, or whether for any risk-averse agent there exists another
better portfolio. Therefore, a test for stochastic dominance efficiency was needed.
In 2003, Post [14] published a linear programming procedure for testing the second-
order stochastic dominance of a given portfolio relative to a given set of assets and
he discussed its statistical properties. Post used a primal approach and a representa-
tive characterization of concave utility functions. Therefore, his algorithm does not
identify the SSD efficient portfolio. On the other hand, linear programming algo-
rithm works in linear space in both numbers of assets and scenarios. Our approach
is thus slower, but it identifies the dominating SSD efficient portfolio. In the same
year, Ruszczyński and Vanderbei [17] developed a parametric linear programming
procedure for computing all efficient portfolios in the dual mean risk space (in the
second-order stochastic dominance sense). They used dual approach, the same as
we did, but they used another identity. Our test procedure should generate more
sparse matrix and, therefore, should be quicker. Furthermore, another linear pro-
gramming test for second-order stochastic dominance was presented in Kuosmanen
[7]. This test is based on comparisons of cumulated returns. It identifies a dominat-
ing portfolio but this dominating portfolio need not to be SSD efficient. Moreover,
the Kuosmanen test is computationally more demanding than our test.

Our approach is based on second-order stochastic dominance consistence with
Conditional Value-at-Risk (shown in Ogryczak and Ruszczyński [12]), and because
CVaR has a linear programming representation explored by Uryasev and Rockafellar
[18], it is sufficient to solve a linear program. Another connection of risk measures
and SSD relation was analyzed in [1] or [2]. We derive a LP sufficient and necessary
condition for SSD efficiency. Moreover, using convexity of CVaR, a necessary con-
dition is presented. In addition, our test identifies the dominating portfolio which
is already SSD efficient. With the help of this test, we introduce a SSD portfolio
inefficiency measure in the dual risk (CVaR) space. Our measure is consistent with
the second-order stochastic dominance relation and it is represented by a distance
between the tested portfolio and its dominating SSD efficient portfolio. If there exist
more dominating SSD efficient portfolios then the least risky portfolio is considered.
Since the set of SSD efficient portfolios can be non-convex, see Dybvig and Ross [3],

2and can be found in e. g. Levy [8] or Levy [9]
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we explore the convexity of this measure. We prove that all portfolios dominated by
a given portfolio form a convex set and the measure is convex on these sets.

The rest of the paper is organized as follows. A Preliminaries section with precise
assumptions and definitions for a stochastic dominance relation is followed by a
section dealing with CVaR. In Section 4, we state our main theorems, allowing us
to test the SSD efficiency of a given portfolio and to identify a dominating portfolio
which is already SSD efficient. Subsequent section defines the inefficiency measure in
dual risk (CVaR) space and presents the convexity results. This section is followed
by the numerical illustration in Section 6.

2. PRELIMINARIES

For two random variables X1 and X2 with respective cumulative probability dis-
tributions functions F1(x), F2(x) we say that X1 dominates X2 by second-order
stochastic dominance: X1 ºSSD X2 if

EF1u(x)− EF2u(x) ≥ 0

for every u ∈ U2 where U2 denotes the set of all concave utility functions such that
these expected values exist. The corresponding strict dominance relation ÂSSD is
defined in the usual way: X1 ÂSSD X2 if and only if X1 ºSSD X2 and X2 �SSD X1.
According to Russel and Seo [16], u ∈ U2 may be represented by simple utility
functions in the following sense:

EF1u(x)− EF2u(x) ≥ 0 ∀u ∈ U2 ⇐⇒ EF1u(x)− EF2u(x) ≥ 0 ∀u ∈ V

where V = {uη(x) : η ∈ R} and uη(x) = min{x− η, 0}.
Set

F
(2)
i (t) =

∫ t

−∞
Fi(x) dx i = 1, 2.

The following necessary and sufficient conditions for the second-order stochastic
dominance relation were proved in Hanoch and Levy [5].

Lemma 1. Let F1(x) and F2(x) be the cumulative distribution functions of X1

and X2. Then

• X1 ºSSD X2 ⇐⇒ F
(2)
1 (t) ≤ F

(2)
2 (t) ∀ t ∈ R

• X1 ÂSSD X2 ⇐⇒ F
(2)
1 (t) ≤ F

(2)
2 (t) ∀ t ∈ R with at least one strict inequality.

Lemma 1 can be used as an alternative definition of the second-order stochastic
dominance relation.

Consider now the quantile model of stochastic dominance as in Ogryczak and
Ruszczyński [12]. The first quantile function F

(−1)
X corresponding to a real random
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variable X is defined as the left continuous inverse of its cumulative probability
distribution function FX :

F
(−1)
X (v) = min{u : FX(u) ≥ v}. (1)

The second quantile function F
(−2)
X is defined as

F
(−2)
X (p) =

∫ p

−∞
F

(−1)
X (t) dt for 0 < p ≤ 1

= 0 for p = 0
= +∞ otherwise.

The function F
(−2)
X is convex and it is well defined for any random variable X

satisfying the condition E |X| < ∞. An interpretation of this function will be given
in Section 3.

Lemma 2. For every random variable X with E |X| < ∞ we have:

(i) F
(−2)
X (p) = sup

ν
{νp− E max(ν −X, 0)}

(ii) X1 ºSSD X2 ⇐⇒ F
(−2)
1 (p)

p
≥ F

(−2)
2 (p)

p
∀ p ∈ 〈0, 1〉.

These properties follow from the Fenchel duality relation between F
(2)
X and F

(−2)
X .

For the entire proof of Lemma 2 and more details about dual stochastic dominance
see Ogryczak and Ruszczyński [12].

3. CVaR FOR SCENARIO APPROACH

Let Y be a random loss variable corresponding to the return described by random
variable X, i. e. Y = −X. We assume that E |Y | < ∞. For a fixed level α, the value-
at-risk (VaR) is defined as the α-quantile of the cumulative distribution function FY :

VaRα(Y ) = F
(−1)
Y (α). (2)

We follow Pflug [13] in defining conditional value-at-risk (CVaR) as the solution of
the optimization problem

CVaRα(Y ) = min
a∈R

{
a +

1
1− α

E [Y − a]+
}

(3)

where [x]+ = max(x, 0). This problem has always a solution and one of the mini-
mizers is VaRα(Y ), see Pflug [13] for the proof and more details. It was shown in
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Uryasev and Rockafellar [18] that the CVaR can be also defined as the conditional
expectation of Y, given that Y > VaRα(Y ), i. e.

CVaRα(Y ) = E (Y |Y > VaRα(Y )). (4)

If we use −Y and 1 − α instead of X and p, respectively, we can directly from
the definition of CVaR and Lemma 2 derive:

F
(−2)
X (p)

p
= −CVaRα(Y ),

and consequently

X1 ºSSD X2 ⇐⇒ CVaRα(Y1) ≤ CVaRα(Y2) ∀α ∈ 〈0, 1〉. (5)

From now on, let us assume that Y is a discrete random variable which takes
scenarios yt, t = 1, . . . , T with equal probabilities. Following Rockafellar and Uryasev
[18] and Pflug [13], (3) can be rewritten as a linear programming problem:

CVaRα(Y ) = min
a,wt

a +
1

(1− α)T

T∑
t=1

wt (6)

s. t. wt ≥ yt − a

wt ≥ 0.

Let y[k] be the kth smallest element among y1, y2, . . . , yT , i. e. y[1] ≤ y[2] ≤ . . .
≤ y[T ]. The optimal solution of (6) is derived in the following theorem.

Theorem 3. If α ∈ 〈
k
T , k+1

T

〉
and α 6= 1 then

CVaRα(Y ) = y[k+1] +
1

(1− α)T

T∑

i=k+1

(y[i] − y[k+1]) (7)

for k = 0, 1, . . . , T − 1 and CVaR1(Y ) = y[T ].

P r o o f . Consider a random variable Y which takes values yt, t = 1, . . . , T with
probabilities p1, p2, . . . , pT . For a chosen α define jα such that

α ∈
〈

jα−1∑

j=1

pj ,

jα∑

j=1

pj


 .

Then the following formula was proved in Rockafellar and Uryasev [18]:

CVaRα(Y ) =
1

1− α







jα∑

j=1

pj − α


 y[jα] +

T∑

j=jα+1

pjy
[j]


 .
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Since pt = 1/T , t = 1, . . . , T we set: jα = k + 1 and the theorem follows. ¤

Combining Theorem 3 with (5) we obtain the necessary and sufficient condi-
tion for the second-order stochastic dominance. This conditions can be more easily
verified than the general conditions in Lemma 1, Lemma 2 or (5).

Theorem 4. Let Y1 = −X1 and Y2 = −X2 be discrete random variables which
take values yt

1 and yt
2, t = 1, . . . , T , respectively, with equal probabilities. Then

X1 ºSSD X2 ⇐⇒ CVaRα(Y1) ≤ CVaRα(Y2) ∀α ∈
{

0,
1
T

,
2
T

, . . . ,
T − 1

T

}
. (8)

P r o o f . Let αk = k/T , k = 0, 1, . . . , T − 2. Lemma 1 implies:

CVaRβ1(Yi) = CVaRβ2(Yi), i = 1, 2 for all β1, β2 ∈
〈

T − 1
T

, 1
〉

.

Thus it suffices to show that if

CVaRαk
(Y1) ≤ CVaRαk

(Y2) (9)
and

CVaRαk+1(Y1) ≤ CVaRαk+1(Y2) (10)

then it holds for all α ∈ 〈αk, αk+1〉. To obtain a contradiction, suppose that (9)
and (10) holds and there exists α̃ ∈ 〈αk, αk+1〉 such that CVaReα(Y1) > CVaReα(Y2).
From continuity of CVaR in α there exists α1 ∈ 〈αk, αk+1〉 and α2 ∈ 〈αk, αk+1〉,
α1 6= α2 such that

CVaRα1(Y1) = CVaRα1(Y2) (11)

CVaRα2(Y1) = CVaRα2(Y2). (12)

Substituting (7) into (11) and (12) we conclude that α1 = α2, contrary to α1 6= α2,
and the proof is complete. ¤

4. SSD PORTFOLIO EFFICIENCY CRITERIA

Consider a random vector r = (r1, r2, . . . , rN )′ of returns of N assets and T equiprob-
able scenarios. The returns of the assets for the various scenarios are given by

X =




x1

x2

...
xT




where xt = (xt
1, x

t
2, . . . , x

t
N ) is the t-th row of matrix X. Without loss of generality

we can assume that the columns of X are linearly independent. In addition to the
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individual choice alternatives, the decision maker may also combine the alternatives
into a portfolio. We will use λ = (λ1, λ2, . . . , λN )′ for a vector of portfolio weights
and the portfolio possibilities are given by

Λ = {λ ∈ RN |1′λ = 1, λn ≥ 0, n = 1, 2, . . . , N}.

The tested portfolio is denoted by τ = (τ1, τ2, . . . , τN )′.

Definition 1. A given portfolio τ ∈ Λ is SSD inefficient if and only if there exists
portfolio λ ∈ Λ such that r′λ ÂSSD r′τ . Otherwise, portfolio τ is SSD efficient.

This definition classifies portfolio as SSD efficient if and only if no other portfolio
is better for all risk averse and risk neutral decision makers.

In Post [14] and Kuosmanen [7], the SSD portfolio efficiency tests based on ap-
plications of Lemma 1 were introduced. We will derive sufficient and necessary con-
ditions for SSD efficiency of τ based on quantile model of second order stochastic
dominance, in particular the relationship between CVaR and SSD will be used.

We start with necessary condition using the following theorem. To simplify the
notation, set Γ =

{
0, 1

T , 2
T , . . . , T−1

T

}
.

Theorem 5. Let αk ∈ Γ and

d∗ = max
λn

T−1∑

k=0

N∑
n=1

λn [CVaRαk
(−r′τ )− CVaRαk

(−rn)] (13)

s. t.
N∑

n=1

λn [CVaRαk
(−r′τ )− CVaRαk

(−rn)] ≥ 0, k = 0, 1, . . . , T − 1, λ ∈ Λ.

If d∗ > 0 then τ is SSD inefficient. Optimal solution λ∗ of (13) is an SSD efficient
portfolio such that r′λ∗ ÂSSD r′τ .

P r o o f . If d∗ > 0 then there is a feasible solution λ of problem (13) satisfying

N∑
n=1

λn [CVaRαk
(−r′τ )− CVaRαk

(−rn)] ≥ 0, ∀αk ∈ Γ

where at least one strict inequality holds. For this λ we have

N∑
n=1

λnCVaRαk
(−rn) ≤ CVaRαk

(−r′τ ), ∀αk ∈ Γ

with at least one strict inequality. From the convexity of CVaR we obtain

CVaRαk
(−r′λ) ≤

N∑
n=1

λnCVaRαk
(−rn) ∀αk ∈ Γ.
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Hence
CVaRαk

(−r′λ) ≤ CVaRαk
(−r′τ ) ∀αk ∈ Γ

with at least one strict inequality and the rest of the proof follows from Theorem 4.
¤

The power of necessary condition in Theorem 5 depends on correlation between
random variables rn, n = 1, 2, . . . , N and portfolio τ can be SSD inefficient even if
(13) has no feasible solution or d∗ = 0. If d∗ = 0 then two possibilities may occur:

(1) Problem (13) has a unique solution λ∗ = τ . If this is the case then τ is SSD
efficient.

(2) Problem (13) has an optimal solution λ∗ 6= τ . In this case, τ is SSD inefficient
and r′λ∗ ÂSSD r′τ . Moreover, λ∗ is an SSD efficient portfolio.

The situation when d∗ = 0, λ∗ 6= τ and τ is SSD efficient would imply Xλ∗ = Xτ
which contradicts the assumption of linearly independent columns of X.

If problem (13) has no feasible solution then we can employ the following necessary
and sufficient condition for SSD efficiency.

Theorem 6. Let αk ∈ Γ and

D∗(τ ) = max
Dk,λn,bk

T−1∑

k=0

Dk (14)

s. t.
CVaRαk

(−r′τ )− bk − 1
1− αk

E max(−r′λ− bk, 0) ≥ Dk, k = 0, 1, . . . , T−1

Dk ≥ 0, k = 0, 1, . . . , T−1

λ ∈ Λ.

If D∗(τ ) > 0 then τ is SSD inefficient and r′λ∗ ÂSSD r′τ . Otherwise, D∗(τ ) = 0
and τ is SSD efficient.

P r o o f . Let λ∗, b∗k, k=0, 1, . . . , T−1 be an optimal solution of (14). If D∗(τ )>0
then

b∗k +
1

1− αk
E max(−r′λ∗ − b∗k, 0) ≤ CVaRαk

(−r′τ ) ∀αk ∈ Γ (15)

where at least one inequality holds strict. Since from the definition of CVaR we have

CVaRαk
(−r′λ∗) = min

bk

{
bk +

1
1− αk

E max(−r′λ∗ − bk, 0)
}

we conclude from (15) that

CVaRαk
(−r′λ∗) ≤ CVaRαk

(−r′τ )

with at least one strict inequality. Hence r′λ∗ ÂSSD r′τ and τ is SSD inefficient.
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If D∗(τ ) = 0 then problem (14) has unique optimal solution: λ∗ = τ , because
the presence of another optimal solution contradicts the assumption of linearly inde-
pendent columns of X. Thus there is no strictly dominating portfolio and hence τ
is SSD efficient. Since τ is always a feasible solution of (14), D∗ can not be negative
and the proof is complete. ¤

Nonlinear program (14) has N +2T +1 constraints and N +2T variables. Inspired
by (6) and following Pflug [13], Rockafellar and Uryasev [18], it can be rewritten as a
linear programming problem with 2T (T + 1) +N + 1 constraints and T (T +2)+N
variables:

D∗(τ ) = max
Dk,λn,bk,wt

k

T∑

k=1

Dk (16)

s. t.

CVaR k−1
T

(−r′τ )− bk − 1
(1− k−1

T )T

T∑
t=1

wt
k ≥ Dk, k = 1, 2, . . . , T

wt
k ≥ −xtλ− bk, t, k = 1, 2, . . . , T

wt
k ≥ 0, t, k = 1, 2, . . . , T

Dk ≥ 0, k = 1, 2, . . . , T

λ ∈ Λ.

Using (16) instead of (14) in Theorem 6 we obtain a linear programming criterion
for SSD efficiency.

This sufficient and necessary condition requires to solve a smaller linear program
than it is in the Kuosmanen test. Furthermore, contrary to the Post and the Kuos-
manen test, it identifies SSD efficient dominating portfolio as a by-product.

5. A SSD PORTFOLIO INEFFICIENCY MEASURE

Inspired by Post [14] and Kopa and Post [6], D∗(τ ) from (14) or (16) can be con-
sidered as a measure of inefficiency of portfolio τ , because it expresses the distance
between a given tested portfolio and its dominating SSD efficient portfolio. If there
exist more dominating SSD efficient portfolios then the least risky portfolio, mea-
sured by CVaR, is considered. To be able to compare SSD inefficiency of two port-
folios we need to consider such a measure, which is “consistent” with SSD relation.

Definition 2. Let ξ be a measure of SSD portfolio inefficiency. We say that ξ is
consistent with SSD if and only if

r′τ 1 ºSSD r′τ 2 ⇒ ξ(τ 2) ≥ ξ(τ 1)

for any τ 1, τ 2 ∈ Λ.

The property of consistency guarantees that if a given portfolio is worse than the
other one for every risk averse investor then it has larger measure of inefficiency. Let
Λ∗(τ ) ∈ Λ be a set of optimal solutions λ∗ of (14) or (16).
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Theorem 7.

(i) The measure of SSD portfolio inefficiency D∗ given by either (14) or (16) is
consistent with SSD.

(ii) If r′τ 1 ºSSD r′τ 2 and both τ 1, τ 2 are SSD inefficient then

D∗(τ 2) = D∗(τ 1) +
T∑

k=1

[
CVaR k−1

T
(−r′τ 2)− CVaR k−1

T
(−r′τ 1)

]
.

(iii) If r′τ 1 ºSSD r′τ 2 then

D∗(τ 2) ≥ D∗(τ 1) +
T∑

k=1

[
CVaR k−1

T
(−r′τ 2)− CVaR k−1

T
(−r′τ 1)

]
.

P r o o f . Applying Theorem 4, if r′τ 1 ºSSD r′τ 2 then
T∑

k=1

[
CVaR k−1

T
(−r′τ 2)− CVaR k−1

T
(−r′τ 1)

]
≥ 0.

Hence it suffices to prove (ii) and (iii).
Let r′τ 1 be SSD inefficient. It is easily seen that (14) can be rewritten in the

following way:

D∗(τ ) = max
λn

T−1∑

k=0

[
CVaR k

T
(−r′τ )− CVaR k

T
(−r′λ)

]
(17)

s. t. CVaR k
T

(−r′τ )− CVaR k
T

(−r′λ) ≥ 0, k = 0, 1, . . . , T − 1

λ ∈ Λ.

Let λ∗(τ 1) ∈ Λ∗(τ 1), λ∗(τ 2) ∈ Λ∗(τ 2). Using Theorem 4 and r′τ 1 ºSSD r′τ 2,

CVaR k
T

(−r′τ 2)− CVaR k
T

(−r′τ 1) ≥ 0 k = 0, 1, . . . , T − 1.

Since the sum of these differences does not depend on the choice of λ∗(τ 1), the
dominating portfolio λ∗(τ 1) is also an optimal solution of (14) when deriving D∗(τ 2),
i. e. λ∗(τ 1) ∈ Λ∗(τ 2). Hence

D∗(τ 2) =
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′λ∗(τ 2))

]

=
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′τ 1)

]

+
T−1∑

k=0

[
CVaR k

T
(−r′τ 1)− CVaR k

T
(−r′λ∗(τ 1))

]

= D∗(τ 1) +
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′τ 1)

]
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what completes the proof of (ii).
Let r′τ 1 be SSD efficient. From Theorem 6, we have D∗(τ 1) = 0. According

to (17),

D∗(τ 2) = max
λn

T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′λ)

]

s. t. CVaR k
T

(−r′τ 2)− CVaR k
T

(−r′λ) ≥ 0, k = 0, 1, . . . , T − 1

λ ∈ Λ.

Since r′τ 1 ºSSD r′τ 2, portfolio τ 1 is a feasible solution of (17). Hence

D∗(τ 2) ≥
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′τ 1)

]

and combining it with (ii), the proof is complete. ¤

Since SSD relation is not complete, i. e. there exist incomparable pairs of port-
folios, the strict inequality of values of any portfolio inefficiency measure can not
imply SSD relation. Also for the measure D∗ some pair of portfolios τ 1, τ 2 can be
found such that D∗(τ 2) ≥ D∗(τ 1) and r′τ 1 �SSD r′τ 2.

In the following theorem, a convexity property of portfolio inefficiency measure
D∗ is analyzed.

Theorem 8. Let τ 1, τ 2, τ 3 ∈ Λ.

(i) If r′τ 1 ºSSD r′τ 2 then

D∗(ητ 1 + (1− η)τ 2) ≤ ηD∗(τ 1) + (1− η)D∗(τ 2)

for any η ∈ 〈0, 1〉.

(ii) If r′τ 1 ºSSD r′τ 2 and r′τ 1 ºSSD r′τ 3 then

r′τ 1 ºSSD r′(ητ 2 + (1− η)τ 3)

and
D∗(ητ 2 + (1− η)τ 3) ≤ ηD∗(τ 2) + (1− η)D∗(τ 3)

for any η ∈ 〈0, 1〉.

P r o o f . (i) Applying Lemma 1 for equiprobable scenario approach, we obtain

r′τ 1 ºSSD r′τ 2 ⇒ r′τ 1 ºSSD r′ (ητ 1 + (1− η)τ 2) ºSSD r′τ 2
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for any η ∈ 〈0, 1〉. By analogy to the proof of previous theorem, if
λ∗(τ 1) ∈ Λ∗(τ 1) then λ∗(τ 1) ∈ Λ∗(τ 2) and λ∗(τ 1) ∈ Λ∗(ητ 1 + (1− η)τ 2). Hence

D∗(ητ 1 + (1− η)τ 2) =
T−1∑

k=0

CVaR k
T

(−r′[ητ 1 + (1− η)τ 2])

=
T−1∑

k=0

CVaR k
T

(−r′λ∗(τ 1))

D∗(τ 1) =
T−1∑

k=0

[
CVaR k

T
(−r′τ 1)− CVaR k

T
(−r′λ∗(τ 1))

]

D∗(τ 2) =
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′λ∗(τ 1))

]
.

Combining it with convexity of CVaR, we obtain

D∗(ητ 1 + (1− η)τ 2) =
T−1∑

k=0

CVaR k
T

(−r′[ητ 1 + (1− η)τ 2])

−
T−1∑

k=0

CVaR k
T

(−r′λ∗(τ 1))

≤ η

T−1∑

k=0

CVaR k
T

(−r′τ 1) + (1− η)
T−1∑

k=0

CVaR k
T

(−r′τ 2)

−η

T−1∑

k=0

CVaR k
T

(−r′λ∗(τ 1))

−(1− η)
T−1∑

k=0

CVaR k
T

(−r′λ∗(τ 1))

≤ ηD∗(τ 1) + (1− η)D∗(τ 2).

(ii) Applying Lemma 1 for scenario approach, we obtain:

r′τ ºSSD r′λ ⇐⇒
T∑

t=1

(xtτ − xtλ) ≥ 0 ∀ t = 1, 2, . . . , T. (18)

Hence T∑
t=1

(xtτ 1 − xtτ 2) ≥ 0 ∀ t = 1, 2, . . . , T

T∑
t=1

(xtτ 1 − xtτ 3) ≥ 0 ∀ t = 1, 2, . . . , T

and therefore
T∑

t=1

(xtτ 1 − ηxtτ 2 − (1− η)xtτ 3) ≥ 0 ∀ t = 1, 2, . . . , T
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for any η ∈ 〈0, 1〉. Thus, according to Lemma 1,

r′τ 1 ºSSD r′(ητ 2 + (1− η)τ 3) for any η ∈ 〈0, 1〉.
Similarly to the proof of previous theorem, if λ∗(τ 1) ∈ Λ∗(τ 1) then λ∗(τ 1) ∈ Λ∗(τ 2),
λ∗(τ 1) ∈ Λ∗(τ 3) and λ∗(τ 1) ∈ Λ∗(ητ 2 + (1 − η)τ 3) for any η ∈ 〈0, 1〉 and the rest
of the proof follows by analogy to (i). ¤

Let I(τ ) be a set of all portfolios whose returns are SSD dominated by return of
τ , i. e.

I(τ ) = {λ ∈ Λ | r′τ ºSSD r′λ}.
Theorem 8 shows that I(τ ) is convex and D∗ is convex on I(τ ) for any τ ∈ Λ. Both
these properties are consequences of convexity of CVaR. The following example
illustrates these results and we stress the fact that the set of SSD efficient portfolios
is not convex.

6. NUMERICAL EXAMPLE

Consider three assets with three scenarios:

X =




0 −1 0

1 0 0

2 7 5


 .

It is easy to check that λ1 = (1, 0, 0)′, λ2 = (0, 1, 0)′ and λ3 = (0, 0, 1)′ are SSD
efficient. Let τ 1 = λ3, τ 2 = ( 1

2 , 1
2 , 0)′ and let τ 3 = ( 1

3 , 2
3 , 0)′. Then Xτ 2 = (− 1

2 , 1
2 , 9

2 )
and according to (18), r′τ 1 ÂSSD r′τ 2. Hence the set of SSD efficient portfolios is
not convex. Similarly, r′τ 1 ÂSSD r′τ 3 and r′τ 1 ºSSD r′τ 1. Applying Theorem 8,
a set of convex combinations of τ 1, τ 2, τ 3 is a subset of I(τ 1). We will show that
I(τ 1) consists only of convex combinations of τ 1, τ 2 and τ 3, i. e.

I(τ 1) =

{
λ ∈ Λ |λ = η1τ 1 + η2τ 2 + η3τ 3, ηi ≥ 0, i = 1, 2, 3,

3∑

i=1

ηi = 1

}
.

Substituting into (18) we can see that only portfolios λ ∈ Λ satisfying the following
system of inequalities can be included in I(τ 1):

−λ2 ≤ 0
λ1 − λ2 ≤ 0

3λ1 + 6λ2 + 5(1− λ1 − λ2) ≤ 5.

The graphical solution of this system is illustrated in the following Figure 1 and
we can see that the set of portfolios which returns are SSD dominated by return of
portfolio τ 1 is equal to the set of all convex combinations of portfolios τ 1, τ 2, τ 3.
Points A, B and C correspond to portfolios τ 2, τ 3, τ 1, respectively.

As was shown in Theorem 8 (ii), SSD portfolio inefficiency measure D∗ is convex
on I(τ 1). Figure 2 shows the graph of D∗ on I(τ 1). Since τ 1 is SSD efficient,
D∗(τ 1) = 0 and D∗(τ ) > 0 for all τ ∈ I(τ 1)\{τ 1}.
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Fig. 1. The set I(τ 1) of portfolios whose returns are SSD dominated

by return of portfolio τ 1 = (0, 0, 1).

Fig. 2. The graph of D∗ on I(τ 1).
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well as for comparison with a polyhedral set of linear combinations of prospects. We also derive a linear
dual formulation in terms of lower partial moments and co-lower partial moments. An empirical appli-
cation to historical stock market data suggests that the passive stock market portfolio is highly inefficient
relative to actively managed portfolios for all investment horizons and for nearly all investors. The results
also illustrate that the mean–variance rule and second-order stochastic dominance rule may not detect
market portfolio inefficiency because of non-trivial violations of non-satiation and prudence.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Stochastic dominance (SD), first introduced in Quirk and Sapos-
nik (1962), Hadar and Russell (1969) and Hanoch and Levy (1969),
is a useful concept for analyzing risky decision making when only
partial information about the decision maker’s risk preferences is
available. The concept is used in numerous empirical studies and
practical applications, ranging from agriculture and health care to
financial management and public policy making; see, for example,
the extensive survey in the text book of Levy (2006). A selection of
recent studies in OR/MS journals includes Post (2008), Lozano and
Gutiérrez (2008), Blavatskyy (2010), Dupačová and Kopa (2012),
Lizyayev and Ruszczyński (2012), Lizyayev (2012) and Brown
et al. (2012).

SD imposes general preference restrictions without assuming a
functional form for the decision maker’s utility function. The SD
rules of order one to four are particularly interesting, because they
impose (in a cumulative way) the standard assumptions of non-
satiation, risk-aversion, prudence and temperance, which are nec-
essary conditions for standard risk aversion (Kimball, 1993). This
approach is theoretically appealing but not always easy to imple-
ment. In some special cases, a closed-form analytical solution ex-
ists, as is true, for example, for the textbook case of a pair-wise
comparison of two given prospects based on the second-order sto-
chastic dominance (SSD) rule.
However, more generally, a closed-form solution does not exist
and numerical optimization is required. For example, Meyer’s
(1977a,b) stochastic dominance with respect to a function
(SDWRF) requires solving an (small and standard) optimal control
problem. The rules of convex stochastic dominance (Fishburn,
1974) for comparing more than two prospects simultaneously also
require optimization. For example, Bawa et al. (1985) develop Lin-
ear Programming tests for convex first-order stochastic dominance
(FSD), convex SSD and an approximation for convex third-order
stochastic dominance (TSD). Shalit and Yitzhaki (1994), Post
(2003), Kuosmanen (2004) and Kopa and Chovanec (2008) develop
Linear Programming tests that compare a given prospect using SSD
with a polyhedral set of linear combinations of a discrete set of
prospects.

Unfortunately, a general algorithm is not available. How can we
test, for example, whether a given medical treatment is dominated
by convex fourth-order stochastic dominance (FOSD) relative to a
set of alternative treatments? How can we test whether a given
investment portfolio is FOSD efficient relative to a polyhedral set
of portfolios formed from a set of base assets? Without an algo-
rithm for these specific cases, we may be forced to use known tests
for less discriminating decision criteria. For example, we could use
a set of pair-wise FOSD tests to compare the evaluated medical
treatment with every alternative treatment. Similarly, we could
use pair-wise tests to compare the evaluated investment portfolio
with a large number of alternative portfolios, for example, using a
grid search or random search over the possibilities set. However,
pair-wise comparisons generally are less powerful than convex
SD, because a prospect can be non-optimal for all admissible utility
functions without being dominated by any alternative prospect. A
esearch
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further possible loss of power stems from using a discrete approx-
imation to a continuous choice set.

Section 2 of this study develops linear formulations of general
stochastic dominance rules. Our approach is based on a piece-wise
polynomial representation of utility and its derivatives. This repre-
sentation applies generally for higher-order SD rules (Nth order
SD), comparing a given prospect with a discrete set of alternative
prospects (convex NSD analysis), and comparing a given prospect
with a polyhedral set of linear combinations of prospects (NSD effi-
ciency analysis). Our analysis therefore represents a generalization
of the lower-order tests of Bawa et al. (1985) and Post (2003). We
can also deal with additional preference restrictions such as the
bounds on the level of risk aversion of Meyer (1977a,b) and the
bounds on utility curvature by Leshno and Levy (2002). The use
of piece-wise polynomial functions also generalizes results by Ha-
dar and Seo (1988) and Russell and Seo (1989) on simple represen-
tative utility functions for pairwise comparison based on lower-
order SD rules.

To arrive at a finite optimization problem, we focus on discrete
probability distributions. In empirical studies, we usually face dis-
crete sample distributions, and experimental studies generally use
prospects with a discrete population distribution. In addition,
many continuous distributions can be approximated accurately
with a discrete distribution. Our approach can be implemented
by solving a relatively small system of linear inequalities. The lin-
ear structure seems particularly convenient for the application of
statistical re-sampling methods in the spirit of Nelson and Pope
(1991) and Barrett and Donald (2003).

Our focus is on utility and its derivatives and on restrictions that
follow from utility theory. Still, Section 3 also derives linear dual
formulations that are formulated in terms of lower partial mo-
ments (Bawa, 1975) and co-lower partial moments (Bawa and Lin-
denberg, 1977) of the probability distribution. We focus on the
dominance classification of a given prospect and we do not at-
tempt to identify an alternative prospect that dominates the eval-
uated prospect. In the case of a discrete choice set, a non-
admissible prospect need not be dominated by any alternative
prospect. In addition, a prospect that dominates the choice of a gi-
ven decision maker need not be optimal for that decision maker,
and, moreover, the optimum need not dominate the current choice.
Finally, the dominance relation between a pair of prospects gener-
ally is less robust than the classification of a given prospect. For
these reasons, the search for a dominant prospect seems irrelevant
for our purposes. Still, the dual formulations are useful for compu-
tational efficiency and robustness analysis.

Section 4 applies a range of SD tests to historical stock return
data to compare the broad stock market portfolio with alternative
portfolios formed from a set of risky benchmark stock portfolios
and riskless Treasury bills. We analyze horizons ranging from
1 month to 10 years and consider the decision criteria of SSD,
TSD, FOSD, SDWRF, ASSD and mean–variance (M–V) analysis. The
analysis is relevant because a large class of capital market equilib-
rium models predict that the market portfolio is efficient. Another
reason for expecting market portfolio efficiency is the popularity of
passive mutual funds and exchange traded funds that passively
track broad stock market indices.

Our empirical analysis shows that the market portfolio is highly
and significantly inefficient by the TSD, FOSD, SDWRF and ASSD
criteria for every horizon. Few rational risk averters would hold
the broad market portfolio in the face of the historical return pre-
miums to active strategies. The appeal of active strategies only in-
creases with the horizon. Our results also illustrate that pair-wise
dominance comparisons and the SSD and M–V rules have limited
discriminating power and can generate misleading results in rele-
vant applications. The SSD criterion may fail to detect market port-
folio inefficiency for short horizons, because it penalizes small-cap
Please cite this article in press as: Post, T., Kopa, M. General linear formulations
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stocks for having a relatively high positive systematic skewness,
violating prudence. M–V analysis underestimates the level of mar-
ket portfolio inefficiency for long horizons, because it assigns neg-
ative weights to large positive market returns, placing a penalty on
outperformance during bull markets. In our application, these phe-
nomena lead to a non-trivial underestimation of the alphas for
small-cap stocks.

2. Linear formulation in terms of piece-wise polynomial utility

We consider M prospects with risky outcomes x1, . . . ,xM. A pros-
pect is defined here in a general way as an available choice alterna-
tive and it could be a given combination of multiple base
alternatives, for example, a combination of production methods,
financial assets or marketing instruments. Depending on the appli-
cation, the outcomes may be total wealth, consumption, income, or
any variable that can reasonably be assumed to enter as an argu-
ment to a utility function that obeys the maintained assumptions.
The outcomes are treated as random variables with a discrete,
state-dependent, joint probability distribution characterized by R
mutually exclusive and exhaustive scenarios with probabilities
pr > 0, r = 1, . . . ,R. We use xi,r for the outcome of prospect i in sce-
nario r. We collect all possible outcomes across prospects and
states in Y = {y: y = xi,r i = 1, . . . ,M; r = 1, . . . ,R}, rank these values
in ascending order y1 6 � � � 6 yS and use qi;s ¼ Pr½xi ¼
ys� ¼

P
r:xi;r¼ys

pr .
Decision makers’ preferences are described by N-times continu-

ously differentiable, von Neumann–Morgenstern utility functions
uðxÞ : D! R. We use un(x) for the nth order derivative,
n = 1, . . . ,N, and u0ðxÞ ¼ uðxÞ. To implement stochastic dominance
of order N P 1, we will consider the following set of admissible
utility functions:

UN ¼ fu 2 CN : ð�1Þn�1unðxÞP 0 8x 2 D; n ¼ 1; . . . ;Ng: ð1Þ

Thus, first-order dominance assumes non-satiation (u1(x) P 0,
"x 2 D); second-order dominance assumes also risk aversion
(u2(x) 6 0, "x 2 D); the third-order criterion adds prudence
(u3(x) P 0, "x 2 D) and fourth-order SD also assumes temperance
(u4(x) 6 0, "x 2 D). In some applications, zero values for the deriva-
tives may not be allowed, for example, in the cases of strict non-
satiation (u1(x) > 0, " x 2 D) and strict risk aversion (u2(x) < 0,
"x 2 D). The needed adjustments to our Linear Programming tests
are obvious substitutions of weak and strict inequalities. In our
experience, these adjustments have a negligible effect in empirical
applications. For the sake of brevity, we therefore ignore this issue
here.

For practical reasons, it is often useful to assume some sort of
standardization, such as u1(y1) = 1, in order to avoid numerical
problems when evaluating utility functions that approximate
u1(x) = 0 "x 2 D, or the indifferent decision maker. Since utility
analysis is invariant to positive linear transformations, such stan-
dardizations are harmless.

We distinguish between three types of SD relations: pair-
wise dominance relations, discrete convex dominance relations
and continuous convex dominance relations, or efficiency rela-
tions. These relations differ regarding to the assumed choice
possibilities: a single prospect, a discrete set of prospects, or
all convex combinations of a discrete set of prospects. Consider
first the case of pair-wise comparison between two given
prospects:

Definition 1 (Pair-wise Comparison). An evaluated prospect
i 2 {1, . . . ,M} is not dominated in terms of Nth order stochastic
dominance, N P 1, by an alternative prospect j 2 {1, . . . ,M} if there
exists an admissible utility function u 2 UN for which it is preferred
to the alternative:
of stochastic dominance criteria. European Journal of Operational Research
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XR

r¼1

pruðxi;rÞP
XR

r¼1

pruðxj;rÞ ()
XS

s¼1

uðysÞðqi;s � qj;sÞP 0: ð2Þ

This formulation uses a weak inequality and hence does not
require a strict preference relation. We can alternatively use
strict inequality to require strict dominance. There generally is
no robust difference between the two definitions. For example,
if we compare prospect x1 with a mean-preserving anti-spread
x2, then (2) will apply with equality for a risk neutral decision
maker. In this case, there exists a weak preference for some util-
ity functions but no strict preference for any utility function.
However, the violation of strict preference is infinitely small
and the difference between the two definitions is not robust.
The same consideration applies below for convex SD. For the
sake of brevity, we use weak inequalities here.

If there are M > 2 prospects, we could perform (M � 1) pair-wise
dominance tests for any given prospect. However, a prospect can
be non-optimal for all admissible utility functions without being
dominated by any individual alternative prospect. All decision
makers may agree that the evaluated prospect does not maximize
their expected utility even if they do not agree on which specific
alternatives achieve a higher expected utility.

Definition 2 (Convex Stochastic Dominance). An evaluated pros-
pect i 2 {1, . . . , M} is admissible in terms of Nth order stochastic
dominance, N P 1, relative to the set of prospects {1, . . . ,M} if there
exists an admissible utility function u 2 UN for which it is preferred
to every alternative prospect:
XR

r¼1

pruðxi;rÞP
XR

r¼1

pruðxj;rÞ j ¼ 1; . . . ;M

()
XS

s¼1

uðysÞðqi;s � qj;sÞP 0 j ¼ 1; . . . ;M: ð3Þ

Since admissibility can be violated without a pair-wise domi-
nance relation, this criterion generally is more powerful than
pair-wise dominance tests.

Despite the adjective ‘convex’, convex SD does not consider con-
vex combinations of the prospects. Rather, the terminology reflects
that the convex SD criterion can equivalently be formulated by
considering convex combinations of the cumulative distribution
function (CDF) of the prospects. By contrast, the analysis of Shalit
and Yitzhaki (1994), Post (2003) and Kuosmanen (2004), among
others, assumes that convex combinations of the prospects are
feasible:

X ¼
XM

j¼1

kjxj :
XM

j¼1

kj ¼ 1; kj P 0 j ¼ 1; . . . ;M

( )
: ð4Þ

This situation is relevant if, for example, the decision maker can cre-
ate a mixture of production methods, financial assets or marketing
instruments. Diversification is especially relevant for risk averters
(N P 2).

The formulation is not restricted to convex combinations but
can also be applied in the more general case that general linear
combinations of the prospects can be made subject to a set of gen-
eral linear restrictions. The Minkowski–Weyl Theorem says that
any polytope can be represented as the convex hull of its vertices
(vertex representation). Therefore, the prospects should be consid-
ered more generally as the vertices of a polyhedral choice set.

We use x⁄ 2 X for the evaluated combination of prospects. The
ordering of the scenarios is inconsequential in our analysis and
we are free to label the scenarios by their ranking with respect
to the evaluated combination: x�1 6 � � � 6 x�T .
Please cite this article in press as: Post, T., Kopa, M. General linear formulations
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Definition 3 (Stochastic Dominance Efficiency). An evaluated com-
bination of prospects x⁄ 2 X is efficient in terms of Nth order
dominance, N P 2, relative to all feasible combinations x 2 X if it is
the optimum for some admissible utility function u 2 UN:

XR

r¼1

pru x�r
� �

P
XR

r¼1

pruðxrÞ 8x2X

()
XR

r¼1

pru
0 x�r
� �

x�r �xj;r
� �

P 0 j¼1; . . . ;M: ð5Þ

The definition follows from the Karush–Kuhn–Tucker first-order
condition for selecting the optimal combination of prospects:
maxx2X

PR
r¼1pruðxrÞ. This formulation was first introduced by Post

(2003) for SSD (N = 2) and applies also for higher-order criteria
(N > 2), but it does not apply for FSD (N = 1). Kopa and Post (2009)
present a different utility-based formulation for this case.

All three criteria (pairwise dominance, convex dominance, effi-
ciency) seek an admissible utility function or marginal utility func-
tion that solves a finite set of inequality conditions. If utility and
marginal utility can be expressed as linear functions of a finite set
of parameters, then the criteria reduce to solving a set of linear
inequalities, a task that can be performed using Linear Programming.

Theorem 1 (Linearization of Utility and its Derivatives). For any
utility function u 2 UN, N P 1, and a discrete set of outcomes
z1 6 � � � 6 zT, we can represent the levels of utility and its derivatives
by piece-wise polynomial functions:

uðztÞ ¼
XN�2

n¼0

bnðzt � zTÞn þ
XT

k¼t

ckðzt � zkÞN�1; ð6Þ

uqðztÞ ¼
XN�2

n¼q

n!

ðn� qÞ! bnðzt � zTÞn�q þ ðN � 1Þ!
ðN � q� 1Þ!

XT

k¼t

ckðzt � zkÞN�q�1
;

q ¼ 1; . . . ;N � 1; ð7Þ

where

bn ¼
unðzTÞ

n!
; n ¼ 0;1; . . . ;N � 2; ð8Þ

ck ¼
uN�1 z�k�1

� �
� uN�1 z�k

� �
ðN � 1Þ! ;

k ¼ 2; . . . ; T � 1; cT ¼
uN�1ðz�T�1Þ
ðN � 1Þ! ;

ð9Þ

for some values z�k 2 ½zk; zkþ1�; k ¼ 1; . . . ; T � 1 such that

ð�1Þnbn 6 0; n ¼ 1; . . . ;N � 2; ð10Þ

ð�1ÞN�1ck 6 0; k ¼ 1;2; . . . ; T � 1; ð11aÞ
ð�1ÞN�1cT 6 0 for N P 2: ð11bÞ

Moreover, for all parameters satisfying (10) and (11) we can construct
an admissible utility function u 2 UN. (Proof in the Appendix)

The theorem uses a piecewise-constant representation to the
(N � 1)th derivative of the utility function, or, equivalently, a
piecewise-linear representation of the (N � 2)th derivative. The
lower-order derivatives are obtained by integrating over the high-
er-order derivatives and take the shape of piecewise higher-order
polynomials. The (N � 2)th order derivative will be a kinked, piece-
wise linear function; the (N � 3)th order derivative will be a
smooth, piecewise quadratic function; and so forth. The piece-wise
polynomial representation generalizes results by Hadar and Seo
(1988) and Russell and Seo (1989) on simple representative utility
functions for pairwise comparison based on lower-order SD rules.
of stochastic dominance criteria. European Journal of Operational Research
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In the special case of a constant (N � 1)th order derivative, or
uN�1(zt) = c for t = 1, . . . ,T, we could set ct = bN�1, for
t = 1, . . . ,T � 1, and find a (N � 1)th order polynomial utility
function

uðztÞ ¼
XN�2

n¼0

bnðzt � zTÞn þ bN�1ðzt � zTÞN�1
: ð12Þ

Our approach differs from using this polynomial function in an
important way. A polynomial generally does not obey the regu-
larity conditions (restrictions on the signs of the derivatives)
over the entire range. In addition, if we restrict the polynomial
to obey the regularity conditions, then it generally loses its flex-
ibility. Our approach in effect uses a local (rather than global)
polynomial representation for the utility function. Since the
NSD criterion restricts only the sign (and not the shape) of the
Nth derivative, it allows a piecewise constant representation of
the (N � 1)th derivative and the piecewise polynomial represen-
tation of lower-order derivatives (but not for the global polyno-
mial approximation).

The utility levels and marginal utility levels are linear in the
(N + T � 1) parameters bn, n = 0,1, . . . ,N � 2, and ct, t = 1, . . . ,T. This
finding implies that the inequalities (2), (3) and (5) are linear in
these parameters, allowing for Linear Programming. Applying our
theorem to the admissibility conditions (3), we find:

Corollary 1 (Convex Stochastic Dominance). An evaluated prospect
i 2 {1, . . . ,M} is admissible in terms of Nth order stochastic dominance,
N P 1, relative to the set of prospects {1, . . . ,M} if there exists a non-
zero solution for the following system of inequalities:

XS

s¼1

XN�2

n¼0

bnðys � ySÞ
n þ

XS

k¼s

ckðys � ykÞ
N�1

 !
ðqi;s � qj;sÞP 0;

j ¼ 1; . . . ;M; ð13:1Þ

ð�1Þnbn 6 0; n ¼ 1; . . . ;N � 2; ð13:2Þ

ð�1ÞN�1ck 6 0; k ¼ 1;2; . . . ; S� 1; ð13:3aÞ
ð�1ÞN�1cS 6 0 for N P 2: ð13:3bÞ

We exclude zero solutions to exclude the trivial utility function
u(x) = 0 "x 2 D, or an indifferent decision maker. A pair-wise NSD
test arises as a special case with M = 2. Similarly, applying the the-
orem to the efficiency conditions (5), we find:
1 Values of h⁄ < 0 are not possible if the evaluated prospect is one of the M
prospects. In this case, admissibility implies h⁄ = 0.
Corollary 2 (Stochastic Dominance Efficiency). An evaluated combi-
nation of prospects x⁄ 2 X is efficient in terms of Nth order dominance,
N P 2, relative to all feasible combinations x 2 X if and only if there
exists a non-zero solution for the following system of inequalities:

XR

r¼1

XN�2

n¼1

nbn x�r � x�R
� �n�1 þ ðN�1Þ

XR

k¼r

ck x�r � x�k
� �N�2

 !
x�r � xj;r
� �

pr P 0;

j¼ 1; . . . ;M; ð14:1Þ

ð�1Þnbn 6 0; n ¼ 1; . . . ;N � 2; ð14:2Þ
ð�1ÞN�1ck 6 0; k ¼ 1;2; . . . ;R: ð14:3Þ

For N = 2, these inequalities reduce to those underlying the Post
(2003, Thm. 2) SSD test.

We can specify LP problems to test the systems of inequalities
in (13) and (14). The specific objective function and standardiza-
tion of the variables would depend on the specific application.
Our empirical application in Section 4 will use the following LP
tests for convex NSD ðN P 2Þ:
Please cite this article in press as: Post, T., Kopa, M. General linear formulations
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h ¼ min
bn ;ck ;h

h; ð15Þ
s:t:
XS

s¼1

XN�2

n¼0

bnðys � ySÞ
n þ

XS

k¼s

ckðys � ykÞ
N�1

 !
ðqi;s � qj;sÞ þ h P 0;

j ¼ 1; . . . ;M;

ð�1Þnbn 6 0; n ¼ 1; . . . ;N � 2;

ð�1ÞN�1ck 6 0; k ¼ 1;2; . . . ; S;

XS

s¼1

XN�2

n¼1

nbnðys � ySÞ
n�1 þ ðN � 1Þ

XS

k¼s

ckðys � ykÞ
N�2

 !
qi;s ¼ 1:

Parameter h is an upper bound on the violations of the admissibility
conditions. A value of h⁄ 6 0 means that the evaluated prospect is
admissible; a value of h⁄ > 0 means that it is non-admissible.1 The
last restriction on average marginal utility is a harmless standardiza-
tion to avoid the trivial solution of an indifferent decision maker.

Similarly, our empirical application will use the following LP
test for NSD efficiency:

�
h ¼ min
bn ;ck ;h

h; ð16Þ
s:t:
XR

r¼1

XN�2

n¼1

nbn x�r � x�R
� �n�1 þ ðN � 1Þ

XR

k¼r

ck x�r � x�k
� �N�2

 !
x�r � xj;r
� �

pr

þ h P 0; j ¼ 1; . . . ;M;

ð�1Þnbn 6 0; n ¼ 1; . . . ;N � 2;

ð�1ÞN�1ck 6 0; k ¼ 1;2; . . . ;R;

XR

r¼1

XN�2

n¼1

nbn x�r � x�R
� �n�1 þ ðN � 1Þ

XR

k¼r

ck x�r � x�k
� �N�2

 !
pr ¼ 1:

Parameter h now is an upper bound on the violations of the first-or-
der conditions. A value of h⁄ = 0 means that the evaluated combina-
tion of prospects is efficient; a value of h⁄ > 0 means that it is
inefficient.

The higher-order derivatives (q P 2) do not enter explicitly in
convex NSD tests and NSD efficiency tests (regardless of the order
N). Still, the higher-order derivatives may be useful to impose addi-
tional structure on the utility function, such as in Meyer (1977a,b)
and Leshno and Levy (2002). For example, Meyer (1977a,b) bounds
the coefficient of absolute risk aversion a(x) = �u2(x)/u1(x) from be-
low by a given function f(x) P 0 and from above by another given
function g(x) P 0. We can impose these bounds by means of the
following restrictions:

u2ðztÞ þ f ðztÞu1ðztÞ 6 0; t ¼ 1; . . . ; T; ð17Þ
u2ðztÞ þ gðztÞu1ðztÞP 0; t ¼ 1; . . . ; T: ð18Þ

Since the first-order and second-order derivatives are linear func-
tions of the bn and ck parameters and f(x) is exogenous, the restric-
tions are linear in the parameters. In a similar way, we could impose
restrictions on, for example, the coefficient of relative prudence
b(x) = �u3(x)x/u2(x).

Similarly, the Almost Second-order Stochastic Dominance
(ASSD) rule bounds the relative range of the second-order deriv-
ative u2(x) from above by the constant 1

e � 1
� �

; e 2 0; 1
2

� �
. Leshno

and Levy (2002) present a closed-form solution for pair-wise
comparison. The same restriction can be implemented for convex
SD and SD efficiency tests by using the following linear
restrictions:
iteria. European Journal of Operational Research
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d 6 �u2ðztÞ 6 d
1
e
� 1

� �
; t ¼ 1; . . . ; T; ð19Þ

d P 0: ð20Þ
3. Dual formulation in terms of lower partial moments

The focus of this study is on utility functions and their deriv-
atives and on restrictions that follow from utility theory. It is
well known that SD criteria can also be formulated in terms of
lower partial moments or related statistics such as cumulated
distribution functions, quantiles and Gini coefficients. This sec-
tion develops linear dual formulations of our utility-based tests
in terms of lower partial moments (Bawa, 1975) and co-lower
partial moments (Bawa and Lindenberg, 1977). The dual repre-
sentation is less economically appealing than the utility repre-
sentation, but it is often adopted in OR/MS for computational
efficiency and robustness analysis. The analysis in this section al-
lows for a direct comparison with and generalization of a range
of earlier studies based on lower partial moments or related
statistics.

We use the following definition for the nth order lower partial
moment for prospect i and threshold value w:

LPMn
i ðwÞ ¼

XR

r¼1

prðw� xi;rÞn1ðxi;r 6 wÞ: ð21Þ

For analyzing combinations of prospects, we use the following def-
inition of the nth order co-lower partial moment between a given
combination x 2 X with weights k = (k1 � � � kM) and another combi-
nation x⁄ 2 X with weights s = (s1 � � � sM):

coLPMn
s;kðwÞ¼

XR

r¼1

XM

j¼1

xj;rkj

 !
pr w�

XM

j¼1

xj;rsj

 ! !n

1
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Theorem 2 (Dual Convex NSD Test). An evaluated prospect
i 2 {1, . . . ,M} is non-admissible in terms of Nth order stochastic
dominance, N P 1, relative to the set of prospects {1, . . . ,M} if and
only if there exists a solution for the following system of
inequalities:
XM

j¼1

kjLPMn
j ðySÞ 6 LPMn

i ðySÞ; n ¼ 1; . . . ;N � 2; ð23:1Þ
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j¼1

kjLPMN�1
j ðykÞ 6 LPMN�1

i ðykÞ; k ¼ 1;2; . . . ; S� 1; ð23:2Þ
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j¼1

kjLPMN�1
j ðySÞ < LPMN�1

i ðySÞ ð23:3Þ

XM

j¼1

kj ¼ 1; ð23:4Þ

kj P 0; j ¼ 1; . . . ;M: ð23:5Þ

(Proof in the Appendix)

Since the nth order LPM equals the n-times cumulative distribu-
tion function, this test is a direct generalization of Fishburn (1974,
Thm. 2), Bawa et al. (1985, p. 423) and Levy (2006, p. 131).

For N = 2, we arrive at the linear, slack-variable formulation of
convex SSD of Bawa et al. (1985, p. 423), safe some trivial differ-
ences between weak and strict inequalities related to our utility
functions (1) allowing for zero values for the utility derivatives.
Similarly, for N = 3, we arrive at the linear, super-convexity approx-
imation to convex TSD of Bawa et al. (1985, Section B) for a given
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perturbation parameter e > 0, after modifying (23.4) toPM
j¼1kj ¼ 1þ e.
Finally, for M = 2, our test (23) reduces to the pair-wise NSD test

presented in Levy (2006, p. 131). Our test however applies more
generally for convex NSD, including, for example, convex FOSD
for M > 2.

Theorem 3 (Dual NSD Efficiency Test). An evaluated combination of
prospects x⁄ 2 X with weights s = (s1 � � � sM) is inefficient in terms of
Nth order dominance, N P 2, relative to all feasible combinations
x 2 X if and only if there exists a solution for the following system of
inequalities:
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(Proof in the Appendix)

For N = 2, (24.1) disappears and (24.2)–(24.4), coincides with
Post (2003, p. 1929) dual SSD test in terms of zero-order co-lower
partial moments or ‘ordered mean differences’.

We can specify LP problems to test the systems of inequali-
ties in (23) and (24) by analogy to problems (15) and (16). As
discussed in the introduction, we are rather skeptical about at-
tempts to identify an alternative prospect that dominates the
evaluated prospect. Areas where the dual formulation clearly
adds value to the primal formulation are computational effi-
ciency and robustness analysis. Fábián et al. (2011) and Gollmer
et al. (2011) suggest algorithmic improvements for stochastic
optimization problems with SSD (N = 2) constraints based on
dual problem formulations. Applying their insights may also re-
duce the computational burden of our tests for large sample
applications, which is particularly relevant when statistical re-
sampling methods are used. Similarly, robustness analysis of
dominance relationships traditionally focuses on the dual formu-
lation; see, for example, Dentcheva and Ruszczyński (2010), Du-
pačová and Kopa (2012) or Liu and Xu (2013) for the case of SSD
(N = 2).

4. Empirical application to US stock market data

We will now use a range of SD tests to analyze the efficiency
of the broad stock market portfolio for various investment hori-
zons. Our stock market portfolio is constructed as a value-
weighted average of all NYSE, AMEX and NASDAQ stocks. It is
compared with a standard set of 10 active benchmark stock
portfolios that are formed, and annually rebalanced, based on
individual stocks’ market capitalization of equity (or ‘size’), each
representing a decile of the cross-section of stocks in a given
year. Furthermore, we include the 1-month US Treasury bill as
a riskless asset. We use data on monthly value-weighted returns
(month-end to month-end) from July 1926 to December 2011
(1026 months) obtained from Kenneth French’ data library. The
of stochastic dominance criteria. European Journal of Operational Research
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size portfolios are of particular interest because a wealth of
empirical research, starting with Banz (1981), suggests that
small-cap stocks earn a return premium that defies rational
explanation.2

SD analysis is invariant for positive linear transformations of
the returns and does not require a specification of the initial wealth
level. Nevertheless, it is useful for the SDWRF criterion to use gross
holding period returns (HPRs), which are positive (xmin > 0) and
proportional to final wealth (rather than the increase in wealth);
the relevant restrictions on the ARA coefficient depend on the
return definition. Our analysis does not use continuously com-
pounded or log returns, because log returns generally are not pro-
portional to final wealth, and, in addition, do not combine linearly
in the cross-section. We do not object to assuming a log-normal
distribution for some assets and horizons and we also do not object
to logarithmic utility for some investors. SD analysis simply does
not require such parametric specifications.

Monthly returns are commonplace in the empirical finance lit-
erature. However, a 1-month period may not be appropriate as the
horizon of the representative investor. We therefore also consider
returns for periods of 1 and 10 years. As discussed in Benartzi and
Thaler (1995), a period of 1 year seems most plausible as the rele-
vant evaluation horizon, because most financial reporting takes
place on an annual basis (for example, financial statements, tax
files and updates of retirement accounts). To represent long-term
investors, our analysis also includes 10-year returns. Whereas the
benchmark portfolios are annually rebalanced, our analysis fixes
the investor’s allocation across the benchmark portfolios during
the investment period. For a long-term investor who periodically
adjusts her asset allocation and style mix, a dynamic programming
model may therefore be more appropriate.

Common problems in the analysis of long-term return are a lim-
ited number of non-overlapping return intervals and a possible
sensitivity to the specification of the starting month and year.
We therefore focus on the HPRs for all 1015 sub-periods of 12
sequential months and all 907 sub-periods of 120 sequential
months. This approach preserves possible auto-correlation in the
monthly data and therefore leads to more realistic long-term
HPR scenarios than random simulation. Nevertheless, our conclu-
sions are robust to using non-overlapping long-term HPRs for
any starting month and year, and for simulated long-term HPRs
based on independent random draws of 12 or 120 monthly returns
(with or without replacement).

Table 1 shows descriptive statistics for the excess returns of the
relevant portfolios. We generally recommend to measure system-
atic risk based on co-lower partial moments rather than co-vari-
ance. Still, the descriptives include the classical market beta,
because of its familiarity, and because it helps to interpret the
M–V results. Not surprisingly, small-cap stocks tend to have a
higher standard deviation, market beta and skewness than large-
cap stocks. Interestingly, the market portfolio has less skewness
than nine of the 10 benchmark stock portfolios. Apparently, broad
diversification yields a relatively small reduction in downside risk
(relative to the more concentrated size-decile portfolios) at the
cost of a relatively large reduction in upside potential. However,
the differences become smaller for long horizons. The market
skewness increases with the horizon, reflecting the effect of com-
2 We arrive at similar conclusions using benchmark portfolios formed on stocks’
book-to-market equity ratio or prior 12 – 2 month returns (momentum) and/or using
a sample that starts in July 1963, a popular breakpoint in the empirical asset pricing
literature. An exception occurs for 10-year returns to the size portfolios (but not for
book-to-market and R12 – 2 portfolios). The recent sample of 10-year returns assigns
a relatively large weight to the extraordinary late-1990s large-cap stock market rally,
which has the effect of increasing the market beta of large-caps above that of small-
caps. Therefore, risk aversion in effect penalizes large caps and the lowest alphas are
obtained with a (nearly) risk-neutral pricing kernel for every efficiency criterion.
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pounding returns. By contrast, the returns to small caps become
less skewed and have lower betas for longer horizons, presumably
reflecting the effect of long-term mean reversion.

In this application, it seems natural to test whether the market
portfolio is efficient relative to all convex combinations of the 11
base assets, so as to allow for portfolio diversification (but without
short selling). Nevertheless, it is insightful to also apply pair-wise
dominance and convex dominance relative to the undiversified
base assets. For each of the 11 base assets, we will apply LP test
(15) to analyze whether the market portfolio is pair-wise domi-
nated by the base asset (M = 2). A test for admissibility applies LP
test (15) to compare the market portfolio with the 11 base assets
simultaneously (M = 11). To test whether the market portfolio is
efficient, or not dominated by any convex combination of the base
assets, we use LP test (16).

All tests use equal weights for the T historical observations
(pt = 1/T). Since we analyze the market portfolio, the marginal util-
ity function can be interpreted as a pricing kernel and the viola-
tions of the first-order conditions as pricing errors, or ‘alphas’.
The objective function is the largest positive alpha, because this
term represents a deviation from optimality even in case of binding
short-sales constraints, making the test more general than one
based on, for example, the sum of squared alphas or the mean
absolute alpha. After all, a large negative alpha generally offers
only limited profit opportunity without short selling. The stan-
dardization in (15) and (16) follows a convention in the asset pric-
ing literature to set the average value of the pricing kernel equal to
unity.

We implement the SSD, TSD and FOSD criteria by setting N = 2,
3, 4, respectively, in (15) and (16). We also perform SDWRF tests
based on ARA restrictions (17) and (18) with lower bound f(x) = 0
and upper bound g(x) = 3x�1. This means that the coefficient of rel-
ative risk aversion (RRA) r(x) = a(x)x is bounded from above by the
value of 3. For the utility of wealth, as opposed to the utility of con-
sumption, there exist compelling arguments for an average RRA
value close to one and slightly increasing; see for example, Meyer
and Meyer (2005). Since we analyze gross returns, which are pro-
portional to final wealth, a value of r(x) = 3 seems relatively high.3

We also implement ASSD tests using restrictions (19) and (20) on
utility curvature. Following Levy et al. (2010) and Bali et al. (2009),
we use critical value of e = 0.032. Finally, we include tests based on
the mean–variance (M–V) criterion, using a linear marginal utility
function (or quadratic utility). For the sake of brevity, we will focus
on the primal problem solution and results here and omit the dual
problem solution.

Since we use empirical returns that are generated by an unob-
served population distribution, we must account for the effect of
sampling error on our test results. Unfortunately, the sampling dis-
tribution appears analytically intractable due to the large number
of inequality restrictions involved. Fortunately, statistical re-sam-
pling methods can overcome analytical intractability using brute
computational force. An early study by Nelson and Pope (1991)
demonstrated that SD analysis based on a bootstrapped return dis-
tribution is more powerful than analysis based on the original
empirical return distribution. More recently, Barrett and Donald
(2003) and Linton et al. (2005) derive powerful consistent boot-
strap and sub-sampling tests for pair-wise comparisons.

Interestingly, the tractable LP structure of (15) and (16) sug-
gests that the computational burden of re-sampling is manageable
also for convex SD tests and SD efficiency tests. Under the assump-
tion of identically and independently distributed time-series re-
turns, the empirical return distribution is a consistent estimator
3 For the utility of consumption rather than the utility of wealth, higher RRA values
may be required to be consistent with the historical equity premium; see, for
example, Mehra and Prescott (1985).
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Table 1
Descriptive statistics size portfolios. The table shows descriptive statistics for gross holding-period returns to the 10 size benchmark portfolios and the market portfolio. The
benchmark portfolios are based on individual stocks’ market capitalization of equity, and each represent a value-weighted average of a decile of the cross-section of stocks (using
NYSE size break points). The stock market portfolio is a value-weighted average of all NYSE, AMEX and NASDAQ stocks. The sample period ranges from July 1926 to December
2011 (1026 months), and net returns are computed in excess of the 1-month T-bill. The raw month-end-to-month-end returns are taken from Kenneth French’ data library. The
long-term returns are multiplicative returns for all holding periods of 12 or 120 sequential monthly returns in the original sample. We compute the total HPR for an investment
period of H months up to and including month t from the individual monthly gross returns in excess of the riskless rate: xðHÞt ¼

QH
s¼1ð1þ xt�Hþs � rt�HþsÞ. These HPRs express final

investment wealth (after subtracting funding costs) at the end of the investment period as a percentage of initial wealth.

Portf 1 month 12 months 120 months

Avg. Stdev. Skew Beta Avg. Stdev. Skew Beta Avg. Stdev. Skew Beta

Small 101.14 10.23 3.70 1.44 116.45 49.50 3.41 1.86 333.30 284.90 2.59 1.53
2 100.96 8.94 2.24 1.39 113.38 40.88 3.08 1.63 275.70 173.00 1.47 1.22
3 100.96 8.18 1.92 1.34 112.91 36.28 3.14 1.49 275.60 152.60 1.26 1.13
4 100.92 7.57 1.54 1.26 112.14 32.30 2.30 1.36 268.60 145.80 1.14 1.09
5 100.87 7.26 1.14 1.24 111.46 29.80 2.00 1.29 258.30 123.50 0.83 1.02
6 100.87 6.94 1.01 1.21 111.41 28.80 1.77 1.26 252.20 125.20 0.85 1.07
7 100.82 6.57 0.80 1.16 110.84 27.15 1.35 1.21 248.60 117.20 0.86 1.06
8 100.76 6.22 0.74 1.11 109.85 25.03 1.47 1.11 230.80 104.00 0.78 1.00
9 100.70 5.93 0.56 1.07 109.20 23.58 0.84 1.08 226.20 108.70 0.69 1.05
Large 100.57 5.13 0.09 0.93 107.31 20.13 0.12 0.92 201.90 104.90 0.69 1.01
Mkt 100.62 5.46 0.17 1.00 108.03 21.53 0.37 1.00 207.90 101.70 0.77 1.00
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of the population return distribution, and bootstrap samples can
simply be obtained by random sampling with replacement from
the empirical return distribution. To ensure that the population
distribution of the bootstrap samples obeys the null hypothesis
of market portfolio efficiency, we first re-center the empirical dis-
tribution by correcting the original time-series of returns for a gi-
ven base asset by subtracting the estimated alpha of that base
asset. While this adjustment aligns the assets’ means with the null
hypothesis, it does not affect the general risk levels and the depen-
dence structure between the assets. We implement this bootstrap
method by generating 10,000 pseudo-samples of the same size as
the original sample through random draws with replacement from
the re-centered original sample, and test market portfolio effi-
ciency in every pseudo-sample. Since the long-term HPRs were
constructed from historical sequences of 12 or 120 monthly re-
turns, the method in effect is a block bootstrap applied to random
blocks of the same length. Finally, we compute the critical values
for the original test-statistics from the percentiles of the bootstrap
distribution.

Table 2 shows the test results for the different decision criteria
and investment horizons. For the sake of comparability, we multi-
ply the monthly results by 12 and divide the 10-year results by 10,
to arrive at ‘annualized’ results. This method obviously does not ac-
count for compounding effects, but it does preserve the relative
differences between the portfolios.

Testing whether the market portfolio is dominated by one of
the base assets in a pair-wise fashion using any of the six deci-
sion criteria has limited discriminating power in this study. The
market portfolio has a relatively low risk level and is not domi-
nated by any of the more risky size deciles 1–9 using any of the
criteria and horizons. At the same time, the market portfolio has
a higher average return than the large-cap stock portfolios and
the T-bill and is also not dominated by these alternatives. As dis-
cussed above, the pair-wise approach ignores that the market
portfolio can be non-admissible without being dominated. Differ-
ent investors may agree that the market portfolio is not optimal,
even if they do not agree on which base assets are better than
the market portfolio; they may see improvement possibilities
in different base assets. The violations of admissibility are how-
ever also relatively small and not statistically significant. Pre-
sumably, the admissibility test has limited power in this
application, because it overlooks the effects of diversification
across the base assets. Indeed, the efficiency test detects eco-
nomically and statistically significant violations of market portfo-
lio efficiency. In the remainder of this section, we focus on these
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tests results in more detail. Table 3 shows the alphas for the
individual size decile portfolios and Fig. 1 shows the associated
pricing kernels.

For monthly returns, M–V analysis classifies the market port-
folio as significantly inefficiently due to a substantial undervalu-
ation of small-cap stocks, confirming known empirical results.
For the first decile portfolio, the alpha is 2.05% per annum, and
highly significant. The SSD criterion leads to a large reduction
of the alphas by using a step function for the pricing kernel
(see Fig. 1); the alpha for small-cap stocks falls to 0.71% per an-
num. The kernel has large concave (!) segments and it penalizes
small-cap stocks for having a relatively high positive skewness.
Clearly, this is not consistent with prudence (or skewness prefer-
ence). The higher-order SD tests do not allow for this pattern
and their results cannot be distinguished from the M–V results
(a linear kernel) in this case. The SDWRF kernel is convex and
places a reward on positive skewness; the SDWRF alpha for
small-cap stocks increases to 2.40% per annum. By contrast,
the ASSD test does not remedy the problem of skewness aver-
sion and yields similar results as the SSD test. Arguably, the
parameter value e = 0.032 is too high for the relatively narrow
range of monthly returns.

The situation is remarkably different for annual returns. In
this case, the M–V kernel becomes negative (!) for gross returns
in excess of about 160% (or net return of 60% per annum).
While such cases represent only a few percent of the total num-
ber of annual observations, they do represent a substantial part
of the total return of in the sample period and can have a large
effect on the estimated alphas. The M–V alpha for the first dec-
ile portfolio is only 0.99% per annum and is not statistically sig-
nificant. This number seems to underestimate the appeal of
small-cap stocks, because M–V analysis penalizes these stocks
for having more systematic upside potential than large-cap
stocks do.

The SD efficiency tests impose non-satiation and avoid nega-
tive weights. However, the SSD test again penalizes small-cap
stocks for their relatively high skewness. The higher-order tests
impose both non-satiation (violated by M–V analysis) and pru-
dence (violated by the SSD test). The TSD kernel is a convex
two-piece linear function with a kink at a net market return of
about 50% and it generates an alpha of 1.62% per annum for
the first decile portfolio. This value still seems to underestimate
the appeal of small-cap stocks, because the kernel displays a dis-
continuous drop in its slope for high-return levels, violating the
assumption of temperance. The FOSD efficiency test corrects for
of stochastic dominance criteria. European Journal of Operational Research
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Table 2
Dominance, admissibility and efficiency test statistics. The table shows the (annualized) test statistics obtained by testing for dominance, admissibility and efficiency of the value-
weighted market portfolio relative to the 10 size-decile portfolios and the 1-month T-bill. We use six different efficiency criteria: (i) mean–variance (M–V) analysis, (ii) second-
order SD, (iii) third-order SD, (iv) fourth-order SD, (v) SD With Respect to a Function (SDWRF) and (vi) Almost SSD. Separate results are shown for monthly, annual and 10-year
gross holding-period returns in the sample period from July 1926 to December 2011. For each of the 11 base assets, we analyze whether the market portfolio is pair-wise
dominated using test (9) for the market portfolio and the base asset (M = 2). We test admissibility using (9) by including all 11 base assets simultaneously (M = 12). Test (10) is
used to determine whether the market portfolio is efficient relative to all convex combinations of the 11 base assets.

Horizon Criterion Dominance by individual benchmark portfolios Admissibility Efficiency

Smll 2 3 4 5 6 7 8 9 Lrg

1 month M–V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.05⁄⁄

SSD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71
TSD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.05⁄⁄

FOSD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.51⁄⁄

SDWRF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40⁄⁄

ASSD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.26⁄

12 months M–V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
SSD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08
TSD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 1.62⁄

FOSD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.99⁄⁄

SDWRF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.29⁄⁄

ASSD 0.00 0.00 0.04 0.07 0.06 0.09 0.07 0.07 0.04 0.00 0.09 1.51⁄

120 months M–V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.75⁄⁄

SSD 0.05 0.00 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00 0.05 2.51⁄⁄

TSD 0.03 0.00 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.03 2.71⁄⁄

FOSD 0.02 0.00 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.00 0.02 2.71⁄⁄

SDWRF 0.05 0.00 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00 0.05 6.07⁄⁄

ASSD 1.78⁄ 1.07⁄ 1.10⁄ 1.00 0.85 0.74 0.69 0.40 0.31 0.00 1.78⁄ 7.82⁄⁄⁄

⁄ Indicates that the bootstrap p-value is smaller than 10%.
⁄⁄ Indicates that the bootstrap p-value is smaller than 5%.
⁄⁄⁄ Indicates that the bootstrap p-value is smaller than 1%.

Table 3
Pricing errors. The table shows the (annualized) alphas obtained by testing efficiency of the value-weighted market portfolio relative to the 10 size-decile portfolios and the 1-
month T-bill. We use six different efficiency criteria: (i) mean–variance (M–V) analysis, (ii) second-order SD, (iii) third-order SD, (iv) fourth-order SD, (v) SD With Respect to a
Function (SDWRF) and (vi) Almost SSD. Separate results are shown for monthly, annual and 10-year gross holding-period returns in the sample period from July 1926 to
December 2011. The results for a monthly period are based on a re-centered bootstrap that generates 10,000 pseudo-samples of T returns by means of random sampling with
replacement from the re-centered original sample of monthly returns. The results for an annual (10-year) period are based on a re-centered block bootstrap that generates 10,000
pseudo-samples of T random blocks of 12 (120) sequential monthly returns from the re-centered original sample of monthly returns. T is the size of the original sample of
monthly, annual or 10-year returns.

Portfolio

Horizon Criterion Small 2 3 4 5 6 7 8 9 Large

1 month M–V 2.05⁄⁄ 0.44 0.92 1.16 0.79 1.05 0.92 0.65 0.39 0.09
SSD 0.71 �0.44 0.26 0.71 0.37 0.71 0.71 0.61 0.30 0.12
TSD 2.05⁄⁄ 0.44 0.92 1.16 0.80 1.05 0.93 0.66 0.39 0.09
FOSD 2.51⁄⁄ 0.61 1.10 1.32 0.89 1.17 1.01 0.74 0.46 0.10
SDWRF 2.40⁄⁄ 0.52 1.05 1.25⁄ 0.86 1.13 0.98 0.71 0.46 0.11
ASSD 1.26⁄ �0.05 0.59 0.96 0.57 0.90 0.85 0.66 0.37 0.08

12 months M–V 0.67 �0.37 0.45 0.86 0.83 0.99 0.94 0.79 0.49 0.01
SSD 0.89 �0.10 0.94 0.99 1.08 1.08 1.02 1.02 0.66 0.00
TSD 1.62⁄ 0.36 1.18⁄ 1.34⁄ 1.23⁄ 1.30⁄ 1.13⁄ 1.06 0.61 �0.02
FOSD 1.99⁄⁄ 0.57 1.29⁄ 1.46⁄ 1.25⁄ 1.36⁄ 1.15 1.06 0.61 �0.02
SDWRF 2.29⁄⁄ 0.76 1.42⁄ 1.53⁄ 1.27⁄ 1.41⁄ 1.14⁄ 1.11 0.72 �0.01
ASSD 1.51⁄ 0.30 1.17⁄ 1.26⁄ 1.24⁄ 1.25⁄ 1.09 1.07 0.68 �0.04

120 months M–V 4.28⁄⁄⁄ 3.41⁄⁄⁄ 4.75⁄⁄⁄ 4.65⁄⁄⁄ 4.68⁄⁄⁄ 3.33⁄⁄⁄ 3.08⁄⁄⁄ 2.37⁄⁄ 1.00 �0.76
SSD 2.51⁄⁄ 0.10 0.73 2.08⁄ 0.78 1.21 0.48 0.95 0.12 0.16
TSD 2.71⁄⁄ 0.50 1.22 2.61 1.39 1.57 0.60 1.22 �0.09 0.08
FOSD 2.71⁄⁄ 0.50 1.22 2.61 1.39 1.57 0.60 1.22 �0.09 0.08
SDWRF 6.07⁄⁄⁄ 3.06⁄⁄⁄ 3.69⁄⁄⁄ 3.81⁄⁄⁄ 3.21⁄⁄⁄ 2.63⁄⁄ 2.33⁄⁄ 1.92⁄⁄ 0.87 �0.64
ASSD 7.82⁄⁄⁄ 4.24⁄⁄⁄ 4.78⁄⁄⁄ 4.66⁄⁄⁄ 4.01⁄⁄⁄ 3.25⁄⁄⁄ 2.96⁄⁄ 2.13⁄⁄ 1.13 �0.73

⁄ Indicates that the bootstrap p-value is smaller than 10%.
⁄⁄ Indicates that the bootstrap p-value is smaller than 5%.
⁄⁄⁄ Indicates that the bootstrap p-value is smaller than 1%.
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this problem and yields a kernel that is consistent with all four
assumptions: non-satiation, risk aversion, prudence and temper-
ance. The FOSD alpha for the first decile portfolio is 1.99% per
annum, far exceeding the M–V estimate in terms of economic
Please cite this article in press as: Post, T., Kopa, M. General linear formulations
(2013), http://dx.doi.org/10.1016/j.ejor.2013.04.015
and statistical significance. The SDWRF and ASSD tests yield sim-
ilar results as the FOSD and TSD tests, respectively.

Due to the multiplicative nature of HPRs, the average return and
standard deviation of small caps increase faster than those of large
of stochastic dominance criteria. European Journal of Operational Research
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Fig. 1. Pricing kernels. The graphs shows the optimal marginal utility functions, or pricing kernels, obtained by testing for efficiency of the market portfolio relative to the 10
size-decile portfolios and the riskless 1-month Treasury bill. Results are shown for gross holding period returns for all 1-month, 1-year and 10-year holding periods in the
original sample period from July 1926 to December 2011. The SSD, TSD and FOSD results are based on LP problem (16) using N = 2, 3, 4, respectively. The mean–variance (M–
V) efficiency test assumes a quadratic utility function. SDWRF results use ARA restrictions based on lower bound f(x) = 0 and upper bound g(x) = 3x�1; the ASSD results use
e = 0.032. The tests identify marginal utility level for a large number of different market return levels. A continuous graph is obtained by means of linear interpolation. The
graphs are shown only for the observed range of market returns.
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caps as the investment horizon increases.4 However, the market
beta of small-caps actually decreases at long horizons, presumably
reflecting long-term mean-reversion. Related to this, the M–V alpha
for the small-caps portfolio increases to 4.75% per annum for a 10-
year horizon, economically and statistically highly significant.
Fig. 1 shows that the M–V pricing kernel takes an alarming shape
for this horizon. Specifically, the kernel becomes negative already
for gross 10-year returns in excess of about 270% (or net return of
17% per annum) and its values range from �3.95 to 3.31 in this sam-
ple. This means that the M–V criterion in effect penalizes small caps
for their systematic upside potential and the M–V alpha may still
underestimate the true long-term appeal of these stocks.

The SD tests yield different results. The SSD kernel assigns ex-
tremely large weights (in excess of 250!) to the largest negative
market returns. This weighting scheme penalizes small caps for
4 Investment risk increases at a slower rate when using annualized log returns,
confirming known results by Fama and French (1988) and Poterba and Summers
(1988), among others. This approach would however lead to spurious ‘time-
diversification’ effects in the context of our study, as we assume that the investor
maximizes the expected utility of her wealth at the end of a 10-year period.
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their downside risk and reduces their alphas to economically and
statistically less significant levels. Specifically, the average return
difference between small caps and large caps during bear markets
is smaller than the unconditional average difference, presumably
due an overall increase in correlation between stocks during bear
markets. The SSD criterion reduces the alphas by assigning almost
all weight to the worst market returns. The SSD kernel in this case
is almost convex and the TSD and FOSD criteria yield similar
results.

The assumed preference structure however seems not repre-
sentative for most risk averters. The SDWRF criterion ignores
these preferences and uses a more moderate weighting scheme
by requiring the RRA coefficient to take values between 0 and
3. The SDWRF alpha for small caps is as high as 6.07% per an-
num, substantially higher than the M–V and SSD values. These
large differences arise because SDWRF avoids negative weights
for the right tail of the market return distribution and large neg-
ative weights for the left tail. The 10-year SDWRF results are
confirmed by the ASSD test, which places a cap on the relative
range of utility curvature. In fact, the ASSD alphas are so large
in this case that we may question whether the parameter value
of stochastic dominance criteria. European Journal of Operational Research
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of e = 0.032 may be too low for the wide return range of long-
term returns.
5. Concluding remarks

We may formulate stochastic dominance criteria for discrete
probability distributions using a piece-wise polynomial represen-
tation of utility and its derivatives. This approach applies gener-
ally for higher-order SD rules and can also deal with additional
preference restrictions such as the SDWRF bounds on the level
of risk aversion and the ASSD bounds on utility curvature. The ap-
proach allows for comparing a given prospect (or combination of
prospects) with a discrete set of prospects but also for compari-
son with all linear combinations of a set of prospects. The ap-
proach can be implemented by solving a relatively small system
of linear inequalities by means of Linear Programming. A linear
dual formulation uses lower partial moments or co-lower partial
moments.

Our empirical application suggests that the passive stock mar-
ket portfolio is highly inefficient relative to actively managed port-
folios for all horizons for nearly all investors. It appears impossible
to rationalize the market portfolio for any investment horizon
without allowing for implausible shapes of the utility function.

Pair-wise dominance tests appear too weak to generate plausi-
ble results in this study. Despite their very large alphas, small-cap
stocks do not dominate the market portfolio, for the simple reason
that they are more risky than the market portfolio. A joint test for
convex dominance relative to a small caps, large caps and T-bills
also has limited power, as it overlooks the benefits of diversifica-
tion across these market segments. The SSD criterion appears too
weak to generate plausible results. For short-term returns, it penal-
izes small-cap stocks for having a relatively high positive skew-
ness, violating prudence. The other decision criteria avoid this
pattern and show that properly accounting for skewness and kur-
tosis lowers the level of market portfolio efficiency. An investor
who looks for short-term downside protection and/or upside po-
tential will find the market portfolio less appealing than a more
concentrated position in small-cap stocks (possibly combined with
T-bills to achieve the same standard deviation).

The results also support the hypothesis that M–V analysis gives
a good second-order approximation for any well-be, haved utility
function on the typical range of short-term return for diversified
portfolios (see, for example, Levy and Markowitz, 1979). The
approximation however breaks down for longer investment hori-
zons. In this case, the M–V criterion assigns negative weights to
large positive market returns, hence placing a penalty on the sys-
tematic upside potential of active investment strategies. As a re-
sult, it can underestimate market portfolio inefficiency and the
appeal of active strategies for longer investment horizons.

Overall, the TSD and FOSD results appear more plausible than
the M–V and SSD results. However, for long-term returns, SSD,
TSD and FOSD all assign extremely large positive weights to large
negative market returns, hence placing a large penalty on the sys-
tematic downside risk of active strategies. The emphasis on the left
tail seems to reflect the elevated correlation between stocks during
bear markets rather than an extreme aversion to tail risk. The
SDWRF and ASSD rules can avoid this type of over-fitting by limit-
ing the level of risk aversion.

Undoubtedly, parts of our alphas reflect market micro-structure
issues regarding liquidity and transactions costs, and the appeal of
active strategies diminishes without the professional trading facil-
ities available to specialized investment companies. Notwithstand-
ing these possible effects, we conclude that risk definitions and risk
preferences are unlikely explanations for the high average returns
of small caps (and similar results are found for value stocks and
Please cite this article in press as: Post, T., Kopa, M. General linear formulations
(2013), http://dx.doi.org/10.1016/j.ejor.2013.04.015
past winners). The M–V and SSD criteria can place implausible
weights on the systematic downside risk and systematic upside
potential of active investment strategies. However, our results
show that using positive and moderate weights for all scenarios
inevitably leads to the conclusion that the market portfolio is not
optimal for all horizons and nearly all investors.
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Appendix A

Proof of Theorem 1. [Linearization of Marginal Utility] For N ¼ 1,
set ck ¼ uðzkÞ � uðzkþ1Þ, k ¼ 1;2; . . . ; T � 1; cT ¼ uðzTÞ, and the the-
orem follows directly. We therefore focus on N P 2 below. Since
the first N derivatives of u 2 UN exist, we may apply a Taylor
expansion about zT at point zt:

uðztÞ ¼
XN�2

n¼0

unðzTÞ
n!
ðzt � zTÞn þ RT;

with the following reminder term (RT) in the integral form:

RT ¼ �
Z zT

zt

uN�1ðtÞ
ðN � 2Þ! ðzt � tÞN�2 dt:

Splitting the integral from zt to zT in smaller integrals and using the
first mean value theorem for integration we find:

RT ¼�
XT�1

k¼t

Z zkþ1

zk

uN�1ðtÞ
ðN�2Þ!ðzt� tÞN�2 dt

¼�
XT�1

k¼t

uN�1 z�k
� �

ðN�2Þ!

Z zkþ1

zk

ðzt� tÞN�2 dt¼

¼
XT�1

k¼t

uN�1ðz�kÞ
ðN�1Þ! ðzt�zkþ1ÞN�1�ðzt�zkÞN�1

h i

¼
XT�1

k¼tþ1

uN�1 z�k�1

� �
�uN�1ðz�kÞ

ðN�1Þ!

� �
ðzt�zkÞN�1þuN�1ðz�T�1Þ

ðN�1Þ! ðzt�zTÞN�1

for some z�k 2 ½zk; zkþ1�. Setting

bn ¼
unðzTÞ

n!
; n ¼ 0;1; . . . ;N � 2

ck ¼
uN�1ðz�k�1Þ � uN�1ðz�kÞ

ðN � 1Þ! ; k ¼ 2; . . . ; T � 1; cT ¼
uN�1ðz�T�1Þ
ðN � 1Þ! ;

we obtain (6) and (8), (9). The conditions (10) and (11) on parame-
ters bn, ck follow directly from the definition of set UN. Finally, for
given parameters bn, ck satisfying (10) and (11), one can easily ver-
ify that the piece-wise polynomial utility function:

uðxÞ ¼
XN�2

n¼0

bnðx� zTÞn þ
XT

k¼tþ1

ckðx� zkÞN�1; x 2 ½zt ; ztþ1�;

t ¼ 1;2; . . . ; T � 1

is admissible, that is, u(x) 2 UN. h
Proof of Theorem 2. [Dual Convex NSD Test] Using bn = �(�1)nbn,
n = 1,2, . . . ,N � 2 and ck = �(�1)N � 1ck, k = 1,2, . . . ,S, the system
(13.1)–(13.3) can be rewritten as follows:
of stochastic dominance criteria. European Journal of Operational Research
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XS

s¼1

ðqj;s�qi;sÞ
XN�2

n¼1

bnðyS�ysÞ
nþ
XS

k¼s

ckðyk�ysÞ
N�1

" #
P 0;

j¼1; . . . ;M; ð25:1Þ

bn P 0; n ¼ 1;2; . . . ;N � 2; ð25:2Þ
ck P 0; k ¼ 1;2; . . . ; S� 1; ð25:3Þ
cS ¼ 1; ð25:4Þ

where (25.4) is a harmless standardization to exclude zero solu-
tions. Since

XS

s¼1

ðqj;s � qi;sÞ
XS

k¼s

ckðyk � ysÞ
N�1 ¼

XS

k¼1

ck

Xk

s¼1

ðqj;s � qi;sÞðyk � ysÞ
N�1

;

the system (25.1)–(25.4) can be tested using the following linear
programming problem:

h� ¼ min
bn ;ck ;h

h;

s:t:
XS

s¼1

ðqj;s � qi;sÞ
XN�2

n¼1

bnðyS � ysÞ
n þ

XS

k¼1

ck

Xk

s¼1

ðqj;s � qi;sÞðyk � ysÞ
N�1

þ h P 0; j ¼ 1; . . . ;M;

bn P 0; n ¼ 1;2; . . . ;N � 2;
ck P 0; k ¼ 1;2; . . . ; S� 1;
cS ¼ 1;

where the ith prospect is NSD admissible if and only if the optimal
value of objective function is equal to zero. The linear programming
dual follows:
Please cite this article in p
(2013), http://dx.doi.org/1
max
kj ;v

v; ð26Þ
XM

j¼1

XS

s¼1

ðkjqj;s � qi;sÞðyS � ysÞ
n
6 0; n ¼ 1;2; . . . ;N � 2;

XM

j¼1

Xk

s¼1

ðkjqj;s � qi;sÞðyk � ysÞ
N�1
6 0; k ¼ 1;2; . . . ; S� 1;

XM

j¼1

XS

s¼1

ðkjqj;s � qi;sÞðyS � ysÞ
N�1 þ v 6 0;

XM

j¼1

kj ¼ 1; kj P 0; j ¼ 1;2; . . . ;M:

Using (21) for w = yk, k = 1,2, . . . ,S, we can rewrite (26) in the form of
the system of inequalities (23.1)–(23.5), because only the sign of the
optimal objective value is of interest. h
Proof of Theorem 3. [Dual NSD Efficiency Test] Similar to the
proof of Theorem 2, setting bn = n(�1)nbn, n = 1,2, . . . ,N � 2 and
ck = (N � 1)(�1)N � 1cN � 1, k = 1,2, . . . ,R, we can test the system
(14.1)–(14.3) using the following linear programming
problem:

�
h ¼ min
bn ;ck ;h

h;
s:t:
XN�2

n¼1

bn

XR

r¼1

pr

XM

j¼1

xj;rsj � xj;r

 ! XM

j¼1

xj;Rsj �
XM

j¼1

xj;rsj

 !n�1

;

þ
XR

k¼1

ck

Xk

r¼1

pr

XM

j¼1

xj;rsj � xj;r

 ! XM

j¼1

xj;ksj �
XM

j¼1

xj;rsj

 !N�2

þ h P 0;

j ¼ 1; . . . ;M;
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bn P 0; n ¼ 1;2; . . . ;N � 2;
ck P 0; k ¼ 1;2; . . . ;R� 1;
cR ¼ 1;

where the evaluated prospect is NSD efficient if and only if the opti-
mal value of objective function is equal to zero. The linear program-
ming dual follows:

max
kj ;v

v ;

s:t:
XR

r¼1

pr

XM

j¼1

xj;rsj �
XM

j¼1

xj;rkj

 ! XM

j¼1

xj;Rsj �
XM

j¼1

xj;rsj

 !n�1

6 0;

n ¼ 1;2; . . . ;N � 2;

Xk

r¼1

pr

XM

j¼1

xj;rsj �
XM

j¼1

xj;rkj

 ! XM

j¼1

xj;ksj �
XM

j¼1

xj;rsj

 !N�2

6 0;

k ¼ 1;2; . . . ;R� 1;

XR

r¼1

pr

XM

j¼1

xj;rsj �
XM

j¼1

xj;rkj

 ! XM

j¼1

xj;Rsj �
XM

j¼1

xj;rsj

 !N�2

þ v 6 0;

XM

j¼1

kj ¼ 1; kj P 0; j ¼ 1;2; . . . ;M:

Similarly to the proof of Theorem 2, Using (22) for
w ¼

PM
j¼1xj;rsj; r ¼ 1; . . . ;R, we can rewrite the dual problem in

the form of the system of inequalities (24.1)–(24.5). h
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MEASURING OF SECOND–ORDER STOCHASTIC

DOMINANCE PORTFOLIO EFFICIENCY

Miloš Kopa

In this paper, we deal with second-order stochastic dominance (SSD) portfolio efficiency
with respect to all portfolios that can be created from a considered set of assets. Assuming
scenario approach for distribution of returns several SSD portfolio efficiency tests were pro-
posed. We introduce a δ-SSD portfolio efficiency approach and we analyze the stability of
SSD portfolio efficiency and δ-SSD portfolio efficiency classification with respect to changes
in scenarios of returns. We propose new SSD and δ-SSD portfolio efficiency measures as
measures of the stability. We derive a non-linear and mixed-integer non-linear programs
for evaluating these measures. Contrary to all existing SSD portfolio inefficiency measures,
these new measures allow us to compare any two δ-SSD efficient or SSD efficient portfo-
lios. Finally, using historical US stock market data, we compute δ-SSD and SSD portfolio
efficiency measures of several SSD efficient portfolios.

Keywords: stochastic dominance, stability, SSD portfolio efficiency measure

Classification: 91B28, 91B30

1. INTRODUCTION

When solving portfolio selection problem several approaches can be used: mean-risk
models, maximising expected utility problems, stochastic dominance criteria, etc.
If the information about the risk attitude of a decision maker is not known one
may adopt stochastic dominance approach to test an efficiency of a given portfolio
with respect to a considered set of utility functions. If only non-satiation and risk
aversion of decision maker is assumed, that is, concave utility functions are consid-
ered, second-order stochastic dominance (SSD) relation allows comparison of any
two portfolios.

Stochastic dominance was introduced independently in Hadar & Russel [6], Hanoch
& Levy [7], Rothschild & Stiglitz [20] and Whitmore [23].1

The definition of second-order stochastic dominance relation uses comparisons of
either twice cumulative distribution functions, or expected utilities (see for example
Levy [13]). Alternatively, one can define SSD relation using cumulative quantile
functions or conditional value at risk (see Ogryczak & Ruszczyński [15] or Kopa &
Chovanec [9]).

1For more information see Levy [13].
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Similarly to well-known mean-variance criterion, second-order stochastic domi-
nance relation can be used in portfolio efficiency analysis. A given portfolio is called
SSD efficient if there exists no other portfolio preferred by all risk-averse and risk-
neutral decision makers (see for example Ruszczyński & Vanderbei [21], Kuosmanen
[12] or Kopa & Chovanec [9]).

To test SSD portfolio efficiency of a given portfolio relative to all portfolios created
from a set of assets Post [17], Kuosmanen [12] and Kopa & Chovanec [9] proposed
several linear programming algorithms. While the Post test is based on represen-
tative utility functions and strict SSD efficiency criterion, the Kuosmanen and the
Kopa-Chovanec test focuses on identifying a SSD dominating portfolio. The last
two tests can be formulated as optimization problems with SSD constraints. Simi-
lar types of problems were discussed in Dentcheva & Ruszczyński [2, 3, 4], Rudolf
& Ruszczyński [5] and Luedtke [14]. In these papers, weak stochastic dominance
relation is used, contrary to SSD portfolio tests where strict stochastic dominance
relation is considered.

For SSD inefficient portfolios, several SSD portfolio inefficiency measures were
introduced in Post [17], Kuosmanen [12] and Kopa & Chovanec [9]. These mea-
sures are based on a “distance” between a tested portfolio and some other portfolio
identified by a SSD portfolio efficiency test.

In all SSD portfolio efficiency tests, the scenario approach is assumed, that is,
the returns of assets are modeled by discrete distribution with equiprobable scenar-
ios. Therefore, especially for SSD efficient portfolios, one can ask how the original
scenarios can be changed such that a given SSD efficient portfolio remains SSD ef-
ficient for perturbed scenarios, too. To circumvent this problem, Kopa & Post [10]
suggested bootstrap techniques for first-order stochastic dominance (FSD) portfolio
efficiency and Kopa [11] for SSD portfolio efficiency. In both cases, the inefficiency
of a US stock market portfolio was detected with more than 95% significance. Al-
ternatively, Dentcheva, Henrion and Ruszczyński [1] used a general stability results
in stochastic programming (see Rőmisch [19]) for optimization problems with weak
FSD constraints.

In this paper, we introduce a δ-SSD portfolio efficiency as a new type of portfolio
efficiency with respect to second-order stochastic dominance criteria.

Fixing the number of equiprobable scenarios, we identify the maximal perturba-
tion of original scenarios satisfying δ-SSD portfolio efficiency condition for a given
portfolio. The magnitude of this maximal perturbation, expressed in terms of a
distance between original and perturbed scenarios, can be considered as a measure
of δ-SSD efficiency and the limiting case for δ → 0 leads to a new SSD efficiency
measure. We consider only special perturbations where all scenarios are equiprob-
able and the number of scenarios is fixed. The more general approach can not be
used because all SSD portfolio efficiency tests were developed only for equiprobable
scenarios.

Contrary to the SSD inefficiency measures discussed above, δ-SSD and SSD port-
folio efficiency measures are defined as measures of stability. In comparison with
bootstrap techniques suggested by Kopa & Post [10] and Kopa [11], this new stabil-
ity approach is more robust because it is not based only on a subsampling of given
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scenarios. The results reached in Dentcheva, Henrion and Ruszczyński [1] for opti-
mization problems with weak FSD constraints can probably be extended for weak
SSD constraints. However, this extension would be too technically and computa-
tionally demanding for SSD portfolio efficiency testing based on scenario approach
and strict SSD relation. Moreover, the general stability results do not deal with any
measure of stability.

We apply our stability analysis to the historical US stock market data (six Famma
and French portfolios and a riskless asset) in order to compute the values of our
δ-SSD and SSD portfolio efficiency measures for two SSD efficient portfolios. As
the first portfolio, we choose the portfolio with the highest mean return. Since
CVaR is consistent with SSD relation we find the second portfolio by solving mean-
CVaR problem. For more details about the consistency see Ogryczak & Ruszczyński
[15]. Another way of identifying a SSD efficient portfolio satisfying some required
properties was presented in Roman, Darby-Dowman, and Mitra [18].

The remainder of the paper is organized as follows. The Preliminaries section
starts with notation, assumptions and definitions for the SSD relation and SSD
portfolio efficiency. We introduce a δ-SSD relation and δ-SSD portfolio efficiency
as a new type of SSD relation and SSD portfolio efficiency. It is followed by a
section dealing with SSD portfolio efficiency test derived in Kuosmanen [12] and
it’s modification for δ-SSD portfolio efficiency. In Section 4, we state our main
stability ideas and we introduce new measures of SSD portfolio efficiency and δ-
SSD portfolio efficiency as measures of stability. Using US stock market data, the
final section presents a numerical illustration where we compute the δ-SSD and SSD
portfolio efficiency measures for two SSD efficient portfolios .

2. PRELIMINARIES

We consider a random vector r = (r1, r2, . . . , rN )′ of returns of N assets with a
discrete probability distribution described by T equiprobable scenarios. The returns
of the assets for the various scenarios are given by

X =











x1

x2

...
xT











where xt = (xt
1, x

t
2, . . . , x

t
N ) is the tth row of matrix X . We will use λ =

(λ1, λ2, . . . , λN )′ for a vector of portfolio weights and the portfolio possibilities are
given by

Λ = {λ ∈ R
N |1′

λ = 1, λn ≥ 0, n = 1, 2, . . . , N}.

Alternatively, one can consider any bounded polytope:

Λ′ = {λ ∈ R
N |Aλ ≥ b}.

The tested portfolio is denoted by τ = (τ1, τ2, . . . , τN )′. Following Ruszczyński and
Vanderbei [21], Kuosmanen [12], Kopa and Chovanec [9], we define second-order
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stochastic dominance relation in the strict form in the context of SSD portfolio
efficiency. Let Fr

′λ(x) denote the cumulative probability distribution function of
returns of portfolio λ. The twice cumulative probability distribution function of
returns of portfolio λ is defined as:

F
(2)
r
′λ

(t) =

∫ t

−∞

Fr
′λ(x) dx. (1)

Definition 2.1. Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by second-order stochas-
tic dominance (r′λ ≻SSD r′τ ) if and only if

F
(2)
r
′λ

(t) ≤ F
(2)
r
′τ

(t) ∀ t ∈ R

with strict inequality2 for at least one t ∈ R.

The following SSD criteria can be used as alternative definitions of the SSD
relation:

(i) r′λ ≻SSD r′τ if and only if Eu(r′λ) ≥ Eu(r′τ ) for all concave utility functions
u provided the expected values above are finite and strict inequality is fulfilled
for at least some concave utility function, see for example Levy [13].

(ii) r′λ ≻SSD r′τ if and only if F
(−2)
r
′λ

( p
T

) ≥ F
(−2)
r
′τ

( p
T

) for all p = 1, 2, . . . , T with

strict inequality for at least some p where the second quantile function F
(−2)
r
′λ

is the convex conjugate function of F
(2)
r
′λ

in the sense of Fenchel duality, see
Ogryczak & Ruszczyński [15]. Let k = T − p. Since

CVaR1− p

T
(−r′λ) = −

F
(−2)
r
′τ

( p
T

)
p
T

for all p = 1, 2, . . . , T , where conditional value at risk (CVaR) can be defined
via the optimization problem:

CVaR k
T

(Y ) = min
a,wt

a +
1

(1 − k
T

)T

T
∑

t=1

wt (2)

s.t. wt ≥ yt − a

wt ≥ 0,

we can alternatively formulate the criterion in the following way: r′λ ≻SSD r′τ
if and only if CVaR k

T
(−r′λ) ≤ CVaR k

T
(−r′τ ) for all k = 0, 1, . . . , T − 1 with

strict inequality for at least some k. See Kopa and Chovanec [9], Uryasev &
Rockafellar [22] and Pflug [16] for details.

2This type of SSD relation is sometimes referred to as the strict second-order stochastic dom-
inance. If no strict inequality is required then the relation can be called the weak second-order
stochastic dominance.
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(iii) r′λ ≻SSD r′τ if and only if there exists a double stochastic matrix W = {w}ij

such that (WXτ ≤ Xλ and 1′WXτ < 1′Xλ) or (WXτ = Xλ and
∑T

i=1 wii <

T ) where 1′ = (1, 1, . . . , 1). See Kuosmanen [12] and Hardy, Littlewood & Polya
[8] (Theorem 46) for details.

Since 1′W = 1′ for all double stochastic matrices W, using criterion (iii) we define
a new type of SSD relation.

Definition 2.2. Let δ > 0. Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the δ-
second-order stochastic dominance (r′λ ≻δ−SSD r′τ ) if there exists a double stochas-
tic matrix W = {w}ij such that Xλ ≥ WXτ and 1′Xλ − 1′Xτ ≥ δ.

The strictly positive parameter δ in Definition 2 is chosen sufficiently small, that
is, such that if Xλ ≥ WXτ and 1′Xλ − 1′Xτ < δ then vectors Xλ and WXτ are
empirically indistinguishable.3 It is easily seen that if portfolio λ δ-SSD dominates
portfolio τ for some δ > 0 then λ SSD dominates τ . On the other hand, SSD
relation need not imply δ-SSD relation for any δ > 0. Hence, δ-SSD relation for
some δ > 0 is only sufficient condition of SSD relation.

Definition 2.3. A given portfolio τ ∈ Λ is SSD inefficient if and only if there exists
portfolio λ ∈ Λ such that r′λ ≻SSD r′τ . Otherwise, portfolio τ is SSD efficient.

This definition classifies portfolio τ ∈ Λ as SSD efficient if and only if no other
portfolio is better (in the sense of the SSD relation) for all risk averse and risk
neutral decision makers. Another definition of SSD efficiency was presented in Post
[17]. Based on Definition 2, we can similarly define δ-SSD portfolio efficiency.

Definition 2.4. A given portfolio τ ∈ Λ is δ-SSD inefficient if and only if there
exists portfolio λ ∈ Λ such that r′λ ≻δ−SSD r′τ . Otherwise, portfolio τ is δ-SSD
efficient.

Since δ-SSD relation implies SSD relation, δ-SSD portfolio efficiency is a necessary
condition of SSD portfolio efficiency, that is, every SSD efficient portfolio is δ-SSD
efficient for all strictly positive δ.

3. SSD AND δ–SSD PORTFOLIO EFFICIENCY TEST

In this section we present the linear programming test of SSD portfolio efficiency
in the form of necessary and sufficient condition derived in Kuosmanen [12]. From
the three SSD efficiency tests: the Post test [17], the Kopa–Chovanec test [9] and
the Kuosmanen test [12], we choose the last one, because the Kuosmanen test can
be easily modify to a new δ-SSD efficiency test. The Kuosmanen test is based on
criterion (iii) and it tries to identify a portfolio λ ∈ Λ that SSD dominates the given
portfolio τ .

3This kind of approximation is sometimes used in empirical finance.
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Lemma 3.1. (The Kuosmanen test) Let

θ∗ = max
W,λ

T
∑

t=1

(

xt
λ − xt

τ
)

(3)

s.t. Xλ ≥ WXτ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

λ ∈ Λ

and

θ∗∗ = min
W,λ,S+,S−

T
∑

j=1

T
∑

i=1

(s+
ij + s−ij) (4)

s.t. Xλ = WXτ

s+
ij − s−ij = wij −

1

2
i, j = 1, 2, . . . , T

s+
ij , s

−

ij , wij ≥ 0 i, j = 1, 2, . . . , T

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1 i, j = 1, 2, . . . , T

λ ∈ Λ

where S+ = {s+
ij}

T
i,j=1, S− = {s−ij}

T
i,j=1 and W = {wij}

T
i,j=1. Let ǫk denote the

number of k-way ties in Xτ .4 Then portfolio τ is SSD efficient if and only if

θ∗ = 0 ∧ θ∗∗ =
T 2

2
−

T
∑

k=1

kǫk.

Let λ
∗ and λ

∗∗ be the optimal solution of (3) and (4), respectively. If θ∗ > 0 then

r′λ∗ ≻SSD r′τ . If θ∗ = 0 and θ∗∗ < T 2

2 −
∑T

k=1 kǫk then r′λ∗∗ ≻SSD r′τ .

If θ∗ > 0 then problem (4) need not to be solved, because portfolio τ is SSD
inefficient and the optimal solution λ

∗ is a SSD dominating portfolio, see Kuosmanen
[12] for more details.

If a given portfolio τ is SSD inefficient then, from the entire set of SSD dominating
portfolios, the Kuosmanen test identifies that with the highest mean return. That
is, (3) and (4) can be reformulated in the following way:

max
λ∈Λ

f(λ, τ ) (5)

s.t. r′λ ≻SSD r′τ , (6)

where f(λ, τ ) = T (E(r′λ) − E(r′τ )) =
∑T

t=1 xt
λ − xt

τ .

4We say that a k-way tie occurs if k elements of Xτ are equal to each other.
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Problem (5) – (6) is an optimization problem with a stochastic dominance con-
straint. Contrary to problems discussed in Dentcheva & Ruszczyński [2, 3, 4], Rudolf
& Ruszczyński [5] and Luedtke [14], the stochastic dominance constraint (6) is in
the strict form.

The optimal value θ∗ of (3) can be considered as a measure of SSD portfolio in-
efficiency. It gives us information about the maximal possible difference, expressed
in mean return (or sum of returns), between the tested portfolio and a SSD domi-
nating portfolio. The alternative SSD portfolio inefficiency measures arise from the
Post test and the Kopa–Chovanec test. All these three measures allow comparison
of two SSD inefficient portfolios. Unfortunately, these measures are not suitable for
SSD efficiency measuring, because all these measures are equal to zero for all SSD
efficient portfolios. Therefore, for SSD portfolio efficiency measuring, we suggest
another approach, based on the δ-SSD portfolio efficiency and stability of δ-SSD
portfolio efficiency classification. Firstly, we modify the Kuosmanen test to δ-SSD
portfolio efficiency test.

Lemma 3.2. (The δ-SSD portfolio efficiency test) Let

θ∗δ = max
W,λ

T
∑

t=1

(

xt
λ − xt

τ
)

(7)

s.t. Xλ ≥ WXτ

T
∑

t=1

(

xt
λ − xt

τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

λ ∈ Λ.

If an optimal solution of (7) exists then portfolio τ is δ-SSD inefficient and r′λ∗ ≻δ−SSD

r′τ . Otherwise, τ is δ-SSD efficient portfolio.

The proof of Lemma 3.2 directly follows from Lemma 3.1, criterion (iii), Defini-
tion 2.2 and Definition 2.4.

4. STABILITY OF SSD AND δ-SSD PORTFOLIO EFFICIENCY
CLASSIFICATION

In previous sections a fixed scenario matrix was considered and all portfolio efficiency
tests were done for this scenario matrix. Unfortunately, usually we do not have
perfect information about the distribution of returns. Therefore, the stability of
SSD portfolio efficiency and δ-SSD portfolio efficiency with respect to changes in the
scenario matrix is investigated in this section.

Since the SSD portfolio efficiency tests and the δ-SSD portfolio efficiency test are
derived under the assumption of equiprobable scenarios collected in matrix X we will
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consider only perturbation matrices Xp of the original matrix X which have exactly
T rows, that is, we admit only approximations with T equiprobable scenarios. Let
Xp be the set of all such perturbation matrices. In this section we analyze how the
results of the SSD and δ-SSD portfolio efficiency test for a given portfolio depend on
the original scenario matrix X and which other matrices Xp from a neighbourhood5

of X guarantee the SSD or δ-SSD portfolio efficiency of the given portfolio.
Let matrix Υ = {υij}

T
i,j=1 be defined as Υ = Xp−X . Let D(X, Xp) = maxi,j |υij |

denote a distance between matrices X and Xp on Xp. We introduce a new measure
of δ-SSD portfolio efficiency as a measure of stability.

Definition 4.1. The δ-SSD portfolio efficiency measure γδ of δ-SSD efficient port-
folio τ ∈ Λ is defined as the optimal value of the following optimization problem:

γδ(τ ) = max ε (8)

s.t. τ is δ − SSD efficient for all Xp ∈ Xp such that D(X, Xp) ≤ ε.

This measure gives us information how large is the neighborhood of X such
that for all matrices from this neighborhood the portfolio τ is classified as δ-SSD
efficient. The problem (8) consists of infinitely many δ-SSD efficiency constraints.
Moreover, according to the Lemma 3.2, each constraint involves a maximization
problem what makes problem (8) practically unsolvable. Therefore we reinterpret
the δ-SSD portfolio efficiency measure for a given δ-SSD efficient portfolio τ ∈ Λ as
the minimal distance between the original matrix X and any other matrix Xp that
makes portfolio τ δ-SSD inefficient, that is,

γδ(τ ) = min
Xp∈Xp

D(X, Xp) (9)

s.t. τ is δ − SSD inefficient for Xp.

Using Lemma 3.2, the SSD portfolio efficiency measure γδ(τ ) can be computed in a
much less computationally demanding way:

γδ(τ ) = min
λ∈Λ,Xp∈Xp

D(X, Xp) (10)

s.t. Xλ − WXτ ≥ 0
T

∑

t=1

(

xt
λ − xt

τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T.

Since Υ = Xp −X and D(X, Xp) = maxi,j |υij | the measure γδ(τ ) can be computed
using the following non-linear program.

5for a given metric on Xp
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γδ(τ ) = min
λ∈Λ,Υ,ε

ε (11)

s.t. (X + Υ)λ − W (X + Υ)τ ≥ 0
T

∑

t=1

(

(xt + υ
t)λ − (xt + υ

t)τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

−ε ≤ υij ≤ ε i, j = 1, 2, . . . , T,

where υ
t = (υt1, υt2, . . . , υtT ) is the tth row of matrix Υ. For a given portfolio τ we

have γδ(τ ) ≥ 0 for all δ > 0. Moreover, if δ1 < δ2 then the set of feasible solutions
of (11) is larger for δ1 than for δ2 and consequently γδ1

(τ ) ≤ γδ2
(τ ). Therefore, we

can define a measure of SSD efficiency in the following way.

Definition 4.2. The SSD portfolio efficiency measure γ of SSD efficient portfolio
τ ∈ Λ is defined as: γ(τ ) = limδ→0+ γδ(τ ) = infδ>0 γδ(τ ).

4.1. One scenarion perturbation – A given scenario

Assume that only the tth scenario can be changed, that is υij = 0 for all i 6= t. Then
D(X, Xp) = maxj |υtj | and the corresponding δ-SSD efficiency measure γt

δ is defined
as

γt
δ(τ ) = min

λ∈Λ,Υ,ε
ε (12)

s.t. (X + Υ)λ − W (X + Υ)τ ≥ 0
T

∑

t=1

(

(xt + υ
t)λ − (xt + υ

t)τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

−ε ≤ υtj ≤ ε j = 1, 2, . . . , T

υij = 0 i 6= t j = 1, 2, . . . , T.

Similarly to the complete scenario perturbation case, the SSD efficiency measure for
one scenario perturbation is: γt(τ ) = limδ→0+ γδ(τ ) = infδ>0 γδ(τ ).

4.2. One scenarion perturbation – An arbitrary scenario

In this section we still assume that only one scenario can be changed. Contrary to
the previous case, now we do not prescribe which scenario it is. Therefore we again
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consider D(X, Xp) = maxi,j |υij | as in the general case and the δ-SSD portfolio
efficiency measure for this situation is defined as:

γδ(τ ) = min
λ∈Λ,Υ,ε

ε (13)

s.t. (X + Υ)λ − W (X + Υ)τ ≥ 0
T

∑

t=1

(

(xt + υ
t)λ − (xt + υ

t)τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

−ε ≤ υij ≤ ε i, j = 1, 2, . . . , T

υij ≤ Myi j = 1, 2, . . . , T

T
∑

i=1

yi = 1, yi ∈ {0, 1},

where M is a sufficiently large constant, for example M = 2
∑T

i,j=1 |xij |. Problem
(13) is more computationally demanding than (12) because T binary variables are
added. The corresponding SSD efficiency measure is again defined as the limiting
case: γ(τ ) = limδ→0+ γδ(τ ) = infδ>0 γδ(τ ).

5. EMPIRICAL APPLICATION

To illustrate our portfolio efficiency measuring, we apply it to the US stock market
data in order to compute the δ-SSD portfolio efficiency measure γδ, and SSD port-
folio efficiency measure γ of two SSD efficient portfolios. The investment universe
of stocks is proxied by the well-known six value-weighted Fama and French portfo-
lios. The last considered asset is the riskless asset that is proxied by the one-year
US government bond index from Ibbotson Associates. We consider yearly excess
returns from 1963 to 2002 (40 annual observations). Excess returns are computed
by subtracting the riskless rate from the nominal returns, that is, the riskless asset
always has a return of zero. Table 1 shows descriptive statistics for our data set.

We start with identifying two SSD efficient portfolios. Since short sales are not
allowed and no two assets have the same mean, the portfolio consisting only of
the asset with the highest mean τ 1 = (0, 0, 1, 0, 0, 0, 0) is obviously SSD efficient.
Ogryczak & Ruszczyński [15] proved that several mean-risk models are consistent
with SSD relation, e. g., for CVaR as a measure of risk. Therefore, if mean-CVaR
model has an unique optimal solution then it is a SSD efficient portfolio. Solving
mean-CVaR model with α = 0.95 we identified the second SSD efficient portfolio
τ 2 = (0, 0, 0.385, 0.016, 0, 0.013, 0.586) were the minimal required mean was equal to
the mean of market portfolio proxied by the CRSP all-share index. We solve prob-
lems (11) for both SSD efficient portfolios and five levels δ = 1, 0.1, 0.01, 0.001, 0.0001
using GAMS system (solver COINIPOPT). The results are presented in Table 2.
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Table 1. Descriptive statistics for 6 Famma and French portfolios

formed on market capitalization of equity and book-to-market equity ratio

(SG = small growth, SN = small neutral, SV = small value,

BG = big growth, BN = big neutral and BV = big value).

Mean St.dev. Skew. Kurt. Min. Max.
SG 5.309 28.520 0.323 0.175 –49.28 83.68
SN 11.301 22.728 –0.308 0.062 –37.38 65.48
SV 13.861 23.158 –0.373 –0.222 –33.86 61.14
BG 5.303 18.820 –0.317 –0.537 –40.49 34.67
BN 6.340 16.120 –0.241 –0.090 –34.13 34.73
BV 8.946 17.723 –0.690 –0.026 –34.24 40.34

Table 2. δ-SSD efficiency measures for portfolio τ 1 and τ 2.

δ = 1 δ = 0.1 δ = 0.01 δ = 0.001 δ = 0.0001
γδ(τ 1) 1.369 1.369 1.369 1.369 1.369
γδ(τ 2) 0.937 0.412 0.393 0.388 0.388

From Table 2 we can see that γδ(τ 1) = 1.369 for all δ ∈ 〈1, 0.0001〉 and therefore
we can expect that γ(τ 1) = infδ>0 γδ(τ 1) = 1.369. To prove it, we apply the
modified Kousmanen test where we use X + Υ instead of X and we include the
additional constraints:6

−(1.369− ξ) ≤ υij ≤ (1.369 − ξ) i, j = 1, 2, . . . , T, (14)

where ξ is a sufficiently small number,7 in our case we choose ξ = 0.0005. This
modified test tries to identify a SSD dominating portfolio for any feasible perturbed
scenario matrix. We can find that the test fails to identify a SSD dominating portfolio
for completely perturbed scenario matrices Xp with D(X, Xp) ≤ 1.3685. Therefore,
we can conclude that the SSD portfolio efficiency measure of portfolio τ 1 is equal to
1.369. By analogy, we can easily check that γ(τ 2) = 0.388 where we use ξ = 0.0005
and

−(0.388− ξ) ≤ υij ≤ (0.388 − ξ) i, j = 1, 2, . . . , T.

instead of (14).
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Abstract This paper is a contribution to the robustness analysis for stochastic programs
whose set of feasible solutions depends on the probability distribution P . For various rea-
sons, probability distribution P may not be precisely specified and we study robustness of
results with respect to perturbations of P . The main tool is the contamination technique. For
the optimal value, local contamination bounds are derived and applied to robustness analysis
of the optimal value of a portfolio performance under risk-shaping CVaR constraints. A new
robust portfolio efficiency test with respect to the second order stochastic dominance crite-
rion is suggested and the contamination methodology is exploited to analyze its resistance
with respect to additional scenarios.

Keywords Expectation type constraints · Robustness analysis · Contamination technique ·
Risk-shaping with CVaR · Second order stochastic dominance · Robust SSD portfolio
efficiency test

1 Introduction

In this paper we shall deal with robustness properties of risk constrained stochastic programs
of the form

min
x∈X

F0(x,P )

subject to

Fj (x,P ) ≤ 0, j = 1, . . . , J, (1)

where
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– P is the probability distribution of a random vector ω with range � ⊂ R
M ,

– X ⊂ R
N is a fixed nonempty convex set,

– functions Fj (x,P ), j = 0, . . . , J may depend on P.

We shall denote X (P ) the set of feasible solutions, X ∗(P ) the set of optimal solutions and
ϕ(P ) the optimal value of the objective function in (1).

Probably the first paper formulating and analyzing risk constrained stochastic programs
is due to Prékopa (1973) which includes joint probability constraints and constraints in the
form of conditional expectations; see also Wets (1989) for the problem formulation and for
properties of expectation functionals. Notice that chance or probability constraints are a
special case of (1), however the set of feasible solutions X (P ) is then convex only under
special distributional and structural assumptions; consult Prékopa (2003).

Due to the tendency of an adequate treatment of risk, a growing interest in the risk con-
strained problems can be observed since 2000. It turns out that among others, the Sample
Average Approximation technique, see e.g. Shapiro (2003), Pagoncelli et al. (2009), Wang
and Ahmed (2008), and its asymptotics can be applied. This assumes that i.i.d. samples are
drawn from a fixed (known, preselected) probability distribution P.

The wish is to apply reliable, robust or efficient decisions of (1) even in situations when
the true probability distribution P has been approximated or when it is known only partly.
Partial knowledge of P can be included into the model formulation, see e.g. Dentcheva
and Ruszczyński (2010) for robust stochastic dominance constraints or Pflug and Wozabal
(2007) for an inclusion of ambiguity of P into the model. In a similar vein a robust portfolio
efficiency test will be developed in Sect. 3.2. A special case of robust portfolio efficiency
was analyzed in Kopa (2010). Contrary to that, our new test allows probability distributions
with nonequiprobable scenarios.

Another possibility is to rely on general quantitative stability results valid under suitable
continuity assumptions for Fj (x,P ), j = 0, . . . , J. Such results were proved by Römisch
(2003) without convexity requirements and were detailed e.g. for chance constraints of a
special structure and formulated also for risk measures nonlinear in P. Under modest as-
sumptions they apply to the convex problem (1).

In Sect. 2, we shall follow the relatively simple ideas of output analysis based on the
contamination technique, cf. Dupačová (1996, 2006), Dupačová and Polívka (2007). The
considered special type of perturbations gets on with needs for what-if-analysis or stress
testing. Robustness results with respect to contamination of P by another fixed probability
distribution have been mainly developed for convex stochastic programs whose set of fea-
sible decisions does not depend on P, an assumption which does not apply to problem (1),
and for the objective function F0(x,P ) convex in x and linear or concave in P. To elaborate
special techniques for stress testing and robustness analysis for problem (1) it is necessary
to relax the assumption of a fixed set of feasible decisions and to allow its dependence on P.

To this purpose, it is convenient if the constraints are linear in P being expectations of
random convex functions. Even with the expectation type constraints the problem formula-
tion (1) covers various known examples, e.g. CVaR constraints from Rockafellar and Urya-
sev (2002), Krokhmal et al. (2002) or the second order stochastic dominance constraints.
This is the class of problems for which we shall detail our robustness analysis and provide
numerical illustrations. The next example introduces the prototype form of the problem.

Example 1 (Risk-shaping with CVaR; Rockafellar and Uryasev 2002) Let f (x,ω) denote
the random loss caused by the decision x ∈ X and α ∈ (0,1) the selected confidence level.
The Conditional Value at Risk at the confidence level α, CVaRα, is defined as the mean
of the α-tail distribution of f (x,ω). According to the fundamental minimization formula
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by Rockafellar and Uryasev (2002) it can be evaluated by minimization of the auxiliary
function

�α(x, v,P ) := v + 1

1 − α
EP (f (x,ω) − v)+

with respect to v ∈ R.

The auxiliary function �α(x, v,P ) is evidently linear in P and convex in v. Moreover,
if f (x,ω) is a convex function of x, �α(x, v,P ) is convex jointly in (v,x).

If P is a discrete probability distribution concentrated on ω1, . . . ,ωS, with probabil-
ities ps > 0, s = 1, . . . , S, and x a fixed element of X , then the optimization problem
CVaRα(x,P ) = minv �α(x, v,P ) has the form

CVaRα(x,P ) = min
v

{
v + 1

1 − α

S∑
s=1

ps(f (x,ωs) − v)+
}

(2)

and can be written as

CVaRα(x,P ) = min
v,z1,...,zS

{
v + 1

1 − α

S∑
s=1

pszs | zs ≥ 0, zs + v ≥ f (x,ωs) ∀s

}
. (3)

Risk-shaping with CVaR handles several probability thresholds α1, . . . , αJ and loss toler-
ances bj , j = 1, . . . , J. The problem is to minimize a performance function F(x) subject
to x ∈ X and constraints CVaRαj

(x,P ) ≤ bj , j = 1, . . . , J. According to Theorem 16 of
Rockafellar and Uryasev (2002), this problem is equivalent to

min
x,v1,...,vJ

{F(x) |x ∈ X , �αj
(x, vj ,P ) ≤ bj , j = 1, . . . , J },

i.e. it is a problem of the form (1) with expectation type constraints.

2 Contamination bounds

Contamination means to model the perturbations of P by its contamination by another fixed
probability distribution Q, i.e. to use Pt := (1 − t)P + tQ, t ∈ [0,1] in stochastic program
(1) at the place of P. Then the set of feasible solutions of (1) for the contaminated probability
distribution Pt equals

X (Pt ) = X ∩ {x |Fj (x,Pt ) ≤ 0, j = 1, . . . , J }. (4)

We denote X (t), ϕ(t), X ∗(t) the set of feasible solutions, the optimal value ϕ(Pt ) and the
set of optimal solutions X ∗(Pt ) of the contaminated problem

minimize F0(x,Pt ) on the set X (Pt ). (5)

This is a nonlinear parametric program with a scalar parameter t ∈ [0,1] and a parameter
dependent set of feasible solutions X (t) := {x ∈ X |Fj (x, t) ≤ 0, j = 1, . . . , J }.

The task is to construct computable lower and upper bounds for ϕ(t). Such bounds were
obtained for X fixed, independent of P and for objective function F0(x,P ) linear or con-
cave in P, cf. Dupačová (1996, 1998). In this case, one can exploit the fact that the optimal
value function ϕ(t) is a concave function of the contamination parameter t. The derived
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bounds proved to be useful for testing the resistance with respect to a sample for scenario-
based stochastic programs, e.g. Dupačová (1996), in stress testing of CVaR optimization
problems, cf. Dupačová (2006), Dupačová and Polívka (2007), or for problems with poly-
hedral risk objectives, cf. Dupačová (2008). For the parameter dependent sets of feasible
solutions the optimal value function ϕ(t) is concave only under rather strict assumptions
such as Fj (x, t), j = 1, . . . , J jointly concave on X × [0,1] (cf. Corollary 3.2 of Kyparisis
and Fiacco 1987) which is not in agreement with our problem formulation.

We shall examine how to construct contamination bounds for SP of the type (5) whose
constraints depend on the probability distribution. These bounds will be then applied in ro-
bustness analysis for risk-shaping with CVaR or for a stochastic dominance test with respect
to inclusion of additional scenarios. We shall see that thanks to the assumed structure of per-
turbations the lower bound can be derived for Fj (x,P ), j = 0, . . . , J linear or concave with
respect to P without any smoothness or convexity assumptions with respect to x. Convexity
of the stochastic program (1) is essential for directional differentiability of the optimal value
function, and further assumptions are needed for derivation of an upper bound.

2.1 Lower bound

Consider first only one constraint dependent on probability distribution P and an objective
F0 independent of P , i.e. the problem is

min
x∈X

F0(x) subject to F(x,P ) ≤ 0. (6)

For probability distribution P contaminated by another fixed probability distribution Q,

i.e. for Pt := (1 − t)P + tQ, t ∈ (0,1) we get

min
x∈X

F0(x) subject to F(x, t) := F(x,Pt ) ≤ 0. (7)

Theorem 1 Let F(x, t) be a concave function of t ∈ [0,1]. Then the optimal value function
of (7)

ϕ(t) := min
x∈X

F0(x) subject to F(x, t) ≤ 0

is quasiconcave in t ∈ [0,1] with the lower bound

ϕ(t) ≥ min{ϕ(0), ϕ(1)}. (8)

Proof For arbitrary t1, t2 ∈ [0,1] and 0 ≤ λ ≤ 1 we have

X ((1 − λ)t1 + λt2) ⊂ {x ∈ X | (1 − λ)F (x, t1) + λF(x, t2) ≤ 0} ⊂ X (t1) ∪ X (t2). (9)

Hence, similarly as in Proposition 3.11 of Kyparisis and Fiacco (1987), the optimal value
ϕ(t) of (7) is quasiconcave which results in the lower bound (8). �

When also the objective function depends on the probability distribution, i.e. on the con-
tamination parameter t, the problem is

min
x∈X

F0(x, t) := F0(x,Pt ) subject to F(x, t) ≤ 0. (10)
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For F0(x,P ) linear or concave in P , a lower bound can be obtained by application of the
bound (8) separately to F0(x,P ) and F0(x,Q):

ϕ(t) = min
x∈X (t)

F0(x, (1 − t)P + tQ) ≥ min
x∈X (t)

[(1 − t)F0(x,P ) + tF0(x,Q)]

≥ (1 − t)min
{
ϕ(0), min

X (Q)
F0(x,P )

}
+ t min

{
ϕ(1), min

X (P )
F0(x,Q)

}
. (11)

The bound is more complicated but still computable. It requires solution of 4 problems two
of which are the non-contaminated programs for probability distributions P,Q and the other
ones use both P and Q alternating in the objective function and constraints.

2.1.1 Comment

Of course, the lower bounds (8), (11) are loose, but for small values of t, say t ≤ t0 they can
be improved to ϕ(t) ≥ min{ϕ(0), ϕ(t0)} when applied to P and to Q̃ := (1 − t0)P + t0Q.

Notice that no convexity assumption with respect to x is needed.
For multiple constraints and contaminated probability distribution it would be necessary

to prove first the inclusion X (t) ⊂ X (0)∪ X (1) and then the lower bound (8) for the optimal
value ϕ(t) = minx∈X (t) F0(x,Pt ) can be obtained as in the case of one constraint. As we shall
see in Sect. 3.3, such inclusion holds true under special circumstances, otherwise we get only
the following:

Denote Xj (t) = {xF |Fj (x,Pt ) ≤ 0}. Then according to (9), Xj (t) ⊂ Xj (0) ∪ Xj (1),
hence

X (t) ⊂ X ∩
⋂
j

[Xj (P ) ∪ Xj (Q)] := X0.

To evaluate the corresponding lower bound minx∈X0 F0(x) would mean to solve a facial
disjunctive program.

2.2 Directional derivative

Assume now that Fj (x,P ), j = 0,1, . . . , J in (1) are convex functions of x. The directional
derivative of the optimal value function can be obtained by the formula of Gol’shtein (1970),
Theorem 17 applied to the Lagrange function

L(x,u, t) = F0(x, t) +
∑

j

ujFj (x, t)

provided that both the set of optimal solutions X ∗(P ) = X ∗(0) and the set of Lagrange
multipliers U ∗(P ) = U ∗(0) are nonempty and bounded. If the functions Fj are linear in P ,
i.e. functions Fj (x, t) ∀j are linear in the contamination parameter t, then

ϕ′(0+) = min
x∈X ∗(0)

max
u∈U ∗(0)

∂

∂t
L(x,u,0) = min

x∈X ∗(0)
max

u∈U ∗(0)
(L(x,u,Q) − L(x,u,P )). (12)

Formula (12) simplifies substantially when U ∗(0) is a singleton. When the constraints do
not depend on P we get

ϕ′(0+) = min
x∈X ∗(0)

∂

∂t
F0(x,0+) = min

x∈X ∗(0)
(F0(x,Q) − F0(x,P ))

= min
x∈X ∗(0)

F0(x,Q) − ϕ(0). (13)
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These formulas can be exploited to construct an upper bound for the optimal value function
ϕ(t) of the form

ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0,1] (14)

provided that ϕ(t) is concave; see e.g. Dupačová (1996, 2006), Dupačová and Polívka
(2007). The contaminated probability distribution Pt may also be understood as a result
of contaminating Q by P and an alternative upper bound may be constructed in a similar
way.

Under additional assumptions, Theorem 17 of Gol’shtein (1970) provides a formula for
derivative of the optimal value function also in case of nonlinear dependence of functions
Fj on t. See Dupačová (1990, 1996, 1998) for details and applications for problems with a
fixed set X of feasible solutions. The general nonconvex case is treated e.g. in Theorems 4.25
and 4.26 of Bonnans and Shapiro (2000).

Example 2 (Upper contamination bound for CVaR) With reference to Rockafellar and Urya-
sev (2002), Example 1 and Dupačová (2006), Dupačová and Polívka (2007) we shall use the
formula

CVaRα(x,P ) = min
v

�α(x, v,P ) := v + 1

1 − α
EP (f (x,ω) − v)+

and apply the contamination technique to get an upper bound. It is an unconstrained opti-
mization problem, the set V ∗(x,P ) of its optimal solutions is a nonempty compact interval
of R, for a fixed x the objective function is convex in v and linear in P. Formula (13) for
CVaRα(x, (1 − t)P + tQ) reduces to

∂

∂t
CVaRα(x,0+) = min

v∈V ∗(x,P )
�α(x, v,Q) − CVaRα(x,P ). (15)

The optimal value function, now CVaRα(x, t) := CVaRα(x, (1 − t)P + tQ) is a concave
function of t, hence, its lower bound is (1 − t)CVaRα(x,P ) + tCVaRα(x,Q). For an ar-
bitrary optimal solution v∗(x,P ) ∈ V ∗(x,P ), the upper bound for the contaminated CVaR
value at x follows by substitution to (14):

CVaRα(x, (1 − t)P + tQ) ≤ (1 − t)CVaRα(x,P ) + t�α(x, v∗(x,P ),Q). (16)

2.3 Upper bound

To derive an upper bound for the optimal value of the contaminated problem with proba-
bility dependent constraints we shall confine ourselves mostly to the expectation type of the
objective function and constraints. Hence, all functions Fj (x, t), j = 0, . . . , J, are linear in
t on the interval [0,1]. Denote F(x,Pt ) = F(x, t) := maxj Fj (x, t). For convex Fj (•,P ) ∀j

the “max” function F(•,P ) is convex as well. This allows to rewrite the set X (t) of feasible
solutions of (5) in the form

X (t) = X ∩ {x : F(x, t) ≤ 0}

with one linearly perturbed convex constraint.
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Assume first that F(x∗(0),P ) = 0 for an optimal solution x∗(0) := x∗(P ) of (1) and
F(x∗(0),Q) ≤ 0. Then at least one of the constraints is active at the optimal solution. More-
over, x∗(0) ∈ X (t),∀t ∈ [0,1]:

F(x∗(0), t) = max
j

[(1 − t)Fj (x∗(0),P ) + tFj (x∗(0),Q)]

≤ (1 − t)F (x∗(0),P ) + tF (x∗(0),Q) ≤ 0.

It means that there is a trivial global upper bound

ϕ(t) ≤ F0(x∗(0), t) ∀t ∈ [0,1]. (17)

When F0(x,•) is linear, a more convenient form of (17) follows:

ϕ(t) ≤ F0(x∗(0), t) = (1 − t)ϕ(0) + tF0(x∗(0),Q) ∀t ∈ [0,1] (18)

otherwise one may apply suitable numerically tractable upper bounds for F0(x∗(0), t); see
Example 3.

If the above assumption F(x∗(0),P ) = 0 and F(x∗(0),Q) ≤ 0 is not fulfilled, to get at
least a local upper bound for ϕ(t) valid for small t we shall switch to stability results for
nonlinear parametric programming. Let J0 := {j : Fj (x∗(0),P ) = 0} be the set of indexes
of active constraints of (1) at x∗(0).

In the convex case, it is possible to analyze the optimal value function by the first or-
der methods. Various results in this direction can be mentioned: For example, according to
Robinson (1987) the perturbed problem with a fixed convex polyhedral set X in (4) reduces
locally to a problem with a parameter independent set of feasible solutions if x∗(0) is a non-
degenerate point and the strict complementarity conditions hold true. In particular, x∗(0) is
a nondegenerate point of (1) iff gradients ∇xFj (x∗(0),P ), j ∈ J0 are linearly independent,
i.e. under the linear independence condition; cf. Bonnans and Shapiro (2000), Example 4.78.
Then for t small enough, t ≤ t0, t0 > 0, the optimal value function ϕ(t) is concave and its
upper bound equals

ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0, t0]. (19)

A more detailed insight can be obtained if there is a continuous trajectory [x∗(t),u∗(t)] of
optimal solutions and Lagrange multipliers of the perturbed problem (5) emanating from the
unique optimal solution x∗(0) and unique Lagrange multipliers u∗

j (0), j = 1, . . . , J of (1).
Such result follows usually by the implicit function theorem applied to the first order neces-
sary conditions. In addition to the nondegeneracy and the strict complementarity conditions
it requires also nonsingularity of the Hessian matrix of the Lagrange function on the tangent
space to the active constraints, i.e. the second order sufficient condition valid at x∗(0),u∗(0);
see e.g. Bonnans and Shapiro (2000) or Fiacco (1983). At this point, convexity with respect
to x is not needed and the trajectory [x∗(t),u∗(t)] satisfies the first order optimality condi-
tions also for 0 < t ≤ t0:

Fj (x∗(t),Pt ) ≤ 0, u∗
j (t) ≥ 0, Fj (x∗(t),Pt )u

∗
j (t) = 0, j = 1,2, . . . , J

∇xF0(x∗(t),Pt ) +
∑

j

u∗
j (t)∇xFj (x∗(t),Pt ) = 0.



62 Ann Oper Res (2012) 200:55–74

Moreover, for convex expectation type functionals Fj , j = 0, . . . , J, the derivative (12) of
the optimal value function reduces to

ϕ′(0+) = ∂

∂t
L(x∗(0),u∗(0),0) = L(x∗(0),u∗(0),Q) − L(x∗(0),u∗(0),P )

= F0(x∗(0),Q) +
∑

j

u∗
j (0)Fj (x∗(0),Q) − F0(x∗(0),P ). (20)

If no constraint is active at x∗(0), we face a locally unconstrained optimization problem
and the optimal value function ϕ(t) is concave on a right neighborhood of 0, say for t ∈
[0, t0], t0 > 0, hence, for t ≤ t0, the upper bound (19) applies.

In the opposite case, the strict complementarity conditions imply that for small t ∈ [0, t0],
t0 > 0 the set J0 of indexes of active constraints remains fixed and for a local analysis,
constraints Fj (x,P ) ≤ 0 with j /∈ J0 need not be considered. Then X (t) reduces locally to
the set of solutions of the system of equations Fj (x, t) = 0, j ∈ J0 which can be replaced
locally by a parameter independent set.

To summarize – there exists t0 > 0 such that for 0 ≤ t ≤ t0 the optimal value ϕ(t) of
the contaminated problem (5) can be obtained as ϕ(t) = minx∈X0 F0(x, t) where the set of
feasible solutions X0 does not depend on t. Hence, ϕ(t) is concave on [0, t0], t0 > 0 which
opens the possibility of constructing local upper contamination bounds (19). Accordingly,
the following theorem holds true:

Theorem 2 Let (1) be a twice differentiable program, x∗(P ) = x∗(0) its optimal solution
and ϕ(P ) = ϕ(0) its optimal value. Assume that at x∗(0) linear independence, the strict
complementarity and the second order sufficient conditions are satisfied. Then there exists
t0 > 0 such that for all t ∈ [0, t0] the optimal value function ϕ(t) is concave and the local
upper contamination bound is given by

ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0, t0]. (21)

Moreover, for convex expectation type problems (1) the directional derivative is given by
(20).

2.3.1 Comment

Except for the form of the directional derivative, Theorem 2 applies also to problems with
nonconvex functions Fj (•,P ) ∀j.

2.4 Illustrative examples

Consider S = 50 equiprobable scenarios of monthly returns � of N = 9 assets (8 European
stock market indexes: AEX, ATX, FCHI, GDAXI, OSEAX, OMXSPI, SSMI, FTSE and
a risk free asset) in period June 2004–August 2008. The scenarios can be collected in the
matrix

R =

⎛
⎜⎜⎜⎝

r1

r2

...

rS

⎞
⎟⎟⎟⎠
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Table 1 Descriptive statistics and the additional scenario of returns of 8 European stock indexes and of the
risk free asset

Index Country Mean Max Min A.S.

AEX Netherlands 0.00456 0.07488 −0.14433 −0.19715

ATX Austria 0.01358 0.13247 −0.14869 −0.23401

FCHI France 0.0044 0.0615 −0.13258 −0.1005

GDAXI Germany 0.01014 0.07111 −0.15068 −0.09207

OSEAX Norway 0.01872 0.12176 −0.19505 −0.23934

OMXSPI Sweden 0.00651 0.08225 −0.14154 −0.12459

SSMI Switzerland 0.00563 0.05857 −0.09595 −0.08065

FTSE England 0.00512 0.06755 −0.08938 −0.13024

Risk free 0.002 0.002 0.002 0.002

where rs = (rs
1, r

s
2, . . . , r

s
N ) is the s-th scenario. We will use λ = (λ1, λ2, . . . , λN)′ for the

vector of portfolio weights and the portfolio possibilities are given by

	 = {λ ∈ R
N |1′λ = 1, λn ≥ 0, n = 1,2, . . . ,N},

that is, the short sales are not allowed. The historical data comes from pre-crisis period. The
data is contaminated by a scenario rS+1 from September 2008 when all indexes strongly
fell down. The additional scenario can be understood as a stress scenario or the worst-case
scenario. It can be seen in Table 1 presenting basic descriptive statistics of the original data
and the additional scenario (A.S.).

We will apply the contamination bounds to mean-risk models with CVaR as a measure
of risk. Two formulations are considered: In the first one, we are searching for a portfolio
with minimal CVaR and at least the prescribed expected return, see e.g. Dupačová (2006) or
Kilianová and Pflug (2009). Secondly, we minimize the expected loss of the portfolio under
the condition that CVaR is below a given level, a special case of Example 1.

Example 3 (Minimizing CVaR) Mean-CVaR model with CVaR minimization is a spe-
cial case of the general formulation (1) when F0(x,P ) = CVaR(−�′λ) and F1(x,P ) =
EP (−�′λ) − μ(P ); μ(P ) is the maximal allowable expected loss. We choose

μ(P ) = −EP �′
(

1

9
,

1

9
, . . . ,

1

9

)′
= 1

50

50∑
s=1

−rs

(
1

9
,

1

9
, . . . ,

1

9

)′
.

It means that the minimal required expected return is equal to the average return of the
equally diversified portfolio. The significance level α = 0.95 and 	 is a fixed convex poly-
hedral set representing constraints that do not depend on P . Since P is a discrete distribution
with equiprobable scenarios r1, r2, . . . , r50, using (3), the mean-CVaR model can be formu-
lated as the following linear program:

ϕ(0) = min
λ∈	,v∈R,zs∈R+ v + 1

50 ∗ 0.05

50∑
s=1

zs

s.t. zs ≥ −rsλ − v, s = 1,2, . . . ,50

1

50

50∑
s=1

−rsλ − μ(P ) ≤ 0. (22)
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By analogy, for the additional scenario we have:

ϕ(1) = min
λ∈	,v∈R,z∈R+ v + 1

0.05
z

s.t. z ≥ −r51λ − v, −r51λ − μ(Q) ≤ 0 (23)

or, equivalently:

ϕ(1) = min
λ∈	

{−r51λ | − r51λ − μ(Q) ≤ 0} (24)

where μ(Q) = −r51( 1
9 , 1

9 , . . . , 1
9 )′.

First, we compute for t ∈ [0,1] the optimal value function of the contaminated problem.

ϕ(t) = min
λ∈	,v∈R,zs∈R+ v + 1

0.05

(
50∑

s=1

1

50
(1 − t)zs + tz51

)

s.t. zs ≥ −rsλ − v, s = 1,2, . . . ,51

−
50∑

s=1

1

50
(1 − t)rsλ − tr51λ − μ((1 − t)P + tQ) ≤ 0 (25)

where μ((1 − t)P + tQ) = −∑50
s=1

1
50 (1 − t)rs( 1

9 , 1
9 , . . . , 1

9 )′ − tr51( 1
9 , 1

9 , . . . , 1
9 )′.

Secondly, applying (11), we derive a lower bound for ϕ(t). Note that now

min
X (Q)

F0(x,P ) = min
λ∈	,v∈R,zs∈R+ v + 1

50 ∗ 0.05

50∑
s=1

zs

s.t. zs ≥ −rsλ − v, s = 1,2, . . . ,50

− r51λ − μ(Q) ≤ 0

and

min
X (P )

F0(x,Q) = min
λ∈	

{
−r51λ | 1

50

50∑
s=1

−rsλ − μ(P ) ≤ 0

}
.

Finally, we construct an upper bound for ϕ(t). Since the optimal solution λ∗ of (22) is a
feasible solution of (23) we can apply (17) with x∗(0) = λ∗ as a trivial upper bound for all
t ∈ [0,1]:

ϕ(t) ≤ F0(x∗(0), t) = min
v∈R,zs∈R+ v + 1

0.05

(
50∑

s=1

1

50
(1 − t)zs + tz51

)

s.t. zs ≥ −rsλ∗ − v, s = 1,2, . . . ,51.

The disadvantage of this trivial bound is the fact, that it would require evaluation of the
CVaR for λ∗ for each t . Linearity with respect to t does not hold true, but we may apply the
bound (16). This yields an upper estimate for F0(x∗(0), t) which is a convex combination of
ϕ(0) and �α(x∗(0), v∗(x∗(0),P ),Q). The optimal value ϕ(0) is given by (22) and

�α(x∗(0), v∗(x∗(0),P ),Q) = v∗ + 1

0.05
(−r51λ∗ − v∗)+
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Fig. 1 Comparison of minimal
(CVaR(t)) value of mean-CVaR
model with lower bound (LB),
upper bound (UB) and the
estimated upper bound (EUB)

where v∗ and λ∗ are optimal solutions of (22). The graphs of ϕ(t), its lower bound and two
upper bounds (trivial one and its upper estimate) for small contamination t ∈ [0,0.1] are
presented in Fig. 1. Since all original scenarios have probability 0.02, the performance for
t > 0.1 is not of much interest. For t > 0.04, ϕ(t) in (25) coincides with its lower bound
because the optimal portfolios consist only of risk free asset. The upper bound is piecewise
linear in t and for small values of t it coincides with the estimated upper bound.

Example 4 (Minimizing expected loss) As the second example, consider the mean-CVaR
model minimizing the expected loss subject to a constraint on CVaR. This corresponds to (1)
with F0(x,P ) = EP (−�′λ) and F1(x,P ) = CVaR(−�′λ) − c where c = 0.19 is the max-
imal accepted level of CVaR. For simplicity, this level does not depend on the probability
distribution. Similarly to the previous example, we compute the optimal value ϕ(t) and its
lower and upper bound. Using Theorem 16 of Rockafellar and Uryasev (2002), the minimal
CVaR-constrained expected loss is obtained for t ∈ [0,1] as

ϕ(t) = min
λ∈	,v∈R

−
50∑

s=1

1

50
(1 − t)rsλ − tr51λ (26)

s.t. v + 1

0.05

(
−

50∑
s=1

1

50
(1 − t)rsλ − tr51λ − v

)+
− c ≤ 0 (27)

and equals thus the optimal value function of the parametric linear program

ϕ(t) = min
λ∈	,v∈R,zs∈R+ −

50∑
s=1

1

50
(1 − t)rsλ − tr51λ

s.t. v + 1

0.05

(
50∑

s=1

1

50
(1 − t)zs + tz51

)
− c ≤ 0

zs ≥ −rsλ − v, s = 1,2, . . . ,51 (28)

for t ∈ [0,1]. In particular, for t = 1 we have

ϕ(1) = min
λ∈	,v∈R,zs∈R+ −r51λ

s.t. v + 1

0.05
z51 − c ≤ 0, z51 + v ≥ −r51λ,
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Fig. 2 Comparison of minimal
mean loss value with its lower
bound (LB) and upper bound
(UB)

what is equivalent to

ϕ(1) = min
λ∈	

{−r51λ | − r51λ − c ≤ 0};
compare with (24). Using (11), we can evaluate the lower bound for ϕ(t) with

min
X (Q)

F0(x,P ) = min
λ∈	

{
−

50∑
s=1

1

50
rsλ | − r51λ − c ≤ 0

}

and

min
X (P )

F0(x,Q) = min
λ∈	,v∈R,zs∈R+ −r51λ

s.t. v + 1

0.05

50∑
s=1

1

50
zs − c ≤ 0, zs ≥ −rsλ − v, s = 1,2, . . . ,50.

Finally, we compute an upper bound for ϕ(t). Contrary to the previous example, the opti-
mal solution x∗(0) of the noncontaminated problem is not a feasible solution of the fully
contaminated problem. Therefore, the trivial global upper bound (17) cannot be used. We
apply instead the local upper bound (21) with the directional derivative (20). In this exam-
ple, the value of multiplier u∗(0) corresponding to (27) for t = 0 is equal to zero, the CVaR
constraint (27) is not active and for sufficiently small t, the upper bound reduces to:

ϕ(t) ≤ (1 − t)ϕ(0) + tF0(x∗(0),Q). (29)

Figure 2 depicts the graph of ϕ(t) given by (28) and its lower and upper bound. The upper
bound coincides with ϕ(t) for t ≤ 0.02. It illustrates the fact that the local upper bound is
meaningful if the probability of the additional scenario is not too large, i.e. no more than
probabilities of the original scenarios for our example.

3 Robustness in portfolio efficiency testing

3.1 Portfolio efficiency test

In this section, we shall study robustness of portfolio efficiency tests with respect to the
second-order stochastic dominance relation. Consider N assets and a random vector of
their returns �. Since all existing portfolio efficiency tests have been derived for a discrete
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probability distribution P of returns we assume that � takes S values rs = (rs
1, r

s
2, . . . , r

s
N ),

called scenarios, with probabilities p1,p2, . . . , pS . Contrary to all former tests, e.g. Kopa
and Chovanec (2008) or Kopa (2010), we do not assume equiprobable scenarios. Again, the
scenarios are collected in the matrix

R =

⎛
⎜⎜⎜⎝

r1

r2

...

rS

⎞
⎟⎟⎟⎠

and the portfolio possibilities are given by

	 = {λ ∈ R
N |1′λ = 1, λn ≥ 0, n = 1,2, . . . ,N}.

Alternatively, one can consider any bounded polytope: 	′ = {λ ∈ RN |Aλ ≥ b}.
For any portfolio λ ∈ 	, let (−Rλ)[k] be the k-th smallest element of (−Rλ) , i.e.

(−Rλ)[1] ≤ (−Rλ)[2] ≤ · · · ≤ (−Rλ)[S] and let I (λ) be a permutation of the index set
I = {1,2, . . . , S} such that −ri(λ)λ = (−Rλ)[i]. Accordingly, we can order the correspond-
ing probabilities and we denote pλ

i = pi(λ). Hence, pλ
i = P (−�λ = (−Rλ)[i]). The same

notation is applied for the tested portfolio τ = (τ1, τ2, . . . , τN)′.
Let F�′λ(x) denote the cumulative probability distribution function of returns of portfolio

λ. The twice cumulative probability distribution function of returns of portfolio λ is defined
as

F
(2)

�′λ(y) =
∫ y

−∞
F�′λ(x) dx. (30)

Following Ruszczyński and Vanderbei (2003), Kuosmanen (2004), Kopa and Chovanec
(2008) and Kopa (2010), we define the second-order stochastic dominance relation in the
strict form in the context of SSD portfolio efficiency.

Definition 1 Portfolio λ ∈ 	 dominates portfolio τ ∈ 	 by the second-order stochastic
dominance (�′λ 
SSD �′τ ) if and only if

F
(2)

�′λ(y) ≤ F
(2)

�′τ (y) ∀y ∈ R

with strict inequality1 for at least one y ∈ R.

As in Ogryczak and Ruszczyński (2002) or Kopa and Chovanec (2008), we express the
SSD relation using the conditional value at risk (CVaR).

Lemma 1 Let λ,τ ∈ 	. Then �′λ 
SSD �′τ if and only if

CVaRα(−�′λ) ≤ CVaRα(−�′τ ) for all α ∈ [0,1] (31)

with strict inequality for at least one α.

1This type of SSD relation is sometimes referred to as the strict second-order stochastic dominance. If no
strict inequality is required then the relation can be called the weak second-order stochastic dominance.
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Since we limit our attention to a discrete probability distribution of returns, the inequality
of CVaRs need not be verified in all α ∈ [0,1], but only in at most S + 1 particular points.

Theorem 3 Let qλ
s = ∑s

i=1 pλ
i and qτ

s = ∑s

i=1 pτ
i , s = 1,2, . . . , S. Let qλ

0 = qτ
0 = 0. Then

�′λ 
SSD �′τ if and only if CVaRqλ
s
(−�′λ) ≤ CVaRqλ

s
(−�′τ ) for all s = 0,1,2, . . . , S with

strict inequality for at least one qλ
s .

Proof Assume α > 0. Following Rockafellar and Uryasev (2002), Proposition 8, let s(α) be
the unique index such that qλ

s(α) ≥ α > qλ
s(α)−1. Then

CVaRα(−�′λ) = 1

1 − α

[
(qλ

s(α) − α)(−Rλ)[s(α)] +
S∑

i=s(α)+1

pλ
i (−Rλ)[i]

]
.

Consider LCα(−�′λ) := (1 − α)CVaRα(−�′λ). Since 1 − qλ
s(α) = ∑S

i=s(α)+1 pλ
i we have:

LCα(−�′λ) = qλ
s(α)(−Rλ)[s(α)] − α(−Rλ)[s(α)] +

S∑
i=s(α)+1

pλ
i (−Rλ)[i]

= (1 − α)(−Rλ)[s(α)] − (−Rλ)[s(α)](1 − qλ
s(α)) +

S∑
i=s(α)+1

pλ
i (−Rλ)[i]

= (1 − α)(−Rλ)[s(α)] +
S∑

i=s(α)+1

pλ
i

(
(−Rλ)[i] − (−Rλ)[s(α)]).

A similar analysis can be done for portfolio τ . Since both LCα(−�′λ) and LCα(−�′τ ) are
concave piecewise linear functions in α, Lemma 1 implies that �′λ 
SSD �′τ if and only if
LCα(−�′λ) ≤ LCα(−�′τ ) for all α = qλ

s , s = 0,1, . . . , S, with strict inequality for at least
one qλ

s . Passing back to CVaR expressions completes the proof. �

Following Ruszczyński and Vanderbei (2003), Kuosmanen (2004), Kopa and Chovanec
(2008) and Kopa (2010) we define portfolio efficiency with respect to the second order
stochastic dominance.

Definition 2 A given portfolio τ ∈ 	 is SSD inefficient if there exists portfolio λ ∈ 	 such
that �′λ 
SSD �′τ . Otherwise, portfolio τ is SSD efficient.

This definition classifies portfolio τ ∈ 	 as SSD efficient if and only if no other portfolio
is better (in the sense of the SSD relation) for all risk averse and risk neutral decision makers.
Inspired by Kopa and Chovanec (2008) we consider the following measure:

ξ(τ ,R,p) = min
as ,λ

S∑
s=0

as

s.t. CVaRqλ
s
(−�′λ) − CVaRqλ

s
(−�′τ ) ≤ as, s = 0,1, . . . , S

as ≤ 0, s = 0,1, . . . , S

λ ∈ 	. (32)
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The objective function of (32) represents the sum of differences between CVaRs of a port-
folio λ and CVaRs of the tested portfolio τ . The differences are considered in points qλ

s ,
s = 0,1, . . . , S. All differences must be non-positive and at least one negative to guaran-
tee that portfolio λ dominates portfolio τ . Moreover, minimizing these differences, we find
portfolio λ∗ that cannot be dominated by any other one. On the other hand, if no dominat-
ing portfolio exists, that is, portfolio τ is SSD efficient, then ξ(τ ,R,p) = 0 because the
only feasible solutions of (32) are τ and portfolios λ satisfying Rλ = Rτ . Summarizing,
Theorem 3 implies the following necessary and sufficient SSD portfolio efficiency test:

Theorem 4 A given portfolio τ is SSD efficient if and only if ξ(τ ,R,p) = 0. If
ξ(τ ,R,p) < 0 then the optimal portfolio λ∗ in (32) is SSD efficient and it dominates portfo-
lio τ by SSD.

Until now, perfect information about the probability distribution of returns was assumed
and portfolio τ was tested with respect to this distribution. However, in many practical
applications, the probability distribution of returns is not perfectly known. And therefore,
we will study robust versions of SSD efficiency.

3.2 Portfolio efficiency with respect to ε-SSD relation

Assume that the probability distribution P̄ of random returns �̄ takes again values rs , s =
1,2, . . . , S but with other probabilities p̄ = (p̄1, p̄2, . . . , p̄S). We define the distance between
P and P̄ as d(P̄ ,P ) = maxi |p̄i − pi |.

Definition 3 A given portfolio τ ∈ 	 is ε-SSD inefficient if there exists portfolio λ ∈ 	 and
P̄ such that d(P̄ ,P ) ≤ ε with �̄′λ 
SSD �̄′τ . Otherwise, portfolio τ is ε-SSD efficient.

The introduced ε-SSD efficiency is a robustification of the classical SSD portfolio ef-
ficiency. It guarantees stability of the SSD efficiency classification with respect to small
changes (prescribed by parameter ε) in probability vector p. A given portfolio τ is ε-SSD
efficient if and only if no portfolio λ SSD dominates τ neither for the original probabilities
p nor for arbitrary probabilities p̄ from ε-neighborhood of the original vector p. For testing
ε-SSD efficiency of a given portfolio τ we modify (32) in order to introduce a new measure
of ε-SSD efficiency:

ξε(τ ,R,p) = min
as ,λ,p̄

S∑
s=0

as

s.t. CVaRq̄λ
s
(−�′λ) − CVaRq̄λ

s
(−�′τ ) ≤ as, s = 0,1, . . . , S

q̄λ
s =

s∑
i=1

p̄λ
i , s = 1, . . . , S

q̄λ
0 = 0

S∑
i=1

p̄i = 1

− ε ≤ p̄i − pi ≤ ε, i = 1,2, . . . , S

p̄i ≥ 0, i = 1,2, . . . , S
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as ≤ 0, s = 0,1, . . . , S

λ ∈ 	. (33)

Theorem 5 Portfolio τ ∈ 	 is ε-SSD efficient if and only if ξε(τ ,R,p) given by (33) is
equal to zero.

Proof The proof directly follows from Theorem 4 because (33) is obtained from (32) by an
additional minimization over p̄ from ε-neighborhood of the original probability vector p. �

3.3 Resistance of SSD portfolio efficiency with respect to additional scenarios

In the previous sections, we assumed a fixed set of scenarios. In many practical applica-
tions, an additional scenario may be of interest. Therefore, the aim of this section is to
analyze the robustness of SSD portfolio efficiency with respect to the additional scenario
denoted by rS+1. For a contamination parameter t ∈ [0,1], we assume that the random return
�̃(t) takes values r1, r2, . . . , rS+1 with probabilities p̃(t) = ((1 − t)p1, (1 − t)p2, . . . , (1 −
t)pS, t). The cumulative probabilities for portfolio λ are

q̃λ
s =

s∑
i=1

p̃λ
i =

s∑
i=1

P (−�̃(t)λ = (−R̃λ)[i]), s = 1,2, . . . , S + 1, q̃λ
0 = 0

and the same notation is used for portfolio τ . We denote the extended scenario matrix by R̃,
that is,

R̃ =
(

R

rS+1

)
.

Definition 4 A given portfolio τ ∈ 	 is directionally SSD inefficient with respect to rS+1

if it exists t0 > 0 such that for every t ∈ [0, t0] there is a portfolio λ(t) ∈ 	 satisfying
�̃(t)′λ(t) 
SSD �̃(t)′τ .

Definition 5 A given portfolio τ ∈ 	 is directionally SSD efficient with respect to rS+1 if
there exists t0 > 0 such that for arbitrary t ∈ [0, t0] there is no portfolio λ(t) ∈ 	 satisfying
�̃(t)′λ(t) 
SSD �̃(t)′τ .

According to these definitions, a given portfolio is classified as directionally SSD ef-
ficient (inefficient) with respect to scenario rS+1 if it is SSD efficient (inefficient) and a
sufficiently small contamination of the original probability distribution of returns by the
additional scenario does not change the SSD efficiency classification, that is, the SSD
efficient (inefficient) portfolio remains SSD efficient (inefficient). Applying (32) to con-
taminated data, portfolio λ(t) ∈ 	 satisfying �̃(t)′λ(t) 
SSD �̃(t)′τ exists if and only if
ξ(τ , R̃, p̃(t)) < 0, where

ξ(τ , R̃, p̃(t)) = min
as ,λ

S∑
s=0

as

s.t. CVaRq̃λ
s
(−�̃(t)′λ) − CVaRq̃λ

s
(−�̃(t)′τ ) ≤ as, s = 0,1, . . . , S

as ≤ 0, s = 0,1, . . . , S

λ ∈ 	. (34)
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Example 5 (a) Consider the following three assets and three scenarios example:

R =
⎛
⎝0 3 2

2 2 2
4 1 2

⎞
⎠ .

Assume that scenarios are equiprobable. It can be shown that portfolio τ = ( 1
3 , 2

3 ,0) is SSD
efficient. Let the additional scenario r4 = (0,0,2) and consider portfolio λ = (0,0,1). Then
�̃(t)′λ 
SSD �̃(t)′τ for any contamination parameter t > 0. Hence, portfolio τ is SSD effi-
cient but not directionally SSD efficient with respect to scenario r4.

(b) Consider another three assets and three scenarios example:

R =
⎛
⎝0 3 2

2 2 3
4 1 2

⎞
⎠ .

Assume again that scenarios are equiprobable. It can be shown that portfolio τ = ( 1
3 , 2

3 ,0)

is SSD inefficient, because portfolio λ = (0,0,1) SSD dominates portfolio τ . Let the addi-
tional scenario r4 = (2,2,0). Then no portfolio SSD dominates τ = ( 1

3 , 2
3 ,0) for any con-

tamination parameter t > 0. Hence, portfolio τ is SSD inefficient but not directionally SSD
inefficient with respect to scenario r4.

Example 5 shows that there are situations where an arbitrarily small contamination of the
original probability distribution of returns leads to the opposite SSD classification. Using
contamination bounds we will derive a sufficient condition for directional SSD efficiency
and directional SSD inefficiency with respect to additional scenario rS+1.

Theorem 6 Let τ ∈ 	 be an SSD efficient portfolio for the noncontaminated distribution P .
Let

rS+1τ ≥ rS+1λ for all λ ∈ 	. (35)

Then τ ∈ 	 is directionally SSD efficient with respect to rS+1.

Proof The SSD efficiency of τ implies that ξ(τ ,R,p) = 0. Condition (35) gives
ξ(τ , rS+1,1) = 0. Since the objective function of (32) does not depend on probability distri-
bution, verification of (9) for t1 = 0, t2 = 1 will imply the lower bound (8). Consequently,
ξ(τ , R̃, p̃(t)) will necessarily be equal to zero for all t ∈ [0,1] what yields directional SSD
efficiency with respect to rS+1 of τ . Hence, it suffices to show, that any feasible solution
λ of (34) with an arbitrary parameter t ∈ (0,1) is a feasible solution of (32). Let F

(2)

λ,S+1(z)

be a cumulative distribution function of returns of portfolio λ for the contaminated distrib-
ution taking S + 1 scenarios with probabilities p̃ = ((1 − t)p1, (1 − t)p2, . . . , (1 − t)pS, t).
Similarly, let F

(2)
λ,S(z) correspond to the original distribution with S scenarios. Then

F
(2)

λ,S+1(z) =
∫ z

−∞
Fλ(y) dy =

∫ z

−∞

S+1∑
s=1

p̃s1(rsλ≤y) dy

=
S+1∑
s=1

p̃s(z − rsλ)1(rsλ≤z) =
S+1∑
s=1

p̃s(z − rsλ)+. (36)

The same notation and analysis is applied to portfolio τ .
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Since λ is a feasible solution of (34), Theorem 3 implies that �(t)′λ 
SSD �(t)′τ . Hence,
directly from Definition 1, one obtains

F
(2)

λ,S+1(z) ≤ F
(2)

τ ,S+1(z) ∀z ∈ R. (37)

Applying (36) to (37)

S∑
s=1

(1 − t)ps(z − rsλ)+ + t (z − rS+1λ)+ ≤
S∑

s=1

(1 − t)ps(z − rsτ )+ + t (z − rS+1τ )+. (38)

Note that according to (35) (z−rS+1λ)+ ≥ (z−rS+1τ )+. Combining it with (38) implies
that

∑S

s=1 ps(z − rsλ)+ ≤ ∑S

s=1 ps(z − rsτ )+. Therefore

F
(2)
λ,S(z) ≤ F

(2)
τ ,S(z) ∀z ∈ R.

According to Definition 1, �′λ 
SSD �′τ and the rest of the proof directly follows from
Theorem 3. �

In Example 5(a), ξ(τ , r4,1) = −2 and ξ(τ , R̃(t), p̃(t)) < 0 for all t ∈ (0,1] because
�̃(t)′λ 
SSD �̃(t)′τ for all t ∈ (0,1].

Theorem 7 Let τ ∈ 	 be an SSD inefficient portfolio for the noncontaminated distribu-
tion P . If there exists a portfolio λ ∈ 	 such that

CVaRqλ
s
(−�′λ) − CVaRqλ

s
(−�′τ ) < 0, s = 0,1, . . . , S (39)

rS+1λ ≥ min((Rτ )[1], rS+1τ ) (40)

then τ is directionally SSD inefficient with respect to rS+1.

Proof Let j (τ ) be such index that (−R̃τ )[j (τ )] = −rS+1τ and similarly let j (λ) be such that
(−R̃λ)[j (λ)] = −rS+1λ. If j (λ) ≥ 2 then continuity of CVaR and assumptions (39) imply that
there exists a sufficiently small t0 such that for all t ∈ [0, t0]

CVaRq̃λ
s (t)(−�̃(t)′λ) − CVaRq̃λ

s (t)(−�̃(t)′τ ) < 0, s = 0,1, . . . , S

CVaRq̃τ
s (t)(−�̃(t)′λ) − CVaRq̃τ

s (t)(−�̃(t)′τ ) < 0, s = 0,1, . . . , S

holds true. Hence, �̃(t)′λ 
SSD �̃(t)′τ and therefore λ is a feasible solution of (34) for all
t ∈ [0, t0]. The directional SSD inefficiency with respect to rS+1 of τ follows.

If j (λ) = 1 then (40) implies that (R̃λ)[1] ≥ (R̃τ )[1] and the rest of the proof is similar to
the previous case. �

Condition (40) is needed to guarantee that even in the contaminated case the smallest
return of portfolio λ is larger than or equal to that of portfolio τ what is a necessary condition
of SSD relation. For data in Example 5(b), none of the conditions (39)–(40) is fulfilled.
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4 Conclusions

The contamination technique was extended to construction of bounds for the optimal value
function of perturbed stochastic programs whose set of feasible solutions depends on the
probability distribution. In spite of the local character of these bounds their usefulness was
illustrated for analysis of resistance with respect to additional scenarios in stochastic pro-
grams with risk constraints and in a new SSD portfolio efficiency test. Unlike the former
portfolio efficiency tests, neither this test nor its robust version assume equiprobable scenar-
ios.
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