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Chapter 1

Introduction

The presented habilitation thesis includes in Chapter 2 five original author’s pa-

pers:

• K. Kampf, B. Moussallam, Chiral expansions of the pi0 lifetime, Phys. Rev.

D 79, 076005 (2009). [arXiv:0901.4688 [hep-ph]]

• J. Bijnens and K. Kampf, Neutral pseudoscalar meson decays: π0− > γγ

and η− > γγ in SU(3) limit, Nucl. Phys. Proc. Suppl. 207-208 (2010) 220

[arXiv:1009.5493 [hep-ph]]

• K. Kampf and J. Novotny, Resonance saturation in the odd-intrinsic parity

sector of low-energy QCD, Phys. Rev. D 84 (2011) 014036 [arXiv:1104.3137

[hep-ph]].

• J. Bijnens, K. Kampf and S. Lanz, Leading logarithms in the anomalous

sector of two-flavour QCD, Nucl. Phys. B 860 (2012) 245 [arXiv:1201.2608

[hep-ph]].

• K. Kampf, J. Novotny and J. Trnka, Tree-level Amplitudes in the Nonlinear

Sigma Model, JHEP 1305 (2013) 032 [arXiv:1304.3048 [hep-th]].

Included papers were selected mainly due to their closeness and relative mutual

connection in the field of the low energy effective theories (EFT). On the other

hand, in spite of their interrelation, they demonstrate the necessity of different

approaches in studying this area. The aim of the first introductory chapter will

be thus to briefly introduce and clarify some basic terminology and background of

these papers.

7



Chapter 1. Introduction 8

1.1 Chiral perturbation theory

Quantum chromodynamics (QCD) describes the dynamics of three degrees of free-

dom (called colours) of six quarks (u,d,s,c,b,t). It is based on the local gauge group

SU(3). The quarks transform in the fundamental representation and gauge bosons

(called gluons) in the adjoint representation (their number is thus fixed to eight).

The gauge symmetry fixes the Lagrangian to (we will not consider the CP violating

‘θ-term’ here)

LQCD = −1

4
~Gµν · ~Gµν + q̄qq(i /D −mf )qqq + LGF + LFP, (1.1)

where the gluon field strength tensor is given by (vectors being in the adjoint

representation, the colour index is i = 1, . . . , 8)

Gi
µν = ∂µG

i
ν − ∂νG

i
µ + gf ijkGj

µG
k
ν

and the covariant derivative

Dµ = ∂µ − igGa
µ

λa

2
,

where λa are Gell-Mann matrices. LGF represents the gauge-fixing terms and LFP

the associated Faddeev-Popov ghosts. The quark field qqq includes all types or, in

other words, flavours. The second term in (1.1) can be rewritten as

Lqqq = i
∑

q=u,d,s

q̄ /Dq −
∑

q=u,d,s

mq q̄q +
∑

Q=c,b,t

Q̄(i /D −MQ)Q . (1.2)

At small distances one can use QCD in a standard way perturbatively. However,

due to quark confinement this is no longer true for the low and intermediate energy

regions. The running of the coupling constant is responsible for its value becoming

large and the perturbative series is thus meaningless. The only existing direct

method is the calculations on a finite lattice, and these have the huge demands

on computer resources (to say nothing about human resources).1 At very low

energies we can use a method of the chiral perturbation theory, which we will

briefly explain in the following.

1For a recent review of lattice results concerning the low energy particle physics see the report
[1] of the lattice community FLAG (Flavour Lattice Averaging Group).
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In order to make the text as simple as possible we will focus on the so-called

three-flavour ChPT. It is easy to generalize the discussion to the general Nf -

flavour ChPT or the other possible real situation: two-flavour ChPT (where light

quarks are only u and d). We will briefly comment on both cases when necessary.

The starting point is the study of the global symmetry in the system of light

quarks








u

d

s









L,R

→ VL,R









u

d

s









L,R

, (1.3)

where VL a VR represent independent unitary transformation (VL,R·VL,R
† = 1). The

projector on the right and left quark fields is given by 1±γ5
2

. It is easy to verify that

the QCD Lagrangian is invariant under (1.3) if we ignore masses of light quarks

(i.e. ignoring the second term in (1.2)). In such a case, we work in the so-called

chiral limit. The transformation U(3) is described by nine independent parameters.

Thanks to Noether’s theorem one can thus expect 18 conserved currents. However,

due to the anomaly (see the original works [2]) there are only 17 currents that are

conserved also at the quantum level. Using Gell-Mann matrices λa (we define

λ0 =
√

2/31). We express the vector and axial-vector combinations of currents as

(here a = 0 . . . 8)

V a
µ = Ra

µ + La
µ = q̄γµ

λa

2
q, (1.4)

Aa
µ = Ra

µ − La
µ = q̄γµγ5

λa

2
q, (1.5)

it is possible to write

∂µV a
µ = 0, for a = 0 . . . 8,

∂µAa
µ = 0, for a = 1 . . . 8. (1.6)

As mentioned above one of the eighteen currents is anomalous:

∂µA
0µ =

√

3

2

g2

32π2
εµναβ ~G

µν · ~Gαβ. (1.7)
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Using a conserved current we can define a time independent charge, i.e.

Qi
V =

∫

d3xV i
0 (~x, t), (1.8)

Qi
A =

∫

d3xAi
0(~x, t), for i = 1, . . . , 8 (1.9)

In the case of the vector current with i = 0 we get conserved charge which repre-

sents the baryon number. The defined charges represent generators of the group

and one can verify the following relations

[

Qi
V , Q

j
V

]

= if ijkQk
V ,

[

Qi
A, Q

j
A

]

= if ijkQk
V , (1.10)

[

Qi
V , Q

j
A

]

= if ijkQk
A.

The previous relations are valid also for the vector charges with i = 0 if we add to

the definition of the structure constant f 0ij = 0.

The time independence of the charges implies the following commutation relations

for Hamiltonian of QCD in the chiral limit (denoted as H0)

[Qi
V , H0] = 0, [Qi

A, H0] = 0 . (1.11)

In models of quantum field theories there are two possible consequences of these

relations. If the charge annihilates the vacuum we have the so called Wigner-Weyl

realization of symmetry which includes the degenerate multiplets of states. If this

is not the case, and some charge does not annihilate the vacuum, we say that

symmetry is spontaneously broken. The consequence of this second possibility,

connected with the Goldstone theorem [3], is the massless particle in the spectrum,

called Goldstone boson. In our case we will assume (for more details see e.g. [4],

[5])

Qa
V |0〉 = 0, a = 0, . . . , 8, Qa

A|0〉 6= 0, a = 1, . . . , 8 . (1.12)

So far we were ignoring the fact that the chiral symmetry is weakly broken. Indeed

the relations (1.6) are valid only approximately and in reality we should modify
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them according to

∂µV a
µ = iq̄

[

M,
λa

2

]

q, for a = 0 . . . 8,

∂µAa
µ = iq̄

{

M,
λa

2

}

γ5q, for a = 1 . . . 8, (1.13)

where we have introduced the diagonal matrix of the light quark masses: M =

diag(mu, md, ms). If we want to describe the dynamics of the Goldstone bosons

in the framework of quantum field theory using effective Lagrangian, we have

to divide this Lagrangian into two pieces: L0 + Lcor. The first part L0 will be

invariant under the group SU(3)×SU(3) spontaneously broken to SU(3)V , while

Lcor will break the symmetry explicitly. The definition of the effective Lagrangian

can be done formally using the path integral. First we will define the generating

functional over the gluon and fermion configurations in QCD.

eGc[v, a, s p] =

∫

[dµ]ei
∫
d4xLQCD[v, a, s p], (1.14)

where we have included the vector, axial, scalar and pseudoscalar sources:

LQCD[v, a, s p] = LQCD + q̄
(

γµ(v
µ + γ5a

µ)− s+ γ5p
)

q. (1.15)

It is useful to notice that scalar source can formally play also the role of the light

quark masses (by a redefinition s → s +M they can be absorbed in the source).

This can also elegantly solve the problem how to incorporate systematically the

mass corrections. Including the masses in the definition of scalar source s, it is

possible to calculate any Green function using

〈0|T
(

W a(x1) . . .W
z(xn)|0〉c =

(1

i

)n δnGc

δwa(x1) . . . δwz(xn)

∣

∣

∣

v=a=p=0, s=M

, (1.16)

where W represents any current V,A, S, P and similarly w the corresponding

source with

w = wiλ
i

2
. (1.17)

In the following step it is necessary to reformulate the investigated symmetries

in terms of transformation properties of currents. This is connected with the

study of the so-called Ward identities, which represent non-trivial relations among

Green functions of currents. We can obtain them by moving from global to local

transformations VL → VL(x) and VR → VR(x). Considering now the infinitesimal
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transformation VL,R = 1 + iαL,R we will readily get

v′µ = vµ + ∂µαV + i[αV , vµ] + i[αA, aµ],

a′µ = aµ + ∂µαA + i[αV , aµ] + i[αA, vµ],

s′ = i[αV , s]− {αA, p},
p′ = i[αV , p]− {αA, s}, (1.18)

where we have defined αV = αR+αL and αA = αR−αL. Putting the transforming

quantities to (1.14) one can get the prescription for the transformations of Green

functions, generally in the form

Gc[v
′, a′, s′, p′] = Gc[v, a, s, p] + ∆[v, a, s, p, VLV

†
R], (1.19)

where the existence of the last term ∆ is tied to the fact that the Jacobian of the

transformation (1.18) is not one. The exact form was calculated by W. Bardeen

[6]:

∆ = − NC

16π2

∫

d4xTr
(

αA(x)Ω(x)
)

, (1.20)

where

Ω = εαβµν
(

vαβvµν +
4
3
DαaβDµaν +

2i
3
{vαβ, aµaν}+ 8i

3
aµvαβaν +

4
3
aαaβaµaν

)

and

vαβ = ∂αvβ − ∂βvα − i[vα, vβ ], Dαaβ = ∂αaβ − i[vα, aβ ].

The relation (1.19) represents in a compact form all the Ward identities.

The basis of ChPT is an effective Lagrangian, which can be formally connected

with QCD via the relation

eGc[v, a, s p] =

∫

[dU ]ei
∫
d4xLeff[U ; v, a, s p]. (1.21)

The matrix U incorporates the octet of Goldstone particles

φ(x) =
1√
2
πi(x)λi, φ(x) =









1√
2
π0(x) + 1√

6
η(x) π+(x) K+(x)

π−(x) − 1√
2
π0 + 1√

6
η(x) K0(x)

K−(x) K̄0(x) − 2√
6
η(x)









.

(1.22)
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In order to use the Ward identities also in the framework of the chiral Lagrangian

we have to specify first the transformation properties of the matrix field U .

The standard procedure how to implement the symmetry transformation of the

Goldstone fields is due to two works of Callan, Coleman, Wess and Zumino [7], [8].

Let us denote the space of Goldstone particles as Π and the particles themselves ~π.

We want to study a system, which is invariant under the group G spontaneously

broken to the subgroup H ⊂ G. The state with the lowest energy, vacuum, is

invariant under the action of H. It is convenient to denote the vacuum by ~π = 0.

We want to find out how the group G acts on the field Π. We will define the

homomorphic mapping ϕ:

ϕ : G × Π → Π (1.23)

It is possible to establish an isomorphism between the quotient G/H and Goldstone

bosons ~π. The transformation will have the form

~π′ = ϕ(g, ~π) = ϕ(g, ϕ(gπh, 0)) = ϕ(ggπh, 0).

For h, the element of the conserved subgroup, the name “compensator” is some-

times used.

In our case of the chiral symmetry the transformation is given by

g = (VL, VR)

and the Goldstone representatives can be expressed as (1, U)h, for U = VRV
†
L .

The wanted transformation thus gets the following form

ggπh = (VL, VR)(1, U)h = (VL, VRU)h = (1, VRUV †
L)(VL, VL)h = (1, VRUV †

L)h,

(1.24)

or alternatively

U ′(x) = VR(x)U(x)V †
L(x) . (1.25)

The suitable parametrization of SU(3) is the exponential. We will set the following

form

U = e
i
√
2 φ

F0 . (1.26)

Trivially it is consistent with

U †U = UU † = 1, detU = 1 . (1.27)
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Let us mention here that in the case of the two-flavour ChPT there are more

suitable parametrizations which can be employed. For their explicit definitions

and advantages (i.e. the reason for their different forms) see articles in Chapter 2,

e.g. in Sections 2.1 and 2.4 (see also discussion connected with SU(Nf ) case in

2.5 (part 2.3)).

Now we can carry on our construction of Leff in (1.21). We will demand that Green

functions calculated using the effective Lagrangian fulfil the same Ward identities

as those obtained from QCD, i.e. (1.19). The solution will be given by means

of the general solution of the homogeneous equation (i.e. without anomaly) plus

one particular solution for the complete equation. As we assume that the measure

of the functional integration is invariant under the transformation of the field U

(1.25), the homogeneous Ward equations are fulfilled by a requirement

Leff[U
′; v′, a′, s′, p′] = Leff[U ; v, a, s, p] , (1.28)

which gives us a strong restriction on the form of the Lagrangian. If we introduce

the covariant derivative

DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ), (1.29)

we obtain the basic building block for the construction of the chiral Lagrangian

including the clear power counting (connected with the derivative or equivalently

momentum). In the case of the power counting w.r.t. mass the situation is not

that clear. We know that the mass is given by the explicit symmetry breaking and

can be connected with the scalar source. If we form the building block by

χ = 2B0(s+ ip), (1.30)

the chiral symmetry fixes

χ → VRχV
†
L . (1.31)

It is natural to take a mass of the Goldstone bosons of the same order of magnitude

as the momentum, i.e. mq ∼ O(p2). Let us stress at this point, that this choice,

however natural, is not the only one. From the last definition it follows that the

mass is connected with the parameter B0. From the general Nambu-Goldstone

theorem we can conclude that a nonzero value of B0 is a sufficient, but not nec-

essary condition for spontaneous breakdown of chiral symmetry. The unnatural
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smallness of B0 would lead to the necessity to reorder the perturbative expansion.

This possibility led to the formulation of the so-called generalized chiral perturba-

tion theory (see e.g. [9]). Recently also a hypothesis of different behaviour of the

parameter B0 for two-flavour and three-flavour ChPT was opened (see e.g. [10],

[11], [12]). For another possibility how to “undemocratically” count differently

masses of u and d quarks on one hand and s quark on the other hand, directly

within the framework of SU(3), see the so-called modified chiral counting scheme

defined and used in Chapter 2, Section 2.1.

In the standard approach the lowest order (called O(p2)) is given by Lagrangian

[13]

L2 =
F0

4

〈

DµU
†DµU + χU † + Uχ†〉 , (1.32)

where we have introduced 〈A〉 = TrF (A), that represents trace over the quark

flavours. The next-to-leading order (NLO) or equivalently O(p4) is given by [14]

[15]

L4 =L1〈DµU(DµU)†〉2 + L2〈DµU(DνU)†〉〈DµU(DνU)†〉
+L3〈DµU(DµU)†DνU(DνU)†〉+ L4〈DµU(DµU)†〉〈χU † + Uχ†〉
+L5〈DµU(DµU)†(χU † + Uχ†)〉+ L6〈χU † + Uχ†〉2

+L7〈χU † − Uχ†〉2 + L8〈Uχ†Uχ† + χU †χU †〉
−iL9〈fR

µνD
µU(DνU)† + fL

µν(D
µU)†DνU〉 + L10〈UfL

µνU
†fµν

R 〉
+H1〈fR

µνf
µν
R + fL

µνf
µν
L 〉+H2〈χχ†〉. (1.33)

where we have used the standard notation for the field strengths of the external

gauge fields

f I
µν = ∂µIν − ∂νIµ − i[Iµ, Iν ], Iα = rα, lα. (1.34)

We can continue to the next-to-next-to-leading order (NNLO, or O(p6)). Its form

and details of the construction can be found in [16]. In this context, let us men-

tion here the standard nomenclature and notation. The parameters used in these

pieces of Lagrangian are called low energy constants (LECs). For the SU(3) NLO

there are 10 Li (note that His have no direct phenomenological application and

are induced by the renormalization procedure). In the two-flavour ChPT usually

small letters are introduced in connection to the capital letters of SU(3), i.e. li

at NLO. The exact number and notations of LECs up to NNLO is summarized

in Tab. 1.1. It will be useful for further discussion to introduce an equivalent for-
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order notation and number for SU(2) notation and number for SU(3)
LO F,B 2 F0, B0 2
NLO li 7 Li 10
NNLO ci 52 Ci 90

Table 1.1: Notation and number of LECs up to O(p6) for the chiral Lagrangian
of the even sector.

malism, which follows directly from the original construction of Callan, Coleman,

Wess and Zumino, when the coset space G/H is parametrized directly by u(φ),

i.e. u(φ) ∈ G/H . The transformation is given by

u(φ′) = gRu(φ)h
−1 = hu(φ)g†L (1.35)

and our familiar U is obtained by U = u2. In order to be consistent with our

previous notation we have the following exponential parametrization for u

u = e
i φ
√

2F0 . (1.36)

The covariant tensors needed for the lowest order are given by

uµ = i(u†(∂µ − irµ)u− u(∂µ − ilµ)u
†) (1.37)

χ± = u†χu† ± uχ†u . (1.38)

The leading order Lagrangian is then

L2 =
F 2
0

4
〈uµu

µ + χ+〉 , (1.39)

which is equivalent to (1.32). Similarly we can rewrite the higher orders. This

new formalism is more appropriate for the construction of resonances as we will

see in the next Section and Chapter 2.

It is important to notice that our Lagrangian is still not complete. The presented

forms (either LO, or NLO or of higher orders) solve only the homogeneous Ward

identities. That something is missing can be shown also phenomenologically. All

these Lagrangians are symmetric under the change φ → −φ, which means that

processes they can describe will cover only even number of Goldstone particles.

However, this is an unphysical requirement: we know for example that there must

exist a process KK → πππ (the resonance φ(1020) can decay both to two kaons
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and three pions). After all, also the decay π0 → γγ (important for us in Chapter 2),

when photon is represented by the external vector field vµ, could not be described

solely using the Lagrangian of the so-called even sector.

The details of construction can be found in the works of Wess and Zumino [17]

and Witten [18]. As we need only one particular solution of the full Ward iden-

tity (1.19), it is sufficient to verify that the eventual solution leads indeed to the

Bardeen’s function ∆. For the SU(3) the exact form can be found in this the-

sis in Sect. 2.3. In the case of the SU(2) ChPT the situation is slightly different.

Naively we would expect no anomalies (the SU(2) case is anomaly free). However,

due to the fact that the electromagnetic charge is not a generator of SU(2) (the

diagonal matrix Q = diag(2/3,−1/3) is not traceless) the initial symmetry must

be extended by a singlet vector part (if we want to describe the electromagnetic

processes). The construction of the two-flavour anomalous Lagrangian was done

in [19] and is again reproduced in Sect. 2.4.

As we are working in the framework of quantum field theory, it is inevitable to con-

sider the quantum corrections as well. The loops coming from the LO vertices are

of course divergent and have to be renormalized. Provided we have constructed the

most general Lagrangian consistent with all assumed symmetry principles (cf. also

Weinberg’s conjecture in [13]) we will use naturally a regularization prescription

which conserves the symmetries. In our case it will be the dimensional regular-

ization. All divergences we will obtain in the calculation must be local. As we

have all terms in our Lagrangian consistent with the symmetry we must also find

the corresponding counterterms which can absorb the eventual divergences. The

number of such terms will be finite, once we cut the expansion series according to

some power counting. For NLO it is given by

Li = Lr
i (µ) + Γiλ(µ), λ =

µd−4

(4π)2

( 1

d− 4
− 1

2
(log 4π − γE + 1)

)

. (1.40)

with [15]

Γ1 =
3

32
, Γ2 =

3

16
, Γ3 = 0, Γ4 =

1

8
, Γ5 =

3

8
,

Γ6 =
11

144
, Γ7 = 0, Γ8 =

5

48
, Γ9 =

1

4
, Γ10 = −1

4
. (1.41)
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1.2 Resonance theory

ChPT as an effective field theory of QCD must be the correct theory for a de-

scription of the low energy phenomenology of pseudoscalar hadron states, that

represent Goldstone bosons (see previous section). The strong statement about

the ‘correctness’ desires an explanation, which will relativize the possibility of the

eventual application of such a theory. The necessity to cut the perturbative series

to the finite number of terms, at the same time the necessity to choose the correct

scheme for the expansion in masses as well as the possibility of a choice of two

Nf cases (two-flavour and three-flavour ChPT) lead in real calculation to different

predictions. From the theory point of view all such predictions are correct and

the different results can be used as an estimate of the error for the effective cal-

culations. Too big error, however, can be a sign of bad convergence properties of

perturbative series. In such a case we are naturally forced to go to higher orders,

which inevitably increases number of new, a priori unknown parameters (LECs).

If we want to have phenomenologically useful theory it is essential, in some cases,

to model some of the unknown parameters. We are thus leaving solid ground of our

theory and the prediction becomes model dependent. In this section we will briefly

describe how it is possible to estimate some of LECs by means of resonances.

We know that the mass of the lightest resonance Mρ is a natural scale up to

which the study of the dynamics of the pseudoscalar meson multiplet within ChPT

is meaningful. However, starting around this energy and above, the resonances

should be taken as dynamical degrees of freedom, whereas below this energy their

effect is hidden in the low energy constants. Resonance chiral theory (RχT) will

represent a model which describes the intermediate energy region, where in ad-

dition to pseudoscalar mesons the resonances will act as dynamical degrees of

freedom. For simplicity we restrict ourselves only to the lowest multiplet of vec-

tor, axial, scalar and pseudoscalar resonances. At this point it is also important

to emphasize that vector particles in our description have not a special position

and their properties are dictated only by nonlinear realization of the chiral group.

There are of course other alternatives to interpolate between ChPT and QCD.

These models are different both in the technical structure and physical motivation

and interpretation. For example, we can mention the Nambu-Jona-Lasinio models

[20], where the hadron field is generated dynamically and one obtains automati-

cally the spontaneous symmetry breaking. As we have emphasized, the ρ meson
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does not play a special role, but this is not the case for the models with the so-

called hidden local symmetry (or hidden gauge symmetry), see for example [21]

[22]. A nice feature of these models is usually a small number of parameters and

therefore their easier testing. On the other hand, it is important to stress that the

base for these models is not the direct consequence of QCD and their results may

therefore be misleading.

The limit of large number of colours (will be denoted byN here) plays an important

role in applications for low energy QCD (and not only there, but it represents an

important concept for the theory of gauge fields itself). Let us thus summarize the

most important points of this limit (for further details see e.g. [18]). The crucial

step in the generalization of SU(3) gauge group to SU(N) is finding of ’t Hooft

[23] about the scaling of the strong coupling constant g

g ∼ 1√
N

(1.42)

(this can be obtained for example from an assumption of the existence of large N

limit for the β-function of the QCD coupling constant g). By systematic studies

of Feynman diagrams one can show that dominant contributions are due to the

so-called planar diagrams (diagrams that can be drawn on a plane). Another

important assumption will be that the confinement valid for N = 3 stays valid

also for large N . If we limit ourselves only to study of mesons, we can focus on

properties of quark bilinears J(x) = q̄Γq. In the simplest case we have a correlator

〈J(x)J(y)〉. By cutting any planar diagram for such an object one can be easily

convinced that the intermediate state will be always the one-meson state. We can

write

〈J(k)J(−k)〉 =
∞
∑

n

f 2
n

k2 −m2
n

, (1.43)

where the sum has to go to infinity in order to obtain the logarithmic behaviour

for large k. The constant fn represents the matrix element for creation of the

corresponding meson by the current J . It thus follows that fn ∼
√
N . If we

continued in studying the correlators for higher number of meson states we would

find out that effective interaction of n mesons behaves as ∼ N1−n/2.

From the above general statements we can use directly for ChPT that Fπ behaves

as
√
N . What is also important for the following discussion is the fact that every

trace represents a sum over the quark flavours which originated from the quark

loops. As every such loop is suppressed by factor 1/N , it is also the case for every
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trace. Another important consequence of the large-N limit is the so-called singlet-

octet degeneration, which means that mesons come in nonets. The explanation

using the large N is based on the fact that the diagrams which would separate

singlet from octet would include qq̄ annihilation, which is suppressed as 1/N . As

an immediate consequence of this finding we should return back to our previous

section and add to the pseudoscalar octet also the singlet η′ meson. It is neverthe-

less possible to keep the octet structure and integrate out the ninth particle. The

effect of this particle will be visible in the existence of multiple-trace operators

(for detailed discussion see Appendix A in Section 2.3).

Besides the octet of Goldstone bosons we will deal with nonets of resonances,

schematically R(JPC), more precisely V (1−−), A(1++), S(0++) a P (0−+). These

fields can be divided to the singlet R0 and octet R8

R =
1√
3
R0 +

∑

i

λi√
2
Ri . (1.44)

The explicit form for the vector multiplet reads

Vµν =









1√
2
ρ0 + 1√

6
ω8 +

1√
3
ω1 ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

6
ω8 +

1√
3
ω1 K∗ 0

K∗− K
∗ 0 − 2√

6
ω8 +

1√
3
ω1









µν

,

(1.45)

and similarly for other multiplets. Before discussing the transformation proper-

ties for the resonance multiplets it is important to discuss shortly the possible

formalisms which can be employed for describing the vector fields. There are two

main possibilities how to describe the spin-one field: using the Proca field Vµ or an

antisymmetric tensor field Rµν (see Appendix in [24]). It is very well known fact

that these formalisms are not trivially equivalent as we are in the effective field

theory and some of the terms in one formalism can be of different order in other

formalism. The most important fact is that without additional contact terms the

effective Lagrangian starts at the order O(p6) for the Proca formalism whereas for

Rµν it starts at O(p4). We will be working here with the antisymmetric-tensor for-

malism. For another (third) possibility, the so-called first order formalism, see [25].

More detailed discussion on the equivalence of different formalisms, consistency

and technical details see [26], [27].
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C P
Vµν −V T

µν Vµ̃ν̃

Aµν AT
µν −Aµ̃ν̃

S ST S
P P T −P

Table 1.2: Charge and parity conjugation for nonets of vector, axial, scalar
and pseudoscalar fields. The symbol tilde represents the change of sign for space

indices (e.g. V0̃0̃ = V00, V0̃1̃ = −V01, V1̃2̃ = V12).

We will demand that R transforms as nonet under U(3)V . Nonlinear realization

of group G is given by the prescription

R → hRh† . (1.46)

The transformation h plays a role of compensator in transformation of Goldstone

bosons in the coset space. RχT will be constructed as EFT which describes inter-

actions of pseudoscalar mesons and resonances. Without having a natural mass

gap it is not enough to use as an expansion parameter only the momenta, but

we have to include also the expansion in the large number of colours. We want

to build the most general Lagrangian, compatible with the symmetries of QCD.

Besides the mentioned chiral transformation we have to consider also a charge and

a parity conjugation (see Table 1.2).

Kinetic terms for vector and axial-vector resonances are fixed by the choice of the

formalism. In our case we can write in the compact form

LRR,kin = −1

2
〈∇µRµν∇αR

αν〉+ 1

4
M2

R〈RµνR
µν〉+ 1

2
〈∇αR∇αR〉 − 1

2
M2

R〈RR〉 ,
(1.47)

where R represents V µν or Aµν while calligraphic R stands for S or P .

The large Nc limit is important for the systematic ordering of further terms of

resonance Lagrangian. According to the number of resonance fields we will talk

about linear, quadratic, quartic, . . . interaction terms. The study of linear RχT
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was pursued in the seminal work of G. Ecker et al. [24]. It concerns these mono-

mials:

LV =
FV

2
√
2
〈Vµνf

µν
+ 〉+ iGV

2
√
2
〈Vµν [u

µ, uν ]〉 (1.48)

LA =
FA

2
√
2
〈Aµνf

µν
− 〉 (1.49)

LS = cd〈Suµuµ〉+ cm〈Sχ+〉 (1.50)

LP = idm〈Pχ−〉+ i
dm0

NF
〈P 〉〈χ−〉 (1.51)

The importance of these terms for ChPT lies in the fact that after integrating out

the resonances we end up in saturation of LECs of O(p4), i.e. Li (or li for SU(2)).

What does it mean can be seen using the path integral, formally employing

exp

(

i

∫

d4xLχPT

)

=

∫

DR exp

(

i

∫

d4xLRχT

)

(1.52)

we have to obtain the same monomials as those that can be found in ChPT. The

only difference is in constants which stand in front of these objects. For terms

originating from RχT these are combinations of resonance masses and parameters

(coupling constants) of resonance Lagrangian, on the other hand, for ChPT these

are LECs (e.g. Li). By matching of both theories one gets relations for LECs

by means of resonances. If we assume that nothing else contributes to LECs, we

talk about the (full) saturation of constants by resonances. In the case of vector

resonances we will get the following relations:

L1 =
G2

V

8M2
V

, L2 =
G2

V

4M2
V

, L3 = − 3G2
V

4M2
V

, L9 =
FVGV

2M2
V

, L10 = − F 2
V

4M2
V

. (1.53)

We can also continue to higher orders. The O(p6) saturation of the even sector

was studied in [28]. In Section 2.3 we extend this procedure also to the odd sector.

The last possible and important step which we have not discussed yet is the con-

nection with QCD at small distances. This is a region where QCD works in its

standard perturbative expansion. As already stated, the fundamental objects of

quantum field theory are Green functions of (for QCD, colourless) currents. On

one hand we have the calculation within the perturbative QCD, on the other hand

the calculation using the resonance Lagrangian. Comparing these two results we

get in principle other nontrivial conditions for RχT parameters. However, we
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must be very careful to take the possible outcome without reservation. RχT has

its fundamental limitation (e.g. in finite number of resonances) which forbids to

use it over the intermediate region. However, it seems that this formal matching

with perturbative QCD can give us very interesting phenomenological results (see

for example [29]).

It is natural to focus first on the simplest Green functions in the studied anomalous

sector. These are the three-point Green functions, and one can show that there

exist only five nontrivial combinations, namely: 〈V V P 〉, 〈V AS〉, 〈AAP 〉, 〈V V A〉
and 〈AAA〉. The first two are subject of Sec. 2.3, and the others are planned to

be part of the diploma thesis of an author’s student [30].

1.3 New methods

In the following two Subsections we want to present an introduction to Sections 2.4

and 2.5, respectively. The title ‘New methods’ was used to stress a different

character in comparison with methods of the previous text. It is not so much

the fact that the original works are the most recent in publications, but that these

works are of different concept. While chiral perturbation theory and also resonance

models can be viewed as standard tools for studying physics at low energies, here

we want to outline methods whose phenomenological applications are not that

clear. However, we believe that they are important from the theoretical point of

view and can contribute to new discoveries about studied theories.

1.3.1 Renormalization in effective field theory: leading log-

arithms

At the end of Section 1.1 we have briefly sketched the problem of quantum correc-

tions for ChPT. Here we would like to pursue this problem further, i.e. the problem

of renormalization in EFT and study it from a different angle. The paradigm for

the renormalization is the following procedure. The aim is to rewrite measured

quantities by means of other physical observables rather than by direct use of

parameters of Lagrangians. Let us imagine that we measure three quantities,

X, Y, Z. In our effective theory we will have for simplicity just two parameters, f

and l (for example from LO and NLO Lagrangian). The measured quantities X



Chapter 1. Introduction 24

and Y can be calculated in the theory with given precision (e.g. given by order

NLO), we get X = X(f, l), Y = Y (f, l). Now we can make a prediction for Z,

inverting the relations for X and Y , and thus obtaining the prescription for f , l

by means of physical quantities. At the end of the day the parameter Z will be a

function only of these physical and finite quantities. The crucial problem of EFTs

is the expression “given precision”. It is both strong and weak point of any EFT.

The reason is simple: either the theory is not accurate, has insufficient number

of parameters, or the precision is satisfactory at the cost of introducing a huge

number of parameters. Of course both cases are inconvenient and one can ask if

it is possible to find an optimum. The situation is very complicated already at

NNLO. In fact there are three possible contributions: 1) at LO: tree-level contri-

butions; 2) at NLO: tree-level contributions from NLO Lagrangian and one-loop

diagrams from LO Lagrangian 3) at NNLO: tree-level contributions from NNLO

Lagrangian, one-loop diagrams from NLO Lagrangian and two loops from LO. It

is difficult because of different nature of every contribution and different source of

errors for every parameters, to estimate the speed of convergence of perturbative

series. Some indicator can be found in the calculation of leading logarithms. Here

we will briefly introduce this method, which will be further developed in the next

chapter.

The leading logarithms (or LL for short) are logarithms with the highest power

for the given order. In ChPT one can show this is log1 for one-loop level, log2

for two loops, etc. What is interesting about the leading logs is the fact that for

their calculation we need to know only the form of LO Lagrangian. In fact it is

a generalization of the Weinberg consistency relations for two-loop diagrams [13].

The full proof using the beta-function can be found in [31], alternative way of

proof was used in [32]. Here we will show it only schematically.

For simplicity we will study a quantity, which depends only on one scale, let us

denote it for example F (M) (in the case of ChPT one can have in mind e.g. the

pion decay constant, and the parameter is the mass of O(p2) Lagrangian). The

calculation within the quantum field theory for F (M) will be typically performed

in the dimensional regularization (which brings up the subtraction scale µ). In the

renormalizable theory we have a finite number of coupling constants and param-

eters, that after renormalization procedure lead to finite results. For simplicity,

let us assume that there is only one such parameter, coupling constant α; we can
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anticipate the result in the following general form of expansion in α:

F = α + α2f 1
1L+ α2f 1

0 ++α3f 2
2L

2 + α3f 2
1L+ α3f 2

0 +O(α4) . (1.54)

The shorthand notation L represents a logarithm

L = log(µ/M) . (1.55)

(warning for the careful reader: unfortunately in the original papers in Chap-

ter 2 we are not systematic in notation, L can stand for log(m2/µ2) (Sec. 2.1), or
1

(4π)2
log(m2/µ2) (Sec. 2.2) or even m2

16π2F 2 log(µ
2/m2) (Sec. 2.4).)

A physical observable should be independent on the renormalization scale µ

µ
dF

dµ
= 0 . (1.56)

If we define the so-called beta function for parameter α, i.e we prescribe

µ
dα

dµ
= β0α

2 + β1α
3 + . . . (1.57)

the renormalization condition is fulfilled if

f 1
1 = −β0 , f 2

2 = (β0)
2 , f 3

3 = −(β0)
3 , . . . (1.58)

where we have also used the fact that divergences in quantum field theory should

be local. These are the coefficients in front of the leading logs. This means that

LL can be calculated from the one-loop beta function (β0), in summary written as

f i
i = (−1)i(β0)

i . (1.59)

It is interesting to notice that such contributions can be summed over:

F
∣

∣

∣

LL
= α +

∞
∑

i=1

αi+1f i
iL

i = α

∞
∑

i=0

αi(−1)i(β0)
iLi =

α

1 + αβ0L
, (1.60)

which is well-known result for the running coupling constant. Let us recall that

this result was obtained for a renormalizable theory. However, our subject of

interest here are effective, non-renormalizable theories, in which case we cannot

use the simple recursive formulae. For an effective field theory we have to write
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generally:

F = F0 + F 1
1L+ F 1

0 + F 2
2L

2 + F 2
1L+ F 2

0 + . . . (1.61)

The leading logarithms are terms with F 1
1 , F

2
2 , . . . i.e. F

i
i . Even though we cannot

use the consequences of renormalization group, we can still show that LLs have

special status, which relies on the fact that they can be calculated to all orders

only by using the one-loop graphs. Schematically, this procedure can be described

as follows.

We will focus on probably the simplest physical object which is naturally the phys-

ical mass. Again we can be more specific, and work for example in SU(2) ChPT,

however, we will describe only the general recipe without going into technical de-

tails. Our starting Lagrangian is the lowest order of effective theory, which we

can denote as nonlinear sigma model (nσ). This is O(p2) in ChPT, here denoted

as ‘zeroth’ order (zero number of loops). The given Lagrangian can generate any

even number of legs, schematically

Lnσ ⇒ 0

The mass can be represented by the two-point Green function, at lowest-order:

0 ⇔ Mπ = M

(it is natural to set the convention of LO Lagrangian so that the parameter M

corresponds directly to physical mass). At the next order, i.e. at one loop, there

is only one possible way how to draw the contribution to the two-point function

(see below). Such tadpole graph is singular and must be renormalized. As already

stated in Sec. 1.1 the necessary constant (counter-term) is hidden in the next-order

Lagrangian. However, we do not know the explicit form of it (we assume that the

only thing we have in hands is Lnσ). We have to construct such Lagrangian, or

equivalently just the Feynman rule for the corresponding vertex. Schematically

up to NLO:

0 =⇒ 1
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At the next order, NNLO, the situation is naturally more complex. We can draw

two diagrams, and again we can fix the form of the counterterm, schematically:

1 , 0

1

=⇒ 2

(1.62)

This is not the whole story for this order. The second diagram can be calculated

without problem. Indeed, we know the vertex with ‘0’ with any number of legs

and the vertex ‘1’ with two particles was obtained and defined in the previous

step. What we are missing, however, is the vertex for the first diagram, i.e. ‘1’

with four particles. At this moment it only remains to calculate it and define:

0 , 0

0

=⇒ 1

(1.63)

Now everything is known in order to obtain LL2 (cf. diagrammatic relation (1.62)).

The nonexistence of the nonlocal divergences ensures that the mentioned proce-

dure can be used to calculate the leading logs (but, of course, not the complete

result). The following steps for higher orders are now clear: for the given Green

function (here two-point) up to a given order it is necessary to calculate all one-

loop diagrams with all possible insertions of interacting vertices. This also means

that we have to calculate new Green function with higher number of legs (but

of lower order). Let us mention here the next step, i.e. all diagrams needed to

calculate LLs for the mass corrections up to NNNLO

0 0 0

0

0 0

0

0

0 0
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i number of graphs result ci
1 1 −1 c
2 5 17/2 c2

3 16 −103/3 c3

4 45 24367/72 c4

5 116 −17642/9 c5

6 303 1922964667/97200 c6

7 790 −1804453729667/13395375 c7

Table 1.3: Calculation of LL to the correction of pion mass. We have intro-
duced a constant c = M2

16π2F 2 .

1 0

1

1 0

1

1

0

0

0

1

2 0

2

1

1

0

11

Let us remind that in a full calculation this is equivalent to the tree-loop order.

The process of this calculation up to LL3 was shown here mainly for illustration

purposes. Nevertheless, on a point of order, we will also show the result. Let us

remind that this result represents leading-log contributions to the physical mass

of pion in two-flavour ChPT, i.e.

M2
π = M2(1 + c1L+ c2L

2 + . . .) . (1.64)

The individual coefficients up to the seven-loop order are summarized in Tab. 1.3.

1.3.2 Analytic properties: tree-level diagrams

The non-linear SU(N) sigma model, which is the principal model for all works

presented here, plays important role also in other areas of theoretical particle

physics. Probably the most important phenomenological application is the low

energy QCD, i.e. the area of the previous subsections. We have shown how

to systematize this effective theory in the framework of ChPT and order by order



Chapter 1. Introduction 29

improve the eventual calculations and predictions. In the recent 20 years2 there was

a huge activity in calculating different processes up to NNLO order (i.e. including

two-loop graphs) and one calculation will be also presented in the next Chapter.

It is interesting to notice that one direction – technically similarly complicated

– was left out from the mainstream. This direction is connected with studies of

tree-level diagrams with higher number of particles. As a detailed and dedicated

introduction to this problem in the framework of the non-linear sigma model can

be found in Section 2.5, we will focus here merely on the motivation which stood

behind the idea of calculating tree-level diagrams using new methods.

The studied area will be again QCD, more precisely the gluonic sector of high-

energy amplitude. We will focus on calculation of tree level n-point gluon ampli-

tudes (without fermions). Using the standard methods we can divide the calcula-

tions into the following steps:

• We will consider all possible elementary interaction vertices, in this case:

three- and four-point:

• construct all allowed Feynman diagrams; for example one of such contribu-

tions for eight-point diagram:

We can see that even though we are calculating ‘only’ tree-level diagrams, the

problem is complicated already for relatively small number of external legs. For

our example of eight-gluon scattering, the above explicitly mentioned example is

only one of 34300 diagrams needed for the complete amplitude. What is interesting

is the fact that after long and tedious calculations with long algebraic expressions

we end up with a relatively simple and in some special cases even trivial answer.

Indeed, in the so-called helicity formalism we can express all (!) tree level graphs

2The first full two-loop calculation was done for the process γγ → π0π0 published in [33] in
1994.
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for the maximally helicity violating amplitudes in one closed formula [34]

An(−−+ . . .+) =
〈12〉4

〈12〉〈23〉 . . . 〈n1〉 , (1.65)

where

〈ij〉 =
√

|2pi · pj|eiφij . (1.66)

This unexpected simplicity was one of the main motivation of the current studies of

scattering amplitudes. In the following we will briefly summarize a method BCFW

(named after Britto, Cachazo, Feng and Witten [35], [36]) recurrence relations for

physical (on-shell) tree-level amplitudes. These relations reconstruct the result by

means of basic analytic properties.

In the first step we will define the colour ordered stripped amplitude

Ma1...an(p1, . . . pn) =
∑

σ/Zn

Tr(taσ(1) . . . taσ(n))Mσ(p1, . . . , pn) (1.67)

The number of stripped diagrams is naturally smaller than the original number

of all colour combinations. (For eight-point amplitude this number is 654.) It

is probably of some interest to stress one possible geometrical interpretation of

these diagrams and their number. This is due to Susskind and Frye [37]: for the

n-point scattering amplitude it is possible to connect the number of diagrams with

the number of ways how to divide the polygon (more precisely n-gon) with the

non-crossing diagonals so that the resulting objects have the number of sides equal

to the allowed number of vertices (3 or 4 for gluons). For the sake of clarity let us

show one example that concerns gluons, for simplicity the scattering of six gluons

– see the Fig. 1.1

The possibility to order the amplitudes is important for the following discussion.

We will be interested in the pole structure of amplitudes. The only possible poles

of the ordered tree-level diagrams are:

P 2
ij = (pi + pi+1 + . . .+ pj−1 + pj)

2 . (1.68)

Using the one-particle unitarity (so-called Weinberg theorem [13]) we can separate

left and right amplitude. In fact, if we sit at the factorization channel we get
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Figure 1.1: Representation of tree-level diagrams for six gluons (for example
ggg → ggg) by means of hexagon. Altogether we have 38 diagrams (cf. also

Tab. 1.4 below).

schematically

lim
P 2
1j→0

M(1, 2, . . . n) =
∑

hl

ML(1, 2 . . . j, l) ·
i

P 2
1j

·MR(l, j + 1, . . . n) . (1.69)

The last expression is self-evidently a trivial consequence of Feynman diagram-

matic representation, see Fig. 1.2).

Figure 1.2: A representation of the factorization for P 2
1j → 0.

Our objective is to reconstruct the amplitude using its poles in the complex plane.

In order to get complex parameters into the game we will use the following trick.

We will shift two external momenta pi a pj

pi → pi + zq, pj → pj − zq , (1.70)
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so that both pi and pj stay on-shell (n.b. gluons are massless particles), i.e.

q2 = q · pi = q · pj = 0 . (1.71)

The amplitude will thus become a meromorphic function A(z) of complex parame-

ter z. Taking z = 0 one can obtain the original function and the wanted amplitude.

It is important to realize that we can have only simple poles that correspond to

Pab(z). Employing the Cauchy’s theorem one can get

1

2πi

∫

dz

z
A(z) = A(0) +

∑

k

Res (A, zk)

zk
. (1.72)

Provided that A(z) vanishes for z → ∞ we will obtain the original amplitude as

a trivial consequence of this theorem:

A = A(0) = −
∑

k

Res (A, zk)

zk
. (1.73)

The complex propagator can be equal to zero, P 2
ab(z) = 0, only under the condition

that one and only one of the shifted momenta is in (a, a + 1, . . . , b). The solution

is given by

zab = − P 2
ab

2(q · Pab)
(1.74)

and assuming only allowed combinations of helicities, the amplitude will factorize

to two sub-amplitudes:

Res(A, zab) =
∑

s

A−s
L (zab)

i

2(q · Pab)
As

R(zab) . (1.75)

Using the Cauchy’s theorem we have finally:

A =
∑

k,s

A−sk
L (zk)

i

P 2
k

Ask
R (zk) . (1.76)

To summarize the result: using the two-line shift we have obtained simple recur-

rence relations where the base is a three-point amplitude. The number of relevant

terms is small and is equal to number of factorization channels. What is also

important, that all inputs are on-shell (though complex). The efficiency of this

method is obvious from the following table (Tab. 1.4) which summarizes the num-

ber of relevant diagrams in the given scheme.
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n 3 4 5 6 7 8
# diagrams (inc. crossing) 1 4 25 220 2485 34300
# diagrams (col.ordered) 1 3 10 38 154 654

# BCFW terms – 1 2 3 6 20

Table 1.4: Number of diagrams for n-point gluon amplitude at the tree-level

1.4 Summary

This thesis presents in the subsequent pages five original papers of the author cre-

ated between years 2009 and 2013. They are theoretical works dealing with both

phenomenological and theoretical questions connected with effective field theories

at low energies. First work focuses on the decay process π0 → γγ, which is a

very important process for the history of particle theory itself. New experimen-

tal activity in PrimEx experiment at JLab (Newport News, USA) was the main

motivation why the calculation at the two-loop order for this process was started.

However, also some theoretical questions were also asked in connection with it

and were successfully worked out within this project. Second article is natural

continuation in this direction and enlarges the possible application also for the

process η → γγ, though for the moment only in the simplified SU(3) limit. The

calculation in the full three-flavour ChPT which is also needed by experimentalists

is in preparation [38]. Both processes π0 → γγ and η → γγ represent processes

from the so-called odd-intrinsic sector. This sector within ChPT, being shifted

by one order (it starts at O(p4)), is naturally not that known and examined as

the even sector. The possible contribution in this respect is the third and fourth

article. The former deals with the resonance saturations for low-energy constants

in the odd sector. The letter studies the so-called leading logarithms not only for

already mentioned process π → γγ but also for another important process of the

two-flavour anomalous sector πγ → ππ. The last article contributes to another

important subject, which are tree-level diagrams for pseudoscalar bosons. This is

studied from a completely different perspective and shown that it is possible to

reconstruct here all tree-level diagrams with modified BCFW-like reconstruction.

This demonstrates possibility to use new modern on-shell methods also in the case

of effective field theories.

The non-linear sigma model is thus the starting point for many different approaches

which can help us to understand the current experimental activities in the low
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energy hadron sector. It can also have an impact on completely different areas of

theoretical physics (e.g. for new theories beyond the standard model, cosmology

etc.). This can be also demonstrated by the author’s latest projects (cf. e.g. [39],

[40]).
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The corrections induced by light quark masses to the current algebra result for the �0 lifetime are

reexamined. We consider next-to-next-to-leading order corrections and we compute all the one-loop and

the two-loop diagrams which contribute to the decay amplitude at this order in the two-flavor chiral

expansion. We show that the result is renormalizable, as Weinberg consistency conditions are satisfied. We

find that chiral logarithms are present at this order unlike the case at next-to-leading order. The result

could be used in conjunction with lattice QCD simulations, the feasibility of which was recently

demonstrated. We discuss the matching between the two-flavor and the three-flavor chiral expansions

in the anomalous sector at order one-loop and derive the relations between the coupling constants. A

modified chiral counting is proposed, in which ms counts as OðpÞ. We have updated the various inputs

needed and used this to make a phenomenological prediction.
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I. INTRODUCTION

The close agreement between the current algebra pre-
diction for the lifetime of the neutral pion and experiment
is one of the two compelling experimental signatures,
together with the Nambu-Goldberger-Treiman relation,
for the spontaneous breaking of chiral symmetry in QCD.
There is an ongoing effort by the PrimEx collaboration [1]
to improve significantly the accuracy of the lifetime mea-
surement, which is now around 8%, down to the 1%–2%
level. This motivates us to study the corrections to the
current algebra prediction.

Starting with the detailed study by Kitazawa [2], this
problem has been addressed several times in the literature
[3–11]. The approach used in Ref. [2] was to extrapolate
from the soft pion limit to the physical pion mass result
using the Pagels-Zepeda [12] sum rule method. This was
reconsidered in Ref. [10], who implemented a more elabo-
rate treatment of �0 � �� �0 mixing and also recently in
Ref. [11]. The latter work shows some disagreement con-
cerning the size of the �0 meson contribution in the sum
rule as compared to earlier results.

In this paper, we reconsider the issue of the corrections
to the current algebra result to the �0 ! 2� amplitude
from the point of view of a strict expansion as a function
of the light quark masses. This is most easily implemented
by using chiral Lagrangian methods (see e.g. [13] for a
review). The same framework also allows one to compute
radiative corrections [14]. We believe that it is somewhat
easier to control the size of the errors in this kind of

approach, which is important for exploiting the forthcom-
ing high experimental accuracy. Another interest in deriv-
ing a quark mass expansion is the ability to perform
comparisons with lattice QCD results where quark masses
can be varied. The feasibility of computing the �0 to two
photon amplitude in lattice QCD has been studied very
recently [15].
A priory, it is expected that one can make use of SUð2Þ

ChPT, i.e. expand as a function of mu, md without making
any assumption concerning ms (except that it is heavier
thanmu, md). In SUð2Þ ChPT it is often the case that chiral
logarithms provide a reasonable order of magnitude for the
size of the chiral corrections. This is the case, for instance,
for the �� scattering amplitude [16,17]. It was observed in
Refs. [3,4] that there was no chiral logarithm in the next-to-
leading order (NLO) correction to the �0 lifetime once the
amplitude is expressed in terms of the physical value of F�.
We have asked ourselves whether chiral logarithms are
present in the NNLO corrections. At this order, the coef-
ficient of the double chiral logarithm depends only on F�.
Depending on its numerical coefficient, such a term could
modify the NLO results. In order to obtain this coefficient
it is, in principle, sufficient to compute a set of one-loop
graphs containing one divergent NLO vertex [18]. For
completeness, we will perform a complete calculation of
the two-loop graphs as well. This is described in Sec. III.
In the framework of two-flavor ChPT, however, one

faces the practical problem that the polynomial terms in
mu, md at NLO involve a number of low-energy couplings
(LEC’s) which are not known. We will show that it is
possible to make estimates for the relevant combinations,
and then make quantitative predictions for the �0 decay,
under the minimal additional assumption that the mass of
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the strange quark is sufficiently small, justifying a chiral
expansion in ms. We will obtain the first two terms in the
ms expansion of the NLO SUð2Þ LEC’s. The result can be
implemented in association with a modified chiral counting
scheme, in which ms is counted as OðpÞ, which respects
the hierarchymu,md � ms. This leads to simpler formulas
than previously obtained. Finally, we will update all the
inputs needed to compute the lifetime.

II. LEADING AND NEXT-TO-LEADING ORDERS
IN THE SUð2Þ EXPANSION

In the odd-intrinsic-parity sector, the Lagrangian of low-
est chiral order has order p4, it is the Wess-Zumino [19]
Lagrangian, LWZ, which form is dictated by the ABJ
anomaly [20]. Writing the �0 ! �ðk1Þ�ðk2Þ decay ampli-
tude in the form

T ¼ e2�ðe�1; k1; e�2; k2ÞT; (1)

a tree level computation of the pion decay amplitude gives
the well known result

TLO ¼ 1

4�2F
; (2)

where F is the pion decay constant in the two-flavor chiral
limit mu ¼ md ¼ 0. At leading order one can set F ¼ F�

in Eq. (2). According to the Weinberg rules [18] for ChPT,
the NLO corrections are generated from:
(a) One-loop diagrams with one vertex taken fromLWZ

and other vertices from theOðp2Þ chiral Lagrangian.
These diagrams were first computed in Refs. [3,4].

(b) Tree diagrams having one vertex fromLWZ and one
vertex from the Oðp4Þ chiral Lagrangian.

(c) Tree diagrams from the Oðp6Þ Lagrangian in the
anomalous-parity sector, LW

ð6Þ.
The classification of a minimal set of independent terms in
this Lagrangian was initiated in Refs. [21,22]. We will use
here the result of Ref. [23] who further reduced the set to
23 terms in the case of three flavors and to 13 independent
terms in the case of two flavors (this result was also
obtained in Ref. [24]). The list, in the case of two flavors,
is recalled below:

LW
6;Nf¼2 ¼ �����fcW1 h	þ½f���; u�u��i þ cW2 h	�ffþ��; u�u�gi þ cW3 ih	�fþ��fþ��i þ cW4 ih	�f���f���i

þ cW5 ih	þ½fþ��; f����i þ cW6 hfþ��ih	�u�u�i þ cW7 ihfþ��ihfþ��	�i þ cW8 ihfþ��ihfþ��ih	�i
þ cW9 ihfþ��ihh��u�u�i þ cW10ihf�þ�ihf���u�u�i þ cW11hfþ��ihfþ��h

�
�i þ cW12hfþ��ihf�þ�f���i

þ cW13hr�fþ��ihfþ��u�ig: (3)

The relations between the bare and the renormalized cou-
plings may be written as [23]

cWi ¼ cWr
i ð�Þ þ �W

i

ðc�Þd�4

16�2ðd� 4Þ (4)

with logðcÞ ¼ �ðlogð4�Þ � �þ 1Þ=2 as usual in ChPT
(note that the couplings cWr

i have dimension ðmassÞ�2).
The coefficients �W

i vanish for i ¼ 1 . . . 5 and the remain-
ing ones read [23]

�W
6 ¼ 3�; �W

7 ¼ 3�; �W
8 ¼ � 3

2
�;

�W
9 ¼ 6� �W

10 ¼ �18�; �W
11 ¼ 12�;

�W
12 ¼ 0; �W

13 ¼ �12�;

(5)

with

� ¼ 1=ð384�2F2Þ: (6)

The above results for �W
i were obtained by using, in the

ordinary sector at p4, the chiral Lagrangian term propor-
tional to l4 which differs from the form originally used in
Ref. [25]

L ðorigÞ
l4

¼ il4
4
hu�	��i (7)

by a term proportional to the equation of motion

L l4 ¼ LðorigÞ
l4

þ il4
4

�
	̂�

�
r�u

� � i

2
	̂�

��
: (8)

If one uses LðorigÞ
l4

then, in the odd-intrinsic-parity sector,
the coefficients with labels 6, 7, and 8 are modified to ~cWi
[7,26]. The relations between ~cWi and cWi are easily worked
out by performing a field redefinition,

~c W
6 ¼ cW6 � Nc

128�2

l4
F2

~cW7 ¼ cW7 þ Nc

256�2

l4
F2

~cW8 ¼ cW8 � Nc

512�2

l4
F2

:

(9)

In the present work, we use the original LðorigÞ
l4

in our
calculations but we will express the final result in terms
of cWr

i rather than ~cWr
i , making use of the relations (9)

[which will prove slightly more convenient below when we
perform a matching with the SUð3Þ expansion].
Returning to the �0 decay amplitude, the contributions

from the one-loop Feynman diagrams can be shown to be
absorbed into the reexpression of F into F� [3,4], the
physical pion decay constant at order p4, such that the
decay amplitude including the NLO corrections reads
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TLOþNLO ¼ 1

F�

�
1

4�2
þ 16

3
m2

�ð�4cWr
3 � 4cWr

7 þ cWr
11 Þ

þ 64

9
Bðmd �muÞð5cWr

3 þ cWr
7 þ 2cWr

8 Þ
�
;

(10)

where B ¼ �limmu¼md¼0h �uui=F2 and m2
� denotes the

mass squared of the neutral pion which, at this order, is
equal to M2 ¼ Bðmd þmuÞ. Equation (10) shows that the
decay amplitude at NLO receives a contribution propor-
tional to the isospin breaking mass differencemd �mu. As
can be seen from Eqs. (5) the two combinations of chiral
couplings which enter into the expression of TNLO are
finite. The expression of TLOþNLO therefore involves no
chiral logarithm. The chiral corrections to the current
algebra result are purely polynomial in mu, md and are
controlled by four coupling constants from Eq. (3). In order
to estimate quantitatively the effects of the NLO correc-
tions, we will show below that it is useful to express these
couplings as an expansion in powers of the strange quark
mass. Before doing so, let us now investigate the presence
of chiral logarithms, which could possibly be numerically
important, in the NNLO corrections.

III. �0 DECAY TO NNLO IN THE TWO-FLAVOR
EXPANSION

We must calculate now a) the one-loop Feynman dia-
grams with one vertex involving an NLO chiral coupling,
either li or c

W
i and b) the two-loop Feynman diagrams with

one vertex taken from the LO Wess-Zumino Lagrangian
and the other one taken from the Oðp2Þ chiral Lagrangian.
It is convenient the use the following representation for the
chiral field

U ¼ 
þ i
~� � ~�

F
; 
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~�2

F2

s
(11)

(since, in this representation, there is no �4� vertex at LO).
At the order considered, all the reducible diagrams are
generated from wave function renormalization. The ex-
pression for the WF renormalization constant Z [corre-
sponding to (11)] was first given by Bürgi [27],

Z1=2 ¼ 1� TM

2F2
þ 1

F4

�
� 1

8
T2
M þM4

2

�
�
rZ þ _T2

MQ
Z � _TM

X3
i¼1

liQ
Z
i

�
þ B2ðmd �muÞ2

� ð�8F2ðc7 þ c9Þ þ _TMl7Þ
	

(12)

with

TM ¼ ðM2Þððd=2Þ�1Þ�ð1� d
2Þ

ð4�Þd=2 ; _TM ¼ dTM

dM2
; (13)

(d ¼ 4þ 2w). We have indicated explicitly here the con-
tributions proportional to ðmd �muÞ2 for completeness
because isospin breaking contributions play an important
role for the �0 decay amplitude. We will also need the
expression for the chiral expansion of F� at order p6 (from
[28])

F�

F
¼ 1þ 1

F2
½M2l4 � TM� þM4

F4

�
rF þ _T2

MQ
F

� _TM

X4
i¼1

liQ
F
i

	
þ 8B2ðmd �muÞ2

F2
ðc7 þ c9Þ:

(14)

The numerical parameters QZ and QF which appear above
read

QZ ¼ 1
96ð96� 464wþ 1185w2Þ;

QF ¼ � 1
192ð240� 656wþ 1125w2Þ (15)

and will need the following relations obeyed by the nu-
merical parameters QZ

i and QF
i

QF
1 ¼ �1

2
QZ

1 ; QF
2 ¼ �1

2
QZ

2 ;

QF
3 ¼ QZ

3 ¼ 2; QF
4 ¼ 1

2ð1þ wÞ :
(16)

Finally, the entries rZ and rF in Eqs. (12) and (14) represent
combinations of coupling constants from the Oðp6Þ chiral
Lagrangian. The �0 amplitude involves the combination
rZ þ 2rF which is expressed in terms of a single p6 cou-
pling, called c6 in the classification of Ref. [29]

rZ þ 2rF ¼ �64F2c6: (17)

The two-loop one-particle irreducible diagrams which one
must compute [using the representation (11)] are shown in
Fig. 1. It turns out to be possible to express all of them
analytically in terms of known special functions by com-
bining the methods exposed in Ref. [30] with integration
by parts methods. We give the results corresponding to the
two diagrams (f) and (g), which are the most difficult ones,
in Appendix A.
Collecting all the pieces together, we find that the ex-

pression for the NNLO contribution to the �0 decay am-
plitude into two photons has the following expression,
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F�TNNLO ¼� M4

24�2F4

�
1

16�2
L�

�
2 þ M4

16�2F4
L�

�
3

256�4

þ 32F2

3
ð2cWr

2 þ 4cWr
3 þ 2cWr

6 þ 4cWr
7 � cWr

11 Þ
	

þ 32M2Bðmd �muÞ
48�2F4

L�½�6cWr
2 � 11cWr

3

þ 6cWr
4 � 12cWr

5 � cWr
7 � 2cWr

8 � þM4

F4
�þ

þM2Bðmd �muÞ
F4

�� þB2ðmd �muÞ2
F4

���;

(18)

where L� represents the chiral logarithm

L� ¼ log
m2

�

�2
(19)

and �þ, ��, ��� can be expressed as follows in terms of
renormalized chiral coupling constants,

�þ¼ 1

�2

�
�2

3
dWrþ ð�Þ�8cr6�

1

4
ðlr4Þ2þ

1

512�4

�
�
�983

288
�4

3
ð3Þþ3

ffiffiffi
3

p
Cl2ð�=3Þ

�	

þ16

3
F2½8lr3ðcWr

3 þcWr
7 Þþ lr4ð�4cWr

3 �4cWr
7 þcWr

11 Þ�

��¼64

9
½dWr� ð�ÞþF2lr4ð5cWr

3 þcWr
7 þ2cWr

8 Þ�
���¼dWr��ð�Þ�128F2l7ðcWr

3 þcWr
7 Þ: (20)

Here, the notation dWr refer to combinations of couplings
from the NNLO Lagrangian (i.e. of order p8) in the
anomalous sector.
A few remarks are in order concerning this calculation.

First, concerning nonlocal divergences, i.e. terms of the
form M4 logðM2Þ=ðd� 4Þ, we have verified that those
which are generated from the two-loop diagrams are can-
celed exactly by those generated from the one-loop dia-
grams proportional to li, c

W
i as expected from theWeinberg

consistency conditions. The divergences that are left are
proportional to M4, M2ðmd �muÞ and ðmd �muÞ2. They
are canceled by the contributions, at tree level, from the
chiral Lagrangian of order p8 in the anomalous sector. We
have denoted the three independent combinations ofOðp8Þ
chiral couplings by dWþ , dW� , and dW��. Our calculation
shows that the relation between these and the correspond-
ing renormalized combinations must be as follows,

dWþ ¼ ðc�Þ2ðd�4Þ

F2

�
dWrþ ð�Þ ��2

�
� 17

3

�
��

�
�11lr1

� 7lr2 �
1

2
lr3 �

3

2
lr4 �

53

4608�2
þ 16�2F2ð�4cWr

2

� 2cWr
3 � 4cWr

6 � 2cWr
7 þ cWr

11 Þ
�	

dW� ¼ ðc�Þ2ðd�4Þ

F2
½dWr� ð�Þ ��F2ð�18cWr

2 � 23cWr
3

þ 18cWr
4 � 36cWr

5 � cWr
7 � 2cWr

8 Þ�

dW�� ¼ ðc�Þ2ðd�4Þ

F2

�
dWr��ð�Þ þ�l7

�2

�
: (21)

Equation (18) shows that chiral logarithms are indeed
present at NNLO. The coefficient of the dominant one, as
can be shown quite generally, depends only on F. The
coefficient of the subdominant chiral logarithm has one
part depending only on F and another one depending on
the NLO chiral couplings cWr

i . From a numerical point of
view, the contribution from the dominant chiral logarithm
turns out to be very small, of the order of a few per mille.
This lack of enhancement could indicate a fast conver-
gence of the chiral perturbation series. In this respect, the
detailed formula (18) could be used in association with
results from lattice QCD simulations, in which the quark
massesmu,md are larger than the physical ones and can be

(a) (b)

(c) (d) (e)

(f) (g)

FIG. 1. Two-loop Feynman graphs (one-particle irreducible)
contributions to the �0 ! 2� amplitude.
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varied. This would allow one to determine the relevant
combinations of chiral couplings. In the following section
we discuss an alternative, more approximate method, to
estimate these combinations.

IV. CHIRAL EXPANSION IN ms

From now on, we assume that the mass of the strange
quark is sufficiently small, such that the chiral expansion in
ms is meaningful. One can then calculate the �0 lifetime
using the three-flavor chiral expansion. Instead of doing so
directly, as it remains true that mu, md � ms, it is instruc-
tive to start from the SUð2Þ expression, Eq. (18) and
perform a chiral expansion of the couplings cWi as a func-
tion ofms. A priory, one expects expressions of the follow-
ing form to arise

cWr
i ¼ �i

ms

þ
�
�i þ

X
a

�iaC
Wr
a þ �i log

B0ms

�2

�
þOðmsÞ;

(22)

where CWr
a , a ¼ 1 . . . 24 are the coupling constants of the

NLO Lagrangian in the anomalous sector in the SUð3Þ
expansion [23] and B0 ¼ limms¼0B. Analogous expansions

were established in Ref. [31] for the SUð2Þ couplings B, F
and lri . This problem was reconsidered recently in Ref. [32]
in which the NNLO terms in that expansion have been
derived. Also in Ref. [33] the ms expansions of the SUð2Þ
LEC’s in the electromagnetic sector were studied. In order
to generate such expansions one can work in the SUð2Þ
chiral limit mu ¼ md ¼ 0, compute sets of correlations
functions having SUð2Þ flavor structure in both the SUð2Þ
and the SUð3Þ chiral expansions and equate the expres-
sions. The authors of Ref. [32] have shown how to perform
this matching at the level of the generating functionals. In
the SUð3Þ generating functional, one must use external
sources s, p, v�, a� which correspond to those used in

the SUð2Þ functional embedded into 3� 3 matrices. Since
there is no source for strangeness, the classical SUð3Þ
chiral field involves the three pions �a and the � field
but no kaons

Ucl ¼ exp
i�a�a

F0

exp
i��8

F0

(23)

(F0 being the pion decay constant in the three-flavor chiral
limit). Using the equation of motion one can express the
field �cl in terms of an SUð2Þ chiral building-block [32,33]

�clffiffiffi
3

p
F0

¼ ih	�i
�
� 1

16msB

�
þOðp4Þ: (24)

The terms proportional to �cl thus generate contributions
proportional to 1=ðmsBÞ. These can be also seen as result-
ing from � meson propagators in tree diagrams. Besides,
Eq. (24) shows that �cl counts as Oðp2Þ in the SUð2Þ
counting. Inserting Ucl from Eq. (23) in the SUð3Þ Wess-
Zumino action and expanding to first order in �cl we

obtain,

L � ¼ � iNc

48�2

�clffiffiffi
3

p
F0

�����

�
1

2
hfþ��u�u�i

� 3

8
ihfþ��fþ��i þ 3

4
ihfþ��ihfþ��i

� 1

8
ihf���f���i

�
: (25)

This allows one to deduce the leading terms, which behave
as 1=ms, in the expansion of the couplings cWr

i . Next, the
terms proportional to ðmsÞ0 are generated from three
sources.
(1) From the SUð3Þ Lagrangian LW

6 , by inserting Ucl

(with �cl set to zero), which gives contributions
proportional to LEC’s CWr

i .
(2) From one-loop irreducible graphs with one vertex

taken from the Wess-Zumino action and having one
kaon or one eta running in the loop.

(3) From corrections to the � pole contributions stem-
ming from tadpoles or from vertices proportional to
the Oðp4Þ couplings Li.

The results are presented in Eqs. (26) below and (B1) in
Appendix B.
Let us now examine the applications of this exercise to

the problem of the �0 lifetime. As seen in sec. II the NLO
corrections involve two independent pieces, one propor-
tional to m2

� and one to Bðmd �muÞ, and they are con-
trolled by two combinations of the four couplings cWr

3 , cWr
7 ,

cWr
8 and cWr

11 . For these, we take into account the first two

terms in the ms expansion which read

cWr
3 ¼ �3

2c0 þ CWr
7 þ 3CWr

8 þOðmsÞ
cWr
7 ¼ 3

2c0 � 3CWr
8 þ 1

4C
Wr
22 þOðmsÞ

cWr
8 ¼ 3

4c0 þ 1
2C

Wr
7 þ 3CWr

8 � 1
8C

Wr
22 þOðmsÞ

cWr
11 ¼ CWr

22 þOðmsÞ;

(26)

where

c0 ¼ 1

32�2

�
� 1

16Bms

þ 2

F2
0

�
3Lr

7 þ Lr
8

� 1

512�2

�
LK þ 2

3
L�

��	
(27)

and

LK ¼ log
msB0

�2
; L� ¼ LK þ log

4

3
: (28)

At this point, one observes that by using the ms expansion,
we have expressed four SUð2Þ couplings in terms of three
SUð3Þ ones. This might look as a modest improvement.
Fortunately, the combinations relevant for the �0 lifetime
at NLO actually involve only two couplings CWr

7 , CWr
8

while CWr
22 drops out.
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Let us now consider the terms proportional to m4
� and

m2
�ðmd �muÞ. One can see from Eq. (18) that they involve

four more LEC’s, cWr
2 , cWr

4 , cWr
5 , cWr

6 . It makes sense here

to retain only the part of these LEC’s which are dominant
in the ms expansion, i.e. the 1=ms part,

cWr
2 ’ ~c0; cWr

4 ’ � 1

2
~c0; cWr

5 ’ 0;

cWr
6 ’ �~c0; ~c0 ¼ � 1

512�2Bms

(29)

and we perform a similar approximation in Eq. (26). We
will also retain the part involving the LEC CW

8 as it will

appear that the size of this coupling is comparable to that of
the 1=ms terms. Inserting the ms expansions (26) and (29),
in the SUð2Þ chiral expansion of the �0 decay amplitude
(18) we obtain the following expression

TðLOþNLOÞþ ¼ 1

F�

�
1

4�2
� 64

3
m2

�C
Wr
7 þ 1

16�2

md �mu

ms

�
�
1� 3

2

m2
�

16�2F2
�

L�

	
þ 32Bðmd �muÞ

�
�
4

3
CWr
7 þ 4CWr

8

�
1� 3

m2
�

16�2F2
�

L�

�

� 1

16�2F2
�

�
3Lr

7 þ Lr
8 �

1

512�2

�
�
LK þ 2

3
L�

��	
� 1

24�2

�
m2

�

16�2F2
�

L�

�
2
�
:

(30)

A modified SUð3Þ chiral counting
Some comments are in order concerning Eq. (30). In

particular, one expects it to be related to the formula that
one can compute starting from SUð3Þ ChPT. Such a com-
putation was performed, e.g. in Ref. [7]. In SUð3Þ ChPT
mu, md and ms are counted on the same footing,

mu; md �ms �Oðp2Þ ½standard SUð3Þ�: (31)

In the physical situation, however, mu, md � ms. For
processes which involve only pions this can be accounted
for by adopting the following modified counting,

mu; md �Oðp2Þ; ms �OðpÞ
½modified SUð3Þ�: (32)

The formula (30) for the �0 lifetime can be argued to be a
consistent expansion in this modified counting. One notes
first that all the corrections must be proportional to mu, md

since the starting point is exact in the SUð2Þ chiral limit.
The formula (30) includes the leading corrections of order
p (which must be proportional to mu=ms, md=ms) as well
as the subleading corrections of order p2 (which must be
proportional to mu, md). It also includes the corrections of

order p3 which are logarithmically enhanced (which must
be proportional to mums, mdms multiplied by logðmu þ
mdÞ as well as the corrections of order p4 which are double
logarithmically enhanced. Obviously, by retaining loga-
rithmically enhanced terms at a given order instead of the
full set of terms, one introduces a chiral scale dependence
into the amplitude. Clearly, one should use a value of the
scale of the order of the kaon or the eta mass for this
approximation to make sense. Finally, we have verified
that, starting from the expression for the amplitude in
standard SUð3Þ at NLO obtained in Ref. [7], and expanding
in powers ofmu=ms,md=ms one recovers exactly the terms
of order p, p2 and p3 logðp2Þ in the modified SUð3Þ
expansion (32). In practice, the expression (30) is some-
what simpler than the standard SUð3Þ NLO expression and
contains the double logarithm term. The latter turns out to
be numerically small so that the two expressions are es-
sentially equivalent in practice. In order to derive a nu-
merical prediction from Eq. (30) one needs inputs for: F�,
ðmd �muÞ=ms, Bðmd �muÞ and CW

7 , C
W
8 . We will give an

update on the determination of these quantities in Sec. V
In addition to the chiral corrections induced by the quark

masses, one should also take electromagnetic corrections
into account. These have been considered in Ref. [7],
where the correction terms of order e2 and of order
e2ðmu þmdÞ=ms have been computed. Here, it is consis-
tent to retain only the term of order e2, its expression in
terms of Urech’s chiral couplings [14] is recalled,

Te2 ¼
e2

4�2F�

�
� 4

3
ðKr

1 þ Kr
2Þ þ 2Kr

3 � Kr
4

� 10

9
ðKr

5 þ Kr
6Þ þ

C

32�2F4
�

ð5þ 4L� þ LKÞ
�
: (33)

This term is defined such that the �0 ! 2� amplitude is
expressed in terms of F�0 which is the neutral pion decay
constant in pure QCD andm2

� which is the physical neutral
pion mass (i.e. including EM corrections).

V. PHENOMENOLOGICAL UPDATES

Let us now update the various inputs needed to calculate
the numerical prediction for the �0 lifetime in ChPT.

A. The pion decay constant

An obviously essential input here is F�, the value of the
pion decay constant. Marciano and Sirlin [34] have eval-
uated the radiative corrections in the process �þ !
�þ�ð�Þ decay rate such that it is expressed in terms of
F�þ the charged pion decay constant in pure QCD. In pure
QCD the difference between F�0 and F�þ is quadratic in
the quark mass difference md �mu and can be expressed
as follows in ChPT,
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F�þ

F�0









QCD
�1 ¼ B2ðmd �muÞ2

F4
�

�
�16cr9ð�Þ

� l7
16�2

�
1þ log

m2
�

�2

�	
’ 0:710�4: (34)

A rough numerical evaluation has been made by using
leading order 1=ms estimates

l7 ’ F2
�

8Bms

; cr9 ’ � 3

2

�
F2
�

Bms

�
2
: (35)

Equation (34) shows that the difference between F�þ and
F�0 is negligibly small for our purposes, and wewill ignore
it. In the expression of Ref. [34] for the radiative correc-
tions, one constant term, called C1, was left undetermined.
Matching with the ChPT expansion of the �þ decay rate at
Oðp4Þ one can express C1 in terms of chiral logarithms and
a set of chiral couplings [35]. The latter can then be
estimated using chiral sum rules and resonance saturation
[36]. Using these results and the updated value of Vud from
Ref. [37]

Vud ¼ 0:974 18ð26Þ; (36)

we find

F� ¼ 92:22� 0:07 MeV: (37)

B. Bðmd �muÞ, ðmd �muÞ=ms, 3L7 þ Lr
8

Because of the Kaplan-Manohar invariance [38] it is not
possible to determine independently the quark mass ratios
and the couplings L7, L8 in ChPT using low-energy data.
One may use an input from lattice QCD, e.g. on the quark
mass ratio r ¼ 2ms=ðmu þmdÞ. Using the results obtained
in Ref. [39] as well as those from other recent QCD
simulations which are collected in table XVI of that refer-
ence and averaging, one can deduce

r 	 2ms

mu þmd

¼ 28:0� 1:5: (38)

Using this input for r, we may treat terms linear in the
quark masses in NLO ChPT expressions as follows,

ðmu þmdÞB0 ’ m2
�; msB0 ¼ r

2
m2

�: (39)

The value of the LEC combination 3L7 þ Lr
8, can be

deduced using r and standard Oðp4Þ ChPT formulas for
the pseudoscalar meson masses [31]

3L7 þ Lr
8ð�Þ ¼ ð0:10� 0:06Þ10�3 ð� ¼ M�Þ: (40)

Concerning the quark mass difference md �mu, we will
use the recent determination made in Ref. [40]. It is based
on the � ! 3� decay amplitude which is an isospin break-

ing observable with very small sensitivity to electromag-
netic effects [41,42]. The amplitude has been computed at
order p6 in ChPT by the authors of Ref. [40] and they
deduce the following result,1

R 	 ms � m̂

md �mu

¼ 42:2 (41)

(with m̂ ¼ ðmu þmdÞ=2). No figure for the uncertainty is
given. We have estimated it by noting that the main source
of uncertainty in this result comes from the unknown
values of the coupling constants Cr

i from the Oðp6Þ
Lagrangian. For these couplings, it was shown that simple
resonance models are sometimes misleading [44] because
of their strong scale dependence. We have estimated the
order of magnitude of the uncertainty by taking the differ-
ence between the value of R obtained from a p6 calculation
and the value obtained from a p4 calculation and dividing
by two, which gives

�R ’ 5: (42)

Using (38), (41), and (42), we obtain2

md �mu

ms
¼ ð2:29� 0:23Þ10�2;

Bðmd �muÞ ¼ ð0:32� 0:03ÞM2
�0 :

(43)

C. CW
7

This constant obeys a sum rule in terms of the form
factor associated with the photon-photon matrix element of
the pseudoscalar current [2]. A simple resonance saturation
approximation in this sum rule gives a relation betweenCW

7

and the�ð1300Þmass and its couplings to the pseudoscalar
current (dm) and to two photons (g�0) [7]

CW
7 ’ g�0dm

M2
�0

: (44)

Recent experimental data by the Belle collaboration has
confirmed the extreme smallness of the coupling of the

1An alternative evaluation of R can be made based on the
Kþ � K0 mass difference. As one can see from Table 6 of
Ref. [40] this method tends to give values of R smaller than Eq.
(41). The calculation of the Kþ � K0 mass difference in ChPT,
however, has uncertainties related to the couplings Ci and also
from estimates of the electromagnetic contributions, beyond the
Dashen low-energy theorem, which have some model depen-
dence. One could also use isospin violation in Kl3 form factors.
For an updated discussion of these effects, see [43].

2In Ref. [45] a determination of the quantity B0ðmd �muÞ
from � ! 3�0 was proposed, based on using both the decay rate
and the slope parameter �, obtaining B0ðmd �muÞ ¼ ð0:25�
0:02ÞM2

�0 . This appears somewhat smaller than the result in Eq.
(43) but one should keep in mind that the ratio B0=B, while
expected to be close to 1, is not accurately known.
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�ð1300Þ meson to two photons [46]

��0!2� < 72 eV: (45)

The validity of the resonance saturation approximation in
this case might be questioned since, in the sum rule, CW

7 ,
could pick up more important contributions from energies
higher than the mass of the �ð1300Þ resonance. There has
been several attempts at estimating this high-energy con-
tribution to CW

7 in the literature: Using a quark-hadron
duality picture, Kitazawa [2] argue that this contribution
arises from a triangle diagram and should thus be propor-
tional to the constituent quark mass (this result was applied
to � decay in Ref. [47]). In QCD, one expects the con-
stituent quark mass to be momentum dependent (see e.g.
[48]) and to decrease at high momenta, which is not taken
into account in this evaluation. A calculation of the triangle
diagram in the NJL model was performed in Ref. [49]. As
this model implements a momentum cutoff, however, it
rather concerns the low-energy rather than the high-energy
contribution to CW

7 . An alternative idea was proposed in
Ref. [50] based on a minimal resonance saturation model-
ing of the three-point function VVP and enforcing a correct
asymptotic matching to the OPE expansion of this three-
point function. The result, unfortunately, cannot be shown
to remain stable under inclusion of more resonances. None
of the estimates, finally, appear to be quantitatively very
compelling. It seems however quite safe to assume that the
coupling CW

7 should be suppressed, say by 1 order of
magnitude, as compared to the coupling CW

8 . Indeed, in

an analogous sum rule representation,CW
8 picks up a strong

contribution from the �0 resonance. We will therefore take

jCW
7 j< 0:1jCW

8 j: (46)

D. CW
8

Having assumed the validity of SUð3Þ ChPT, together
with the result (46) of the above discussion on CW

7 , one can
determine CW

8 from the experimental information on the

� ! 2� decay width. According to the PDG3 [53]

��!2� ¼ 0:510� 0:026 keV; (47)

while the corresponding amplitude computed in ChPT,
including LO and NLO contributions, reads

T� ¼ e2ffiffiffi
3

p
F�

�
F�

4�2F�

ð1þ x�Þ � 64

3
m2

�C
W
7

þ 256

3
ðr� 1Þm2

�

�
1

6
CW
7 þ CW

8

�
þOðm2

sÞ
	
; (48)

where x� encodes isospin breaking effects

x� ¼ ffiffiffi
3

p ð��1 þ e2ð�� � �1ÞÞ ’ �0:023; (49)

using notations and results from Refs. [7,31]. We need an
input for F� in Eq. (48). Up to corrections quadratic in ms,

F� is linearly related to F� and FK [31],

F� ¼ 4FK � F�

3
þ m2

�

96�2F�

�
2ðrþ 1Þ log2ð2rþ 1Þ

3ðrþ 1Þ
� log

2rþ 1

3

	
þOðm2

sÞ: (50)

The review in Ref. [54] quotes the following result for FK

from averaging over recent experiments on �l2 and Kl2

decays

FKVus

F�Vud
¼ 0:27599ð59Þ: (51)

Assuming exact Cabibbo-Kobayashi-Maskawa quark-
mixing matrix (CKM) unitarity we can deduce FK and
then F�

FK ¼ 109:84� 0:63; F� ¼ 118:4� 8:0 ðMeVÞ:
(52)

The error on F� is dominated by the Oðm2
sÞ contributions

in Eq. (50). We have estimated that it should be smaller
than the OðmsÞ contribution by a factor of 3. Finally, using
these results in conjunction with Eqs. (47) and (48) we
determine the coupling CW

8

CW
8 ¼ ð0:58� 0:20Þ10�3 ðGeV�2Þ: (53)

We have estimated that the uncertainty stemming from
unknown Oðm2

sÞ chiral corrections in the � decay ampli-
tude to be of order 30% compared to theOðmsÞ corrections.

E. Numerical result

The numerical results for the current algebra amplitude
and the corrections according to the modified chiral SUð3Þ
counting, using the updated inputs presented above, are
collected in Table I. One remarks that the Oðp2Þ contribu-
tion is larger than theOðpÞ one. This is induced by the size

TABLE I. Current algebra contribution to the �0 ! 2� decay
width (in eV) and corrections of various chiral orders using the
modified SUð3Þ counting.
CA OðpÞ Oðp2Þ Oðe2Þ Oðp3 logpÞ Oðp4log2pÞ
7.76 0.09 0.29 �0:05 0.005 �0:004

3The PDG now rejects the Primakoff experiment [51] which
gave a smaller result. A rediscussion of that experiment has
recently appeared [52].
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of the LEC CW
8 . Expressed as a sum rule, CW

8 is dominated

by the �0 contribution, which can be written [7]

CW
8 ’ g�0 ~dm

M

 2

�0
; (54)

where M


�0 is the mass of the �0 in the chiral limit. In the

large Nc limit one has,

g�0 ¼
ffiffiffi
6

p
128�2F0

; ~dm ¼ F0

2
ffiffiffi
6

p ; CW
8 ’ 1

256�2M

 2

�0
:

(55)

The enhancement of CW
8 can then be understood, qualita-

tively, as a large Nc effect. In practice, the value of C
W
8 that

one can estimate using the resonance saturation formula
(54) agrees reasonably well with the one deduced from a
ChPT expansion of the � ! 2� amplitude4 [Eq. (53)]. The
enhancement of the Oðp2Þ contribution is therefore a well
understood effect and does not signal a breakdown of the
expansion. Table I shows that the logarithmically enhanced
contributions of order p3 logðpÞ and p4log2ðpÞ are quite
small in practice and tend to cancel each other. Finally, the
prediction for the �0 decay width reads,

��0!2� ¼ ð8:09� 0:11Þ eV: (56)

The two main sources for the uncertainty are:md �mu (�
0:05) and CW

8 (� 0:098). We have added the errors in

quadrature. Compared to Ref. [7] the main modification
in the input is the value of the � ! 2� width in the PDG.
The branching fraction for the 2� decay mode is ð98:798�
0:032Þ% [53] (the most sizable other decay being the
Dalitz mode �0 ! �eþe�, for review see e.g. [55]). Our
result, Eq. (56), then corresponds to the following value for
the �0 lifetime

��0 ¼ ð8:04� 0:11Þ10�17 s: (57)

VI. SUMMARY

In this paper, we have reconsidered the chiral expansion
of the �0 ! 2� amplitude. At first, we have focused on the
two-flavor expansion. We have considered the expansion
beyond the known NLO (which we have expressed in terms
of the coupling constants introduced in Ref. [23]). We have
computed all the loop graphs which contribute at NNLO.
As expected, we found that the divergences are renorma-
lizable by Lagrangian terms of chiral order p8 in the
anomalous sector. We found that chiral logarithms are
present at this order. For physical values of the quark

masses mu, md these NNLO corrections turn out to be
negligible. Even the terms enhanced by logarithms are
numerically very small in practice. Our final expression
[Eq. (18)] could be useful in association with lattice QCD
simulations in which unphysical quark masses can be used.
This would provide a direct evaluation of the SUð2Þ cou-
plings. As an interesting application, one could deduce
(using also experimental data such as from PrimEx) a
precision determination of F� uncorrelated with the value
of Vud. Such simulations have not yet been performed for
correlation functions in the anomalous sector, but this
would be of obvious interest.
In order to perform a more detailed phenomenological

analysis at present, it is possible to enlarge the chiral
expansion from SUð2Þ to SUð3Þ. This allows one to derive
some information on the SUð2Þ coupling constants. We
have derived the expansion of the SUð2Þ couplings cWr

i as a
function of ms up to OðmsÞ and inserted this result into the
SUð2Þ expansion formula. The leading, 1=ms terms in this
expansion, reflect the influence of�0 � �mixing. We then
implemented a modified chiral counting in which ms is
counted as OðpÞ rather than Oðp2Þ. This counting accom-
modates the fact that mu, md are significantly smaller than
ms. The formulas obtained in this way are somewhat
simpler and easier to interpret than those obtained in the
usual chiral counting but the numerical results are essen-
tially identical.
We have updated the inputs to be used in the chiral

formula. A key input is the value of F�, the pion decay
constant in pure QCD. Another important input is the value
of the � ! 2� decay width, which we use to determine the
value of the SUð3Þ LEC CW

8 . In the chiral approach, this

LEC encodes the effect of �� �0 mixing. Our result
agrees well with that of approaches which account for ��
�0 mixing explicitly, using large Nc arguments in addition
to chiral counting [2,9,10]. The overall uncertainty is
dominated by the unknown terms of order p3, i.e. propor-
tional to mums, mdms in the chiral expansion. As a final
remark, we note that F� is determined from the weak
decay of the �þ assuming the validity of the standard
model. Some recently proposed Higgsless variants can
accommodate deviations from the standard V � A cou-
pling of quarks to the W as large as a few percent [56].
Precision measurements of the �0 lifetime can provide
constraints on such models.
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APPENDIX A

We give here the result of our computation of diagrams
1(f) and 1(g) in Fig. 1:

F�TðfÞ ¼ M4

�2F4

�
� 11

4

�
�2 þ�

�
L� � 31

1056�2

�
þ 1

2
L2
�

� 31

1056�2
L� þ 1

6144�2

	
� 467

98 304�4

�
; (A1)

F�TðgÞ ¼ M4

�2F4

�
7

3

�
�2 þ�

�
L� � 59

1792�2

�
þ 1

2
L2
�

� 59

1792�2
L� þ 1

6144�2

	
þ 1

512�4

�
�
3

ffiffiffi
3

p
Cl2

�
�

3

�
� 4

3
ð3Þ � 1135

576

	�
; (A2)

with

� ¼ 1

16�2ðd� 4Þ : (A3)

APPENDIX B

We collect below the expansions of the SUð2Þ couplings
cWr
i as a function of ms up to OðmsÞ. The notations LK, L�

and c0 having been introduced in Eqs. (27) and (28) these
expansions read

cWr
1 ¼ CWr

2 � 1

2
CWr
3 þ 1

4

1

ð32�2Þ2F2
0

�
LK þ 1þ 1

3
L�

�

cWr
2 ¼ c0 þCWr

4 � 1

2
CWr
5 þ 3

2
CWr
6

cWr
3 ¼�3

2
c0 þCWr

7 þ 3CWr
8

cWr
4 ¼�1

2
c0 þCWr

9 þ 3CWr
10

cWr
5 ¼ CWr

11 þ 1

8

1

ð32�2Þ2F2
0

�
LK þ 1þ 2

3
L�

�

cWr
6 ¼�c0 þCWr

5 � 3

2
CWr
6 � 1

2
CWr
14 � 1

2
CWr
15

cWr
7 ¼ 3

2
c0 � 3CWr

8 þ 1

4
CWr
22

cWr
8 ¼ 3

4
c0 þ 1

2
CWr
7 þ 3CWr

8 � 1

8
CWr
22

cWr
9 ¼�CWr

13 þCWr
14 þCWr

15 � 3

2

1

ð32�2Þ2F2
0

ðLK þ 1Þ

cWr
10 ¼ CWr

19 �CWr
20 �CWr

21 �CWr
22 þ 3

2

1

ð32�2Þ2F2
0

ðLK þ 1Þ

cWr
11 ¼ CWr

22 cWr
12 ¼ 0

cWr
13 ¼�2CWr

22 þ 1

ð32�2Þ2F2
0

ðLK þ 1Þ: (B1)
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Abstract

Present and planned experiments motivate new theoretical study of properties of light unflavoured pseudoscalar meson

decays. An overview including details on two-loop calculation in SU(3) limit is given.

Keywords: chiral perturbation theory, radiative decay of π0, higher-order correction

1. Introduction

We would like to study unflavoured decays of light

neutral pseudoscalar mesons. This reduces the parti-

cle content to π0, η and eventually η′, ruling out K0

decays that violate hypercharge conservation and are

suppressed by G2
F

(two-photon decays are further sup-

pressed by α2 compared to hadronic ones). Standard

model is thus reduced to QCD (extended eventually

only by QED corrections) which is successfully de-

scribed by an effective theory known as chiral pertur-

bation theory (ChPT).

The π0 meson being the lightest meson cannot decay

to other hadronic states. Its dominant decay mode (with

more than 98% probability) is π0 → γγ and is connected

with the Adler-Bell-Jackiw triangle anomaly [1]. The

π0γγ vertex is closely connected with other allowed π0

decay modes: e+e−γ, e+e−e+e−, e+e− (with branching

ratios [2]: 0.01174(35), 3.34(16)×10−5, 6.46(33)×10−8,

respectively). In order to describe these processes with

sufficient precision one can employ two-flavour ChPT at

appropriate order. This can simply incorporate correc-

tions to the current algebra result attributed either to mu,d

masses or electromagnetic corrections with other effects

hidden in the low energy constants (LECs). Naively,

∗Speaker
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tract MRTN-CT-2006-035482 (FLAVIAnet), European Community-

Research Infrastructure Integrating Activity (HadronPhysics2, Grant

Agreement n. 227431) and the Swedish Research Council.

Email addresses: bijnens@thep.lu.se (Johan Bijnens),

karol.kampf@thep.lu.se (Karol Kampf)

two-flavour ChPT should converge very fast and next-

to-leading order (NLO) should be sufficient from the

point of view of today’s experiments. However, as

we are exploring the anomalous sector which is poorly

known, phenomenologically richer SU(3) ChPT must

be also used in order to obtain numerical prediction for

low energy constants. This on the other hand enables to

describe η→ γγ in the same framework.

The motivation for our study is both theoretical and

experimental. As mentioned, π0 → γγ represents

(probably) the most important example of the triangle

anomaly in quantum field theory. It is interesting that

at NLO the amplitude gets no chiral corrections from

the so-called chiral logarithms [3] and this motivate the

calculation at NNLO even for SU(2) ChPT as was done

in [4]. It was found that there are indeed chiral log-

arithms generated by two-loop diagrams, but they are

relatively small. It turns one’s attention back to NLO

order and contributions proportional to LECs. To this

end the phenomenology of η→ γγ and inevitably η−η′
mixing must be employed. We intend to do the full

two-loop calculation of both π0 → γγ and η → γγ in

three-flavour ChPT. As a first step we will present here

the calculation and result in the SU(3) limit, i.e. for

mu = md = ms.

From the experimental side let us mention the PrimEx

experiment at JLab. It is designed to perform the most

precise measurement of the neutral pion lifetime using

the Primakoff effect (for first run results see [5]). After

JLab’s 12 GeV upgrade the extension of the experiment

for η and η′ radiative width measurements is planned.

Neutral pion decay modes were studied with interesting
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results at KTeV and it is promising to measure them in

forthcoming NA62 at CERN.

2. Chiral expansion

Let us briefly summarize main points of ChPT, for de-

tails see [6]. Starting point is the chiral symmetry of

QCD, called chiral because it acts differently on left and

right-handed quarks, which is exact for mu = md = ms =

0:

G = SU(3)L × SU(3)R,

where we dropped U(1)A which is not a good symme-

try due the anomaly. However, this anomaly is propor-

tional to a divergence which must thus vanish in any

order of perturbation theory. We are touching the prob-

lem referred as U(1) problem and we will avoid fur-

ther discussion assuming that the ninth axial current is

really not conserved and a possible divergence term is

not present in QCD Lagrangian (referred itself as strong

CP problem). Assuming further confinement it can be

proven that the axial subgroup of G is spontaneously

broken and the associated 8 Goldstone bosons can be

identified with pions, kaons and eta. The real non-zero

masses of u, d, s quarks, explicit symmetry breaking, are

added as a perturbation and this expansion around the

chiral limit together with the momentum expansion is

referred to as ChPT. Standard power counting assumes

that mu,d,s = O(p2), and Lorentz invariance implies that

only even powers of derivatives (p) can occur. The lead-

ing order (LO) thus starts at O(p2) and one can have

only tree diagrams. The next-to-leading order (NLO) is

O(p4) and can include one-loop contribution and sim-

ilarly next-to-next-to-leading order (NNLO) is O(p6)

and can have up to two-loop diagrams. The last impor-

tant point to be discussed here is the so-called chiral or

external anomaly which would correctly incorporate the

full symmetry pattern of QCD. It is connected with the

fact that quarks carry also electromagnetic charge. In

fact some Green functions of QCD (e.g. VVA) are not

invariant under chiral symmetry, the difference was cal-

culated first by Bardeen [1] and incorporated to the ac-

tion by Wess, Zumino and Witten (WZW) [7]. This ac-

tion starts at O(p4) and thus the anomalous vertex shifts

our counting by one order (i.e. NNLO here is O(p8)).

3. Decay modes

We are primarily interested now in two-photon decays

of π0 and η. Nevertheless let us summarize shortly their

“spin-off” products, namely

• π0 → e+e−γ so called Dalitz decay is important in

normalization of rare pion and kaon decays. This

was supported by its precise and stable prediction:

for 30 years its official PDG value was same (based

on LAMPF experiment). However the last edition

changed this number, based on ALEPH results and

so it will have impact in other measurements via

the normalization. The differential decay rate is

discussed in [8].

• π0 → e+e−e+e− or double Dalitz decay enables ex-

perimental verification of π0 parity. KTeV set re-

cently new limits on parity and CPT violation [9]

• π0 → e+e− depends directly only on fully off-shell

π0γ∗γ∗ vertex. KTeV measurement [10] is off by

3.5σ from the existing models. It can set valuable

limits on models beyond SM

• π0 → invisible(γ), exotics and violation processes

were also studied in π0 decays. It includes mainly

decay to neutrinos but is also interesting in beyond

SM scenarios (neutralinos, extra-light neutral vec-

tor particle, etc.)

(for more references cf. [2]). The same modes are also

possible in η decays, see e.g. [11].

4. LO and NLO calculation

In the chiral limit the decay width is fixed by axial

anomaly with the result

Γ(π0 → γγ)CA =
m3
π0

64π

(

αNC

3πFπ

)2

≈ 7.76 eV. (1)

It is in excellent agreement with experiment, which is

the opposite situation to two-photon η decay. In SU(3)

limit (and also in chiral limit) the two studied ampli-

tudes are connected by Wigner-Eckart theorem
√

3Tη =

Tπ0 , i.e.

Γ(η→ γγ)CA =
m3
η

64π

(

αNC

3
√

3πFπ

)2

≈ 173 eV, (2)

which is far from experiment 0.510 ± 0.026 keV [2].

(Note that using Fη instead of Fπ makes this difference

even larger.) The difference is attributed to η−η′ mixing.

At NLO order, apart from tree diagrams coming from

WZW and O(p6) odd-parity Lagrangian, we should in-

clude two one-loop topologies (depicted in Fig.1).
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Figure 1: One-loop corrections to two photon pseudoscalar decays. A (red)
dot represents the odd-parity coupling.

The full one-loop calculation based on wave function

renormalization and chiral expansion of masses and de-

cay constants leads to:

Γ(π0 → γγ)NLO = Γ(π0 → γγ)CA×
[

1 − 256π2

3
m2
πC

Wr
7

]2
,

Γ(η→ γγ)NLO = Γ(η→ γγ)CA×
[F2
π

F2
η

+
256π2

9
(3)

×
(

(4m2
K − 7m2

π)C
Wr
7 + 24(m2

K − m2
π)C

Wr
8

)]2
.

Note, as anticipated, the very simple, polynomial form

of the results without logarithms. This is especially ac-

complished by correct replacement of F0, i.e. F0 → Fπ
and Fη in π0 and η decay respectively.

It is clear from (3) that η−η′ mixing must be hidden in

CW
8

LEC. A rough estimate using resonance saturation

suggests that CW
8

must be much bigger than CW
7

. For

further discussion see [12] and [4].

5. Two-loop calculation in SU(3) limit

The O(p8), (or equivalently NNLO, or two-loop) cal-

culation was already performed for π0 → γγ in two-

flavour ChPT. Natural extension for SU(3) will supply

us with both π0 and also η → γγ and enable to test

and verify chiral expansion in odd intrinsic sector (cf.

study for even sector [13]). It is, however, clear that

this calculation will be difficult: we are facing instead

of one, three different scales in overlapping two-loop

diagrams (sunset and vertex). Big effort was already

given in the simpler two-point (sunset) case, and we still

lack general analytic form. We plan to calculate it using

method described in [14] but we need to go beyond the

loop integrals computed there. There exists, however,

apart from chiral limit, one non-trivial limit which can

be used to obtain analytical result as it depends again

only on one scale. It is an SU(3) limit, where we set

mu = md = ms = m � 0. This we can simply connect

with O(p2) mass: M
(0)2
π = 2Bm.

The current algebra prediction, fixed by the anomaly,

is free from any mass contribution. The mass enters

explicitly at NLO order only, and therefore to obtain

NNLO order we need to connect O(p2) parameter with

physical SU(3) mass.

M2
π

M2
= 1 +

M2
π

F2
π

[L

3
− 8(3Lr

4 + Lr
5 − 6Lr

6 − 2Lr
8)
]

+ O(M4
π)

with chiral logarithm defined as (4π)2L = ln M2
π/μ

2. On

the other hand connection of F0 with physical SU(3)

decay constants is needed up to NNLO order

Fπ

F0

= 1 +
M2
π

F2
π

(12Lr
4 + 4Lr

5 −
3

2
L) +

M4
π

F4
π

fNNLO +O(M6
π).

The NNLO part was already calculated in general

SU(NF) in [15] and for our NF = 3 is given by

fNNLO =
λF

(4π)2
+ λ̄F +KF + rF +

1561L

288(4π)2
− 421

2304(4π)4

with

λF = −2Lr
1 − 9Lr

2 − 7/3Lr
3

λ̄F = 8(3Lr
4 + Lr

5)(21Lr
4 + 7Lr

5 − 24Lr
6 − 8Lr

8)

KF = 1/2(34K1 + 13K2 + 13K3 − 45K4 − 15K5)

rF = 8(Cr
14 + 3Cr

15 + 3Cr
16 +Cr

17)

andKi = (4Lr
i−ΓiL)L using renormalization coefficients

taken from [6].

As already mentioned, for SU(3) limit π0 and η de-

cays are related by Wigner-Eckart theorem and we thus

need to calculate only one of these processes. Follow-

ing Weinberg power-counting at NNLO we need to con-

sider a) tree graphs with either a1) one vertex from odd

O(p8) sector or a2) one from odd (even) O(p6) and sec-

ond from even (odd) O(p4); b) one-loop diagrams with

one vertex with NLO coupling (even or odd) and c) the

two-loop graphs with one vertex taken from the WZW

Lagrangian. All other vertices should be generated by

the O(p2) chiral Lagrangian.

Case a2) is treated via wave function renormalization.

However, the odd-sector Lagrangian at O(p8) for three

flavours has not yet been studied. The connected LEC

will be denoted as DW
i

and set only a posteriori to cancel

all local divergences. Concerning one-loop Feynman

diagrams, we have already summarized them in Fig.1,

for NNLO the topology stays the same, we need just to

insert higher-order vertices. Non-trivial part of calcu-

lation is hidden in two loops. The Feynman diagrams

to deal with are summarized in Fig.2. Corrections (tad-

poles) to propagators are not depicted. Note that the

most of diagrams are the same as in the two-flavour

case. As anticipated by the nature of the anomaly there

is one new topology (the last one diagram in Fig.2) with
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anomalous vertex without direct photon insertion (so-

called Chesire-cat smile). Of course, into these graphs

one should insert all possible combinations of pions,

kaons and eta (fortunately in SU(3) limit with identical

masses).

Figure 2: Two-loop corrections to two photon pseudoscalar decays.

We summarize the preliminary result in the following

form (T is normalized as T CA = 1 at LO, cf. eqs (3)).

F4
π

m4
π

T NNLO =
λ

(4π)2
+ (4π)2λ̄ + (4π)2K + r +

329L

96(4π)2

+
9
√

3Cl2(π/3) − 4ζ(3) − 7093
1152

(4π)4
(4)

with

λ = 0

λ̄ = −256

3
F2

0CWr
7 (3Lr

4 + Lr
5 − 3Lr

6 − Lr
8)

K = 4KW

4 + 10KW

7 − 2KW

9 + 4KW

11 − 1
2
KW

13 − 2KW

14 − K
W

15

r = −32Cr
12 − 96Cr

13 − 4DWr
lim

andKW

i
= (4F2

0
CWr

i
− η(3)

i
L)L using renormalization co-

efficients taken from [16]. The O(p8) chiral coupling

which would cancel local divergences in SU(3) limit is

denoted by DW
lim

and our exact calculation fixes its de-

composition

DW
lim =

(cμ)2(d−4)

F2
0

[

DWr
lim(μ) + Λ2 127

12
+ Λ
(208

3
Lr

1 + 32Lr
2

+
248

9
Lr

3 + 36Lr
4 + 12Lr

5 +
91

128(4π)2
+ (4πF0)2(8CWr

4

+
100

9
CWr

7 − 4CWr
9 + 8CWr

11 −CWr
13 − 4CWr

14 − 2CWr
15 )
)

]

.

6. Conclusion

We have summarized here our preliminary results con-

cerning a two-loop calculation of π0(η) → γγ in SU(3)

limit (where mu,d = ms = m). The word preliminary

refers also to the fact that independent calculation with

physical masses is in progress [17] and it should al-

low us to crosscheck here presented result in this limit.

The possibility of studying two-photon decays of light-

meson on lattice was very recently demonstrated in [18].

The simple analytical result can be very useful in this di-

rection as one can vary masses without changing LECs.
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Using the large NC approximation we have constructed the most general chiral resonance Lagrangian in

the odd-intrinsic parity sector that can generate low-energy chiral constants up to Oðp6Þ. Integrating out

the resonance fields theseOðp6Þ constants are expressed in terms of resonance couplings and masses. The

role of �0 is discussed and its contribution is explicitly factorized. Using the resonance basis we have also

calculated two QCD Green functions of currents, hVVPi and hVASi, and found, imposing high-energy

constraints, additional relations for resonance couplings. We have studied several phenomenological

implications based on these correlators which provided, for example, a prediction for the �0-pole

contribution to the muon g� 2 factor: a�
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I. INTRODUCTION

As is well known, there are two regimes where the QCD
dynamics of the current correlators is well understood. The
first one corresponds to the high energies where the asymp-
totic freedom allows us to use the perturbative approach in
terms of the strong coupling constant �s and where the
asymptotics of the correlators for large Euclidean momenta
is governed by operator product expansion (OPE). The
second well-understood region is that of low external
momenta where the dynamics is constrained by the sponta-
neously broken chiral symmetry. As a consequence, the
dominant contributions to the correlators and related am-
plitudes of the processes of interest come from the octet of
the lightest pseudoscalar mesons (�, K, �) which are the
corresponding (pseudo)Goldstone bosons (GBs). The cor-
relators can be studied here by means of chiral perturbation
theory (ChPT) [1–3], which is the effective Lagrangian
field theory for this region, in terms of systematic simul-
taneous expansion in powers (and logs) of the momenta
and quark masses. The applicability of ChPT extends up to
the hadronic scale �H � 1 GeV, which corresponds to the
onset of non-Goldstone resonances and where the ChPT
expansion fails to converge.

OPE and ChPT provide us with an asymptotic behavior
of the correlators in different regimes; however, both these
approaches need further nonperturbative information
which is not known from the first principles, namely, the
values of the vacuum condensates for OPE and the values
of the effective low-energy constants (LECs) for ChPT. In
the latter case the LECs parametrize our lack of detailed
information on the nonperturbative dynamics of the de-
grees of freedom above the hadronic scale �H and are
connected with the order parameters of the spontaneously
broken chiral symmetry. The predictivity of ChPT heavily
relies on their determination. At the order Oðp6Þ, which
corresponds to the recent accuracy of the next-to-next-to-

leading order (NNLO) ChPT calculation (for a compre-
hensive review and further references see [4]), 90þ 4
LECs in the even-intrinsic parity sector [5,6] and 23
LECs in the odd sector1 [7,8] appear in the effective
Lagrangian. Though only special linear combinations of
them are relevant for particular physical amplitudes, the
uncertainty in their estimation is usually the weakest point
of the interconnection between the theory and experiment.
A dispersion representation of those correlators which

are order parameters of the chiral symmetry breaking (and
therefore do not get any genuine perturbative contribution)
enables us to make use of information on the asymptotics,
both in the low- and high-energy regions, and to relate the
unknown LECs to the properties of the corresponding spec-
tral functions in terms of the chiral sum rules [2,9–12].
These are usually assumed to be saturated by the low-lying
resonant states; such an assumption (known as the reso-
nance saturation hypothesis) connects the LECs to the
phenomenology of resonances in the intermediate-energy
region 1 GeV � E< 2 GeV. Though the inclusion of only
a finite number of resonances has been questioned in the
literature [13,14], it proved to be consistent in the Oðp4Þ
casewith other phenomenological determinations of LECs.
The necessary ingredient of the resonance saturation

approach to the determination/estimation of LECs is the
phenomenological information on the physics of the lowest
resonances. It can be conveniently parametrized by means
of a suitable phenomenological Lagrangian. Along with
the chiral symmetry, the guiding theoretical principles for
its construction are those based on the large NC expansion
of QCD [15]. Within the leading order in 1=NC, the corre-
lators of the quark bilinears are given by an infinite sum of
contributions of narrow meson resonance states, the mass

1These numbers of LECs are relevant for an SUð3Þ variant of
ChPT. In the SUð2Þ case we get 53þ 4 LECs in the even-
intrinsic parity sector and 5(13) LECs in the odd sector.
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of which scales as OðN0
CÞ and the interaction of which is

suppressed by an appropriate power of 1=
ffiffiffiffiffiffiffi
NC

p
. Such a

large NC representation of the correlators can be recon-
structed using the effective Lagrangian L1, including the
GB and an infinite tower of resonance fields with couplings

of the order OðN1�n=2
C Þ, according to the number n of

meson fields in the interaction vertices. The 1=NC expan-
sion is equivalent to the quasiclassical expansion; thus at
the leading order only the tree graphs contribute and each
additional loop is suppressed by one power of 1=NC.

Though L1 is not known from first principles, the
information on the large NC hierarchy of the individual
operators together with general symmetry assumptions
allows one to construct all the relevant terms necessary
to determine the LECs in the leading order of the large NC

expansion up to a given chiral order. The large NC approxi-
mation of LECs can then be formally achieved by means of
integrating out the resonance fields from the Lagrangian
L1. One gets LECs expressed in terms of the (unknown
from the first principles) masses and couplings of the
infinite tower of resonances.

The large NC inspired phenomenological Lagrangian
suitable for the resonance saturation program for LECs
can then be obtained as an approximation to L1, where
only a finite number of resonances are kept. Such a trun-
cation ofL1 seems to be legitimate at low energies, where
the contribution of the higher resonances is expected to be
suppressed. However, the lack of an effective cutoff scale
which could play a role here analogous to �H for ChPT
prevents us from interpreting the resonance phenomeno-
logical Lagrangian as a well-defined effective theory in the
usual sense. It is rather a QCD inspired phenomenological
model which should share as many common features with
QCD as possible. The latter principle generally puts vari-
ous constraints on its effective couplings. For instance, the
finite number of resonances involved generally corrupts the
asymptotic behavior of the correlators required by pertur-
bative QCD and OPE. However, it is natural to expect that,
for the correlators which are order parameters of the
spontaneous chiral symmetry breaking, the latter behavior
extends down to the region of applicability of the phe-
nomenological Lagrangian; thus, it is desirable to ensure
the correct asymptotics by means of adjusting its cou-
plings. This is, however, not enough to fix all of them
(often it is not even possible to satisfy all the OPE require-
ments at once by a finite set of resonances); therefore,
further phenomenological input is needed.

At the leading order in 1=NC, the above strategy for the
determination of LECs is essentially equivalent to a similar
approach known as the minimal hadronic ansatz (MHA)
[16]. Within this approach the correlators are approximated
by a meromorphic function with a correct pole structure
corresponding to the resonance poles, and the free parame-
ters are fixed, both by OPE constraints and by experimental
inputs. Only a minimal number of resonances are taken

into account, just those necessary to satisfy all the relevant
OPE (when only the lowest resonances in each channel are
included, the method is called the lowest meson dominance
(LMD) ansatz [12,16], but in this case not all OPE con-
straints are guaranteed to be met [12,17]). Matching this
ansatz to the low-energy ChPT expansion enables us to
determine relevant linear combinations of LECs.
The method based on the resonance Lagrangian is,

however, a little bit more general than the MHA or
LMD. On one hand, it enables us to determine (at least
in principle) the individual LECs, not only their linear
combinations connected with particular correlators; on
the other hand, it provides a natural framework for going
beyond the leading order in 1=NC by means of integrating
out the resonances at one-loop level [18–22], which also
correctly takes into account the renormalization scale
dependence of the LECs.
The above principles of construction of the phenome-

nological Lagrangian with resonances have been known
since 1989 when the seminal paper [23] on what is now
known as resonance chiral theory (R�T) was published. In
this paper the resonance saturation of the Oðp4Þ LECs was
studied systematically, while the Oðp6Þ LECs of the even-
intrinsic parity sector of ChPT was systematically ana-
lyzed 17 years later in [24]. For a recent review and further
references see [25].
The study of the odd-intrinsic parity sector of R�T with

vector resonances and corresponding saturation of the
LECs for the Oðp6Þ anomaly sector of ChPT started in
[12,26–28], where axial-vector resonances were also in-
cluded and where the particular operator basis of the R�T
Lagrangian contributing to the correlators of interest was
constructed. The influence of pseudoscalar resonances on
the odd-intrinsic parity LECs has been studied in [11,12]
and the corresponding part of the R�T Lagrangian has
been constructed in [29] (see also [30]). In this paper we
resume this effort and construct the most general odd-
intrinsic parity sector of the R�T Lagrangian, including
the lowest multiplets of the vector Vð1��Þ, axial-vector
Að1þþÞ, scalar Sð0þþÞ, and pseudoscalar Pð0�þÞ reso-
nances. In the 0�þ channel we thus introduce, besides
the GB, the lowest non-GB resonance multiplet; therefore,
we go beyond the LMD approximation (our correlators
then correspond to what is called in [12] the LMDþ P
ansatz). The resulting Lagrangian is then used for the
lowest-resonance saturation of the Oðp6Þ anomaly sector
of ChPT. We also illustrate the general strategy of match-
ing the correlators with OPE on the concrete example of
hVVPi and hVASi three-point functions and discuss related
phenomenological applications.
The paper is organized as follows. In Sec. II we fix our

notation and briefly mention the principles of the construc-
tion of the Lagrangian of the R�T. Section III is devoted to
the presentation of the complete basis of the odd-intrinsic
parity sector of R�T. In Sec. IV we discuss related
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phenomenological applications, and in Sec. V we give the
results of the resonance saturation of the odd-intrinsic
parity Oðp6Þ LECs. A brief summary is provided at the
end. The large NC counting of the relevant operators is
discussed in Appendix A, and the operator redefinitions
and reduction of the Lagrangian is studied in Appendix B.

II. THE RESONANCE CHIRAL THEORY

The LECs represent nonperturbative characteristics of
the low-energy QCD correlators in the chiral limit and, as a
consequence, their values do not depend on the quark
masses. In what follows we will therefore work in the limit
mq ! 0 without loss of generality. This simplifies the

calculations of the LEC saturation considerably.
The standard basic building block which includes the

octet of the GB (here we assume that �0 has already been
integrated out of our effective Lagrangian; for details see
Appendix A) is

uð�Þ ¼ exp

�
i

�ffiffiffi
2

p
F

�
; (1)

where � ¼ 1ffiffi
2

p �a�a, �i being a standard Gell-Mann

matrix and

�ðxÞ ¼

1ffiffi
2

p �0 þ 1ffiffi
6

p �8 �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p �8 K0

K� K0 � 2ffiffi
6

p �8

0
BBBB@

1
CCCCA:
(2)

One can form the basic covariant tensors [5,31,32]

u� ¼ uy� ¼ ifuyð@� � ir�Þu� uð@� � i‘�Þuyg;
�� ¼ uy�uy � u�yu; f

��
� ¼ uF

��
L uy � uyF��

R u;

h�� ¼ r�u� þr�u�; (3)

with � ¼ 2B0ðsþ ipÞ, where s and p stand for the scalar
and pseudoscalar external sources. The vector source v�

and the axial-vector source a� are then related to the right
and left sources r� and ‘� by the relations v� ¼ 1

2 ðr� þ
‘�Þ and a� ¼ 1

2 ðr� � ‘�Þ, respectively, and F��
L;R are the

corresponding left and right field-strength tensors:

F��
R ¼ @�r� � @�r� � i½r�; r��;

F
��
L ¼ @�l� � @�l� � i½l�; l��: (4)

The covariant derivative is defined by

r�X ¼ @� þ ½��; X�; (5)

where the chiral connection is

�� ¼ 1
2fuyð@� � ir�Þuþ uð@� � il�Þuyg: (6)

Inspired by the largeNC limit the GBs couple to massive
Uð3Þ multiplets of the types Vð1��Þ, Að1þþÞ, Sð0þþÞ, and
Pð0�þÞ, denoted generically as a nonet field R. This field
can be decomposed into the octet R8 and singlet R0 via

R ¼ 1ffiffiffi
3

p R0 þ
X
i

�iffiffiffi
2

p Ri: (7)

The explicit form of the vector multiplet Vð1��Þ is

V�� ¼

1ffiffi
2

p 	0 þ 1ffiffi
6

p !8 þ 1ffiffi
3

p !1 	þ K�þ

	� � 1ffiffi
2

p 	0 þ 1ffiffi
6

p !8 þ 1ffiffi
3

p !1 K�0

K�� �K�0 � 2ffiffi
6

p !8 þ 1ffiffi
3

p !1

0
BBBB@

1
CCCCA

��

(8)

(and similarly for other types). Here we use the antisym-
metric tensor field for the description of the spin-1 reso-
nances. The reason is that, though it is, in principle,
equivalent to the Proca field formalism [see [33,34] for
the general discussion of the equivalence at the orders
Oðp4Þ and Oðp6Þ, respectively, and [35] for a particular
discussion of the one-loop equivalence], the antisymmetric
tensor has several advantages. This tensor field naturally
couples to the lowest order Oðp2Þ chiral building blocks
without derivatives, and therefore it does not require addi-
tional contact terms necessary to compensate the wrong
high-energy behavior of the amplitudes and form factors of

interest.2 Moreover, when using the Proca field without
such contact terms, it is not possible to saturate the Oðp4Þ
LECs in the even-intrinsic parity sector. On the other hand,
there is a contribution generated by the Proca fields for the
Oðp6Þ LECs of the odd-intrinsic parity sector (see [24,34]).
However, integrating out the resonances from the antisym-
metric tensor field Lagrangian generates a much richer
structure of the resulting effective chiral Lagrangian which
covers almost all the structures resulting from the Proca
field formalism. A consistent way to incorporate the ad-
vantages (if any) of both approaches at the same time is the
first-order formalism introduced in [34]. The price to pay

2In fact, for some correlators calculated within the Proca field formalism, the OPE constraints cannot be satisfied unless operators of
the higher chiral order [i.e. those which contribute only to Oðp8Þ and higher LECs] are taken into account.
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here is its relative complexity. The discussion of such a
general case is beyond the scope of this paper, and we leave
this subject open for future studies.

According to the large NC counting of interaction verti-
ces with resonances, we can organize the LagrangianLR�T

of R�T as an expansion in the number of resonance fields,

L R�T ¼ LGB þLRR;kin þLR þLRR0 þLRR0R00 þ . . . :

(9)

Here LGB contains only Goldstone bosons and external
sources and includes terms with the same structure as
the usual SUð3ÞL � SUð3ÞR ChPT Lagrangian, but the
coupling constants are generally different. The resonance
kinetic terms LRR;kin, which are of the order OðN0

CÞ, have
the form

L RR;kin ¼ �1
2hr�R��r�R

��i þ 1
4M

2
RhR��R

��i
þ 1

2hr�R0r�R
0i � 1

2M
2
R0 hR0R0i; (10)

where R stands for V�� and A�� while R0 stands for S and
P. The terms LR, LRR0 , and LRR0R00 collect the interaction
vertices linear, quadratic, and cubic in the resonance fields,
respectively.

There is also another type of expansion for LR�T. It is

based on the ordering according to the contribution to
chiral coupling constants. Within this counting, the reso-
nance fields are effectively of the order

R ¼ Oðp2Þ; (11)

while the chiral building blocks with GBs are only counted
in the usual way. For LGB it is therefore just the usual
chiral power counting. Combining this with the large NC

expansion (9) we can write

LR�T ¼ Lð2Þ
GB þLð4Þ

GB þLð4Þ
RR;kin þLð6Þ

RR;kin þLð4Þ
R

þLð6Þ
GB þLð6Þ

R þLð6Þ
RR0 þLð6Þ

RR0R00 . . . ; (12)

where the subscript ðnÞ stands for the contribution to the
OðpnÞ chiral constant. For our further discussion we will
explicitly need

L ð2Þ
GB ¼ F2

4
hu�u� þ �þi: (13)

The leading order of the odd-intrinsic parity sector ofLð4Þ
GB

coincides with the Wess-Zumino-Witten (WZW)

Lagrangian [36] Lð4Þ
WZW. For the explicit form of the even

parity partLð4Þ
GB and the completeLð6Þ

GB, see [3,5,8] (see also

[7]).

The most general interaction Lagrangian Lð4Þ
R which is

relevant for the saturation of the Oðp4Þ LECs [23] is linear
in resonance fields, namely,

Lð4Þ
R ¼ cdhSu�u�i þ cmhS�þi þ idmhP��i

þ i
dm0

NF

hPih��i þ FV

2
ffiffiffi
2

p hV��f
��
þ i

þ iGV

2
ffiffiffi
2

p hV��½u�; u��i þ FA

2
ffiffiffi
2

p hA��f
��� i; (14)

and all the couplings are of the order OðN1=2
C Þ. This is true

also for the first term of the second line with two traces
which is enhanced due to the�0 exchange [see Appendix A,
especially (A20)]. This term with dm0 (depending solely on
the singlet component of P) has not yet been studied in the
phenomenology, as it always contributes to the saturation
of LECs together with the large NC enhanced �0 exchange.
The complete operator basis of the Oðp6Þ even-intrinsic
parity of R�T has been constructed in [24].
Integrating out the resonance fields at the tree level we

reconstruct the Lagrangian L�PT of ChPT, schematically

exp

�
i
Z

d4xL�PT

�
¼

Z
DR exp

�
i
Z

d4xLR�T

�
: (15)

The integration over R can be effectively done by insertion
of the solution REOM of the classical equations of motion
into the LagrangianLR�T and keeping only the terms up to

(and including) the order Oðp6Þ. Let us expand REOM as

REOM ¼ Rð2Þ þ�ð4ÞR; (16)

where Rð2Þ ¼ Oðp2Þ and�ð4ÞR starts atOðp4Þ. Then Rð2Þ is,
at the same time, the solution of the leading order equa-

tions of motion (i.e. those derived fromLð4Þ
R�T � Lð4Þ

RR;kin þ
Lð4Þ

R ). Inserting now the expansion (16) into LR�T, the

�ð4ÞR can contribute to the order Oðp6Þ only when REOM

is inserted into the leading order LagrangianLð4Þ
R�T and then

expanded at Rð2Þ up to the terms linear in �ð4ÞR. However,
the coefficients of these linear terms are just equal to the

leading order equations of motion calculated at Rð2Þ and
therefore they vanish. As a consequence, effectively up to
the order Oðp6Þ the integration over R is equivalent to the

insertion only of the solution Rð2Þ of the lowest order
equation of motion into the Lagrangian LR�T. Because

the resonance field R couples to the Oðp2Þ building blocks

inLð4Þ
R and the resonance masses are counted as Oðp0Þ, we

are consistent with the chiral counting (11). Finally, we get

L �PT ¼ Lð2Þ
� þLð4Þ

� þLð6Þ
� þ . . .

with an explicit separate contribution from the Goldstone
boson part of the R�T LagrangianLGB and the leading NC

contribution of the resonances

L ð2Þ
� ¼ Lð2Þ

GB; (17)

L ðn>2Þ
� ¼ LðnÞ

GB þLðnÞ
�;R; (18)

where, particularly,
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L ð4Þ
�;R ¼ ðLð4Þ

RR;kin þLð4Þ
R ÞjR!Rð2Þ ;

Lð6Þ
�;R ¼ ðLð6Þ

RR;kin þLð6Þ
R þLð6Þ

RR0 þLð6Þ
RR0R00 ÞjR!Rð2Þ :

The structures of the Lagrangians LðnÞ
GB and LðnÞ

�;R are iden-

tical to LðnÞ
� ; just the couplings are different. Then for

generic chiral coupling constants k� ofL�PT, we may write

k� ¼ kGB þ k�;R; (19)

where k�;R corresponds to the resonance contribution. The

usual hypothesis of resonance saturation assumes the ex-
istence of the saturation scale � at which the renormalized
kGB is very small and where the resonance contribution
k�;R is expected to be dominant.

The above resonance saturation strategy and the con-
struction of all relevant operators have already been
studied. The basis for all relevant resonance operators
contributing to Oðp4Þ and their contribution to LECs
were established in [23], while in [24] the authors presented
the extension to Oðp6Þ in the even-intrinsic parity sector.

In this paper, we complete this effort by presenting the
construction of the basis and resonance saturation atOðp6Þ
in the odd-intrinsic parity sector.

III. LAGRANGIAN OF R�T IN THE
ODD-INTRINSIC PARITY SECTOR

Before starting the construction of resonance mono-
mials, let us summarize the structure of the pure
Goldstone boson part of the odd-intrinsic sector. The lead-
ing order starts atOðp4Þ and the parameters are set entirely
by the chiral anomaly. The Lagrangian is given by [36]
(see also [8]; note we have the same convention for the
Levi-Civita symbol, i.e. 
0123 ¼ 1):

LWZW ¼ NC

48�2

����

�Z 1

0
d�h�

�
�
�

�
�

�
�

�

F
i

� ihW����ðU; l; rÞ �W����ð1; l; rÞi
�
; (20)

with

W����¼L�L�L�R�þ 1
4L�R�L�R�þ iL��L�R�

þ iR��L�R�� i�L�R�L�þ�R��L�

���R�L�þ�L�L��þ�L��L�� i�L�L�L�

þ 1
2�L��L�� i���L��ðL$RÞ;

where we have defined

L� ¼ ul�u
y; L�� ¼ u@�l�u

y; R� ¼ uyr�u;

R�� ¼ u@�r�u
y; � ¼ fuy; @�ug

and ðL $ RÞ also stands for the  $ y interchange. The

power � indicates a change of u to u� ¼ expði��=ðF ffiffiffi
2

p ÞÞ.
Concerning the Oðp6Þ part, we will stick to the form
introduced in [8]. Let us only note that we will drop the

index r and the explicit dependence on the renormalization
scale � from the corresponding LECs CW

i , but one should
have in mind that any CW

i studied in this text is a renor-
malized LEC with a scale set to some reasonable value
(�M	, M�0) to make good sense of the following study.

For the construction of the operator basis in the odd-
intrinsic parity sector of R�T, we use the same tools as
employed in [24], where the reader can find further details.
First we construct all possible Hermitian operators built
from chiral building blocks and resonance fields that are
invariant under C, P, and chiral transformations. Then, in
order to find the independent basis, we use the following.
(1) Partial integration.
(2) Equation of motion,

r�u� ¼ i

2

�
�� � 1

NF

h��i
�
: (21)

(3) Bianchi identities,

r���	 þr��	� þr	��� ¼ 0

for ��� ¼ 1

4
½u�; u�� � i

2
fþ��: (22)

(4) Shouten identity [37],

g	
���� þ g�
���	 þ g�
��	�

þ g�
�	�� þ g�
	��� ¼ 0: (23)

(5) Identity,

r�h�� ¼ r�h
�
� � 2½u�; i���� � r�f���: (24)

All relevant operators in the odd parity sector can be
written in the form

O X
i ¼ "����ÔX

i����; (25)

with the basis for individual monomials ÔX
i����, where

X ¼ V, A, P, S, VV, AA, SA, SV, VA, PA, PV, VVP, VAS,
AAP; so the Lagrangian becomes

L ð6;oddÞ
R�T ¼ X

X

X
i

�X
i O

X
i : (26)

The basis of the operators ÔX
i���� is summarized in

Tables I, II, III, IV, V, VI, and VII. We have included there
only the operators relevant in the leading order in the 1=NC

expansion, i.e. operators with one flavor trace and those
with two traces that are enhanced by �0 exchange (see
Appendix A for details). This represents the main result of
our work.
As is shown in [24,34], we can further modify the

resonance Lagrangian (26). The reason is that the reso-
nance fields play merely the role of the integration
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variables in the path integral (15) and can therefore be
freely redefined without changing the physical content of
the theory. As a consequence, we can choose an appropri-
ate field redefinition in order to eliminate some subset

fOX
i gðX;iÞ2M of Oðp6Þ operators fromLð6;oddÞ

R�T and shift their

influence effectively to the Oðp6Þ terms, including the
remaining operators fOX

i gðX;iÞ2M
, and also to the higher

chiral order terms Lð>6;oddÞ
R�T , symbolically

Lð6;oddÞ
R�T ¼ X

ðX;iÞ
�X
i O

X
i ! X

ðX;iÞ=2M

�X
i O

X
i þLð>6;oddÞ

R�T : (27)

The possible new terms Lð>6;oddÞ
R�T of the order Oðp8Þ and

higher generated by such a redefinition can be neglected
because they do not contribute to theOðp6Þ LECs when the
resonance fields are integrated out. Note, however, that
after such a truncation we get a new Lagrangian,

Lð6;oddÞ
R�T ¼ X

ðX;iÞ=2M

�X
i O

X
i ; (28)

which is not equivalent to the previous one on the reso-
nance level. On the other hand, the LECs obtained from

Lð6;oddÞ
R�T coincide with those derived from Lð6;oddÞ

R�T .

The stars in Tables I, II, III, IV, V, VI, and VII indicate
those operators which can be eliminated by the resonance
field redefinitions discussed above and mean, therefore, a
redundancy of a given monomial as far as its contribution
to the resonance saturation is concerned. The details are
shown in Appendix B. Note, however, that this redundancy
concerns only the saturation and not the direct calculation
of the correlators and amplitudes with resonances in the
initial and final states. We will return to this point later on.
In the following section we will demonstrate the use of

the resonance basis for two classes of examples. The
resonance saturation will be studied in Sec. V.

IV. APPLICATIONS

In this section we illustrate applications of the

Lagrangian Lð6;oddÞ
R�T using two examples. We study two

three-point correlators, namely, hVVPi and hVASi, and
use both OPE constraints and phenomenological inputs
to fix the relevant coupling constants. In the first case we
also discuss some phenomenological applications in more
detail.

A. VVP Green function revisited

The standard definition of this correlator is

�abc
�� ðp; qÞ ¼

Z
d4xd4yeip	xþiq	yh0jT½Va

�ðxÞVb
�ðyÞPcð0Þj0i

(29)

with the vector current and the pseudoscalar density
defined by

TABLE III. Monomials with one scalar or pseudoscalar reso-
nance field.

i ÔP
i���� i ÔP

i���� i ÔS
i����

1 hPff��� ; f��� gi 4 hPu�u�u�u�i 1 hS½f��� ; u�u��i
2 ihPu�f��

þ u�i 5 hPff��
þ ; f��þ gi 2 ihS½f��

þ ; f��� �i
3 ihPff��

þ ; u�u�gi 6

TABLE II. Monomials with one axial-vector resonance field.

i ÔA
i���� i ÔA

i����

1 hA��½u�u�; uu�i 10 ihA��u�ihr���i
2 hA��½u�uu�; u�i 11 ihA��ff��� ; ��gi
3 hA��fr�h�; ugi 12 ihA��fr���; u�gi
4 ihA��½f��þ ; uu�i 13 hA��½�þ; u�u��i
5 ihA��ðf�þ uu

� � u�uf
�þ i 14 ihA��½f��þ ; �þ�i

6 ihA��ðf�þ u�u � uu
�f�þ i 15 hA��fr�f�� ; ugi

7 ihA��ðuf�þ u� � u�f�þ ui 16 hA��frf
�� ; u�gi

8 hA��ff�� ; h�gi
9 ihA��f��� ih��i

TABLE IV. Monomials with two resonance fields of the same
kind.

i Operator ÔRR
i����, R ¼ V, A Operator ÔRR

i����, R ¼ P, S

1� ihR��R��ih��i
2� ihfR��; R��g��i
3� hfrR

��; R�gu�i
4� hfr�R��; R�gui

TABLE V. Monomials with two resonance fields of different
kinds.

i Operator ÔSA
i���� i Operator ÔSV

i���� Operator ÔSP
i����

1� ih½A��; S�f��þ i 1� ih½V��; S�f��� i
2� hA��½S; u�u��i 2� ih½V��;r�S�u�i

TABLE I. Monomials with one vector resonance field.

i ÔV
i���� i ÔV

i����

1 ihV��ðh�uu� � u�uh
�Þi 11 hV��ff�	þ ; f�� gig	

2 ihV��ðuh�u� � u�h�uÞ 12 hV��ff�	þ ; h�gig	
3 ihV��ðuu�h� � h�u�uÞi 13 ihV��f��þ ih��i
4 ih½V��;r��þ�u�i 14 ihV��ff��þ ; ��gi
5 ihV��½f��� ; uu

�i 15 ihV��½f��� ; �þ�i
6 ihV��ðf�� u�u � uu

�f�� Þi 16 hV��fr�f�þ ; ugi
7 ihV��ðuf�� u� � u�f�� uÞi 17 hV��frf

�þ ; u�gi
8 ihV��ðf�� uu

� � u�uf
�� Þi 18 hV��u�u�ih��i

9 hV��f��; u�u�gi
10 hV��u���u�i
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Va
�ðxÞ ¼ �qðxÞ��

�a

2
qðxÞ; PaðxÞ ¼ �qðxÞi�5

�a

2
qðxÞ
(30)

(our convention is �5 ¼ i�0�1�2�3). This correlator was
already studied in the past; see e.g. [11,12,28,38]. Here we
provide a complete result based on ourLR�T , i.e. also with

two- and three-resonance vertices that were not considered
in [28]. Using Ward identities and Lorentz and parity
invariance, one can define

�ðpÞabc�� ¼ dabc
����p
�q��ðp2; q2; r2Þ: (31)

The OPE constraints dictate, for high values of all inde-
pendent momenta [up to possible Oð�sÞ corrections; see
[39]],

�ðð�pÞ2; ð�qÞ2; ð�rÞ2Þ ¼ B0F
2

2�4

p2 þ q2 þ r2

p2q2r2
þO

�
1

�6

�
;

(32)

whereas in the case where only two operators are close to
each other, one gets

�ðð�pÞ2; ðq� �pÞ2;q2Þ ¼ B0F
2

�2

1

p2q2
þO

�
1

�3

�
; (33)

�ðð�pÞ2;q2;ðqþ�pÞ2Þ¼ 1

�2

1

p2
�VTðq2ÞþO

�
1

�3

�
: (34)

In the following we will use only all-large-momentum
OPE (32). The reason is that, for a general correlator, not
all the high-energy constraints can be simultaneously sat-
isfied using only a finite number of resonances in the
effective Lagrangian. This statement has been proved in
[17] for the case of the hPPSi three-point function. For the
hVVPi this problem has been partially studied in [12] (see
also [38,40,41]).

By means of an explicit calculation based on Lð6;oddÞ
R�T

(the relevant Feynman graphs are depicted in Fig. 1) we get

1

B0

�R�Tðp2;q2;r2Þ¼� NC

16�2r2
þ 4F2

V�
VV
3 p2

r2ðp2�M2
VÞðq2�M2

VÞ
� 16

ffiffiffi
2

p
dmFV�

PV
3

ðp2�M2
VÞðr2�M2

PÞ
�32dm�

P
5

r2�M2
P

� 8dmF
2
V�

VVP

ðp2�M2
VÞðq2�M2

VÞðr2�M2
PÞ
þ 2F2

V

ðp2�M2
VÞðq2�M2

VÞ
½8�VV

2 ��VV
3 �

� 2
ffiffiffi
2

p
FV

r2ðp2�M2
VÞ
½p2ð�V

16þ2�V
12Þ�q2ð�V

16�2�V
17þ2�V

12Þ�r2ð8�V
14þ�V

16þ2�V
12Þ�þðp$qÞ: (35)

From OPE (32) we then get the following constraints for the couplings:

�V
14 ¼

NC

256
ffiffiffi
2

p
�2FV

; �V
16 þ 2�V

12 ¼ � NC

32
ffiffiffi
2

p
�2FV

; �V
17 ¼ � NC

64
ffiffiffi
2

p
�2FV

; �P
5 ¼ 0;

�VV
2 ¼ F2 þ 16

ffiffiffi
2

p
dmFV�

PV
3

32F2
V

� NCM
2
V

512�2F2
V

; 8�VV
2 � �VV

3 ¼ F2

8F2
V

: (36)

By employing these constraints one gets3

TABLE VI. Monomials with two resonance fields of different kinds.

i Operator ÔVA
i���� i Operator ÔPA

i���� i Operator ÔPV
i����

1� ihV��½A��; uu�i 1� hfA��; Pgf��� i 1� ihfV��; Pgu�u�i
2� ihV��ðA�uu

� � u�uA
�Þi 2� hfA��;r�Pgu�i 2� ihV��u�Pu�i

3� ihV��ðA�u�u � uu
�A�Þ 3� hfV��; Pgf��þ i

4� ihV��ðuA�u� � u�A�uÞi
5� hfV��; A�	gf�þ ig	
6� ih½V��; A����þi

TABLE VII. Monomials with three resonance fields.

i Operator ÔRRR
i����

1� hV��V��Pi
2� ih½V��; A���Si
3� hA��A��Pi

3Note that these constraints also automatically imply the fulfillment of (34). However, the requirement (33) cannot be satisfied until
�PV
3 ¼ 0, which is in contradiction with another high-energy constraint for a related pion transition form factor; see the next subsection

(cf. also [12]).
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1

B0

�R�Tðp2; q2; r2Þ ¼ F2

2

ðp2 þ q2 þ r2Þ � NCM
4
V

4�2F2

ðp2 �M2
VÞðq2 �M2

VÞr2
� 16dmF

2
V�

VVP

ðr2 �M2
PÞðp2 �M2

VÞðq2 �M2
VÞ

� 16
ffiffiffi
2

p
dmFV�

PV
3 ½ðp2 þ q2ÞM2

P � 2r2M2
V�

r2ðr2 �M2
PÞðq2 �M2

VÞðp2 �M2
VÞ

: (37)

This should be equivalent to the LMDþ P ansatz intro-
duced in [11] so that the two independent constants b and c
introduced there are directly connected with the phenome-
nological couplings �PV

3 and �VVP. Considering just vector
resonance interactions, �VVP ¼ �PV

3 ¼ 0 [or equivalently
taking the limit MP ! 1 in (35)], we can reconstruct the
LMD ansatz [12]

1

B0

�LMDðp2; q2; r2Þ ¼ F2

2
	 ðp

2 þ q2 þ r2Þ � NCM
4
V

4�2F2

ðp2 �M2
VÞðq2 �M2

VÞr2
: (38)

The result in ChPT up to Oðp6Þ at the leading order in
1=NC expansion includes two LECs from the Oðp6Þ
anomalous sector,

1

B0

�ChPTðp2;q2;r2Þ¼� NC

8�2r2
þ32CW

7 �8CW
22ðp2þq2Þ

r2
:

(39)

Comparing this with a low-energy expansion of the R�T
result (35), we give the following lowest-resonance con-
tribution to CW

7 and CW
22 (cf. also Sec. V):

CW
7 ¼ F2

Vð8�VV
2 � �VV

3 Þ
8M4

V

þ dmF
2
V�

VVP

2M2
PM

4
V

�
ffiffiffi
2

p
dmFV�

PV
3

M2
PM

2
V

� FVð2�V
12 þ 8�V

14 þ �V
16Þ

4
ffiffiffi
2

p
M2

V

þ 2dm�
P
5

M2
P

;

CW
22 ¼ � FV�

V
17ffiffiffi

2
p

M2
V

� F2
V�

VV
3

2M4
V

: (40)

Using the OPE constraints (36) we obtain

CW
7 ¼ F2

64M4
V

þ dmFVð�2
ffiffiffi
2

p
�PV
3 M2

V þ FV�
VVPÞ

2M2
PM

4
V

;

CW
22 ¼ � F2

16M4
V

þ NC

64�2M2
V

� 2
ffiffiffi
2

p
dmFV�

PV
3

M4
V

: (41)

1. Form factors

Let us define fully off-shell form factors for the P �����
vertex, where P can represent either the pion (or any other
Goldstone boson) or pseudoscalar resonance via

F P��ðp2; q2; r2Þ ¼ 1

ZP
ðr2 �m2

P Þ�ðp2; q2; r2Þ; (42)

where the Z factor interpolates between the pseudoscalar
source andP . Let us discuss in detail the�0�� form factor.
We haveZ�0 ¼ 3=2BF, and using the OPE constraints (36),
we can define (note we are working in the chiral limit)

F R�T

�0��
ðp2; q2; r2Þ ¼ 2

3

1

BF
r2�R�Tðp2; q2; r2Þ; (43)

where �R�Tðp2; q2; r2Þ was introduced in (37). For an on-
shell pion the �VVP drops out (note that this is not connected
with the chiral limit simplification) and we get a simple
result,

F R�T

�0��
ðp2; q2; 0Þ

¼ F

3

ðp2 þ q2Þð1þ 32
ffiffiffi
2

p
dmFV

F2 �PV
3 Þ � NC

4�2

M4
V

F2

ðp2 �M2
VÞðq2 �M2

VÞ
: (44)

Dropping �PV
3 we can again reconstruct the LMD ansatz,4

F R�T

�0��
ðp2;q2;0Þj�PV

3
¼0

¼F LMD
�0��

ðp2;q2;0Þ¼F�

3

p2þq2� NC

4�2

M4
V

F2
�

ðp2�M2
VÞðq2�M2

VÞ
: (45)

Using the Brodsky-Lepage (B-L) behavior for a large mo-
mentum [43,44],

B -L cond:: lim
Q2!1

F �0��ð0;�Q2;m2
�Þ � � 1

Q2
; (46)

q

r

v

p c

++= + +

v

p

FIG. 1. Feynman graphs contributing to the VVP Green function. Double lines stand for resonances and dashed lines for GBs
(double lines together with dashed lines show the sum of both possible contributions). The crossing is implicitly assumed.

4For p2 ¼ 0 we reproduce the incomplete vector meson
dominance (VMD) ansatz for the semi-off-shell form factor
studied in [42] with the free parameter c expressed in terms
of the coupling �PV

3 .
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one can arrive at the following constraint

B -L cond:: �PV
3 ¼ � F2

32
ffiffiffi
2

p
dmFV

: (47)

Before discussing a possible violation of the Brodsky-
Lepage condition, let us study the influence of the constraint
(47) on the original VVP Green function. The �R�T corre-
lator in (37)will nowdepend only on one constant,�VVP, and
we get

1

B0

�R�Tðp2; q2; r2Þ

¼ F2

2

ðp2 þ q2 þ r2Þ � NCM
4
V

4�2F2

ðp2 �M2
VÞðq2 �M2

VÞr2

þ F2

2

½ðp2 þ q2ÞM2
P � 2r2M2

V�
r2ðr2 �M2

PÞðq2 �M2
VÞðp2 �M2

VÞ

� 16dmF
2
V�

VVP

ðr2 �M2
PÞðp2 �M2

VÞðq2 �M2
VÞ

: (48)

The violation of the OPE (33) is manifest here. The remain-
ing constant �VVP will drop out for an on-shell pion in the
form factor, and one gets

B -L cond:: F R�T

�0��
ðp2; q2; 0Þ

¼ � NC

12�2F

M4
V

ðp2 �M2
VÞðq2 �M2

VÞ
: (49)

For completeness, let us also provide the ChPT result. From
(39) using (41) we have

F ChPT
�0��

ðp2; q2; 0Þ ¼ � NC

12�2F

�
1þ p2 þ q2

M2
V

�
1� 4�2F2

NCM
2
V

�
�
1þ 32

ffiffiffi
2

p dmFV

F2
�PV
3

���
(50)

and

B -L cond:: F ChPT
�0��

ðp2; q2; 0Þ ¼ � NC

12�2F

�
1þ p2 þ q2

M2
V

�
:

(51)

For the reader’s convenience let us also summarize pre-
vious results based on the VMD and LMDþ V ansätze5

[12] (see also [38] for corresponding terms in Lagrangian
formalism):

F VMD
�0��

ðp2; q2; 0Þ ¼ � NC

12�2F�

M2
V

ðp2 �M2
VÞ

M2
V

ðq2 �M2
VÞ

; (52)

F LMDþV
�0��

ðp2; q2; 0Þ ¼ F�

3

p2q2ðp2 þ q2Þ þ h1ðp2 þ q2Þ2 þ h2p
2q2 þ h5ðp2 þ q2Þ þ h7

ðp2 �M2
V1
Þðp2 �M2

V2
Þðq2 �M2

V1
Þðq2 �M2

V2
Þ ; (53)

with (valid in the chiral limit)

h7 ¼ � NC

4�2

M4
V1
M4

V2

F2
�

:

We therefore have the following relation [compare with
(45)],

F R�T

�0��
ðp2; q2; 0ÞjB-L ¼ F VMD

�0��
ðp2; q2; 0Þ: (54)

Now let us turn back to the Brodsky-Lepage condition. We
have seen that it has important consequences on the actual
form of the�0 � �� � form factor within R�T. However,
recent the BABAR measurement [45] showed phenomeno-
logical disagreement with this condition. There are also
theoretical arguments [17] which showed that high-energy
constraints cannot all be satisfied for a given form factor
within the ansatz with only a finite number of resonance
poles. (For a recent study on the Brodsky-Lepage revision,
see [46]; see also [47] and references therein.) We will thus
relax the Brodsky-Lepage condition by allowing a small
deviation from (47) parametrized with �B-L,

�PV
3 ¼ � F2

32
ffiffiffi
2

p
dmFV

ð1þ �B-LÞ: (55)

Its actual value can be set by fitting the BABAR and CLEO
data. In this fit, and also in the following phenomenological
applications, we set

MV ¼ m	 
 0:775 GeV; MP ¼ m�0 
 1:3 GeV;

F ¼ F� 
 92:22 MeV (56)

and also (for details see [48])

FV ¼ F	 ¼ 146:3� 1:2 MeV; dm 
 26 MeV: (57)

The new BABAR data indicate an important negative shift
in �B-L, with the result

�B-L ¼ �0:055� 0:025: (58)

5The LMDþ V ansatz adds one extra vector multiplet in
comparison with the LMD one (45). This corresponds to MHA
for which all the OPE and B-L constraints can be satisfied
simultaneously.
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Our fit, together with CLEO and BABAR data, is depicted
in Fig. 2.

2. Decay 	 ! ��

In this subsection we illustrate a particular phenomeno-
logical application of the above results, namely, a predic-
tion for 	 ! �� decay. For this process we can use a
connection with the off-shell ��� form factor introduced
in the previous subsection. First, let us define the amplitude
A for the process 	þðpÞ ! �þðpÞ�ðkÞ (we will use only
the charged decay process to avoid the discussion on !-	
mixing for the neutral one):

�	!�� ¼ 1

8�

1

3

X
pol

jA	!��"
����p�q�
�ðpÞ
��ðkÞj2

�m2
	 �m2

�

2m3
	

; (59)

from which we have already factorized out the Levi-Civita
and momentum dependence. Similarly, one can define the
amplitude for �0ðpÞ ! �ðkÞ�ðlÞ,

��0!�� ¼ 1

32�

X
pol

jA�0!��"
����k�l�


�
�ðkÞ
��ðlÞj2 1

m�0

:

(60)

The connection with the ��� form factor is obtained via

A	!�� ¼ e

2

1

FVMV

lim
q2!M2

V

ðq2 �M2
VÞF ���ð0; q2; 0Þ (61)

and quite simply,

A �!�� ¼ e2F ���ð0; 0; 0Þ: (62)

Putting these two definitions together, we can extract the
ratio and the corresponding parameter x [11]:

2eFV

MV

��������A	!��

A�!��

��������� 1þ x: (63)

Using the experimental value �	!�� ¼ 68� 7 keV, this

parameter was obtained to be equal to x ¼ 0:022� 0:051
in [11] based on the 1992 edition of the particle data book
(the same number was also used later e.g. in [12]).
Updating this prediction with a new experimental input
we can get a flip in the sign,

exp: x ¼ �0:003� 0:054: (64)

The change is mainly due to a new value of FV (studied e.g.
in [48]) and a new precise measurement of the �0 lifetime
by the PrimEx group [49] (see also [30]).
Within our formalism, the parameter x defined above is

proportional to the deviation from the simple VMD ansatz
(52), or in other words, from the exact Brodsky-Lepage
condition [cf. (54)]. Using (44) and (55) we get, in terms of
�B-L,

x ¼ 4�2F2

M2
VNC

�B-L: (65)

The results of the previous subsection allow us to make a
rather precise determination of this value (cf. also a similar
fit in [42] which yields a compatible value of x),

R�T: x ¼ �0:010� 0:005; (66)

which, using (63) and experimental input for ��0!��, leads

to the following prediction:

R�T: �	!�� ¼ 67:0� 2:3 keV: (67)

3. Decays of �ð1300Þ
In the previous section we have obtained a prediction for

the 	 ! �� decay width. However, it was based on the
ratio of two decay widths [cf. (63)] and the experimental
input from one of them. We could also predict the absolute
value for 	 ! �� directly from (59) and (61) without the
necessity to use the experimental value of �0 ! �� (in
fact, we will discuss briefly the latter process in the very
next subsection), but one should remember that we have
been making several simplifications; namely, we are work-
ing in the large NC limit, using only lowest-lying reso-
nances, and we are in the chiral limit. All together, within
this approximation we cannot expect the accuracy of the
result to be better than 30%–40%. On the other hand, one
can expect that some of the systematic uncertainties will
cancel out in ratios similar to the ones studied in the
previous subsection.
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FIG. 2 (color online). The CLEO (blue points) and BABAR

(green squares) data with the fitted function F R�T

�0��
ð0;�Q2; 0Þ

defined in (44) using the modified Brodsky-Lepage condition in
(55). The solid line is for �B-L ¼ �0:055, and the (blue) dotted
line stands for the standard B-L condition (i.e. �B-L ¼ 0).
The dot-dashed (red) line shows the fitted function
AðQ2=ð10 GeV2ÞÞ� with A ¼ 0:182 GeV and � ¼ 0:25 as ob-
tained by the BABAR Collaboration [45]. The asymptotic 2F is
represented by the horizontal dashed line.

KAROL KAMPF AND JIŘÍ NOVOTNÝ PHYSICAL REVIEW D 84, 014036 (2011)

014036-10

Chapter 2. Original works 65



The same strategy can be repeated for �ð1300Þ decays.
In fact, we can work in exact correspondence; the two
decays would now be �ð1300Þ ! 	� and �ð1300Þ !
��. The only problem now is that neither of these two
processes have been seen so far. The most recent limit on
�ð1300Þ ! �� by the Belle Collaboration [50],

��0!�� < 72 eV; (68)

sets at least a rough limit in our studies. Using the defini-
tion (42) the main object needed here is

F R�T
P��ðp2; q2;m2

PÞ

¼ 8
ffiffiffi
2

p
3

FV

ffiffiffi
2

p
�PV
3 ð2M2

V � p2 � q2Þ � FV�
VVP

ðp2 �M2
VÞðq2 �M2

VÞ
: (69)

The amplitude for �ð1300Þ ! �� is given by

A �0!�� ¼ e2F P��ð0; 0;m2
�0 Þ (70)

and similarly for �ð1300Þ ! 	� [see also (61)]. Then

A R�T
�0!��

¼ e2
8

ffiffiffi
2

p
3

FV

2
ffiffiffi
2

p
�PV
3 M2

V � FV�
VVP

M4
V

; (71)

A R�T
�0!	�

¼ �e
4

ffiffiffi
2

p
3MV

ffiffiffi
2

p
�PV
3 M2

V � FV�
VVP

M2
V

: (72)

Both of these amplitudes depend on one so far undeter-
mined constant �VVP. Provided we have experimental
values of both the branching ratios, we could verify the
consistency of our model. In the present situation we can
visualize how one decay mode depends on the second one,
and this was done in Fig. 3. One can see that we have two
solutions for �VVP, as we have a quadratic equation for the
decay width as a function of �VVP, and neither of these two
solutions can be ruled out. Note that the full width for

�ð1300Þ is assumed to be between 200 and 600 MeV (see
[51]), so both processes are extremely suppressed for either
of these two solutions.
The experimental bound on ��0!�� can be used to get

the estimate of �VVP. In order to fulfill the limit (68), we
expect the numerator in (69) to be suppressed. This ex-
pected suppression leads, in analogy with (55), to the
following ansatz:

�VVP ¼ � F2M2
V

16dmF
2
V

ð1þ �AÞ; (73)

with the parameter �A, which should be reasonably small.
In terms of this parameter we get the decay width in a
compact form,

��0!�� ¼
�

�F2

6
ffiffiffi
2

p
dmM

2
V

�
2
�m3

�0 ð�B-L � �AÞ2


 ð1514:0 eVÞ � ð�B-L � �AÞ2; (74)

and thus the extreme phenomenological suppression of
�ð1300Þ ! �� can be understood within our formalism
to be due to the small factor ð�B-L � �AÞ2. The experimen-
tal limit, together with (58), sets the allowed range for the
parameter �A,

� 0:27 & �A & 0:16; (75)

which is good enough to set the value of �VVP to

�VVP 
 ð�0:57� 0:13Þ GeV: (76)

4. Decays �0 ! �� and � ! ��

As we have stated, the absolute decay widths are acces-
sible via our approach only with limited precision. For
instance, for the �0 ! �� amplitude we have obtained
only a very simple prediction (62). It turns out, however,
that it agrees very well with the experimental determina-
tion. On the other hand, a similar determination for
� ! �� would be a phenomenological disaster.
In order to go beyond the leading order, we can use the

chiral corrections calculated with ChPT. The most recent
study of the �0 ! �� amplitude went up to NNLO [30].
The motivation for going beyond next-to-leading order
(NLO) lies in the fact that there are no chiral logarithms at
NLO [52,53]. At NNLO these logarithms, though nonzero,
are relatively small, so the CW

i play a very important role.
We can therefore use existing calculations within ChPT
with our estimate (41) of CW

i . Here our approximation,
namely, the chiral limit, does not make any difference, as
by construction, LECs (CW

i in our case) do not depend on
light quark masses. With the previous phenomenological
determination of the couplings �PV

3 and �VVP, we obtain

CW
7 ¼ F2

64M4
V

�
1þ 2

M2
V

M2
P

ð�B-L � �AÞ
�


 ð0:35� 0:07Þ � 10�3 GeV�2: (77)
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FIG. 3 (color online). The connection of the decay width for
�ð1300Þ ! �� and �ð1300Þ ! 	� (note that we have two
possible solutions). The dashed line represents Belle’s limit
(68) on ��0!	� (the grey area is thus excluded by this experi-

ment).
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The second and last unknown LEC at NLO for �0 ! ��
and � ! �� is CW

8 . Anticipating the result of the next

section and using the OPE constraints (36), we get

CW
8 ¼ NC

768M2
0�

2
� NC

512�2M2
V

� FV�
V
13ffiffiffi

2
p

M2
V

þ F2
V�

VV
1

2M4
V

þ dm0F
2

96dmM
2
PM

2
V

þ dm0F
2
V�VVP

6M2
PM

4
V

; (78)

where we have also dropped the term proportional to �B-L
because it is not numerically relevant. Unfortunately, at this
moment, similarly as for the already-mentioned dm0, we
cannot make an estimate for �V

13 and �VV
1 (all these cou-

plings are dominated by the �0 exchange, cf. Appendix A).
We may, however, again connect the two-gamma decay
widths of �0 and �. For example, we can set the unknown
CW
8 from the experimental value of �ð� ! ��Þ. This was

done for the NLO � ! �� expression in [30]. There is an
ongoing project which should enlarge this calculation to the
NNLO within ChPT (for the preliminary results in the
SUð3Þ limit, see [54]).We thus postpone, as a future project,
the final determination of �0 ! �� based on the experi-
mental value��!��. Let us onlymention that, if we assume

that the NNLO corrections for � are indeed small as for
�0 ! ��, the value in (77) has roughly the influence at the
0.5% level for ��0 ! �� (with the opposite sign). A new
study of isospin breaking effects in [55] indicates another
shift of similar size (however, nowwith a positive sign), and
thus at this moment we do not expect a quantitative change
of the prediction made in [30].

5. g� 2

The main motivation for studying the VVP correlator is
probably hidden in the determination of the muon g� 2
factor. It is beyond the scope of this paper to discuss this
problem in great detail (for details see e.g. [56]). Let us
only mention that the main source of theoretical error for
its standard model prediction comes from hadronic con-
tributions, more precisely, from the hadronic light-by-light
scattering which cannot be related to any available data.
The hadronic four-point correlator VVVV is further sim-
plified into three classes of contributions: (a) �� and K�
loops, (b) �0, �, �0 exchanges, and finally, (c) the rest,
usually modeled via constituent quark loops. It is clear that
this separation is not without ambiguity, and different
approaches can calculate the contribution differently, es-
pecially between (a) and (c) or (b) and (c). Our contribution
based on the VVP correlator study belongs to group (b). To
avoid inconsistency we will work in close relation to
similar work done for LMD or VMD ansätze [57–59].
Using the fully off-shell (i.e. including also the �0 off-
shellness) �0 � �� � form factor (43), we arrive at

a
LbyL;�0

� ¼ ð65:8� 1:2Þ � 10�11: (79)

In the error only the uncertainties of our model (i.e. its
parameters) were included. The systematic is mainly in-
fluenced by the above-mentioned ambiguity of how one
defines and splits the pion-pole and regular parts from the
hVVVVi. We have put the cutoff energy at 10 GeV. For a
better comparison let us present in Table VIII predictions
for the studied contribution to the muon g� 2 for the
different models summarized in (53). We have recalcu-
lated there the light-by-light contributions based on VMD
and LMD ansätze. We have also reevaluated the case of
LMDþ V ansatz or, more precisely, its on-shell simplifi-
cation as defined in (53). Three unknown constants are set
similarly to what was done in [12]; i.e. h1;2 ¼ 0 and h5 is
based on the 	 ! �� phenomenology h5 ¼ 6:99 [ob-
tained for the updated value in (64)]. The full LMDþ V
‘‘off-shell’’ ansatz has seven parameters (for details see
[40,41]). One relation can be obtained from the chiral
anomaly, and others can be from Brodsky-Lepage behav-
ior, higher-twist corrections in the OPE and one-large
momentum OPE, together with data (CLEO for this
turn) we are still left with two undetermined parameters.
Their variations in a reasonable range set the final error for
the corresponding LMDþ V value in Table VIII. Let us
note that the possibility of B-L violation, together with the
new fit of two parameters (h1 and h5), was also studied in
[40,41] with no influence on the central value of the g� 2
contribution. Having too many parameters is not the only
problem connected with the LMDþ V ansatz. The status
of 	ð1450Þ as a first radial excitation of 	ð770Þ is doubted
by the possible existence of lighter 	ð1250Þ [60]. Its
presence is also supported by the study within AdS/QCD
approaches [61]. On top of that, the inclusion of the
complete set of all excitations in all channels (i.e. inclu-
sion of �00) can again change the studied ansatz, similar to
what we have encountered for the first excitation [see (45)
and (54)].
Let us also note the quite astonishing coincidence of our

result with the most recent study based on the AdS/QCD

conjecture [62] a�
0

� ¼ 65:4ð2:5Þ � 10�11.

B. VAS Green function

The hVVPi Green function studied in the previous sec-
tion represents, without any doubts, the most important
example of the odd-intrinsic sector of QCD. However, it is
not the only quantity one can analyze using our complete

TABLE VIII. Contribution of the �0 exchange to the muon
g� 2 factor for different models.

Model a
LbyL;�0

� � 1011

VMD 57.2

LMD 73.7

LMDþ V ‘‘on-shell’’ 58.2

LMDþ V ‘‘off-shell’’ 72� 12
This work 65:8� 1:2

KAROL KAMPF AND JIŘÍ NOVOTNÝ PHYSICAL REVIEW D 84, 014036 (2011)

014036-12

Chapter 2. Original works 67



lowest-lying resonance model. As the second example, we
have chosen hVASi, which has not yet been studied (to our
knowledge) in the literature. It also enables us to demon-
strate the use of the ‘‘second half’’ of our resonance
Lagrangian, i.e. those terms with 1þþ and 0þþ states.

We define (beware of the same symbol as for hVVPi)

�abc
�� ðp; qÞ ¼

Z
d4xd4yeip	xþiq	yh0jT½Va

�ðxÞAb
�ðyÞScð0Þj0i;

(80)

with [cf. also (30)]

Aa
�ðxÞ ¼ �qðxÞ���5

�a

2
qðxÞ; Sa�ðxÞ ¼ �qðxÞ�

a

2
qðxÞ:

Similarly as for VVP, one can write

�ðp; qÞabc�� ¼ fabc
����p
�q��ðp2; q2; r2Þ; (81)

where r ¼ �ðpþ qÞ. In the resonance region, we have

1

B0

�ðp2;q2;r2Þ¼8
ffiffiffi
2

p
FVð�V

4 �2�V
15Þ

p2�M2
V

þ16
ffiffiffi
2

p
FA�

A
14

q2�M2
A

þ 32cm�
S
2

r2�M2
S

þ 16
ffiffiffi
2

p
FAcm�

SA
1

ðq2�M2
AÞðr2�M2

SÞ

�8
ffiffiffi
2

p
FVcmð2�SV

1 þ�SV
2 Þ

ðp2�M2
VÞðr2�M2

SÞ

� 16FAFV�
VA
6

ðq2�M2
AÞðp2�M2

VÞ

þ 16FAFVcm�
VAS

ðq2�M2
AÞðp2�M2

VÞðr2�M2
SÞ
: (82)

At high energies one can obtain the following OPE relation
(cf. [39]):

�ðð�pÞ2; ð�qÞ2; ð�rÞ2Þ

¼ B0F
2

2�4

p2 � q2 � r2

p2q2r2
þO

�
�s;

1

�6

�
(83)

and again we will not consider here one-momentum OPE
limits. The high-energy constraint leads to

�S
2 ¼ �A

14 ¼ 0; �V
4 ¼ 2�V

15; �VA
6 ¼ F2

32FAFV

;

FVð2�SV
1 þ �SV

2 Þ ¼ 2FA�
SA
1 ¼ F2

16
ffiffiffi
2

p
cm

: (84)

Finally, if we use these relations, we have only one free
parameter: �VAS; the result is

1

B0

�R�Tðp2;q2;r2Þ

¼F2ðp2�q2�r2�M2
VþM2

AþM2
SÞþ32FAFVcm�

VAS

2ðq2�M2
AÞðp2�M2

VÞðr2�M2
SÞ

:

(85)

From the theoretical point of view, we are thus in a better
position than we were for hVVPi. After imposing OPE we
are left with one free parameter, whereas in the case of
hVVPi we had two [cf. (37)]. We can thus simply connect
all processes schematically, represented as

ðV:	;!;K�; �; . . .Þ � ðA:a1; f1; K1; GB;W . . .Þ
� ðS:; �; a0; f0; H . . .Þ (86)

via a single parameter. The problem is that they are very
rare and have not yet been measured; on top of that, the
status of some of the particle content is controversial by
itself (especially if talking about a scalar sector). The
parameter �VAS can be, however, set using other (not that
rare) processes it enters. One way is to check, in the next
section, to which of the 23 parameters it contributes, and
directly use the system of LECs. This can be done here
already within the calculation of ðVASÞ. At low energies,
up to Oðp6Þ one has

1

B0

�ðp2; q2; r2Þ ¼ �32CW
11: (87)

Comparing with the low-energy expansion of the full R�T
result (82), we get

CW
11 ¼

FA�
A
14ffiffiffi

2
p

M2
A

þFVð�V
4 � 2�V

15Þ
2

ffiffiffi
2

p
M2

V

þ cm�
S
2

M2
S

þFAFV�
VA
6

2M2
AM

2
V

þ cmFVð2�SV
1 þ�SV

2 Þ
2

ffiffiffi
2

p
M2

SM
2
V

� FAcm�
SA
1ffiffiffi

2
p

M2
AM

2
S

þFAFVcm�
VAS

2M2
AM

2
SM

2
V

:

(88)

Using the OPE (84) we obtain

CW
11 ¼

F2

64

�
1

M2
SM

2
V

þ 1

M2
AM

2
V

� 1

M2
AM

2
S

�
þ FAFVcm�

VAS

2M2
AM

2
SM

2
V

:

The knowledge of CW
11 leads directly to the value of �VAS

and thus to the rare processes schematically specified
above. The current attempts for a CW

11 estimation were

summarized in Table I of [63] with rather inconsistent
values obtained both from the phenomenology [64,65]
and from a model-dependent determination [63]. The
most precise value seems to be obtained from Kþ !
lþ�� data [66]: CW

11 ¼ ð0:68� 0:21Þ � 10�3 GeV�2

[64]. Using the values set in (56) and (57), together with

MS ¼ ma0 
 984:7 MeV; cm 
 42 MeV (89)

and the Weinberg sum rules (to get values of MA and FA),
we arrive at

�VAS ¼ 0:61� 0:40 GeV: (90)

C. Short note on the field redefinition

The previous two examples were calculated using the

full resonance Lagrangian Lð6;oddÞ
R�T . Here we would like to
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address the question of what would happen if one repeated
the same calculation but instead used the reduced reso-

nance Lagrangian Lð6;oddÞ
R�T . This Lagrangian is established

in Appendix B and can be obtained from the full
Lagrangian (26) by dropping the operators marked by the
star symbol in Tables I, II, III, IV, V, VI, and VII, i.e. by
means of omitting 26 two- and three-resonance parame-
ters: �RR

i , �SA
i , �SV

i , �VA
i , �PA

i , �PV
i , �RRR

i , and using the bar
over the rest of �X

i (see Appendix B 5). This can be
motivated by its equivalent contribution to the saturation
of LECs. This exercise was already performed in [24] for
hVAPi with an interesting finding, that after imposing the
OPE condition both results are the same. In our case the
conclusion is, however, different. Using the reduced reso-
nance Lagrangian wewould not be able to simply fulfill the

OPE constraints by imposing some conditions on �X
i . In

addition, the precise definition of the reduced Lagrangian
is up to one’s taste. One can keep some of the two- or three-
resonance monomials and, in exchange, drop some of the
one-resonance terms (for example, dropping �V

1 and keep-
ing �VV

3 ). One can also decide not to drop all possible 26

terms, but a smaller number. In all cases we have, in
principle, a big set of nonequivalent Lagrangians that can
produce different predictions, but still the same contribu-
tions to the resonance saturation. One can then obtain
curious conditions in order to fulfill the OPE (the relation
MV ¼ 4�Fffiffiffiffiffi

NC

p is a typical outcome of such a study: it can be

obtained, for example, for the above-mentioned exchange
�V
1 $ �VV

3 ).

Thus we have to conclude that the equivalence of both
calculations in the even sector for hVAPi was just a coin-
cidence and it is not a general feature.

V. RESONANCE CONTRIBUTIONS TO THE LECS
OF THE ANOMALOUS SECTOR

We have seen in the previous two applications the
explicit examples of the calculation with the resonance

fields. A match between this result in a region of small
momenta (i.e. p � MR) on one side and the ChPT result
on the other side enables us to extract the dependence of
LECs on resonances. In this way, we have obtained
within the VVP calculation CW

7 and CW
22 [see (40)], and

from VAS it was possible to extract CW
11 (88). The

dependence of all other CW
i on the parameters of the

resonance model can be obtained by systematically in-
tegrating out all resonances. A Lagrangian obtained in
this way can be expanded over the canonical basis of the
NLO odd-intrinsic Lagrangian established, for example,
in [8]. In this way, we have saturated 21 of the 23
constants, and only CW

3 and CW
18 stayed intact, as they

are subleading in the large NC limit. The �0 was con-
sidered (see Appendix A), and its contribution generated
by WZW is explicit in CW

6 , C
W
8 , and CW

10 (see also [67]).

It is always the first term in these LECs (see below) to
stress its large NC dominance over the rest. Generally,
we have the following expansion in the large NC limit
for all CW

i , schematically,

CW
i ¼ aiN

2
C þ biNC þOðN0

CÞ; (91)

where ai � 0 for i ¼ 6, 8, 10 and bi ¼ 0 for i ¼ 3, 18.
The field redefinition, similarly to what was done in

[24], was performed, and details are summarized in
Appendix B. To get exactly the same results for the follow-
ing constants, all 26 parameters denoted by stars in
Tables I, II, III, IV, V, VI, and VII can be dropped, and

for all others, a bar must then be added (bar parameters �X
i

are defined in the last section of Appendix B). We prefer,
however, to use the original parametrization, as it repre-
sents a direct connection with the resonance phenomenol-
ogy and is thus simpler to use.
The explicit form of the resonance saturation generated

by the resonance Lagrangian defined in (26) is

CW
1 ¼ dm�

P
4
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þ 2
ffiffiffi
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p
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The transformation established in Appendix B was em-
ployed as an independent check of the previous relations.

Apart from the already-mentionedCW
3 ¼ 0 andCW

18 ¼ 0,
we have found one further relation free from �X

i ,

F2
V

2GV

CW
12 ¼ FVðCW

14 � CW
15Þ þGVC

W
22: (93)

VI. SUMMARY

In this paper we have studied the odd-intrinsic parity
sector of the low-energy QCD. We have constructed the
most general resonance Lagrangian that describes the in-
teractions of the Goldstone bosons and the lowest-lying
vector-, axial-, scalar-, and pseudoscalar-resonance mul-
tiplets. We worked in the large NC approximation and
considered only those terms that contribute to the Oðp6Þ
anomalous Lagrangian (i.e. to the first nontrivial order).
This was the main aim of our work. We then demonstrated
the use of this Lagrangian for three different applications.
The first two represent calculations of two three-point
Green functions hVVPi and hVASi. The third application
is the complete integration out of the resonance fields,
establishing the so-called saturation of LECs by resonance
fields.

The first application VVP is the most important example
of the odd-intrinsic sector, both from the theoretical and the
phenomenological points of view. We have discussed dif-
ferent aspects of this Green function. First, after calculat-
ing this three-point correlator within our model and
imposing a certain high-energy constraint, we ended up
with the result which depends only on two parameters.
They were further set using new BABAR data on ���
off-shell form factors and the Belle Collaboration’s limit
on �0 ! �� decay. After setting these two parameters we
can make further predictions. The outcome of our analysis
is, for example, a very precise determination of the decay
width of a process 	 ! ��: �	!�� ¼ 67ð2:3Þ keV. We

have also studied a relative dependence of the rare decays
�0 ! �� and �0 ! 	�. Based on the experimental upper
limit of the former, one can set the lowest limit of the latter.
The prediction of our model is the range 30 keV *

��0!	� * 4 keV (based on Belle’s ��0!�� & 72 eV).

Next, we also evaluated the value of the CW
7 LEC, together

with a short discussion on �0 and � two-photon decays.
Last but not least, a very precise determination of the off-
shell �0-pole contribution to the muon g� 2 factor was

provided. Our final determination of this factor is a�
0

� ¼
65:8ð1:2Þ � 10�11. The R�T approach has thus reduced
the error of a similar determination based on the lowest-
meson saturation ansatz by a factor of 10 and is in exact
agreement with the most recent determination based on
AdS/QCD assumptions. Let us note that the present theo-
retical error for the complete anomalous magnetic moment
of the muon is around 50� 10�11, and the experimental
error is around 60� 10�11 [68] (with the well-known
discrepancy above 3). A new proposed experiment at
Fermilab E989 [69] plans to increase the precision to the
preliminary value 16� 10�11 and thus a reduction of the
error in the theoretical light-by-light calculation is more
than desirable.
If the VVP represents a very important and rich phe-

nomenological example, the three-point correlator hVASi
is connected with very rare processes and represents an
example of the odd sector which has so far not been
studied. We have established its OPE behavior, which
enabled us to reduce the dependence of the VAS Green
function to one parameter. This opens the possibility of a
future study of these rare but interesting processes.
In the last section we have studied the resonance satu-

ration at low energies. We have integrated out the reso-
nance fields to establish the dependence of LECs of odd-
sector CW

i on our parameters. As we are limited by large
NC, we cannot make predictions for CW

3 and CW
18 but we

have set all other 21 LECs. We have found one relation
which connects CW

12, C
W
14, C

W
15, and C

W
22 and is free from the

Oðp6Þ resonance parameters. It is interesting to notice that
CW
22 gets only contributions from the vector resonances, and

this can play an important role in the new AdS/QCD dual
study (for details see [70,71]).

ACKNOWLEDGMENTS

We would especially like to thank Jarda Trnka for ini-
tiating this project and for his contribution at the early
stages of this work. We also thank Hans Bijnens and
Bachir Moussallam for valuable discussions and

RESONANCE SATURATION IN THE ODD-INTRINSIC . . . PHYSICAL REVIEW D 84, 014036 (2011)

014036-17

Chapter 2. Original works 72



comments. This work is supported in part by the European
Community-Research Infrastructure Integrating Activity
‘‘Study of Strongly Interacting Matter’’ (HadronPhysics2,
Grant Agreement No. 227431) and the Center for Particle
Physics (Project No. LC 527) of the Ministry of Education
of the Czech Republic.

APPENDIX A: THE LARGE NC COUNTING

1. General considerations

Let us start with the ULðNFÞ �URðNFÞ invariant
Lagrangian for the nonet of the GB and resonances without
using the equations of motion or the Cayley-Hamilton
identities. Then the large NC behavior of the couplings
accompanying individual operators in the effective
Lagrangian with octet GBs (after �0 has been integrated
out) can be understood as follows.

Let us write in the same way as in [24],

~u ¼ ei�
0T0=F

ffiffi
2

p
u; (A1)

where T0 ¼
ffiffiffiffiffi
1
NF

q
1 and

u ¼ ei�
aTa=F

ffiffi
2

p

is the SULðNFÞ � SURðNFÞ basic building block, and
therefore

�0 ¼ F

i

ffiffiffiffiffiffiffi
2

NF

s
lnðdet~uÞ: (A2)

Let us also remind the reader [24] that �0 and �a do not
mix under the nonlinearly realized ULðNFÞ �URðNFÞ
symmetry. For the construction of the ULðNFÞ �URðNFÞ
effective Lagrangian, we have the usual building blocks
constructed from ~u and the usual external sources l�; r�; �

and �þ (now also with singlet components), e.g.

~u� ¼ u� �D��
0

ffiffiffi
2

p
T0

F
;

~�� ¼ e�i�0
ffiffi
2

p
T0=Fuþ�uþ � ei�

0
ffiffi
2

p
T0=Fu�þu

¼ �� � i

F

ffiffiffiffiffiffiffi
2

NF

s
�0�� þ . . . ;

hl�i ¼ l0�

ffiffiffiffiffiffiffi
NF

2

s
; (A3)

etc., at our disposal. In the above formulas, the covariant
(in fact invariant) derivative of �0 is defined as

D��
0 ¼ @��

0 � 2a0�F; (A4)

however, it does not represent an independent building
block because of the identity

h~u�i ¼
ffiffiffiffiffiffiffi
NF

2

s
D��

0

F
: (A5)

The above set of building blocks has to be further enlarged,
including also the external sources � for the winding
number density

! ¼ g2

16�2
trcG��

~G��; (A6)

with the covariant derivative

D�� ¼ @��þ 2a0�:

We also have to include the following invariant combina-
tion,

X ¼ �þ�0

F
: (A7)

Let us remember the large NC counting for the generating
functional of the connected Green function of quark bi-
linears and winding number densities,

Z½l; r; �; �þ; �� ¼ N2
CZ0½�=NC�

þ NCZ1½l; r; �; �þ; �=NC� þ . . . ; (A8)

where the ellipsis stands for the subleading terms in the
1=NC expansion. This implies the usual NC counting of the
physical amplitudes with g glueballs and m mesons,

A g;m ¼ OðN1þ�m0�g�ðm=2Þ
C Þ: (A9)

This counting should be reflected within the construction
of the effective chiral Lagrangian of R�T.
According to (A9), an explicit resonance field has to be

counted as OðN�1=2
C Þ. As far as the GBs are concerned,

within the tilded building blocks, each member of the
pseudoscalar nonet is automatically accompanied by (mi-

nus) one power of the decay constant F ¼ OðN1=2
C Þ, which

ensures the right counting of the vertices with GBs, pro-
vided the corresponding fields are counted as OðN0

CÞ. The
only subtlety is connected with the field �0.
The origin of the field �0 in the individual terms of the

Lagrangian is twofold. It can either come from the tilded

building blocks Y ¼ ~u�, ~h��, ~�� (and from their covariant

derivatives ~D�Y; note that it completely decouples from

�� and f
��
� ) or from the X dependence of the Lagrangian.

Each operator ~O constructed from the tilded building
blocks only (and therefore including at least one flavor

trace, the only exception being ~O ¼ 1) is, in general,
accompanied by a potential V ~OðXÞ which is a function of

the variable X only,

~L ¼ X
~O

V ~OðXÞ ~O: (A10)

While �0 originating from the tilded operators is counted
as OðN0

CÞ as the other GB, however, the same field coming

from the power expansion of the potentials counts as
Oð1=NCÞ within the large NC expansion. Therefore, ex-

panding the general operator ~O and the corresponding
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potential V ~OðXÞ in powers of �0 and its derivatives [and

taking into account that F ¼ OðN1=2
C Þ], we have the fol-

lowing natural rule for the order OðNn
CÞ of the resulting

coupling constant at a term of this expansion with T flavor
traces, R resonance fields, and n0 fields �

0,

2� T � 1
2R� 3

2n0 � n � 2� T � 1
2R� 1

2n0: (A11)

The lower or higher bounds are saturated when all �0’s

come exclusively from either V ~OðXÞ or ~O.

Suppose that we had used the LO GB equations of
motion prior to the expansion in powers of �0. This allows
us to eliminate the terms with derivatives, namely [24],

r�~u� ¼ ~�� þ 4ffiffiffiffiffiffiffiffiffi
2NF

p M2
0

�0

F
: (A12)

Such a transformation of the original tilded operator does
not create any extra trace, in contrast to the octet case.
Because the singlet mass M2

0 ¼ Oð1=NCÞ, the �0 depen-

dence of the resulting operator brings about a factor of the

orderOðN�3=2
C Þ (the same as if�0 came from the potential)

and the above bounds on n therefore remain valid. On the
other hand, a further simplification using the Cayley-
Hamilton identity can destroy them, provided we use it
in order to eliminate terms with less traces in favor of the
terms with more traces.

The next step is to integrate out�0, treating the massM2
0

as Oðp0Þ. This can be done using its equation of motion,
derived from the corresponding part of the LO Lagrangian
expanded in powers of �0,

L ð2Þ
0 ¼ 1

2
D�0 	D�0 � 1

2
M2

0ð�0Þ2 � i
F

2
ffiffiffiffiffiffiffiffiffi
2NF

p h��i�0

þ d0hPi�0 þ . . . ;

(A13)

where the d0 term comes from the expansion of the poten-
tial and is therefore of the order OðN�1

C Þ. The solution for

�0 reads, in the leading order of the p expansion,6

�0ð2Þ ¼ 1

M2
0

�
�i

F

2
ffiffiffiffiffiffiffiffiffi
2NF

p h��i þ d0hPi
�

¼ OðN3=2
C Þ þOðN0

CÞ; (A14)

where we have depicted the orders of both terms. �0ð2Þ
should then be inserted into the original Lagrangian ex-
panded in powers of �0. As a result, taking (A11) into
account, the orders of the multiple trace operators within
the SULðNFÞ � SURðNFÞ operator basis are enhanced.
Namely, we have the following bound for the correspond-
ing couplings,

2� T0 � 1
2R0 � 3

2nhPi � n

� 2� T0 � 1
2R0 þ nh��i � 1

2nhPi; (A15)

where T0 and R0 are the numbers of the traces and reso-
nance fields before elimination of �0 and nh��i, and nhPi
are the numbers of the new factors h��i and hPi (which
appear after �0 is integrated out), respectively. More con-
veniently, this can be expressed in terms of the actual
number of traces T ¼ T0 þ nhPi þ nh��i and resonances

R ¼ R0 þ nhPi as

2� T � 1
2Rþ nh��i � n � 2� T � 1

2Rþ nhPi þ 2nh��i:
(A16)

The loophole of this formula is that, for its application, one
has to trace back which of the factors hPi and h��i origi-
nate in the �0 dependence of the tilded Lagrangian. The
extreme cases are either none or all of them, which gives a
very raw estimate,

2� T � 1
2R � n � 2� T � 1

2Rþ NhPi þ 2Nh��i; (A17)

where now Nh��i and NhPi are the total numbers of hPi and
h��i traces in the operator, and the lower bound now
corresponds to the usual trace and resonance counting.

2. Explicit examples

Let us illustrate the above statements by means of ex-
plicit examples. For instance, the coupling at the term

hS��ih��i, at first sight of the order OðN�1=2
C Þ, might be

of the order OðN1=2
C Þ or even OðN3=2

C Þ, because it can

originate either from the term

ihS~��iWhS��iðXÞ
¼ ihSð�� þ . . .Þiðw1

hS��iX þ . . .Þ ! �hS��i

� 1

M2
0

�
w1

hS��i
1

2
ffiffiffiffiffiffiffiffiffi
2NF

p h��i þ . . .

�
; (A18)

which has the constant w1
hS��i ¼ OðN�1=2

C Þ [this corre-

sponds to the lower bound (A16)], or from the term

hS~�þiWhS�þiðXÞ

¼ hS
�
�þ � i

F

ffiffiffiffiffiffiffi
2

NF

s
�0�� þ . . .

�
iðw0

hS�þi þ . . .Þ

¼ �w0
hS�þi

i

F

ffiffiffiffiffiffiffi
2

NF

s
�0hS��i þ . . .

! 1

M2
0

w0
hS�þi

�
1

2NF

�
hS��ih��i þ . . . ; (A19)

where w0
hS�þi ¼ OðN1=2

C Þ [this corresponds to the upper

bound (A16)].
Similarly, the coupling dm0 at the operator ihPih��i [see

(14)], naively of the order OðN�1=2
C Þ, can be enhanced by

6Here we have taken into account that the resonance fields
should be counted as Oðp2Þ.
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the �0 exchange. Indeed, inserting (14) into the term
d0hPi�0 of the Lagrangian (13), we get the following
contribution to dm0:

dm0 ¼ � d0
M2

0

F
ffiffiffiffiffiffiffi
NF

p
2

ffiffiffi
2

p ¼ OðN1=2
C Þ; (A20)

where we have taken into account that d0 ¼ OðN�1
C Þ.

Let us also give some examples of the odd-intrinsic
parity terms with resonances, which, similar to the pre-
vious example, lead to NC enhanced multiple trace terms
when �0 is integrated out. Some terms with one resonance
are, for example,

~LR ¼ "����hV��½~u�; ~u��iWR1ðXÞ
þ "����hV��f��þ iWR2ðXÞ
þ "����hA��f��þ iWR3ðXÞ; (A21)

where

WRiðXÞ ¼
X
k

wðkÞ
Ri X

k (A22)

and where

wð0Þ
Ri ¼0; wð1Þ

Ri ¼OðN�1=2
C Þ; for i¼1;2;3: (A23)

These generate the operators

ÔV
18 ¼ "����hV��½u�; u��ih��i;

ÔV
13 ¼ i"����hV��f��þ ih��i;

ÔA
9 ¼ ihA��f��þ ih��i (A24)

with the couplings of the order OðN1=2
C Þ (i.e. of the same

order as analogous single trace operators and therefore
included in our basis) and

"����hV��½u�; u��ihPi; "����hV��f��þ ihPi;
hA��f��þ ihPi (A25)

with the couplings of the order OðN�1
C Þ suppressed with

respect to the single trace operators.
The two-resonance example is

~L RR ¼ "����hV��V��iWRR1ðXÞ
þ "����hA��A��iWRR1ðXÞ; (A26)

where

WRRiðXÞ ¼
X
k

wðkÞ
RRiX

k with wð0Þ
RRi ¼ 0;

wð1Þ
RRi ¼ OðN�1

C Þ; for i ¼ 1; 2:

It gives rise to the operators

ÔVV
1 ¼ i"����hV��V��ih��i;

ÔAA
1 ¼ i"����hA��A��ih��i (A27)

with the couplings of the order OðN0
CÞ (the same order as

the analogous single trace operators and therefore included

in our basis), and OðN�3=2
C Þ operators

"����hV��V��ihPi; "����hA��A��ihPi; (A28)

which are suppressed with respect to the single trace ones.
As the last step, we integrate out the resonance fields in

order to get the resonance contribution to the odd parity
sector LECs of the resulting ChPT Lagrangian. This can be
done using the Oðp2Þ equation of motion for the resonance

fields and inserting their solution Rð2Þ back into the R�T
Lagrangian. The general form reads

Rð2Þ ¼ 1

M2
R

Jð2ÞR ; (A29)

where Jð2ÞR ¼ Oðp2Þ comes from the LO resonance

Lagrangian (14). Because Jð2ÞR ¼ OðN1=2
C Þ, the order of

the contribution of the individual terms of the R�T
Lagrangian (with �0 integrated out) can be obtained,

counting the resonance fields as OðN1=2
C Þ. This gives, fi-

nally, the following simple bound on the order of the
contribution of the operator with T traces, totalNhPi factors
hPi, and total Nh��i factors h��i originating in the LECs,

2� T � n � 2� T þ NhPi þ 2Nh��i: (A30)

The lower bound represents the usual trace counting. Note,
however, that the upper bound has to be taken with some
caution, because it can be saturated only in the case when
all hPi and h��i traces appear as a consequence of the �0

dependence, where this �0 dependence comes solely from
the tilded operators and not from the potentials. For a given
operator these two conditions need not be satisfied
simultaneously.
The fact that the NC order of some operators can be

enhanced could further complicate the usual way of the
saturation of the ChPT LECs. Namely, in the process of
integrating out the resonances, it is assumed that loops can
give only NLO contributions suppressed by the factor
1=NC for each loop. This counting could apparently be
complicated by the enhanced operators. Let us illustrate
this point, assuming the contribution of the following term

of the odd R�T Lagrangian ~L,

~L¼ . . .þWAP
2 ðXÞ"����hfA��;r�Pg~u�iþ . . .

¼ . . .�2wAP
2 "����hA��r�Pi

ffiffiffiffiffiffiffi
2

NF

s
D��0

F
þ . . . (A31)

with wAP
2 ¼ OðN0

CÞ. This gives rise to the following en-

hanced NC term,

� i

NF

wAP
2

1

M2
0

"����hA��r�Pi@�h��i¼OðNCÞ: (A32)

Apparently, this term contributes to theOðp8Þ LECs, when
the resonances are integrated out at the tree level. However,
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the bubble with two such vertices gives a contribution to
the Oðp6Þ operator @�h��i@�h��i of the enhanced order
OðN2

CÞ. The same is true also for analogous operators from

the even sector, e.g.

VSP
1 ðXÞhfD�S; Pg~u�i ¼ 2vSP

1 hPD�Si
ffiffiffiffiffiffiffi
2

NF

s
D��0

F
þ . . .

(A33)

with vSP
1 ¼ OðN0

CÞ, which leads to the enhanced operator

i

NF
vSP
1

1

M2
0

hPr�Si@�h��i ¼ OðNCÞ (A34)

counted as Oðp8Þ in the tree-level saturation process. The
bubble with two vertices,

i

NF

vSP
1

1

M2
0

hP@�Si@�h��i; (A35)

leads to the expression

N2
F

2

�
i

NF

vSP
1

1

M2
0

�
2 Z

ddxddy@�h��ðxÞi@�h��ðyÞi

�
Z ddk

ð2�Þd e
ik	ðx�yÞ ddp

ð2�Þd
� p�p�

ðp2 �M2
S þ i0Þððp� kÞ2 �M2

P þ i0Þ

¼ i

2

�
vSP
1

M2
0

�
2 Z

ddx@�h��ðxÞi@�h��ðxÞi

� ðM2
PÞ2�" � ðM2

SÞ2�"

M2
P �M2

S

1

32�2
�ð"� 2Þð4�Þ" þOðp8Þ

(A36)

and (after the addition of an appropriate counterterm)
results in the following OðN2

CÞ contribution to the coupling
C@�h��i@�h��i associated with the Oðp6Þ operator

@�h��i@�h��i,

C
PS-loop
@�h��i@�h��i ¼ � 1

64�2

�
vSP
1

M2
0

�
2

�
M4

PðlnM
2
P

�2 þ �� 1
2Þ �M4

SðlnM
2
S

�2 þ �� 1
2Þ

M2
P �M2

S

:

(A37)

Though the above loop contributions are enhanced by
the factor N2

C with respect to the naive trace counting, this

does not mean that loop counting fails. The reason is that
the LO contribution to C@�h��i@�h��i that comes from the

tree level and originates in the kinetic term of the field �0

1

2
@��

0 	@��0!�1

2

�
F

2M2
0

ffiffiffiffiffiffiffiffiffi
2NF

p
�
2
@�h��i@�h��i¼OðN3

CÞ

(A38)

so that the loop contribution is suppressed by 1=NC as
usual.
Let us finally comment briefly on one point, which also

might lead to confusion. In [24], the following operators
are abandoned, using the large NC arguments, namely,

ihPu�u�ih��i; ihSPih��i; ihr�r���ihPi: (A39)

These can be, however, derived from the operators (before
doing any transformations)

ihP~u�~u�iVðXÞ; ihSPiVðXÞ; ihr�r� ~�þiVðXÞ; (A40)

by means of integrating out the field �0, which appears
from the potential for the first two operators [and saturates,
therefore, the lower bound of (A16)] and from the building
block ~�þ for the last one [and corresponds, therefore, to
the upper bound of (A16)]. According to our rules the

operators are of the orders OðN1=2
C Þ, OðN0

CÞ, and OðN1=2
C Þ,

respectively (as similar operators without an additional
trace), and all of them contribute, therefore, at the OðNCÞ
order of the LECs of the effective chiral Lagrangian stay-
ing at the operators

h��u�u�ih��i; h�þ��ih��i; hr�r���ih��i:
(A41)

However, these operators can be derived analogously from

h~�þ~u�~u�i; h~�þ ~�þi; hr�r� ~�þi; (A42)

by the process which saturates the upper bound of (A16)
and results in the order OðN2

CÞ. The abandoned operators

lead, therefore, to the NLO contribution to the correspond-
ing LECs.

APPENDIX B: FIELD REDEFINITION

As we have discussed in detail in Sec. III, by means of an
appropriate field redefinition we can effectively eliminate a

subset of the Oðp6Þ operators from the Lagrangian Lð6;oddÞ
R�T

and shift their influence on the ChPT LECs into the effec-

tive coefficients �X
i which stay at the remaining operators

of the chiral orderOðp6Þ and higher. As a consequence, the
Oðp6Þ LECs resulting from the process of integrating out
the resonance fields from the Lagrangian LR�T depend

only on these effective couplings �X
i which are particular

linear combinations of the original resonance couplings
�X
i . In order to identify these relevant combinations and

the redundant operators, we can proceed in several steps.

1. Elimination of OVV
1;2 , O

AA
1;2 , O

VVP, and OAAP

By the elimination of OVV
1;2 , O

AA
1;2, O

VVP, and OAAP with

the field redefinitions
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V�� ! V�� � 2

M2
V

"����

�
i�VV

1 h��iV�� þ i�VV
2 f��; V��g þ 1

2
�VVPfP;V��g

�
;

A�� ! A�� � 2

M2
A

"����

�
i�AA

1 h��iA�� þ i�AA
2 f��; A��g þ 1

2
�AAPfP; A��g

�
;

we get, for the Oðp4Þ part of the Lagrangian,
Lð4Þ

RR;kin þLð4Þ
R ! Lð4Þ

RR;kin þLð4Þ
R

¼ Lð4Þ
RR;kin þLð4Þ

R � �VV
1 OVV

1 � �VV
2 OVV

2 � �VVPOVVP � �AA
1 OAA

1 � �AA
2 OAA

2 � �AAPOAAP

� FVffiffiffi
2

p
M2

V

�
�VV
1 OV

13 þ �VV
2 OV

14 þ
1

2
�VVPOPV

3

�
� iGVffiffiffi

2
p

M2
V

ð2i�VV
1 OV

18 þ 2i�VV
2 OV

9 � i�VVPOPV
1 Þ

� FAffiffiffi
2

p
M2

A

�
�AA
1 OA

9 þ �AA
2 OA

11 þ
1

2
�AAPOPA

1

�
þOðp8Þ:

At the same time, the same redefinition applied to Lð6;oddÞ
R�T generates only the additional terms of the order Oðp8Þ and

higher, which can be neglected as described above. We can thus eliminate the operators OVV
1;2 , O

VVP, OAA
1;2, and OAAP and

include their influence on the Oðp6Þ LECs effectively into the constants �V
13, �

V
14, �

PV
3 , �V

18, �
V
9 , �

PV
1 and �A

9 , �
A
11, �

PA
1 .

2. Elimination of OVA
i and OVAS

In the same way, we can also eliminate the mixed bilinear terms using the field redefinition

V�� ! V�� � 1

M2
V

"���ði�VA
1 g�½A��; u	u	� þ i�VA

2 ðA��u�u
 � uu�A

��Þ þ i�VA
3 ðA��uu� � u�u

A��Þ

þ i�VA
4 ðu�A��u � uA��u�Þ þ �VA

5 fA��; f
	
þ gg�	 þ i�VA

6 ½A��; �þ�g� þ i�VAS½A��; S�g�Þ;

A�� ! A�� � 1

M2
A

"���ði�VA
1 g� ½u	u	; V��� þ i�VA

2 ðu�uV�� � V��uu�Þ þ i�VA
3 ðuu�V�� � V��u�uÞ

þ i�VA
4 ðuV��u� � u�V��uÞ þ �VA

5 fV��; f
	
þ gg	� þ i�VA

6 ½�þ; V���g� þ i�VAS½S; V���g� Þ:
We then get

1
4M

2
VhV��V��i þ 1

4M
2
AhA��A��i ! 1

4M
2
VhV��V��i þ 1

4M
2
AhA��A��i � �VA

1 OVA
1 � �VA

2 OVA
2

� �VA
3 OVA

3 � �VA
4 OVA

4 � �VA
5 OVA

5 � �VA
6 OVA

6 � �VASOVAS;

and the operatorsOVA
i andOVAS are thus eliminated. The only relevant additional effect of the redefinition comes from the

transformation of Lð4Þ
R ,

FV

2
ffiffiffi
2

p hV��f
��
þ i ! FV

2
ffiffiffi
2

p hV��f
��
þ i � FV

2
ffiffiffi
2

p
M2

V

�
��VA

1 OA
4 þ �VA

2

�
OA

6 � 1

2
OA

4

�

þ �VA
3

�
OA

5 � 1

2
OA

4

�
þ �VA

4 OA
7 � �VA

6 OA
14 þ �VASOSA

1

�
;

FA

2
ffiffiffi
2

p hA��f
��� i ! FA

2
ffiffiffi
2

p hA��f
��� i � FA

2
ffiffiffi
2

p
M2

A

½�VA
1 OV

5 þ �VA
2 OV

8 þ �VA
3 OV

6 þ �VA
4 OV

7 � �VA
5 OV

11 þ �VA
6 OV

15 � �VASOSV
1 �;

iGV

2
ffiffiffi
2

p hV��½u�; u��i ! iGV

2
ffiffiffi
2

p hV��½u�; u��i þ GV

2
ffiffiffi
2

p
M2

V

½�2�VA
1 OA

1 þ �VA
2 ðOA

2 �OA
1 Þ þ �VA

3 ðOA
2 �OA

1 Þ

þ �VA
4 ðOA

1 �OA
2 Þ þ �VA

5 ðOA
5 �OA

6 Þ þ 2�VA
6 OA

13 þ 2�VASOSA
2 �:

Here we have used

hfA��; f
	
þ gf��

þ ig�	"��� ¼ 0

and other similar consequences of the Shouten identity.

3. Elimination of OPA
1 , OSV

1 , OPV
i , and OSA

i

Finally, we can further eliminate other terms by the redefinitions
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S ! Sþ 1

2M2
S

"����ði�SA
1 ½f��þ ; A��� þ �SA

2 ½u�u�; A���Þ;

P ! Pþ 1

2M2
P

"����ð�PA
1 fA��; f��� g þ i�PV

1 fV��; u�u�g þ i�PV
2 u�V��u� þ �PV

3 fV��; f��þ gÞ;

A�� ! A�� � 1

M2
A

"����ði�SA
1 ½S; f��þ � þ �SA

2 ½S; u�u�� þ �PA
1 fP; f��� gÞ;

V�� ! V�� � 1

M2
V

"����ði�PV
1 fP; u�u�g þ i�PV

2 u�Pu� þ �PV
3 fP; f��þ gÞ:

We then get

� 1
2M

2
PhPPi � 1

2M
2
ShSSi þ 1

4M
2
AhA��A��i þ 1

4M
2
VhV��V��i

! �1
2M

2
PhPPi � 1

2M
2
ShSSi þ 1

4M
2
AhA��A��i þ 1

4M
2
VhV��V��i � �PA

1 OPA
1 � �PV

1 OPV
1 � �PV

2 OPV
2

� �PV
3 OPV

3 � �SA
1 OSA

1 � �SA
2 OSA

2 � �SV
1 OSV

1 ;

and therefore the operators OSA
i , OPV

i , and OPA
1 are eliminated. We get the additional contributions

cdhSu�u�i ! cdhSu�u�i þ cd
2M2

S

ð��SA
1 OA

4 � �SA
2 OA

1 � �SV
1 OV

5 Þ;

cmhS�þi ! cmhS�þi þ cm
2M2

S

ð��SA
1 OA

14 þ �SA
2 OA

13 � �SV
1 OV

15Þ;

idmhP��i ! idmhP��i þ dm
2M2

P

ð�PA
1 OA

11 � �PV
1 OV

9 � �PV
2 OV

10 þ �PV
3 OV

14Þ;

i
dm0

NF

hPih��i ! i
dm0

NF

hPih��i þ dm0

NFM
2
P

ð�PA
1 OA

9 � �PV
1 OV

18 �
1

2
�PV
2 OV

18 þ �PV
3 OV

13Þ;

FA

2
ffiffiffi
2

p hA��f
��� i ! FA

2
ffiffiffi
2

p hA��f
��� i � FA

2
ffiffiffi
2

p
M2

A

ð�SA
1 OS

2 � �SA
2 OS

1 þ �PA
1 OP

1 Þ;

FV

2
ffiffiffi
2

p hV��f
��
þ i ! FV

2
ffiffiffi
2

p hV��f
��
þ i � FV

2
ffiffiffi
2

p
M2

V

ð�PV
1 OP

3 � �PV
2 OP

2 þ �PV
3 OP

5 � �SV
1 OS

2Þ;

iGV

2
ffiffiffi
2

p hV��½u�; u��i ! iGV

2
ffiffiffi
2

p hV��½u�; u��i þ GVffiffiffi
2

p
M2

V

ð2�PV
1 OP

4 � �PV
2 OP

4 � �PV
3 OP

3 þ �SV
1 OS

1Þ:

4. Elimination of OAA
2;3 , O

VV
2;3 , O

PA
2 , and OSV

2

The operators with derivatives acting on the resonance fields can also be eliminated by means of a suitable field
redefinition; however, contrary to previous cases, one has to use integration by parts and the equations of motion for the
GB fields.

Let us assume the following redefinitions for R ¼ V, A,

R�� ! R�� � �RR
3

M2
R

ðg�"�	��frR�	; u�g � ð� $ �ÞÞ þ �R
4

M2
R

"����r�fR�; ug:

We then get, modulo integration by parts,

1
4M

2
RhR��R

��i ! 1
4M

2
RhR��R

��i � �RR
3 ORR

3 � �RR
4 ORR

4

and (again up to the integration by parts and GB equations of motion)
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FV

2
ffiffiffi
2

p hV��f
��
þ i þ GV

2
ffiffiffi
2

p hV��½u�; u��i

! FV

2
ffiffiffi
2

p hV��f
��
þ i þ GV

2
ffiffiffi
2

p hV��½u�; u��i þ FV�
VV
3

2
ffiffiffi
2

p
M2

V

ðOV
11 þOV

12 þ 2OV
17Þ

þ GV�
VV
3

2
ffiffiffi
2

p
M2

V

ð2OV
1 �OV

2 þOV
3 �OV

6 �OV
7 þ 2OV

8 þOV
9 � 2OV

10Þ þ
FV�

VV
4

2
ffiffiffi
2

p
M2

V

ð�OV
11 þOV

12 � 2OV
16Þ

þ GV�
VV
4

2
ffiffiffi
2

p
M2

V

ðOV
1 þOV

2 þOV
5 �OV

7 �OV
8 Þ

FA

2
ffiffiffi
2

p hA��f
��� i

! FA

2
ffiffiffi
2

p hA��f
��� i þ FA�

AA
3

2
ffiffiffi
2

p
M2

A

ðOA
8 þ 2OA

16Þ þ
FA�

AA
4

2
ffiffiffi
2

p
M2

A

ðOA
8 � 2OA

15Þ:

Analogously, for the redefinition of the S and P fields

S ! S� i

M2
S

�SV
2 "����r�½u�; V���; P ! P� 1

M2
P

�PA
2 "����r�fA��; u��;

we get, on one hand,

� 1
2M

2
ShSSi � 1

2M
2
PhPPi ! �1

2M
2
ShSSi � 1

2M
2
PhPPi � �SV

2 OSV
2 � �PA

2 OPA
2

and, on the other hand,

cmhS�þiþcdhSuui!cmhS�þiþcdhSuuiþ cm
M2

S

�SV
2 OV

4 þ
cd
2M2

S

�SV
2 ðOV

1 þOV
2 �OV

7 �OV
8 Þ;dmhP��iþdm0

NF

hPih��i

!dmhP��iþdm0

NF

hPih��iþ dm
M2

P

�PA
2 OA

12�
2dm0

NF

�PA
2 OA

10:

This completes the elimination of the operators which are
bilinear and trilinear in the resonance fields from the
Lagrangian Lð6;oddÞ

R�T .

5. The effective couplings �X
i

Putting the results of the previous subsections together,

we get the parameters �X
i of the reparametrized and trun-

cated Lagrangian Lð6;oddÞ
R�T , which is relevant for the satura-

tion of ChPT LECs, as functions of the parameters �X
i . As

we have discussed above, the LECs have to depend on the

couplings �X
i of the original Lagrangian Lð6;oddÞ

R�T only

through their particular combinations �X
i . We have proved

this by means of direct calculation as a nontrivial check of
the formulas (92).

�V
1 ¼ �V

1 þ cd
2M2

S

�SV
2 þ GVffiffiffi

2
p

M2
V

�VV
3 þ GV

2
ffiffiffi
2

p
M2

V

�VV
4 ;

�V
2 ¼ �V

2 þ cd
2M2

S

�SV
2 � GV

2
ffiffiffi
2

p
M2

V

�VV
3 þ GV

2
ffiffiffi
2

p
M2

V

�VV
4 ;

�V
3 ¼ �V

3 þ GV

2
ffiffiffi
2

p
M2

V

�VV
3 ;

�V
4 ¼ �V

4 þ cm
M2

S

�SV
2 ;

�V
5 ¼ �V

5 � cd
2M2

S

�
�SV
1 þ FA

2
ffiffiffi
2

p
M2

A

�VAS

�

� FA

2
ffiffiffi
2

p
M2

A

�VA
1 þ GV

2
ffiffiffi
2

p
M2

V

�VV
4 ;

�V
6 ¼ �V

6 � FA

2
ffiffiffi
2

p
M2

A

�VA
3 � GV

2
ffiffiffi
2

p
M2

V

�VV
3 ;

�V
7 ¼ �V

7 � FA

2
ffiffiffi
2

p
M2

A

�VA
4 � cd

2M2
S

�SV
2

� GV

2
ffiffiffi
2

p
M2

V

�VV
3 � GV

2
ffiffiffi
2

p
M2

V

�VV
4 ;

�V
8 ¼�V

8 �
FA

2
ffiffiffi
2

p
M2

A

�VA
2 � cd

2M2
S

�SV
2 þ GVffiffiffi

2
p

M2
V

�VV
3 � GV

2
ffiffiffi
2

p
M2

V

�VV
4 ;

�V
9 ¼�V

9 þ
2GV�

VV
2ffiffiffi

2
p

M2
V

� dm
2M2

P

�
�PV
1 �GV�

VVPffiffiffi
2

p
M2

V

�
þ GV

2
ffiffiffi
2

p
M2

V

�VV
3 ;

�V
10 ¼ �V

10 �
dm
2M2

P

�PV
2 � GVffiffiffi

2
p

M2
V

�VV
3 ;

�V
11 ¼ �V

11 þ
FA

2
ffiffiffi
2

p
M2

A

�VA
5 þ FV

2
ffiffiffi
2

p
M2

V

�VV
3 � FV

2
ffiffiffi
2

p
M2

V

�VV
4 ;
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�V
12 ¼ �V

12 þ
FV

2
ffiffiffi
2

p
M2

V

�VV
3 þ FV

2
ffiffiffi
2

p
M2

V

�VV
4 ;

�V
13 ¼ �V

13 þ
dm0

NFM
2
P

�
�PV
3 � FV�

VVP

2
ffiffiffi
2

p
M2

V

�
� FV�

VV
1ffiffiffi

2
p

M2
V

;

�V
14 ¼ �V

14 �
FV�

VV
2ffiffiffi

2
p

M2
V

þ dm
2M2

P

�
�PV
3 � FV�

VVP

2
ffiffiffi
2

p
M2

V

�
;

�V
15 ¼ �V

15 �
cm
2M2

S

�
�SV
1 þ FA

2
ffiffiffi
2

p
M2

A

�VAS

�
� FA

2
ffiffiffi
2

p
M2

A

�VA
6 ;

�V
16 ¼ �V

16 �
FVffiffiffi
2

p
M2

V

�VV
4 ;

�V
17 ¼ �V

17 þ
FVffiffiffi
2

p
M2

V

�VV
3 ;

�V
18¼�V

18�
dm0

NFM
2
P

�
�PV
1 þ1

2
�PV
2 �GV�

VVPffiffiffi
2

p
M2

V

�
þ2GV�

VV
1ffiffiffi

2
p

M2
V

;

�A
1 ¼ �A

1 � cd
2M2

S

�
�SA
2 þ GVffiffiffi

2
p

M2
V

�VAS

�

� GV

2
ffiffiffi
2

p
M2

V

ð2�VA
1 þ �VA

2 þ �VA
3 � �VA

4 Þ;

�A
2 ¼ �A

2 þ
GV

2
ffiffiffi
2

p
M2

V

ð�VA
2 þ �VA

3 � �VA
4 Þ;

�A
3 ¼ �A

3 ;

�A
4 ¼ �A

4 � cd
2M2

S

�
�SA
1 � FV

2
ffiffiffi
2

p
M2

V

�VAS

�

þ FV

2
ffiffiffi
2

p
M2

V

�
�VA
1 þ 1

2
�VA
2 þ 1

2
�VA
3

�
;

�A
5 ¼ �A

5 � FV

2
ffiffiffi
2

p
M2

V

�VA
3 þ GV

2
ffiffiffi
2

p
M2

V

�VA
5 ;

�A
6 ¼ �A

6 � FV

2
ffiffiffi
2

p
M2

V

�VA
2 � GV

2
ffiffiffi
2

p
M2

V

�VA
5 ;

�A
7 ¼ �A

7 � FV

2
ffiffiffi
2

p
M2

V

�VA
4 ;

�A
8 ¼ �A

8 þ
FA�

AA
3

2
ffiffiffi
2

p
M2

A

þ FA�
AA
4

2
ffiffiffi
2

p
M2

A

;

�A
9 ¼ �A

9 þ dm0

NFM
2
P

�
�PA
1 � FA�

AAP

2
ffiffiffi
2

p
M2

A

�
� FA�

AA
1ffiffiffi

2
p

M2
A

;

�A
10 ¼ �A

10 �
2dm0

NFM
2
P

�PA
2 ;

�A
11 ¼ �A

11 �
FA�

AA
2ffiffiffi

2
p

M2
A

þ dm
2M2

P

�
�PA
1 � FA�

AAP

2
ffiffiffi
2

p
M2

A

�
;

�A
12 ¼ �A

12 þ
dm
M2

P

�PA
2 ;

�A
13 ¼ �A

13 þ
GVffiffiffi
2

p
M2

V

�VA
6 þ cm

2M2
S

�
�SA
2 þ GVffiffiffi

2
p

M2
V

�VAS

�
;

�A
14 ¼ �A

14 þ
FV

2
ffiffiffi
2

p
M2

V

�VA
6 � cm

2M2
S

�
�SA
1 � FV

2
ffiffiffi
2

p
M2

V

�VAS

�
;

�A
15 ¼ �A

15 �
FA�

AA
4ffiffiffi

2
p

M2
A

;

�A
16 ¼ �A

16 þ
FA�

AA
3ffiffiffi

2
p

M2
A

;

�S
1 ¼ �S

1 þ
FA

2
ffiffiffi
2

p
M2

A

�
�SA
2 þ GVffiffiffi

2
p

M2
V

�VAS

�

þ GVffiffiffi
2

p
M2

V

�
�SV
1 þ FA

2
ffiffiffi
2

p
M2

A

�VAS

�
;

�S
2 ¼ �S

2 �
FA

2
ffiffiffi
2

p
M2

A

�
�SA
1 � FV

2
ffiffiffi
2

p
M2

V

�VAS

�

þ FV

2
ffiffiffi
2

p
M2

V

�
�SV
1 þ FA

2
ffiffiffi
2

p
M2

A

�VAS

�
;

�P
1 ¼ �P

1 � FA

2
ffiffiffi
2

p
M2

A

�
�PA
1 � FA�

AAP

2
ffiffiffi
2

p
M2

A

�
;

�P
2 ¼ �P

2 þ FV

2
ffiffiffi
2

p
M2

V

�PV
2 ;

�P
3 ¼ �P

3 � FV

2
ffiffiffi
2

p
M2

V

�
�PV
1 �GV�

VVPffiffiffi
2

p
M2

V

�

� GVffiffiffi
2

p
M2

V

�
�PV
3 � FV�

VVP

2
ffiffiffi
2

p
M2

V

�
;

�P
4 ¼ �P

4 þ 2GVffiffiffi
2

p
M2

V

�
�PV
1 � 1

2
�PV
2 �GV�

VVPffiffiffi
2

p
M2

V

�
;

�P
5 ¼ �P

5 � FV

2
ffiffiffi
2

p
M2

V

�
�PV
3 � FV�

VVP

2
ffiffiffi
2

p
M2

V

�
:
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Abstract

We add the Wess–Zumino–Witten term to the N = 3 massive nonlinear sigma model and study the

leading logarithms in the anomalous sector. We obtain the leading logarithms to six loops for π0 → γ ∗γ ∗

and to five loops for γ ∗πππ . In addition we extend the earlier work on the mass and decay constant to six

loops and the vector form factor to five loops. We present numerical results for the anomalous processes

and the vector form factor. In all cases the series are found to converge rapidly.

 2012 Elsevier B.V. All rights reserved.

Keywords: Renormalization group evolution of parameters; Spontaneous and radiative symmetry breaking; Chiral
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1. Introduction

Obtaining exact results in quantum field theory is rather difficult. One of the few things which

can be easily calculated to all orders in renormalizable theories are the leading logarithms of the

type (g2 logμ2)n where μ is the subtraction scale and g the coupling constant. The analogue of

this in effective field theories is not so simple since at each order in the expansion new terms in

the Lagrangian appear and the recursive argument embedded in the renormalization group equa-

tions for renormalizable theories no longer applies. Nonetheless, one can calculate the leading
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logarithms in effective field theories using only one-loop calculations. This was suggested at

two-loop order by Weinberg [1] and proven to all orders in [2].

In the massless case this has been used to very high orders in [3–5] for meson–meson scat-

tering and form factors. In the massive case, many more terms contribute but in [6,7] a method

was developed for handling those, and the leading logarithms in the massive nonlinear sigma

model were obtained to five-loop order for the mass, decay constant and the vacuum expectation

value and to four-loop order for the vector and scalar form factors and the meson–meson scat-

tering amplitude. A natural continuation of that program is to extend it to other sectors as well.

We therefore add to the massive nonlinear sigma model for N = 3 the anomalous part via the

Wess–Zumino–Witten (WZW) term. This allows us to study the leading logarithms for anoma-

lous processes in two-flavour Chiral Perturbation Theory (ChPT). In addition one can hope that

in this sector with its many nonrenormalization theorems it might be easier to guess the all order

results when the first terms in the series are known. The WZW term only makes sense for N = 3

so we do not work out the results for general N in this case.

We have also improved the programs used in [6,7] so that they now can be used to arbitrarily

high orders given enough computing power. So, at least in principle, the problem of the leading

logarithms is solved. In practice we obtained one order more than in the earlier work.

The main part of the paper is devoted to the calculations of the leading logarithms (LL) for

the two main anomalous processes in the pion sector, the full π0γ ∗γ ∗ and γ ∗πππ vertices. For

the former we obtained the LL to six loops and for the latter to five. The results indicate that in

all cases the chiral expansion converges fast but we did not find a simple all-order conjecture.

The results agree with all known relevant earlier calculations. As an additional check we have

used several different parametrizations of the fields.

In Section 2.1 we introduce shortly the massive nonlinear sigma model and in Section 2.2

the two-flavour Wess–Zumino–Witten term. Section 3 contains the discussion of LL in the

nonanomalous sector where we present our new results and show some numerical results. Here

we also explain briefly the principles of the calculation. More details on the method can be found

in [6,7]. Sections 4 and 5 are the main part of this paper. The LL are calculated in Section 4. We

did not find a simple all-order conjecture but the LL indicate for example that the nonfactoriz-

able part in π0γ ∗γ ∗ with both photons off shell should be small. We present numerical results

in Section 5. In all cases we find good convergence. Section 6 shortly recapitulates our results.

Appendix A contains a dispersive argument to clarify the discrepancy with [4] for the vector

form factor.

2. The model

2.1. Massive nonlinear O(N + 1)/O(N) sigma model

The O(N + 1)/O(N) nonlinear sigma model, including external sources, is given by the

Lagrangian

Lnσ =
F 2

2
DμΦT DμΦ + F 2χT Φ. (1)

Φ is a real N + 1 vector, ΦT = (Φ0 Φ1 . . . ΦN ), which satisfies the constraint ΦT Φ = 1 and

transforms under the fundamental representation of O(N + 1). The covariant derivative is

DμΦ0 = ∂μΦ0 + aa
μΦa,
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DμΦa = ∂μΦa + vab
μ Φb − aa

μΦ0. (2)

The vector sources are antisymmetric, vab
μ = −vba

μ , and correspond to the unbroken group gen-

erators. The axial sources aa
μ correspond to the broken generators. Lower-case Latin indices

a, b, . . . run over 1, . . . ,N in the remainder and are referred to as flavour indices. The mass

term χT Φ contains the scalar, s0, and pseudoscalar, pa , external sources as well as the explicit

symmetry breaking term M2:

χT =
((

2Bs0 + M2
)

p1 . . . pN
)

. (3)

The vacuum condensate
〈

ΦT
〉

= (1 0 . . . 0) (4)

breaks O(N + 1) spontaneously to O(N). We thus have in principle N Goldstone bosons repre-

sented by φ. The explicit symmetry breaking term, the part containing M2, breaks the O(N + 1)

symmetry to O(N), enforcing the vacuum condensate to be in the direction (4) and gives a mass

to the Goldstone bosons which at tree level is exactly M .

This particular model is the same as lowest-order two-flavour ChPT for N = 3 [8,9] and has

been used as a model for strongly interacting Higgs sectors in several scenarios; see, e.g., [10,11].

The terminology for the external sources or fields is taken from two-flavour ChPT. The vector

currents for N = 3 are given by vab = −εabcvc with εabc the Levi-Civita tensor. The electro-

magnetic current at lowest order is associated with v3.

We write Φ in terms of a real N -component vector φ, which transforms linearly under the

unbroken part of the symmetry group O(N). We have made use of five different parametrizations

in order to check the validity of our results. They are

Φ1 =

⎛

⎜

⎜

⎝

√

1 −
φT φ

F 2

φ

F

⎞

⎟

⎟

⎠

, Φ2 =
1

√

1 + φT φ

F 2

(

1
φ

F

)

,

Φ3 =

⎛

⎜

⎜

⎝

1 −
1

2

φT φ

F 2
√

1 −
1

4

φT φ

F 2

φ

F

⎞

⎟

⎟

⎠

, Φ4 =

⎛

⎜

⎜

⎜

⎝

cos

√

φT φ

F 2

sin

√

φT φ

F 2

φ
√

φT φ

⎞

⎟

⎟

⎟

⎠

,

Φ5 =
1

1 + φT φ

4F 2

⎛

⎝

1 −
φT φ

4F 2

φ

F

⎞

⎠ . (5)

Φ1 is the parametrization used in [8], Φ2 a simple variation. Φ3 is such that the explicit symmetry

breaking term in (1) only gives a mass term to the φ field but no vertices. Φ4 is the parametriza-

tion one ends up with if using the general prescription of [12]. Finally, Φ5 has been used by

Weinberg in, e.g., [1,9]. The reason for using different parametrizations is that for each one of

them, the contributions are distributed very differently between the diagrams and obtaining the

same result thus provides a thorough check on our calculations.

2.2. Wess–Zumino–Witten Lagrangian

For N = 3, the massive nonlinear O(N + 1)/O(N) sigma model corresponds to two-flavour

ChPT, which is an effective field theory for QCD. It is well known that the chiral axial current
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of the latter is anomalous [13–16], leading to the occurrence of processes such as π0 → γ γ

or πγ → ππ . The Lagrangian that we have introduced above does, however, not account for

this. The necessary interaction terms are contained in the Wess–Zumino–Witten term [17,18],

which must be added to the effective Lagrangian. It is constructed such that it reproduces the

anomalous Ward identities. Kaiser derived the WZW term for two-flavour ChPT [19], where it

is considerably simpler than in the case of three flavours. His result can be re-expressed in terms

of the field Φ as

LWZW = −
Nc

8π2
ǫμνρσ

{

ǫabc

(

1

3
Φ0∂μΦa∂νΦ

b∂ρΦc − ∂μΦ0∂νΦ
a∂ρΦbΦc

)

v0
σ

+
(

∂μΦ0Φa − Φ0∂μΦa
)

va
ν ∂ρv0

σ +
1

2
ǫabcΦ0Φavb

μvc
ν∂ρv0

σ

}

. (6)

The interaction with the axial current coming from the WZW term has been omitted. Note that

the normalization of the vector field differs from the one used in [19]. The Lagrangian depends

on the Levi-Civita tensor ǫabc in the SO(3) flavour indices. This is an object specific to N = 3.

There is no obvious simple generalization1 to different N so for anomalous processes we restrict

the calculation to N = 3.

The Lagrangian in (6) is of chiral order p4 implying that anomalous processes are of the same

order at leading order, while one-loop corrections are already O(p6). This is immediately clear

from the presence of the epsilon tensor with four Lorentz indices: each one of them must be

combined with either a derivative or an external vector field, both of which are O(p).

The interaction of the pseudoscalars with the photon field Aμ can be obtained from the WZW

Lagrangian by setting the vector current to

v0
μ =

e

3
Aμ, va

μ = eAμδa3. (7)

The Lagrangian of (1) has also a symmetry that QCD does not have [18]. The fields under this

extra symmetry, called intrinsic parity, transform as

Φ0 → Φ0, Φa → −Φa, vab
μ → vab

μ , aa
μ → −aa

μ, s → s, p → −p. (8)

The Lagrangian (1) and higher orders are even under this symmetry while (6) is odd.

As in the even sector, we have used several of the parametrizations given in (5). Intrinsic parity

for the different φ is such that it is always odd, φa → −φa . The WZW term leads to interactions

of one, two, or three photons with an odd number of pions. The anomaly also generates purely

mesonic interactions among an odd number of five or more Goldstone bosons. However, for two

flavours the purely mesonic odd intrinsic parity processes vanish to all orders.

We use anomalous and odd intrinsic parity as synonyms and refer to the N = 3 case here

occasionally as the two-flavour case since it corresponds to two light quark flavours.

3. Leading logarithms in the even sector

In this section we recapitulate and extend some results of the even intrinsic parity sector of

[6,7]. We focus on those results that will be needed for the later calculations in the anomalous

sector.

1 The generalization to different n for the SU(n) × SU(n)/SU(n) case is easy but that is a different case than the

O(N + 1)/O(N) considered here.
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The leading dependence on logμ at each order, with μ the subtraction scale, is what we call

the leading logarithm. It can in principle always be obtained from one-loop calculations as was

proven using β-functions in [2] and in a simpler diagrammatic way in [6]. We will discuss some

of those results in the sections on the explicit calculation of the mass and γπ → ππ .

In effective field theories there is a new Lagrangian at every order. The observation of [6]

that the needed parts of those Lagrangians can be generated automatically from the one-loop

diagrams allowed to perform the calculations. The actual calculations were performed by using

FORM [20] extensively.

We have extended the programs used in [6,7] so that they can in principle run to an arbitrary

order.2 The only limit is set by computing time, which grows rapidly with the order. The neces-

sary additions include routines that generate the required diagrams at a given order and calculate

one-loop diagrams with an arbitrary number of propagators. In this way, we have verified some

of the earlier results and obtained the coefficient of one more order for the mass, decay constant

and vector form factor.

In effective field theories writing the expansion in terms of lowest order or physical quantities

can make quite a big difference in the rate of convergence. We therefore follow [7] in using two

different expansions in terms of leading logarithms. A given observable Ophys can be written in

different ways:

Ophys = O0

(

1 + a1L + a2L
2 + · · ·

)

, (9)

Ophys = O0

(

1 + c1Lphys + c2L
2
phys + · · ·

)

, (10)

where the chiral logarithms are defined either from the lowest-order parameters M and F as

L ≡
M2

16π2F 2
log

μ2

M2
, (11)

or from the physical decay constant Fπ and mass Mπ as

Lphys ≡
M2

π

16π2F 2
π

log
μ2

M2
π

. (12)

3.1. Mass

In this subsection we will present the first few coefficients ai and ci of the expansions in (9)

and (10) with Ophys = M2
π and O0 = M2. In addition, we have also calculated the generic two-

point function, which is needed for the wave-function renormalization. We extend the result

from [6] by giving the expansion coefficients ai and ci also at sixth order.

Let us briefly recapitulate the strategy that is followed to obtain the expansion coefficients.

The starting point is the Lagrangian (1) which generates vertices with an arbitrary even number

of pion legs. These lowest-order vertices are diagrammatically denoted by 0 with the corre-

sponding number of legs appended. The zero in this symbol refers to the order in the expansion.

If we want to calculate the leading logarithm for the two-point function at one-loop level, we must

evaluate the tadpole diagram with one insertion of the leading-order four-pion vertex. Its diver-

gence must be canceled by a counter term from the next order. This can be depicted schematically

as

2 In [6,7], a different program was used for each diagram with a given number of vertices/propagators and the list of

possible diagrams was constructed by hand.
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(13)

Also at the next order, divergences must cancel, but the situation is somewhat more complicated.

There are two one-loop diagrams from which, using the results of [2,6], the leading divergence

can be determined. This thus determines the relevant part of the second-order Lagrangian:

(14)

We already have all information ready in order to calculate the second diagram: the tree-level

vertex follows directly from the lowest-order Lagrangian and the next-to-leading-order vertex

has been determined in (13). The first diagram, however, contains the next-to-leading-order ver-

tex with four pion legs, which we do not know yet. In order to obtain its divergence, we must

calculate two more diagrams:

(15)

The algorithm continues to higher orders in exactly the same way. All the diagrams needed for

the two-point function up to third order are shown in [6], Figs. 3–5. The total number of diagrams

needed for the mass up to order n is 1,5,16,45,116,303, . . . .

We did not find a simple formula to estimate the total number of diagrams needed. We did

find a conjecture, verified up to 12th order, about the number of diagrams needed with only two

external legs at each order:

# two-point diagrams =

{

2n−2 + 3 × 2
n−3

2 − 1 for n odd,

2n−2 + 2
n
2 − 1 for n even,

(16)

that is: 1,2,4,7,13,23,43,79,151, . . . diagrams with two external legs at order n.

The coefficients ai and ci in the expansion of the physical mass are listed up to sixth order in

Tables 1 and 2. The sixth-order results are new. We can use these results to check the expansions

and how fast they converge. We chose F = 0.090 GeV, Fπ = 0.0922 GeV and μ = 0.77 GeV

for the plots presented here in Fig. 1.

3.2. Decay constant

The decay constant Fπ is defined by

〈0|jb
a,μ

∣

∣φc(p)
〉

= iFπpμδbc. (17)
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Table 1

The coefficients ai of the leading logarithm Li up to i = 6 for the physical meson mass.

i ai for N = 3 ai for general N

1 −1/2 1 − 1/2N

2 17/8 7/4 − 7/4N + 5/8N2

3 −103/24 37/12 − 113/24N + 15/4N2 − N3

4 24 367/1152 839/144 − 1601/144N + 695/48N2 − 135/16N3 + 231/128N4

5 −8821/144 33 661/2400 − 1 151 407/43 200N + 197 587/4320N2 − 12 709/300N3

+ 6271/320N4 − 7/2N5

6 1 922 964 667
6 220 800 158 393 809/3 888 000 − 182 792 131/2 592 000N + 1 046 805 817/7 776 000N2

− 17 241 967/103 680N3 + 70 046 633/576 000N4 − 23 775/512N5 + 7293/1024N6

Table 2

The coefficients ci of the leading logarithm Li
phys up to i = 6 for the physical meson mass.

i ci for N = 3 ci for general N

1 −1/2 1 − 1/2N

2 7/8 −1/4 + 3/4N − 1/8N2

3 211/48 −5/12 + 7/24N + 5/8N2 − 1/16N3

4 21 547/1152 347/144 − 587/144N + 47/24N2 + 25/48N3 − 5/128N4

5 179 341/2304 −6073/1800 + 32 351/2400N − 59 933/4320N2 + 224 279/43 200N3

+ 761/1920N4 − 7/256N5

6 2 086 024 177
6 220 800 −17 467 151/3 888 000 − 10 487 351/2 592 000N + 68 244 763/1 944 000N2

−5 630 053/172 800N3 +18 673 489/1 728 000N4 +583/2560N5 −21/1024N6

Fig. 1. The contribution of the leading logarithms to M2
π /M2 order by order for F = 0.090 GeV, Fπ = 0.0922 GeV,

μ = 0.77 GeV and N = 3. The left panel shows the expansion in L keeping F fixed, the right panel the expansion in

Lphys keeping Fπ fixed.

We thus need to evaluate a matrix-element with one external axial field and one incoming meson.

The diagrams needed for the wave function renormalization were already evaluated in the calcu-

lation for the mass in the previous subsection. What remains is thus the evaluation of all relevant

one-particle-irreducible (1PI) diagrams with an external aa
μ. At one-loop order there is only a
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Table 3

The coefficients ai of the leading logarithm Li for the decay constant Fπ in the case N = 3 and in the generic N case.

i ai for N = 3 ai for general N

1 1 −1/2 + 1/2N

2 −5/4 −1/2 + 7/8N − 3/8N2

3 83/24 −7/24 + 21/16N − 73/48N2 + 1/2N3

4 −3013/288 47/576 + 1345/864N − 14 077/3456N2 + 625/192N3 − 105/128N4

5 2 060 147/51 840 −23 087/64 800 + 459 413/172 800N − 189 875/20 736N2 + 546 941/43 200N3

− 1169/160N4 + 3/2N5

6 − 69 228 787
466 560 −277 079 063/93 312 000 + 1 680 071 029/186 624 000N

− 686 641 633/31 104 000N2 + 813 791 909/20 736 000N3

− 128 643 359/3 456 000N4 + 260 399/15 360N5 − 3003/1024N6

Table 4

The coefficients ci of the leading logarithm Li
phys for the decay constant Fπ in the case N = 3 and in the generic N case.

i ci for N = 3 ci for general N

1 1 −1/2 + 1/2N

2 5/4 1/2 − 7/8N + 3/8N2

3 13/12 −1/24 + 13/16N − 13/12N2 + 5/16N3

4 −577/288 −913/576 + 2155/864N − 361/3456N2 − 69/64N3 + 35/128N4

5 −14 137/810 535 901/129 600 − 2 279 287/172 800N + 273 721/20 736N2 − 11 559/3200N3

− 997/1280N4 + 63/256N5

6 − 37 737 751
466 560 −112 614 143/93 312 000 + 3 994 826 029/186 624 000N

− 1 520 726 023/31 104 000N2 + 276 971 363/6 912 000N3

− 39 882 839/3 456 000N4 − 979/15 360N5 + 231/1024N6

single diagram, but at higher orders, we must calculate 2,4,7,13,23, . . . diagrams, not counting

the auxiliary diagrams required for the renormalization of higher-order vertices with more than

two legs. We do not show these diagrams here, but they can be found up to third order in [7]. The

total number of diagrams with an axial current that needs to be calculated for the decay constant

to order n is 1,5,18,56,169,511, . . . .

We give the coefficients for both leading logarithm series with Ophys = Fπ and O0 = F in

Tables 3 and 4. The sixth order is again a new result. Note that once the expression of Fπ as a

function of F is known one may express the remaining observables as a function of the physical

M2
π and Fπ . This has already been used to calculate the coefficients ci in Tables 2 and 4 from

the corresponding ai .

We have plotted in Fig. 2 the expansion in terms of the unrenormalized quantities and in

terms of the physical quantities. In both cases we get a good convergence but it is excellent for

the expansion in physical quantities.

3.3. Vector form factor

Before we proceed to the discussion of anomalous processes, we turn to the last ingredient

from the even intrinsic parity sector which will be used later: the vertex involving a single photon

and an even number of pions. It is directly connected to the vector form factor, which is defined

by

〈

φa(pf )
∣

∣j cd
V,μ − jdc

V,μ

∣

∣φb(pi)
〉

=
(

δacδdb − δadδbc
)

i(pf + pi)μFV

[

(pf − pi)
2
]

. (18)
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Fig. 2. The contribution of the leading logarithms to Fπ /F order by order for μ = 0.77 GeV and N = 3. The left panel

shows the expansion in L with F = 0.090 GeV fixed, the right panel the expansion in Lphys with Fπ = 0.0922 MeV

fixed.

The procedure to find the leading logarithm for this observable follows the lines of the one for

the decay constant. For the wave function renormalization one may again use the results obtained

in the mass calculation. We express here the results in terms of t̃ = t/M2
π and

LM =
M2

π

16π2F 2
π

log
μ2

M2
(19)

with a scale M2 that is some combination of t and M2
π . Again we have added one more order

compared to the result in [7]. To fifth order we find

FV (t) = 1 + LM[1/6t̃] + L2
M

[

t̃ (−11/12 + 5/12N) + t̃2(5/36 − 1/24N)
]

+ L3
M

[

t̃
(

+1387/648 − 845/324N + 7/9N2
)

+ t̃2
(

−4007/6480 + 3521/6480N − 29/180N2
)

+ t̃3
(

+721/12 960 − 47/1440N + 1/80N2
)]

+ L4
M

[

t̃
(

−44 249/15 552 + 222 085/31 104N

− 55 063/10 368N2 + 127/96N3
)

+ t̃2
(

+349 403/155 520 − 15 139/4860N + 86 719/51 840N2 − 199/480N3
)

+ t̃3
(

−85 141/155 520 + 885 319/1 555 200N − 5303/19 200N2 + 21/320N3
)

+ t̃4
(

+4429/103 680 − 57 451/1 555 200N + 289/14 400N2 − 1/240N3
)]

+ L5
M

[

t̃
(

−2 278 099/777 600 − 2 377 637/466 560N

+ 64 763 783/4 665 600N2 − 178 063/19 200N3 + 69/32N4
)

+ t̃2
(

−62 212 433/11 664 000 + 27 685 279/2 332 800N

− 376 597 697/38 880 000N2 + 53 519 593/12 960 000N3 − 361/400N4
)

+ t̃3
(

74 033 879/30 240 000 − 2 247 054 421/544 320 000N
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+ 32 125 153/11 340 000N2 − 13 264 877/12 096 000N3 + 1209/5600N4
)

+ t̃4
(

−299 603 257/816 480 000 + 213 192 107/408 240 000N

− 98 330 371/272 160 000N2 + 546 331/3 780 000N3 − 233/8400N4
)

+ t̃5
(

3 090 331/163 296 000 − 36 097 349/1 632 960 000N

+28 441 883/1 632 960 000N2 − 15 971/2 268 000N3 + 1/672N4
)]

. (20)

Note that FV (0) = 1 as it should be.

The vector form factor was also calculated in the massless case in [4]. In order to transform

our result into this limit, we define

Kt ≡
t

16π2F 2
log

(

−
μ2

t

)

. (21)

Replacing M2 → t and then performing the limit M2
π → 0 (which implies Fπ → F ), we get

F 0
V (t) = 1 + Kt/6 + K2

t (5/36 − N/24)

+ K3
t

(

721/12 960 − 47/1440N + N2/80
)

+ K4
t

(

4429/103 680 − 57 451/1 555 200N + 289/14 400N2 − N3/240
)

+ K5
t

(

3 090 331/163 296 000 − 36 097 349/1 632 960 000N

+ 28 441 883/1 632 960 000N2 − 15 971/2 268 000N3 + N4/672
)

. (22)

This differs from the result of [4]. The difference is discussed in Appendix A using a dispersive

approach as an alternative check, which agrees with [7] and (22). Up to the given order, the

coefficient of the highest power in N in (22) at each order is of the form

f n
V =

(−1)n−1

(n + 1)(n + 2)

(

N

2

)n−1

, (23)

such that, assuming this representation of f n
V to be valid also at higher orders, we can write

F 0
V (t) = 1 +

∞
∑

n=1

f n
V Kn

t

(

1 + O(1/N)
)

. (24)

The summation can be performed explicitly and we obtain the next-to-large N result in the chiral

limit in a closed form:

F 0NLN
V (t) = 1 +

1

N
+

4

KtN2

[

1 −

(

1 +
2

KtN

)

log

(

1 +
KtN

2

)]

. (25)

These large N formulas are also present in [4] up to a sign mistake. In that article, the large N

has been explicitly calculated to all orders.

We close this section with giving the expansion for the radius and curvature of the vector form

factor defined by

FV (t) = 1 +
1

6

〈

r2
〉

V
t + cV t2 + · · · . (26)

The coefficients ci for the expansion in physical quantities are given in Tables 5 and 6 in units

of M2
π , again adding one order compared to [7]. The result up to two-loop order agrees with the
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Table 5

The coefficients ci of the leading logarithm Lphys in the expansion of the radius 〈r2〉V in the case N = 3 and for

general N .

i ci for N = 3 ci for general N

1 1 1

2 2 −11/2 + 5/2N

3 853/108 1387/108 − 845/54N + 14/3N2

4 50 513/1296 −44 249/2592 + 222 085/5184N − 55 063/1728N2 + 127/16N3

5 120 401/648 −2 278 099/129 600 − 2 377 637/77 760N + 64 763 783/777 600N2

− 178 063/3200N3 + 207/16N4

Table 6

The coefficients ci of the leading logarithm Lphys in the expansion of the curvature cV in the case N = 3 and for gen-

eral N .

i ci for N = 3 ci for general N

1 0 0

2 1/72 5/36 − 1/24N

3 −71/162 −4007/6480 + 3521/6480N − 29/180N2

4 −25 169/7776 349 403/155 520 − 15 139/4860N + 86 719/51 840N2 − 199/480N3

5 −1 349 303/72 900 −62 212 433/11 664 000+27 685 279/2 332 800N −376 597 697/38 880 000N2

+ 53 519 593/12 960 000N3 − 361/400N4

LL extracted from the full two-loop calculation [21]. We do not present numerical results for the

vector form factor since these are dominated in the physical case N = 3 by the large higher-order

coefficient contributions, see, e.g., [8,21].

4. Leading logarithms in the anomalous sector

4.1. πγ → ππ

The process π0γ → π0π0 is forbidden by C-symmetry and we will therefore concentrate on

π−γ → π−π0. The latter can be represented by the anomalous VAAA quadrangle diagram at

quark level. We follow the notation introduced in [22] where the one-loop order was calculated.

At tree-level, the amplitude for π−(p1)γ (k) → π−(p2)π
0(p0) can be obtained from the Wess–

Zumino–Witten Lagrangian (6):

A0 =
ie

4π2F 3
ǫμναβεμ(k)pν

1pα
2 p

β

0 . (27)

For higher orders we express the results in terms of physical variables only as

A = iF 3π (s, t, u)ǫμναβεμ(k)pν
1pα

2 p
β

0 , (28)

with the Mandelstam variables

s = (p1 + k)2, t = (p1 − p2)
2, u = (p1 − p0)

2, s + t + u = 3M2
π + k2. (29)

The function F 3π (s, t, u) for γπ → ππ is fully symmetric in s, t, u. We write it in terms of Fπ

as
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Fig. 3. The irreducible diagrams for the process πγ → ππ up to two-loop level. The first two diagrams are the one-loop

level.

F 3π (s, t, u) = F 3π
0 f (s, t, u), F 3π

0 =
e

4π2F 3
π

. (30)

If one expands f (s, t, u) as a polynomial in s, t, u one can use the relation in (29) to see how

many new independent kinematical quantities can appear at each order. Up to fifth order in s, t, u

there is only one at each order. At sixth order there are two. For the first five orders we choose as

independent quantities3

Δn = sn + tn + un. (31)

We also define k̃2 = k2/M2
π and Δ̃n = Δn/M

2n
π . In the end we write f (s, t, u) in terms of

k̃2,M2
π , Δ̃2, . . . , Δ̃5.

The main focus of this article is calculating the leading logarithms in the anomalous sector.

The procedure follows very similar steps as in the even sector. From the even sector we will

need the wave function renormalization and the expressions for the higher-order purely mesonic

vertices as well as the decay constant and mass when using an expansion in terms of physi-

cal quantities. Vertices coupling an even number of pions to a single photon are not needed at

this point, because the two-flavour anomaly does not contain interaction terms involving an odd

number of pions and no photon. What remains to be calculated are the irreducible diagrams with

three external pions and one external photon. The required diagrams up to two-loop order are

depicted in Fig. 3. As in Section 3, a box with n inside, n , means a vertex of order n. To reach

the one-loop level, we must calculate the first two of these diagrams. Inspection of the remaining

diagrams for the two-loop level shows that all vertices are already known except the one with

five pions and one photon in the third diagram. The diagrams that are needed in order to obtain

its divergence are shown in Fig. 4. Note that the vertex with three pions and one photon in the

sixth diagram of Fig. 3 is fixed by the one-loop calculation, the first two diagrams in the same

figure.

To go to higher orders we rapidly need vertices with many more legs. We have generated all

diagrams needed and calculated them up to fifth order. We agree with the logarithm determined

from the full one-loop result [22]. The results were obtained in several different parametrizations

with consistent results.

We have calculated the amplitude for π−γ → π−π0 up to five-loop level. In the general case,

i.e., for k2,M2
π �= 0, we obtain

f LL(s, t, u) = 1 + LM

1

6

(

3 + k̃2
)

+ L2
M

1

72

(

k̃2 − 3
)(

k̃2 + 33
)

3 The same arguments can be applied to any process fully symmetric in s, t , and u. A prominent example is η → 3π0,

where s + t + u = 3M2
π + M2

η .
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Fig. 4. The irreducible (auxiliary) diagrams needed for the vertex 5πγ up to one-loop level.

+ L3
M

1

1296

(

90Δ̃3 − 640Δ̃2 − 8157 + 2105k̃2 + 81k̃4 + k̃6
)

+ L4
M

1

155 520

[

−1532Δ̃4 + Δ̃3

(

88 538 + 1890k̃2
)

− Δ̃2

(

577 760 + 12 240k̃2 + 540k̃4
)

− 2 433 375 + 1 296 190k̃2 + 57 430k̃4 + 480k̃6 + 185k̃8
]

+ L5
M

1

326 592 000

[

Δ̃513 252 156 − Δ̃4

(

160 744 570 + 518 350k̃2
)

+ Δ̃3

(

1 465 187 530 + 39 593 272k̃2 + 247 260k̃4
)

− Δ̃2

(

6 756 522 937 + 257 781 206k̃2 + 11 188 776k̃4 − 9160k̃6
)

− 6 498 695 163 + 12 675 091 794k̃2 + 801 259 373k̃4 + 4 780 240k̃6

+ 2 948 600k̃8 − 1832k̃10
]

. (32)

The symmetry in s, t and u is obvious in this expression. Note that at second order Δ̃2 does not

appear even though it could be present a priori.

We can check whether we find a simpler expression in the massless limit and for an on-shell

photon, k2 = 0. In this case we need to express the result in terms of the logarithm

LΔ =
1

16π2F 2
log

(

μ2

Δ̂

)

, (33)

where Δ̂ is some combination of s, t , and u:

f LL0(s, t, u) = 1 +
5

72
Δ3L

3
Δ −

383

19 440
Δ4L

4
Δ +

3 313 039

81 648 000
Δ5L

5
Δ. (34)

It is clear from symmetry considerations that there should be no term linear in LΔ. We do how-

ever not know why the quadratic term is also absent.

4.2. π0 → γ γ

This is the most important process in the odd-intrinsic parity sector of QCD, since it is the pro-

cess in which the chiral anomaly was discovered. It remains the main experimental test thereof.

We started our discussion of anomalous processes with πγ → ππ because the leading loga-

rithms for this process could be calculated from our results in the even intrinsic parity sector and

just one type of anomalous vertex.

We define the reduced amplitude Fπγ γ for π0 → γ (k1)γ (k2)
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Fig. 5. First type of the irreducible diagrams contributing to π0 → γ γ up to three-loop order.

Fig. 6. Second type of the irreducible diagrams contributing to π0 → γ γ up to three-loop order.

A = ǫμναβε
∗μ
1 (k1)ε

∗ν
2 (k2)k

α
1 k

β

2 Fπγ γ

(

k2
1, k2

2

)

. (35)

Fπγ γ (k2
1, k2

2) is symmetric under the interchange of the two photons.

The irreducible diagrams contributing to π0 → γ γ consist of two different types of one-loop

diagrams. The first type contains the diagrams where both photons are attached to the same ver-

tex, while in the diagrams of the second type, the two photons connect to two different vertices,

only one of which is anomalous. We show here the diagrams needed for the calculation of the

leading logarithms up to third order. Those of the first type are depicted in Fig. 5. There is one

diagram at one-loop order, there are two at two-loop order, and four at three-loop order. The dia-

grams of the second type are depicted in Fig. 6. This time, there is one diagram at one-loop order,

there are three at two-loop, and eight at three-loop order. The figures do not contain the auxiliary

diagrams that are needed in order to determine the higher-order vertices with more than one pion

leg. We only mention that up to three-loop order, one needs to calculate 11 and 23 diagrams for

the first and second type of topologies, respectively.

The first type of diagrams is a consistent subset if we only keep the terms with two vector

sources in the Lagrangian (6). That this leads to identical results for several different parametriza-

tions provides a thorough check on the correctness of our programs for this class of diagrams

separately.

We write the result with k̃2
i = k2

i /M
2
π in the form

Fπγ γ

(

k2
1, k2

2

)

=
e2

4π2Fπ

Fγ

(

k2
1

)

Fγ

(

k2
2

)

Fγ γ

(

k2
1, k2

2

)

F̂ . (36)
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The functions Fγ (k2
i ) and Fγ γ (k2

1, k2
2) are defined to be equal to one for k2

i = 0. Fγ γ (k2
1, k2

2)

contains only those parts that cannot be absorbed in the Fγ and thus gives the part that cannot

be obtained as a product of single photon form factors. Finally F̂ gives the corrections for the

on-shell decay π0 → γ γ .

We have calculated all contributions needed for the LLs up to six-loop order and obtained

F̂ = 1 − 1/6L2
M

+ 5/6L3
M

+ 56 147/7776L4
M

+ 446 502 199/11 664 000L5
M

+ 65 694 012 997/367 416 000L6
M

,

Fγ

(

k2
)

= 1 + LM

(

1/6k̃2
)

+ L2
M

(

5/24k̃2 + 1/72k̃4
)

+ L3
M

(

71/432k̃2 + 1/24k̃4 + 1/1296k̃6
)

+ L4
M

(

−24 353/31 104k̃2 + 4873/10 368k̃4

− 2357/31 104k̃6 + 145/31 104k̃8
)

+ L5
M

(

−548 440 741/81 648 000k̃2 + 9 793 363/3 024 000k̃4

− 32 952 389/54 432 000k̃6 + 487 493/13 608 000k̃8 − 2069/10 886 400k̃10
)

+ L6
M

(

−3 519 465 627 493/102 876 480 000k̃2

+ 3 560 724 235 307/205 752 960 000k̃4

− 1 524 042 680 197/411 505 920 000k̃6

+ 4 741 599 089/11 757 312 000k̃8 − 510 932 327/13 716 864 000k̃10

+ 1 775 869/914 457 600k̃12
)

,

Fγ γ

(

k2
1, k2

2

)

= 1 + L3
M

k̃2
1 k̃2

2

1

72

+ L4
M

k̃2
1 k̃2

2

[

−203/7776 + 29/10 368
(

k̃2
1 + k̃2

2

)

+ 1/216
(

k̃4
1 + k̃4

2

)

− 1/144k̃2
1 k̃2

2

]

+ L5
M

k̃2
1 k̃2

2

[

−5 983 633/10 206 000 + 46 103/1 632 960
(

k̃2
1 + k̃2

2

)

+ 372 113/11 664 000
(

k̃4
1 + k̃4

2

)

− 211/5 443 200
(

k̃6
1 + k̃6

2

)

− 394 157/9 072 000k̃2
1 k̃

2
2 − 4/25 515k̃2

1 k̃2
2

(

k̃2
1 + k̃2

2

)]

+ L6
M

k̃2
1 k̃2

2

[

−1 072 421 939 773/205 752 960 000

+ 1 444 445 383/6 531 840 000
(

k̃2
1 + k̃2

2

)

+ 10 840 553 807/102 876 480 000
(

k̃4
1 + k̃4

2

)

+ 282 016 297/205 752 960 000
(

k̃6
1 + k̃6

2

)

+ 6 157 391/4 115 059 200
(

k̃8
1 + k̃8

2

)

− 3 852 620 057/29 393 280 000k̃2
1 k̃

2
2 − 154 739/58 320 000k̃2

1 k̃
2
2

(

k̃2
1 + k̃2

2

)

− 75 041 473/20 575 296 000k̃2
1 k̃

2
2

(

k̃4
1 + k̃4

2

)

+ 174 329/35 721 000k̃4
1 k̃

4
2

]

. (37)

The absence of the linear term in F̂ agrees with the statement from [23,24] that the contribu-

tion from one-loop diagrams at NLO can be absorbed into Fπ . The quadratic term also coincides
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with the two-loop calculation of [25] and the complete one-loop expression for off-shell photons

is the same as in [24].

Note that the nonfactorizable contribution Fγ γ only starts at three-loop order and that the part

surviving in the chiral limit only starts at four-loop level. The leading logarithms thus predict this

part to be fairly small.

The lowest-order results for the two anomalous processes are connected via the current alge-

bra relation [26,27]

F 3π (0,0,0) =
1

eF 2
π

Fπγ γ (0,0), (38)

which holds exactly in the chiral limit. Even beyond this limit it is valid also at the one-loop

level for the leading logarithms as can be seen by comparing (32) and (37). The current algebra

relation remains true, if in both amplitudes one of the photons is allowed to be off-shell, i.e.

F 3π (s, t, u)
∣

∣

s+t+u=3M2
π+k2 =

1

eF 2
π

Fπγ γ

(

k2,0
)

. (39)

It turns out that in the chiral limit, this relation holds for the leading logarithms up to two loops,

as can again be checked from (32) and (37).

5. Phenomenology of the anomalous sector

5.1. πγ → ππ

The only direct measurement of the πγ → ππ vertex has been performed at the IHEP accel-

erator in Serpukhov [28] using π−γ → π−π0, where the γ comes from the electromagnetic field

of a nucleus via the Primakoff effect. The relevant cross-section was measured with a pion beam

of E = 40 GeV and the photons’ virtuality was in the region k2 < 2 × 10−3 GeV2, which can be

neglected at the present precision. The analysis is for values of s < 10M2
π and thus within the re-

gion where ChPT is applicable. Assuming the function F 3π (s, t, u) of (30) to be approximately

constant, F 3π (s, t, u) ≈ F̄ 3π , they find

F̄ 3π
exp = 12.9 ± 0.9 ± 0.5 GeV−3. (40)

Another derivation used the data on π−e− → π−e−π0 [29] to determine F 3π
0 [30]. They ob-

tained

F 3π
0,exp = 9.9 ± 1.1 GeV−3 or 9.6 ± 1.1 GeV−3, (41)

depending on the way electromagnetic corrections are included.

The value in (40) needs to be corrected for extrapolation to the point s = t = u = 0. The

one-loop ChPT corrections were evaluated in [22] and a possibly large electromagnetic correc-

tion identified in [31]. The main conclusion is that the experimental values are in fairly good

agreement with the theoretical result of (30) which gives F 3π
0 = 9.8 GeV−3 as discussed further

below.

The comparison with [28] goes via their result σ/Z2 = 1.63 ± 0.23 ± 0.13 nb and [28,31]

σ

Z2
=

α

π

10M2
π

∫

4M2
π

ds

(

ln
q2

max

q2
min

+
q2

min

q2
max

− 1

)

σγπ→ππ

s − M2
π

,
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Table 7

The extraction of the anomalous γ 3π factor F 3π
0 (in GeV−3) from experiment using various estimates of the higher-

order corrections. LO includes no higher-order corrections and thus coincides with (40). The next column contains the

QED correction f EM
0 . Then come the values including in addition the leading logarithm and the complete correction

from f
loop
1 . The last three columns also contain f tree

1 using the model estimates in (47).

LO f EM
0 f

loop
1 (LL) f

loop
1 f tree

1 (HLS) f tree
1 (CQM) f tree

1 (SDE)

F 3π
0 12.9 12.3 12.0 11.9 11.4 10.1 12.0

σγπ→ππ =
1

1024π
s
(

s − M2
π

)

(

1 −
4M2

π

s

)3/2
π

∫

0

dθ sin3 θ
∣

∣F 3π
0 f (s, t, u)

∣

∣

2
. (42)

Inserting the charged pion mass, q2
max = 2 · 10−3 GeV2, q2

min = ((s − M2
π )/(2E))2, and

f (s, t, u) = 1 in (42) leads to the value in (40).

The various known higher-order corrections can now be included via f (s, t, u):

f (s, t, u) = 1 + f EM
0 + f

loop
1 + f tree

1 + · · · . (43)

The dependence on s, t, u is tacitly assumed for all functions fi . The index i refers to the h̄ order.

The leading-order electromagnetic correction f EM
0 was determined in [31] as f EM

0 = −2e2F 2
π/t

and higher-order electromagnetic corrections were found to be small. The next-to-leading-order

correction coming from one-loop graphs is, in the isospin limit, given by [22]

f
loop
1 =

1

6F 2
π

[

−
M2

π

(4π)2

(

1 + 3 log
M2

π

μ2

)

+ I (s) + I (t) + I (u)

]

, (44)

with I (s) = (s − 4M2
π )J̄ (s), where J̄ (s) is the standard subtracted two-point function

16π2J̄
(

q2
)

= σ log
σ − 1

σ + 1
+ 2, σ =

√

1 − 4M2
π/q2. (45)

The logarithmic term in (44) agrees with our LL calculation. The full expression accounting for

the pion mass difference can be found in [31].

The contribution from the NLO Lagrangian can be expressed in terms of the low-energy

constants introduced in [32] as

f tree
1 = 128π2M2

π

(

cWr
2 + cWr

6

)

. (46)

In order to estimate the value of f tree
1 , several methods exist in the literature: hidden local symme-

try (HLS) [22], phenomenology [33], the constituent quark model (CQM) [33,34], Schwinger–

Dyson equation (SDE) [35], or resonance saturation [36], to name a few. The spread in results

can be seen from the estimates following from three of these methods

f tree
1 =

3M2
π

2M2
ρ

= 0.048 (HLS), = 0.19 (CQM), = −0.01 (SDE). (47)

The two-loop corrections, estimated using dispersive techniques [37], are found to be small.

These corrections can now be incorporated in the calculation of F 3π
0 from the cross section

measured at Serpukhov using (42). Turning them on one by one, we find the results listed in

Table 7. Comparison of the third and fourth column shows that at the one-loop order, the leading

logarithm provides a good estimate for the size of the complete correction: it accounts for 60% of
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Fig. 7. The leading logarithm contribution to the total cross section for π−γ → π−π0 as a function of s.

the shift. The uncertainty on the listed values has two main sources: the experimental uncertainty

of about ±1 GeV−3 and the model dependence of the cWr
i . From the spread of the estimates in

Table 7, the latter also is about ±1 GeV−3. The total error, adding quadratically, is thus about

±1.5 GeV−3, such that the theoretical result F 3π
0 = 9.8 GeV−3 agrees reasonably with the final

values at the one-loop level.

Let us now return to the discussion of the expansion f LL in (32). The one-loop LL shifts the

result by −0.3 as already shown. Adding the LL contributions up to five-loop order in (42) leads

to

F 3πLL
0 = (12.9 − 0.3 + 0.04 + 0.02 + 0.006 + 0.001 + · · ·) GeV−3. (48)

Clearly, the series converges rather well. The small size of the LLs beyond one loop indicates

that the full corrections at higher orders are negligible.

The total cross section obtained from only the LL contributions as a function of the center-of-

mass energy is depicted in Fig. 7.

5.2. π0 → γ γ

For the decay π0 → γ γ , there is more experimental information available. For a recent re-

view, see [38]. The current PDG average ([39], updated 2011) for the lifetime of the neutral pion

is based on six experiments: three relying on the Primakoff effect [40–42], a direct measure-

ment [43], an e+e− collider measurement [44], and a measurement of the weak form factor in

π+ → e+νγ [45], which is related to the π0 lifetime via the conserved vector current hypothe-

sis. This leads to the average lifetime τπ0 = (8.4 ± 0.4) × 10−17 s. Including the recent precise

measurement by PrimEx at JLab [46],

Γ
(

π0 → γ γ
)

PrimEx
= 7.82 ± 0.14 ± 0.17 eV, (49)
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leads to a smaller uncertainty, τπ0 = (8.35 ± 0.31) × 10−17 s. Ongoing efforts by the PrimEx

Collaboration are expected to decrease the error by a factor two.

The partial decay width is related to the decay amplitude by

Γγ γ =
M3

π

64π
|Fπγ γ |2. (50)

At lowest order we find from the Wess–Zumino–Witten Lagrangian

F LO
πγ γ =

e2

4π2Fπ

⇒ Γ
(

π0 → γ γ
)

LO
≈ 7.76 eV, (51)

which is in perfect agreement with the PDG average as well as with the PrimEx result (49).

Higher-order corrections might still destroy the agreement and we can use the leading logarithms

to estimate the size of these contributions and to examine the convergence of the chiral series.

Notice that no chiral logarithms are present at the one-loop level once everything is expressed in

terms of the physical quantities Fπ and Mπ [23,24]. At the two-loop level, leading logarithms

start to contribute [25]. At present the best prediction including electromagnetic and two-loop

effects is [25]

Γπ0→γ γ = (8.09 ± 0.11) eV, (52)

which leads to the lifetime τπ0 = (8.04 ± 0.11)10−17 s.

Our result for F̂ in (37) indicates that the convergence is fast and higher orders are small.

Putting in μ = 0.77 GeV we obtain

F̂ = 1 + 0 − 0.000372 + 0.000088 + 0.000036 + 0.000009 + 0.0000002 + · · · , (53)

which clearly shows a fast convergence.

We now turn to the discussion of the meson–photon transition form factor Fγ (−Q2), normal-

ized to the value at Q2 = 0, which has been given in (37). It was measured by CELLO [47],

CLEO [48], and recently by BaBar [49] mainly in the range 1 � Q2 � 40 GeV2. New activity is

expected for very low Q2 by KLOE-2 at DA�NE [50] which should directly test the prediction.

The LL contribution up to fifth order has been given in (37). Our result for the LL contribution

to this quantity is depicted in Fig. 8 together with the VMD prediction

F VMD
γ

(

−Q2
)

=
m2

V

m2
V + Q2

. (54)

6. Conclusion

In this paper we have extended the earlier work on leading logarithms in effective field theories

to the anomalous sector. First we improved the programs used in the earlier work on the massive

nonlinear sigma model [6,7]. This allowed us to compute one order higher than in those papers

and we presented results for the mass, decay constant and the vector form factor. For the latter

we clarified the discrepancy with the chiral limit work of [4] and we presented some numerical

results as well.

The main part of this paper is the extension to the anomalous sector. We thus added the Wess–

Zumino–Witten term to the massive nonlinear sigma model for N = 3 and computed the leading

logarithms to six-loop order for π0 → γ ∗γ ∗ and five-loop order for the γ ∗πππ vertex. We did
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Fig. 8. The LL contribution to Fγ (−Q2) at different orders. Also shown is the VMD prediction as a comparison.

not find a simple guess for the coefficients which was one of the hopes when starting this work. In

both cases the leading logarithms indicate that the chiral series converges fast and we presented

some numerical results for the pion lifetime, the transition form factor and the γ ∗πππ vertex.
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Appendix A. Dispersive approach for the pion form factor

Since the leading logarithms for the vector form factor in the chiral limit obtained in [7] and

here do not agree with the corresponding result from Kivel et al. [4], another check of our result

is in order. In [5], it was found that the partial wave amplitudes for ππ scattering are given by

tIl (s) =
π

2

∞
∑

n=1

ωI
nl

Ŝ(s)n

2l + 1
lnn−1

(

μ2

s

)

+O(NLL), (55)

with the dimensionless function Ŝ(s) = s

(4πF)2 . The coefficients ωI
nl can be found in Tables I and

II in [5].

The leading logarithms for the scalar form factor are

FS(s) =

∞
∑

n=0

f S
n Ŝ(s)n lnn

(

−
μ2

s

)

. (56)
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In this case, the results from [4] and [7] for the coefficients f S
0 are in agreement. The disconti-

nuity across the cut of the scalar form factor must satisfy

discFS(s) = t0
0 FS(s), (57)

which can be easily verified to hold for the coefficients f S
n given in [4,7].

A similar expansion holds for the vector form factor:

FV (s) =

∞
∑

n=0

f V
n Ŝ(s)n lnn

(

−
μ2

s

)

+O(NLL). (58)

This time, however, the results from [4] disagree with ours and [7] for n > 2. The discontinuity

across the cut of the vector form factor must hold

discFV (s) = t1
1 FV (s), (59)

which is only given for the f V
n from us and [7]. We therefore conclude that this is the correct

result.

Dropping the factor (−1)p+1 in (12) of [4] brings that result in agreement with ours. That

there is indeed a misprint in [4] was confirmed to us by the authors and was stated in the PhD

thesis of A.A. Vladimirov.
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Abstract: We study in detail the general structure and further properties of the tree-

level amplitudes in the SU(N) nonlinear sigma model. We construct the flavor-ordered

Feynman rules for various parameterizations of the SU(N) fields U(x), write down the

Berends-Giele relations for the semi-on-shell currents and discuss their efficiency for the

amplitude calculation in comparison with those of renormalizable theories. We also present

an explicit form of the partial amplitudes up to ten external particles. It is well known that

the standard BCFW recursive relations cannot be used for reconstruction of the the on-

shell amplitudes of effective theories like the SU(N) nonlinear sigma model because of the

inappropriate behavior of the deformed on-shell amplitudes at infinity. We discuss possible

generalization of the BCFW approach introducing “BCFW formula with subtractions” and

with help of Berends-Giele relations we prove particular scaling properties of the semi-on-

shell amplitudes of the SU(N) nonlinear sigma model under specific shifts of the external

momenta. These results allow us to define alternative deformation of the semi-on-shell

amplitudes and derive BCFW-like recursion relations. These provide a systematic and

effective tool for calculation of Goldstone bosons scattering amplitudes and it also shows

the possible applicability of on-shell methods to effective field theories. We also use these

BCFW-like relations for the investigation of the Adler zeroes and double soft limit of the

semi-on-shell amplitudes.
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1 Introduction

The chiral nonlinear sigma model is a widely used tool for description of many phenomena

in theoretical particle physics. It is based on a simple Lie Group G and the spontaneous

symmetry breaking G×G → G gives rise to massless excitations - Goldstone bosons. For

instance, in the theory of strong interactions, the group G is SU(Nf ) where Nf = 2, 3 is a

number of light quark flavors and Goldstone bosons are associated with the triplet of pions

(for Nf = 2) or octet of pseudoscalar mesons π, K and η (for Nf = 3). The interactions of

these degrees of freedom dominate the hadronic world at low energies. In this context, the

leading order nonlinear U(3)× U(3) chiral invariant effective Lagrangian, the kinetic part

of which corresponds to the chiral nonlinear U(3) sigma model, was constructed in the late

sixties by Cronin [1] while the SU(2) case was studied by Weinberg [2, 3], Brown [4] and

Chang and Gürsey [5]. Further generalization lead to the invention of Chiral Perturbation

Theory as a low energy effective theory of Quantum Chromodynamics by Weinberg [6] and

by Gasser and Leutwyler [7, 8]. Chiral Perturbation Theory became a very useful tool for

the investigation of the low energy hadron physics.

The focus of this paper is on scattering amplitudes of Goldstone bosons within the

SU(N) nonlinear sigma model described by the leading order Lagrangian. In principle,

the standard Feynman diagram approach allows us to calculate arbitrary amplitude. Be-

cause the model is effective, and the Lagrangian contains an infinite tower of terms the

calculation becomes very complicated for amplitudes of many external Goldstone bosons

even at tree-level. It would be therefore desirable to find alternative non-diagrammatic

methods which could save the computational effort and provide us with a tool to get the

amplitudes more efficiently. In the past an attempt to formulate the calculation of the

tree-level without any reference to the Lagrangian was made by Susskind and Frye [9].

They postulated recursive procedure for pion amplitudes based on certain algebraic dual-

ity assumptions supplemented with the requirement of Adler zero condition which should

have to be satisfied separately for group-factor free kinematical functions recently known

as the partial or stripped amplitudes. Such a condition had been proven in the special case

of pion amplitudes described by the SU(2) nonlinear sigma model by Osborn [10]. In [9]

the authors successively calculated the amplitudes up to eight pions and showed that these

results are equivalent to the diagrammatic calculation based on the SU(2) nonlinear sigma

model. The full equivalence for all amplitudes has been proven by Ellis and Renner in [11].

Over the past two decades there has been a huge progress in understanding scattering

amplitudes using on-shell methods (for a review see e.g. [12–15]). They do not use explicitly

the Lagrangian description of the theory and all on-shell quantities are calculated using

on-shell data only with no access to off-shell physics (unlike virtual particles in Feynman

diagrams). This has lead to many new theoretical tools (e.g. unitary methods [16, 17],

BCFW recursion relations for tree-level amplitudes [18, 19] and the loop integrand [20])

as well as practical applications of on-shell methods to LHC processes (for recent results

of the next-to-leading order QCD corrections for W + 4-jets see [21]). Most of the recent

theoretical developments have been driven by an intensive exploration of N = 4 super

Yang-Mills theory in the planar limit both at weak and strong couplings (see e.g. [22–33]).

– 2 –
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There have been several attempts to extend some of these methods to other theories.

The most natural starting point are the recursion relations for on-shell tree-level ampli-

tudes, originally found by Britto, Cachazo, Feng and Witten for Yang-Mills theory [18, 19]

and later also for gravity [34, 35]. The main idea is to perform a complex shift on exter-

nal momenta and reconstruct the amplitude recursively using analytic properties of the

S-matrix. More recently, this recursive approach was extended to Yang-Mills and gravity

theories coupled to matter, as well as more general class of renormalizable theories [36].

In this paper, we find the new recursion relations for all on-shell tree-level amplitudes of

Goldstone bosons within SU(N) nonlinear sigma model. This shows that on-shell methods

can be applied also for effective field theories and it gives new computational tool in this

model. Using these recursion relations we are also able to prove more properties of tree-level

amplitudes that are invisible in the Feynman diagram approach.

The paper is organized as follows: in section 2 we discuss SU(N) nonlinear sigma

model, introduce stripped amplitudes and using minimal parametrization (the convenient

properties of which has been discussed in [11]) we calculate tree-level amplitudes up to

10 points. In section 3 we review BCFW recursion relations and their generalization to

theories that do not vanish at infinity at large momentum shift. Section 4 is the main

part of the paper, we first introduce semi-on-shell amplitudes, ie. amplitudes with n − 1

on-shell and one off-shell external legs. Then we prove scaling properties under particular

momentum shifts which allows us to construct BCFW-like recursion relations. Finally, we

show explicit 6pt example. In section 5 we use previous results to prove Adler zeroes and

double-soft limit formula for stripped amplitudes. Additional results and technical details

are postponed to appendices: in appendix A, we describe the general parametrization of

the SU(N) nonlinear sigma model. In appendix B we give the results of the amplitudes up

to 10p. Appendix C is devoted to the counting of flavor-ordered Feynman graphs needed

for the calculations of the amplitudes in nonlinear sigma models and other theories. In

appendix D we present additional scaling properties of the semi-on-shell amplitudes. In

appendix E, we study the double soft-limit for more general class of spontaneously broken

theories for complete (not stripped) amplitudes.

2 Nonlinear sigma model

2.1 Leading order Lagrangian

Let us first assume a most general case of the principal chiral nonlinear sigma model based

on a simple compact Lie group G. Such a model corresponds to the spontaneous symmetry

breaking of the chiral group GL ×GR where GL,R = G to its diagonal subgroup GV = G,

i.e. to the subgroup of the elements h = (gL, gR) where gL = gR. The vacuum little group

GV is invariant with respect to the involutive automorphism (gL, gR) → (gR, gL) and the

homogeneous space GL × GR/GV is a symmetric space which is isomorphic to the group

space G. A canonical realization of such an isomorphism is via restriction of the mapping

(gL, gR) → gRg
−1
L ≡ U (2.1)

– 3 –
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(which is constant on the right cosets of GV in GL × GR) to GL × GR/GV . Provided we

induce the action of the chiral group on GL ×GR/GV by means of the left multiplication,

the transformation of U under general element (VL, VR) of the chiral group is linear

U → VRUV −1
L . (2.2)

This can be used to construct the most general chiral invariant leading order effective

Lagrangian in general number d of space-time dimensions describing the dynamics of the

Goldstone bosons corresponding to the spontaneous symmetry breaking GL ×GR → GV as

L(2) =
F 2

4
〈∂µU∂µU−1〉 = −F 2

4
〈(U−1∂µU)(U−1∂µU)〉, (2.3)

where F is a constant1 with the canonical dimension d/2 − 1. Here and in what follows

we use the notation 〈·〉 = Tr(·) and the trace is taken in the defining representation of

G. The overall normalization factor is dictated by the form of the parametrization of the

matrix U in terms of the Goldstone boson fields φa which we write for the purposes of this

subsection2 as

U = exp

(√
2
i

F
φ

)
(2.4)

where φ = φata and ta, a = 1, . . . , dimG are generators of G satisfying

〈tatb〉 = δab (2.5)

[ta, tb] = i
√
2fabctc. (2.6)

Here fabc are totally antisymmetric structure constants of the group G. According to (2.2),

the fields φa transform linearly under the little group GV as the vector in the adjoint

representation of G while the general chiral transformations of φa are nonlinear.

The Lagrangian L(2) can be rewritten in terms of the Goldstone boson fields as follows.

We have

U−1∂µU = −exp
(
−
√
2 i
F Ad(φ)

)
− 1

Ad(φ)
∂µφ = − 1√

2
t · exp

(
−2i

F Dφ

)
− 1

Dφ
· ∂φ (2.7)

where

Ad(φ)∂µφ = [φ, ∂µφ] =
√
2taDab

φ ∂µφ
b ≡

√
2t ·Dφ · ∂φ, (2.8)

the matrix Dab
φ is given as

Dab
φ = −if cabφc (2.9)

and the dot means contraction of the indices in the adjoint representation. Inserting this

in (2.3) we get finally

L(2) =
F 2

4
∂φT · 1− cos

(
2
F Dφ

)

D2
φ

· ∂φ = −∂φT ·
( ∞∑

n=1

(−1)n

(2n)!

(
2

F

)2n−2

D2n−2
φ

)
· ∂φ. (2.10)

1The decay constant of the Goldstone bosons.
2In what follows we will use also more general parametrization of U .
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2.2 General properties of the tree-level scattering amplitudes

Note that, the only group factors which enter the interaction vertices are the structure

constants fabc. In any tree Feynman diagram each fabc is contracted either with another

structure constant within the same vertex or via propagator factor δab with some structure

constant entering next vertex. Therefore, using the standard argumentation for a general

tree graph [12], i.e. expressing any fabc as a trace fabc = −〈i[ta, tb]tc〉/
√
2 and then suc-

cessively using the relations like f cdetc = −i[td, te]/
√
2 in order to replace the contracted

structure constants with the commutators of the generators inside the single trace, we can

prove that any tree level on-shell amplitude has a simple group structure, namely

Ma1a2...an(p1, p2, . . . , pn) =
∑

σ∈Sn/Zn

〈taσ(1)taσ(2) . . . taσ(n)〉Mσ(p1, . . . , pn). (2.11)

Here all the momenta treated as incoming and the sum is taken over the permutation of

the n indices 1, 2, . . . , n modulo cyclic permutations. As a consequence of the cyclicity of

the trace we get

Mσ(p1, p2 . . . , pn) = Mσ(p2, . . . , pn, p1) (2.12)

Due to the Bose symmetry, the kinematical factors Mσ(p1, , . . . , pn) has to satisfy

Mσ◦ρ(p1, , . . . , pn) = Mσ(pρ(1), pρ(2), . . . , pρ(n)) (2.13)

(where σ ◦ ρ is a composition of permutations) and therefore

Mσ(p1, . . . , pn) = M(pσ(1), pσ(2), . . . , pσ(n)) (2.14)

where we have denoted M ≡ Mid (here id is identical permutation). The amplitudes

M(p1, . . . , pn) are called the stripped or partial amplitudes. Note that the same arguments

can be used also for the Feynman rules for the interaction vertices, the general form of

which can be written as

V
a1a2...an

n (p1, p2, . . . , pn) =
∑

σ∈Sn/Zn

〈taσ(1)taσ(2) . . . taσ(n)〉Vn(pσ(1), pσ(2), . . . , pσ(n)). (2.15)

After some algebra we get explicitly (see appendix A for details) V2n+1(p1, . . . , p2n+1) = 0

and

V2n(p1, . . . , p2n) =
(−1)n

(2n)!

(
2

F 2

)n−1 2n−1∑

k=1

(−1)k−1

(
2n− 2

k − 1

)
2n∑

i=1

(pi · pi+k). (2.16)

Let us note that besides (2.3), (2.4) we need not to use any algebraic relations specific for

the concrete group G when deriving this formula and it is therefore valid for general G.

In the general case we can therefore define the stripped amplitudes and stripped vertices,

however, their relation is not straightforward and may depend on the group G. In what

follows we will concentrate on the case G = SU(N).
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2.3 Tree-level amplitudes for G = SU(N)

2.3.1 Flavor ordered Feynman rules

The standard way of calculation of the tree-level amplitudes Ma1...an(p1, . . . , pn) is to

evaluate the contributions of all tree Feynman graphs with n external legs build form

the complete vertices (2.15) and propagators ∆ab = iδab/p
2. This includes rather tedious

group algebra which is specific for each group G. In the special case of G = SU(N) the

calculations can be further simplified. Because we have the completeness relations for the

generators ta in the form

N2−1∑

a=1

〈Xta〉〈taY 〉 = 〈XY 〉 − 1

N
〈X〉〈Y 〉, (2.17)

we can simply merge the traces from the vertices of any tree Feynman graphs in one single

trace preserving at the same time the order of the generators taj inside the trace. Note

that the “disconencted” 1/N terms have to cancel in the sum in order to produce the

single trace in (2.11).3 This enables us to formulate simple “flavor ordered Feynman rules”

directly for the stripped amplitudes M completely in terms of the stripped vertices Vn.

The general recipe is exactly the same as in the more familiar case of SU(N) Yang-Mills

theory, i.e. the tree graphs built form the stripped vertices and propagators are decorated

with cyclically ordered external momenta and the corresponding ordering of the momenta

inside the stripped vertices are kept.

Let us note that such a simple way of the calculation of the stripped amplitudes might

not be possible for general group G. For instance for G = SO(N) we have the following

completeness relations

N(N−1)/2∑

a=1

〈Xta〉〈taY 〉 = 1

2

(
〈XY 〉 − 〈XY T 〉

)
(2.18)

the second term of which reverses the order of the generators in the merged vertex and the

aforementioned simple argumentation leading to the flavor ordered Feynman rules has to

be modified.

The SU(N) case has also another useful feature. As a consequence of the completeness

relations (2.17) for the group generators of SU(N) and the analogous relation

N2−1∑

a=1

〈XtaY ta〉 = 〈X〉〈Y 〉 − 1

N
〈XY 〉 (2.19)

it can be proved [12] that the traces 〈taσ(1)taσ(2) . . . taσ(n)〉 and 〈taρ(1)taρ(2) . . . taρ(n)〉 are

orthogonal in the leading order of N in the sense that

∑

a1,a2,...,an

〈taσ(1)taσ(2) . . . taσ(n)〉〈taρ(1)taρ(2) . . . taρ(n)〉∗ = Nn−2(N2 − 1)

(
δσρ +O

(
1

N2

))

(2.20)

3As we shall see in what follows, this fact can be understood as a consequence of the decoupling of the

U(1) Goldstone boson in the nonlinear U(N) sigma model.
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where δσρ = 1 for ρ = σ modulo cyclic permutation and zero otherwise. This relation is

enough to uniquely determine the coefficients Tσ in the general expansion of the form

T a1a2...an =
∑

σ∈Sn/Zn

〈taσ(1)taσ(2) . . . taσ(n)〉Tσ, (2.21)

(provided the coefficients Tσ are N−independent) as the leading in N terms of the “scalar

product”

∑

a1,a2,...,an

T a1a2...an〈taσ(1)taσ(2) . . . taσ(n)〉∗ = Nn−2(N2 − 1)

(
Tσ +O

(
1

N2

))
(2.22)

Because the stripped amplitudes and vertices by construction do not depend on N , the

coefficients at the individual traces in the representation (2.11) are unique a therefore the

stripped amplitudes and vertices are unique.

2.3.2 Dependence on the parametrization

Up to now we have identified the Goldstone boson fields φa using the exponential para-

metrization (2.4) of the group elements U(φa). However, according the equivalence theo-

rem, the amplitudes Ma1a2...an(p1, p2, . . . , pn) are the same for any other parametrization

U(φ̃a) where

φ̃a = φa + F a(φ) (2.23)

where F a(φ) = O(φ2) is at least quadratic in the fields φ. Therefore, according to

the aforementioned uniqueness, the stripped amplitudes for the nonlinear SU(N) sigma

model do not depend on the parametrization. Note, however, that this is not true for the

stripped vertices which do depend on the parametrization because the complete vertices

V
a1a2...an

n (p1, p2, . . . , pn) do.

As far as the on-shell tree-level amplitudes are concerned, in various calculations we are

thus free to use the most suitable parametrization and consequently the most useful form

of the corresponding stripped vertices for a given purpose. We shall often take advantage

of this freedom in what follows.

A wide class of parameterizations for the chiral nonlinear sigma model with G = U(N)

and G = SU(N) has been discussed in [1]. The general form of such a parameterizations

reads

U =
∞∑

k=0

ak

(√
2
i

F
φ

)k

(2.24)

where a0 = a1 = 1 and the remaining real coefficients ak are constrained by the requirement

UU+ = 1. The exponential parametrization (2.4) corresponds to the choice an = 1/n!. In

fact, as was proved in [1], for SU(N) nonlinear sigma model with N > 2, the exponen-

tial parametrization is the only admissible choice within the above class of parameteriza-

tions (2.24) compatible with the nonlinearly realized symmetry with respect to the SU(N)

chiral transformations (2.2). On the other hand, for SU(2) and for the extended chiral

group G = U(N) with arbitrary N , the parameterizations of the form (2.24) represent an

infinite-parametric class. The more detailed discussion can be found in appendix A.
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2.3.3 Interrelation of the cases G = U(N) and G = SU(N)

Let us note, that the SU(N) and U(N) chiral nonlinear sigma models are tightly related.

Within the exponential parametrization we can write in the U(N) case

U = exp

(
i

F

√
2

N
φ0

)
Û (2.25)

where Û ∈ SU(N) and φ0 is the additional U(1) Goldstone boson corresponding to the

U(1) generator t0 = 1/
√
N . We get then

U−1∂µU =
i

F

√
2

N
∂µφ

0 + Û+∂µÛ (2.26)

and as a consequence,

L(2) =
1

2
∂φ0 · ∂φ0 +

F 2

4
〈∂µÛ∂µÛ−1〉. (2.27)

Therefore φ0 completely decouples. This means that for the on-shell amplitudes in this

model

Ma1a2...an(p1, p2, . . . , pn) = 0 (2.28)

whenever at least one aj = 0. Note that this statement does not depend on the parametriza-

tion. We can therefore reproduce the on-shell amplitudes of the SU(N) chiral nonlinear

sigma model from that of the U(N) one simply by assigning to the indices ai the values

corresponding the SU(N) Goldstone bosons. Keeping this in mind, in what follows we

will freely switch between the U(N) and SU(N) case and use the general parameteriza-

tions (2.24) also in the context of the SU(N) chiral nonlinear sigma model.

The fact that the U(1) Goldstone boson decouples gives also a nice physical explanation

why the “disconnected” 1/N term can be omitted in the relation (2.17) when summing

over virtual states in the tree-level Feynman graphs for the SU(N) nonlinear sigma model.

This term can be interpreted as the subtraction of the extra U(1) virtual state contained

in the first “connected” part. However, because this state decouples, no such correction is

in fact needed.

The decoupling of the U(1) Goldstone boson is an effect analogous to the decoupling of

the U(1) component of the gauge field in the case of the U(N) Yang-Mills theory. For the

tree-level amplitudes (and the corresponding stripped amplitudes) we get as a consequence

a set of identities constraining their form. For instance taking only one aj = 0 (say a1)

in (2.28), we get the “dual Ward identity” (or the U(1) decoupling identity)

M(p1, p2, p3, . . . , pn) +M(p2, p1, p3, . . . , pn) + . . .+M(p2, p3, . . . , p1, pn) = 0 (2.29)

exactly as in the Yang-Mills case (see e.g. [12] and references therein).
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2.4 Explicit examples of SU(N) on-shell amplitudes

Using (2.11) we can reconstruct the complete amplitude Ma1...an(p1, . . . , pn) just from a

single stripped amplitude M(p1, . . . pn) which is given by the sum of Feynman diagrams

with ordered external legs {1, 2, . . . n}. Though the aim of this paper is not to calculate

scattering amplitudes using the Feynman diagram approach, in this section we provide

explicit examples for diagrammatic calculation of the stripped 4pt and 6pt amplitudes of

the chiral nonlinear SU(N) sigma model (the 8pt and 10pt amplitudes we postpone to the

appendix B) as the reference result for the recursive formula given in section 4.

We can easily see that the only poles in the stripped amplitude are of the form 1/si,j
where

si,j = p2i,j with pi,j =

j∑

k=i

pk (2.30)

(Obviously si,j = sj+1,i−1 due to momentum conservation). The variables si,j are therefore

well suited for presentation of the amplitudes.

As we have discussed above, the SU(N) stripped amplitudes are essentially the same

as those for the U(N) case and, as we have discussed above, they are independent on the

parametrization of the unitary matrix U in (2.3). The most convenient one for diagram-

matic calculation of on-shell scattering amplitudes is the minimal parametrization [11]

U =
√
2
i

F
φ+

√
1− 2

φ2

F 2
= 1 +

√
2
i

F
φ− 2

∞∑

k=1

(
1

2F 2

)k

Cn−1φ
2k (2.31)

where Cn are the Catalan numbers (A.12). The stripped Feynman rules for vertices can

be written in terms of si,j as follows (see appendix A for details)

V2n+2(si,j) =

(
1

2F 2

)n 1

2

n−1∑

k=0

CkCn−k−1

2n+2∑

i=1

si,i+2k+1 (2.32)

Note that within this parametrization the stripped vertices do not depend on the off-

shellness of the momenta entering the vertex and when expressed in terms of the variables

si,j they are identical taken both on-shell or off-shell. This rapidly speeds up the calcu-

lation, because there are no partial cancelations between the numerators and propagator

denominators within the individual Feynman graphs and it allows us to find the final

expressions for the amplitudes in very compact form.

The four-point amplitude is directly given by the Feynman rule in the simple

parametrization,

2F 2M(1, 2, 3, 4) = s1,2 + s2,3. (2.33)

Note that for n-point amplitude
∑n

k=1 pk = 0 and this can be used to systematically

eliminate pn or equivalently s·,n.
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Figure 1. Graphical representation of the 6-point amplitude ( 2.34) with cycling tacitly assumed.

The six-point amplitude is given by diagrams in figure 1. The explicit formula reads

4F 4M(1, 2, 3, 4, 5, 6) =

= −(s1,2+s2,3)(s1,4+s4,5)

s1,3
− (s1,4+s2,5)(s2,3+s3,4)

s2,4
− (s1,2+s2,5)(s3,4+s4,5)

s3,5

+ (s1,2 + s1,4 + s2,3 + s2,5 + s3,4 + s4,5) (2.34)

This can be rewritten as

4F 4M(1, 2, 3, 4, 5, 6) = −1

2

(s1,2 + s2,3)(s1,4 + s4,5)

s1,3
+ s1,2 + cycl ,

with ‘cycl’ defined for n-point amplitude as

A[si,j , . . . , sm,n] + cycl ≡
n−1∑

k=0

A[si+k,j+k, . . . , sm+k,n+k] , (2.35)

which will quite considerably shorten the 8- and 10-point formulae. These are postponed

to appendix B.

3 Recursive methods for scattering amplitudes

Feynman diagrams are completely universal way how to calculate scattering amplitudes in

any theory (that has Lagrangian description). However, it is well-known that in many cases

they are also very ineffective. Despite the expansion contains many diagrams each of them

being a complicated function of external data, most terms vanish in the sum and the result

is spectacularly simple. The most transparent example is Parke-Taylor formula [37] for

all tree-level Maximal-Helicity-Violating amplitudes.4 The simple structure of the result is

totally invisible in the standard Feynman diagrams expansion.

Several alternative approaches and methods have been discovered in last decades, let

us mention e.g. the Berends-Giele recursive relations for the currents [38] and the more

recent BCFW (Britto, Cachazo, Feng and Witten) recursion relations for on-shell tree-level

amplitudes that reconstruct the result from its poles using simple Cauchy theorem [18, 19].

3.1 BCFW recursion relations

For concreteness let us consider tree-level stripped on-shell amplitudes of n massless par-

ticles in SU(N) Yang-Mills theory (“gluodynamics”).5 The partial amplitude Mn is a

4Scattering amplitudes of gluons where two of them have negative helicity and the other ones have

positive helicity.
5The recursion relations can be also formulated for more general cases and also for massive particles.

See [39] for more details.
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gauge-invariant rational function of external momenta and additional quantum numbers h

(helicities in case of gluons)

Mn ≡ Mn(p1, p2, . . . pn;h1, h2, . . . hn). (3.1)

The external momenta are generically complex but if we are interested in physical ampli-

tudes we can set them to be real in the end. Let us pick two arbitrary indices i, j and

perform following shift.

pi → pi(z) = pi + zq, pj → pj(z) = pj − zq (3.2)

such that the momentum q is orthogonal to both pi and pj , ie. q2 = (q · pi) = (q · pj) = 0

and the shifted momenta remain on-shell. Let us note that such q can be found only for

the case of spacetime dimensions d ≥ 4. The amplitude becomes a meromorphic function

Mn(z) of complex parameter z with only simple poles. The original expression corresponds

to z = 0. If Mn(z) vanishes for z → ∞ we can use the Cauchy theorem to reconstruct

Mn = Mn(0),

0 =
1

2πi

∫

C(∞)

dz

z
Mn(z) = Mn(0) +

∑

k

Res (Mn, zk)

zk
(3.3)

where C(∞) is closed contour at infinity. Mn can be then expressed as

Mn = −
∑

k

Res (Mn, zk)

zk
(3.4)

where k is sum of all residues of Mn(z) in the complex z-plane. Residues of Mn(z) can

be straightforwardly calculated for the following reason: the only poles of Mn are p2a,b = 0

where pa,b = (pa + pa+1 + . . . pb). The poles of Mn(z) have still the same locations just

shifted, namely p2a,b(z) = 0 where i ∈ (a, a+1, . . . b) or j ∈ (a, a+1, . . . b). If none of the

indices i, j or both of them are in this range, the dependence on z in pa,b(z) cancels and it

is not pole in z anymore. It is easy to identify all locations of the corresponding poles zab.

Suppose that particle i ∈ (a, a+1, . . . b),

p2a,b(z) = (pa + . . . pi 1 + (pi + zq) + pi+1 + . . . pb)
2 = 0 ⇒ za,b = −

p2a,b
2(q · pa,b)

. (3.5)

In the original amplitude Mn the residue on the pole p2a,b = 0 is given by unitarity: on the

factorization channel with given helicity the amplitude factorizes into two sub-amplitudes,

and therefore

Res (Mn, za,b) =
∑

hab

ML(za,b)
−hab

i

2(q · pa,,b)
Mhab

R (za,b) (3.6)

where the summation over the helicities hab of the one-particle intermediate state is taken.

The “left” and “right” sub-amplitudes M±hab

L,R (za,b) are

M−sab
L (za,b) = Mb−a+2(pa, . . . , pi(za,b), . . . pb,−pa,b(za,b);ha, . . . ,−hab) (3.7)

Msab
R (za,b) = Mn−(b−a)(pa,b(za,b), pb+1, . . . , pj(za,b), . . . , pa−1;hab, . . . , ha−1). (3.8)
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The amplitude Mn can be then written as

Mn =
∑

ab,hab

M−hab

L (za,b)
i

p2a,b
Mhab

R (za,b). (3.9)

It is convenient to choose i and j to be adjacent because it eliminates the number of

factorization channels we have to consider.

3.2 Reconstruction formula with subtractions

The BCFW recursion relations discussed above are very generic and applicable for a large

class of theories. The main restriction is the requirement of large z behavior: Mn(z) → 0

for z → ∞. However, this behavior is not guaranteed in general and there exist examples

when it is broken no matter which pair of momenta pi and pj is chosen to be shifted. In

such a case, an additional term (dubbed boundary term) is present on the right hand side

of eq. (3.9). The boundary term, which is hard to obtain in general case, has been studied

by various methods in the series of papers [40, 41] and [42], however no general solution is

still available. Sometimes this problem can be cured by means of considering more general

approach when all the external momenta pk are deformed (such an all-line shift has been

introduced in [43], see also [44])

pk → pk(z) = pk + zqk, (3.10)

where z is a complex parameter and qk are appropriate vectors compatible with the require-

ments of the momentum conservation and on-shell constraint for pk(z), ie. pk ·qk = q2k = 0.

The on-shell amplitude

Mn(z) ≡ Mn(p1(z), p2(z), . . . , pn(z)) (3.11)

become again meromorphic function of the variable z the only singularities of which are

simple poles and the residue at these poles have the simple structure (3.6) dictated by

unitarity. In some cases the desired behavior Mn(z) → 0 for z → ∞ can be achieved

in this way. However, in general case the behavior of Mn(z) for z → ∞ is power-like

with non-negative power of z. This fact requires some modification of the reconstruction

procedure.

This can be done as follows. Let us suppose that we have made any (linear) deformation

of the external momenta pk → pk(z) in such a way that the deformed amplitude Mn(z) is

a meromorphic function the only singularities of which are simple poles and let us assume

the following asymptotic behavior

Mn(z) ≈ zk (3.12)

when z → ∞. Let us denote the poles of Mn(z) as zi, i = 1, 2, . . . n. Assume aj , j =

1, 2, . . . , k+ 1 to be complex numbers satisfying |aj | < R different form the poles zi. Then

we can write for z 6= aj inside the disc D(R) (i.e. inside the domain |z| < R the boundary
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a1

a2

C(R)

z2

z3

Re(z)

Im(z)

z1

z

Figure 2. Illustration of the contour used for the derivation of the subtracted Cauchy formula (3.14)

with k = 1 and nC(R) = 3.

of which is a circle C(R) of the radius R) the following “k + 1 times subtracted Cauchy

formula” (see figure 2)

1

2πi

∫

C(R)
dw

Mn(w)

w − z

k+1∏

j=1

1

w − aj
(3.13)

= Mn(z)

k+1∏

j=1

1

z − aj
+

k+1∑

j=1

Mn(aj)

aj − z

k+1∏

l=1,l 6=j

1

aj − al
+

nC(R)∑

i=1

Res (Mn; zi)

zi − z

k+1∏

j=1

1

zi − aj
.

Here z1, z2, . . . , znC(R)
are the poles inside D(R) and Res (Mn; zi) are corresponding

residues. In the limit R → ∞ the integral vanishes due to (3.12) and D(∞) will contain

all n poles. As a result we get a reconstruction formula with k + 1 subtractions

Mn(z) =
n∑

i=1

Res (Mn; zi)

z − zi

k+1∏

j=1

z − aj
zi − aj

+
k+1∑

j=1

Mn(aj)
k+1∏

l=1,l 6=j

z − al
aj − al

. (3.14)

This is the desired generalization of the usual prescription. In order to reconstruct the

amplitude with the asymptotic behavior (3.12) from its pole structure, we need therefore

along with the residues at the poles zi (which are fixed by unitarity) also supplementary

information, namely the k + 1 values Mn(aj) of the amplitude at the points aj . Such a

additional information is the weakest point of the relations (3.14): there exists no uni-

versal recipe how to get the values Mn(aj) for a general theory. This corresponds to the

well known analogous situation of k + 1 subtracted dispersion relations, which allow to

reconstruct a general amplitude from its discontinuities uniquely up to the k+ 1 generally

unknown subtraction constants. Note that, provided we choose aj in such a way that

Mn(aj) = 0 (i.e. aj are the roots of the deformed amplitude Mn(z)), we can reproduce

the formula

Mn(z) =
n∑

i=1

Res (Mn; zi)

z − zi

k+1∏

j=1

z − aj
zi − aj

(3.15)

first written in this context by Benincasa and Conde [45] and further discussed by Bo Feng,

Yin Jia, Hui Luo a Mingxing Luo in [46].
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4 BCFW-like relations for semi-on-shell amplitudes

The straightforward application of the BCFW reconstruction procedure is not possible for

the SU(N) nonlinear sigma model because the amplitudes Mn(z) do not have appropriate

asymptotic behavior for z → ∞. The reason is that due to the derivative coupling of

the Goldstone bosons the interaction vertices are quadratic in the momenta. Therefore

after the BCFW shift the vertices along the “hard” z−dependent line of the Feynman

graph are in general linear in z and the linear large z behavior of the propagators cannot

compensate for it. For instance, under the shift6 (3.2) with i = 1, j = 2 we get for the 6pt

amplitude (2.34) for z → ∞

M6(z) = −2z

(
(q · p2,3) (s1,4+s4,5−s1,3)

s1,3
+
(q · p2,5) (q · p2,3)

(q · p2,4)
+
(q · p2,5) (s3,4+s4,5−s3,5)

s3,5

)

+O(z0). (4.1)

and analogously Mn(z) = O(z) for general7 n. As discussed in the previous section, in

order to reconstruct such an amplitude from its pole structure, it would be sufficient to

know the values of Mn(z) for two fixed values of z. However, such an information is

difficult to gain solely from the Feynman graph analysis restricted only to the amplitudes

Mn. It is therefore useful to take into account also more flexible objects, namely the semi-

on-shell amplitudes, which unlike the on-shell amplitudes depend on the parametrization

of the matrix U and from which the on-shell amplitudes can be straightforwardly derived.

As we would like to show in this section, appropriate choice of parametrization together

with suitable way of BCFW-like deformation of the semi-on-shell amplitudes allows to

substitute for the missing information on the amplitudes Mn and to construct generalized

BCFW-like relations for them.

4.1 Semi-on-shell amplitudes and Berends-Giele relations

The semi-on-shell amplitudes Ja1a2...an
n (p1, p2, . . . , pn) (or currents in the terminology of the

original paper [38], where they were introduced for QCD and more generally for the SU(N)

Yang-Mills theory) can be defined in our case as the matrix elements of the Goldstone boson

field φa(0) between vacuum and the n Goldstone boson states |πa1(p1) . . . π
an(pn)〉

Ja,a1a2...an
n (p1, p2, . . . , pn) = 〈0|φa(0)|πa1(p1) . . . π

an(pn)〉. (4.2)

Here the momentum pn+1 attached to φa(0)

pn+1 = −
n∑

j=1

pj . (4.3)

is off-shell. Note that Ja,a1a2...an
n (p1, p2, . . . , pn) has a pole for p2n+1 = 0.

6Under the all-line (anti)holomorphic BCFW shift the large z behavior is the same. Here we can use

the general formulae derived in [44] which relate the number n of external particles, the sum H of their

helicities and the overall dimension c of the couplings to the asymptotics of the amplitude under the all-line
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1

2

n

1

jm = n

j1
j1 + 1

j2

jm−1 + 1

= Σ
m, {jk}

Figure 3. Graphical representation of the Berends-Giele recursive relations

In complete analogy with the on-shell amplitudes, at the tree level the right hand

side of (4.2) can be expressed in terms of the flavor-stripped semi-on-shell amplitudes

Jn(p1, p2, . . . , pn) in the form

〈0|φa(0)|πa1(p1) . . . π
an(pn)〉|tree =

∑

σ∈Sn

Tr(tataσ(1) . . . taσ(n))Jn(pσ(1), pσ(2), . . . , pσ(n)).

(4.4)

Let us note that, at higher orders in the loop expansion the group structure contains also

multiple trace terms. We normalize the one particle states according to

J1(p) = 1. (4.5)

In this section the above semi-on-shell flavor-stripped amplitudes Jn(p1, p2, . . . , pn) will be

the main subject of our interest. The on-shell stripped amplitudes M(p1, p2, . . . , pn+1) can

be extracted from them by means of the Lehmann-Symanzik-Zimmermann (LSZ) formulas

M(p1, p2, . . . , pn+1) = − lim
p2n+1→0

p2n+1Jn(p1, p2, . . . , pn). (4.6)

The main advantage of the semi-on-shell amplitudes Jn(p1, p2, . . . , pn) (in what follows

we also use short-hand notation J(1, 2, . . . , n)) is that they allow to abandon the Feynman

diagram approach using appropriate recursive relation. The latter has been first formulated

by Berends and Giele in the context of QCD [38] and proved to be very efficient for the

calculation of the tree-level multi-gluon amplitudes. For the U(N) nonlinear sigma model

the generalized recurrent relations of Berends-Giele type can be written in the form (see

figure 3)

J(1, 2, . . . , n)=
i

p21,n

n∑

m=2

∑

{jk}
iVm+1(p1,j1 , pj1+1,j2 , . . . pjm−1+1,n,−p1,n)

m∏

k=1

J(jk−1+1, . . . , jk)

(4.7)

holomorphic (O(za)) and anti-holomorphic (O(zs)) shift. These formulae reads 2s = 4 − n − c + H and

2a = 4−n− c−H. In our case H = 0 and the only coupling constant is F−1, therefore c = 2−n, therefore

in general case a = s = 1 independently on n.
7The general statement can be derived by induction from Brends-Giele recursive relations discussed in

the next subsection.
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n 2 3 4 5 6 7 8 9 10 11

t(2n+1) 4 12 33 88 232 609 1 596 4 180 10 945 28 656

b(2n+1) 5 17 50 138 370 979 2 575 6 755 17 700 46 356

f(2n+1) 4 21 126 818 5 594 39 693 289 510 2 157 150 16 348 960 125 642 146

t4(2n+1) 3 6 10 15 21 28 36 45 55 66

b4(2n+1) 4 10 20 35 56 84 120 165 220 286

f4(2n+1) 3 12 55 273 1 428 7 752 43 263 246 675 1 430 715 8 414 640

Table 1. A comparison of the number t of the terms on the right hand side of the Berends-Giele

recursive relation with the total number b of terms needed for the Berends-Giele recursive calculation

of the amplitude J(1, 2, . . . , 2n+1) and with the total number f of flavor ordered Feynman graphs

contributing to the same amplitude. In the last three row we compare these numbers with the

analogous ones for the case of “φ4 theory”.

where the sum is over all splittings of the ordered set {1, 2, . . . , n} into m non-empty

ordered subsets {jk−1 + 1, jk−1 + 2, . . . , jk}, (here j0 = 0 and jm = n),8 Vm+1 is the

flavor-stripped Feynman rule for vertices with m + 1 external legs and pi,k =
∑k

j=i pj as

above.

Let us note that, because the Lagrangian of the nonlinear sigma model includes infinite

number of vertices with increasing number of fields, the above Berends-Giele relation for

Jn have to contain vertices up to n+1 legs, i.e. much more terms than in the case of power-

counting renormalizable theories like QCD where the number of vertices is finite.9 This

fact rather reduces the efficiency of these relation for the calculations of the amplitudes.

We illustrate this in the table 1, where the number of terms on the right hand side of

the Berends-Giele relation (4.7) written for J2n+1 (denoted as t(2n + 1)) and the total

number of terms necessary for the calculation of the same semi-on-shell amplitude using

the Berends-Giele recursion (denoted as b(2n + 1)) is compared with the total number

f(2n+ 1) of the flavor ordered Feynman graphs contributing to J2n+1 and with the same

numbers valid for the theory with only quadrilinear vertices (“φ4 theory”) denoted with

subscript “4”. See appendix C for more details and for derivation of the explicit formulae

for these and other related cases.

On the other hand, as we will see in what follows, the Berends-Giele relations can be

used as a very suitable tool for the investigation of the general properties of the semi-on-

shell amplitudes. Let us mention e.g. the following simple relations valid for J(1, 2, . . . , n)

J(1, 2, . . . , 2n) = 0 (4.8)

J(1, 2, . . . , n) = J(n, n− 1, . . . , 2, 1). (4.9)

These relation are valid independently on the field redefinition. However, as we shall see

in what follows, some properties of the semi-on-shell amplitudes are not valid universally

and are tightly related to a given parametrization.

8Explicitly

∑

{jk}

≡

n−m+1
∑

j1=1

n−m+2
∑

j2=j1+1

· · ·

n−m+(m−1)
∑

jm−1=jm−2+1

.

9The number of terms on the right hand side of (4.7) grows exponentially with increasing n in contrast

to the polynomial growths typical for the renormalizable theories. See appendix C for details.
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4.2 Cayley parametrization

Unlike the on-shell amplitudes Ma1...an(p1, p2, . . . , pn), which are physical observables and

do not depend on the choice of the field variables provided the different choices are re-

lated by means of admissible (generally nonlinear) transformations, the concrete form of

Ja,a1...an
n (p1, p2, . . . , pn) as well as the flavor-stripped amplitudes Jn(p1, p2, . . . , pn) depends

on the parametrization of the U(N) nonlinear sigma model. In what follows we will almost

exclusively use the so called Cayley parameterizations

U =
1 + i√

2F
φ

1− i√
2F

φ
= 1 + 2

∞∑

n=1

(
i√
2F

φ

)n

, (4.10)

where the Goldstone boson fields are arranged into the hermitian matrix φ = φata with

ta being the U(N) generators. As described in appendix A, representation (4.10) is a

special member of a wide class of parameterizations suited for the construction of the

flavor-stripped Feynman rules. The interrelation between the field φ and analogous field

φ̃ of the more usual exponential parametrization U = exp
(

i
F φ̃
)
is through the following

admissible nonlinear field redefinition

φ = 2F tan

(
i

2F
φ̃

)
= φ̃+O

(
φ̃3
)
. (4.11)

As is shown in appendix A, the flavor-stripped Feynman rules for vertices read in the

Cayley parametrization

V2n+1 = 0 (4.12)

V2n+2 = −(−1)n

2n+1

(
1

F

)2n n∑

j=0

2n+2∑

i=1

(pi · pi+2j+1) =
(−1)n

2n

(
1

F

)2n
(

n∑

i=0

p2i+1

)2

,

where we have used the momentum conservation in the last row. For the first non-trivial

vertex V4 we get

V4 = − 1

2F 2
(p1 + p3)

2 = − 1

2F 2
(p2 + p4)

2 (4.13)

and the first two non-trivial semi-on-shell amplitudes read in the Cayley parametrization

J(1, 2, 3) =
1

2F 2p24
(p1 + p3)

2 (4.14)

J(1, 2, 3, 4, 5) =
1

4F 4p26

[
(p1 + p2 + p3 + p5)(p1 + p3)

2

(p1 + p2 + p3)2
+

(p1 + p3 + p4 + p5)
2(p3 + p5)

2

(p3 + p4 + p5)2

+
(p1 + p5)

2(p2 + p4)
2

(p2 + p3 + p4)2
− (p1 + p3 + p5)

2

]
(4.15)

Let us illustrate explicitly the dependence of the semi-on-shell amplitudes on the para-

metrization. Using the exponential one we obtain different amplitude J(1, 2, 3), namely

J(1, 2, 3)exp = − 1

6F 2

(p1 + p2)
2 + (p2 + p3)

2 − 2(p1 + p3)
2

p24
. (4.16)

However, both J(1, 2, 3) and J(1, 2, 3)exp give the same on-shell amplitude (2.33).

In the next subsection we will prove additional useful properties of the semi-on-shell

amplitudes.
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4.3 Scaling properties of semi-on-shell amplitudes

The Cayley parametrization is specific in the sense that the semi-on-shell amplitudes

Jn(p1, . . . , pn) in this parametrization obey simple scaling properties when some subset

of the momenta pi are scaled pi → tpi and the scaling parameter t is then send to zero.

Here we will study two important scaling limits, corresponding to the case when all odd or

all even on-shell momenta are scaled. As we shall see in the following section, these two

scaling limits are the key ingredients for the construction of the BCFW-like relations for

semi-on-shell amplitudes in the Cayley parametrization.

We will prove that for n > 1 and t → 0

J2n+1(tp1, p2, tp3, p4, . . . , p2r, tp2r+1, p2r+2, . . . , p2n, tp2n+1) = O(t2) (4.17)

and

lim
t→0

J2n+1(p1, tp2, p3, tp4, . . . , tp2r, p2r+1, tp2r+2, . . . , tp2n, p2n+1) =
1

(2F 2)n
. (4.18)

The general proof of (4.17) and (4.18) is by induction. Let us first verify the base cases.

While the second statement holds already for n = 1

J3(p1, tp2, p3) =
1

F 2

(p1 · p3)
(p1 + tp2 + p3)2

→ 1

2F 2
, (4.19)

the first one is not valid unless n = 2. Indeed

J3(tp1, p2, tp3) =
1

2F 2

t(p1 · p3)
(p1 · p2) + (p2 · p3) + t(p1 · p3)

= O(t). (4.20)

On the other hand, using the explicit form of J5 (cf. (4.15)) we get

J5(tp1, p2, tp3, p4, tp5) = O(t2); (4.21)

we can therefore proceed by induction starting at n = 2.

Let us first prove the scaling property (4.17). Suppose, that (4.17), (4.18) holds for all

n̄, where 1 < n̄ < n and write for the left hand side of (4.17) the Berends-Giele relation (4.7)

expressing J2n+1 in terms of J2n̄+1 with n̄ < n. After the scaling p2k+1 → tp2k+1, the t → 0

behavior of p22n+2 and Vm+1 is O(t0) and O(tr) where r ≥ 0 respectively. The scaling of the

remaining semi-on-shell amplitudes on the right hand side of (4.7) can be deduced from the

induction hypothesis. Note that it depends on the number of the external on-shell legs of

J(ji−1 +1, . . . , ji) as well as on the parity of ji−1 +1, because the semi-on-shell amplitude

with scaled even or odd momenta scales differently. Namely, according to the induction

hypothesis, the scaling of these building blocks of the right hand side of (4.7) is as follows

(see figure 4)

J(j) = 1 = O(t0), J(2j − 1, 2j, 2j + 1) = O(t), J(2j, . . . , 2k) = O(t0),

J(2j + 1, . . . , 2k + 1) = O(t2) for k − j > 1. (4.22)
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= O(t0)

2j

2j + 1

= O(t0)

2j + 1

2j + 2

2j + 3

2k + 1

= O(t2)= O(t)

2j − 1

2j

2j + 1

2k

Figure 4. Scaling of the building blocks on the right hand hand of the Berends-Giele recursion

relation according to the induction hypothesis when the odd momenta are scaled.

O(t2)

2jk + 1

2jk + 2

2jk + 3

2jk+1 − 1

= O(t2)

2jk+1

2jk

1

2n+ 1

2j1 − 1

2jm−1 + 1

2jk−1

2jk+2

O(t)

2k − 1

2k

2k + 1

= O(t2)

2jk+1

2j + 1

1

2n+ 1

2j1 − 1

2jm−1 + 1

2j1

2jk+2

2j

O(t)

Figure 5. The terms on the right hand hand of the Berends-Giele recursion relation which are

automatically O(t2) using the induction hypothesis when the odd momenta are scaled.

This implies, that those terms of Berends-Giele relations which are depicted in figure 5, i.e.

those which contain at least one block J(2j + 1, . . . , 2k + 1) = O(t2) with k − j > 1 or at

least two building blocs J(2j − 1, 2j, 2j + 1) are automatically O(t2). Therefore, the only

dangerous terms on the right hand side of (4.7) are those without the buildings block of

the type J(2j + 1, . . . , 2k + 1) = O(t2) with k − j > 1 and at the same time without (case

I) or with just one (case II) building block J(2j − 1, 2j, 2j + 1) = O(t) (see figure 6). To

these terms the induction hypothesis cannot be applied directly.

In the case I, the odd lines of the corresponding vertex V2m+2 are attached to J(2jk +

1) = 1 and such a vertex is then proportional to the squared sum of the odd momenta

tp2jk+1, (cf. (4.13))

V2m+2(tp1, p2,2j1 , tp2j1+1, . . . , tp2n+1) ∼ (tp1 + tp2j1+1 + · · ·+ tp2n+1)
2 (4.23)

which means that it scales as O(t2). This is in fact the scaling of the complete contribution

of the terms in the case I, because all the remaining building blocs are of the order O(t0)

for t → 0.
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V2m+2 ∼ (tp2j−1 + p2j + tp2j+1 +
∑

k tp2jk+1)
2 = O(t1)V2m+2 ∼ (tp1 + tp2j1+1 + . . .+ tp2n+1)

2 = O(t2),

2jm−1 + 1

2j1

1

2n+ 1

2

2n

O(t0)

O(t0)
O(t0)

O(t0)

O(t0)

2jm−1 + 2

V2m+2

case I

2j

2j1

1

2n+ 1

2

2n

O(t1)

O(t0)
O(t0)

O(t0)

O(t0)

2jm−1 + 2

V2m+2

case II

2j − 1

2j + 1

Figure 6. Typical terms on the right hand hand of the Berends-Giele recursion relation to which

the induction hypothesis ( 4.17) cannot be applied directly. In both cases, to all (case I) or to all

but one (case II) odd lines of the vertex the blocks J1 are attached. In the case II, one building

block J3 is attached to remaining odd line.

In the case II with exactly one building block J3(tp2j−1, p2j , tp2j+1) = O(t) (note

that, it has to be attached to the odd line of the vertex V2m+2), all the other odd lines

of V2m+2 are attached to J(2jk + 1) = 1 and such a vertex is then proportional to the

squared sum of the momenta tp2jk+1 and the momentum of the line which is attached to

J3(tp2j−1, p2j , tp2j+1), namely

V2m+2 ∼
(
tp2j−1 + p2j + tp2j+1 +

∑

k

tp2jk+1

)2

= O(t). (4.24)

Therefore the complete contribution of the dangerous terms in the case II is in fact O(t2)

for t → 0 because both V2m+2 and J3(tp2j−1, p2j , tp2j+1) scale as O(t) and again all the

remaining building blocks are of the order O(t0) for t → 0. All the other “non-dangerous”

terms on the right hand side of the Berends-Giele relations scale at least as O(t2), which

finishes the proof of (4.17).

Let us now prove (4.18), i.e. the case when all even momenta are scaled. Suppose

validity of this relation for n̄ < n and again write the Berends-Giele relation for the left

hand side of (4.18). Thanks to the just proven statement (4.17), the terms on the right

hand side of (4.7) with at least one building block J(jk + 1, . . . , jk+1) with odd jk and

jk+1 − jk > 1 do not contribute in the limit t → 0. Such a block can be attached only

to the even line of the vertex Vm+1. Therefore, the only terms which can contribute in

the limit t → 0 have the form depicted in figure 7, i.e. those with the building blocks J1
attached to all even lines of the vertex.
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2j1 + 1

2j2 − 1

1

2n+ 1

2j1 − 1

2jm + 1

2j1

2jm

V2m+2

Figure 7. Typical terms on the right hand hand of the Berends-Giele recursion relation which

contribute to ( 4.18). Here to all even lines of the vertex the blocks J1 are attached.

According to the induction hypothesis and using the explicit form of V2k+2 this gives

for t → 0

− (−1)k

2kF 2k

k+1∏

l=1

1

(2F 2)jl−jl−1−1
= − (−1)k

2nF 2n
(4.25)

where we denote j0 = 0 and jk+1 = n+ 1. Sum of all such contributions is

n∑

k=1

∑

1≤j1<j2<...,jk≤n

(−1)k−1

2nF 2n
=

1

2nF 2n

n∑

k=1

(
n

k

)
(−1)k−1 =

1

2nF 2n
, (4.26)

which finishes the proof.

Another independent scaling properties of the semi-on-shell amplitudes J2n+1 can be

proven using the same strategy. For instance, when all odd momenta and one additional

even momentum (say p2r) are scaled, we get

lim
t→0

J2n+1(tp1, p2, tp3, p4, . . . , tp2r−1, tp2r, tp2r+1, . . . , p2N , tp2n+1) = 0 (4.27)

for n > 1. We postpone the proof to the appendix D.

Let us note that due to the homogeneity of J(1, 2, . . . , 2n+1) we can rewrite the rela-

tions (4.17) and (4.18) as a statement on the asymptotic behavior of the scaled amplitudes

for t → ∞, namely

lim
t→∞

J2n+1(tp1, p2, . . . , p2n, tp2n+1) = lim
t→∞

J2n+1(p1, t
−1p2, . . . , t

−1p2n, p2n+1) =
1

(2F 2)n

(4.28)

and

J2n+1(p1, tp2, . . . , tp2n, p2n+1) = J2n+1(t
−1p1, p2, . . . , p2n, t

−1p2n+1) = O(t−2). (4.29)

4.4 BCFW reconstruction

As we have mentioned in the previous subsection, the standard BCFW-like deformation of

the external momenta pi yields deformed amplitudes which behave as a non-negative power
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of z for z → ∞. As a result, for the reconstruction of the amplitude from its pole structure

we need to use the general reconstruction formula (3.14) for which additional information

on the on-shell amplitude (its values at several points) is necessary. However, such an

information is not at our disposal. We solve this problems by the following trick: we relax

some demands placed on the usual BCFW-like deformation and allow more general ones for

which either the reconstruction formula without subtractions can be applied or additional

information on the deformed amplitudes is accessible. The momentum conservation cannot

be evidently avoided, what remains is the on-shell condition of all the external momenta. It

seems therefore to be natural to relax this constraint and instead of the on-shell amplitudes

M2n+2 to use the semi-on-shell amplitudes J2n+1, or the cut semi-on-shell amplitudes

M2n+1 defined as

M2n+1 (p1, . . . , p2n+1) = p21,2n+1J2n+1 (p1, . . . , p2n+1) . (4.30)

Motivated by the results of the previous section let us assume the following deformation

of the semi-on-shell amplitude M2n+1 in the Cayley parametrization

M2n+1(z) ≡ M2n+1(p1, zp2, p3, zp4, . . . , zp2r, p2r+1, zp2r+2, . . . , zp2n, p2n+1) (4.31)

i.e. all even momenta are scaled by the complex parameter z and the odd momenta are not

deformed

p2k(z) = zp2k, p2k+1(z) = p2k+1 (4.32)

Note that in contrast to the standard BCFW shift this deformation is possible for general

number of space-time dimensions d. The physical amplitude corresponds to z = 1. For

n = 1 we get explicitly

M3(z) =
1

F 2
(p1 · p3) (4.33)

For general n let us denote the sums of all odd (even) momenta as

p =
n∑

k=0

p2k+1, p+ =
n∑

k=1

p2k . (4.34)

Then in general case the function M2n+1(z) has the following important properties:

1. With generic fixed pi it is a meromorphic function of z with simple poles.

2. The asymptotics of M2n+1(z) can be deduced form the known properties of J2n+1,

namely for n > 1 we get as a consequence of (4.29)

M2n+1(z) = (p+z + p−)
2J2n+1(p1, zp2, . . . , zp2n, p2n+1) = O(z0). (4.35)

3. For n ≥ 1 we have according to known scaling property (4.18) of J2n+1

lim
z→0

M2n+1(z) =
1

(2F 2)n
p2− (4.36)
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The first two properties allows us to write for M2n+1(z) the reconstruction formula

with one subtraction, i.e. the relation (3.14) with k = 0. The third property is the key one

for the complete reconstruction and determines both the “subtraction point” a1 = 0 and

the “subtraction constant” M2n+1(a1) = p2−/(2F
2)n. The resulting formula reads10

M2n+1(z) =
1

(2F 2)n
p2− +

∑

P

Res (M2n+1, zP )

z − zP

z

zP
(4.37)

where the sum is over the poles zP of M2n+1(z). The position of the poles is known and the

corresponding residues can be determined recursively as in usual BCFW relations, however,

there are some subtleties.

The poles zP of M2n+1(z) correspond to the vanishing denominators of the deformed

propagators p2P (z) = 0, where

p2P (z) ≡ pi,j(z)
2 = 0, for 2 ≤ j − i < 2n (4.38)

and where j − i is even; in this formula pi,j(z) = zp+i,j + p−i,j with

p+i,j =
∑

i≤2k≤j

p2k, p−i,j =
∑

i≤2k+1≤j

p2k+1, (4.39)

i.e. p±i,j is a sum of all even (odd) momenta from the ordered set pi, pi+1, . . . , pj−1, pj .

Explicitly for j − i > 2

z±i,j =
−(p+i,j · p−i,j)±

(
−G(p+i,j , p−i,j)

)1/2

p+2
i,j

(4.40)

where G(a, b) = a2b2 − (a · b)2 is the Gram determinant, which is nonzero for generic

momenta pi, . . . , pj . Therefore in the generic case for j − i > 2 we deal with doublets of

single poles.

The case of three-particle poles corresponding to j− i = 2 has to be treated separately.

In this case either p+2
i,j = 0 or p−2

i,j = 0 (this sets in for p+i,j = pi+1 or for p−i,j = pi+1

respectively; let us remind that pk are on-shell). In the first case we have only one pole

z2j−1,2j+1 = − (p2j−1 · p2j+1)

p2j · (p2j−1 + p2j+1)
(4.41)

while in the second case we have apparently two poles

z+2j,2j+2 = 0 (4.42)

z−2j,2j+2 ≡ z2j,2j+2 = −p2j+1 · (p2j + p2j+2)

(p2j · p2j+2)
(4.43)

10Let us note, that we could write analogous reconstruction formula directly for the currents J2n+1 as we

did in [49]. In such a case we do not need any subtraction. The price to pay is that we get two more poles,

the residues of which cannot be determined recursively from unitarity. Fortunately, the relation (4.29) and

the residue theorem can be used in order to obtain the unknown residues in terms of the remaining ones.

The resulting formula is fully equivalent to (4.37), however it is a little bit less elegant.
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1 i− 1

j + 12n+ 1

i

j

M2n+1−(j−i)
Mj−i+1

pi,j(z
±

i,j)

Figure 8. Graphical representation of the right hand side of the relation ( 4.45).

However z+2j,2j+2 = 0 cannot be a pole according to (4.36) and the corresponding residue

has to be zero.

The residues of the function M2n+1(z) are dictated by unitarity and at the poles they

factorize (see figure 8). Writing for j − i > 2

(zp+i,j + p−i,j)
2 = p+2

i,j (z − z+i,j)(z − z−i,j) (4.44)

we get for j − i > 2

Res
(
M2n+1, z

±
i,j

)
= ±

M
(i,j)
L (z±i,j)M

(i,j)
R (z±i,j)

p+2
i,j (z

+
i,j − z−i,j)

(4.45)

where we denoted

M
(i,j)
L (z±i,j) = M2n+1−(j−i)(p1(z

±
i,j), . . . , pi−1(z

±
i,j), pi,j(z

±
i,j), pj+1(z

±
i,j), . . . , p2n+1(z

±
i,j))

(4.46)

M
(i,j)
R (z±i,j) = Mj−i+1(pi(z

±
i,j), pi+1(z

±
i,j), . . . , pj(z

±
i,j)). (4.47)

Note that, while the amplitude M
(i,j)
L remains semi-on-shell, the amplitude M

(i,j)
R is fully

on-shell, because the deformed momentum pi,j(z) is on-shell for z = z±i,j .
The formula (4.45) is valid also for the three-particle pole z2j,2j+2 given by (4.43).

However the pole z2j−1,2j+1 deserves a special remark because the corresponding residue

is determined by the formula different from (4.45), namely

Res (M2n+1, z2j−1,2j+1) =
M

(2j−1,2j+1)
L (z2j−1,2j+1)M

(2j−1,2j+1)
R (z2j−1,2j+1)

2p+2j−1,2j+1 · p−2j−1,2j+1

(4.48)

where M
(2j−1,2j+1)
L,R (z2j−1,2j+1) are given by (4.46) and (4.47) with z±i,j replaced by

z2j−1,2j+1.

To summarize, we have found a closed system of recursive BCFW-like relations for

the tree cut semi-on-shell amplitudes M2n+1, which consists of the reconstruction for-

mula (4.37), the pole positions (4.40), (4.41) and (4.43) and the residue formulae (4.45)

and (4.48). Note that the initial condition for the recursion (4.33) can be understood as the
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special case of (4.37) for n = 1 because then there is no pole zi,j with 2 ≤ j− i < 2 and the

sum of the residue contributions is empty. The physical amplitude M2n+1(p1, . . . , p2n+1)

corresponds to z = 1

M2n+1(p1, . . . , p2n+1) =
1

(2F 2)n
p2− +

∑

P

Res (M2n+1, zP )

zP

1

1− zP
. (4.49)

As a final result we get then using (4.45), (4.48), (4.41), (4.43) and (4.44)

M2n+1(p1, . . . , p2n+1) =
1

(2F 2)n
p2− +

∑

P

M
(P )
L (zP )

RP

p2P
M

(P )
R (zP ). (4.50)

Note that there is an extra function RP in contrast to the standard BCFW formula (3.9),

namely

RP =





z−2
P for zP = z2j,2j+2

z−1
P for zP = z2j−1,2j+1

1
z±i,j−z∓i,j

1−z∓i,j
z±i,j

for zP = z±i,j

(4.51)

For further convenience, we rewrite (4.50) with help of (4.33) in the following more explicit

form

M2n+1 (p1, . . . , p2n+1) =
1

(2F 2)n
p2− +

+
n−1∑

j=1

M
(2j,2j+2)
L (z2j,2j+2)

1

p22j,2j+2

p2j · p2j+2

F 2

−
n∑

j=1

M
(2j−1,2j+1)
L (z2j−1,2j+1)

1

p22j−1,2j+1

p+2j−1,2j+1 · p−2j−1,2j+1

F 2

+
∑

2<j−i<2n

1

z+i,j−z−i,j

(
M

(i,j)
L (z+i,j)

1

p2i,j
M

(i,j)
R (z+i,j)

1−z−i,j
z+i,j

−M
(i,j)
L (z−i,j)

1

p2i,j
M

(i,j)
R (z−i,j)

1−z+i,j

z−i,j

)
.

(4.52)

The on-shell amplitude is then

M2n(1, 2, . . . , 2n− 1; 2n) = − lim
p21,2n−1→0

M2n−1(1). (4.53)

4.5 Explicit example of application of BCFW relations: 6pt amplitude

As an illustration let us apply the BCFW-like recursive relations (4.37) to the amplitude

M5(z) ≡ M5(p1, zp2, p3, zp4, p5). In this case we have three poles, all of them being three-

particle, namely

z1,3 = 1− s1,3
s1,2 + s2,3

, z2,4 =

(
1− s2,4

s2,3 + s3,4

)−1

, z3,5 = 1− s3,5
s3,4 + s4,5

(4.54)
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where the variables si,j are given by (2.30).The residues are given by the relations (4.45)

for z2,4 and (4.48) for z1,3 and z3,5. After simple algebra using the explicit form of the

poles (4.54) we get

Res (M5, z1,3)

z1,3
=

1

4F 4
(1− z1,3)(s2,5 − s2,4 + s3,4 − s3,5)−

1

4F 4
(s1,5 − s1,4 − s4,5)

Res (M5, z3,5)

z3,5
=

1

4F 4
(1− z3,5)(s1,4 − s1,3 + s2,3 − s2,4)−

1

4F 4
(s1,5 − s1,2 − s2,5)

Res (M5, z2,4)

z2,4
=

1

4F 4
(s1,5 − s1,4 + s2,4 − s2,5) . (4.55)

Note that the potential unphysical poles zi,j(pk) = 0 have canceled completely. We have

also

(1−z1,3)
−1 =

s1,2 + s2,3
s1,3

, (1−z3,5)
−1 =

s3,4 + s4,5
s3,5

, (1−z2,4)
−1 = 1− s2,3 + s3,4

s2,4
. (4.56)

These factors are responsible for setting of the physical poles in the resulting amplitude.

After inserting this to the formula (4.49) we get for the individual contributions to the

semi-on-shell amplitude in the Cayley parametrization

Res (M5, z1,3)

z1,3(1− z1,3)
=

1

4F 2

[
(s1,4 + s4,5 − s1,5) (s1,2 + s2,3)

s1,3
+ s2,5 − s2,4 + s3,4 − s3,5

]

Res (M5, z3,5)

z3,5(1− z3,5)
=

1

4F 2

[
(s1,2 + s2,5 − s1,5)(s3,4 + s4,5)

s3,5
+ s1,4 − s1,3 + s2,3 − s2,4

]

Res (M5, z2,4)

z2,4(1− z2,4)
=

1

4F 2

[
(s1,4+s2,5−s1,5) (s2,3+s3,4)

s2,4
+s1,5−s1,4+s2,4−s2,5−s2,3−s3,4

]

p2−
4F 2

=
1

4F 2
[s1,3 − s1,2 − s2,3 + s1,5 − s1,4 + s2,4 − s2,5 + s3,5 − s3,4 − s4,5] .

(4.57)

Finally we get

4F 2M5(1) =
(s1,4+s4,5−s1,5) (s1,2+s2,3)

s1,3
+
(s1,2+s2,5−s1,5)(s3,4+s4,5)

s3,5

+
(s1,4+s2,5−s1,5) (s2,3+s3,4)

s2,4

+2s1,5 − s1,2 − s1,4 − s2,3 − s2,5 − s3,4 − s4,5. (4.58)

Taking this amplitude on-shell according to (4.53), i.e. setting s1,5 → 0 and changing the

overall sign, we reproduce the parametrization independent physical amplitude (2.34).

5 More properties of stripped semi-on-shell amplitudes

The BCFW recursive relations provides us with a Lagrangian-free formulation of the tree-

level nonlinear SU(N) sigma model in the Cayley parametrization. We can use them

similarly as the Berends-Giele relations as a tool for the investigation of further interesting
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features of the stripped semi-on-shell amplitudes M2n+1 and J2n+1. As we have already

mentioned, these features are not universal because of the parametrization dependence

of M2n+1 and J2n+1, however, their implications for the fully on-shell amplitudes hold

universally.11 In this section we will concentrate on the problem of single soft limits (Adler

zeroes) and double soft limit of the semi-on-shell amplitudes.

The presence of Adler zeroes for the on-shell Goldstone boson amplitudes

Ma1...a2n(p1, . . . , p2n), i.e. validity of the limit

lim
pj→0

Ma1a2...a2n(p1, p2, . . . , p2n) = 0, (5.1)

is a well known consequence of the nonlinearly realized chiral symmetry. More generally it

is an universal (non-perturbative) feature in the theories with spontaneous breakdown of

a global symmetry. In such theories the amplitudes with one extra Goldstone boson πa in

the out (or in) state vanishes when the Goldstone boson becomes soft, e.g.

lim
p→0

〈f + πa(p), out|i, in〉 = 0, (5.2)

provided the πa cannot be emitted from the external lines corresponding to the states

|i, in〉 or |f, out〉. In the SU(N) nonlinear sigma model the Adler zero is present also for

the stripped on-shell amplitudes M2n(p1, p2, . . . , p2n) due to the leading N orthogonality

relations (2.20) and corresponding uniqueness of the decomposition (2.11). However, this

property is not guaranteed automatically for the semi-on-shell amplitudes M2n+1 and the

soft Goldstone boson behavior can depend on the parametrization. For instance using the

Cayley parametrization, we find for the amplitude M3 = (p1 ·p3)/F 2 the Adler zero for soft

p1 and p3, however there is no zero for soft p2 in general when keeping p4 off-shell. For the

same amplitude in the exponential parametrization (cf. (4.16)) we have no Adler zero at

all. As we shall show in this section, for the semi-on-shell amplitudes M2n+1 in the Cayley

parametrization we can prove, using the BCFW-like relation, the Adler zero for half of the

momenta (namely for those pj with odd index j).

The double soft limit of the Goldstone boson on-shell amplitudes Ma1a2...a2n+2(p1,

p2, . . . , p2n+2) is more complicated and has been studied relatively recently in connection

with the regularized action of the broken generators on the n Goldstone boson states [50].

Motivated by direct inspection of the six Goldstone boson amplitude in the nonlinear chiral

SU(2) sigma model it was conjectured that provided the two soft momenta are sent to zero

with the same rate, the following limit holds

lim
t→0

Maba1a2...a2n(tp, tq, p1, p2, . . . , p2n)

= − 1

2F 2

n∑

i=1

fabcf caid
pi · (p− q)

pi · (p+ q)
Ma1...ai−1dai+1...a2n(p1, p2, . . . , p2n), (5.3)

where fabc are the structure constants. Analogous statement has been then rigorously

proven for the tree-level amplitudes in the N = 8 supergravity using BCFW relations.

11Let us remind that the on-shell amplitudes are parametrization independent.
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In fact, for the on-shell amplitudes, the formula (5.3) can be proven non-perturbatively

under some assumptions for the general enough case of the theory with global symmetry

breaking (including the case of chiral nonlinear sigma model with general chiral group G)

using the symmetry arguments only (cf. the PCAC soft-pions theorems [48]). We postpone

the details to the appendix E.

In terms of the stripped on-shell amplitudes the relation (5.3) can be rewritten as

lim
t→0

M2n+2(p1, . . . , pi−1, tpi, . . . , tpj , pj+1, . . . p2n+2) (5.4)

=
1

4F 2
δj,i+1

(
pi+2 · (pi−pi+1)

pi+2 · (pi−pi+1)
− pi−1 · (pi−pi+1)

pi−1 · (pi−pi+1)

)
M2n(p1, . . . , pi−1, pi+2, . . . p2n+2).

In this section we will prove this relation also for the tree-level semi-on-shell amplitudes

J2n+1 (and consequently for M2n+1) of the SU(N) nonlinear sigma model in the Cayley

parametrization using suitable form of the generalized BCFW representation.

5.1 Adler zeroes

In this subsection we will use the BCFW-like relations (4.52) derived in the previous section

and prove the presence of an Adler zero at M2n+1 when one of the odd momenta, say p2l−1,

is soft, i.e. we will prove that for l = 1, 2, . . . , n+ 1

lim
t→0

M2n+1(p1, p2, . . . , p2l−2, tp2l−1, p2l+1, . . . , p2n+1) = 0. (5.5)

For the fundamental amplitude M3(p1, p2, p3) we have explicitly12

M3(tp1, p2, p3) = M3(p1, p2, tp3) =
1

F 2
t(p1 · p3) → 0. (5.6)

In the general case the proof of (5.5) is by induction. Let us assume validity of (5.5) for

m < n. This assumption also means that, taking the cut semi-on-shell amplitude M2m+1

on shell, i.e. for p21,2n+1 → 0, the Adler zero is in fact present at M2m+1|on shell = −M2m+2

for all momenta, i.e.

lim
t→0

M2m+1(p1, p2, . . . , tpj , . . . p2m+1)|on shell = 0 (5.7)

for all j = 1, . . . , 2m+ 1 due to the cyclicity of M2m+2.

Let us now substitute p2l−1 → tp2l−1 to the right hand side of (4.52). Note that, under

such substitution, the position of the poles z2j,2j+2, z2j−1,2j+1 and z±i,j become t−dependent.

The t− dependence of the right hand side of (4.52) is therefore both explicit (due to the ex-

plicit dependence on p2l−1) and implicit (due to the implicit t−dependence of the poles zP ).

We will now inspect the behavior of the individual terms under the limit t → 0. The

first term gives finite limit

1

(2F 2)n
p2− → 1

(2F 2)n
p2−|p2l−1→0. (5.8)

12Note however that for t → 0 according to (4.18).

M3(p1, tp2, p3) →
1

2F 2
(p1 + p3)

2

and therefore the statement analogous to (5.5) for even momenta does not hold.
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M
(2j,2j+2)
L

× 1
F 2

p2j·p2j+2

p22j,2j+2
→ 0

p1

z2j,2j+2p2
tp2l−1

p2j−1

p2j+3p2n+1

z2j,2j+2p2j+4

p2j,2j+2(z2j,2j+2)

M
(2j,2j+2)
L

× 1
F 2

p2j·p2j+2

(p+2j,2j+2+tp2j1)
2 → 1

(2F 2)n
p2−|p2l−1→0

p1

O(t)p2

p2j−1

p2j+3p2n+1

O(t)p2j+4

O(t)p+2j,2j+2 + tp2j+1

A) j 6= l − 1

B) j = l − 1

Figure 9. Graphical representation of the t → 0 limit of the second term on the right hand side of

( 4.52). The soft momentum is denoted by dashed line in the case A. In the case B, O(t) indicates

the order of the t−dependent z2j,2j+2.

As far as the second term is concerned, the individual terms of the sum over j vanish in this

limit unless j = l − 1. The reason is as follows. For j 6= l − 1 (the case A in the figure 9),

the kinematical factor p2j · p2j+2/p
2
2j,2j+2 as well as the position of the pole z2j,2j+2 are

t−independent and because tp2l−1 is placed on the odd position in M
(2j,2j+2)
L (z2j,2j+2), we

can safely13 use the induction hypothesis to conclude that

lim
t→0

M
(2j,2j+2)
L (z2j,2j+2)|p2l−1→0 = 0.

For j = l−1 (the case B in the figure 9), the kinematical factor p2j ·p2j+2/p
2
2j,2j+2 becomes

explicitly t−dependent and tends to 1/2 for t → 0, while M
(2j,2j+2)
L (z2j,2j+2) has both

explicit (through p2j,2j+2 = z2j,2j+2(p2j + p2j+2) + tp2j+1) and implicit t−dependence.

In this case z2j,2j+2 = O(t), as can be seen from (4.43). Therefore, all even momenta

in M
(2j,2j+2)
L (z2j,2j+2) are scaled by O(t) factor, in the same way as in (4.18). We can

therefore conclude with help of (4.18) that

lim
t→0

M
(2j,2j+2)
L (z2j,2j+2)

1

p22j,2j+2

p2j · p2j+2

F 2
= δj,l−1

1

(2F 2)n
p2−|p2l−1→0. (5.9)

The third term on the right hand side of (4.52) can be treated exactly in the same way

as the second (see figure 10). Also here the individual terms of the sum over j do not

13Indeed, in general the momenta pk(z2j,2j+2) and p2j,2j+2(z2j,2j+2) are t−independent and nonzero.
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M
(2j−1,2j+1)
L

× 1
F 2

p2j·(tp2j−1+p2j+1)

(tp2j−1+p2j+p2j+1)2
→ 1

(2F 2)n
p2−|p2j−1→0

p1

O(t)p2

O(t)p2j−2

O(t)p2j+2p2n+1

p2j+3

tp2j−1 +O(t)p2j + p2j+1

B) j = l

M
(2j−1,2j+1)
L

× 1
F 2

p+2j−1,2j+1·p−2j−1,2j+1

p22j−1,2j+1
→ 0

p1

z2j−1,2j+1p2
tp2l−1

z2j−1,2j+1p2j−2

z2j−1,2j+1p2j+2p2n+1

p2j+3

p2j−1,2j+1(z2−1j,2j+1)

A) j 6= l, l − 1

Figure 10. Graphical representation of the t → 0 limit of the third term on the right hand side

of ( 4.52). The soft momentum is denoted by dashed line in the picture A. In the picture B, we

show only the j = l case, the j = l − 1 case is treated analogously. O(t) indicates the order of the

t−dependent z2j,2j+2.

contribute with the only exception of j = l and j = l − 1 by induction hypothesis applied

to M
(2j−1,2j+1)
L (z2j−1,2j+1) which has for j 6= l, l − 1 only explicit t−dependence. In the

remaining two cases j = l and j = l − 1, the explicitly t−dependent kinematical factors

p+2j−1,2j+1 · p−2j−1,2j+1/p
2
2j−1,2j+1 tend again to 1/2 and within M

(2j−1,2j+1)
L (z2j−1,2j+1) the

even momenta are scaled by z2j−1,2j+1 = O(t) (see (4.41)) and thus (4.18) can be used14

to conclude that

lim
t→0

M
(2j−1,2j+1)
L (z2j−1,2j+1)

1

p22j−1,2j+1

p+2j−1,2j+1 · p−2j−1,2j+1

F 2

= (δj,l + δj,l−1)
1

(2F 2)n
p2−|p2l−1→0. (5.10)

The fourth term on the right hand side of (4.52) vanish completely in the limit t → 0. This

is easy to see for those terms of the sum over (i, j) for which15 limt→0 z
±
i,j 6= 0. In this case

either M
(i,j)
L (z±i,j) or M

(i,j)
R (z±i,j) have explicit t−dependence through tp2l−1 (which is for

M
(i,j)
L (z±i,j) on odd position) and thus the induction hypothesis in the form (5.5) or (5.7)

14Note that, the odd momenta are t−idependent with the only exception of p2j−1,2j+1

(z2j−1,2j+1)|p2j∓1→tp2j∓1
the limit of which is p2j±1.

15It is easy to realize that limt→0 z
+
i,j 6= limt→0 z

−
i,j for generic pk.
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can be used.16 By direct inspection of (4.40) we find that the only case for which the above

argumentation does not apply is the case j − i = 4 with i even and i ≤ 2l − 1 ≤ j. Here

limt→0 z
−
i,j 6= 0 and so for the “minus” part of this (i, j) term we can use the induction

hypothesis as above. However, the “plus” part might be problematic because

z+i,j = −(p2l−1 · p2l−1±2)

(p2l−1±2 · p+i,j)
t+O(t2). (5.11)

Using this formula and (4.15) we find after some algebra

M
(i,j)
R (z+i,j) = M5(pi(z

t+
i,j ), . . . tp2l−1, . . . , pj(z

t+
i,j )) = O(t2). (5.12)

which shows that also the “plus” part has vanishing t → 0 limit.

Putting therefore the only nonzero contributions (5.8), (5.9) and (5.10) together we

get finally

lim
t→0

M2n+1(p1, p2, . . . , p2l−2, tp2l−1, p2l+1, . . . , p2n+1)

=
1

(2F 2)n
p2−|p2l−1→0


1 +

n−1∑

j=1

δj,l−1 −
n∑

j=1

(δj,l + δj,l−1)


 = 0,

which finishes the proof.

5.2 Double-soft limit

Let us now study the behavior of the semi-on-shell amplitude J2n+1 in the Cayley para-

metrization under the double soft limit, i.e. the case when two external momenta, say pi
and pj , are scaled according to pi,j → tpi,j and t is sent to zero. In this section we will

prove, that for 1 < i < j < 2n+ 1

lim
t→0

J2n+1(p1, . . . , p2n+1)|pi→tpi,pj→tpj (5.13)

= δj,i+1
1

2F 2

(
(pi · pi+2)

pi+2 · (pi+1+pi)
− (pi · pi−1)

pi−1 · (pi+1+pi)

)
J2n−1(p1, . . . , pi−1, pi+2 . . . , p2n+1),

which has an identical form as (5.5).17 The key ingredient of the proof is the generalized

form of the BCFW representation mentioned in section 3.2 written for a suitable two-

parameter complex deformation of the amplitude J2n+1. Such a representation allows

us to calculate the double soft limit with help of the known behavior of the poles and

corresponding residues in this limit. Useful information on this behavior can be inferred

from the statement (5.5) concerning the Adler zeroes proved in the previous subsection.

16Let us remind that M
(i,j)
R (z±i,j) is fully on-shell.

17Indeed,

(pi · pi+2)

pi+2 · (pi+1 + pi)
−

(pi · pi−1)

pi−1 · (pi+1 + pi)
=

1

2

(

pi+2 · (pi − pi+1)

pi+2 · (pi − pi+1)
−

pi−1 · (pi − pi+1)

pi−1 · (pi − pi+1)

)

.
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The above mentioned deformation of J2n+1 can be defined as the following function of

two complex variables z and t

Sn
i,j(z, t) = J(p1, . . . , p2n+1)|pi→tpi,pj→zpj , (5.14)

therefore

Sn
i,j(1, 1) = J2n+1(p1, . . . , p2n+1) (5.15)

Various types of the double soft limit correspond then to various ways of taking the

limit (z, t) → (0, 0) in the double complex plane (z, t); the limit (5.14) corresponds to

limt→0 S
n
i,j(t, t) ≡ Sn,0

i,j .

For z → ∞ and t > 0 fixed the following asymptotic behavior holds

Sn
i,j(z, t) = O(z0), (5.16)

as can be easily proved e.g. by induction with help of the Berends-Giele recursive rela-

tions (4.7). We can therefore write the generalized BCFW relation with one subtraction

in the form (3.14)

Sn
i,j(z, t) = Sn

i,j(a, t) +
∑

k,l

Res
(
Sn
i,j ; zk,l(t)

)

z − zk,l(t)

z − a

zk,l(t)− a
. (5.17)

where a 6= zk,l(t) is a priory arbitrary, however, as we shall see in what follows, appropriate

choice of a can simplify the calculation.

The poles zk,l(t) for k ≤ j ≤ l correspond to the conditions p2k,l|pi→tpi,pj→zpj = 0, or

explicitly

zk,l(t) = −
p2k,l|pi→tpi,pj→0

2(pj · pk,l)|pi→tpi

. (5.18)

The residues at the poles zk,l(t) factorize

Res
(
Sn
i,j ; zk,l(t)

)
=

1

2(pj · pk,l)|pi→tpi

[J2n+1−(l−k)(p1, . . . , pk−1, pk,l, pl+1, . . . , p2N+1)

×Ml−k+1(pk, . . . , pl)|pi→tpi,pj→zpj ]|z→zk,l(t), (5.19)

where Ml−k+1 is the cut amplitude (4.30). Namely the latter two formulae along with (5.5)

contain sufficient amount of information for the calculation of the double soft limit.

Let us first assume i < j where i is odd and j arbitrary. This choice is a technical one,

and as we shall see, the general case can be easily obtained using the symmetry properties

of the amplitude. In what follows we set a = 1 in (5.17), the double soft limit then

simplifies to

Sn,0
i,j ≡ lim

t→0
Sn
i,j(t, t) = lim

t→0

∑

k,l

Res
(
Sn
i,j ; zk,l(t)

)

t− zk,l(t)

t− 1

zk,l(t)− 1
, (5.20)

where we have used the existence of the Adler zero for Sn
i,j(1, t) = J2n+1(p1, . . . , tpi, . . . ,

p2n+1) and i odd (cf. (5.5)).
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For generic pr there exist a finite limit

zk,l(0) = lim
t→0

zk,l(t) 6= 1 (5.21)

In fact the only nonzero contributions to the right hand side of (5.20) stem from the cases

for which zk,l(0) = 0. Indeed, for zk,l(0) 6= 0 we get for the corresponding contribution

1

zk,l(0)(zk,l(0)− 1)
lim
t→0

Res
(
Sn
i,j ; zk,l(t)

)
, (5.22)

and, according to (5.5), on the right hand side of (5.19) we get either

lim
t→0

[Ml−k+1(pk, . . . , pl)|pi→tpi,pj→zpj ]|z→zk,l(t) = 0 (5.23)

for k ≤ i < j ≤ l or

lim
t→0

J2n+1−(l−k)(p1, . . . , tpi, . . . , p(k, l)(t), pk+1, . . . , p2n+1) = 0 (5.24)

for i < k < j ≤ l. In both cases the complementary factor has finite limit and therefore

lim
t→0

Res
(
Sn
i,j ; zk,l(t)

)
= 0. (5.25)

Let us therefore discuss the contributions form the poles for which zk,l(0) = 0. Note that,

for generic pr such a pole does not exist provided j > i+2. We can therefore immediately

conclude

Sn,0
i,j = 0 for j > i+ 2. (5.26)

What remains are the following two alternatives for which the three-particle poles zk,l(t)

with l = k + 2 can vanish in the limit t → 0 (see figure 11)

1. j = i+ 1 and either k = i or k = i− 1. In this case either

p2i−1,i+1|pi→tpi,pj→0 → p2i−1 = 0 (5.27)

or

p2i,i+2|pi→tpi,pj→0 → p2i+2 = 0 (5.28)

2. j = i+ 2 and k = i, in this case

p2i,i+2|pi→tpi,pj→0 = p2i+1 = 0. (5.29)

In what follows we will discuss separately the cases j = i + 1 and j = i + 2. Let us

first study the double soft limit of two adjacent momenta, i.e. j = i + 1 where i is odd.

We will investigate the contributions of individual poles zk,l(t) on the right hand side

of (5.20) separately. In this case we get for i > 1 only two potentially nonzero contributions

(i.e. (5.28) and (5.27)) to the right hand side of (5.20), namely

Sn,0
i,i+1=lim

t→0

Res
(
Sn
i,i+1; zi−1,i+1(t)

)

t−zi−1,i+1(t)

t−1

zi−1,i+1(t)−1
+lim

t→0

Res
(
Sn
i,i+1; zi,i+2(t)

)

t−zi,i+2(t)

t−1

zi,i+2(t)−1
.

(5.30)
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J2n−1

1 i− 1
i

i+ 1

i+ 2
i+ 32n+ 1

pi+2 + tpi + zi,i+2(t)pi+1

M3

J2n−1

1 i− 1
i

i+ 1

i+ 2
i+ 32n+ 1

pi+1 + tpi + zi,i+2(t)pi+2

M3

i− 1

i

i+ 1

M3 → − (pi·pi−1)
pi−1·(pi+pi+1)

→ (pi·pi+2)
pi+2·(pi+pi+1)

J2n−1

1 i− 1

i+ 32n+ 1

J2n−1

1 i− 2

i+ 22n+ 1

i− 1

i+ 2

→ 0

J2n−1

1 i− 2

i+ 22n+ 1

pi−1 + tpi + zi−1,i+1(t)pi+1

Ki−1,i+1(t)

Ki,i+2(t)

Ki,i+2(t)

Figure 11. Graphical representation of the t → 0 limit of the three cases ( 5.27), ( 5.28) and

( 5.29) for which zk,l(t) → 0. The soft momenta are denoted by dotted lines. The multiplicative

factors Kk,l(t) stays for (t− 1)/(t− zk,l(t))(zk,l(t)− 1).

We get for the poles zi−1,i+1(t) and zi,i+2(t)

zk,k+2(t) = −
p2k,k+2|pi→tpi,pj→0

2(pj · pk,k+2)|pi→tpi

= −t
(pi · pr)
(pj · pr)

+O(t2), (5.31)

where either r = i+ 2 (for k = i) or r = i− 1 (for k = i− 1), and as a consequence,

1

t− zk,k+2(t)

t− 1

zk,k+2(t)− 1
=

1

t

(pj · pr)
pr · (pj + pi)

(1 +O(t)). (5.32)

We have further

pk,k+2(t) = tpi + zk,k+2(t)pj + pr → pr 6= 0 (5.33)

and therefore in both cases

lim
t→0

J2n−1(p1, . . . , pk−1, pk,k+2(t), pk+3, . . . , p2n+1)

= J2n−1(p1, . . . , pi−2, pi−1, pi+2, . . . , p2n+1). (5.34)

For the remaining ingredients of the formula (5.19) we get

M3(tpi, zi,i+2(t)pi+1, pi+2) =
1

F 2
t(pi · pi+2) (5.35)

M3(pi−1, tpi, zi−1,i+1(t)pi+1) =
1

F 2
zi−1,i+1(t)(pi−1 · pi+1) = −t

1

F 2
(pi · pi−1)(1 +O(t)).

(5.36)
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Inserting this into the formulae (5.19) and (5.30) get finally for i > 1

Sn,0
i,i+1

=
1

2F 2

(
(pi · pi+2)

pi+2 · (pi+1+pi)
− (pi · pi−1)

pi−1 · (pi+1+pi)

)
J2n−1(p1, . . . , pi−2, pi−1, pi+2, . . . , p2n+1).

(5.37)

In the same way, for i=1 only the first term on the right hand side of (5.37) contributes.

Let us proceed to the case 2. when j = i + 2 and zi,i+2(t) → 0 for t → 0 is the only

pole which can give nonzero contribution to (5.20). In this case we have

Sn,0
i,i+2 = lim

t→0

Res
(
Sn
i,i+2; zi,i+2(t)

)

t− zi,i+2(t)

t− 1

zi,i+2(t)− 1
. (5.38)

The formulae (5.31), (5.32), (5.33), (5.34) are still valid with r = i+ 1, but now we have

M3(tpi, pi+1, zi,i+2(t)pi+2) =
1

F 2
tzi,i+2(t)(pi · pi+2) = O(t2). (5.39)

which implies Sn,0
i,i+2 = 0.

To summarize, we have for k > 0

lim
t→0

J2n+1(p1, . . . , p2k, tp2k+1, . . . , tpj , . . . , p2n+1) =

= δj,2k+2
1

2F 2
J2n−1(p1, . . . , p2k, p2k+3, . . . , p2n+1)

(
(p2k+1 · p2k+3)

p2k+3 · (p2k+2 + p2k+1)
− (p2k+1 · p2k)

p2k · (p2k+2 + p2k+1)

)
(5.40)

and for k = 0

lim
t→0

J2n+1(tp1, . . . , tpj , . . . , p2n+1) = δj,2
1

2F 2

(p1 · p3)
(p2 · p3) + (p1 · p3)

J2n−1(p3, . . . , p2n+1).

As it is clear from the above discussion, the “asymmetry” of the latter result stems from

the fact that p2n+2 is off-shell and therefore the three-particle pole corresponding to (p3 +

p4 + . . .+ p2n+1)
2 = (p2n+2 − p1 − p2)

2 → p22n+2 6= 0 does not contribute.

Because

J(1, 2, . . . , 2n+ 1) = J(2n+ 1, 2n, . . . , 2, 1), (5.41)

we get for j < 2k + 1

J2n+1(p1, . . . , tpj . . . , p2k, tp2k+1, . . . , , p2n+1)

= J2n+1(p2n+1, . . . , tp2k+1, p2k, . . . , tpj , . . . , p1). (5.42)

On the right hand side of this identity the momentum p2k+1 stays on the odd position

and thus

lim
t→0

J2n+1(p1, . . . , tpj . . . , p2k, tp2k+1, . . . , p2n+1)

= δj,2k
1

2F 2
J2n−1(p1 . . . , p2k−1, p2k+2, . . . , p2n+1)

(
− (p2k · p2k−1)

p2k−1 · (p2k + p2k+1)
+

(p2k · p2k+2)

p2k+2 · (p2k + p2k+1)

)
(5.43)

Putting (5.40) and (5.43) together the final result (5.14) follows.
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6 Summary and conclusion

We have studied various aspects of the SU(N) chiral nonlinear sigma model which describes

the low-energy dynamics of the Goldstone bosons corresponding to the spontaneous chiral

symmetry breaking SU(N)×SU(N) → SU(N). As we have shown, the tree-level scattering

amplitudes of the Goldstone bosons can be constructed from the stripped amplitudes, which

are identical as those of the U(N) chiral nonlinear sigma model. It is therefore possible to

use this correspondence and to investigate both the SU(N) and U(N) cases on the same

footing. Especially we are allowed to choose any parametrization (field redefinition) of the

chiral unitary matrix U(x) entering the Lagrangian from the wide class of parametrizations

admissible for the extended U(N) case, because the fully on-shell stripped amplitudes do

not depend on the parametrization. For the direct calculation of the flavor ordered Feynman

graphs, the most convenient choice proved to be the minimal parametrization (2.31), which

we have chosen in order to calculate the on-shell amplitudes up to 10 Goldstone bosons.

The proliferation of the Feynman graphs with increasing number of the Goldstone

bosons call for alternative methods of calculation. The more efficient method is based

on the Berends-Giele recursive relations for the semi-on-shell amplitudes, but due to the

infinite number of the interaction vertices in the Lagrangian of the nonlinear sigma model,

the number of terms necessary to evaluate the n−point amplitude grows much faster (ex-

ponentially) with n than for the case of the power-counting renormalizable theories (where

the growth is polynomial).

The BCFW recursive relations could make the calculation of the on-shell stripped

amplitude as effective as for the renormalizable theories at least as far as the number of

terms (which is in both cases related to the number of factorization channels) is concerned.

However, the standard way of the BCFW reconstruction is not directly applicable for the

nonlinear sigma model because of the bad behavior of the BCFW deformed amplitudes at

infinity. We have therefore proposed an alternative deformation of the semi-on-shell ampli-

tudes based on the scaling of all odd or all even momenta, for which we were able to prove

exact results concerning the behavior of the semi-on-shell amplitudes when the scaling pa-

rameter tended to zero. Using the Berends-Giele recursive relations we were able to prove

this scaling properties for general n−point amplitude. An essential ingredient of the proof

was the fact that the semi-on-shell amplitudes (unlike the on-shell ones) are parametriza-

tion dependent and we could therefore make an appropriate choice of the parametrization

(the Cayley one). We have then used these exact scaling properties for a generalized BCFW

reconstruction formula (with one subtraction) which determines fully all the semi-on-shell

amplitudes in the Cayley parametrization including the basic four-point one. Putting then

the semi-on-shell amplitudes on-shell we reconstruct simply the parametrization indepen-

dent on-shell amplitudes. In contrast to the standard BCFW relations our procedure is

not restricted to d ≥ 4 space-time dimensions.

The BCFW recursive relation are also a suitable tool for investigation of the properties

of the amplitudes. We have illustrated this in two cases, namely we have proved the

presence of the Adler zero and established the general form of the double soft limit for the

semi-on-shell amplitudes in the Cayley parametrization.
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The existence of BCFW recursion relations for power-counting non-renormalizable

effective theory as the SU(N) chiral nonlinear sigma model gives an evidence that the

on-shell methods can be used for much larger classes of theories than has been considered

so far. It also indicates that the SU(N) chiral nonlinear sigma model is rather special and

deeper understanding of all its properties is desirable. For future directions, it would be

interesting to see whether the construction can be re-formulated purely in terms of on-shell

scattering amplitudes not using the semi-on-shell ones. Next possibility is to focus on loop

amplitudes. As was shown in [20] the loop integrand can be also in certain cases constructed

using BCFW recursion relations, it would be spectacular if the similar construction can be

applied for effective field theories.
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A General parametrization

In this appendix we will discuss a very general class of parameterizations of the U(N) sigma

model originally studied in [1], which is suited for a derivation of the stripped Feynman

rules. Within this class the field U(x) ∈ U(N) is expressed in the form

U =
∞∑

k=0

ak

(√
2
i

F
φ

)k

(A.1)

where φ = taφa , φa are the Goldstone boson fields, ta are the U(N) generators normalized

according to 〈tatb〉 = δab and ak are real coefficients. These coefficients are not completely

arbitrary, because the unitarity condition U+U = 1 implies the following constraint

n∑

k=0

akan−k(−1)k = δn,0. (A.2)

For n = 0 we get a20 = 1 and without lose of generality we can set a0 = 1. In order to

preserve the correct normalization of the kinetic term and to keep the interpretation of F

as the decay constant for the fields φa we have to fix also a1 = 1.

For n odd the relations (A.2) are satisfied automatically while for n = 2k we can solve

them for a2k and get a recurrent formula for the even coefficients expressed in terms of the

odd ones

a2k = −(−1)k

2
a2k −

k−1∑

j=1

(−1)jaja2k−j . (A.3)
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This gives up to k = 3

a2 =
1

2
a21 =

1

2
,

a4 = −1

2
a22 + a1a3 = −1

8
+ a3 ,

a6 =
1

2
a23 + a1a5 − a2a4 =

1

16
− 1

2
a3 +

1

2
a23 + a5 . (A.4)

The explicit solution of the recurrent relations (A.3) to all orders can be easily found

by means of the following trick. Let us introduce the generating function f(x) of the above

coefficients ak

f(x) =
∞∑

k=0

akx
k. (A.5)

The relations of unitarity with the initial conditions a0 = a1 = 1 are then equivalent to

f(−x)f(x) = 1, f(0) = 1, f
′
(0) = 1 (A.6)

which represents a functional equations for the generating functions f(x). Let us define

f±(x) to be the even and odd part of f(x), i.e. f±(x) = (f(x)± f(−x)) /2. From (A.6) we

get then

f+(x)
2 − f−(x)

2 = 1 (A.7)

or finally

f+(x) =
√
1 + f−(x)2. (A.8)

The formal series expansion of both sides of the last equation at x = 0 gives the solution

of the recurrent relations (A.3), i.e. the explicit expressions for a2k in terms of an infinite

number of free parameters a2k+1. The general solution of the functional equation (A.6) is

then

f(x) = f−(x) +
√
1 + f−(x)2 (A.9)

where f−(x) is arbitrary odd real function analytic for x = 0 satisfying f ′(0) = 1. The min-

imal parameter-free solution corresponds to the choice a2k+1 = 0 for k > 0, i.e. fmin
− (x) = x

and

fmin(x) = x+
√
1 + x2 (A.10)

i.e. for k ≥ 1

amin
2k =

(−1)k+1

22k−1
Ck−1, (A.11)

where

Cn =
1

n+ 1

(
2n

n

)
(A.12)

are the Catalan numbers.

Another frequently used choices are the exponential and Cayley parameterizations

corresponding to fexp(x) and fCayley(x) respectively, where

fexp(x) = ex (A.13)

fCayley(x) =
1 + (x/2)

1− (x/2)
, (A.14)
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or in terms of the coefficients ak

aexpk =
1

k!
(A.15)

aCayley
k =

1

1 + δk,0

1

2k−1
. (A.16)

These two parameterizations can be understood as minimal parameter-free variants with

respect to other two possible forms of the general solutions of the functional equation (A.6),

namely

f(x) = exp g(x) (A.17)

and

f(x) =
h(x)

h(−x)
(A.18)

where g(x) and h(x) are arbitrary real functions analytic for x = 0 for which

g(x) = −g(−x), (A.19)

g(0) = 0, g′(0) = 1 (A.20)

and

h′(0) =
1

2
h(0) 6= 0. (A.21)

As was proved in [1], forN > 2 the only parametrization from the class (A.1) admissible

also for SU(N) sigma model is the exponential one. The reason is that, under the general

axial SU(N) transformation

U(x)′ =
∞∑

k=0

ak

(√
2
i

F
φ′
)k

= UA

∞∑

k=0

ak

(√
2
i

F
φ

)k

UA (A.22)

which defines corresponding nonlinear transformation of the matrix of the Goldstone boson

fields φ =
∑N2−1

a=1 φata the SU(N) condition for the trace 〈φ′〉 = 0 is not preserved unless

ak = 1/k!. Of course, in the case N > 2 we can use different admissible parameterizations

of SU(N) which, however, do not belong to the class (A.1) (see e.g. [47]).

Let us now find the stripped Feynman rules. Using the general parametrization (A.1)

we can write the Lagrangian of the nonlinear U(N) sigma model in the expanded form

L(2) =
F 2

4
〈∂U · ∂U+〉 =

∞∑

n,m=0

vn,m〈∂φφn · ∂φφm〉. (A.23)

where we get for vn,m after some algebra (and using the unitarity condition (A.2))

vn,m = (1 + (−1)n+m)
(−i)n+m

4Fn+m

m∑

k=0

akam+n+2−k(−1)k+1(k − 1−m) (A.24)

Therefore only the terms with even number of fields survive, explicitly

L(2) =
∞∑

n=0

L(2)
2n+2 (A.25)
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where

L(2)
2n+2 =

2n∑

k=0

vk,2n−k〈∂φφk · ∂φφ2n−k〉 . (A.26)

The usual Feynman rules for the vertices can be easily obtained as a sum over permutations

V
a1,...,a2n+2

2n+2 (p1, p2, . . . , p2n+1; p2n+2) = −2n+1
∑

σ∈S2n+2

〈taσ(1) . . . taσ(2n+2)〉

×
2n∑

k=0

vk,2n−k(pσ(1) · pσ(1)+k+1) (A.27)

The stripped Feynman rule then follows in the form

V2n+2(p1, p2, . . . , p2n+1; p2n+2) = −2n+1
2n∑

k=0

2n+2∑

i=1

vk,2n−k(pi · pi+k+1) (A.28)

Inserting (A.15) into (A.24) we get after some algebra for the exponential parametrization

vexpk,2n−k =
(−1)n

2F 2n

(−1)k

(2n+ 2)!

(
2n

k

)
. (A.29)

while for the Cayley parametrization we have vCayley
2k+1,2n−2k−1 = 0 and

vCayley
2k,2n−2k =

(−1)n

2F 2n

1

22n+1
. (A.30)

Similar calculations can be made also for the minimal parametrization, but the result is

much more lengthy and we will not need it explicitly. Instead we will rewrite the Feynman

rules for the vertex V2n+2 with 2n+ 2 external legs in terms of the variables

si,j = p2i,j (A.31)

where 1 ≤ i < j ≤ 2n+ 1 and

pi,j =

j∑

k=i

pk (A.32)

Here we identify

s2n+2,2n+2+k = sk+1,2n+1 (A.33)

si,2n+2+k = sk+1,i−1. (A.34)

The scalar products (pi · pj) can be then expressed as

(pi · pi) = si.i (A.35)

(pi · pi+1) =
1

2
(si,i+1 − si,i − si+1,i+1) (A.36)

and for k ≥ 2

(pi · pi+k) =
1

2
(si,i+k − si,i+k−1 + si+1,i+k−1 − si+1,i+k). (A.37)
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Figure 12. Graphical representation of the 8-point amplitude ( B.1) with cycling tacitly assumed.

On-shell we get si,i = 0 and s1,2n+1 = 0. The stripped Feynman rule in these variables can

be written in the form valid for n ≥ 1

V2n+2(si,j) = (−1)n
(

2

F 2

)n n∑

k=0

wk,n

2n+2∑

i=1

si,i+k (A.38)

where

w0,n = (−1)n2F 2n (2v0,2n − v1,2n−1) (A.39)

wk,n = (−1)n2F 2n (2vk,2n−k − vk−1,2n+1−k − vk+1,2n−1−k) for k < n (A.40)

wn,n = (−1)n2F 2n(vn,n − vn−1,n+1). (A.41)

Within the general parametrization we get from (A.24) and (A.2) after some algebra

wk,n =
(−1)k

1 + δkn
ak+1a2n+1−k. (A.42)

For the above special cases this reads for N ≥ 1

wexp
k,n =

(−1)k

1 + δkn

1

(2n+ 2)!

(
2n+ 2

k + 1

)
(A.43)

wCayley
k,n =

(−1)k

1 + δkn

1

22n
(A.44)

wmin
0,n = wmin

2k,n = 0 (A.45)

wmin
2k+1,n =

1

1 + δ2k+1,n

(−1)n

22n
CkCn−k−1. (A.46)

Note that, for the minimal parametrization the coefficients wmin
0,n at si,i = p2i vanish, there-

fore the stripped Feynman rules for vertices do not depend on the off-shellness of the

momenta in this case. This fact has been observed already in [11] without calculating the

explicit Feynman rules.
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B More examples of amplitudes

The eight-point amplitude is

8F 6M(1, 2, 3, 4, 5, 6, 7, 8) =

=
1

2

(s1,2 + s2,3)(s1,4 + s4,7)(s5,6 + s6,7)

s1,3s5,7
+

(s1,2 + s2,3)(s1,4 + s4,5)(s6,7 + s7,8)

s1,3s6,8

− (s1,2 + s2,3)(s4,5 + s4,7 + s5,6 + s5,8 + s6,7 + s7,8)

s1,3
+ 2s1,2 +

1

2
s1,4 + cycl (B.1)

and graphically in figure 12. Finally the ten-point amplitude is given by

16F 8M(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) = −s1,2 + s2,3
s1,3

{

1

2

(s1,4 + s4,9)(s5,8 + s6,9)(s6,7 + s7,8)

s5,9s6,8
+

1

2

(s1,4 + s4,5)(s1,8 + s6,9)(s6,7 + s7,8)

s1,5s6,8

+
1

2

(s1,8 + s4,9)(s4,5 + s5,8)(s6,7 + s7,8)

s4,8s6,8
+

(s1,4 + s4,5)(s1,6 + s6,7)(s1,8 + s8,9)

s1,5s1,7

+
(s1,4 + s4,5)(s1,6 + s6,9)(s7,8 + s8,9)

s1,5s7,9
+

(s1,8 + s4,9)(s4,7 + s5,8)(s5,6 + s6,7)

s4,8s5,7

+
(s1,6+s4,9)(s4,5+s5,6)(s7,8+s8,9)

s4,6s7,9
− 1

2

(s1,4+s1,8+s4,5+s4,9+s5,8+s6,9)(s6,7+s7,8)

s6,8

− (s1,8 + s4,9)(s4,5 + s4,7 + s5,6 + s5,8 + s6,7 + s7,8)

s4,8

− (s1,4 + s1,6 + s4,5 + s4,7 + s5,6 + s6,7)(s1,8 + s8,9)

s1,7

− (s1,4 + s1,6 + s4,5 + s4,9 + s5,6 + s6,9)(s7,8 + s8,9)

s7,9

− (s1,4 + s4,5)(s1,6 + s1,8 + s6,7 + s6,9 + s7,8 + s8,9)

s1,5

− (s1,4 + s4,9)(s5,6 + s5,8 + s6,7 + s6,9 + s7,8 + s8,9)

s5,9

+ 2s1,4 + s1,6 + 2s1,8 + 2s4,5 + s4,7 + 2s4,9 + 2s5,6 + s5,8 + 2s6,7 + s6,9 + 2s7,8 + 2s8,9

}

− 1

2

(s1,2 + s1,4 + s2,3 + s2,5 + s3,4 + s4,5)(s1,6 + s1,8 + s6,7 + s6,9 + s7,8 + s8,9)

s1,5

+ 5s1,2 + 2s1,4 + cycl (B.2)

with one-to-one correspondence with figure 13.

C Relative efficiency of Feynman diagrams and Berends-Giele relations

In this appendix we review the solution of several types of recursive relations which

count the number of ordered Feynman graphs needed for the semi-on-shell amplitude

J(1, 2, . . . , n) in the nonlinear sigma model and related toy models.
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Figure 13. Graphical representation of the 10-point amplitude ( B.2) with cycling tacitly assumed.

C.1 Number of the Feynman graphs

Let us start with the case of nonlinear sigma model, i.e. with the case with infinite number

of vertices in the interaction Lagrangian. The above recursive relations, which deter-

mine the number f(2n + 1) of the (flavor ordered) Feynman graphs which contribute to

J(1, 2, . . . , 2n + 1), are tightly related to the Berends-Giele relations (4.7). Indeed, after

making the following substitution to (4.7)

J(1, 2, . . . , 2n+ 1) → f(2n+ 1),
i

p22n+2

→ 1, iV2k+1 → 0, iV2k+2 = 1, (C.1)

the individual terms on the right hand side just count the number of Feynman graphs

generated from these terms by the iterations of the recursive procedure. As a result we get

for f(2n+ 1) the following recursive relation

f(2n+ 1) =
n∑

k=1

∑

{ni}

2k+1∏

i=1

f(2ni + 1), (C.2)

with the initial condition f(1) = 1. In the above formula the sum over {ni} is constrained

by the requirement
2k+1∑

i=1

(2ni + 1) = 2n+ 1 ⇔
2k+1∑

i=1

ni = n− k (C.3)

i.e. it corresponds to the sum over all possible decompositions of ordered set of 2n + 1

momenta to non-empty clusters with odd number of momenta in each cluster (cf. (4.8) and

figure 3), i.e. more explicitly

f(2n+ 1) =
n∑

k=1

∑
∑

i ni=n−k

2k+1∏

i=1

f(2ni + 1), f(1) = 1. (C.4)
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Standard method for solution of this type of recursive relation is based on the generating

function defined as

A(x) =
∞∑

n=0

f(2n+ 1)xn. (C.5)

The recursive formula (C.4) implies the following equation for A(x)

A = 1 +
∞∑

k=1

xkA2k+1 = 1 +
xA3

1− xA2
(C.6)

or

x =
B

(B + 1)2 (2B + 1)
≡ B

g(B)
(C.7)

where B = A − 1 and g(z) = (z + 1)2(2z + 1). In this form, the problem is prepared for

the application of the Lagrange-Bürmann inversion formula

B(x) =
∞∑

n=0

xn

n!

dn−1

dzn−1
g(z)n|z=0 =

∞∑

n=1

xn

n!

dn−1

dzn−1
(z + 1)2n(2z + 1)n|z=0. (C.8)

After straightforward algebra with help of Leibnitz rule we get for n ≥ 1

f(2n+ 1) =
2n−1

n

n−1∑

k=0

(
n

k + 1

)(
2n

k

)
2−k = 2n−1

2F1

(
1− n,−2n, 2;

1

2

)
, (C.9)

where 2F1(α, β, γ; z) is the hypergeometric function. In the same way one can solve the

recurrence relations for the number of ordered Feynman graphs for the semi-on-shell ampli-

tudes J(1, 2, . . . , n) in the cases when only quadrilinear vertices (“φ4 theory”), only trilinear

vertices (“φ3 theory”) or both trilinear and quadrilinear vertices (“φ3 + φ4 theory”) are

present in the Lagrangian. In the first case, similarly to the nonlinear sigma model, only

J(1, 2, . . . , n) with n odd can be nonzero, while in the remaining two cases J(1, 2, . . . , n)

both parities of n are generally allowed. Let us denote the number of the Feynman graphs

for J(1, 2, . . . , n) as f4(n), f2(n) and f3+4(n) respectively. We get the following recurrence

relations

f4(2n+ 1) =
∑

n1+n2+n3=n−1, ni≥0

f4(2n1 + 1)f4(2n2 + 1)f4(2n3 + 1) (C.10)

f3(n) =
∑

n1+n2=n, ni≥1

f3(n1)f3(n2) (C.11)

f3+4(n) =
∑

n1+n2=n, ni≥1

f3+4(n1)f3+4(n2) (C.12)

+
∑

n1+n2+n3=n, ni≥1

f3+4(n1)f3+4(n2)f3+4(n3)

with initial conditions fj(1) = 1, j = 3, 4, 3 + 4. The corresponding generating functions

A4(x) =
∞∑

n=0

f4(2n+ 1)xn, A3,3+4(x) =
∞∑

n=1

f3,3+4(n)x
n (C.13)
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n 2 3 4 5 6 7 8 9 10 11

f3(n) 1 2 5 14 42 132 429 1 430 4 862 16 796

f3+4(n) 1 3 10 38 154 654 2 871 12 925 59 345 276 835

f4(2n+ 1) 3 12 55 273 1 428 7 752 43 263 246 675 1 430 715 8 414 640

f(2n+ 1) 4 21 126 818 5 594 39 693 289 510 2 157 150 16 348 960 125 642 146

Table 2. Number of flavor ordered Feynman graphs for J(1, . . . , n) and J(1, . . . , 2n + 1) in the

models of the type φ3, φ3 + φ4, φ4 and nonlinear sigma model.

then satisfy

A4 = 1 + xA3
4, A3 = x+A2

3, A3+4 = x+A2
3+4 +A3

3+4. (C.14)

In the second case we get

A3(x) =
1−

√
1− 4x

2
=

1

2

(
1−

∞∑

n=0

(
1/2

k

)
(−4x)k

)
(C.15)

and therefore

f3(n) =
1

n

(
2(n− 1)

n− 1

)
= Cn−1 (C.16)

where Cn are the Catalan numbers. In the first case, writing

x =
A4 − 1

A3
4

=
B4

(B4 + 1)3
(C.17)

and using the Lagrange-Bürmann inversion formula we get for n > 0

f4(2n+ 1) =
1

n!

dn−1

dzn−1
(z + 1)3n|z=0 =

1

2n+ 1

(
3n

n

)
. (C.18)

In the third case, we get from

x = A3+4

(
1−A3+4 −A2

3

)
(C.19)

and using the Lagrange-Bürmann inversion formula

f3+4(n) =
1

n!

dn−1

dzn−1

(
1

1−z−z2

)n

|z=0=
(−1)n

n!

dn−1

dzn−1

(
1

z1−z

)n( 1

z2−z

)n

|z=0

(C.20)

(where z1 = −φ, z2 = φ −1 and φ = (1 +
√
5)/2 is the Golden ratio) the result

f3+4(n) = (−1)n+1φ
1−n

n

n−1∑

k=0

(
n− 1 + k

k

)(
2(n− 1)− k

n− 1

)(
φ

1− φ

)k

=

(
− 4

φ

)n−1

Γ

(
n− 1

2

)
2F1

(
1− n, n, 2− 2n;

φ

1− φ

)
. (C.21)

The first ten members of the above sequences are illustrated in the table 2.
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C.2 Efficiency of the Berends-Giele relations

We can compare this with the number of terms generated by Berends-Giele recursion. For

the nonlinear sigma model, the number of terms on the right hand side of (4.7) is just

t(2n+ 1) =
n∑

k=1

∑

{ni}
1 =

n∑

k=1

(
n+ k

n− k

)
= F2n+1 − 1 (C.22)

where

Fn =
1√
5
(φn − (φ− 1)n) (C.23)

are the Fibonacci numbers and φ = (1 +
√
5)/2 is the Golden ratio. Therefore, using

the known results for J(1, 2, . . . , 2m + 1) with m < n at each step, we need to evaluate

altogether

b(2n+ 1) =
n∑

m=1

t(2m+ 1) =
1√
5

(
φ3φ

2n − 1

φ2 − 1
− (φ− 1)3

(φ− 1)2n − 1

(φ− 1)2 − 1

)
− n (C.24)

terms in order to calculate J(1, 2, . . . , 2n+ 1) using the Berends-Giele recursion. We show

the sequences t(2n+ 1) and b(2n+ 1) in the first and second row of table 1 respectively.

In the same way we can calculate analogous numbers tj(n) and bj(n) for j = 3, 4, 3+4,

i.e. for “φ3 theory” , “φ3 theory” or “φ3 +φ4 theory”. For instance, for t4(2n+1) we have

(see table 1 for numerical values)

t4(2n+ 1) =

(
n+ 1

2

)
, b4(2n+ 1) =

n∑

m=1

t4(2m+ 1) =
1

6
n(n+ 1)(n+ 2) . (C.25)

Note the exponential growth of t(2n+1) and b(2n+1) with increasing n in contrast to the

only polynomial growth of t4(2n+ 1) and b4(2n+ 1).

D Other example of scaling properties of the semi-on-shell amplitudes

In this appendix we prove the following scaling limit

lim
t→0

J2n+1(tp1, p2, tp3, p4, . . . , tp2r−1, tp2r, tp2r+1, . . . , p2N , tp2n+1) = 0 (D.1)

which is valid for for n > 1. Let us note, however, that

J3(tp1, tp2, tp3) = J3(p1, p2, p3) 6= 0. (D.2)

On the other hand, for N = 2 we get by direct calculation

lim
t→0

J5(tp1, tp2, tp3, p4, tp5) = lim
t→0

J5(tp1, p2, tp3, tp4, tp5) = 0 (D.3)

and we can therefore proceed by induction based on Berends-Giele relations almost exactly

as in the case of the proof of (4.17). The only modification here is that, along with

the “dangerous” contributions without blocks J(jk + 1, . . . , jk+1) where jk is even and
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jk+1−jk > 1 attached to the odd line of the vertex Vm+1(provided at least one such a block

is present, the contribution vanish either by the induction hypothesis or by (4.17)) we have

to discuss separately new type of “dangerous” terms with building block J(p2r−1, p2r, p2r+1)

(this block does not vanish due to (D.2)). The “old” dangerous terms do not in fact

contribute as was already discussed within the proof of (4.17). The “new” dangerous

terms have the following general form form

i

p22N+2

iV2k+2(p1, p2,2j1 , p2j1+1, . . . , p2jl+2,2r−2, p2r−1,2r+1, p2r+2,2jl+1
. . .

. . . , p2jk−1,2n, p2n+1,−p1,2n+1)

×J(p1)J(2, . . . , 2j1)J(p2j1+1) . . . J(2jl + 2, . . . , 2r − 2)

×J(p2r−1, p2r, p2r+1)J(2r + 2, . . . , 2jl+1) · · · J(2jk−1, . . . , 2n)J(p2n+1). (D.4)

Note that, p2r−1,2r+1 is attached to the odd line of the vertex V2k+2 and scales as

p2r−1,2r+1 → tp2r−1,2r+1 (D.5)

i.e. in the same way as the remaining momenta attached to the odd lines of the vertex.

The vertex being proportional the squared sum of the odd line momenta scales therefore as

O(t2), and the contributions of the “new” dangerous terms vanish. This finishes the proof.

E Double soft limit of Goldstone boson amplitudes

In this appendix we will discuss the properties of the on-shell scattering amplitudes of the

Goldstone bosons, which are dictated by the symmetry, namely the limits of the amplitudes

for soft external momenta. Some of these properties have been obtained in the special case

of pions by PCACmethods in the late sixties (see e.g. [48]). Here we enlarge and reformulate

them in a more general form appropriate for our purposes with stress on the proof of the

double soft limit discussed recently for pions and N = 8 supergravity in [50].

Let us assume a general theory with spontaneous symmetry breaking according to

the pattern G → H where the homogeneous space G/H is a symmetric space, i.e. the

vacuum little group H is the maximal subgroup invariant with respect to some involutive

automorphism of G (“parity”). This implies the following structure of the Lie algebra of G

[T a, T b] = ifabc
T T c

[T a, Xb] = ifabc
X Xc

[Xa, Xb] = iF abcT c. (E.1)

Here T a and Xa are the unbroken and broken generators respectively and fabc
T , fabc

X and

F abc are the structure constants. The chiral nonlinear sigma model is a special case for

which fabc
T = fabc

X = F abc = fabc.
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The invariance of the theory with respect to the group G can be expressed in terms of

the Ward identities for the correlators in the general form

ipµ〈Ṽ a
µ (p)Õ1(p1) . . . Õn(pn)〉 = −

n∑

i=1

i〈Õ1(p1) . . . δ
a
T Õi(pi + p) . . . Õn(pn)〉 (E.2)

ipµ〈Ãa
µ(p)Õ1(p1) . . . Õn(pn)〉 = −

n∑

i=1

i〈Õ1(p1) . . . δ
a
XÕi(pi + p) . . . Õn(pn)〉. (E.3)

Here V a
µ (x) and Aa

µ(x) are the Noether currents corresponding to the generators T a and Xa

respectively (in analogy with the chiral theories we will call them vector and axial currents

in what follows and to the Ward identities (E.2) and (E.3) we will refer to the vector and

axial WI) , Oi(x) are (generally composite) local operators, δaTOi(x) and δaXOi(x) are their

infinitesimal transforms with respect to the generators T a and Xa. The tilde means the

Fourier transform

Õi(p) =

∫
d4xeip·xOi(x). (E.4)

According to the Goldstone theorem the spectrum of the theory contains as many

Goldstone bosons πa as the broken generators Xa for which the currents Aa
µ(x) play the

role of the interpolating fields, i.e.

〈0|Aa
µ(0)|πb(p)〉 = ipµFδab. (E.5)

where F is the Goldstone boson decay constant. Let as denote Ma1...an(p1, . . . , pn) the on-

shell scattering amplitude of the Goldstone bosons πa1(p1), . . . , π
an(pn). In what follows

we will concentrate on the properties of Ma1...an(p1, . . . , pn) dictated by the symmetry, i.e.

those which are encoded in the WI (E.2) and (E.3).

E.1 Vector WI and symmetry with respect to H

The invariance with respect to the unbroken subgroup H implies

n∑

i=1

faaib
X Ma1...ai−1bai+1...an(p1, . . . , pn) = 0. (E.6)

This can be understood as the consequence of the vector WI of the form

− ipµ〈Ṽ a
µ (p)Ã

a1
µ1
(p1) . . . Ã

an
µn
(pn)〉 = −

n∑

i=1

i〈Ãa1
µ1
(p1) . . . δ

a
T Ã

ai
µi
(p+ pi) . . . Ã

an
µn
(pn)〉 . (E.7)

Note that the infinitesimal transformations δaV b
ν and δaAb

ν of these currents with respect

to the generator T a of the unbroken subgroup H are as follows

δaTA
b
ν = −fabc

X Ac
ν (E.8)

δaTV
b
ν = −fabc

T V c
ν . (E.9)

Because there is no pole for p → 0 in the correlator on the left hand side of (E.7), we get

in this limit
n∑

i=1

faaib〈Ãa1
µ1
(p1) . . . Ã

b
µi
(pi) . . . Ã

an
µn
(pn)〉 = 0. (E.10)
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p1, a1 pi−1, ai−1

pi+1, ai+1pn, an

pi, ai

p, a, µ

Figure 14. Graphical representation of the singular contributions to the matrix element ( E.13).

Using the LSZ formula we get according to (E.5)

〈Ãa1
µ1
(p1) . . . Ã

an
µn
(pn)〉 =

(
n∏

i=1

i

p2i
Zµi

)
Ma1...an(p1, . . . , pn) +Ra1...

µ1... (E.11)

where Zµi
= iFpiµi

and the remnant Ra1...
µ1... is regular on shell in the sense that

lim
p2i→0

(
n∏

i=1

p2i

)
Ra1...

µ1... = 0. (E.12)

which implies (E.6) for the on-shell amplitude Ma1...an(p1, . . . , pn).

E.2 Soft vector current singularity

Let us assume now the following matrix element

〈Ṽ a
µ (p)|πa1(p1) . . . π

ai(pi) . . . π
an(pn)〉. (E.13)

In what follows we will discuss the behavior of this object in the limit p → 0. On the

level of the Feynman graphs, the only singularities in the soft limit p → 0 are those which

stem from the one-Goldstone-boson-reducible graphs for which the vector current Ṽ a
µ (p) is

attached to the external Goldstone boson line. The potential singularities are therefore of

the form (see figure 14)

〈Ṽ a
µ (p)φ

aj (0)|πai(p1)〉1PI i∆
ajak((p− pi)

2)〈φak(0)|πa1(p1) . . . π̂ai(pi) . . . π
an(pn)〉1PI

(E.14)

where the subscript 1PI means one-Goldstone-boson-irreducible block, the hat means omit-

ting of the corresponding particle, φa(x) is the Goldstone boson interpolating field normal-

ized as

〈0|φa(0)|πb(p)〉 = δab (E.15)

and ∆ajak(q2) is a Goldstone boson propagator. For q2 → 0 we have

∆ajak(q2) =
δajak

q2
(
1 +O(q2)

)
. (E.16)

As a consequence of the Lorentz invariance, invariance with respect to H and LSZ formulae

we have

〈Ṽ a
µ (p)φ

aj (0)|πai(pi)〉1PI = if
aaiaj
X FV (p

2)(2pi − p)µ +O((p− pi)
2) (E.17)
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where FV (p
2) is the on-shell vector form-factor defined as18

〈πaj (p− pi)|Ṽ a
µ (p)|πai(pi)〉 = if

aaiaj
X FV (p

2)(2pi − p)µ. (E.18)

We can fix the normalization of the vector currents V a
µ in such a way that

FV (p
2) = 1 +O(p2). (E.19)

Analogously we have

〈φak(0)|πa1(p1) . . . π̂ai(pi) . . . π
an(pn)〉1PI = Ma1...ai−1akai+1...an(p1, . . . , pn) +O((p− pi)

2).

(E.20)

Using (p− pi)
2 = −2(p · pi) + p2 and putting all the ingredients together we get for p → 0

〈Ṽ a
µ (p)|πa1(p1) . . . π

ai(pi) . . . π
an(pn)〉

=
n∑

i=1

faaid
X

(2pi − p)µ
2(p · pi)

Ma1...ai−1dai+1...an(p1, . . . , pn) +O(1) . (E.21)

E.3 Axial WI and Adler zero

To illustrate the method which we will use in the next subsection, let us briefly re-

capitulate the textbook example of the derivation of the Adler zero for the amplitude

Ma1...an(p1, . . . , pn) (see e.g. [51]). Let us start with the axial WI in the form

− ipµ〈Ãa
µ(p)Ã

a1
µ1
(p1) . . . Ã

an
µn
(pn)〉 = −

n∑

i=1

i〈Ãa1
µ1
(p1) . . . δ

a
XÃai

µi
(p+ pi) . . . Ã

an
µn
(pn)〉 (E.22)

where now

δaXAb
ν = −F abcV c

ν

δaXV b
ν = −fabc

X Ac
ν . (E.23)

Applying on both sides of (E.22) the LSZ reduction to all but one axial currents, we get

the conservation of the axial current in terms of the transversality of the matrix element

of Aa
µ between the initial and final states |i〉 and 〈f |

− ipµ〈f |Ãa
µ(p)|i〉 = 0. (E.24)

On the other hand from (E.11) we get the Goldstone boson pole dominance for p2 → 0

− ipµ〈f |Ãa
µ(p)|i〉 =

1

p2
pµZµ〈f + πa(p)|i〉 − ipµRa

µ,fi (E.25)

where Zµ = iFpµ and the remnant Ra
µ,fi is regular in this limit

lim
p2→0

p2Ra
µ,fi = 0. (E.26)

18The form of the right hand side is dictated by H-invariance, Bose and crossing symmetry.
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Putting (E.24) and (E.25) together we get for the amplitude with emition of the Goldstone

boson πa(p) in the final state

〈f + πa(p)|i〉 = 1

F
pµRa

µ,fi. (E.27)

Provided the following stronger regularity condition holds

lim
p→0

pµRa
µ,fi = 0, (E.28)

we get

〈f + πa(0)|i〉 = 0, (E.29)

i.e. the Adler zero for p → 0.

An useful off-shell generalization of the formula (E.25) reads

− ipµ〈Ãa
µ(p)Ã

a1
µ1
(p1) . . . Ã

an
µn
(pn)〉 = iF 〈πa(p)|Ãa1

µ1
(p1) . . . Ã

an
µn
(pn)〉 − ipµRa,a1...

µ,µ1... (E.30)

where

lim
p2→0

p2Ra,a1...
µ,µ1... = 0. (E.31)

and using the Ward identity (E.22) and (E.23) we get

F 〈πa(p)|Ãa1
µ1
(p1) . . . Ã

an
µn
(pn)〉

= pµRa,a1...
µ,µ1... +

n∑

i=1

F aaic〈Ãa1
µ1
(p1) . . . Ṽ

c
µi
(p+ pi) . . . Ã

an
µn
(pn)〉. (E.32)

E.4 Double soft limit

Our starting point is the axial WI (E.22) rewritten in the form

−ipµ〈Ãa
µ(p)Ã

b
ν(q)Ã

a1
µ1
(p1) . . . Ã

an
µn
(pn)〉

= −i〈δaXÃb
ν(p+ q)Ãa1

µ1
(p1) . . . Ã

an
µn
(pn)〉 (E.33)

−
n∑

i=1

i〈Ãb
ν(q)Ã

a1
µ1
(p1) . . . δ

a
XÃai

µi
(p+ pi) . . . Ã

an
µn
(pn)〉 .

Multiplying then both sides by −iqν and using the axial WI (E.22) once again we get

−pµqν〈Ãa
µ(p)Ã

b
ν(q)Ã

a1
µ1
(p1) . . . Ã

an
µn
(pn)〉

= qνF abc〈Ṽ c
ν (p+ q)Ãa1

µ1
(p1) . . . Ã

an
µn
(pn)〉

+
n∑

i 6=j;i,j=1

F aajcF baid〈Ãa1
µ1
(p1) . . . Ṽ

d
µi
(pi + q) . . . Ṽ c

µj
(p+ pj) . . . Ã

an
µn
(pn)〉

+
n∑

i=1

F aaicf bcd
X 〈Ãa1

µ1
(p1) . . . Ã

d
µi
(p+ q + pi) . . . Ã

an
µn
(pn)〉. (E.34)
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The left hand side of (E.34) is symmetric with respect to the interchange of (p, a) ↔ (q, b);

its right hand side can be therefore rewritten in the manifestly symmetric form

−pµqν〈Ãa
µ(p)Ã

b
ν(q)Ã

a1
µ1
(p1) . . . Ã

an
µn
(pn)〉

= −1

2
(p− q)νF abc〈Ṽ c

ν (p+ q)Ãa1
µ1
(p1) . . . Ã

an
µn
(pn)〉

+
n∑

i 6=j;i,j=1

F aajcF baid〈Ãa1
µ1
(p1) . . . Ṽ

d
µi
(pi + q) . . . Ṽ c

µj
(p+ pj) . . . Ã

an
µn
(pn)〉

+
1

2

n∑

i=1

(
F aaicf bcd

X + F baicfacd
X

)
〈Ãa1

µ1
(p1) . . . Ã

d
µi
(p+ q + pi) . . . Ã

an
µn
(pn)〉. (E.35)

On the other hand, the LSZ formula gives for p2, q2 → 0

〈Ãa
µ(p)Ã

b
ν(q)Ã

a1
µ1
(p1) . . . Ã

an
µn
(pn)〉 =

∑

c,d

i

p2
〈0|Aa

µ|πc(p)〉 i

q2
〈0|Ab

ν |πd(q)〉 (E.36)

×〈πc(p)πd(q)|Ãa1
µ1
(p1) . . . Ã

an
µn
(pn)〉+Rab,...

µν

where the regular remnant satisfies

lim
p2,q2→0

p2q2Rab,...
µν = 0. (E.37)

Therefore, using (E.5) we get

− pµqν〈Ãa
µ(p)Ã

b
ν(q)Ã

a1
µ1
(p1) . . . Ã

an
µn
(pn)〉

= F 2〈πa(p)πb(q)|Ãa1
µ1
(p1) . . . Ã

an
µn
(pn)〉 − pµqνRab,...

µν . (E.38)

On the other hand applying the LSZ reduction to (E.34), (E.35) (let us note that only the

first terms on the right hand side has the appropriate poles at p2, q2 → 0) we get

pµqν〈Ãa
µ(p)Ã

b
ν(q)|πa1(p1) . . . π

d(pi) . . . π
an(pn)〉

= qνF abc〈Ṽ c
ν (p+ q)|πa1(p1) . . . π

d(pi) . . . π
an(pn)〉

= pµF bac〈Ṽ c
µ (p+ q)|πa1(p1) . . . π

d(pi) . . . π
an(pn)〉

= −1

2
F abc(p− q)µ〈Ṽ c

µ (p+ q)|πa1(p1) . . . π
d(pi) . . . π

an(pn)〉 (E.39)

and as a consequence of LSZ reduction of (E.38)

F 2〈πa(p)πb(q)|πa1(p1) . . . π
ai(pi) . . . π

an(pn)〉 (E.40)

= −1

2
F abc(p− q)µ〈Ṽ c

µ (p+ q)|πa1(p1) . . . π
d(pi) . . . π

an(pn)〉+ pµqνRab,...
µν |LSZ.
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According to (E.21) we have for p, q → 0

−1

2
F abc(p− q)µ〈Ṽ c

µ (p+ q)|πa1(p1) . . . π
d(pi) . . . π

an(pn)〉

= −1

2

n∑

i=1

F abcf caid
X

(2pi − p− q) · (p− q)

2((p+ q) · pi)
〈πa1(p1) . . . π

d(pi) . . . π
an(pn)〉+O(p− q)

= −1

2

n∑

i=1

F abcf caid
X

pi · (p− q)

pi · (p+ q)
〈πa1(p1) . . . π

d(pi) . . . π
an(pn)〉

+O

(
p− q,

p2 − q2

pi · (p+ q)

)
(E.41)

For p2 = q2 = 0 we finally get

F 2
0 〈πa(p)πb(q)|πa1(p1) . . . π

ai(pi) . . . π
an(pn)〉

= −1

2

n∑

i=1

F abcf caid
X

pi · (p− q)

pi · (p+ q)
〈πa1(p1) . . . π

d(pi) . . . π
an(pn)〉

+pµqνRab,...
µν |LSZ +O (p− q) . (E.42)

Provided condition stronger than (E.37) holds, namely limp,q→0 p
µqνRab,...

µν |LSZ = 0

(cf. (E.28)), we get as a result

lim
t→0

F 2
0 〈πa(tp)πb(tq)|πa1(p1) . . . π

ai(pi) . . . π
an(pn)〉

= −1

2

n∑

i=1

F abcf caid
X

pi · (p− q)

pi · (p+ q)
〈πa1(p1) . . . π

d(pi) . . . π
an(pn)〉. (E.43)

For the chiral nonlinear sigma model corresponding to the symmetry breaking G×G → G,

we have F abc = fabc
X = fabc

T and we get the formula (5.3) as a special case.
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