
     

 

         Charles University in Prague 

                                         Faculty of Mathematics and Physics 

                                                   Mathematical Institute 

 

 

 

 

 

 

 

    Gerbes in Geometry and Physics 
          Habilitation Thesis 

 

                                                      
                                                        Branislav Jurčo 

 

 

 

 

 

 

                                                     Prague, February 2015 

 

 

 

 



GERBES IN GEOMETRY AND PHYSICS

BRANISLAV JUR�O
MATHEMATICAL INSTITUTE, FACULTY OF MATHEMATICS AND PHYSICS

CHARLES UNIVERSITY IN PRAGUE

Contents

1. Introduction 1
Acknowledgments 3
2. Preliminaries 3
2.1. Abelian gerbes 3
2.2. Abelian bundle gerbes 6
2.3. Global worldsheet anomalies of D-branes 7
2.4. Higher crossed modules and simplicial groups 7
2.5. Simplicial principal bundles 10
2.6. Nerves, linear orders 12
2.7. Classifying spaces, classifying topoi 13
2.8. Noncommutative line bundles 14
3. Some results 16
3.1. Nonabelian bundle gerbes 16
3.2. Twisted nonabelian gerbes 19
3.3. Results on global worldsheet anomalies of M5-branes 21
3.4. Noanbelian bundle 2-gerbes 21
3.5. Di�erentiation of classifying spaces WG 25
3.6. Classifying topoi of topological bicategories 26
3.7. Noncommutative gerbes and quantization of twisted Poisson structures 27
4. Conclusions 30
References 31
5. Appendix; Papers [P1] - [P7] 34

1. Introduction

The thesis consists of a series of seven papers related to higher gauge theories:

[P1] P. Aschieri, B. Jur£o, Gerbes, M5-Brane Anomalies and E8 Gauge The-
ory, JHEP 0410 068 (2004)

[P2] P. Aschieri, L. Cantini, B. Jur£o, Nonabelian bundle gerbes, their dif-
ferential geometry and gauge theory, Commun. Math. Phys. 254, 367-400
(2005)

Date: February 2015.
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[P3] I. Bakovi¢, B. Jur£o, The classifying topos of a topological bicategory,
Homol. Homotopy Appl. 12(1), 279-300 (2010)
[P4] P. Aschieri, I. Bakovi¢, B. Jur£o, P. Schupp, Noncommutative gerbes and
deformation quantization, J.Geom.Phys. 60, 1754-1761 (2010)
[P5] B. Jur£o, Nonabelian bundle 2-gerbes, Int. J. Geom. Meth. Mod. Phys.
8(1), 49-78 (2011)
[P6] B. Jur£o, Crossed module bundle gerbes; classi�cation, string group and
di�erential geometry, Int. J. Geom. Meth. Mod. Phys. 8(5), 1079-1095,
(2011)
[P7] B. Jur£o, From simplicial Lie algebras and hypercrossed complexes to
di�erential graded Lie algebras via 1-jets, J. Geom. Phys. 62, 2389-2400
(2012)

Paper [P2] is on nonabelian bundle gerbes and their geometry in the smooth setting, paper
[P1] discusses their twistings by abelian 2-gerbes and relation to anomaly cancellation on
M5-branes. Paper [P6] concerns with nonabelian bundle gerbes and their classi�cation based
on their simplicial description and the relation to string structures. Paper [P4] introduces
noncommutative gerbes as deformation quantization of abelian gerbes and explains in which
sense these are true noanbelian gerbes. Paper [P5] is devoted to nonabelian bundle 2-gebres,
simultaneously generalizing nonabelian bundle gerbes and their twistings. Quantization of
twisted Poisson stuctures is a nice example. Nonabelian gerbes can further be generalized to
bicategory bundles, paper [P3] describes the corresponding classifying topos. The simplicial
point of view is pursued in paper [P7] leading to the �rst step in undestanding connective
structures on more general nonabelian n-gerbes.

The thesis is organized as follows. In the �rst part, Section 2, we provide some basic notions
and facts relevant to the subject of the thesis. This is done in a rather informal manner; though
restraining from formal de�nitions, propositions and theorem, we still tried to give a concise
exposition at a reasonable level of rigor. More details can be found in the above mentioned
papers or in cited references.

Results are comprised in the second part, Section 3. In order to keep this text within a
reasonable length, we include only some results. In order to make clear what the contributions
of the thesis are, we used in this part the formal style of de�nitions, propositions and theorems.
Again, more details can be found in the above listed papers [P1]-[P7], which are appended.

The purpose of Sections 2 and 3 is to give a �avor of the used methods and of the results
of included papers. References in these sections are far from complete. A more complete list
of references can be found in [P1]-[P7]. Also, since these papers were written and published,
many highly relevant papers on the subject of the theses appeared. We apologize to authors
of these for not trying to include them.

Papers [P1]-[P7] are included as an appendix.
Let us �nish this introduction with a following remark. A gerbe, see e.g. [37, 14, 16, 15,

21, 62], in its full generality is de�ned as �a stack in groupoids, which is locally non-empty
and locally connected�. In this spirit, for 2-gerbes [15, 16] (more generally, for n-gerbes), we
would have to use language of higher stacks and groupoids. Although, all these are intriguing
mathematical structures, in this thesis we try to avoid the language of higher categories.
Instead we make an attempt, at least for the part of it, to stay as close to the language of
classical di�erential geometry. We believe that such formulation can be the useful one, when
considering possible applications in physics.
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2. Preliminaries

Higher gauge theory is a generalization of gauge theory - such as the theory of principal and
vector bundles, connections and the parallel transport - from point particles to the higher-
dimensional extended objects. In this context, an abelian gerbe can be viewed as the next level
after complex line bundles in realizing integral cohomology classes on a manifold. Complex line
bundles are classi�ed (in topology) by their Chern classes, which are integral 2-cohomology
classes. An abelian bundle gerbe gives geometric meaning to integral 3-cohomology class,
[64, 21]. As in the case of line bundles, abelian bundle gerbes can be described in terms of
local �transition functions�. However, now the �transition functions� are not functions but local
complex line bundles satisfying cocycle conditions for tensor products over triple overlaps of
open sets. A more global point of view is to think of an abelian gerbe as a principal PU(H)
bundle. Here PU(H) is the projective unitary group in a complex Hilbert space H. In
contrast to line bundles, gerbes are generically in�nite-dimensional objects; only in the case
of a torsion 3-cohomology class one can choose H to be �nite-dimensional. Both of the above
realizations of abelian gerbes arise in a natural way in quantum �eld theory. For instance,
in [23, 24, 61] they are related to chiral anomalies and in string theory; and, for instance, in
[13, 12, 59] they appear in classi�cation of D-branes in a nontrivial background B-�eld. For
a discussion of relevance of abelian gerbes in in WZW model, TQFT and strings see, e.g.,
[35, 69, 22, 43], respectively. Abelian (bundle) gerbes are not only a realization of the 3rd
cohomology class (the Dixmier-Douady class). One can add geometric structures, a gerbe
connection, and (local family of) 2-forms (curving). A gerbe with connection and curving
(modulo equivalencies) is a Deligne class on the base manifold (for instance, on a D-brane
world-volume); its top form part, the 3-form curvature, gives the Dixmier-Douady class. Here
we will restrict ourselves only to a very brief description of only few results concerning gerbes
and higher gauge theories, which are directly related to the subject of the thesis. Also, we shall
explicitly mention only the literature, which has a direct relationship to the results comprised
in papers [P1-P7] and presented in the thesis. For introduction on the higher gauge theories,
gerbes, abelian bundle gerbes we recommend, e.g., [7, 21, 62, 65, 45], respectively. Finally, we
should also mention that nonabelian gerbes arose in the context of nonabelian cohomology,
which goes back to Grothendieck [30, 37, 14] (see [16] or [62] for a concise introduction). The
(synthetic) di�erential geometry of nonabelian gerbes � from the algebraic geometry point of
view � is discussed thoroughly in the work of Breen and Messing [17].

Below in this section, we collect some prerequisites necessary for introducing various gen-
eralizations of abelian gebres in Sec. 3.

2.1. Abelian gerbes. Line bundles can be described, in a well known manner, using tran-
sition functions. Consider a cover {Oi} of the manifold M , then a line bundle is given by a
set of U(1) valued smooth transition functions {λij} that satisfy λij = λ−1

ji and that on triple
overlaps Oijk = Oi ∩Oj ∩Ok satisfy the cocycle condition

(2.1.1) λijλjk = λik .
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In the same spirit, a connection on a line bundle is a set of one-forms {αi} on Oi such that
on double overlaps Oij = Oi ∩Oj ,

(2.1.2) αi = αj + λijdλ
−1
ij .

Actually, we are interested only in isomorphism classes of line bundles with connection. Indeed,
all physical observables are obtained from Wilson loops, and these cannot distinguish between
a bundle with connection (λij , αi) and an equivalent one (λ′ij , α

′
i), that by de�nition satis�es

(2.1.3) λ′ij = λ̃iλij λ̃
−1
j , α′i = αi + λ̃idλ̃

−1
i ,

where λ̃i are U(1) valued smooth functions on Oi. We are thus led to consider the class [λij , αi]
of all couples (λij , αi) that satisfy (2.1.2), and where (λij , αi) ∼ (λ′ij , α

′
i) i� (2.1.3) holds. The

space of all these classes (called Deligne classes) is the �rst Deligne cohomology group
H1(M,D1).

Similarly, we can consider the second Deligne class [λijk, αij , βi] ∈ H2(M,D2), where
now λijk : Oijk → U(1) is, in the multiplicative sense, totally antisymmetric in its indices,
λijk = λ−1

jik = λkij etc., and satis�es the cocycle condition on quadruple overlaps Oijkl =
Oi ∩Oj ∩Ok ∩Ol
(2.1.4) λijkλ

−1
jklλiklλ

−1
ijl = 1 .

The connection one-form {αij} satis�es on Oijk
(2.1.5) αij + αjk + αki + λijkdλ

−1
ijk = 0

and the curving two-form {βi} satis�es on Oij
(2.1.6) βi − βj + dαij = 0 .

The triple (λijk, αij , βi) gives the zero Deligne class if

(2.1.7) (λijk, αij , βi) = D(λ̃ij , α̃i) ,

where D is the Deligne coboundary operator, and λ̃ij : Oij → U(1) are smooth functions and
α̃i are smooth one-forms on Oi. Explicitly (2.1.7) reads1

λijk = λ̃ikλ̃
−1
jk λ̃

−1
ij ,(2.1.8)

αij = −α̃i + α̃j + λ̃ijdλ̃
−1
ij ,(2.1.9)

βi = dα̃i .(2.1.10)

There is also a geometric structure associated with the triple (λijk, αij , βi), it is that of
(abelian) gerbe [21] or bundle gerbe [64] (with a connection and curving).

Equivalence classes of gerbes with connection and curving are in 1-1 correspondence with
Deligne classes.

With abuse of language we occasionally say that [G] = [λijk, αij , βi] is the equivalence
class of the gerbe G = (λijk, αij , βi). As before, gauge invariant (physical) quantities can be
obtained from the holonomy (Wilson surface), and this depends only on the equivalence class
of the gerbe.

Gerbes are also called 1-gerbes in order to distinguish them from 2-gerbes and higher gerbes.
In the same way as abelian 1-gerbes were described above, we can de�ne abelian n− 1-gerbes

1The Deligne coboundary operator is D = ±δ+ d, the sign factor in front of the �ech coboundary operator
depends on the degree of the form D acts on; it insures D2 = 0.
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with curvings using Deligne cohomology classes in Hn(M,Dn) [21]. Correspondingly, we have
characteristic classes in Hn+1(M,Z). The case n = 1 gives equivalence classes of line bundles
with connections, and in this case the characteristic class is the Chern class of the line bundle.

An important example of a 1-gerbe is a torsion gerbe, i.e. a gerbe with a characteristic class
being a torsion class (let say an n-torsion) in H3(M,Z). Such a torsion gerbe can be obtained
form a lifting gerbe, i.e. from a gerbe that describes the obstruction of lifting a PU(n) bundle
to a U(n) one. We now describe this lifting gerbe and the associated twisted U(n)-bundle. Let
P →M be a PU(n) bundle and consider the exact sequence U(1)→ U(n)

π→PU(n). Consider
an open cover {Uα} of PU(n) with sections sα : Uα ⊂ PU(n)→ U(n). We can always choose
a good cover {Oi} of M such that each transition function gij of P →M has image contained
in some Uα. Let Gij = sα(gij), these are U(n)-valued functions and satisfy:

(2.1.11) GikG
−1
jk G

−1
ij = λijk ,

where λijk is U(1)-valued as is easily seen by applying the projection π and using the cocycle
relation for the gij transition functions. We say that Gij are the transition functions for a
twisted U(n) bundle and that the lifting gerbe is de�ned by the twist λijk. It is indeed easy
to check that the λijk satisfy the cocycle condition (2.1.4) on quadruple overlaps Oijkl. A
connection for a twisted bundle is a set of Lie(U(n))-valued one-forms Ai such that αij ≡
−Ai +GijAjG

−1
ij +GijdG

−1
ij is a connection for the corresponding gerbe (in particular π∗A is

a connection on the initial PU(n) bundle P ).2 We restate this construction this way: consider
the couple (Gij , Ai), and de�ne

D(Gij , Ai) := (GikG
−1
jk G

−1
ij ,−Ai +GijAjG

−1
ij +GijdG

−1
ij ,

1
nTrdAi) .(2.1.12)

If this triple has abelian entries then it de�nes a gerbe, and (Gij , Ai) is called a twisted
bundle. We also say that the twisted bundle (Gij , Ai) is twisted by the gerbe D(Gij , Ai).
Notice that the nonabelian D operation becomes the abelian Deligne coboundary operator D
if n = 1 in U(n) [cf.(2.1.7)].

Following the above discussion of 1-gerbes, for the purposes of this thesis, we understand
under an abelian 2-gerbe with curvings onM a quadruple (λijkl, αijk, βij , γi). Here λijkl :

Oijkl ≡ Oi ∩Oj ∩Ok ∩Ol → U(1) is a �ech 3-cocycle

(2.1.13) λijklλijlmλjklm = λiklmλijkm on Oijklm ,

and λijkl is totally antisymmetric, λijkl = λ−1
jikl etc. Next, αijk ∈ Ω1(Oijk), βij ∈ Ω2(Oij) and

γi ∈ Ω3(Oi) are a collection of local one, two, and three-forms totally antisymmetric in their
respective indices and subject to the following relations:

(2.1.14) αijk + αikl − αijl − αjkl = λijkldλ
−1
ijkl on Oijk ,

(2.1.15) βij + βjk − βik = dαijk on Oijk ,

(2.1.16) γi − γj = dβij on Oij .

The equivalence class of the 2-gerbe with curvings (λijkl, αijk, βij , γi) is given by the Deligne
class [λijkl, αijk, βij , γi], where the quadruple (λijkl, αijk, βij , γi) represents the zero Deligne

2Here we use the notation Lie(G) for the Lie algebra g of a Lie group G.
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class if it is of the form

λijkl = λ̃−1
ijl λ̃

−1
jklλ̃ijkλ̃ikl ,(2.1.17)

αijk = α̃ij + α̃jk + α̃ki + λ̃ijkdλ̃
−1
ijk ,(2.1.18)

βij = β̃i − β̃j + dα̃ij ,(2.1.19)

γi = dβ̃i .(2.1.20)

The above equations are summarized in the expression

(2.1.21) (λijkl, αijk, βij , γi) = D(λ̃ijk, α̃ij , β̃i) ,

whereD is the Deligne coboundary operator, λ̃ijk are U(1)-valued functions on Oijk and α̃ij , β̃i
are respectively 1- and 2-forms on Oij and on Oi.

The Deligne class [λijkl, αijk, βij , γi] ∈ H3(M,D3) (actually the cocycle {λijkl}) de�nes
an integral class ξ ∈ H4(M,Z); this is the characteristic class of the 2-gerbe. Moreover,
[λijkl, αijk, βij , γi] de�nes a closed integral 4-form

(2.1.22)
1

2πi
G =

1

2πi
dγi .

The 4-form G is a representative of ξR: the image of the integral class ξ in real de Rham
cohomology.

2.2. Abelian bundle gerbes. Here we describe the construction of M. Murray [64], which
identi�es the geometric objects realizing the classes in H3(X,Z) in a similar spirit as line
bundles realize classes in H3(X,Z) (see also, e.g., [65, 42, 45]). Let Y be a manifold. Consider
a surjective submersion ℘ : Y → X, which in particular admits local sections. Let {Oi}
be the corresponding covering of X with local sections σi : Oi → Y , i.e., ℘σi = id. We also
consider Y [n] = Y ×XY ×XY . . .×XY , the n-fold �bre product of Y , i.e., Y [n] := {(y1, . . . yn) ∈
Y n | ℘(y1) = ℘(y2) = . . . ℘(yn)}. Given a (complex) line bundle L over Y [2] we denote by
L12 = p∗12(L) the line bundle on Y [3] obtained as a pullback of L under p12 : Y [3] → Y [2] (p12

is the identity on its �rst two arguments); similarly for L13 and L23. Consider a quadruple
(L, Y,X, `), where L is a line bundle, Y → X a surjective submersion and ` an isomorphism
of line bundles ` : L12L23 → L13. We now consider bundles L12, L23, L13, L24, L34, L14 on
Y [4] relative to the projections p12 : Y [4] → Y [2] etc. and also the line bundle isomorphisms
`123, `124, `123, `234 induced by projections p123 : Y [4] → Y [3] etc.

The quadruple G = (L, Y,X, `), where Y → X is a surjective submersion, L is a line
bundle over Y [2], and ` : L12L23 → L13 an isomorphism of line bundles over Y [3], is called an
(abelian) bundle gerbe if ` satis�es the cocycle condition (associativity) on Y [4]

(2.2.1)

L12L23L34
`234−−−−→ L12L24

`123

y y `124

L13L34
`134−−−−→ L14 .

Let us also mention that there exists a proper notion of an isomorphism (the so-called
stable isomorphism [66]) for abelian bundle gerbes, such that the categories of abelian
bundle gerbes and of �ech 2-cocycles (2.1.4) are equivalent.
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Further, an abelian bundle 1-gerbe can be equipped with a connection and a curving, so
that locally it becomes represented by the full Deligne 2-cocycle. Without going into details,
we just notice that the connection on an abelian 1-gerbe G can be de�ned as a connection
on the line bundle L ful�lling a more or less obvious compatibility condition on Y [3]. Also,
the above described twisted principal bundles with connections can be cast in the language of
bundle gerbes (cf. bundle gerbe modules of ([12]).

Abelian bundle 2-gerbes have been introduced in [25] and discussed in detail in [80].

2.3. Global worldsheet anomalies of D-branes. Here we brie�y describe the so-called
in�ow mechanism, as it applies to a stack of n D-branes and the corresponding Freed-
Witten anomaly [34], [22]. The method described here will be applied later in the thesis
to the case of M5-branes, in which case 1-gerbes will be replaced by 2-gerbes and principal
bundles by nonabelian gerbes.

In string theory, the background B-�eld is naturally interpreted as a 1-gerbe with connection
and curving on the spacetime manifold M [22, 49]. Let [λijk, αij , βi] be the corresponding
Deligne class and H the associated 3-form. Further, let Q be be a cycle embedded in the
spacetime manifold M , on which cycle open (super)strings can end (i.e., we have D-branes
wrapping Q) and [ωijk, 0, 0] be the Deligne class associated with the second Stiefel-Whitney
class ω2 ∈ H2(Q,Z2) of the normal bundle of Q (or, which is the same, with its image W3 in
H3
tors(Q,Z)). It can be shown [22] that the general condition for a stack of n D-branes to be

wrapping the cycle Q in M is the existence of a twisted bundle (Gij , Ai) (2.1.12) on Q such
that

(2.3.1) [λijk, αij , βi]|Q − [ωijk, 0, 0] = [D(Gij , Ai)] + [1, 0, BQ] ,

where BQ is a 2-form on Q. In particular, for the characteristic classes of these gerbes we
have (cf. [34]),

(2.3.2) [H]|Q −W3 = ξ[D(Gij ,Ai)] ,

where [H]|Q ≡ ξG|Q is the characteristic class of the restriction to Q of the gerbe G =

(λijk, αij , βi) associated with the 3-form H, and W3 = β(ω2) is the obstruction for having
Spinc structure on the normal bundle of Q Here β is the Bockstein homomorphism associated
with the short exact sequence Z ×2→ Z→ Z2 .

2.4. Higher crossed modules and simplicial groups. Hypercrossed complexes of groups
or hypergroupoids, in particular crossed modules 2-crossed modules, will take over the role of
groups in generalizing principal bundles to bundle gerbes and their higher analogues. They
relate to maybe more familiar simplicial group (here we assume familiarity with the basic
de�nitions of the theory of simplicial objects [58]) via a nonabelian version of the famous
Dold-Kan correspondence. We brie�y sketch the relation between simplicial groups and hy-
percrossed complexes of groups. The basic idea comes from [27] and is further developed and
formalized in [26]. We follow [27, 67, 33].

Although the above mentioned references3 work with simplicial sets, the constructions and
statements relevant relevant for our purposes can be straightforwardly formulated in the con-
text of simplicial manifolds. Let G be a simplicial Lie group. We denote the corresponding
face and degeneracy mappings ∂i and si, respectively.

3and also our basic reference regarding simplicial objects [58] as well as other useful references [29, 39]
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The Moore complex NG of G is the Lie group chain complex (NG, δ) with

NGn :=

n⋂
i=1

ker ∂i

and the di�erentials δn : NGn → NGn−1 induced from the respective 0th face maps ∂0 by
restriction. It is a normal complex, i.e. δnNGn is a normal subgroup of NGn−1.4. Of course,
NG0 = G0 The Moore complex NG is said to be of length k if NGn is trivial for n > k.5

The Moore complex NG carries a structure of a Lie hypercrossed complex structure,
form which it can be reconstructed [27, 26]. For a simplicial Lie group G,

Gn ∼= (. . . (NGn o s0NGn−1)) o · · ·o sn−1 . . . s0NG1)(2.4.1)

The bracketing an ordering of the terms should be clear from the �rst few terms of the
sequence:

G1
∼= NG1 o s0NG0

G2
∼= (NG2 o s0NG1) o (s1NG1 o s1s0NG0)

G3
∼= ((NG3 o s0NG2) o (s1NG2 o s1s0NG1))o

((s2NG2 o s2s0NG1) o (s2s1NG1 o s2s1s0NG0)).(2.4.2)

We are not going to spell out the rather complicated de�nition of a hypercrossed complex [26].
Instead, we give some examples.

A 1-hypercrossed complex of Lie groups is the same thing as a Lie crossed module or a
Lie 2-group [5, 8]; Let H and D be two Lie groups. We say that H is a crossed D-module if
there is a Lie group morphism δ1 : H → D and a smooth action of D on H (d, h) 7→ dh such
that

δ1(h)h′ = hh′h−1 (Pei�er condition)
for h, h′ ∈ H, and

δ1(dh) = dδ1(h)d−1

for h ∈ H, d ∈ D hold true.
We will use the notation H δ1→ D or H → D for a crossed module.
Starting from a Lie crossed module H → D we can build up the corresponding simplicial

Lie group. Explicitly, cf. Proposition 2.4.1,

G0 = D, G1 = (H oD), G2 = (H o (H oD)), etc.

The construction can be interpreted as the internal nerve of the associated internal category
in the category of Lie groups (a strict Lie 2-group). A Lie 2-hypercrossed complex is the same
thing as a Lie 2-crossed module [27]; A Lie 2-crossed module is a complex of Lie groups

(2.4.3) H
δ2→ D

δ1→ K

together with smooth left actions by automorphisms of K on H and D (and on K by conju-
gation), and the Pei�er pairing, which is an smooth equivariant map { , } : D × D → H,
i.e., k{d1, d2} = {kd1,

kd2} such that:

4It is a normal subgroup of Gn−1 too.
5The objects of the full subcategory of simplicial groups with Moore complex of length k are also called

k-hypergroupoids[38].
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i) (2.4.3) is a complex of K-modules, i.e., δ2 and δ1 are K-equivariant and δ2δ1(h) = 1 for
h ∈ H,

ii) d1d2d
−1
1 = δ2{d1, d2} δ1(d1)d2, for d1, d2 ∈ D,

iii) h1h2h
−1
1 h−1

2 = {δ2h1, δ2h2}, for h1, h2 ∈ H,
iv) {d1d2, d3} = {d1, d2d3d

−1
2 } δ1(d1){d2, d3}, for d1, d2, d3 ∈ D,

v) {d1, d2d3} = d1d2d
−1
1 {d1, d3}{d1, d2}, for d1, d2, d3 ∈ D,

vi) {δ2(h), d}{d, δ2(h)} = hδ1(d)(h−1), for d ∈ D,h ∈ H,

wherein the notation kd and kh for left actions of the element k ∈ K on elements d ∈ D and
h ∈ H has been used.

The corresponding simplicial Lie group is given explicitly by, cf. 2.4.1,

G0 = K, G1 = (D oK), G2 = (H oD) o (D oK)),(2.4.4)

G3 = (H o (H oD)) o ((H oD) o (D oK)), etc.(2.4.5)

Let us note, that there are obvious notions of a morphisms for Lie crossed modules and Lie
2-crossed modules.

We refer the interested reader to [26] for a thorough discussion of hypercrossed complexes
of groups and their relation to simplicial groups.

Continuing on general discussion, at each level n, there is an lexicographically ordered set
S(n) of 2n sets, which de�nes the compositions of the degeneracy maps appearing in the
decomposition of Gn. Explicitly for S(n) we have:

{∅ < {0} < {1} < {1, 0} < {2} < {2, 0} < {2, 1} < {2, 1, 0} < . . . < {n−1, . . . , 1} < {n−1, . . . , 0}}.

The important role in the theory of hypercrossed complexes is played by the actions G0 ×
NGn → NGn de�ned by

g0 × gn 7→ g0gn : (sn−1 . . . s0g0)gn(sn−1 . . . s0g0)−1

and the so called Pei�er pairings. In order to de�ne these, we will use the multi-indices like
α and β from

⋃
n S(n) to write sα for products of degeneracy maps

s0, s1, s1s0, s2, s2s0, s2s1, s2s1s0, . . .

In particular, for g ∈ NGn−]α we have sαg ∈ Gn. For each n consider the set P (n) of pairs
(α, β) such that ∅ < α < β and α ∩ β = ∅, where α ∩ β is the set of indices belonging to both
α and β.

The following de�nition will be needed later when describing di�erential graded Li algebras
arising as di�erentiation of simplicial Lie groups.

The Pei�er pairing (or lifting) Fα,β(g, h) ∈ NGn for g ∈ NGn−]α, h ∈ NGn−]β and
(α, β) ∈ P (n) is de�ned by

Fα,β(g, h) = pn(sα(g)sβ(h)sα(g)−1sβ(h)−1),

where pn is the projection to NGn. For the projector pn, we have pn = p1
n . . . p

n
n with pin(g) =

gsi−1∂ig
−1.

For us, the relevant Pei�er pairings at each level n will be those de�ned for pairs (α, β) ∈
P (n) such that α ∪ β = {0, . . . n}. We shall denote the set of such pairs P̄ (n).

For a simplicial Lie algebra g, we have the corresponding Moore complex Ng of Lie algebras,
which carries a structure of a hypercrossed complex of Lie algebras, cf. [1]. All the de�nitions
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and statements of this section have, of course, their in�nitesimal counterparts. Since these are
obvious, we shall not formulate them explicitly.

As shown by Quillen [70], there is an adjunction between simplicial Lie algebras and dg-Lie
algebras. The part of the adjunction going from simplicial Lie algebras to dg-Lie algebras acts
on the underlying simplicial vector spaces as the Moore complex functor N .

2.5. Simplicial principal bundles. Let G be a simplicial Lie group and X a simplicial
manifold. In this paper we use the name principal G-bundle for a twisted Cartesian product.
Therefore, we start with de�ning twisting functions. Again, we will denote by ∂i and si the
corresponding face and degeneracy maps. We follow [58].6

For a smooth function τ : Xn → Gn−1 to be a twisting, the following conditions should be
ful�lled:

∂0τ(x)τ(∂0x) = τ(∂1x),

∂iτ(x) = τ(∂i+1x) for i > 0,

siτ(x) = τ(si+1x) for i ≥ 0,

τ(s0x) = en for x ∈ Xn.

The fundamental role is played by twisted Cartesian products: Let τ be a twisting
function. A twisted Cartesian product P (τ) = G×τ X (alternatively a principal G-bundle,
or simply G-bundle, P → X) is the simplicial manifold with simplices

P (τ)n = Gn ×Xn

and with the following face and degeneracy maps

∂i(g, x) = (∂ig, ∂ix) for i > 0,

∂0(g, x) = (∂0g.τ(x), ∂0x),

si(g, x) = (sig, six) for i ≥ 0.

The principal (left) G-action

Gn × P (τ)n → P (τ)n, g′n × (gn, xn) 7→ (g′ngn, xn)

and the projection
πn : Pn → Xn, (gn, xn) 7→ xn

are smooth simplicial maps.
We call two twistings τ ′ and τ equivalent if there exists a smooth map ψ : X → G such

that
∂0ψ(x).τ ′(x) = τ(x).ψ(∂0x),

∂iψ(x) = ψ(∂ix) if i > 0,

siψ(x) = ψ(six) if i ≥ 0.

In particular a twisting or the corresponding G-bundle P (τ) is trivial i�

τ(x) = ∂0ψ(x)−1.ψ(∂0x),

with ψ as above.
As with ordinary bundles, simplicial principal bundles can be pulled back and their structure

groups can be changed using simplicial Lie group morphisms. Twistings transform under these
operations in an obvious way.

6Again, passing from sets to manifolds is straightforward.
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There is a canonical construction of the classifying space WG and of the universal G-
bundle WG. The classifying space WG is de�ned as follows. WG0 has one element ∗ and
WGn = Gn−1 ×Gn−2 × . . .×G0 for n > 0. Face and degeneracy maps are

s0(∗) = e0, ∂i(g0) = ∗ for i = 0 or 1

and
∂0(gn, . . . g0) = (gn−1, . . . , g0),

∂i+1(gn, . . . , g0) = (∂ign, . . . , ∂1gn−i+1, ∂0gn−i.gn−i−1, gn−i−2, . . . , g0),

s0(gn−1, . . . , g0) = (en, gn−1, . . . , g0),

si+1(gn−1, . . . , g0) = (sign−1, . . . , s0gn−i, en−i, gn−i−1, . . . , g0),

for n > 0. With the choice of a twisting given by

τ(gn−1, . . . , g0) = gn−1

we have the universal G-principal bundle

WG = G×τ WG.

The relation between twistings and simplicial maps X →WG is the following one.
The map fτ : X →WG given by

x 7→ ∗ for x ∈ X0

and
x 7→ (τ(x), τ(∂0x), . . . , τ(∂i0x), . . . , τ(∂n−1

0 x)) for x ∈ Xn, n > 0

is a smooth simplicial map.
Vice versa, a smooth simplicial map f : X →WG, given by

x 7→ ∗ for x ∈ X0

and
x 7→ (g

(n)
n−1(x), . . . , g

(n)
0 (x)) for x ∈ Xn, n > 0

de�nes a twisting by
τf (x) = g

(n)
n−1(x) for x ∈ Xn, n > 0.

We have τfτ = τ and fτf = f .
The mane of the universal bundle is justi�ed by the following result. The principal G-

bundle G×τ X corresponding to the twisting τ is obtained from the universal bundle WG as
a pullback under the simplicial map fτ .

Let us �nish this section with a very short discussion of di�erentiation of certain simplicial
manifolds. In [78], �evera describes the so called 1-jet of a (truncated) simplicial Kan
(super)manifold.7 Let us note that a simplicial Lie group G, its classifying space WG and
the corresponding universal bundle WG are such simplicial Kan manifolds. The rough idea
is to look at simplicial maps from the simplicial supermanifold � given at the level n as the
n-th Cartesian power of the superline R0|1 with obvious face and degeneracy maps8 � to a
given simplicial Kan manifold. If the simplicial Kan manifold has only one zero simplex, such
simplicial maps can be described in terms of L∞-algebras,9 which are the resulting 1-jets. For

7The interested reader can �nd the corresponding rather technical de�nitions in �evera's paper or in [P7].
8the nerve of the pair groupoid with object elements of R0|1 and morphisms elements of R0|1 × R0|1. We

postpone the de�nition of a nerve of a category, in particular of a groupoid, until the next section.
9More generally by L∞-algebroids [85]. For L∞-algebras see, e.g., [57, 56]. For the opposite, the integration

of L∞-algebras, see [36, 41].
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instance, if the simplicial Lie group is at each level given by the same Lie group with all face
and degeneracy maps given by the identity map, then the 1-jet is the just the corresponding
Lie algebra. If the simplicial manifold is the Atyiah groupoid of an ordinary Lie group principal
bundle, then its 1-jet is the corresponding Atyiah algebroid, and its sections are connections
on the principal bundle. Hence, understanding 1-jets of classifying spaces WG can be viewed
as a �st step in understanding connections on simplicial principal bundles, which in view of
results in Section 3.1 can be viewed as higher nonabelian bundle gerbes.10

2.6. Nerves, linear orders. Simplicial spaces [58] coming from (Duskin [32] and possibly
other [55, 84, 79]) nerves of topological bicatgeories 11 (and spaces obtained by geometric
realizations of these nerves) play a central role in the very last part of this thesis devoted
to classifying spaces and topoi. Let us recall that the nerve of a (topological) category is
de�ned as a simplicial space NC with space of n-simplices NCn being the �bred product
space C1 ×C0 × . . . ×C0 C1 of all composable strings of arrows of C. The degeneracy maps
NCn−1 → NCn are given by insertions of identity arrows. The face maps NCn → NCn−1

(except the 0th and nth, which are given by dropping the �rst and the last arrow, respectively)
are given by compositions of arrows. In case of a small category, the nerve is just a simplicial
set.

Let us recall that the Duskin nerve of a (topological) bicategory B is a 3-coskeletal sim-
plicial space NB with 0-simplices the objects x0 of 2C, 1-simplices the 1-arrows x0

x01→ x1 of
B and 2-simplices are 2-cells which are triangles x02

x012=⇒ x01x12 �lled with a 2-arrow x012.
For the future reference, let us collect few de�nitions and result, which we repeat almost

verbatim from [63]. For a simplicial space Y the geometric realization |Y | will always mean
the thickened (fat) geometric realization. This is de�ned as a topological space obtained from
the disjoint sum

∑
n≥0Xn ×∆n by the the equivalence relations

(2.6.1) (α∗(x), t) ∼ (x, α(t))

for all injective (order-preserving) arrows α : [n] → [m] ∈ ∆, any x ∈ Xm and any t ∈ ∆n,
where ∆n is the standard topological n-simplex. In the case of a so-called good simplicial
space [3] (e.g., all Yn re CW-complexes), this geometric realization is homotopy equivalent to
the geometric realization of the underlying simplicial set of Y , which is de�ned as above but
allowing for all arrows in ∆.
Linear order over a topological space X is a sheaf L on X together with a subsheaf

O ⊆ L ×X L such that for each point x ∈ X the stalk Lx is nonempty and linearly ordered
by the relation y ≤ z i� (y, z) ∈ Ox, for y, z ∈ Lx. A mapping L → L′ between two linear
orders over X is a mapping of sheaves restricting for each x ∈ X to an order preserving map
of stalks Lx → L′x. This de�nes a category of linear orders on X.

A linear order L on X de�nes an obvious topological category with L as space of objects
and the order subsheaf O ⊆ L×X L as space of arrows. Hence, we can speak of a nerve NL
of the linear order L. This nerve is obviously a simplicial sheaf on X (a simplicial space with
étale maps into X).

For any space X and any simplicial space Y write Lin(X,Y ) for the category of linear
orders (L, aug) on X equipped with a simplicial map (augmentation) aug : NL → Y from
the nerve of L to Y . A morphism (L, aug)→ (L′, aug′) in Lin(X,Y ) is a map of linear orders
L→ L′ such that the induced map NL→ NL′ on the nerves respects the augmentations.

10See, e.g., [71] for discussion of L∞-algebra valued connections.
11See, e.g., [11] for the de�nition of a bicategory.
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We call two objects E0, E1 ∈ Lin(X,Y ) concordant if there exists anE ∈ Lin(X×[0, 1], Y )
such that we have E0

∼= i∗0(E) and E0
∼= i∗1(E) under the obvious inclusions i0, i1 : X ↪→ X ×

[0, 1]. Linc(X,Y ) will denote the collection of concordance classes of objects from Lin(X,Y ).
Let Y be a simplicial space. For any space X there is a natural equivalence of categories

(2.6.2) Hom(Sh(X), Sh(Y )) ' Lin(X,Y ).

Here Hom(Sh(X), Sh(Y )) is the category of geometric morphisms of topoi Sh(X) and Sh(Y ),
with morphisms being natural transformations.

On homotopy classes of topos morphisms we have the natural bijection

(2.6.3) [Sh(X), Sh(Y )] ∼= Linc(X,Y ).

Let X be a CW-complex and Y be a locally contractible simplicial space. There is a natural
bijection between homotopy classes of maps [X, |Y |] and concordance classes Linc(X,Y ).

2.7. Classifying spaces, classifying topoi. The above described constructions can be ap-
plied to the case of C-principal bundles, where C is a topological category. Let us start with
discussing the case of a topological group G. Principal G-bundles over a (topological) space
X are classi�ed by the �rst �ech cohomology H1(X,G) of X with coe�cients in G. Under
some mild conditions, these �ech cohomology classes are in 1-1 correspondence with homotopy
classes of maps [X,BG] from X to the classifying space BG (see, e.g., [74, 44]). For example,
the elements of

(2.7.1) H1(X,U(1)) ∼= H2(X,Z) ∼= [X,BU(1)]

classify line bundles. Thus, characteristic classes for bundles can be obtained as pullbacks of
cohomology classes on BG. One way to de�ne the classifying space is to take the geometric
realization |NG| of the nerve NG of the group G.

The notion of a principal bundle and of the classifying space can be generalized from the
case of a topological group G to the case of a topological category C [63]. Roughly speaking,
a C-principal bundle over X can be de�ned as a continuous functor from the topological
category de�ned by an ordered open covering U = {Ui} (more generally from a linear order
L over X [63]) to the category C, i.e., as a C-valued �ech 1-cocycle. Again, the classifying
space BC is de�ned as the geometric realization |NC| of the nerve NC of the category C. If
X is a CW complex and C has contractible spaces of objects and arrows, concordance classes
Linc(X,C) of principal C-bundles are in 1-1 correspondence with the homotopy classes of
maps [X,BC]:

(2.7.2) Linc(X,C) ∼= [X,BC].

The above restrictions onX and C can be abandoned if one considers, instead of the classifying
space BC, the classifying topos BC (still, all spaces have to be assumed to be sober, i.e., every
closed subset which can not be written as a union of two smaller closed sets is a closure of
a unique one point set). The classifying topos BC is the so-called Deligne topos Sh(NC) of
sheaves on the nerve NC of the category C. Let us recall that a sheaf S on a simplicial
space Y is de�ned to be a system of sheaves Sn on Yn, for n ≥ 0, together with sheaf maps
S(α) : Y (α)∗Sn → Sm for each α : [n] → [m]. These maps are required to satisfy the proper
functoriality conditions [63]. Equipped with properly de�ned morphisms we have the category
of sheaves Sh(Y ) on the simplicial space Y . The category Sh(Y ) of sheaves on a simplicial
space is a topos, which is called the Deligne topos.
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There is an equivalence [63] between the category Lin(X,C) of C-principal bundles and
category of geometric morphisms Hom(Sh(X), Sh(NC)) between (Grothendieck) topoi Sh(X)
and Sh(NC):

(2.7.3) Lin(X,C) ' Hom(Sh(X), Sh(NC)).

Let us motivate the later discussion, for the case of one dimension higher, by considering the
example of abelian 1-gerbes. We have

(2.7.4) H2(X,U(1)) ∼= H3(X,Z) ∼= [X,B2U(1)].

In this situation, B2U(1) can be given the following interpretation. Starting with U(1) we can
consider the strict Lie 2-group (see, e.g., [7]) with only one object, one 1-arrow and 2-arrows
being the elements of U(1), or equivalently, the corresponding crossed module [20]. Then the
classifying space B2U(1) is (homotopy) equivalent to the geometric realization of the so-called
Duskin nerve [32] of this strict 2-group. The �classifying properties� of geometric realizations of
the so-called Duskin's nerves have been investigated in cases of strict Lie 2-groups, topological
2-groups and topological bicategories in [P6], [9] and [3], respectively. One of the results of the
present thesis is the description of the classifying topos and its properties for any topological
bicategory.

2.8. Noncommutative line bundles . Nocommutative line bundles are yet another gener-
alization of line bundles. We will use them later to introduce noncommuative gerbes, which
will turn out to be genuine nonabelian gerbes.12

Let (M, θ) be a general Poisson manifold, and let ? be the Kontsevich's deformation quan-
tization of the Poisson tensor θ. Further, let us consider a good covering {U i} of M . For the
purposes of this thesis, a noncommutative line bundle L is de�ned by a collection of C[[~]]-
valued local transition functions Gij ∈ C∞(U i ∩ U j)[[~]] (that can be thought valued in the
enveloping algebra of U(1), see [46]), and a collection of maps Di : C∞(U i)[[~]]→ C∞(U i)[[~]],
formal power series in ~, starting with the identity, and with coe�cients being di�erential op-
erators, such that

(2.8.1) Gij ? Gjk = Gik

on U i ∩ U j ∩ Uk, Gii = 1 on U i, and

(2.8.2) Ad?G
ij = Di ◦ (Dj)−1

on U i∩U j or, equivalently, Di(f)?Gij = Gij ?Dj(f) for all f ∈ C∞(U i∩U j)[[~]]. Obviously,
with this de�nition the local maps Di can be used to de�ne globally a new star product ?′

(because the inner automorphisms Ad?G
ij do not a�ect ?′)

(2.8.3) Di(f ?′ g) = Dif ?Dig .

We say that two line bundles L1 = {Gij1 ,Di1, ?} and L2 = {Gij2 ,Di2, ?} are equivalent if there
exists a collection of invertible local functions H i ∈ C∞(U i)[[~]] such that

(2.8.4) Gij1 = H i ? Gij2 ? (Hj)−1

12A noncommutative line bundle is a �nite projective module. In the present context it can be understood as
a quantization of a line bundle over a compact manifold in the sense of deformation quantization. Here we shall
take the properties of quantized line bundles as derived in [48, 47] as a formal de�nition of a noncommutative
line bundle.
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and

(2.8.5) Di1 = Ad?H
i ◦ Di2 .

The tensor product of two line bundles L1 = {Gij1 ,Di1, ?1} and L2 = {Gij2 ,Di2, ?2} is
well de�ned if ?2 = ?′1 (or ?1 = ?′2.) Then the corresponding tensor product is a line bundle
L2 ⊗ L1 = L21 = {Gij12,D

ij
12, ?1} de�ned as

(2.8.6) Gij12 = Di1(Gij2 ) ?1 G
ij
1 = Gij1 ?1 Dj1(Gij2 )

and

(2.8.7) Di12 = Di1 ◦ Di2 .
The order of indices of L21 indicates the bimodule structure of the corresponding space of
sections to be de�ned later, whereas the �rst index on the G12's and D12's indicates the star
product (here: ?1) by which the objects multiply.

A section Ψ = (Ψi) is a collection of functions Ψi ∈ C∞C (U i)[[~]] satisfying consistency
relations

(2.8.8) Ψi = Gij ?Ψi

on all intersections U i ∩ U j . With this de�nition the space of sections E is a right Ax =
(C∞(M)[[~]], ?) module. We shall use the notation EAx for it. The right action of the function
f ∈ Ax is the regular one

(2.8.9) Ψ.f = (Ψk ? f) .

Using the maps Di it is easy to turn E also into a left Ax′ = (C∞(M)[[~]], ?′) module Ax′E .
The left action of Ax′ is given by

(2.8.10) f.Ψ = (Di(f) ?Ψi) .

It is easy to check, using (2.8.2), that the left action (2.8.10) is compatible with (2.8.8). From
the property (2.8.3) of the maps Di we �nd
(2.8.11) f.(g.Ψ) = (f ?′ g).Ψ .

Together we have a bimodule structure Ax′EAx on the space of sections.
There is an obvious way of tensoring sections. The section

(2.8.12) Ψi
12 = Di1(Ψi

2) ?1 Ψi
1

is a section of the tensor product line bundle (2.8.6), (2.8.7). Tensoring of line bundles natu-
rally corresponds to tensoring of bimodules.

Let us note that if we assume the base manifold M to be compact, then the space of
sections E as a right Ax-module is projective of �nite type. Of course, the same holds if E is
considered as a left A′x module. Also let us note that the two algebras Ax and A′x areMorita
equivalent. Up to a global isomorphism they must be related by an action of the Picard
group Pic(M) ∼= H2(M,Z) as follows. Let L ∈ Pic(M) be a (complex) line bundle on M
and c its Chern class. Let F be a curvature two form on M whose cohomology class [F ] is
(the image in R of) the Chern cass c. Consider the formal Poisson structure θ′ given by the
geometric series

(2.8.13) θ′ = θ(1 + ~Fθ)−1.

In this formula θ and F are understood as maps θ : T ∗M → TM , F : TM → T ∗M and θ′ is
the result of the indicated map compositions. Then ?′ must (up to a global isomorphism) be
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the deformation quantization of θ′ corresponding to c ∈ H2(M,Z). This construction depends
only on the integer cohomology class c, indeed if c is the trivial class then F = da and the
corresponding quantum line bundle is trivial, i.e.,

(2.8.14) Gij = (H i)−1 ? Hj .

In this case the linear map

(2.8.15) D = Ad?H
i ◦ Di

de�nes a global equivalence (a stronger notion than Morita equivalence) of ? and ?′.
Finally, using, e.g., the Hochschild complex we can introduce a natural di�erential calculus

on the algebra Ax and consequently, in the spirit of noncommutative geometry [28], also the
notion of a connection and curvature [48].

3. Some results

3.1. Nonabelian bundle gerbes. In paper [P2], the main goal was to generalize the theory
of abelian bundle gerbes and their di�erential geometry, due to Murray [64], to the nonabelian
case. Hence, in contrary to the previous approaches to nonabelian gerbes (e.g., [37, 14, 16, 17]),
our study was from the di�erential geometry viewpoint. We believe that it is primarily in this
context that nonabelian gerbes structures can appear and can be recognized in physics. It is
for example in this context that one would like to have a formulation of Yang-Mills theory
with higher forms. The idea followed in [P2] was to replace the �transition� line bundles L
by G-principal bundles with additional structure, which would allow to multiply them. Let
us mention [10, 9, 54] for di�erent or independent approaches13, e.g., [73] for discussion of the
holonomy of gerbes.

Let (G
∂→ D) be a crossed module of Lie groups and X a manifold. Let P → X be a left

principal G-bundle, such that the principal D-bundle D ×∂ P is trivial with a trivialization
de�ned by a section (i.e., a left G-equivariant smooth map) d : P → D. We call the couple
(P, d) a (G→ D)-bundle. Two (G→ D)-bundles (P, d) and (P ′, d′) over X are isomorphic if
they are isomorphic as left G-bundles by an isomorphism ` : P → P ′ and d′` = d. Obviously,
a pullback of a (G→ D)-bundle is again a (G→ D)-bundle.

The (G → D)-bundle (P, d) is also a right principal G-bundle with the right action of G
given by p.l = d(p)(g).p for p ∈ P, l ∈ G. The left and right actions commute, hence, P has
naturally the structure if a principal G-bibundle [40, 37, 14]. The section d is G-biequivariant.
Let (P, d) and (P̃ , d̃) are two (G→ D)-bundles over X. Let us de�ne an equivalence relation
on the Whitney sum P ⊕ P̃ = P ×X P̃ by (pl, p̃) ∼ (p, gp̃), for (p, p̃) ∈ P ⊕ P̃ and g ∈ G.
Then (PP̃ := (P ⊕ P̃ )/ ∼, dd̃) with dd̃([p, p̃]) := d(p)d̃(p̃) is a (G→ D)-bundle.

Let Y be a manifold. Consider a surjective submersion ℘ : Y → X, which in particular
admits local sections. Let {Oi} be the corresponding covering of X with local sections σi :

Oi → Y , i.e., ℘σi = id. We also consider Y [n] = Y ×X Y ×X Y . . . ×X Y , the n-fold �bre
product of Y , i.e., Y [n] := {(y1, . . . yn) ∈ Y n | ℘(y1) = ℘(y2) = . . . ℘(yn)}. Given a (G→ D)-
bundle P = (P, d) over Y [2] we denote by P12 = p∗12(P) the crossed module bundle on Y [3]

obtained as a pullback of P under p12 : Y [3] → Y [2] (p12 is the identity on its �rst two
arguments); similarly for P13 and P23. Consider a quadruple (P, Y,X, `), where P = (P, d)
is a crossed module bundle, Y → X a surjective submersion and ` an isomorphism of crossed

13We have also to mention [4] for a di�erent generalization of abelian gerbes, the 2-vector bundles � cate-
gori�cations of vector bundles.
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module bundles ` : P12P23 → P13. We now consider bundles P12, P23, P13, P24, P34, P14

on Y [4] relative to the projections p12 : Y [4] → Y [2] etc. and also the crossed module
isomorphisms `123, `124, `123, `234 induced by projections p123 : Y [4] → Y [3] etc. Now we can
de�ne a (G→ D)-bundle gerbe for a general crossed module of Lie groups.

De�nition 3.1. The quadruple (P, Y,X, `), where Y → X is a surjective submersion, P is

a crossed module bundle over Y [2], and ` : P12P23 → P13 an isomorphism of crossed module
bundles over Y [3], is called a crossed module bundle gerbe if ` satis�es the cocycle condition
(associativity) on Y [4]

(3.1.1)

P12P23P34
`234−−−−→ P12P24

`123

y y `124

P13P34
`134−−−−→ P14 .

Abelian bundle gerbes as introduced in [64], [65] are (U(1) → 1)-bundle gerbes. More
generally, if A→ 1 is a crossed module then A is necessarily an abelian group and an abelian
bundle gerbe can be identi�ed as an (A→ 1)-bundle gerbe.

A (1 → G)-bundle gerbe is the same thing as a G-valued function g on Y [2] satisfying on
Y [3] the cocycle relation g12g23 = g23 and hence, a principal G-bundle on X (more precisely,
a descent datum of a principal G-bundle).

The stable isomorphism of two (G→ D)-bundle gerbes is de�ned as follows.

De�nition 3.2. Two crossed module bundle gerbes (P, Y,X, `) and (P ′, Y ′, X, `′) are stably

isomorphic if there exists a crossed module bundle Q → Ȳ = Y ×X Y ′ such that over Ȳ [2] the
crossed module bundles q∗P and Q1q

′∗P ′Q−1
2 are isomorphic. The corresponding isomorphism

˜̀ : q∗P → Q1q
′∗P ′Q−1

2 should satisfy on Ȳ [3] (with an obvious abuse of notation) the condition

(3.1.2) ˜̀
13` = `′ ˜̀23

˜̀
12 .

In the above de�nition, q and q′ are projections onto �rst and second factor of Ȳ = Y ×X Y ′
and Q1 and Q2 are the pullbacks of Q → Ȳ to Ȳ [2] under respective projections form Ȳ [2] to
Ȳ etc.

Locally, bundle gerbes can be described in terms of 2-cocycles as follows. First, let us notice
that the trivializing cover {Oi} of the map ℘ : Y → X de�nes a new surjective submersion
℘′ : Y ′ =

∐
Oi → X. The local sections of Y → X de�ne a map f : Y ′ → Y , which is

compatible with the maps ℘ and ℘′, i.e., such that ℘f = ℘′. We know that crossed module
bundle gerbes Gf and G are stably isomorphic. Hence, we can again assume Y =

∐
Oi. For

simplicity, we assume that the covering {Oi} is a good one. We have the following proposition.

Proposition 3.3. A crossed module bundle gerbe can be locally described by a 2-cocycle
(dij , gijk), where the smooth maps dij : Oij → D and gijk : Oijk → G ful�ll the following
conditions:

(3.1.3) dijdjk = ∂(gijk)dik on Oijk

and

(3.1.4) gijkgikl = dijgjklgijl on Oijkl .
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2-cocycles (dij , gijk) and (d′ij , g
′
ijk) corresponding to stably isomorphic (G→ D)-bundle gerbes

are related by

(3.1.5) d′ij = di∂(gij)dijd
−1
j

(3.1.6) d−1
i g′ijk = gij

dijgjkgijkg
−1
ik ,

with smooth functions gij : Oij → G and di : Oi → D.

These are, of course, the well-known formulas from non-abelian cohomology theory, for
nonabelian 2-cocycles (see, e.g. [14, 16, 62]). Also, as shown in [P2], the following theorem
holds true.

Theorem 3.4. Stable isomorphism classes of crossed module bundle gerbes are one to one
with stable isomorphism classes of 2-cocycles denotes as H1(M,H → D).

Let us mention, that it is possible to develop the theory of connections and curvings on
nonabelian bundle gerbes in the framework described in this section. This is also one of the
results of paper [P2]. The construction is rather involved since, in contrary to the abelian case,
it is not enough to consider ordinary connections of the special G-principal bundles P over
Y [2], which enter the de�nition of the nonabelian bundle gerbe. However, as introduced and
studied in [P2], nonabelian bundle gerbes, connections and curvings are very natural concepts
also in classical di�erential geometry. We will give the corresponding local description in the
next section. We just mention the following result of [P2], which can be proved using the
partition of unity.14

Theorem 3.5. On each crossed module bundle gerbe there exist a connection and a curving.

In [P6], crossed module bundle gerbes were identi�ed within simplicial principal bundles.
We know from Sec.2.5 that a (Lie) Moore complex of length two posses a structure of a (Lie)
crossed module and vice-versa, given a (Lie) crossed moduleH → D we reconstruct a simplicial
Lie group with the Moore complex of length two. As readily seen from the description in Sec.
2.5, this simplicial Lie group is the nerve of the Lie groupoid with objects being group elements
of H and morphisms being elements of D. Let us use notation H(H→D) for this nerve.

Let us consider another 1-groupoid C{Oα}, related to an open covering {Oα}, described as
follows. Objects are pairs (x,Oα) with x ∈ Oα and there is unique morphism (x,Oα)→ (y,Oβ)
i� x = y ∈ Oα ∩Oβ . Let NC{Oα} denote the nerve of this groupoid.

Consider a simplicial map NC{Oα} → WNC(H→D). Then the maps between 1- 2- and
3-simplices give us the gerbe transition functions. We also see that the at the 0-level, the

simplicial twisting τ0 is identi�ed with dαβ . At the level one, τ1 identi�es with dαγd−1
βγ

hαβγ−→ dαβ .
A similar identi�cation can easily be done also for the equivalence data of twistings and the
local stable equivalence data of bundle gebres. Hence, we can conclude that the following
proposition holds.

Proposition 3.6. Stable equivalence classes of crossed module bundle gerbes are described by
homotopy classes of simplicial maps NC{Oα} →WNC(H→D), i.e., they are the same things as
equivalence classes of simplicial principal NC(H→D-bundles over NC{Oα})

14We will give a local description of the connection and curving for twisted nonabelian gerbes in the next
section.



GERBES IN GEOMETRY AND PHYSICS 19

Associated to the simplicial group N(H→D), we have its geometric realization |N(H→D)|,
which is a topological group. Also associated to the classifying (simplicial) space WN(H→D),
we have the topological space |WN(H→D)|. Related to the above proposition, we have the
following theorem P[6] (cf. also [9])

Theorem 3.7. The space |WN(H→D)| is a classifying space of (H → D)-bundle gerbes and
at the same time is also a classifying space of |N(H→D)|-principal bundles. Hence, the sta-
ble equivalence classes of (H → D)-bundle gerbes are in a one to one correspondence with
|N(H→D)|-principal bundles.

An example related to the string group and string structures is the crossed module Ω̃G→
PG. Here, G is a (simply-connected, compact, simple) Lie group, Ω̃G is the centrally extended
group of based smooth loops and PG is the based path group. The case relevant to string
group (see, e.g., [21, 83, 6, 72] for models of string group) and string structures is G = Spin(n)
(see, e.g., [44], for a short discussion). The topological group |NCΩ̃G→PG| is a model of the
String group and the corresponding principal bundles are string structures. In this case the
above theorem gives a �gerby� classi�cation of string structures.

Also, in [P6], an attempt has been made to interpret connections and curvings on bundle
gerbes in simplicial terms.

3.2. Twisted nonabelian gerbes. In paper [P1], we developed, based on [P2], the theory
of twisted nonabelian gerbes on the level of cocycles. Our aim was to generalize the twisted
principal bundles and also to generalize the �in�ow� mechanism, as described above for D-
branes, to the case of M5-branes. The notion of a twisted 1-gerbe (2-gerbe module) can
be introduced performing a similar construction as in the case of a twisted principal bundle
(2.1.11). For concreteness, we assume the crossed module to be the one of the form G →
Aut(G) . While twisted nonabelian bundles are described by nonabelian transition functions
{Gij}, twisted nonabelian gerbes are described by transition functions {fijk, ϕij} that are
respectively valued in G and in Aut(G), fijk : Oijk → G, ϕij : Oij → Aut(G), and where the
action of ϕij on U(1) is trivial: ϕij |U(1) = id. The twisted cocycle relations now read

(3.2.1) λijkl = f−1
ikl f

−1
ijkϕij(fjkl)fijl ,

(3.2.2) ϕijϕjk = Adfijkϕik ,

where {λijkl} is U(1)-valued. It is not di�cult to check that {λijkl} is a �ech 3-cocycle and
thus de�nes a 2-gerbe (without curvings). In the particular case λijkl = 1 equations (3.2.1),
(3.2.2) de�ne a nonabelian 1-gerbe (without curvings).

One can also consider twisted gerbes with connection 1-forms: (fijk, ϕij , aij ,Ai) where
aij ∈ Lie(G)⊗ Ω1(Oij), Ai ∈ Lie(Aut(G))⊗ Ω1(Oi), and twisted gerbes with curvings:

(3.2.3) (fijk, ϕij , aij ,Ai, Bi, dij , Hi)

where Bi, dij are 2-forms and Hi 3-forms, all of them Lie(G)-valued; Bi ∈ Lie(G) ⊗ Ω2(Oi),
dij ∈ Lie(G) ⊗ Ω2(Oij), Hi ∈ Lie(G) ⊗ Ω3(Oi). Before de�ning a twisted 1-gerbe we need to
introduce some more notation. Given an element X ∈ Lie(Aut(G)), we can construct a map
(a 1-cocycle) TX : G→ Lie(G) in the following way,

(3.2.4) TX(h) ≡ [hetX(h−1)] ,
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where [hetX(h−1)] is the tangent vector to the curve hetX(h−1) at the point 1G. Given a
Lie(Aut(G))-valued form A, we write A = AρXρ where {Xρ} is a basis of Lie(Aut(G)). We
then de�ne TA as

(3.2.5) TA ≡ AρTXρ .

We use the same notation TA for the induced map on Lie(G). Now we extend this map to
allow TA to act on a Lie(G)-valued form η = ηαY α, where {Y α} is a basis of Lie(G), by
TA(η) = ηα ∧ TA(Y α). Also, we de�ne

Ki ≡ dAi +Ai ∧ Ai ,(3.2.6)
kij ≡ daij + aij ∧ aij + TAi(aij) .(3.2.7)

De�nition 3.8. A twisted 1-gerbe is a set (fijk, ϕij , aij ,Ai, Bi, dij , Hi) such that, ϕij |U(1) =
id, TAi |U(1) = 0,

(3.2.8) ϕijϕjk = Adfijkϕik ,

(3.2.9) Ai + adaij = ϕijAjϕ−1
ij + ϕijdϕ

−1
ij ,

(3.2.10) dij + ϕij(djk) = fijkdikf
−1
ijk + TKi+adBi (fijk) ,

(3.2.11) ϕij(Hj) = Hi + d dij + [aij , dij ] + TKi+adBi (aij)− TAi(dij) ,

and such that DH(fijk, ϕij , aij ,Ai, Bi, dij) ≡ (λijkl, αijk, βij , γi) has U(1)- and Lie(U(1))-
valued elements, where

λijkl ≡ f−1
ikl f

−1
ijkϕij(fjkl)fijl ,(3.2.12)

αijk ≡ aij + ϕij(ajk)− fijkaikf−1
ijk − fijkdf

−1
ijk − TAi(fijk) ,(3.2.13)

βij ≡ ϕij(Bj)−Bi − dij + kij ,(3.2.14)
γi ≡ Hi − dBi + TAi(Bi) ,(3.2.15)

and where the the same notation ϕij has been used for the induced map ϕij : Oij → Aut(Lie(G)).

If there is zero on the LHS of equations (3.2.13), (3.2.14), (3.2.15) and 1 on the LHS of eq.
(3.2.12), equations (3.2.8)-(3.2.15) de�ne a nonabelian gerbe with connection and curving. A
little algebra shows that in the less trivial situation we have the following proposition.

Proposition 3.9. Assume that λijkl is U(1)-valued and αijk, βij and γi are Lie(U(1))-valued,
then the equations of the above de�nition guarantee that (λijkl, αijk, βij , γi) is a 2-gerbe with
connections and curvings; hence the name twisted 1-gerbe for the set (fijk, ϕij , aij ,Ai, Bi, dij , Hi).

We say that the nonabelian gerbe (fijk, ϕij , aij , dij , Ai, Bi, Hi) is twisted by the 2-gerbe
(λijkl, αijk, βij , γi).

in the next section, twisted bundle gerbes are identi�ed as bundle 2-gerbes with particular
structure 2-crossed modules.
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3.3. Results on global worldsheet anomalies of M5-branes. In order to describe the
�in�ow� mechanism for M5-branes, a slight generalization of twisted nonabelian gerbes to the
case of the crossed module Ω̃G → PG is needed. Here, G is a (simply-connected, compact,
simple) Lie group, Ω̃G is the centrally extended group of based smooth loops and PG is the
based path group of paths starting at the identity. The case relevant for a (six-dimensional,
compact, oriented) M5-brane V embedded in an 11-dimensional spacetime spin manifold Y
[87] is that of G = E8 [31]. The case relevant to string group (see, e.g., [83, 6] for models of
string group) and string structures is G = Spin(n) (see, e.g., [45], for a short discussion).

Comparing with the case of D-branes living the 10-dimensional spacetime, there is now a
�3-form� G replacing the �2-form� �eld B. Based on the discussion in [31], this �eld G together
with the metric give rise to an abelian 2-gerbe with curvings, its restriction to V being referred
as the Chern-Simons 2-gerbe CS. Let [CS] be the corresponding Deligne class. Also, there
exists an torsion element θ ∈ H4(V,Z) [87], replacing it this situation the integral Stiefel-
Whitney class W3 from the D-brane case, with the corresponding Deligne class [ϑijkl, 0, 0, 0].
The following condition generalizing that of (2.3.1) has been proposed in paper [P1].

Conjecture 3.10. In order for a �stack� of M5-branes to be wrapping the cycle V in Y , there
should exist a twisted nonabelian gerbe (fijk, ϕij , aij ,Ai, Bi, dij) satisfying [cf. (2.3.1)]

(3.3.1) [CS]− [ϑijkl, 0, 0, 0] = [DH(fijk, ϕij , aij ,Ai, Bi, dij)] + [1, 0, 0, CV ] ,

where [1, 0, 0, CV ] is the trivial Deligne class associated with a global 3-form CV .

Some arguments, based on homotopy properties of E8, supporting this condition are given
in [P1].

3.4. Noanbelian bundle 2-gerbes. Here we describe an approach nonbelian bundle gerbes
based on 2-modules.15 Before describing 2-crossed module bundle 2-gerbes, we need the fol-
lowing de�nition of a 2-crossed module bundle gerbe, which is a one level up generalization of a
crossed module bundle. Let (L→M → N) be a Lie 2-crossed module and G be an (L→M)-
bundle gerbe over X. From the de�nition of the 2-crossed module we see immediately that the
maps L→ 1 and ∂2 : M → N de�ne a morphism of crossed modules µ : (L

∂1→M)→ (1→ N).
Changing the structure crossed module using µ we obtain a (1→ N)-bundle gerbe µ(G), which
is the same thing an N -principal bundle. Hence, the following de�nition makes sense.

De�nition 3.11. Let G be an L→M -bundle gerbe such that the principal bundle µ(G) over
X is trivial with a section n : µ(G) → N . We call the pair (G,n) a 2-crossed module bundle
gerbe.

Let us note that 1→M → N -bundle gerbe is an M → N -bundle. The following interpre-
tation of the trivializing section n will be useful later. For the (L → M → N)-bundle gerbe
(G,n) = ((P,m), Y,X, `),n) the trivializing section n of the left principal N -bundle µ(G) is
the same thing as an N -valued function n on Y such that ∂2(m) = n1n

−1
2 .

Obviously, we have a pullback, if f : X → X ′ then we put f∗(G,n) = (f∗(G), f∗n); this
will again be a 2-crossed module bundle gerbe.

De�nition 3.12. We call two (L → M → N)-bundle gerbes (G,n) and (G′,n′) over the

same manifold X stably isomorphic if there exists a stable isomorphism q := (Q, ˜̀) : G → G′
of (L → M)-bundle gerbes such that n′µ(q) = n holds true for the induced isomorphism of
trivial bundles µ(q) : µ(G)→ µ(G′).

15For an alternative approach based on crossed squares, see [16].
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Pullbacks preserve stable isomorphisms, in particular a pullback of a trivial 2-crossed mod-
ule bundle gerbe is again a trivial 2-crossed module bundle gerbe.

W can go even further and introduce isomorphism of stable isomorphisms.16

De�nition 3.13. Let ((P, Y,X, `),n) and ((P ′, Y ′, X, `′),n′) be two 2-crossed module bundle

gerbes and (Q, ˜̀Q) and (R, ˜̀R) two stable isomorphisms between them. We call (Q, ˜̀Q) and

(R, ˜̀R) isomorphic if there is an isomorphism ` : Q → R of crossed module bundles on
Ȳ = Y ×X Y ′ such that (with an obvious abuse of notation) the diagram

(3.4.1)

q∗P
˜`Q−−−−→ Q1q

′∗P ′Q−1
2

id

y y `1`
−1
2

q∗P
˜`R−−−−→ R1q

′∗P ′R−1
2

is commutative.

Obviously, pullbacks preserve isomorphisms of stable isomorphisms.
To describe the relevant 2-cocyles, we again assume, without loss of generality, Y =

∐
Oi.

with thw covering {Oi} being a good one, in which case the (L → M → N)-bundle gerbe
is characterized by transition functions (ni,mij , lijk), ni : Oi → N , mij : Oij → M , lijk :
Oijk → L ful�lling 2-cocycle relations

ni = ∂2(mij)nj

mijmjk = ∂1(lijk)mik

lijklikl = mij ljkllijl

on Oij , Oijk and Oijkl, respectively.
In terms of 2-cocycles the stable isomorphism (lijk,mij , ni) ∼ (l′ijk,m

′
ij , n

′
i) is expressed by

relations

(3.4.2) n′i = ∂2(mi)ni

(3.4.3) m′ij = mi∂1(lij)mijm
−1
j

(3.4.4) m−1
i l′ijk = lij

mij ljklijkl
−1
ik

Two (L → M → N) valued 2-cocycles related as above will be called equivalent. The
corresponding set of equivalence classes will be denoted by H0(X,L→M → N).

Locally, two collections of stable isomorphism data (mi, lij) and (m′i, l
′
ij) are isomorphic if

m′i = ∂1(li)mi

l′ij = lilij
mij l−1

j

We have the following proposition proposition.

Proposition 3.14. Stable isomorphism classes of (L → M → N)-bundle gerbes are in a
bijective correspondence with the set H0(X,L→M → N).

16Of course could have done that already in case ordinary bundle gebres, but we really need only now.
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The nice thing about L → M → N -gerbes is that they can be multiplied. Let (G,n) =

((P,m), Y,X, `),n) and (G̃, ñ) = ((P̃ , m̃), Y,X, ˜̀), ñ) be two 2-crossed module bundle gerbes.
Let us again consider on Y [2] the Whitney sum P ⊕ P̃ and introduce an equivalence relation
on P ⊕ P̃ by

(p.nl, p̃) ∼n (p, lp̃)

and de�ne P̄ = P.nP̃ = P ⊕ P̃ / ∼n . We will denote an element of P.nP̃ de�ned by the
equivalence class of (p, p̃) ∈ P ⊕ P̃ as [p, p̃]n in order to distinguish it from equivalence class
[p, p̃] ∈ PP̃ de�ned previously. Also, put

m̄ = m n2m̃

It is easy to see that P̄ := (P̄ , m̄) is an (L → M)-bundle on Y [2]. Let us note that also
∂2(m̄) = n̄1n̄2 on Y [2] with

n̄ = nñ

Now on Y [3] we do have the pullbacks P12, P̃12, P̄12, etc. An element of P̄12P̄23 is then given
by ((y1, y2, y3), [[p, p̃]n, [p

′, p̃′]n]) with (y1, y2, y3) ∈ Y [3], p ∈ P and p̃ ∈ P̃ in the respective
�bres of P and P̃ over (y1, y2) ∈ Y [2], and p′ ∈ P and p̃′ ∈ P̃ are in the respective �bres of P
and P̃ over (y2, y3) ∈ Y [2]. Finally, we de�ne ¯̀ : P̄12P̄23 → P̄13 as

¯̀((y1, y2, y3), [[p, p̃]n, [p
′, p̃′]n]) := ((y1, y2, y3), [`([p, p′], ˜̀[p̃, p̃′]]n)

Now it is a rather lengthy but straightforward check to establish the following proposition.

Proposition 3.15. (Ḡ, n̄) := ((P̄ , m̄), Y,X, ¯̀), n̄) de�nes an (L → M → N)-bundle gerbe,

the product of (L → M → N)-bundle gerbes (G,n) = ((P,m), Y,X, `),n) and (G̃, ñ) =

((P̃ , m̃), Y,X, ˜̀), ñ).

The product formulas for the corresponding transition functions (2-cocycles) of the product
Ḡ = GG̃ of two 2-crossed module bundles are given by

n̄i = niñi

m̄ij = mij
njm̃ij

l̄ijk = lijk
mik{mjk

−1, njm̃ij} ni l̃ijk
The inverse (ni,mij , lijk)

−1 is given by

(n−1
i , n

−1
j m−1

ij ,
n−1
k {m−1

jk ,m
−1
ij }
−1 n−1

i l−1
ijk)

Finally, we can de�ne nonabelian bundle 2-gebres. For, consider again a surjective submer-
sion π : Y → X. Let, as before, pij : Y [3] → Y [2] denote the projection to the i-th and j-th

component, and similarly for projections of higher �bred powers Y [n] of Y . Let L ∂1→M
∂2→ N

be a 2-crossed module.

De�nition 3.16. A 2-crossed module bundle 2-gerbe is de�ned by a quintuple (G, Y,X,m, `),

where G = (G,n) is a 2-crossed module bundle gerbe over Y [2],

m : G12G23 → G13

is a stable isomorphism on Y [3] of the product G12G23 of the pullback 2-crossed module bundle
gerbes G12 = p∗12G and G23 = p∗23G and the pullback 2-crossed module bundle gerbe G13 =
p∗13G, and

` : m124m234 →m134m123
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is an isomorphism of the composition of pullbacks of stable isomorphisms p∗124m and p∗234m

and the composition of pullbacks of stable isomorphisms p∗123m and p∗134m on Y [4]. On Y [5],
the isomorphism ` should satisfy the obvious coherence relation

`1345`1235 = `1234`1245`2345.

Let us note, that Abelian bundle 2-gerbes as introduced in [80, 82, 25] are (U(1)→ 1→ 1)-
bundle 2-gerbes. A (1 → M → M)-bundle 2-gerbe is an M → N)-bundle gerbe. Obviously,
we have pullbacks. If f : X → X ′ is a map then we can pullback Y → X to f∗(Y )→ X ′ with a
map f̃ : f∗(Y )→ Y covering f . There are induced maps f̃ [n] : f∗(Y )[n] → Y [n]. The pullback
f∗(G, Y,X,m, `) := (f̃ [2]∗G, f∗(Y ), f(X), f̃ [3]∗m, f̃ [4]∗`) is again an (L → M → N)-bundle
2-gerbe.

The notion of a stable isomorphism is de�ned as follows:

De�nition 3.17. Two 2-crossed module bundle 2-gerbes ((G, Y,X,m, `) and (G′, Y ′, X,m′, `′)
are stably isomorphic if there exists a 2-crossed module bundle gerbe Q→ Ȳ = Y ×X Y ′ such
that over Ȳ [2] the 2-crossed module bundle gerbes q∗G and Q1q

′∗G′Q−1
2 are stably isomorphic.

Let m̃ be the stable isomorphism m̃ : q∗G → Q1q
′∗G′Q−1

2 . Then we ask on Y [3] (with an

obvious abuse of notation) for the existence of an isomorphism ˜̀ of stable isomorphisms

˜̀ : m′m̃23m̃12 → m̃13m

ful�lling on Y [4]

`1234
˜̀

124
˜̀

234 = ˜̀
134

˜̀
123`

′
1234

Here q and q′ are projections onto �rst and second factor of Ȳ = Y ×X Y ′ and Q1 and Q2 are
the pullbacks of Q to Ȳ [2] under respective projections p1, p2 form Ȳ [2] to Ȳ , etc.

Correspondingly we have a stable isomorphism of stable isomorphisms.

De�nition 3.18. Let (G, Y,X,m, `) and (G′, Y ′, X,m′, `′) be two 2-crossed module bundle

2-gerbes and (Q, m̃Q, ˜̀Q) and (R, m̃R, ˜̀R) two stable isomorphisms between them. We call
these two stable isomorphisms stably isomorphic if there is a stable isomorphism m : Q→ R
of 2-crossed module bundles on Ȳ = Y ×X Y ′ such that (with an obvious abuse of notation)
the diagram

q∗G
m̃Q−−−−→ Q1q

′∗G′Q−1
2

id

y y m1m2
−1

q∗G
m̃R−−−−→ R1q

′∗G′R−1
2

commutes up to an isomorphism of stable isomorphisms

` : m̃Qm1m2
−1 → m̃R

on Ȳ [2], ful�lling on Ȳ [3]

˜̀
Q`13 = `12`23

˜̀
R

The local description follows below. Without loss of generality, we can again assume the case
when Y =

∐
Oi and the covering {Oi} is a good one, in which case the (L→M → N)-bundle
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gerbe can be described by transition functions (nij ,mijk, lijkl) nij : Oij → N ,mijk : Oijk →M
and lijkl : Oijkl → L satisfying

(3.4.5)
nijnjk = ∂2(mijk)nik

mijkmikl = ∂1(lijkl)
nijmjklmijl

lijkl
nijmjkl(lijlm) nij ljklm = mijk liklm{mijk,

nikmklm}
nijnjkmklm(lijkm)

We shall not give explicit formulas relating transition functions (3-cocycles) of two stably
isomorphic 2-crossed module bundle 2-gerbes. We introduce the notation H1(X,L → M →
N) for the equivalence classes of 3-cocycles. We just give the formulas for transition functions
(nij ,mijk, lijkl) of a trivial 2-crossed module bundle 2-gerbe:

(3.4.6)
nik = n−1

i ∂2(mij)nj
nimijl = ∂1(l−1

ijk)mijmjkm
−1
ik

ni lijkl =
nimijk(l−1

ikl )l
−1
ijk

mij ljkl{mij ,
njmjkl}

ninijmjkl(lijl)

We introduce the notation H1(X,L → M → N) for the corresponding equivalence classes of
3-cocycles.

Hence, we can summarize the discussion in the following proposition.

Theorem 3.19. Stable isomorphism classes of (L → M → N)-bundle 2-gerbes are in a
bijective correspondence with the set H1(X,L→M → N).

We �nish with the following observation concerning twisted bundle gerbes introduced earlier
in previous section. These are 2-crossed module bundle 2-gerbes with structure 2-crossed
module U(1)→ L

δ→M , associated with a central extension of M by U(1).

3.5. Di�erentiation of classifying spaces WG. Here, foolowing [P7], we state the result
on 1-jets of classifying spaces of simplicial Lie groups in the language of di�erential graded Lie
algebras (DGLA's). This allows us to make a relation to the Quillen's adjunctions between
simplicial Lie algebras and DGLA's. LetG be a simplicial Lie groupG with the Moore complex
of length k. Let g denote the corresponding simplicial Lie algebra. What we have is a k-term
DGLA L = ⊕kn=0L−n with components in degrees 0,−1, . . . − k, given by L−n = Ngn. The
di�erentials dn : Ngn → Ngn+1 are given by the restrictions dn = ∂0|Ngn of the zeroth face
maps, i.e by the di�erentials δn of the Moore complex Ng, i.e, for xn ∈ Ngn

(3.5.1) dnxn = δnxn.

The only nonzero brackets are the binary brackets. The nonzero binary brackets are deter-
mined by the following prescription:

The bracket Ng0 × Ng0 → Ng0 is just the Lie bracket on Ng0, i.e for x0 ∈ Ng0 and
y0 ∈ Ng0

(3.5.2) [x0, y0].

The brackets Ng0 ×Ngn → Ngn: (x, y) 7→ [x0, xn] = −[xn, x0] are given by the action of
Ng0 on Ngn

(3.5.3) [x0, xn] = −[xn, x0] = x0xn.
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The bracket Ngn1 ×Ngn2 → Ngn with n = n1 +n2, for n1 and n2 nonzero, is described as
follows: For xn1 ∈ Ngn1 and xn2 ∈ Ngn2

(3.5.4)
[xn1 , xn2 ] =

∑
(α,β)∈P̄ (n1,n2)

±fα,β(xn1 , xn2) + (−1)(n1+1)(n2+1)
∑

(α,β)∈P̄ (n2,n1)

±fα,β(xn2 , xn1)

The ± sign is given by the product of parity of n1(n2 + 1) and the parity of the shu�e de�ned
by the pair (α, β) ∈ P̄ (n1, n2). Here P̄ (n1, n2) ⊂ P̄ (n) denotes the subset of P (n) consisting
of those pairs (α, β) ∈ P̄ (n), for which n− ]α = n1, n− ]β = n2.

Let us now consider an arbitrary simplicial Lie algebra g with Moore complex of length
k. Associated to g we have the (unique) simplicial group G integrating it, such that all its
components are simply connected. Therefore, starting with g, we can consider the 1-jet of G.
Correspondingly, we have the following theorem:

Proposition 3.20. Let g be a simplicial Lie group with Moore complex Ng of length k.
Then Ng or becomes a DGLA. The di�erential and the binary brackets are explicitly given by
formulas (3.5.1-3.5.4). This DGLA structure on Ng is the same one as described by Quillen's
construction in Proposition 4.4 of [70].

3.6. Classifying topoi of topological bicategories. In paper [P3], some established results
[63] on classifying spaces and topoi were put together in a new way, with consequences for
bicategories.

Let B be a topological bicategory. In analogy with the case of a topological category we
have the following de�nition.

De�nition 3.21. The classifying topos BB of the topological bicategory B is de�ned as Sh(NB),
the topos of sheaves on the Duskin nerve NB. Similarly, the classifying space BB of a topo-
logical bicategory B is the geometric realization |NB| of its nerve NB.

Also, for a topological bicategory B write Lin(X,B) for the category of linear orders over
X equipped with an augmentation aug : NL→ NB.

De�nition 3.22. An object E of Lin(X,B) is called a Duskin principal B- bundle. We call
two Duskin principal B-bundles E0 and E1 on X concordant if there exists a Duskin principal
B-bundle on X × [0, 1] such that we have the equivalences E0 ' i∗0(E) and E0 ' i∗1(E) under
the obvious inclusions i0, i1 : X ↪→ X × [0, 1].

We can consider a linear order L as a locally trivial bicategory (with only trivial 2-
morphisms). In this case the Duskin nerve of L coincides with the ordinary nerve of L which
justi�es the same notation NL for both nerves. Therefore, an augmentation NL → NB is
the same, by the nerve construction, as a continuous normal lax functor L → B. Similarly
to the case of topological category (2.7.3) we have the following �classifying� property of the
classifying topos BB.

Theorem 3.23. For a topological bicategory B and a topological space X there is a natural
equivalence of categories

(3.6.1) Hom(Sh(X),BB) ' Lin(X,B).

On homotopy classes of topos morphisms we have the natural bijection

(3.6.2) [Sh(X),BB] ∼= Linc(X,B).
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Let us recall that the topological bicategory B is locally contractible if its spaces of objects,
1-arrows and 2-arrows are locally contractible. The �classifying� property of the classifying
space BB now follows as a corollary.

Corollary 3.24. For a locally contractible bicategory B and a CW-complex X there is a
natural bijection

(3.6.3) [X,BB] ∼= Linc(X,B).

If, in addition, the topological bicategory B is a so-called �good� one [3] then the above is
true also if we use, instead of the thickened geometric realization of the nerve, the geometric
realization of the underlying simplicial set. The case of a good topological bicategory, as well
as the su�cient conditions for a bicategory being a good one, are discussed in [3]. Thus, as
a corollary we have a slight generalization of the result of Baas, Bökstedt and Kro [3]. As
shown in [P3], similar results apply also to other types of nerves of bicategories, such as the
Lack-Paoli [55], Tansamani [84] and Simpson [79] nerve.

3.7. Noncommutative gerbes and quantization of twisted Poisson structures. Non-
commutative gebres were introduced in [P4]. Let us consider any covering {Uα} (not nec-
essarily a good one) of a manifold M . Here, comparing to Sec. 2.8, we switch from upper
Latin to lower Greek indices to label the local patches. The reason for the di�erent notation
will become clear soon. Consider each local patch equipped with its own star product ?α the
deformation quantization of a local Poisson structure θα. We assume that on each double
intersection Uαβ = Uα ∩ Uβ the local Poisson structures θα and θβ are related similarly as in
the previous section via some integral closed two form Fβα, which is the curvature of a line
bundle Lβα ∈ Pic(Uαβ)

(3.7.1) θα = θβ(1 + ~Fβαθβ)−1.

Let us now consider a good covering U iαβ of each double intersection. Uα ∩ Uβ 17 with a

noncommutative line bundle Lβα = {Gijαβ,D
i
αβ, ?α}

(3.7.2) Gijαβ ?α G
jk
αβ = Gikαβ , Giiαβ = 1 ,

(3.7.3) Diαβ(f) ?α G
ij
αβ = Gijαβ ?α D

j
αβ(f)

and

(3.7.4) Diαβ(f ?β g) = Diαβ(f) ?α Diαβ(g) .

The opposite order of indices labeling the line bundles and the corresponding transition func-
tions and equivalences simply re�ects a choice of convention. As in the previous section the
order of indices of Lαβ indicates the bimodule structure of the corresponding space of sections,
whereas the order of Greek indices on G's and D's indicates the star product in which the
objects multiply. The product always goes with the �rst index of the multiplied objects.

This and the following de�nitions (including their justi�cation and consistency) are among
the main results of [P4].

De�nition 3.25. A noncommutative gerbe is characterised by the following axioms:

17At this point we use so called hypercovers. Hypercovers are de�ned, e.g., in [2] A thorough treatment
with non-abelian cohomology classes is given in [15]. The hypercovers are not necessary if M is paracompact.
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Axiom 1: Lαβ = {Gijβα,D
i
βα, ?β} and Lβα = {Gijαβ,D

i
αβ, ?α} are related as follows

(3.7.5) {Gijβα,D
i
βα, ?β} = {(Djαβ)−1(Gjiαβ), (Diαβ)−1, ?β}

i.e. Lαβ = L−1
βα. (Notice also that (Djαβ)−1(Gjiαβ) = (Diαβ)−1(Gjiαβ) .)

Axiom 2: On the triple intersection Uα ∩ Uβ ∩ Uγ the tensor product Lγβ ⊗ Lβα is
equivalent to the line bundle Lγα . Explicitly

(3.7.6) Gijαβ ?α D
j
αβ(Gijβγ) = Λiαβγ ?α G

ij
αγ ?α (Λj)−1

αβγ ,

(3.7.7) Diαβ ◦ Diβγ = Ad?αΛiαβγ ◦ Diαγ .
Axiom 3: On the quadruple intersection Uα ∩ Uβ ∩ Uγ ∩ Uδ

(3.7.8) Λiαβγ ?α Λiαγδ = Diαβ(Λiβγδ) ?α Λiαβδ ,

(3.7.9) Λiαβγ = (Λiαγβ)−1 and Diαβ(Λiβγα) = Λiαβγ .

With slight abuse of notation we have used Latin indices {i, j, ..} to label both the good
coverings of the intersection of the local patches Uα and the corresponding transition functions
of the consistent restrictions of line bundles Lαβ to these intersections. A short comment on
the consistency of Axiom 3 is in order. Let us de�ne

(3.7.10) Diαβγ = Diαβ ◦ Diβγ ◦ Diγα .
Then it is easy to see that

(3.7.11) Diαβγ ◦ Diαγδ ◦ Diαδβ = Diαβ ◦ Diβγδ ◦ Diβα .

In view of (3.7.7) this implies that

Λiαβγδ ≡ Diαβ(Λiβγδ) ?α Λiαβδ ?α Λiαδγ ?α Λiαγβ

is central. Using this and the associativity of ?α together with (3.7.6) applied to the triple
tensor product Lδγ ⊗ Lγβ ⊗ Lβα transition functions

(3.7.12) Gijαβγ ≡ G
ij
αβ ?α D

j
αβ(Gijβγ) ?α Djαβ(Djβγ(Gijγδ))

reveals that Λiαβγδ is independent of i. It is therefore consistent to set Λiαβγδ equal to 1. A
similar consistency check works also for (3.7.9). If we replace all noncommutative line bundles
Lαβ in Axioms 1-3 by equivalent ones, we get by de�nition an equivalent noncommutative
gerbe.

Also, let us note that there is a natural (contravariant) connection on a noncommutative
gerbe.

Using Axiom 2 one can show that the product bundle

(3.7.13) Lαβγδ = Lαβγ ⊗ Lαγδ ⊗ Lαδβ ⊗ Lαβ ⊗ Lβδγ ⊗ Lβα
is trivial: it has transition functions Gijαβγδ = 1 and maps Diαβγδ = id. The constant unit
section is thus well de�ned on this bundle. On Lαβγδ we also have the section (Λiαβγδ).
Axiom 3 implies (Λiαβγδ) to be the unit section. If two of the indices α, β, γ, δ are equal,
triviality of the bundle Lαβγδ implies (3.7.9). Using for example the �rst relation in (3.7.9)
one can show that (3.7.8) written in the form Diαβ(Λiβγδ) ?α Λiαβδ ?α Λiαδγ ?α Λiαγβ = 1 is
invariant under cyclic permutations of any three of the four factors appearing on the l.h.s..
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If we now assume that all line bundles Lβα are trivial (this is for example the case when
{Uα} is a good covering) then Fαβ = daαβ for each Uα ∩ Uβ and

Gijαβ = (H i
αβ)−1 ?α H

j
αβ

Dαβ = Ad?αH
i
αβ ◦ Diαβ .

It then easily follows that

(3.7.14) Λαβγ ≡ H i
αβ ?α Diαβ(H i

βγ) ?α DiαβDiβγ(H i
γα) ?α Λiαβγ

de�nes a global function on the triple intersection Uα ∩ Uβ ∩ Uγ . Λαβγ is just the quotient of
the two sections

(
H i
αβ ?αDiαβ(H i

βγ)?αDiαβDiβγ(H i
γα)
)−1 and Λiαβγ of the triple tensor product

Lαγ⊗Lγβ⊗Lβα. On the quadruple overlap Uα∩Uβ ∩Uγ ∩Uδ it satis�es conditions analogous
to (3.7.8) and (3.7.9)

(3.7.15) Λαβγ ?α Λαγδ = Dαβ(Λβγδ) ?α Λαβδ ,

(3.7.16) Λαβγ = (Λαγβ)−1 and Dαβ(Λβγα) = Λαβγ .

Also

(3.7.17) Dαβ ◦ Dβγ ◦ Dγα = Ad?αΛαβγ .

De�nition 3.26. We say that formulas (3.7.15)-(3.7.17) de�ne a noncommutative 2-cocycle,
which we take as a de�nition of a noncommutative gerbe in the case of a good covering {Uα}.

From now on we shall consider only good coverings. A noncommutative gerbe de�ned by
Λαβγ and Dαβ is said to be trivial if there exists a global star product ? onM and a collection
of �twisted� transition functions Gαβ de�ned on each overlap Uα ∩ Uβ and a collection Dα of
local equivalences between the global product ? and the local products ?α

Dα(f) ?Dα(g) = Dα(f ?α g)

satisfying the following two conditions:

(3.7.18) Gαβ ? Gβγ = Dα(Λαβγ) ? Gαγ

and

(3.7.19) Ad?Gαβ ◦ Dβ = Dα ◦ Dαβ .
Locally, every noncommutative gerbe is trivial as is easily seen from (3.7.15), (3.7.16) and
(3.7.17) by �xing the index α.

We conclude this section with the following remark concerning the role of local functions
Λαβγ and Dαβ satisfying relations (3.7.15)-(3.7.17). These represent a honest non-abelian 2-
cocycle, as de�ned for example in [15]. It follows from the discussion of section 2, that each
Dαβ de�nes an equivalence, in the sense of deformation quantization, of star products ?α and
?β on Uα ∩ Uβ . The non-triviality of the non-abelian 2-cocycle (3.7.15)-(3.7.17) can therefore
be seen as an obstruction to gluing the collection of local star products {?α}, i.e., the collection
of local rings C∞(Uα)[[~]], into a global one. We also mention that in [50] a 2-cocycle similar
to that of (3.7.15)-(3.7.17) represents an obstruction to gluing together certain local rings
appearing in quantization of contact manifolds.

Now we can turn our attention to deformation quntization of twisted Poisson structures.
Let H ∈ H3(M,Z) be a closed integral three form on M. Such a form is known to de�ne a
gerbe on M . We can �nd a good covering {Uα} and local potentials Bα with H = dBα for
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H. On Uα ∩ Uβ the di�erence of the two local potentials Bα −Bβ is closed and hence exact:
Bα −Bβ = daαβ . On a triple intersection Uα ∩ Uβ ∩ Uγ we have

(3.7.20) aαβ + aβγ + aγα = −iλαβγdλ−1
αβγ .

The collection of local functions {λαβγ} represents a gerbe.
Let us also assume the existence of a formal antisymmetric bivector �eld θ = θ(0)+~θ(1)+. . .

on M such that

(3.7.21) [θ, θ] = ~ θ∗H ,

where [ , ] is the Schouten-Nijenhuis bracket and θ∗ denotes the natural map sending n-forms
to n-vector �elds by �using θ to raise indices�. Explicitly, in local coordinates, θ∗H ijk =
θimθjnθkoHmno. We call θ a Poisson structure twisted by H [76, 68, 51]. On each Uα we can
introduce a local formal Poisson structure θα = θ(1 − ~Bαθ)−1, [θα, θα] = 0. The Poisson
structures θα and θβ are related on the intersection Uα ∩ Uβ as in (3.7.1)

(3.7.22) θα = θβ(1 + ~Fβαθβ)−1 ,

with an exact Fβα = daβα. Now we can use Kontsevich's formality [52] to obtain local star
products ?α and to construct for each intersection Uα ∩ Uβ the corresponding equivalence
maps Dαβ . See [47, 48] for an explicit formula for the equivalence maps. According to our
discussion in the previous section these Dαβ , supplemented by trivial transition functions,
de�ne a collection of trivial line bundles Lβα. On each triple intersection we then have

(3.7.23) Dαβ ◦ Dβγ ◦ Dγα = Ad?αΛαβγ .

It follows from the discussion after formula (3.7.9) that the collection of local functions {Λαβγ}
represents a noncommutative gerbe (a deformation quantization of the classical gerbe repre-
sented by {λαβγ}) if each of the central functions Λαβγδ introduced there can be chosen to be
equal to 1. The following proposition relies on results contained in [77, section 5]18 and [53]
that this is really the case.

Proposition 3.27. Local functions {Λαβγ} and local maps Dαβ indeed represent a noncom-
mutative gerbe, a deformation quantization of the classical gerbe represented by {λαβγ}.

As mentioned at the end of the previous section, the non-triviality of the non-abelian 2-
cocycle (3.7.15)-(3.7.17) can be seen as an obstruction to gluing the collection of local star
products {?α}, i.e., the collection of local rings C∞(Uα)[[~]], into a global one. Hence, in the
context of this section, this obstruction comes as a deformation quantization of the classical
obstruction to gluing together local formal Poisson structures { , }α into a global one.

Finally, let us mention [60, 18, 19] for some closely related work.

4. Conclusions

The author of the thesis believes that the results described in the thesis �t well into the
recent trends of exploring possible generalizations of the symmetry principles underlying our
present understanding of quantum �eld theory. Since the higher and noncommutative struc-
tures discussed in this thesis arose naturally in both mathematics (algebraic geometry, homo-
logical algebra, category theory) and physics (quantum �eld theory, string theory), there is a
good chance that their study will help us in our attempts of identifying and understanding
the fundamental mathematical structure of quantum �eld and string theory.

18Here, quantization of twisted Poisson structures is discussed independently.
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Concerning more speci�c questions, the author believes that the results on higher gauge
theories comply with the recent interest in categori�cation of various mathematics structures.
Indeed, gerbes can be thought as categori�cations of bundles, their structure crossed mod-
ules are 2-group categori�ction of ordinary groups. Abelian gerbes already proved to be
relevant to interrelated problems in mathematics (string structures, twisted K-theory, elliptic
cohomology) and physics (global worldsheet anomalies and holonomy of D-branes). One can
speculate, that further extended objects in string theory and/or their charges can be described
using non-abelian higher gauge theories, in analogy with D-branes. Similarly, the results on
nocommuatative gebres �t well into recent interest in noncommutative geometry in quantum
�eld theory and string theory (e.g., D-branes) [75]. Moreover, they are honest non-abelian
gerbes.
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1. Introduction

The topology of gauge theories with 2-form gauge potentials is a fascinating subject both

from the physics and the mathematics perspectives. Consider for example in string theory

a stack of n coinciding D-branes, they usually form a U(n) vector bundle, however when

there is a topologically nontrivial NS B-field background, this is generally no more the

case. Cancellation of global anomalies requires the U(n) bundle to be twisted in order

to accommodate for the nontrivial topology of the B-field. Thus the study of D-brane

charges in the presence of nontrivial backgrounds leads to generalize the usual notion of

fibre bundle. A twisted U(n) bundle has transition functions Gij that satisfy the twisted

cocycle relations GijGjkGki = λijk, where λijk are U(1) valued functions. It follows that

λijk satisfy the cocycle relations λijkλ
−1
jklλiklλ

−1
ijl = 1, this is the characteristic property of

the transition functions of a bundle gerbe. In short, bundle gerbes, or simply gerbes, are

a higher version of line bundles, and the gauge potential for these structures is the 2-form

B in the same way as the connection 1-form A is the gauge potential associated with line

bundles. As we have sketched, associated with a gerbe we have a twisted bundle (also

called gerbe module). The fact that a stack of D-branes in a nontrivial background forms

a twisted bundle was studied in [1], confirmed using worldsheet global anomalies in [2] and

further generalized using twisted K-theory in [3]–[5].

– 1 –
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The structure of gauge theories with 3-form gauge potentials is similarly fascinat-

ing and rich, the corresponding geometrical structure is that of a 2-gerbe (if the 4-form

field-strength is integral). A main motivation for studying these structures is provided

by the 3-form C-field of 11-dimensional supergravity. In particular it is interesting to

study which M5-brane configurations are compatible with a topologically nontrivial C-

field. By requiring the vanishing of global anomalies, topological aspects of the partition

function of a single M5-brane have been studied in [6, 7], and in the presence of a non-

trivial background in [7] and in [8, 9]. We refer to [10] for the underlying mathematical

structures.

In this note we define twisted nonabelian gerbes, these are a higher version of twisted

bundles, we study their properties and show that they are associated with abelian 2-gerbes

(they are 2-gerbe modules). Using global anomalies cancellation arguments we then see

that the geometrical structure underlying a stack of M5-branes is indeed that of a twisted

nonabelian gerbe. The associated 2-gerbe is constructed from the C-field data. The twist

is necessary in order to accommodate for the nontrivial topology of the C-field. A twisted

nonabelian gerbe is (partly) characterized by a nonabelian 2-form gauge potential, in the

case of a single M5-brane this becomes the abelian chiral gauge potential of the self-dual 3-

form on the M5-brane. Moreover, an M5-brane becomes a D4-brane upon the appropriate

compactification of M-theory to Type IIA string theory, and correspondingly the 2-gerbe

becomes a gerbe, and the twisted gerbe becomes a twisted bundle. A particular case is

when the 2-gerbe is trivial, then the stack of M5-branes gives a nonabelian gerbe. This

corresponds in Type IIA to a stack of D-branes forming a bundle. The differential geometry

of nonabelian gerbes has been studied at length in [11] (using algebraic geometry) and

in [12] (using differential geometry).

It may sound strange to discuss the physical (string theory) relevance of twisted non-

abelian gerbes before studying that of the easier case of nonabelian gerbes. This route

is however dictated by anomaly cancellation arguments and by the strong analogy be-

tween M5-branes in M-theory (with open M2-branes ending on them) and D-branes in

Type IIA (with open strings ending on them). Indeed, as we emphasise in section 3, the

study of global open string anomalies in the presence of a closed string NS B-field back-

ground is enough to conclude that there must be a U(1) gauge potential on a D-brane,

and that therefore a D-brane configuration is associated with a line bundle. Even more,

if the NS 3-form field H is torsion class (i.e. it is trivial in real De Rham cohomology

but not in integer cohomology) then we are obliged to consider coinciding branes form-

ing twisted U(n) bundles, and this implies that U(N) bundles also arise for coinciding

branes in the previous case where B is torsionless. Similarly, nontrivial backgrounds in

M-theory, giving rise to torsion classes, force us to describe the configuration of a stack

of M5-branes via twisted nonabelian gerbes. Nonabelian gerbes are then recovered as a

special case.

The knowledge of the topology of coinciding M5-branes is a first step toward the

formulation of the dynamics of these nonabelian gauge fields. Indeed the full structure of a

(twisted) nonabelian gerbe is considerably richer than just a local nonabelian 2-form gauge

potential, for example we also have a local 1-form gauge potential and its corresponding

– 2 –
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2-form field strength. It is using all these gauge potentials and their gauge transformations

(analyzed in section 4) that one can attack the problem of constructing an action describing

the dynamics of a stack of M5-branes.

A prominent role in nonabelian gerbes in M-theory is played by the E8 group. Indeed,

for topological considerations, the 2-form gauge potential can be always thought to be

valued in ΩE8, the E8 loop group, and for twisted nonabelian gerbes in Ω̃E8, the central

extension of the E8 loop group. This is so because of the simple homotopy structure of E8.

This corresponds to the fact, exploited in [15], and recalled at the end of this paper, that

in Type IIA theory a stack of D-branes gives in general a twisted Ω̃E8 bundle, so that at

least for topological considerations we can consider the gauge potential to be Ω̃E8 valued.

This adds to the growing evidence that E8 plays a main role in M-theory. For example the

subtle topology of the 3-form C-field is conveniently described considering it as a compos-

ite field, obtained via E8 valued 1-form gauge potentials, roughly we have C ∼ CS(Ai) =

Tr(AidAi)+
2
3 Tr(A

3
i ). Gauge theory with E8 gauge group has been used in [13], and then,

for manifolds with boundary, in [8] in order to globally define the Chern-Simons topological

term Φ(C) ∼
∫

1
6C∧G∧G. It has been shown in [14] to nicely confirm the K-theory formal-

ism in Type IIA theory upon compactification of M-theory. For further work in this direc-

tion see for example [15, 16]. Another instance where E8 gauge theory appears in M-theory

is in Hořava-Witten [17]. Finally it is well known that exceptional groups duality symme-

tries appear after compactification of supergravity theories, and it has been proposed that

these symmetries follow from a hidden E11 symmetry of 11-dimensional supergravity [18].

It is interesting to notice that the E8 formulation of the C-field is not the only one, in

particular in [19] another formulation related to OSp(1|32) gauge theory was studied, and

is currently investigated, see for example [20]. It might well be that a relation between these

two different descriptions can lead to a further understanding of the possibly dynamical

role of the E8 gauge theory.

This paper is organized as follows. Section 2 is a review of abelian gerbes. There

are many ways of introducing these structures (see [21] for a recent and nice introduction

to the subject), we choose a minimal approach, mainly focusing on Deligne cohomology

classes [22], these are a refinement of integral cohomology. Gerbes are then a geometric

realizations of Deligne classes. They are equivalent to differential characters, also called

Cheeger-Simons characters [23], in this case it is the holonomy of these higher order bundles

that is emphasized.

Global worldsheet anomalies of open strings ending on D-branes where studied in [24];

in section 3 we use gerbes in order to construct anomaly free worldsheet actions of strings

ending on multiple coinciding D-branes. We mainly follow [2] and [5], but also uncover some

details (especially about gauge transformations), simplify the presentation when torsion is

present, and emphasize that the gauge fields on the branes can be inferred just from the

NS B-field in the bulk.

Section 4 defines and studies twisted nonabelian gerbes. We then give an explicit

construction using the loop group of E8; we also see that any twisted nonabelian gerbe can

be realized by lifting an E8 bundle.

Section 5 uses twisted nonabelian gerbes in order to describe a stack of M5-branes.

– 3 –
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2. Gerbes

2.1 Abelian 1-Gerbes

Line bundles can be described using transition functions. Consider a cover {Oi} of the base

space M , then a line bundle is given by a set of U(1) valued smooth transition functions

{λij} that satisfy λij = λ−1ji and that on triple overlaps Oijk = Oi ∩ Oj ∩ Ok satisfy the

cocycle condition

λijλjk = λik . (2.1)

In the same spirit, a connection on a line bundle is a set of one-forms {αi} on Oi such that

on double overlaps Oij = Oi ∩Oj ,

αi = αj + λijdλ
−1
ij . (2.2)

Actually we are interested only in isomorphic classes of line bundles with connection,

indeed all physical observables are obtained fromWilson loops, and these cannot distinguish

between a bundle with connection (λij, αi) and an equivalent one (λ′ij , α
′
i), that by definition

satisfies

λ′ij = λ̃iλijλ̃
−1
j , α′i = αi + λ̃idλ̃

−1
i , (2.3)

where λ̃i are U(1) valued smooth functions on Oi. We are thus led to consider the class

[λij , αi], of all couples (λij , αi) that satisfy (2.2), and where (λij , αi) ∼ (λ′ij , α
′
i) iff (2.3)

holds. The space of all these classes (called Deligne classes) is the Deligne cohomology

group H1(M,D1). Wilson loops for the Deligne class [λij , αi] are given in subsection 2.4.

Similarly we can consider the Deligne class [λijk, αij , βi] ∈ H2(M,D2) where now

λijk : Oijk → U(1) is totally antisymmetric in its indices, λijk = λ−1jik = λkij etc., and it

satisfies the cocycle condition on triple overlaps

λijkλ
−1
jklλiklλ

−1
ijl = 1 , (2.4)

while the connection one-form {αij} satisfies on Oijk

αij + αjk + αki + λijkdλ
−1
ijk = 0 (2.5)

and the curving two-form {βi} satisfies on Oij

βi − βj + dαij = 0 . (2.6)

The triple (λijk, αij , βi) gives the zero Deligne class if

(λijk, αij , βi) = D(λ̃ij , α̃i) , (2.7)

where D is the Deligne coboundary operator, and λ̃ij : Oij → U(1) are smooth functions

and α̃i are smooth one-forms on Oi. Explicitly (2.7) reads1

λijk = λ̃ikλ̃
−1
jk λ̃

−1
ij (2.8)

αij = −α̃i + α̃j + λ̃ijdλ̃
−1
ij , (2.9)

βi = dα̃i . (2.10)

1The Deligne coboundary operator is D = ±δ + d, the sign factor in front of the Čech coboundary

operator depends on the degree of the form D acts on; it insures D2 = 0.

– 4 –
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There is also a geometric structure associated with the triple (λijk, αij , βi), it is that of

(abelian) gerbe [22] or bundle gerbe [33]. Equivalence classes of gerbes with connection

and curving are in 1-1 correspondence with Deligne classes, and with abuse of language

we say that [G] = [λijk, αij , βi] is the equivalence class of the gerbe G = (λijk, αij , βi).

The holonomy of an abelian gerbe is given in subsection 2.4. As before, gauge invariant

(physical) quantities can be obtained from the holonomy (Wilson surface), and this depends

only on the equivalence class of the gerbe.

Gerbes are also called 1-gerbes in order to distinguish them from 2-gerbes.

2.2 Abelian 2-Gerbes

Following the previous section, for the purposes of this paper, we understand under an

abelian 2-gerbe with curvings on M a quadruple (λijkl, αijk, βij , γi). Here λijkl : Oijkl ≡

Oi ∩Oj ∩Ok ∩Ol → U(1) is a 2-Čech cocycle

λijklλijlmλjklm = λiklmλijkm on Oijklm , (2.11)

and λijkl is totally antisymmetric, λijkl = λ−1jikl etc.. Next αijk ∈ Ω1(Oijk), βij ∈ Ω2(Oij)

and γi ∈ Ω3(Oi) are a collection of local one, two, and three-forms totally antisymmetric

in their respective indices and subject to the following relations:

αijk + αikl − αijl − αjkl = λijkldλ
−1
ijkl on Oijk , (2.12)

βij + βjk − βik = dαijk on Oijk , (2.13)

γi − γj = dβij on Oij . (2.14)

The equivalence class of the 2-gerbe with curvings (λijkl, αijk, βij , γi) is given by the

Deligne class [λijkl, αijk, βij , γi], where the quadruple (λijkl, αijk, βij , γi) represents the zero

Deligne class if it is of the form

λijkl = λ̃−1ijl λ̃
−1
jklλ̃ijkλ̃ikl , (2.15)

αijk = α̃ij + α̃jk + α̃ki + λ̃ijkdλ̃
−1
ijk , (2.16)

βij = β̃i − β̃j + dα̃ij , (2.17)

γi = dβ̃i . (2.18)

The above equations are summarized in the expression

(λijkl, αijk, βij , γi) = D
(

λ̃ijk, α̃ij , β̃i

)

, (2.19)

where D is the Deligne coboundary operator, λ̃ijk are U(1) valued functions on Oijk and

α̃ij , β̃i are respectively 1- and 2-forms on Oij and on Oi.

The Deligne class [λijkl, αijk, βij , γi] ∈ H3(M,D3) (actually the cocycle {λijkl}) defines

an integral class ξ ∈ H4(M,Z); this is the characteristic class of the 2-gerbe. Moreover

[λijkl, αijk, βij , γi] defines the closed integral 4-form

1

2πi
G =

1

2πi
dγi . (2.20)

The 4-form G is a representative of ξR: the image of the integral class ξ in real de Rham

cohomology.

– 5 –
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In the same way as abelian 2-gerbes were described above we can define abelian n− 1-

gerbes with curvings using Deligne cohomology classes in Hn(M,Dn). Correspondingly we

have characteristic classes in Hn+1(M,Z). The case n = 1 gives equivalence classes of line

bundles with connections, and in this case the characteristic class is the Chern class of the

line bundle.

The relation between a Deligne class and its characteristic class leads to the following

exact sequence ([22], see [25] for an elementary proof)

0→ Ωn
Z (M)→ Ωn(M)→ Hn(M,Dn)→ Hn+1(M,Z)→ 0 , (2.21)

where Ωn
Z (M) is the space of closed integral (i.e. whose integration on n-cycles is an integer)

n-forms on M . We also have the exact sequence (see for example [26])

0→ Hn(M,U(1))→ Hn(M,Dn)→ Ωn+1
Z (M)→ 0 , (2.22)

where, as in (2.20), G ∈ Ωn+1
Z (M) is the curvature of the n− 1-gerbe (λi1,...in+1 , αi1...in ,. . .,

γi).

It is a result of [23], that Hn(M,Dn) is isomorphic to the space of differential characters

Ȟn+1(M) (Cheeger-Simons characters). An element of Ȟn+1(M) is a pair (h, F ) where h

is a homomorphism from the group of n-cycles Zn(M) to U(1) and F is an (n + 1)-form.

The pair (h, F ) is such that for any (n + 1)-chain µ ∈ Cn+1(M) with boundary ∂µ the

following relation holds

h(∂µ) = exp

(
∫

µ

F

)

. (2.23)

The isomorphism with Deligne cohomology groups is given essentially via the holonomy of

an n− 1-gerbe, and F = G.

2.3 Special cases

An important example of a 2-gerbe is obtained from an element θ belonging to the torsion

subgroup H4
tors(M,Z) of H4(M,Z). Every torsion element θ is the image of an element ϑ ∈

H3(M,Q/Z) via the Bockstein homomorphism β : H3(M,Q/Z) → H4(M,Z) associated

with the exact sequence Z → Q → Q/Z. As a Čech cocycle ϑ can be represented as a Q/Z
valued cocycle {ϑijkl}. Now {ϑijkl} can be thought of as a Čech cocycle with values in

U(1) valued functions on Oijkl, we have of course dϑijkl = 0 and we can thus consider the

2-gerbe (ϑijkl, 0, 0, 0) . The equivalence class of this 2-gerbe is the Deligne class

[ϑijkl, 0, 0, 0] ; (2.24)

it depends only on θ = β(ϑ), the characteristic class of this Deligne class.

Given a globally defined 3-form C ∈ Ω3(M) we can construct the Deligne class

[1, 0, 0, C|Oi
] . (2.25)

Accordingly with (2.21) it has trivial characteristic class and it is the zero Deligne class

iff C ∈ Ω3Z(M). Indeed in this case we can write (1, 0, 0, C|Oi
) = D(λijk, αij , βi) where

(λijk, αij , βi) is a 1-gerbe with curvature C. Following [5], Deligne classes like [1, 0, 0, C|Oi
]
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will be called trivial. Notice that a trivial characteristic class is the same as a zero charac-

teristic class while a trivial Deligne class is usually not a zero Deligne class.

These two constructions obviously also apply to n-gerbes. In particular we have the

torsion 1-gerbe class

[ϑijk, 0, 0] , (2.26)

associated with the element θ ∈ H3
tors(M,Z). Similarly we have the trivial 1-gerbe class

[1, 0, B|Oi
] associated with a globally defined 2-form B ∈ Ω2(M).

Another family of 2-gerbes, the so-called Chern-Simons 2-gerbes, comes from a prin-

cipal G-bundle PG → M . Its characteristic class is the first Pontryagin class of PG,

p1 ∈ H4(M,Z). If G is connected, simply connected and simple and if A is a connec-

tion on PG, given locally by a collection of Lie(G)-valued one-forms Ai, then the image of

p1 in real cohomology equals the cohomology class of TrF 2, and we can identify the local

three-forms γi with the Chern-Simons forms CS(Ai),

γi = Tr(AidAi) +
2

3
Tr(A3i ) .

The two-forms βij and αijkl and the Čech cocycle λijkl can in principle be obtained by

solving descent equations [27] (see also [28]). We will denote the 2-gerbe obtained this way

as CS(p1).

Notice that if dimM ≤ 15, then there is a one to one correspondence between H 4(M,Z)
and isomorphism classes of principal E8 bundles on M , see [29] for an elementary proof.

This follows from the fact that the first nontrivial homotopy group of E8, except π3(E8) =

Z, is π15(E8). We then have that up to the 14th-skeleton E8 is homotopy equivalent to the

Eilenberg-MacLane space K(Z, 3) (defined as the space whose only nontrivial homotopy

group is π3(K(Z, 3)) = Z). Similarly up to the 15th-skeleton we have BE8 ∼ K(Z, 4), where
BE8 is the classifying space of E8 principal bundles. For the homotopy classes of maps

from M to E8 it then follows that [M,E8] = [M,K(Z, 3)] = H3(M,Z) if dimM ≤ 14,

and similarly {Equivalence classes of E8 bundles on M} = [M,BE8] = [M,K(Z, 4)] =

H4(M,Z) if dimM ≤ 15. Therefore, corresponding to an element a ∈ H 4(M,Z) we have

an E8 principal bundle P (a)→M with p1(P (a)) = a and picking a connection A on P (a)

we have a Deligne class, the Chern-Simons 2-gerbe CS(a), with a being its characteristic

class.

As in this paper we are mainly concerned with 2-gerbes associated with 5-branes

embedded in 11-dimesional spacetime it is worth to recall also the homotopy groups of the

groups G2, Spinn, F4, E6 and E7. Except π3 which is of course Z in each case, the first

nonzero ones are π6(G2), π7(Spinn) where n ≥ 7, π8(F4), π8(E6) and π11(E7). So in the

case of a 5-brane, with 6-dimensional worldsheet M , we can replace E8 bundles with G2,

Spinn where n ≥ 7, F4, E6 or E7 bundles in the above discussion.

2.4 Holonomy of line bundles, 1-gerbes and 2-gerbes

The holonomy can be associated with any Deligne class. It gives the corresponding dif-

ferential character for cycles that arise as images of triangulated manifolds. Here we just

collect formulas in the case of 0-, 1- and 2-gerbes [30], see also [5].
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Line bundles. The holonomy of [λij , αi] around a loop ς : S → M can be calculated

splitting S in sufficiently small arches b and corresponding vertices v, such that each ς(b)

is completely contained in an open Oi of the cover {Oi} of M . The index i depends on the

arch e, we thus call it ρ(e), and write ς(e) ⊂ Oρ(e); we also associate an index ρ(v) with

every vertex v and write ς(v) ⊂ Oρ(v). We then have

hol(ς) =
∏

e

exp

∫

e

ς∗αρ(e)
∏

v⊂e

λ
σe,v
ρ(e)ρ(v)(ς(v)) , (2.27)

where σe,v = 1 if v is the final point of the oriented arch e, and −1 if it is the initial point.

Note that the holonomy depends only on the class [λij , αi] and not on the representative

(λij , αi) or on the splitting of S or the choice of the index map ρ. Of course if the loop is

the boundary of a disk, i.e., if ζ : D →M is such that ζ|∂D = ς, then hol(ς) = e
∫

D
ζ∗F .

1-gerbes. We now consider the map ζ : Σ→M where Σ is a 2-cycle that we triangulate

with faces, edges and vertices, denoted f , e and v. The faces f inherit the orientation of Σ,

we also choose an orientation for the edges e. It is always possible to choose a triangulation

subordinate to the open cover Oi of M and define an index map ρ which maps faces, edges

and vertices, into the index set of the covering of M in a way that ζ(f) ∈ Oρ(f), etc.. The

holonomy of the class [λijk, αij , βi] is then

hol(ζ) =
∏

f

exp

∫

f

ζ∗βρ(f)
∏

e⊂f

exp

∫

e

ζ∗αρ(f)ρ(e)
∏

v⊂e⊂f

λρ(f)ρ(e)ρ(v)(ζ(v)) , (2.28)

where it is understood that αρ(f)ρ(e) appears with the opposite sign if f and e have incom-

patible orientations. Similarly the inverse of λρ(f)ρ(e)ρ(v) appears if f and e have incom-

patible orientations or if v is not the final vertex of e. As before the holonomy depends

only on the equivalence class of the gerbe and not on the chosen representative gerbe. It

is also independent from the choice of triangulation, of index map ρ and of orientation of

the edges.

2-gerbes. We now consider the map ξ : Γ → M where Γ is a 3-cycle. We triangulate

it with tetrahedrons, faces, edges and vertices, denoted t, f , e and v. The triangulation

is chosen to be subordinate to the open cover {Oi} of M . The index map ρ now maps

tetrahedrons, faces etc. into the index set of the covering {Oi}. The formula for the

holonomy of the class [λijkl, αijk, βij , γi] is

hol(ξ) =
∏

t

exp

∫

t

ξ∗γρ(t)
∏

f⊂t

exp

∫

f

ξ∗βρ(t)ρ(f) × (2.29)

×
∏

e⊂f⊂t

exp

∫

e

ξ∗αρ(t)ρ(f)ρ(e)
∏

v⊂e⊂f⊂t

λρ(t)ρ(f)ρ(e)ρ(v)(ξ(v)) . (2.30)

3. Open strings worldsheet anomalies, 1-gerbes and twisted bundles

It is commonly said that the low energy effective action of a stack of n branes is a U(n)

Yang-Mills theory. Therefore n coinciding branes are associated with a U(n) bundle. More

in general, in the presence of a nontrivial H field we do not have a U(n) bundle, rather a
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twisted one, i.e. we have a PU(n) bundle that cannot be lifted to a U(n) one, i.e. the PU(n)

transition functions gij cannot be lifted to U(n) transition functions Gij such that under

the projection U(n) → PU(n) we have Gij → gij and such that the cocycle condition

GijGjkGki = 1 holds. The twisting is necessary in order to cancel global worldsheet

anomalies for open strings ending on D-branes. In this section we study this mechanism.

Consider for simplicity the path integral for open bosonic string theory in the presence of

D-branes wrapping a cycle Q inside spacetimeM and with a given closed string background

metric g and NS three form H. We have
∫

Dζ ei
∫

Σ
LNG e

∫

Σ
ζ∗d−1H Trhol−1∂Σ(ζ

∗A) (3.1)

here ζ : Σ → M are maps from the open string worldsheet Σ to the target space-

time M such that the image of the boundary ∂Σ lives on Q, we denote by ΣQ(M)

this space, LNG is the Nambu-Goto lagrangian,
∫

Σ ζ
∗d−1H is locally given by

∫

Σ ζ
∗B =

∫

Σ ε
αβBMN∂αX

M∂βX
N and is the topological coupling of the open string to the NS field,

and Tr holγ(ζ
∗A) is the trace of the holonomy (Wilson loop) around the boundary ∂Σ of

the nonabelian gauge field A that lives on the n coincident D-branes wrapping Q. Now,

while the exponential of the Nambu-Goto action is a well defined function from ΣQ(M) to

the circle U(1), the other U(1) factor e
∫

Σ
ζ∗B is more problematic because only H = dB

is globally defined, while B = “d−1H” is defined only locally. In order to define this

term we need to know not only the integral cohomology of H but the full Deligne class

[G] = [λijk, αij , βi] whose curvature is H. We call the gerbe G|Q trivial if its class [G|Q] is

trivial i.e. if (cf. (2.25)): 1) H restricted to Q is cohomologically trivial, that is it exists a

BQ globally defined on Q such that

H|Q = dBQ , (3.2)

and 2) the characteristic class ξ of the gerbe is trivial (H|Q is trivial also in integer coho-

mology). It turns out that if G|Q is trivial, then defining

e
∫

Σ
ζ∗d−1H ≡ hol(Σ]D)e

∫

D
ζ̃∗BQ (3.3)

we have a well defined function on ΣQ(M). Here D is the disk and ζ̃ : D → Q is such that

the boundary of ζ̃(D) coincides with the boundary of ζ(Σ) (we have assumed Q simply

connected and ∂Σ a single loop). Moreover hol(Σ]D) ≡ hol(ζ]ζ̃) is the holonomy of the

closed surface ζ(Σ)]ζ̃(D) obtained by gluing together ζ(Σ) and ζ̃(D) (and thus in particular

it is obtained by changing the orientation of D).

The two terms hol(Σ]D) and e
∫

D
ζ̃∗B depend on ζ̃ : D → Q and are not functions on

ΣQ(M) but respectively sections of a U(1) (or line) bundle ∂−1L[G|Q]
−1 on ΣQ(M) and of

the opposite bundle ∂−1L[G|Q] on ΣQ(M) so that indeed their product is a well defined

function on ΣQ(M).2 The bundle ∂−1L[G|Q] → ΣQ(M) is constructed from the 1-gerbe

2A section of a canonically trivial bundle such as L−1L → ΣQ(M) is automatically a global function

on ΣQ(M) because L−1L → ΣQ(M) has the canonical section 1 (locally 1 is the product of an arbitrary

section s−1 of L−1 and of the corresponding section s of L) and two global sections define a U(1) function

on the base space
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class. Without entering this construction (described after eq. (3.7)) we can directly see

that expression (3.3) is a well defined function on ΣQ(M) by showing its independence

from the choice of the map ζ̃. Given another map ζ̃ ′ we have

hol(ζ]ζ̃)/hol(ζ]ζ̃ ′) = hol(ζ̃ ′]ζ̃) = e
∫

D
ζ̃′∗BQ−

∫

D
ζ̃∗BQ , (3.4)

where the first equality is the holonomy gluing property and the last equality holds because

the integral of BQ on ζ̃ ′]ζ̃ equals the holonomy of the gerbe since BQ gives a gerbe (1, 0, BQ)

on Q equivalent to G|Q: [1, 0, BQ] = [G|Q].

Expression (3.3) depends on the equivalence class of the initial gerbe G and also on

BQ, not just on [1, 0, BQ]. Had we chosen a different 2-form B ′Q such that [1, 0, B ′Q] =

[G|Q] = [1, 0, BQ], then the result would have differed by the phase

e
∫

D
ζ̃∗(B′

Q−BQ) , (3.5)

where 1
2πiω ≡

1
2πi (B

′
Q − BQ) is a closed integral 2-form, recall (2.22). In order to absorb

this extra phase (this gauge transformation) we have to consider the last term in (3.1):

Tr hol∂Σ(ζ
∗A). This is a well defined U(1)-valued function on ΣQ(M) and A is a true U(n)

connection on a nonabelian bundle on Q, with Tr the trace in the fundamental of U(n).

Under the gauge transformation BQ → B′Q = BQ+ω we have to transform accordingly the

U(n) bundle in order to compensate for the phase factor (3.5). This is obtained considering

the new U(n) bundle with curvature F ′ = F + ω obtained by tensoring the initial U(N)

bundle on Q with the U(1) bundle on Q defined by the closed 2-form ω (the definition of

this U(1) bundle is unique since we have considered Q simply connected). If we consider

just one D-brane we recover the gauge invariance of the total U(1) field BQ−F ; the gauge

transformations locally read BQ → BQ + dΛ and A→ A+Λ.

In conclusion using anomaly cancellation we have seen that if the open strings couple

to the B field, then their ends must couple to a U(1) gauge field A. So far there is no

requirement for nonabelian gauge fields.

The situation is more involved if G|Q has torsion, i.e. if the three form H restricted to

Q is cohomologically trivial, but the characteristic class of the gerbe is nontrivial. In this

case (3.3) is not well defined because [1, 0, BQ] 6= [G|Q]. However any torsion gerbe can

be obtained form a lifting gerbe, i.e. from a gerbe that describes the obstruction of lifting

a PU(n) bundle to a U(n) one (with appropriate n). We now describe this lifting gerbe

and the associated twisted U(n) bundle. Let P → M be a PU(n) bundle and consider

the exact sequence U(1) → U(n)
π
→PU(n). Consider an open cover {Uα} of PU(n) with

sections sα : Uα ⊂ PU(n) → U(n). Consider also a good cover {Oi} of M such that each

transition function gij of P → M has image contained in a Ui (this is always doable, we

also fix a map from the couples of indices (i, j) to the α indices). Let Gij = sα(gij), these

are U(n) valued functions and satisfy:

GikG
−1
jk G

−1
ij = λijk ,

where λijk is U(1) valued as is easily seen applying the projection π and using the cocycle

relation for the gij transition functions. We say that Gij are the transition functions for

a U(n) twisted bundle and that the lifting gerbe is defined by the twist λijk. It is indeed
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easy to check that the λijk satisfy the cocycle condition on quadruple overlaps Oijkl. A

connection for a twisted bundle is a set of 1-forms Ai such that αij ≡ −Ai +GijAjG
−1
ij +

GijdG
−1
ij is a connection for the corresponding gerbe (in particular π∗A is a connection on

the initial PU(n) bundle P ). We restate this construction this way: consider the couple

(Gij , Ai), and define

D(Gij , Ai) ≡

(

(δG)ijk, (δA)ij +GijdG
−1
ij ,

1

n
Tr dAi

)

=

(

GikG
−1
jk G

−1
ij ,−Ai +GijAjG

−1
ij +GijdG

−1
ij ,

1

n
Tr dAi

)

. (3.6)

If this triple has abelian entries then it defines a gerbe, and (Gij , Ai) is called a twisted

bundle. We also say that the twisted bundle (Gij , Ai) is twisted by the gerbe D(Gij , Ai).

Notice that the nonabelian D operation becomes the abelian Deligne coboundary operator

D if n = 1 in U(n) (cf. (2.7)).

More in general, if G|Q = (λijk, αij , βi)|Q, is torsion then it follows from the results

in [31] that one can always find a twisted bundle (Gij , Ai) such that

(λijk, αij , βi)|Q = D(Gij , Ai) + (1, 0, BQ) , (3.7)

where BQ is a globally defined abelian 2-form.

We can now correctly define the path integral (3.1). We proceed is three steps.

i) Using the holonomy gluing property it is easy to see that hol(Σ]D) ≡ hol(ζ]ζ̃) is

a section of the line bundle ∂−1L[−G|Q] → ΣQ(M) at the point ζ ∈ ΣQ(M). The

line bundle ∂−1L[−G|Q] → ΣQ(M) is the pull back to ΣQ(M) of the line bundle

on loop space L[−G|Q] → L(Q). We characterize L[−G|Q] → L(Q) (here −G|Q is a

generic gerbe over Q) by realizing its sections L(Q) → L[−G|Q] through functions

s : D(Q) → C where D(Q) is the space of maps from the disk D into Q; the

boundaries of these maps are loops in L(Q). The function s is a section of L[−G|Q] →

L(Q) if s(ζ̃) = hol(ζ̃]ζ̃ ′)s(ζ̃ ′) for all ζ̃ , ζ̃ ′ ∈ D(Q) that are equal on the boundary:

ζ̃|∂D = ζ̃ ′|∂D. Expression hol(ζ̃]ζ̃ ′) above is the holonomy of [−G|Q] on the closed

surface ζ̃(D)]ζ̃ ′(D) obtained by gluing together ζ̃(D) and ζ̃ ′(D).

ii) If we define T = D(Gij , Ai), then (3.7) reads G|Q − T = (1, 0, BQ) and we see that

e
∫

D
ζ̃∗BQ is a section of the line bundle L[G|Q−T ] → L(Q). From i) and ii) we see that

we need a section of the line bundle L[T ] → L(Q).

iii) A section of the line bundle L[T ] → L(Q) is given by the inverse of the trace of the

holonomy of the twisted U(n) bundle (Gij , Ai). The definition is as follows. The pull

back of T on the disk D via ζ̃ : D → Q is trivial since D is two dimensional. We can

thus write

D(ζ̃∗Gij , ζ̃
∗Ai) = D(λ̃ij, α̃i) + (1, 0, b) (3.8)

so that (ζ̃∗Gij λ
−1
ij , ζ̃

∗Ai − α̃i) is a true U(n) bundle. We then define

Tr hol∂Σ(ζ
∗A) ≡ Trhol∂Σ(ζ̃

∗A− α̃)e−
∫

D
b , (3.9)
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where Tr hol∂Σ(ζ̃
∗A − α̃) is the trace of the holonomy of the U(N) bundle (ζ̃∗Gij

λ̃−1ij , ζ̃
∗Ai− α̃i). Note that if we consider the couple (Gij , Ai) in the adjoint represen-

tation, then it defines a true SU(n) bundle. Consistently, if in (3.9) we consider the

trace in the adjoint representation instead of the trace in the fundamental, we then

obtain the holonomy of this SU(n) bundle. It is easy to check that definition (3.9) is

independent from the choice of the trivialization λ̃, α̃, b and of the map ζ̃ : D → Q.

We conclude that expression (3.1) is well defined because we have the product of the

three sections

hol(Σ]D) e
∫

D
ζ̃∗BQ Trhol−1∂Σ(ζ̃

∗A) , (3.10)

respectively sections of the bundles ∂−1L[−G|Q], ∂
−1L[G|Q−T ] and ∂

−1L[T ] on the base space

ΣQ(M) obtained by pulling back the corresponding bundles on the loop space L(Q) via

the map ΣQ(M)
∂
→ L(Q). The product of these three bundles is canonically trivial.

Expression (3.10) depends on the Deligne classes [G], [T ] and on the potential BQ; it

is easily seen that it does not depend on the choice of the map ζ̃ : D → Q. In order

to obtain a gauge invariant action the gauge transformation BQ → B′Q = BQ + ω comes

always together with the transformation of the twisted U(N) bundle (Gik, Ai) obtained by

tensoring (Gik, Ai) with the U(1) bundle on Q defined by the closed 2-form ω.

In conclusion using anomaly cancellation we have seen that if the open strings couple

to the B field — more precisely to the gerbe class [G] — then their ends must couple to a

twisted U(n) gauge field A if on the boundary G is torsion.

For sake of simplicity, up to now we have omitted spinor fields. In superstring theory,

due to the determinant of the spinor fields, we have an extra term entering the functional

integral: Pfaff. This is a section of the bundle ∂(L[ωijk ,0,0]) → ΣQ(M) where [ωijk, 0, 0]

is the Deligne class associated with the second Stiefel-Whitney class ω2 ∈ H2(Q,Z2) of

the normal bundle of Q [or, which is the same, with its image W3 in H3
tors(Q,Z)]. In

this case we consider a PU(n) bundle P → Q with curvature two form such that instead

of (3.7) the following equation holds, (λijk, αij , βi)|Q−(ωijk, 0, 0) = D(Gij , Ai)+(1, 0, BQ) .

Correspondingly, the product

Pfaff hol(Σ]D) e
∫

D
ζ̃∗BQ Trhol−1∂Σ(ζ̃

∗A) , (3.11)

is a well defined function on ΣQ(M) because ∂−1L[ωijk,0,0] ∂
−1L[−G|Q]∂

−1L[1,0,B|Q] ∂
−1L[T ]

is the trivial bundle. We thus arrive at the general condition for a stack of D-branes to be

wrapping a cycle Q in M . It is

[λijk, αij , βi]|Q − [ωijk, 0, 0] = [D(Gij , Ai)] + [1, 0, BQ] , (3.12)

i.e. the stack of D-branes must form a twisted bundle, the twist being given by a gerbe

that up to a trivial gerbe is equal to the initial gerbe associated with the 3-form H minus

the gerbe obtained from the second Stiefel-Whitney class of the normal bundle of Q. In

particular, for the characteristic classes of these gerbes we have,

[H]|Q −W3 = ξ[D(Gij ,Ai)] , (3.13)
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where [H]|Q ≡ ξG|Q is the characteristic class of the restriction to Q of the gerbe G =

(λijk, αij , βi) associated with the 3-form H, and W3 = β(ω2) is the obstruction for having

Spinc structure on the normal bundle of Q, in fact β is the Bockstein homomorphism

associated with the short exact sequence Z ×2
→ Z → Z2 .

4. Twisted nonabelian gerbes (2-gerbe modules)

In this section we slightly generalize the notion of twisted bundle (1-gerbe module) and

then consider the one degree higher case. In (3.6) twisted U(n) bundles where defined.

More generally, consider the central extension:

U(1)→ G
π
→ G/U(1) (4.1)

i.e. where U(1) is mapped into the center Z(G) of G. (In the following we will not distin-

guish between U(1) and its image kerπ ⊂ G). A twisted G bundle with connection A and

curvature F is a triple (Gij , Ai, Fi) such that

Fi = GijFjG
−1
ij , (4.2)

and such that

DF (Gij , Ai) ≡
(

(δG)ijk , (δA)ij +GijdG
−1
ij , dAi +Ai ∧Ai − Fi

)

= (GikG
−1
jk G

−1
ij ,−Ai +GijAjG

−1
ij +GijdG

−1
ij , dAi +Ai ∧Ai − Fi) (4.3)

has U(1)- and Lie(U(1))-valued entries.

It is not difficult to check that the triple (4.3) defines a gerbe (hint: since the group

extension is central, d((δA)ij +GijdG
−1
ij ) = −dAi −Ai ∧Ai +Gij(dAj +Aj ∧Aj)Gij). In

the U(n) case there was no need to introduce the extra data of the curvature F because at

the Lie algebra level Lie(U(n)) = Lie(U(n)/U(1)) ⊗ Lie(U(1)), so that F was canonically

constructed from A.

The notion of twisted 1-gerbe (2-gerbe module) can be introduced performing a similar

construction. While twisted nonabelian bundles are described by nonabelian transition

functions {Gij}, twisted nonabelian gerbes are described by transition functions {fijk, ϕij}

that are respectively valued in G and in Aut(G), fijk : Oijk → G, ϕij : Oij → Aut(G), and

where the action of ϕij on U(1) is trivial: ϕij |U(1) = id. The twisted cocycle relations now

read

λijkl = f−1ikl f
−1
ijkϕij(fjkl)fijl , (4.4)

ϕijϕjk = Adfijkϕik , (4.5)

where {λijkl} is U(1)-valued. It is not difficult to check that {λijkl} is a Čech 3-cocycle and

thus defines a 2-gerbe (without curvings). This cocycle may not satisfy the antisymmetry

property in its indices, this however can always be achieved by a gauge transformation with

a trivial cocycle. In the particular case λijkl = 1 equations (4.4), (4.5) define a nonabelian

1-gerbe (without curvings).
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One can also consider twisted gerbes with connections 1-forms: (fijk, ϕij , aij ,Ai) where

aij ∈ Lie(G)⊗ Ω1(Oij), Ai ∈ Lie(Aut(G)) ⊗ Ω1(Oi), and twisted gerbes with curvings:

(fijk, ϕij , aij ,Ai, Bi, dij ,Hi) , (4.6)

where Bi, dij are 2-forms and Hi 3-forms, all of them Lie(G)-valued; Bi ∈ Lie(G)⊗Ω2(Oi),

dij ∈ Lie(G) ⊗ Ω2(Oij), Hi ∈ Lie(G) ⊗ Ω3(Oi). Before defining a twisted 1-gerbe we need

to introduce some more notation. Given an element X ∈ Lie(Aut(G)), we can construct a

map (a 1-cocycle) TX : G→ Lie(G) in the following way,

TX(h) ≡ [hetX (h−1)] ,

where [hetX(h−1)] is the tangent vector to the curve hetX(h−1) at the point 1G; if X is

inner, i.e. X = adY with Y ∈ Lie(G), then etX (h−1) = etY h−1e−tY and we simply have

TX(h) = TadY (h) = hY h−1 −Y . Given a Lie(Aut(G))-valued form A, we write A = AρXρ

where {Xρ} is a basis of Lie(Aut(G)). We then define TA as

TA ≡ A
ρTXρ . (4.7)

We use the same notation TA for the induced map on Lie(G). Now we extend this map to

allow TA to act on a Lie(G)-valued form η = ηαY α, where {Y α} is a basis of Lie(G), by

TA(η) = ηα ∧ TA(Y
α). Also we define

Ki ≡ dAi +Ai ∧Ai , (4.8)

kij ≡ daij + aij ∧ aij + TAi
(aij) . (4.9)

A twisted 1-gerbe is a set (fijk, ϕij , aij ,Ai, Bi, dij ,Hi) such that, ϕij |U(1) = id, TAi
|U(1) = 0,

ϕijϕjk = Adfijkϕik , (4.10)

Ai + adaij = ϕijAjϕ
−1
ij + ϕijdϕ

−1
ij , (4.11)

dij + ϕij(djk) = fijkdikf
−1
ijk + TKi+adBi

(fijk) , (4.12)

ϕij(Hj) = Hi + d dij + [aij , dij ] + TKi+adBi
(aij)− TAi

(dij) , (4.13)

and such that DH(fijk, ϕij , aij ,Ai, Bi, dij) ≡ (λijkl, αijk, βij , γi) has U(1)- and Lie(U(1))-

valued elements, where

λijkl ≡ f−1ikl f
−1
ijkϕij(fjkl)fijl , (4.14)

αijk ≡ aij + ϕij(ajk)− fijkaikf
−1
ijk − fijkdf

−1
ijk − TAi

(fijk) , (4.15)

βij ≡ ϕij(Bj)−Bi − dij + kij , (4.16)

γi ≡ Hi − dBi + TAi
(Bi) , (4.17)

and we have used the same notation ϕij for the induced map ϕij : Oij → Aut(Lie(G)).3

3In the special case G = U(1) the DH operation is equivalent to the usual Deligne coboundary operator,

provided we change f → f−1, B → −B, (d→ −d, H → −H) and set H = 0.
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If there is zero on the l.h.s. of equations (4.15)–(4.17) and 1 on the l.h.s. of eq. (4.14),

equations (4.10)–(4.17) define a nonabelian gerbe4. A little algebra, see the appendix,

shows that in the less trivial situation, when we assume that λijkl is U(1)-valued and αijk,

βij and γi are Lie(U(1))-valued, the above equations guarantee that (λijkl, αijk, βij , γi) is

a honest 2-gerbe; hence the name twisted 1-gerbe for the set (fijk, ϕij , aij ,Ai, Bi, dij ,Hi).

The 2-gerbe may not satisfy the antisymmetry property in its indices. This however

can always be achieved by a gauge transformation with a trivial Deligne class.

We say that the nonabelian gerbe (fijk, ϕij , aij , dij , Ai, Bi,Hi) is twisted by the 2-

gerbe (λijkl, αijk, βij , γi). We can also say (compare to the one degree lower situation)

that we have a 2-gerbe module, or that we have a lifting 2-gerbe. The name “lifting 2-

gerbe” comes from the following observation: under the projection π, that enters the group

extension U(1) → G
π
→ G/U(1) , the twisting 2-gerbe disappears and we are left with an

ordinary G/U(1)-nonabelian gerbe (for example the map ϕij is now given by π(ϕ(ĝ)) and

is independent from the lifting ĝ of the element g ∈ G/U(1)). The twisting 2-gerbe is the

obstruction to lift the nonabelian G/U(1)-gerbe to a G-gerbe.

4.1 Twisted Ω̃E8 gerbes

Consider the exact sequence of groups,

1→ ΩE8 → PE8
π
→E8 → 1 , (4.18)

where the loop group ΩE8 is the space of loops based at the identity 1E8 , and the based

path group PE8 is the space of paths starting at the identity 1E8 .
5 Expression (4.18) states

that ΩE8 is a normal subgroup of PE8, the quotient being E8. Consider now the problem of

lifting an E8 bundle to a PE8 bundle. Since every path can be homotopically deformed to

the identity path, we have that PE8 is contractible, and therefore every PE8 bundle is the

trivial bundle. This implies that only the trivial E8 bundle can be lifted. Any nontrivial

E8 bundle cannot be lifted and we thus obtain a nontrivial ΩE8 1-gerbe. If dimM ≤ 15

(equivalence classes of) E8 bundles are in 1-1 correspondence with elements a ∈ H 4(M,Z)
and we can say that a is the obstruction to lift the E8 bundle, i.e. that a characterizes

the gerbe. More explicitly the ΩE8 gerbe has Aut(ΩE8) valued maps ϕij coming from the

conjugation action by some Gij ∈ PE8 (these are the transition functions of the twisted

PE8 bundle associated with the ΩE8 gerbe). Since ΩE8 is normal in PE8 also the actions

TAi
of the Lie(Aut(ΩE8)) valued one forms Ai on h ∈ ΩE8 and X ∈ Lie(ΩE8) can be

understood as TAi
(h) = hAih

−1 − Ai and TAi
(X) = [X,Ai] with some Lie(PE8)-valued

forms Ai that are a lift of the connection on the E8 bundle. (See [12] for more details on

gerbes from an exact sequence 1→ H → G
π
→G/H → 1).

Finally consider the (universal) central extension of ΩE8,

1→ U(1)→ Ω̃E8
π
→ΩE8 → 1 , (4.19)

4A general nonabelian 1-gerbe is defined by equations (4.10)-(4.17), where now the group G is an

arbitrary group (not necessarily a central extension).
5More precisely we should use smooth loops and paths with sitting instant [32].
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and try to lift the ΩE8 gerbe to an Ω̃E8 gerbe, this is in general not possible and the

obstruction gives rise to a twisted Ω̃E8 gerbe, the twist being described by a 2-gerbe.

Actually one has always an obstruction in lifting the ΩE8 gerbe if at least M ≤ 14,

and therefore the lifting 2-gerbe thus obtained has characteristic class a (characterizing

the initial E8 bundle). The twisted Ω̃E8 gerbe has Aut(Ω̃E8) valued maps ϕij , obtained

extending the previous ϕij maps in such a way that they act trivially on the center U(1)

of Ω̃E8, also the TAi
map is similarly extended.

A similar statement holds for E8 replaced by G2, Spinn where n ≥ 7, F4, E6, E7, when

one correspondingly lowers the dimension of M .

5. M5-brane anomaly, 2-gerbes and twisted nonabelian 1-gerbes

In section 3 cancellation of global anomalies appearing in the open string worldsheet with

strings ending on a stack of D-branes led to condition (3.13) for the D-brane configuration

(charges). Here one could in principle follow a similar approach and study global anomalies

of the path integral of open M2-branes ending on M5 branes. An alternative approach is

to study anomalies of 11-dimensional supergravity in the presence of M5-branes. The rel-

evant mechanism is the cancellation between anomalies of the M5 brane quantum effective

action and anomaly inflow from the 11-dimensional bulk through a non invariance of the

Chern-Simons plus Green-Schwarz topological term Φ(C) ∼
∫

1
6C∧G∧G−CI8(g) where C

is the 3-form potential of 11-dimensional supergravity, G = dC and I8 ∼ (TrR2)2 −TrR4,

with R being the curvature. We are interested in the global aspects of this mechanism,

where we cannot assume that C is globally defined and that G is topologically trivial.

This problem has been studied in [13, 6, 7]; and in the more general case where the

11-dimensional space has boundaries in [8]. Let Y be the 11-dimensional spacetime: a

spin manifold. Let also V be the six dimensional M5-brane worldvolume embedded in

Y ι : V ↪→ Y , we assume it compact and oriented. It turns out [7] that if the field

strength G is cohomologically trivial on V and V is the product space V = S × Q, with

S a circle with supersymmetric spin structure and Q a five manifold, then the M5-brane

can wrap V iff Q is a Spinc manifold. If this is not the case the M5-brane has a global

anomaly: one detects it from the vanishing of the M5-brane partition function. The parti-

tion function is zero every time that there is a torsion element θ ∈ H 3
tors(Q,Z) ⊂ H3(Q,Z)

different from zero. More in general, without assuming that V = S × Q, we have a

global anomaly if there exists an element θ ∈ H 4
tors(V,Z) different from zero. As sug-

gested in [7] a way to cancel this anomaly is to turn on a background field G such that,

essentially,

[G]|V = θ , (5.1)

where [G]|V is the integral class associated with G restricted to V . This condition should

be compared to (3.13) when the l.h.s. of (3.13) is zero: [H]|Q = W3. In the case V = S×Q,

dimensional reduction of the M5-brane on the circle S leads to a Type IIA D4-brane wrap-

ping Q and satisfying [H]|Q = W3.
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In [8] condition (5.1) is sharpened. First a mathematically precise definition of C

and of Φ(C) is given, it is in terms of connections on E8 bundles. Associated with the

field strength G on spacetime Y with metric g, there is an integral cohomology class

a ∈ H4(Y,Z). This determines an E8 bundle P (a) → Y (cf. section 2.3). The field C can

then be described by a couple (A, c) where A is an E8 connection on P (a) and c is a globally

defined Lie(U(1))-valued 3-form on Y . We denote by Č = (A, c) this E8 description of the

C-field. In particular the holonomy of Č around a 3-cycle Σ is given as

holΣ(Č) = exp

[(
∫

Σ
CS(A)−

1

2
CS(ω) + c

)]

,

with properly normalized Chern-Simons terms corresponding to the gauge field A and the

spin connection ω such that exp[(
∫

ΣCS(A)] is well defined and exp[ 12 (
∫

ΣCS(ω)] has a sign

ambiguity. To be more precise these should be the holonomy of the E8 Chern-Simons 2-

gerbe and the proper square root of the holonomy of the Chern-Simons 2-gerbe associated

with the metric.

Subsequently in [8] the electric charge associated with the C field is studied. From the

C field equation of motion that are nonlinear, d ? G = 1
2G

2 − I8, we have that the C field

and the background metric induce an electric charge that is given by the cohomology class

[
1

2
G2 − I8]DR ∈ H8(Y,R) . (5.2)

However the electric charge is an integer cohomology class (because of Dirac quantization,

due to the existence of fundamental electric M2-branes and magnetic M5-membranes).

In [8] the integral lift of (5.2) is studied and denoted ΘY (Č) (and also ΘY (a)).

In order to study the anomaly inflow, we consider a tubular neighbourhood of V in

Y. Since this is diffeomorphic to the total space of the normal bundle N → V , we identify

these two spaces. Let X = Sr(N) be the 10-dimensional sphere bundle of radius r; the

fibres of X
π
→V are then 4-speres. An 11-dimensional manifold Yr with boundary X is

then constructed by removing from Y the disc bundle Dr(N) of radius r; Yr = Y −Dr(N)

(we can also say that Yr is the complement of the tubular neighbourhood Dr(N)). We

call Yr the bulk manifold. Then one has the bulk C field path integral Ψbulk(ČX) ∼
∫

exp[G ∧ ?G]Φ(ČYr ) where the integral is over all equivalence classes of ČYr fields that

on the boundary assume the fixed value ČX . The wavefunction Ψbulk(ČX) is section of a

line bundle L on the space of ČX fields. This wavefunction appears together with the M5-

brane partition function ΨM5(ČV ) that depends on the Č field on the M5-brane, or better,

on an infinitesimally small (r → 0) tubular neighbourhood of the M5-brane. Anomaly

cancellation requires ΨbulkΨM5 to be gauge invariant and therefore ΨM5 has to be a section

of the opposite bundle of L (Č fields on V and Č fields on X can be related according to

the exact sequence (5.4)). Let’s study the various cases.

I) We can have Ψbulk gauge invariant, and this is shown to imply ΘY (ČX) = 0. This last

condition is the decoupling condition, indeed if ΘY (ČX) 6= 0 then charge conservation

requires that M2-branes end on the M5-brane and the M5-brane is thus not decoupled

from the bulk. If Ψbulk is gauge invariant also ΨM5 needs to be, and this holds if

θ = 0.
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II) More generally we can have θ 6= 0 but then invariance of ΨbulkΨM5 can be shown to

imply

π∗(ΘX) = θ , (5.3)

where π∗ is integration over the fibre. The map π∗ enters the exact sequence

0→ Hk(V,Z) π∗
→ Hk(X,Z) π∗→ Hk−4(V,Z)→ 0 , (5.4)

where π∗ is just pull back associated with the bundle X
π
→ V . The exactness of this

sequence (obtained from the Gysin sequence) follows from X being oriented compact

and spin, and V oriented and compact. Condition (5.3) is the precise version of

condition (5.1).

We now compare this situation to that in 10 dimensional Type IIA theory, described

at the end of section 3, and therefore we are led to consider the following more general

case.

III) Here ΨbulkΨM5 is not gauge invariant (therefore it is a section of a line bundle) but

we can consider a new partition function Ψ′M5 that is obtained from a “stack” of

M5-branes instead of just a single brane. This stack gives rise to a twisted gerbe

(fijk, ϕij , aij ,Ai, Bi, dij ,Hi) on V so that in particular Ψ′M5 depends also from the

nonabelian gauge fields Bi and Hi.
6 In order for ΨbulkΨ

′
M5 to be well defined, the

twisted gerbe has to satisfy [cf. (3.12)],

[CS(π∗(ΘX))]− [ϑijkl, 0, 0, 0] = [DH(fijk, ϕij , aij ,Ai, Bi, dij)] + [1, 0, 0, CV ] , (5.5)

where, as constructed in subsection 2.3, CS(π∗(ΘX)) is the Chern-Simons 2-gerbe

associated with π∗(ΘX) and a choice of connection on the E8 bundle with first Pon-

tryagin class π∗(ΘX) (all other 2-gerbes differ by a global 3-form, see (2.21)), while

[ϑijkl, 0, 0, 0] is the 2-gerbe class associated with the torsion class θ (i.e. β(ϑ) = θ,

cf (2.24)), and [1, 0, 0, CV ] is the trivial Deligne class associated with the global 3-form

CV .

In particular (5.5) implies

π∗(ΘX)− θ = ξDH(Gijk ,ϕij ,aij ,Ai,Bi,dij) , (5.6)

where on the r.h.s. we have the characteristic class of the lifting 2-gerbe.

The correspondence of this construction with that described in section 3, is strength-

ened by slightly generalizing the results of section 3. In fact there we always considered

[H]|Q−W3 trivial in De Rham cohomology. This implied that the torsion class [H]|Q−W3

was interpreted as the characteristic class of a gerbe associated with a twisted U(n) bundle

for some n ∈ Z. However (at least mathematically) one can consider the more general case

6Of course we have the special case when a stack of M5-branes gives a nonabelian gerbe. Then Hi is

the curvature of Bi. These two fields should not be confused, and have nothing to do with the NS B field

and its curvature H.
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where [H]|Q −W3 6= 0 also in De Rham cohomology. Here too we have a twisted bundle,

but with structure group U(H), the group of unitary operators on the complex, separable

and infinite dimensional Hilbert space H. This case corresponds to an infinite number of D-

branes wrapping the cycle Q, and the relevant central extension is U(1)→ U(H)→ PU(H).

When dimQ ≤ 13 (which is always the case in superstring theory), we can replace, for ho-

motopy purposes, PU(H) with ΩE8 and U(H) with Ω̃E8, so that the group extension

U(1) → U(H) → PU(H) is replaced with U(1) → Ω̃E8 → ΩE8. Now consider a stack of

M5-branes wrapping a cycle V = S ×Q and dimensionally reduce M-theory to Type IIA

along the circle S. Then the M5-branes become D4-branes and the twisted ΩE8 1-gerbe

becomes a twisted ΩE8 bundle.
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A. Proof that a twisted 1-gerbe defines a 2-gerbe

The cocycle condition for λijkl is straightforward. In order to show that αijk as defined

in (4.15) satisfies the 2-gerbe condition

αijk + αikl − αijl − αjkl = λijkldλ
−1
ijkl ,

we rewrite the l.h.s. as αijk +Adfijkαikl −Adϕij(fjkl)αijl −αjkl , we then use the definition

of αijk and the following properties of the map TA,

TA(hk) = TA(h) + kTA(h)k
−1 , (cocycle property) (A.1)

ϕij(TA(h)) = T
ϕijAϕ

−1
ij
(ϕij(h)) , (A.2)

T−ϕijdϕ−1ij
(ϕij(h)) = ϕij(h)dϕij(h

−1)− ϕij(hdh
−1) , (A.3)

where h, k are elements of G, and more in general functions from some open neighbourhood

of M into G. Finally TAi
(ϕij(fjkl)fijl) = TAi

(fijkfikl) since TAi
(λijkl) = 0.

Similarly in order to show that

βij + βjk + βki = dαijk

we rewrite the l.h.s. as βij + ϕij(βjk) + fijkβkif
−1
ijk and then use the following equality

kij + ϕij(kjk) = fijkkikf
−1
ijk + TKi

(fijk) + dαijk , (A.4)

that follows from (4.8)–(4.11), the algebra here is the same as for usual gerbes. We also

have Ki + adkij = ϕijKjϕ
−1
ij , and the Bianchi identity

dkij + [aij , kij ] + TKi
(aij)− TAi

(kij) . (A.5)

– 19 –



J
H
E
P
1
0
(
2
0
0
4
)
0
6
8

Relation

γi − γj = dβij

that we rewrite as γi − ϕij(γj) = dβij follows from (A.5), (4.13) and T−ϕijdϕ−1ij
(ϕij(Bj)) =

−d(ϕij(Bj)) + ϕij(dBj).
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Abstract: Bundle gerbes are a higher version of line bundles, we present nonabelian
bundle gerbes as a higher version of principal bundles. Connection, curving, curvature
and gauge transformations are studied both in a global coordinate independent formal-
ism and in local coordinates. These are the gauge fields needed for the construction of
Yang-Mills theories with 2-form gauge potential.

1. Introduction

Fibre bundles, besides being a central subject in geometry and topology, provide the
mathematical framework for describing global aspects of Yang-Mills theories. Higher
abelian gauge theories, i.e. gauge theories with abelian 2-form gauge potential appear
naturally in string theory and field theory, and here too we have a corresponding math-
ematical structure, that of the abelian gerbe (in algebraic geometry) and of the abelian
bundle gerbe (in differential geometry). Thus abelian bundle gerbes are a higher version
of line bundles. Complex line bundles are geometric realizations of the integral 2nd coho-
mology classes H 2(M,Z) on a manifold, i.e. the first Chern classes (whose de Rham
representative is the field strength). Similarly, abelian (bundle) gerbes are the next level
in realizing integral cohomology classes on a manifold; they are geometric realizations
of the 3rd cohomology classes H 3(M,Z). Thus the curvature 3-form of a 2-form gauge
potential is the de Rham representative of a class in H 3(M,Z). This class is called the
Dixmier-Douady class [1, 2]; it topologically characterizes the abelian bundle gerbe in
the same way that the first Chern class characterizes complex line bundles.

One way of thinking about abelian gerbes is in terms of their local transition func-
tions [3, 4]. Local “transition functions” of an abelian gerbe are complex line bundles
on double overlaps of open sets satisfying cocycle conditions for tensor products over
quadruple overlaps of open sets. The nice notion of abelian bundle gerbe [5] is related
to this picture. Abelian gerbes and bundle gerbes can be equipped with additional struc-
tures, that of a connection 1-form and of curving (the 2-form gauge potential), and that
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of (bundle) gerbe modules (with or without connection and curving ). Their holonomy
can be introduced and studied [3, 4, 6–9]. The equivalence class of an abelian gerbe with
connection and curving is the Deligne class on the base manifold. The top part of the
Deligne class is the class of the curvature, the Dixmier-Douady class.

Abelian gerbes arise in a natural way in quantum field theory [10–12], where their
appearance is due to the fact that one has to deal with abelian extensions of the group
of gauge transformations; this is related to chiral anomalies. Gerbes and gerbe mod-
ules appear also very naturally in TQFT [13], in the WZW model [14] and in the
description of D-brane anomalies in the nontrivial background 3-form H -field (iden-
tified with the Dixmier-Douday class) [15–17]. Coinciding (possibly infinitely many)
D-branes are submanifolds “supporting” bundle gerbe modules [6] and can be classi-
fied by their (twisted) K-theory. The relation to the boundary conformal field theory
description of D-branes is due to the identification of equivariant twistedK-theory with
the Verlinde algebra [18, 19]. For the role of K-theory in D-brane physics see e.g.
[20–22].

In this paper we study the nonabelian generalization of abelian bundle gerbes and
their differential geometry, in other words we study higherYang-Mills fields. Nonabelian
gerbes arose in the context of nonabelian cohomology [23, 1] (see [24] for a concise
introduction), see also ([25]). Their differential geometry –from the algebraic geometry
point of view– is discussed thoroughly in the recent work of Breen and Messing [26]
(and their combinatorics in [27]). Our study on the other hand is from the differential
geometry viewpoint. We show that nonabelian bundle gerbes connections and curvings
are very natural concepts also in classical differential geometry. We believe that it is pri-
marily in this context that these structures can appear and can be recognized in physics.
It is for example in this context that one would like to have a formulation of Yang-Mills
theory with higher forms. These theories should be relevant in order to describe coin-
ciding NS5-branes with D2-branes ending on them. They should be also relevant in
the study of M5-brane anomaly. We refer to [28–30] for some attempts in constructing
higher gauge fields.

Abelian bundle gerbes are constructed using line bundles and their products. One can
also study U(1) bundle gerbes; here line bundles are replaced by their corresponding
principal U(1) bundles. In the study of nonabelian bundle gerbes it is more convenient
to work with nonabelian principal bundles than with vector bundles. Actually principal
bundles with additional structures are needed. We call these objects (principal) bibundles
and D-H bundles (D and H being Lie groups). Bibundles are fibre bundles (with fiber
H ) which are at the same time left and right principal bundles (in a compatible way).
They are the basic objects for constructing (principal) nonabelian bundle gerbes. The
first part of this paper is therefore devoted to their description. In Sect. 2 we introduce
bibundles, D-H bundles (i.e. principal D bundles with extra H structure) and study
their products. In Sect. 3 we study the differential geometry of bibundles, in particular
we define connections, covariant exterior derivatives and curvatures. These structures
are generalizations of the corresponding structures on usual principal bundles. We thus
describe them using a language very close to that of the classical reference books [31]
or [32]. In particular a connection on a bibundle needs to satisfy a relaxed equivariance
property, this is the price to be paid in order to incorporate nontrivially the additional
bibundle structure. We are thus lead to introduce the notion of a 2-connection (a, A) on a
bibundle. Products of bibundles with connections give a bibundle with connection only
if the initial connections were compatible. We call this compatibility the summability
conditions for 2-connections; a similar summability condition is established also for
horizontal forms (e.g. 2-curvatures).
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In Sect. 4, using the product between bibundles we finally introduce (principal) bun-
dle gerbes. Here too we first describe their structure (including stable equivalence) and
then only later in Sect. 7 we describe their differential geometry. We start with the proper
generalization of abelian bundle gerbes in the sense of Murray [5]; we then describe the
relation to the Hitchin type presentation [3, 4], where similarly to the abelian case,
nonabelian gerbes are described in terms of their “local transition functions” which
are bibundles on double overlaps of open sets. The properties of the products of these
bibundles over triple and quadruple overlaps define the gerbe and its nonabelian Čech
2-cocycle.

Section 5 is devoted to the example of the lifting bundle gerbe associated with the
group extension H → E → G. In this case the bundle gerbe with structure group H
appears as an obstruction to lift to E a G-principal bundle P .

Again by generalizing the abelian case, bundle gerbe modules are introduced in Sect.
6. Since we consider principal bibundles we obtain modules that are D-H bundles
(compatible with the bundle gerbe structure). With each bundle gerbe there is canoni-
cally associated an Aut(H)-H bundle. In the lifting bundle gerbe example a module is
given by the trivial E-H bundle.

In Sect. 7 we introduce the notion of a bundle gerbe connection and prove that on
a bundle gerbe a connection always exists. Bundle gerbe connections are then equiv-
alently described as collections of local 2-connections on local bibundles (the “local
transition functions of the bundle gerbe”) satisfying a nonabelian cocycle condition on
triple overlaps of open sets. Given a bundle gerbe connection we immediately have a
connection on the canonical bundle gerbe module can. We describe also the case of a
bundle gerbe connection associated with an arbitrary bundle gerbe module. In particular
we describe the bundle gerbe connection in the case of a lifting bundle gerbe.

Finally in Sect. 8 we introduce the nonabelian curving b (the 2-form gauge potential)
and the corresponding nonabelian curvature 3-form h. These forms are the nonabelian
generalizations of the string theory B and H fields.

2. Principal Bibundles and Their Products

Bibundles (bitorsors) were first studied by Grothendieck [33] and Giraud [1], their coho-
mology was studied in [34]. We here study these structures using the language of differ-
ential geometry.

Given twoU(1) principal bundlesE, Ẽ, on the same base spaceM , one can consider
the fiber product bundle EẼ, defined as the U(1) principal bundle on M whose fibers
are the product of the E and Ẽ, fibers. If we introduce a local description of E and Ẽ,
with transition functions hij and h̃ij (relative to the covering {Ui} of M), then EẼ has
transition functions hij h̃ij .

In general, in order to multiply principal nonabelian bundles one needs extra struc-
ture. LetE and Ẽ beH -principal bundles, we use the convention thatH is acting on the
bundles from the left. Then in order to define the H principal left bundle EẼ we need
also a right action of H on E. We thus arrive at the following

Definition 1. An H principal bibundle E on the base space M is a bundle on M that is
both a left H principal bundle and a right H principal bundle and where left and right
H actions commute

∀ h, k ∈ H , ∀e ∈ E, (k e) � h = k(e � h) ; (1)

we denote with p : E → M the projection to the base space.



370 P. Aschieri, L. Cantini, B. Jurčo

Before introducing the product between principal bibundles we briefly study their
structure. A morphism W between two principal bibundles E and Ẽ is a morphism
between the bundles E and Ẽ compatible with both the left and the right action of H :

W(k e � h) = k W(e)�̃ h; (2)

here �̃ is the right action of H on Ẽ. As for morphisms between principal bundles on
the same base spaceM , we have that morphisms between principal bibundles onM are
isomorphisms.

Trivial bibundles. Since we consider only principal bibundles we will frequently write
bibundle for principal bibundle. The product bundleM×H , where left and right actions
are the trivial ones on H [i.e. k (x, h) � h′ = (x, khh′)] is a bibundle. We say that a
bibundle T is trivial if T is isomorphic to M ×H .

Proposition 2. We have that T is trivial as a bibundle iff it has a global central section,
i.e. a global section σ that intertwines the left and the right action of H on T :

∀h ∈ H , ∀x ∈ M, h σ (x) = σ (x) � h. (3)

Proof. Let σ be a global section of T , defineWσ : M×H → T asWσ (x, h) = h σ (x),
then T and M × H are isomorphic as left principal bundles. The isomorphism Wσ is
also a right principal bundle isomorphism iff (3) holds. ��

Note also that the section σ is unique ifH has trivial centre. An example of nontrivial
bibundle is given by the trivial left bundle M × H equipped with the nontrivial right
action (x, h) � h′ = (x, hχ(h′)), where χ is an outer automorphism of H . We thus see
that bibundles are in general not locally trivial. Short exact sequences of groups provide
examples of bibundles that are in general nontrivial as left bundles [cf. (112), (113)].

The ϕ map. We now further characterize the relation between left and right actions.
Given a bibundle E, the map ϕ : E ×H → H defined by

∀e ∈ E , ∀h ∈ H , ϕe(h) e = e � h (4)

is well defined because the left action is free, and transitive on the fibers. For fixed e ∈ E
it is also one-to-one since the right action is transitive and left and right actions are free.
Using the compatibility between left and right actions it is not difficult to show that ϕ is
equivariant w.r.t. the left action and that for fixed e ∈ E it is an automorphism of H :

ϕhe(h
′) = hϕe(h

′)h−1, (5)

ϕe(hh
′) = ϕe(h)ϕe(h

′), (6)

we also have

ϕe�h(h′) = ϕe(hh
′h−1). (7)

Vice versa, given a left bundleE with an equivariant map ϕ : E×H → H that restricts
to anH automorphism ϕe, we have thatE is a bibundle with right action defined by (4).

Using the ϕ map we have that a global section σ is a global central section (i.e. that
a trivial left principal bundle is trivial as a bibundle) iff [cf. (3)], ∀x ∈ M and ∀h ∈ H ,
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ϕσ (x)(h) = h. (8)

In particular, since e ∈ E can be always written as e = h′σ , we see that ϕe is always an
inner automorphism,

ϕe(h) = ϕh′σ (h) = Adh′(h) . (9)

Vice versa, we have that

Proposition 3. If H has trivial centre then an H bibundle E is trivial iff ϕe is an inner
automorphism for all e ∈ E.

Proof. Consider the local sections t i : Ui → E, since H has trivial centre the map
k(t) : Ui → H is uniquely defined by ϕt i (h

′) = Adk(t i )h
′. From (5), ϕht i (h

′) =
Adh Adk(t i )h

′, and therefore the sections k(t i )
−1
t i are central because they satisfy

ϕ
k(t i )

−1
t i
(h′) = h′ . In the intersections Uij = Ui ∩ Uj we have t i = hij tj and

therefore k(t i )
−1
t i = k(tj )

−1
tj . We can thus construct a global central section. ��

Any principal bundle withH abelian is a principal bibundle in a trivial way, the map
ϕ is given simply by ϕe(h) = h.

Now let us recall that a global section σ : M → E on a principalH -bundle E → M

can be identified with an H -equivariant map σ : E → H . With our (left) conventions,
∀E ∈ E,

e = σ(e)σ (x) .

Notice, by the way, that if E is a trivial bibundle with a global section σ , then σ is
bi-equivariant, i.e.: σ(heh′) = hσ(e)h′ iff σ is central. We apply this description of a
global section of a left principal bundle to the following situation: Consider an H -bib-
undle E. Let us form Aut(H) ×H E with the help of the canonical homomorphism
Ad : H → Aut(H). Then it is straightforward to check that σ : [η, e] 	→ η ◦ ϕe
with η ∈ Aut(H) is a global section of the left Aut(H)-bundle Aut(H) ×H E. So
Aut(H)×H E is trivial as a left Aut(H)-bundle. On the other hand if E is a left prin-
cipal H -bundle such that Aut(H) ×H E is a trivial left Aut(H)-bundle then it has a
global section σ : Aut(H)×H E → Aut(H) and the structure of an H -bibundle on E
is given by ϕe ≡ σ([id, e]). We can thus characterizeH -bibundles without mentioning
their right H structure,

Proposition 4. A left H -bundle E is an H -bibundle if and only if the (left) Aut(H)-
bundle Aut(H)×H E is trivial.

Any trivial leftH -bundle T can be given a trivialH -bibundle structure. We consider
a trivialization of T , i.e. an isomorphism T → M × H and pull back the trivial right
H -action on M ×H to T . This just means that the global section of the left H -bundle
T associated with the trivialization T → M ×H , is by definition promoted to a global
central section.

Product of bibundles. In order to define the product bundle EẼ we first consider the
fiber product (Withney sum) bundle

E ⊕ Ẽ ≡ {(e, ẽ) | p(e) = p̃(ẽ)} (10)

with projection ρ : E ⊕ Ẽ → M given by ρ(e, ẽ) = p(e) = p̃(ẽ). We now can define
the product bundle EẼ with base space M via the equivalence relation
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∀h ∈ H (e, hẽ) ∼ (e � h , ẽ); (11)

we write [e, ẽ] for the equivalence class and

EẼ ≡ E ⊕H Ẽ ≡ { [e, ẽ] }. (12)

The projection pp̃ : EẼ → M is given by pp̃[e, ẽ] = p(e) = p̃(ẽ). One can show
that EẼ is an H principal bundle; the action of H on EẼ is inherited from that on E:
h[e, ẽ] = [he, ẽ]. Concerning the product of sections we have that if s : U → E is a
section of E (with U ⊆ M), and s̃ : U → Ẽ is a section of Ẽ, then

ss̃ ≡ [ s, s̃ ] : U → EẼ (13)

is the corresponding section of EẼ.
When also Ẽ is an H principal bibundle, with right action �̃, then EẼ is again an H

principal bibundle with right action ��̃ given by

[e, ẽ] ��̃h = [e, ẽ �̃ h]. (14)

It is easy to prove that the product between H principal bibundles is associative.

Inverse bibundle. The inverse bibundleE−1 ofE has by definition the same total space
and base space of E but the left action and the right actions �−1 are defined by

h e−1 = (e � h−1)−1 , e−1 �−1 h = (h−1e)−1; (15)

here e−1 and e are the same point of the total space, we write e−1 when the total space
is endowed with the E−1 principal bibundle structure, we write e when the total space
is endowed with the E principal bibundle structure. From Definition (15) it follows that
he−1 = e−1 �−1 ϕe(h). Given the sections t i : Ui → E of E we canonically have the

sections t i
−1

: Ui → E−1 of E−1 (here again t i (x) and t i
−1
(x) are the same point

of the total space). The section t i
−1
t i of E−1E is central, i.e. it satisfies (3). We also

have t i
−1
t i = tj

−1
tj in Uij ; we can thus define a canonical (natural) global central

section I of E−1E, thus showing that E−1E is canonically trivial. Explicitly we have
I [e

′−1, e] = h with e′ � h = e. Similarly for EE−1. The space of isomorphism classes
of H -bibundles on M [cf. (2)] can now be endowed with a group structure. The unit
is the isomorphism class of the trivial product bundle M ×H . The inverse of the class
represented by E is the class represented by E−1.

Consider two isomorphic bibundlesE andE′ onM . The choice of a specific isomor-
phism between E and E′ is equivalent to the choice of a global central section of the
bibundle EE

′−1, i.e. a global section that satisfies (3). Indeed, let f be a global section
of EE

′−1, given an element e ∈ E with base point x ∈ M , there is a unique element
e

′−1 ∈ E ′−1 with base point x ∈ M such that [e, e
′−1] = f (x). Then the isomorphism

E ∼ E′ is given by e 	→ e′; it is trivially compatible with the right H -action, and it is
compatible with the left H -action and because of the centrality of f .

More generally let us consider two isomorphic left H -bundles E
W∼ E′ which are

not necessarily bibundles. Let us write a generic element (e, e′) ∈ E ⊕ E′ in the form
(e, hW(e)) with a properly chosen h ∈ H . We introduce an equivalence relation on
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E ⊕E′ by (e, hW(e)) ∼ (h′e, hW(h′e)). Then T = E ⊕E′/ ∼ is a trivial left H -bun-
dle with global section σ̄ ([e, hW(e)]) = h−1 (the left H -action is inherited from E).
Recalling the comments after Proposition 4, we equip T with trivial H -bibundle struc-
ture and global central section σ̄ . Next we consider the product T E′ and observe that any
element [[e, e′1], e′′2] ∈ T E′ can be written as [[ẽ,W(ẽ)],W(ẽ)] with a unique ẽ ∈ E.
We thus have a canonical isomorphism between E and T E′ and therefore we write
E = T E′. Vice versa if T is a trivial bibundle with global central section σ̄ : T → H

andE,E′ are leftH -bundles andE = T E′, i.eE is canonically isomorphic to T E′, then

we can consider the isomorphism E
W∼ E′ defined by W([t, e′]) = σ̄ (t)e′ (here [t, e′]

is thought of as an element of E because of the identification E = T E′). It is then easy
to see that the trivial bibundle with section given by this isomorphism W is canonically
isomorphic to the initial bibundle T .

We thus conclude that the choice of an isomorphism between two left H -bundles
E and E′ is equivalent to the choice of a trivialization (the choice of a global central
section) of the bibundle T , in formulae

E
W∼ E′ ⇐⇒ E = T E′, (16)

where T has a given global central section.

Local coordinates description. We recall that an atlas of charts for an H principal left
bundle E with base space M is given by a covering {Ui} of M , together with sections
t i : Ui → E (the sections t i determine isomorphisms between the restrictions of E
to Ui and the trivial bundles Ui × H ). The transition functions hij : Uij → H are
defined by t i = hij tj . They satisfy on Uijk the cocycle condition

hijhjk = hik .

On Uij we have hij = hji
−1

. A section s : U → E has local representatives {si}
where si : U ∩ Ui → H and in Uij we have

sihij = sj . (17)

If E is also a bibundle we set

ϕi ≡ ϕt i : Ui → Aut(H), (18)

and we then have ∀ h ∈ H , ϕi(h)hij = hijϕj (h) , i.e.

Adhij = ϕi ◦ ϕj−1
. (19)

We call the set {hij , ϕi} of transition functions and ϕi maps satisfying (19) a set of
local data of E. A different atlas of E, i.e. a different choice of sections t

′i = ri t i where
ri : Ui → H (we can always refine the two atlases and thus choose a common covering
{Ui} of M), gives local data

h
′ij = rihij rj

−1
, (20)

ϕ
′i = Adri ◦ ϕi . (21)

We thus define two sets of local data {hij , ϕi} and {hij , ϕi} to be equivalent if they are
related by (20), (21).
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One can reconstruct anH -bibundleE from a given set of local data {hij , ϕi} relative
to a covering {Ui} of M . For short we write E = {hij , ϕi}. The total space of this
bundle is the set of triples (x, h, i) where x ∈ Ui , h ∈ H , modulo the equivalence
relation (x, h, i) ∼ (x′, h′, j) iff x = x′ and hhij = h′. We denote the equivalence
class by [x, h, i]. The left H action is h′[x, h, i] = [x, h′h, i]. The right action, given
by [x, h, i]�h′ = [x, hϕi(h′), i] is well defined because of (19). The hij ’s are transition
functions of the atlas given by the sections t i : Ui → E, t i (x) = [x, 1, i], and we have
ϕt i = ϕi . It is now not difficult to prove that equivalence classes of local data are in

one-to-one correspondence with isomorphism classes of bibundles. [Hint: t
′i−1

(ri t i ) is
central and i independent.]

Given two H bibundles E = {hij , ϕi} and Ẽ = {h̃ij , ϕ̃i} on the same base space
M , the product bundle EẼ has transition functions and leftH -actions given by (we can
always choose a covering {Ui} of M common to E and Ẽ)

EẼ = {hijϕj (h̃ij ) , ϕi ◦ ϕ̃i}. (22)

If Ẽ is not a bibundle the product EẼ is still a well defined bundle with transition func-
tions hijϕj (h̃ij ). Associativity of the product (22) is easily verified. One also shows that
if si , s̃i : U ∩ Ui → H are local representatives for the sections s : U → E and
s̃ : U → Ẽ then the local representative for the product section ss̃ : U → EẼ is
given by

siϕi(s̃i ) . (23)

The inverse bundle of E = {hij , ϕi} is

E−1 = {ϕj−1
(hij

−1
) , ϕi

−1} (24)

(we also have ϕj
−1
(hij )−1 = ϕi

−1
(hij

−1
) ). If s : U → E is a section of E with

representatives {si} then s−1 : U → E−1, has representatives {ϕi−1
(si

−1
)}.

A trivial bundle T with global central section t , in an atlas of charts subordinate to a
cover Ui of the base space M , reads

T = {f if j−1
, Adf i } , (25)

where the section t ≡ f−1 has local representatives {f i−1} . For future reference notice

that T −1 = {f i−1
f j , Ad

f i
−1} has global central sectionf = {f i}, and thatET −1E−1

is trivial,

ET −1E−1 = {ϕi(f i−1
)ϕj (f j ), Ad

ϕi(f i
−1
)
} . (26)

We denote by ϕ(f ) the global central section {ϕi(f i)} ofET −1E−1. Given an arbitrary
section s : U → E, we have, in U

ϕ(f ) = sf s−1. (27)

Proof. f s−1 = {f iAd
f i

−1(ϕi
−1
(si

−1
))} = {ϕi−1

(si
−1
)f i} and therefore sf s−1 =

{ϕi(f i)} = ϕ(f ). Property (27) is actually the defining property ofϕ(f ). Without using
an atlas of charts, we define the global section ϕ(f ) ofET −1E−1 to be that section that
locally satisfies (27). The definition is well given because centrality of f implies that
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ϕ(f ) is independent from s. Centrality of the global section f also implies that ϕ(f ) is
a global central section. If σ is the global central section of T , the corresponding global
section σ ′of ET −1E−1 is σ ′[e, t, e′−1] = ϕe(σ (t))h with e = he′. ��

The pull-back of a bi-principal bundle is again a bi-principal bundle. It is also easy
to verify that the pull-back commutes with the product.

D-H bundles. We can generalize the notion of a bibundle by introducing the concept
of a crossed module.

We say that H is a crossed D-module [35] if there is a group homomorphism α :
H → D and an action of D on H denoted as (d, h) 	→ dh such that

∀h, h′ ∈ H , α(h)h′ = hh′h−1 (28)

and for all h ∈ H , d ∈ D,

α( dh) = dα(h)d−1 (29)

holds true.
Notice in particular that α(H) is normal in D. The canonical homomorphism Ad :

H → Aut(H) and the canonical action of Aut(H) on H define on H the structure
of a crossed Aut(H)-module. Given a D-bundle Q we can use the homomorphism
t : D → Aut(H), t ◦ α = Ad to form Aut(H)×D Q.

Definition 5. Consider a leftD-bundleQonM such that theAut(H)-bundleAut(H)×D

Q is trivial. Let σ be a global section of Aut(H) ×D Q. We call the couple (Q, σ) a
D-H bundle.

Notice that if σ : Aut(H)×D Q � [η, q] 	→ σ([η, q]) ∈ Aut(H) is a global section
of Aut(H)×D Q then
i) the automorphism ψq ∈ Aut(H) defined by

ψq ≡ σ([id, q]) (30)

is D-equivariant,

ψdq(h) = dψq(h), (31)

ii) the homomorphism ξq : H → D defined by

ξq(h) ≡ α ◦ ψq(h) (32)

gives a fiber preserving action q � h ≡ ξq(h)q of H on the right, commuting with the
left D-action, i.e.

∀ h ∈ H, d ∈ D, q ∈ Q, (d q) � h = d(q � h) . (33)

Vice versa we easily have

Proposition 6. Let H be a crossed D-module. If Q is a left D bundle admitting a right
fiber preserving H action commuting with the left D action, and the homomorphism
ξq : H → D, defined by q � h = ξq(h)q is of the form (32) with a D-equivariant
ψq ∈ Aut(H) [cf. (31)], then Q is a D-H bundle.
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There is an obvious notion of an isomorphism between twoD-H bundles (Q, σ) and
(Q̃, σ̃ ); it is an isomorphism between D-bundles Q and Q̃ intertwining between σ and
σ̃ . In the following we denote a D-H bundle (Q, σ) simply as Q without spelling out
explicitly the choice of a global section σ of Aut(H)×D Q. As in the previous section
out of a given isomorphism we can construct a trivialD-bibundleZ with a global central
section z−1 such that Q̃ and ZQ are canonically identified and we again write this as
Q̃ = ZQ. The ψ map of Z is given by Adz−1 .

Note that the product of a trivialD-bibundle Z and aD-H bundleQ is well-defined
and gives again a D-H bundle.

The trivial bundleM×D → M , with rightH -action given by (x, d)�h = (x, dα(h)),
is aD-H bundle, we haveψ (x,d)(h) = dh. AD-H bundleQ is trivial if it is isomorphic
to M ×D. Similarly to the case of a bibundle we have that a D-H bundle is trivial iff
it has a global section σ which is central with respect to the left and the right actions of
H on Q,

σ (x) � h = α(h)σ (x) . (34)

The corresponding map σ : Q → D is then bi-equivariant

σ(dq � h) = d σ(q)α(h). (35)

The pull-back of a D-H bundle is again a D-H bundle.
The trivial bundle Aut(H)×H E (cf. Proposition 4) is an Aut(H)-H bundle.

Proof. The left Aut(H) and the right H actions commute, and they are related by
[η, e]h = Adη(ϕe(h))[η, e]; we thus have ψ [η,e] = η ◦ ϕe, which structures Aut(H)×H

E into an Aut(H)-H bundle. Moreover σ([η, e]) = η ◦ ϕe is bi-equivariant, hence
Aut(H)×H E is isomorphic to M × Aut(H) as an Aut(H)-H bundle.

More generally, we can use the left H -action on D given by the homomorphism
α : H → D to associate to a bibundle E the bundle D ×H E. The H -automorphism
ψ [d,e] defined by ψ [d,e] = dϕe(h) endowsD ×H E with aD-H bundle structure. ��

There is the following canonical construction associated with a D-H module. We
use the D-action on H to form the associated bundle H ×D Q. Using the equivariance
property (31) of ψq we easily get the following proposition.

Proposition 7. The associated bundle H ×D Q is a trivial H -bibundle with actions
h′[h, q] = [ψq(h

′)h, q] and [h, q] �h′ = [hψq(h
′), q], and with global central section

given by σ̄ ([h, q]) = ψ−1
q (h).

The local coordinate description of a D-H bundle Q is similar to that of a bibundle.
We thus omit the details. We denote by dij the transition functions of the left principal
D-bundle Q. Instead of local maps (18) we now have local maps ψi : Ui → Aut(H),
such that (compare to (19))

dij h = ψi ◦ ψj−1
(h). (36)

The product QE of a D-H bundle Q with a H -bibundle E can be defined as in (11),
(12). The result is again a D-H bundle. If Q is locally given by {dij , ψi} and H is
locally given by {hij , ϕi} then QE is locally given by {dij ξ j (hij ), ψi ◦ ϕi}. Moreover
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if Z = {zizj−1
, Adzi } is a trivial D-bibundle with section z−1 = {zi−1}, then the well-

definedD-H bundle ZQ is locally given by {zidij zj−1
, z

i ◦ψi}. We have the following
associativity property:

(ZQ)E = Z(QE) , (37)

and the above products commute with pull-backs.
Given a D-H bundle Q and a trivial H -bibundle T with section f−1 there exists a

unique trivial D-bibundle ξ(T ) with section ξ(f−1) such that

QT = ξ(T )Q , (38)

i.e. such that for any local section s ofQ one has sf−1 = ξ(f−1)s. The notations ξ(T ),
ξ(f−1) are inferred from the local expressions of these formulae. Indeed, if locally
T = {f if j−1

, Adf i } and f = {f i}, then ξ(T ) = {ξ i(f i)ξ j (f j )−1, Adξi(f i )} and
ξ(f ) = {ξ i(f i)}.

Finally, as was the case for bibundles, we can reconstruct a D-H bundle Q from a
given set of local data {dij , ψi} relative to a covering {Ui} of M . Equivalence of local
data forD-H bundles is defined in such a way that isomorphic (equivalent)D-H bundles
have equivalent local data, and vice versa.

3. Connection and Curvature on Principal Bibundles

Since a bibundle E on M is a bundle on M that is both a left principal H -bundle and
a right principal H -bundle, one could then define a connection on a bibundle to be a
one-form a onE that is both a left and a right principalH -bundle connection. This defi-
nition [more precisely the requirement Ar = 0 in (49)] preserves the left-right symmetry
property of the bibundle structure, but it turns out to be too restrictive, indeed not always
a bibundle can be endowed with such a connection, and furthermore the corresponding
curvature is valued in the center ofH . If we insist in preserving the left-right symmetry
structure we are thus led to generalize (relax) equivariance property of a connection and
thus define the notion of connection. In this section we will see that a connection on a
bibundle is a couple (a, A), where a is a one-form on E with values in Lie(H) while A
is a Lie(Aut(H)) valued one-form on M . In particular we see that if A = 0 then a is
a left connection on E where E is considered just as a left principal bundle. We recall
that a connection a on a left principal bundle E satisfies [31].
i) The pull-back of a on the fibers of E is the right invariant Maurer-Cartan one-form.
Explicitly, let e ∈ E, let g(t) be a curve from some open interval (−ε, ε) of the real
line into the group H with g(0) = 1H , and let [g(t)] denote the corresponding tangent
vector in 1H and [g(t)e] the vertical vector based in e ∈ E. Then

a[g(t)e] = −[g(t)] . (39)

Equivalently a[g(t)e] = ζ[g(t)], where ζ[g(t)] is the right-invariant vector field associated
with [g(t)] ∈ Lie(H), i.e. ζ[g(t)]|h = −[g(t)h].
ii) Under the left H -action we have the equivariance property

lh
∗
a = Adha, (40)

where lh denotes left multiplication by h ∈ H .
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Now property i) is compatible with the bibundle structure onE in the following sense, if
a satisfies i) then −ϕ−1(a) pulled back on the fibers is the left invariant Maurer-Cartan
one-form

−ϕ−1(a)[eg(t)] = [g(t)] , (41)

here with abuse of notation we use the same symbolϕ−1 for the mapϕ−1 : E×H → H

and its differential map ϕ−1∗ : E × Lie(H) → Lie(H). Property (41) is equivalent to
a[g(t)e] = ξ[g(t)], where ξ[g(t)] is the left-invariant vectorfield associated with [g(t)] ∈
Lie(H), i.e. ξ[g(t)]|h = [hg(t)]. Property (41) is easily proven,

−ϕ−1(a)[eg(t)] = −ϕ−1
e (a[ϕe(g(t))e]) = ϕ−1

e [ϕe(g(t))] = [g(t)] .

Similarly, on the vertical vectors v
V

ofE we have
(
rh

∗
a − a

)
(v

V
) = 0 ,

(
lh

∗
ϕ−1(a)−

ϕ−1(a)
)
(v

V
) = 0 and

(
lh

∗
a − Adha

)
(v

V
) = 0 , (42)

(
rh

∗
ϕ−1(a)− Adh−1ϕ−1(a)

)
(v

V
) = 0 . (43)

On the other hand property ii) is not compatible with the bibundle structure, indeed if a
satisfies (40) then it can be shown (see later) that −ϕ−1(a) satisfies

rh
∗
ϕ−1(a) = Adh−1ϕ−1(a)− p∗T ′(h−1), (44)

where T ′(h) is a given one-form on the base space M , and p : E → M . In order
to preserve the left-right symmetry structure we are thus led to generalize (relax) the
equivariance property ii) of a connection.Accordingly with (42) and (44) we thus require

lh
∗
a = Adha + p∗T (h), (45)

where T (h) is a one-form on M . From (45) it follows

T (hk) = T (h)+ AdhT (k) , (46)

i.e., T is a 1-cocycle in the group cohomology of H with values in Lie(H) ⊗ �1(M).
Of course if T is a coboundary, i.e. T (h) = hχh−1 − χ with χ ∈ Lie(H) ⊗ �1(M),
then a+χ is a connection. We thus see that Eq. (45) is a nontrivial generalization of the
equivariance property only if the cohomology class of T is nontrivial.

Given an element X ∈ Lie(Aut(H)), we can construct a corresponding 1-cocycle
TX in the following way,

TX(h) ≡ [hetX(h−1)] ,

where [hetX(h−1)] is the tangent vector to the curve hetX(h−1) at the point 1H ; if
H is normal in Aut(H) then etX(h−1) = etXh−1e−tX and we simply have TX(h) =
hXh−1 − X. Given a Lie(Aut(H))-valued one-form A on M , we write A = AρXρ ,
where {Xρ} is a basis of Lie(Aut(H)). We then define TA as

TA ≡ AρTXρ . (47)
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Obviously, p∗TA = Tp∗A. Following these considerations we define

Definition 8. A 2-connection on E is a couple (a, A) where:

i) a is a Lie(H) valued one-form on E such that its pull-back on the fibers of E is the
right invariant Maurer-Cartan one-form, i.e. a satisfies (39),

ii) A is a Lie(Aut(H)) valued one-form on M ,
iii) the couple (a, A) satisfies

lh
∗
a = Adha + p∗TA(h) . (48)

This definition seems to break the left-right bibundle symmetry since, for example,
only the left H action has been used. This is indeed not the case

Theorem 9. If (a, A) is a 2-connection on E then (ar , Ar), where ar ≡ −ϕ−1(a),
satisfies (39) and (48) with the left H action replaced by the right H action (and right-
invariant vectorfields replaced by left-invariant vectorfields), i.e. it satisfies (41) and

rh
∗
ar = Adh−1ar + p∗TAr (h−1) , (49)

here Ar is the one-form on M uniquely defined by the property

p∗Ar = ϕ−1(p∗A+ ada)ϕ + ϕ−1dϕ . (50)

Proof. First we observe that from (39) and (48) we have

lh
′ ∗
a = Adh′a + p∗TA(h′)+ h′dh

′−1, (51)

where now h′ = h′(e), i.e. h′ is an H -valued function on the total space E. Setting
h′ = ϕ(h), with h ∈ H we have

rh
∗
a = lϕ(h)

∗
a = Adϕ(h)a + p∗TA(ϕ(h))+ ϕ(h)dϕ(h−1)

= a + ϕ(TAr (h)); (52)

in equality (52) we have defined

Ar ≡ ϕ−1(p∗A+ ada)ϕ + ϕ−1dϕ . (53)

Equality (52) holds because of the following properties of T ,

Tϕ−1dϕ(h) = ϕ−1
(
ϕ(h)dϕ(h−1)

)
, (54)

Tϕ−1p∗Aϕ(h) = ϕ−1 (Tp∗A(ϕ(h))
)
, (55)

Tada (h) = Adha − a . (56)

From (52), applying ϕ−1 and then using (7) one obtains

rh
∗
ar = Adh−1ar + TAr (h−1) . (57)

Finally, comparing (43) with (57) we deduce that for all h ∈ H , TAr (h)(v
V
) = 0, and

this relation is equivalent to Ar (v
V
) = 0. In order to prove that Ar = p∗Ar , where Ar

is a one-form on M , we then just need to show that Ar is invariant under the H action,
lh

∗Ar = Ar . This is indeed the case because lh
∗
(ϕ−1dϕ) = ϕ−1Adh−1dAdhϕ =

ϕ−1dϕ, and because
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lh
∗ (
ϕ−1(p∗A+ ada)ϕ

)
= ϕ−1Adh−1(p∗A+ lh

∗
ada)Adhϕ

= ϕ−1
(
Adh−1p∗AAdh + ada + adAd

h−1Tp∗A(h)
)
ϕ

= ϕ−1(p∗A+ ada)ϕ . ��

Notice that if (a, A) and (a′, A′) are 2-connections on E then so is the affine sum

(
p∗(λ)a + (1 − p∗λ)a′ , λA+ (1 − λ)A′ ) (58)

for any (smooth) function λ on M .
As in the case of principal bundles we define a vector v ∈ TeE to be horizontal if

a(v) = 0. The tangent space TeE is then decomposed in the direct sum of its horizontal
and vertical subspaces; for all v ∈ TeE, we write v = Hv+Vv, where V v = [e−ta(v)e].
The space of horizontal vectors is however not invariant under the usual left H -action,
indeed

a(lh∗(Hv)) = TA(h)(v) ,

in this formula, as well as in the sequel, with abuse of notation TA stands for Tp∗A.

Remark 10. It is possible to construct a new leftH -action L∗ on T∗E, that is compatible
with the direct sum decomposition T∗E = HT∗E+VT∗E. We first define, for all h ∈ H ,

LhA : T∗E → VT∗E ,
TeE � v 	→ [etTA(h)(v)he] ∈ VTheE , (59)

and notice that LhA on vertical vectors is zero, therefore LhA◦LhA = 0. We then consider
the tangent space map,

Lh∗ ≡ lh∗ + LhA . (60)

It is easy to see that Lhk∗ = Lh∗◦ Lk∗ and therefore that L∗ defines an action ofH on T∗H .
We also have

Lh∗
a = Adha . (61)

Finally the action Lh∗ preserves the horizontal and vertical decomposition T∗E =
HT∗E + VT∗E, indeed

HLh∗v = Lh∗Hv , VLh∗v = Lh∗Vv. (62)

Proof. Let v = [γ (t)]. Then HLh∗v = Hlh∗v = [hγ (t)] − [e−ta[hγ (t)]e] = [hγ (t)] +
[et(l

h∗
a)(v)he] = [hγ (t)]+[heta(v)e]+[etTA(h)(v)he] = Lh∗(v+[eta(v)e]) = Lh∗Hv . ��

Curvature. An n-form ϑ is said to be horizontal if ϑ(u1, u2, . . . un) = 0 whenever at
least one of the vectors ui ∈ TeE is vertical. The exterior covariant derivativeDω of an
n-form ω is the (n+ 1)-horizontal form defined by
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Dω(v1, v2, . . . , vn+1) ≡ dω(Hv1,Hv2, . . . ,Hvn+1)

−(−1)nTA(ω)(Hv1,Hv2, . . . ,Hvn+1) (63)

for all vi ∈ TeE and e ∈ E. In the above formula TA(ω) is defined by

TA(ω) ≡ ωα ∧ TA∗(Xα) , (64)

where TA∗ : Lie(H) → Lie(H)⊗ �1(E) is the differential of TA : H → Lie(H)⊗
�1(E). If H is normal in Aut(H) we simply have TA(ω) = ωρ ∧ p∗Aσ [Xρ,Xσ ] =
[ω, p∗A], where now Xρ are generators of Lie(Aut(H)).

The 2-curvature of the 2-connection (a, A) is given by the couple

(k,K) ≡ (
Da , dA+ A ∧ A). (65)

We have the Cartan structural equation

k = da + 1

2
[a, a] + TA(a) , (66)

where 1
2 [a, a] = 1

2a
α ∧ aβ [Xα,Xβ ] = a ∧ a with Xα ∈ Lie(H).

The proof of Eq. (66) is very similar to the usual proof of the Cartan structural equa-
tion for principal bundles. One has just to notice that the extra term TA(a) is necessary
since da(Vv,Hu) = −a([Vv,Hu]) = TA∗(a(Vv))(Hu) = −TA(a)(Vv,Hu).

The 2-curvature (k,K) satisfies the following generalized equivariance property:

lh
∗
k = Adhk + TK(h) , (67)

where with abuse of notation we have written TK(h) instead of Tp∗K(h). We also have
the Bianchi identities, dK + A ∧K = 0 and

Dk = 0 . (68)

Given an horizontal n-form ϑ on E that is �-equivariant, i.e. that satisfies lh
∗
ϑ =

Adhϑ + T�(h) , where � is an n-form on M , we have the structural equation

Dϑ = dϑ + [a,ϑ] + T�(a)− (−1)nTA(ϑ), (69)

where [a,ϑ] = aα ∧ ϑβ [Xα,Xβ ] = a ∧ ϑ − (−1)nϑ ∧ a. The proof is again simi-
lar to the usual one (where � = 0) and is left to the reader. We also have that Dϑ is
(d�+ [A,�])-equivariant,

lh
∗
Dϑ = Adhϑ + Td�+[A,�](h) . (70)

Combining (69) and (68) we obtain the explicit expression of the Bianchi identity

dk + [a, k] + TK(a)− TA(k) = 0. (71)

We also have

D2ϑ = [k,ϑ] + T�(k)− (−1)nTK(ϑ) . (72)
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As was the case for the 2-connection (a, A), also for the 2-curvature (k,K) we can
have a formulation using the rightH action instead of the left one. Indeed one can prove
that if (k,K) is a 2-curvature then (kr , Kr) where

kr = −ϕ−1(k) , Kr = ϕ−1(K + adk)ϕ

is the right 2-curvature associated with the right 2-connection (ar , Ar). In other words
we have that kr is horizontal and that

kr = kar , K
r = KAr

(for the proof we used TAr (ϕ−1(X)) = ϕ−1([X, a]+TA(X))+dϕ−1(X),X ∈ Lie(H)).
We also have

rh
∗
kr = Adh−1kr + TKr (h

−1) . (73)

More in general consider the couple (ϑ,�) where ϑ , is an horizontal n-form on E
that is �-equivariant. Then we have the couple (ϑ r ,�r), where ϑ r = −ϕ−1(ϑ) is an
horizontal n-form on E that is right �r -equivariant,

rh
∗
ϑ r = Adh−1ϑ r + T�r (h

−1), (74)

with �r = ϕ−1(�+ adϑ )ϕ.
The pull-back of a 2-connection (or of a horizontal form) on a principalH -bibundle is

a 2-connection (horizontal form) on the pulled back principalH -bibundle, moreover the
exterior covariant derivative -and in particular the definition of 2-curvature- commutes
with the pull-back operation.

Local coordinates description.. Let’s consider the sections t i : Ui → E subordinate
to the covering {Ui} ofM . Let ι : H×Ui → p−1(Ui) ⊂ E be the local trivialization of
E induced by t i according to ι(x, h) = ht i (x), where x ∈ M . We define the one-forms
on Ui ⊂ M ,

ai = t i
∗
a , (75)

then, the local expression of a is haih−1 + TA(h)+ hdh−1, more precisely,

ι∗(a)(x,h)(vM, vH ) = hai(x)h−1(vM)+ TA(x)(h)(vM)+ hdh−1(vH ) , (76)

where vM ,vH are respectively tangent vectors ofUi ⊂ M at x, and ofH at h, and where
−hdh−1 denotes the Maurer—Cartan one-form onH evaluated at h ∈ H . Similarly the
local expression for k is hkih−1 + TK(h), where ki = t i

∗
k.

Using the sections {t i} we also obtain an explicit expression for Ar ,

Ar = t i
∗Ar = ϕ−1

i (A+ adai )ϕi + ϕ−1
i dϕi . (77)

Of course inUij we have t i
∗Ar = tj

∗Ar , so thatAr is defined on allM . InUij we also
have ai = hij ajhij

−1 + hij dhij
−1 + TA(h

ij ) and ki = hij kjhij
−1 + TK(h

ij ) .



Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory 383

Sum of 2-connections. If the group H is abelian, on the product bundle E1E2 there is
the natural connection a1+a2 obtained from the connections a1 and a2 on E1 and E2.
In this subsection we generalize to the nonabelian case the sum of connections. Consider
the following diagram:

E1 ⊕ E2

π1

��

π⊕

�����������
π2 �� E2

E1 E1E2

(78)

and let (a1, A2) be a 2-connection on E1 and (a2, A2) a 2-connection on E2. Recalling
the definition of the product E1E2, we see that the one-form on E1 ⊕ E2

π∗
1 a1 + ϕ1(π

∗
2 a2) (79)

is the pull-back of a one-form on E1E2 iff, for all v1 ∈ Te1E, v2 ∈ Te2E and h ∈ H ,
(
π∗

1 a1 + ϕ1(π
∗
2 a2)

)
(e1,e2)

(v1, v2)

= (
π∗

1 a1 + ϕ1(π
∗
2 a2)

)
(e1h−1,he2)

(rh∗ v1, l
h
∗v2)

+(π∗
1 a1 + ϕ1(π

∗
2 a2)

)
(e1h−1,he2)

([e1h
−1(t)], [h(t)e2]),

where h(t) is an arbitrary curve inH with h(0) = 1H . Since a1 and a2 satisfy the Cartan-
Maurer condition (39) the last addend vanishes identically and therefore the expression
is equivalent to

π∗
1 a1 + ϕ1(π

∗
2 a2) = rlh

∗(
π∗

1 a1 + ϕ1(π
∗
2 a2)

)
, (80)

where

rlh : E1 ⊕ E2 → E1 ⊕ E2 ,

(e1, e2) 	→ (e1h
−1, he2) .

Now, using (7), and then (52) we have

rlh
∗(
π∗

1 a1 + ϕ1(π
∗
2 a2)

) = π∗
1 r
h−1∗

a1 + ϕ1Adh−1(π∗
2 l
h∗
a2)

= π∗
1 a1 + ϕ1(π

∗
2 a2)

+ϕ1
(
π∗

1 TAr1(h
−1)+ π∗

2Adh−1TA2(h)
)

and the last addend vanishes iff

A2 = A1
r . (81)

In conclusion, when (81) holds, there exists a one-form on E1E2, denoted by a1+a2,
such that

π∗
⊕(a1+a2) = π∗

1 a1 + ϕ1(π
∗
2 a2). (82)

From this expression it is easy to see that (a1+a2, A1) is a 2-connection on E1E2. We
then say that (a1, A1) and (a2, A2) (or simply that a1 and a2) are summable and we
write

(a1, A1)+ (a2, A2) = (a1+a2, A1) . (83)
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Notice that the sum operation + thus defined is associative (and noncommutative).
In other words, if a1 and a2 are summable, and if a2 and a3 are summable then
a1+(a2+a3) = (a1+a2)+a3 and (a1+a2+a3, A1) is a 2-connection on E1E2E3.

We also have a summability criterion for the couples (ϑ1,�1) and (ϑ2,�2) where
ϑ i , i = 1, 2 is an horizontal n-form onEi that is�i-equivariant. We have that (ϑ1,�1)+
(ϑ2,�2) = (ϑ1+ϑ2,�1) where

π∗
⊕(ϑ1+ϑ2) = π∗

1ϑ1 + ϕ1(π
∗
2ϑ2) (84)

is a well defined horizontal �1-equivariant n-form on E1E2 iff

�2 = �1
r . (85)

We have

(Da1ϑ1,DA1�1)+(Da2ϑ2,DA2)�2 = (Da1+a2
(ϑ1+ϑ2),DA1�1), (86)

with obvious notation: Daϑ = dϑ + [a,ϑ] + T�(a) − (−1)nTA(ϑ) and DA� =
d� + [A,�]. Also the summability of curvatures is a direct consequence of the sum-
mability of their corresponding connections. If (a1, A1)+ (a2, A2) = (a1+a2, A1)

then

(k1,K1)+ (k2,K2) = (k1+k2,K1) , (87)

and we also have

ka1+a2
= k1+k2 . (88)

Summability is preserved under isomorphism, i.e. if ai are summable connections on
Ei (i = 1, 2) and we have isomorphisms σi : E′

i → Ei , then σ ∗
i (ai ) are summable and

σ ∗
1 (a2)+ σ ∗

2 (a2) = σ ∗
12(a1+a2), where we have considered the induced isomorphism

σ12 ≡ σ1σ2 : E′
1E

′
2 → E1E2. The same property holds for horizontal forms.

4. Nonabelian Bundle Gerbes

Now that we have the notion of product of principal bibundles we can define nonabelian
bundle gerbes generalizing the construction studied by Murray [5] (see also Hitchin [3]
and [4]) in the abelian case.

Consider a submersion ℘ : Y → M (i.e. a map onto with differential onto) we can
always find a covering {Oα} of M with local sections σα : Oα → Y , i.e. ℘ ◦ σα = id .
The manifold Y will always be equipped with the submersion ℘ : Y → M . We also
consider Y [n] = Y ×M Y ×M Y . . . ×M Y the n-fold fiber product of Y , i.e. Y [n] ≡
{(y1, . . . yn) ∈ Yn | ℘(y1) = ℘(y2) = . . . ℘ (yn)}.

Given aH principal bibundle E over Y [2] we denote by E12 = p∗
12(E) theH principal

bibundle on Y [3] obtained as the pull-back of p12 : Y [3] → Y [2] (p12 is the identity on
its first two arguments); similarly for E13 and E23.

Consider the quadruple (E, Y,M,f ), where theH principal bibundle onY [3], E12E23

E−1
13 is trivial, and f is a global central section of

(
E12E23 E−1

13

)−1
[i.e. f satisfies (3)].

Recalling the paragraph after formula (15) we can equivalently say that E12E23 and E13
are isomorphic, the isomorphism being given by the global central section f−1 of

T ≡ E12E23 E−1
13 . (89)
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We now consider Y [4] and the bundles E12, E23, E13, E24, E34, E14 on Y [4] relative to the
projectionsp12 : Y [4] → Y [2] etc., and T −1

123 , T
−1

124 , T
−1

134 relative top123 : Y [4] → Y [3],
etc. Since the product of bundles commutes with the pull-back of bundles, we then have

T −1
124 E12(T −1

234 E23E34) = T −1
134 (T

−1
123 E12E23)E34 = E14 (90)

as bundles on Y [4]. The first identity in (90) is equivalent to

T −1
124 E12T −1

234 E−1
12 = T −1

134 T −1
123 . (91)

Let us now consider the global central section f of T −1 = E13E−1
23 E−1

12 and denote by
f 124 (f 234, etc.) the global central section of T −1

124 (T −1
234 , etc.) obtained as the pull-back

of f . Consistently with (91) we can require the condition

f 124 ϕ12(f 234) = f 134 f 123 (92)

where, following the notation of (27), ϕ12(f 234) is the section of T −1
234 that in any open

U ⊂ Y [4] equals s12f 234s
−1
12 , where s12 : U → E12 is any section of E12, in particular

we can choose s12 to be the pull-back of a section s of E .

Definition 11. A Bundle gerbe G is the quadruple (E, Y,M,f ) where the H prin-
cipal bibundle on Y [3], E12E23 E−1

13 is trivial and f is a global central section of(
E12E23 E−1

13

)−1
that satisfies (92).

Recall that whenH has trivial centre then the section f of T −1 is unique; it then follows
that relation (92) is automatically satisfied because the bundle on the l.h.s. and the bundle
on the r.h.s. of (91) admit just one global central section, respectively f 124 ϕ12(f 234)

and f 134 f 123. Therefore, if H has trivial centre, a bundle gerbe G is simply the triple
(E, Y,M), where E12E23 E−1

13 is trivial.
Consider an H principal bibundle N over Z and let N1 = p∗

1(N), N2 = p∗
2(N),

be the pull-back of N obtained respectively from p1 : Z[2] → Z and p2 : Z[2] → Z

(p1 projects on the first component, p2 on the second). If (E, Z,M,f ) is a bundle

gerbe also
(
N1EN −1

2 , Z,M,ϕ1(f )
)

is a bundle gerbe. Here ϕ1(f ) is the canonical

global central section of the bibundle N1T −1N −1
1 and now N1 is the pull-back of N

via p1 : Z[3] → Z; locally ϕ1(f ) = s1f s
−1
1 , where s1 is the pull-back of any local

section s of N . Similarly also
(
ηE, Z,M, �−1

13 fϕ12(�23)�12

)
is a bundle gerbe if η−1

is a trivial bundle on Z[2] with global central section � (as usual ϕ12(�23) denotes the
canonical section of E12η

−1
23 E−1

12 ). These observations lead to the following definition
[36]

Definition 12. Two bundle gerbes G = (E, Y,M,f ) and G′ = (E ′, Y ′,M,f ′) are sta-
bly isomorphic if there exists a bibundle N over Z = Y ×

M
Y ′ and a trivial bibundle

η−1 over Z[2] with section � such that

N1 q
′∗E ′ N −1

2 = η q∗E (93)

and

ϕ1(q
′∗f ′) = �−1

13 q
∗fϕ12(�23)�12, (94)
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where q∗E and q
′∗E ′ are the pull-back bundles relative to the projections q : Z[2] →

Y [2] and q ′ : Z[2] → Y
′[2]. Similarly q

′∗f ′ and q∗f are the pull-back sections relative
to the projections q : Z[3] → Y [3] and q ′ : Z[3] → Y

′[3].

The relation of stable isomorphism is an equivalence relation.
The bundle gerbe (E, Y,M,f ) is called trivial if it is stably isomorphic to the trivial

bundle gerbe (Y × H, Y,M,1); we thus have that E and N −1
1 N2 are isomorphic as

H -bibundles, i.e.

E ∼ N −1
1 N2 (95)

and thatf = ϕ−1
1 (�−1

13 �23�12), where � is the global central section ofη−1 ≡N2E−1N −1
1 .

Proposition 13. Consider a bundle gerbe G = (E, Y,M,f )with submersion℘ : Y →
M; a new submersion ℘′ : Y ′ → M and a (smooth) map σ : Y ′ → Y compatible
with ℘ and ℘′ (i.e. ℘ ◦ σ = ℘′). The pull-back bundle gerbe σ ∗G (with obvious abuse
of notation) is given by (σ ∗E, Y ′,M, σ ∗f ). We have that the bundle gerbes G and σ ∗G
are stably equivalent.

Proof. Consider the following identity on Y [4]:

E11′E1′2′E−1
22′ = η12E12, (96)

where η12 = T11′2′T −1
122′ so that η−1

12 has section �12 = f−1
122′f 11′2′ ; the labelling

1, 1′, 2, 2′ instead of 1, 2, 3, 4 is just a convention. Multiplying three times (96) we obtain
the following identity between trivial bundles on Y [6] E11′ T1′2′3′ E−1

11′ = η12 E12η23E−1
12

T123 η
−1
13 . The sections of (the inverses of) these bundles satisfy

ϕ11′(f ′) = �−1
13 fϕ12(�23)�12 , (97)

thus E1′2′ and E12 give stably equivalent bundle gerbes. Next we pull-back the bundles in
(96) using (id, σ, id, σ ) : Z[2] → Y [4] where Z = Y ×M Y

′; recalling that the product
commutes with the pull-back we obtain relation (93) with η = (id, σ, id, σ )∗η12 and
N = (id, σ )∗E . We also pull-back (97) with (id, σ, id, σ, id, σ ) : Z[3] → Y [6] and
obtain formula (94). ��
Theorem 14. Locally a bundle gerbe is always trivial: ∀x ∈ M there is an open O of
x such that the bundle gerbe restricted to O is stably isomorphic to the trivial bundle
gerbe (Y |[2]

O ×H, Y |O,O,1). Here Y |O is Y restricted to O: Y |O = {y ∈ Y |℘(y) ∈
O ⊂ M}. Moreover in any sufficiently small open U of Y |[3]

O one has

f = s′′13s
′−1
23 s

−1
12 (98)

with s−1
12 , s

′−1
23 and s′′13 respectively sections of E−1

12 , E
−1
23 and E13 that are pull-backs of

sections of E .

Proof. ChooseO ⊂ M such that there exists a section σ : O → Y |O . Define the maps

r[n] : Y |[n]
O → Y |[n+1]

O ,

(y1, . . . yn) 	→ (y1, . . . yn, σ (℘ (yn)));
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notice that σ(℘ (y1)) = σ(℘ (y2)) . . . = σ(℘ (yn)). It is easy to check the following
equalities between maps on Y |[2]

O , p12 ◦ r[2] = id , p13 ◦ r[2] = r[1] ◦p1 , p23 ◦ r[2] =
r[1] ◦ p2 , and between maps on Y |[3]

O ,

p123 ◦ r[3] = id , p124 ◦ r[3] = r[2] ◦ p12 ,

p234 ◦ r[3] = r[2] ◦ p23 , p134 ◦ r[3] = r[2] ◦ p13 . (99)

We now pull back with r[2] the identity E12 = T E13E−1
23 and obtain the following local

trivialization of E
E = r∗[2](T )N1 N −1

2 ,

where N1 = p∗
1(N), N2 = p∗

2(N) and N = r∗[1](E). Let U = U×O U
′×O U

′′ ⊂ Y |[3]
O ,

where U,U ′, U ′′ are opens of Y |O that respectively admit the sections n : U → N ,
n′ : U ′ → N , n′′ : U ′′ → N . Consider the local sections s = r∗[2](f

−1)n1n
′−1
2 :

U×O U
′ → E , s′ = r∗[2](f

−1)n′
2n

′′−1
3 : U ′×O U

′′ → E , s′′ = r∗[2](f
−1)n1n

′′−1
3 :

U×O U
′′ → E and pull them back to local sections s12 of E12, s′23 of E23 and s′′13 of

E13. Then (98) holds because, using (99), the product s′′13s
′−1
23 s

−1
12 equals the pull-back

with r[3] of the section f−1
134f 124ϕ12(f 234) = f 123 [cf. (92)]. ��

Local description. Locally we have the following description of a bundle gerbe; we
choose an atlas of charts for the bundle E on Y [2], i.e. sections t i : U i → E relative
to a trivializing covering {U i} of Y [2]. We write E = {hij , ϕi}. We choose also atlases
for the pull-back bundles E12, E23, E13; we write E12 = {hij12, ϕ

i
12}, E23 = {hij23, ϕ

i
23},

E13 = {hij13, ϕ
i
13}, where these atlases are relative to a common trivializing covering {U i}

of Y [3]. It then follows that T = {f if j−1
, Adf i }, where {f i−1} are the local represen-

tatives for the section f−1 of T . We also consider atlases for the bundles on Y [4] that
are relative to a common trivializing covering {U i} of Y [4] (with abuse of notation we
denote with the same index i all these different coverings1). Then (89), that we rewrite
as E12E23 = T E13, reads

h
ij
12ϕ

j
12(h

ij
23) = f ih

ij
13f

j−1
, ϕi12 ◦ ϕi23 = Adf i ◦ ϕi13 (100)

and relation (92) reads

ϕi12(f
i
234)f

i
124 = f i123f

i
134 . (101)

1 An explicit construction is for example obtained pulling back the atlas of E to the pull-back bun-
dles on Y [3] and on Y [4]. The sections t i : U i → E induce the associated sections t i12 ≡ p∗

12(t
i ) :

U i12 → E12 where p12 : Y [3] → Y [2] and U i12 ≡ p−1
12 (U i ). We then have E12 = {hij12, ϕ

i
12} with

h
ij
12 = p∗

12(h
ij ), ϕi12 = p∗

12(ϕ
i). Similarly for E13, E23. The Y [3] covering given by the opens UI ≡

U ii′i′′ ≡ U i12 ∩ U i′23 ∩ U i′′13 can then be used for a common trivialization of the E12, E13 and E23 bun-

dles; the respective sections are tI12 = t i12|UI , tI23 = t i
′

23|UI , tI13 = t i
′′

13|UI ; similarly for the transition

functions hI12, h
I
23, h

I
13 and for ϕI12, ϕ

I
23, ϕ

I
13. In UI we then have f−1 = f I

−1
tI12t

I
23 t

I
13
−1
.
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Bundles and local data onM . Up to equivalence under stable isomorphisms, there is an
alternative geometric description of bundle gerbes, in terms of bundles on M . Consider
the sections σα : Oα → Y , relative to a covering {Oα} of M and consider also the
induced sections (σα, σβ) : Oαβ → Y [2], (σα, σβ, σγ ) : Oαβγ → Y [3]. Denote
by Eαβ , Tαβγ the pull-back of the H -bibundles E and T via (σα, σβ) and (σα, σβ, σγ ).
Denote also by f αβγ the pull-back of the section f . Then, following the Hitchin descrip-
tion of abelian gerbes,

Definition 15. A gerbe is a collection {Eαβ} of H principal bibundles Eαβ on each Oαβ
such that on the triple intersectionsOαβγ the product bundles EαβEβγ E−1

αγ are trivial, and
such that on the quadruple intersectionsOαβγ δ we have f αβδϕαβ(f βγ δ) = f αγ δf αβγ .

We also define two gerbes, given respectively by {E ′
αβ} and {Eαβ} (we can always con-

sider a common covering {Oα} of M), to be stably equivalent if there exist bibundles
Nα and trivial bibundles ηαβ with (global central) sections �−1

αβ such that

NαE ′
αβN −1

β = ηαβEαβ , (102)

ϕα(f
′
αβγ ) = �−1

αγ f αβγϕαβ(�βγ )�αβ . (103)

A local description of the Eαβ bundles in terms of the local data (100), (101) can be

given considering the refinement {Oi
α} of the {Oα} cover ofM such that (σα, σβ)(O

ij
αβ) ⊂

U ij ⊂ Y [2], the refinement {Oi
α} such that (σα, σβ, σγ )(O

ijk
αβγ ) ⊂ U ijk ⊂ Y [3], and sim-

ilarly for Y [4]. We can then define the local data on M

h
ij
αβ : Oij

αβ → H ϕiαβ : Oi
αβ → Aut(H),

h
ij
αβ = h

ij
12 ◦ (σα, σβ) ϕiαβ = ϕi12 ◦ (σα, σβ), (104)

and

f iαβγ : Oi
αβγ → H,

f iαβγ = f i ◦ (σα, σβ, σγ ) . (105)

It follows that Eαβ = {hijαβ, ϕiαβ} and Tαβγ = {f iαβγ f j −1
αβγ , Adf iαβγ

}. Moreover relations

(100), (101) imply the relations between local data on M ,

h
ij
αβϕ

j
αβ(h

ij
βγ ) = f iαβγ h

ij
αγ f

j
αβγ

−1
, (106)

ϕiαβ ◦ ϕiβγ = Adf iαβγ
◦ ϕiαγ , ϕiαβ(f

i
βγ δ)f

i
αβδ = f iαβγ f

i
αγ δ . (107)

We say that (107) define a nonabelian Čech 2-cocycle. From (102), (103) we see that

two sets {hijαβ, ϕiαβ, f iαβγ }, {h′ij
αβ, ϕ

′i
αβ, f

′i
αβγ } of local data on M are stably isomorphic if

hijα ϕ
j
α(h

′ij
αβ) ϕ

j
α ϕ

′j
αβ ϕ

j
β

−1
(h
ij
β ) = �iαβ h

ij
αβ �

j
αβ

−1
, (108)

ϕiα ◦ ϕ ′i
αβ ◦ ϕiβ

−1 = Ad�iαβ
◦ ϕiαβ , (109)

ϕiα(f
′i
αβγ ) = �iαβ ϕ

i
αβ(�

i
βγ )f

i
αβγ �

i −1
αγ , (110)

here Nα = {hijα , ϕα} , E ′
αβ = {h′ij

αβ, ϕ
′
αβ} and ηαβ = {�iαβ�jαβ

−1
, Ad�iαβ

}.
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We now compare the gerbe {Eαβ} obtained from a bundle gerbe G using the sections
σα : Oα → Y to the gerbe {E ′

αβ} obtained from G using a different choice of sections
σ ′
α : Oα → Y . We first pull back the bundles in (96) using (σα, σ ′

α, σβ, σ
′
β) : Oαβ →

Y [4]; recalling that the product commutes with the pull-back we obtain the following
relation between bundles respectively on Oα, Oαβ, Oβ and on Oαβ, Oαβ ,

NαE ′
αβN −1

β = ηαβEαβ;
here Nα equals the pull-back of E11′ with (σα, σ ′

α) : Oα → Y [2]. We then pull back (97)
with (σα, σ ′

α, σβ, σ
′
β, σγ , σ

′
γ ) : Oαβγ → Y [6] and obtain formula (103). Thus {E ′

αβ} and
{Eαβ} are stably equivalent gerbes. We have therefore shown that the equivalence class
of a gerbe (defined as a collection of bundles on Oαβ ⊂ M) is independent from the
choice of sections σα : Oα → Y used to obtain it as pull-back from a bundle gerbe.

It is now easy to prove that equivalence classes of bundle gerbes are in one to one cor-
respondence with equivalence classes of gerbes {Eαβ}, and therefore with equivalence
classes of local data onM . First of all we observe that a bundle gerbe G and its pull-back
σ ∗G = (σ ∗E, Y ′,M, σ ∗f ) (cf. Theorem 13) give the same gerbe {Eαβ} if we use the
sections σ ′

α : Oα → Y ′ for σ ∗G and the sections σ ◦σ ′
α : Oα → Y for G. It then follows

that two stably equivalent bundle gerbes give two stably equivalent gerbes. In order to
prove the converse we associate to each gerbe {Eαβ} a bundle gerbe and then we prove that
on equivalence classes this operation is the inverse of the operation G → {Eαβ}. Given
{Eαβ} we consider Y = �Oα , the disjoint union of the opens Oα ⊂ M , with projection
℘(x, α) = x. Then Y [2] is the disjoint union of the opens Oαβ , i.e. Y [2] = �Oαβ =
∪Oα,β , where Oα,β = {(α, β, x) / x ∈ Oαβ}, similarly Y [3] = �Oαβγ = ∪Oα,β,γ etc..
We define E such that E |Oα,β = Eαβ and we define the section f−1 of T = E12E23E−1

13

to be given by f−1|
Oα,β,γ

= f−1
αβγ , thus (92) holds. We write (�Eαβ,�Oα,M,�f αβγ )

for this bundle gerbe. If we pull it back with σα : Oα → Y , σα(x) = (x, α) we
obtain the initial gerbe {Eαβ}. In order to conclude the proof we have to show that
(�Eαβ,�Oα,M,�f αβγ ) is stably isomorphic to the bundle gerbe G = (E, Y,M,f )
if {Eαβ} is obtained from G = (E, Y,M,f ) and sections σα : Oα → Y . This holds
because (�Eαβ,�Oα,M,�f αβγ ) = σ ∗G with σ : �Oα → Y given by σ |

Oα
= σα .

We end this section with a comment on normalization. There is no loss in generality
if we consider for all α, β and for all i,

ϕiαα = id , f iααβ = 1 , f iαββ = 1. (111)

Indeed first notice from (106) and (107) that ϕiαα = Adf iααα
and ϕiαα(f

i
ααβ) = f iααα

so that f iααβ = f iααα|Oαβ . Now, if f iααα �= 1 consider the stably equivalent local data

obtained from E ′
αβ ≡ ηαβEαβ , where ηαβ = {�iαβ�jαβ

−1
, Ad�iαβ

} with �iαβ = f iααα
−1|

Oαβ
.

From (109) we have ϕ
′i
αα = id; from (110) we have f

′i
ααβ = 1, it then also follows

f
′i
αββ = 1.

5. Nonabelian Gerbes from Groups Extensions

We here associate a bundle gerbe on the manifold M to every group extension

1 → H → E
π→ G → 1 (112)
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and left principal G bundle P over M . We identify G with the coset H\E so that E is
a left H principal bundle. E is naturally a bibundle, the right action too is given by the
group law in E

e � h = eh = (ehe−1)e, (113)

thus ϕe(h) = ehe−1. We denote by τ : P [2] → G, τ(p1, p2) = g12 the map that
associates to any two points p1, p2 of P that live on the same fiber the unique element
g12 ∈ G such that p1 = g12p2. Let E ≡ τ ∗(E) be the pull-back of E on P [2], explicitly
E = {(p1, p2; e) | π(e) = τ(p1, p2) = g12}. Similarly E12 = {(p1, p2, p3; e) | π(e) =
τ(p1, p2) = g12}, for brevity of notations we set e12 ≡ (p1, p2, p3; e). Similarly with
E23 and E13, while e−1

13 is a symbolic notation for a point of E−1
13 . Recalling (15) we have

(he)−1
13 = (ek)−1

13 = k−1 e−1
13 , e

−1
13 �−1 h = k e−1

13 , (114)

where k = e−1he . We now consider the point

f−1(p1, p2, p3) ≡ [e12, e
′
23, (ee

′)−1
13 ] ∈ E12E23E−1

13 , (115)

where the square bracket denotes, as in (12), the equivalence class under theH action2.
Expression (115) is well defined because π(ee′) = π(e)π(e′) = g12g23 = g13 the
last equality following from p1 = g12p2 , p2 = g23p3 , p1 = g13p3 . Moreover
f (p1, p2, p3) is independent from e and e′, indeed let ê and ê′ be two other elements
of E such that π(ê) = π(e) , π(ê′) = π(e′); then ê = he, ê′ = h′e′ with h, h′ ∈ H and
[ê12, ê

′
23, (êê

′)−1
13 ] = [h e12, h

′ e′23, e
′−1h

′−1e−1h−1ee′ (ee′)−1
13 ] = [e12, e

′
23, (ee

′)−1
13 ].

This shows that (115) defines a global section f−1 of T ≡ E12E23E−1
13 . Using the second

relation in (114) we also have that f−1 is central so that T is a trivial bibundle. Finally
(the inverse of) condition (92) is easily seen to hold and we conclude that (E, P ,M,f )
is a bundle gerbe. It is the so-called lifting bundle gerbe.

6. Bundle Gerbes Modules

The definition of a module for a nonabelian bundle gerbe is inspired by the abelian case
[6].

Definition 16. Given an H-bundle gerbe (E, Y,M,f ), an E-module consists of a triple
(Q,Z, z), where Q → Y is a D-H bundle, Z → Y [2] is a trivial D-bibundle and z is
a global central section of Z−1 such that:

i) On Y [2]

Q1E = ZQ2 (116)

and moreover

ϕ12 = ψ−1
1 ◦ z̄−1

12 ◦ ψ2. (117)

ii) Equation (116) is compatible with the bundle gerbe structure of E , i.e. from (116)
we have Q1T = Z12Z23Z−1

13 Q1 on Y [3] and we require that

z23z12 = z13ξ1(f ) (118)

holds true.
2 It can be shown that a realization of the equivalence class [e12, e

′
23] ∈ E12E23 is given by

(p1, p2, p3; ee′), where ee′ is just the product in E. (We won’t use this property).
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Remark 17. Let us note that the pair (Z, z−1) and the pair (T ,f−1) in the above defi-
nition give the isomorphisms

z : Q1E → Q2 , f : E12E23 → E13 (119)

respectively ofD-H bundles on Y [2] and of bibundles on Y [3]. Condition ii) in Definition
16 is then equivalent to the commutativity of the following diagram

Q1E12E23
id1f−−−−→ Q1E13

z12 id3

�
�z13

Q2E23
z23−−−−→ Q3

(120)

Definition 18. We call two bundle gerbe modules (Q,Z, z) and (Q′,Z ′, z′) (with the
same crossed module structure) equivalent if:
i) Q and Q′ are isomorphic asD-H bundles; we write Q = IQ′ where theD-bibundle
I has global central section i−1 and ψ = ī−1 ◦ ψ ′,
ii) the global central sections z, z′ and i−1 satisfy the condition z′12 = i−1

2 z12i1.

Let us now assume that we have two stably equivalent bundle gerbes (E, Y,M,f )
and (E ′, Y ′,M,f ′) with Y ′ = Y . We have [cf. (93), (94)] η12E12 = N1E

′
12N

−1
2 and

ϕ1(f
′) = �−1

13 fϕ12(�23)�12. Let Q be an E-module and I a trivial D-bibundle with a
global central section i−1. It is trivial to check that IQN is an E ′-module with Z ′

12 =
I1ξ1(η12)Z12I−1

2 and z′12 = i−1
2 z12ξ(η12)i1. It is now easy to compare modules of

stably equivalent gerbes that in general have Y �= Y ′.
Proposition 19. Stably equivalent gerbes have the same equivalence classes of modules.

Now we give the description of bundle gerbes modules in terms of local data on M .
Let {EEαβ} be a gerbe in the sense of Definition 15.

Definition 20. A module for the gerbe {Eαβ} is given by a collection {Qα} of D-H
bundles such that on double intersections Oαβ there exist trivial D-bibundles Zαβ ,
QαEαβ = ZαβQβ , with global central sections zαβ of Z−1

αβ such that on triple intersec-
tions Oαβγ ,

zβγ zαβ = zαγ ξα(f αβγ ) (121)

and on double intersections Oαβ

ϕαβ = ψ−1
α ◦ z̄−1

αβ ◦ ψβ. (122)

Canonical module. For each H -bundle gerbe (E, Y,M,f ) we have a canonical E-
module associated with it; it is constructed as follows. As a left Aut(H)-bundle the
canonical module is simply the trivial bundle over Y . The right action of H is given
by the canonical homomorphism Ad : H → Aut(H). For (y, η) ∈ Y × Aut(H) we
have ξ (y,η)(h) = η ◦ Adh ◦ η−1 = Adη(h) and ψ (y,η)(h) = η(h). The Aut(H)-H
bundle morphism z : (Y × Aut(H))1E → (Y × Aut(H))2 is given in the following
way. A generic element of (Y × Aut(H))1E is of the form [(y, y′, (y, η)), e], where
η ∈ Aut(H), (y, y′) ∈ Y [2]and e ∈ E such that p1 ◦p(e) = y and p2 ◦p(e) = y′. Here
p is the projection p : E → Y [2]. We set
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z([(y, y′, (y, η)), e]) = (y, y′, (y′, η ◦ ϕe)).
The commutativity of diagram (120) is equivalent to the following statement:

η ◦ ϕf [e1,e2] = η ◦ ϕe1
◦ ϕe2

,

and this is a consequence of the isomorphism of H -bibundles

f : E12E23 → E13.

We have
f ([e1, e2]h) = (f [e1, e2])h ,

but we also have

f ([e1, e2)]h) = f (ϕe1
◦ ϕe2

(h)[e1, e2]) = ϕe1
◦ ϕe2

(h)f ([e1, e2]).

On the other hand we can write

(f [e1, e2])h = ϕf [e1,e2](h)f [e1, e2].

Hence
ϕf [e1,e2](h) = ϕe1

◦ ϕe2
(h)

and the commutativity of diagram (120) follows. We denote the canonical module as
can in the following.

In the case of a bundle gerbe E associated with the lifting of aG-principal bundle P ,
as described in Sect. 5, we have another natural module. We follow the notation of Sect.
5. In the exact sequence of groups (112),

1 → H → E
π→ G → 1 ,

H is a normal subgroup. This gives the group H the structure of a crossed E-module.
The E-module Q is simply the trivial E-H bundle P × E → P . The D-H bundle

morphims z′ : Q1E → Q2 is given by (recall p1 = π(ẽ)p2)

z′[(p1, p2, (p1, e), (p1, p2, ẽ)] = (p1, p2, (p2, eẽ)),

which of course is compatible with the bundle gerbe structure of E . Due to the exact
sequence (112) we do have a homomorphism E → Aut(H) and hence we have a map

t : Y × E → Y × Aut(H),

which is a morphism between the modules compatible with the module structures, i.e.
the following diagram is commutative:

Q1E12
z12−−−−→ Q2

t

�
�t

can1E12
z′12−−−−→ can2

(123)

More generally given any bundle gerbe E and an E-module Q we have the trivialAut(H)-
H bundle Aut(H)×D Q (see Sect. 2). This gives a morphism t : Q 	→ can.
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Now suppose that the bundle gerbe E is trivialized (stably equivalent to a trivial bundle
gerbe) by E12 ∼ N −1

1 N2 with N an H -bibundle on Y, hence a E-module satisfies

Q2 ∼ Q1E12 ∼ Q1N −1
1 N2,

hence

Q2N −1
2 ∼ Q1N −1

1 . (124)

It easily follows from (124) that QN −1 → Y gives descent data for a D-H bundle Q̃
over M . Conversely given a D-H bundle Q̃ → M the bundle p∗(Q̃)N is a E-module.
This proves the following

Proposition 21. For a trivial bundle gerbe (E, Y,M,f ) the category of E-modules is
equivalent to the category of D-H bundles over the base space M .

7. Bundle Gerbe Connections

Definition 22. A bundle gerbe connection on a bundle gerbe (E, Y,M,f ) is a 2-con-
nection (a, A) on E → Y [2] such that

a12+a23 = f ∗a13 , (125)

or which is the same

a12+a23+ar13 = f
−1
df + TA1(f

−1
) (126)

holds true.

In the last equation f
−1

is the bi-equivariant map f
−1

: T → H associated with the
global central section f−1 of T . Moreover we used that (ar , Ar) is a right 2-connection
on E and a left 2-connection on E−1 [cf. (15)].

Remark 23. It follows from (125) that for a bundle gerbe connection A12 = A13 must
be satisfied, hence A is a pull-back via p1 on Y [2] of a one form defined on Y . We can
set A1 ≡ A12 = A13. Definition 21 contains implicitly the requirement that (a12, a23)

are summable, which means that Ar1 = A2. More explicitly (see (53)):

A1 + ada12
= ϕ12A2ϕ

−1
12 + ϕ12dϕ

−1
12 . (127)

The affine sum of bundle gerbe connections is again a bundle gerbe connection. This
is a consequence of the following affine property for sums of the 2-connection. If on the
bibundles E1 and E2 we have two couples of summable connections (a1, a2), (a′

1, a
′
2),

then λa1 + (1 − λ)a′
1 is summable to λa2 + (1 − λ)a′

2 and the sum is given by

(λa1 + (1 − λ)a′
1)+ (λa2 + (1 − λ)a′

2) = λ(a1+a2)+ (1 − λ)(a′
1+a

′
2) . (128)

We have the following theorem:

Theorem 24. There exists a bundle gerbe connection (a, A) on each bundle gerbe
(E, Y,M,f ).
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Proof. Let us assume for the moment the bundle gerbe to be trivial, E = N −1
1 ZN2 with

a bibundle N → Y and a trivial bibundle Z → Y [2] with global central section z−1.
Consider on Z the 2-connection (α, Ã), where the Lie(Aut(H))-valued one-form Ã on
Y is the pull-back of a one-form onM . Here α is canonically determined by Ã and z−1,
we have α = z̄−1dz̄ + TA(z̄

−1). Next consider on N an arbitrary 2-connection (ã, Ã).
Since Ã is the pull-back of a one form on M we have that the sum a = ãr1+α+ã2

is well defined and that (a, A ≡ Ãr ) is a 2-connection on E . Notice that under the
canonical identification Z12N2N −1

2 Z23 = Z12Z23 we have the canonical identification
α12+ã2+ãr2+α23 = α12+α23. The point here is that N2N −1

2 has the canonical sec-

tion 1 = [n, n−1], n ∈ N2, and that ã2+ãr2 = 1̄d1̄−1 + TA(1̄) independently from
ã2. Then from E = N −1

1 ZN2 we have E12E23E−1
13 = N −1

1 Z12Z23Z−1
13 N1 and for the

connections we have

a12+a23+ar13 = ãr1+α12+α23+αr13+ã1 . (129)

We want to prove that the r.h.s. of this equation equals the canonical 2-connection

f
−1
df + TA1(f

−1
) associated with the trivial bundle T with section f−1. We first

observe that a similar property holds for the sections of Z12Z23Z−1
13 and of T : f−1 =

ϕ−1
1 (z−1

12 z
−1
23 z13) ≡ n−1

1 z−1
12 z

−1
23 z13n1 independently from the local section n1 of N1.

Then one can explicitly check that this relation implies the relation ãr1+α12+α23

+αr13+ã1 = f
−1
df +TA1(f

−1
). This proves the validity of the theorem in the case of

a trivial bundle gerbe. According to Theorem 14 any gerbe is locally trivial, so we can
use the affine property of bundle gerbe connections and a partition of unity subordinate
to the covering {Oα} of M to extend the proof to arbitrary bundle gerbes. ��

A natural question arises: can we construct a connection on the bundle gerbe
(E, Y,M,f ) starting with:

• its nonabelian Čech cocycle f
−1

: T → H, ϕ : E ×H → H

• sections σα : Oα → Y

• a partition of unity {ρα} subordinate to the covering {Oα} of M ?

The answer is positive. Let us describe the construction. First we use the local sections
σα to map Y |[2]

Oα
to Y [3] via the map r [2]

α : [y, y′] 	→ [σα(x), y, y′], where ℘(y) =
℘(y′) = x, similarly r [1]

α : Y |[1]
Oα

→ Y [2]. Next let us introduce the following H -valued
one form a

a =
∑
α

ραr
[2]
α

∗
ϕ−1

12

(
f d f

−1
)
. (130)

We easily find that

lh∗a = Adha + p∗
1

(
h
∑
α

ραr
[1]
α

∗
ϕ−1(d ϕ(h−1)

)
.

The Lie(Aut(H))-valued 1-form
∑
α ραr

[1]
α

∗
ϕ−1 d ϕ is, due to (5), well defined on Y .

We set

A =
∑
α

ραr
[1]
α

∗
ϕ−1 d ϕ − d (131)
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for the sought Lie(Aut(H))-valued 1-form on Y . Using the cocycle property of f̄ and
ϕ we easily have

Proposition 25. Formulas (130) and (131) give a bundle gerbe connection.

Using (88) we obtain that the 2-curvature (k,K) of the bundle gerbe 2-connection (a, A)
satisfies

k12+k23+kr13 = TK1(f
−1
) . (132)

Connection on a lifting bundle gerbe. Let us now consider the example of a lifting
bundle gerbe associated with an exact sequence of groups (112) and aG-principal bun-
dle P → M on M . In this case, for any given connection Ā on P we can construct a
connection on the lifting bundle gerbe. Let us choose a section s : Lie(G) →Lie(E);
i.e a linear map such that π ◦ s = id . We first define A = s(Ā) and then consider the
Lie(E) valued one-forms on P [2] given by A1 = p∗

1s(Ā) and A2 = p∗
2s(Ā), where p1

and p2 are respectively the projections onto the first and second factor of P [2]. We next
consider the one-form a on E that on (p1, p2; e) ∈ E is given by

a ≡ eA2e
−1 + ede−1 − A1 , (133)

here A1 = p∗(A1) and A2 = p∗(A2), with p : E → P [2]. It is easy to see that
π∗a = 0 and that therefore a is Lie(H) valued; moreover (a, adA) is a 2-connection on
E . Recalling that on E we have ϕ(p1,p2;e) = Ade, it is now a straightforward check left
to the reader to show that (a, adA) is a connection on the lifting bundle gerbe.

Connection on a module. Let us start discussing the case of the canonical module
can = Aut(H) × Y (see Sect. 6). Let (a, A) be a connection on our bundle gerbe
(E, Y,M,f ). The Lie(Aut(H))-valued one-form A on Y lifts canonically to the con-
nection Ã on can defined, for all (η, y) ∈ can, by Ã = ηAη−1 +ηdη−1. Let us consider
the following diagram:

can1 ⊕ E
π1

��

π⊕

������������
π2 �� E

can1 can1E
z �� can2 .

(134)

As in the case of the bundle gerbe connection we can consider whether the Lie(Aut(H))-
valued one-form Ã1+ξ(a) that lives on can1⊕E is the pull-back underπ⊕ of a one-form
connection on can1E . If this is the case then we say that Ã1 and a are summable and
we denote by Ã1+ada the resulting connection on can1E . Let us recall that on can we
have ξ (η,y) = Ad ◦ ψ (η,y) with ψ (η,y)(h) = η(h). It is now easy to check that Ã1 and

a are summable and that their sum equals the pull-back under z of the connection Ã2;
in formulae

Ã1+ada = z∗Ã2 . (135)

We also have that equality (135) is equivalent to the summability condition (127) for
the bundle gerbe connection a. Thus (135) is a new interpretation of the summability
condition (127).
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We now discuss connections on an arbitrary module (Q,Z, z) associated with a bun-
dle gerbe (E, Y,M,f ) with connection (a, A). There are two natural requirements that
a left connection AD on the left D-bundle Q has to satisfy in order to be a module
connection. The first one is that the induced connection ÂD on Aut(H)×D Q has to be
equal (under the isomorphism σ ) to the connection Ã of can. This condition reads

AD = ψAψ−1 + ψdψ−1 , (136)

where in the l.h.s. AD is thought to be Lie(Aut(H)) valued. In other words on Y we
require σ ∗ÂD = A, where σ is the global section of Aut(H)×D Q.

Next consider the diagram

Q1 ⊕ E
π1

��

π⊕

�����������
π2 �� E

Q1 Q1E
z �� Q2 .

(137)

We denote by AD
1 +α(a) the well defined D-connection on Q1E that pulled back on

Q1 ⊕ E equals π∗
1 AD

1 + ξ(π∗
2 a). It is not difficult to see that AD

1 is indeed summable
to a if for all h ∈ H , α(TAD(h)) = α(TψAψ−1+ψdψ−1(h)). This summability condition

is thus implied by (136). The second requirement that AD has to satisfy in order to be a
module connection is

AD
1 +α(a) = z∗AD

2 . (138)

These conditions imply the summability condition (127) for the bundle gerbe
connection a.

Concerning the D-valued curvature KD = dAD + AD ∧ AD we have

KD
1 +α(ka) = z∗12KD

2 . (139)

In terms of local data a gerbe connection consists of a collection of local 2-connections
(aαβ, Aα) on the local bibundles Eαβ → Oαβ . For simplicity we assume the covering
{Oα} to be a good one. The explicit relations that the local maps fαβγ : Oαβγ → H ,
ϕαβ : Oαβ → Aut(H) and the local representativesAα ,Kα , aαβ and kαβ (forms onOα ,
Oαβ , etc.) satisfy are

fαβγ fαγ δ = ϕαβ(fβγ δ)fαβδ , (140)

ϕαβϕβγ = Adfαβγ ϕαγ , (141)

aαβ + ϕαβ(aβγ ) = fαβγ aαγ f
−1
αβγ + fαβγ d f

−1
αβγ + TAα (fαβγ ) , (142)

Aα + adaαβ = ϕαβAβϕ
−1
αβ + ϕαβ d ϕ

−1
αβ , (143)

kαβ + ϕαβ(kβγ ) = fαβγ kαγ f
−1
αβγ + TKα(fαβγ ), (144)

and

Kα + adkαβ = ϕαβKβϕ
−1
αβ . (145)
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8. Curving

In this section we introduce the curving two form b. This is achieved considering a gerbe
stably equivalent to (E, Y,M,f ). The resulting equivariant H -valued 3-form h is then
shown to be given in terms of a form on Y . This description applies equally well to the
abelian case; there one can however impose an extra condition [namely the vanishing of
(147)]. We also give an explicit general construction of the curving b in terms of a parti-
tion of unity. This construction depends only on the partition of unity, and in the abelian
case it naturally reduces to the usual one that automatically encodes the vanishing of
(147).

Consider a bundle gerbe (E, Y,M,f )with connection (a, A) and curvature (ka,KA)
and anH -bibundle N → Y with a 2-connection (c, A). Then we have a stably equivalent
gerbe (N −1

1 EN2, Y,M,ϕ
−1
1 (f )) with connection (θ , Ar1) given by

θ = c
r1
1 +a+c2 . (146)

Also we can consider aKA-equivariant horizontal 2-form b on N . Again on the bibundle
N −1

1 EN2 → Y [2] we get a well defined Kr1
A -equivariant horizontal 2-form

δ̃ = b
r1
1 +ka+b2 . (147)

Contrary to the abelian case we cannot achieve δ̃ = 0, unlessKA is inner (remember δ̃ is
alwaysKr1

A -equivariant). Next we consider the equivariant horizontal H -valued 3-form
h on N given by

h = Dcb . (148)

Because of the Bianchi identity dKA + [A,KA] = 0 this is indeed an equivariant form
on N . Obviously the horizontal form ϕ−1(h) is invariant under the left H -action

lh
∗
ϕ−1(h) = ϕ−1(h), (149)

and therefore it projects to a well defined form on Y .
Using now the property of the covariant derivative (86) and the Bianchi identity (68)

we can write

hr1+h2 = Dθ δ̃ . (150)

Finally from (72) we get the Bianchi identity for h,

Dch = [kc, b] + TKA(kc)− TKA(b) . (151)

For the rest of this section we consider the special case where N is a trivial bib-
undle with global central section σ̄ and with 2-connection given by (c, A), where c is
canonically given by σ̄ ,

c = σ̄ dσ̄−1 + TA(σ̄ ) .

Since the onlyH -bibundle N → Y that we can canonically associate to a generic bundle
gerbe is the trivial one (see Proposition 7), the special case where N is trivial seems
quite a natural case.

In terms of local data curving is a collection {bα} of Kα-equivariant horizontal two
forms on trivial H -bibundles Oα ×H → Oα . Again we assume the covering Oα to be
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a good one and write out explicitly the relations to which the local representatives of bα
and hα (forms on Oα) are subject:

kαβ + ϕαβ(bβ) = bα + δαβ , (152)

δαβ + ϕαβ(δβγ ) = fαβγ δαγ f
−1
αβγ + Tνα (fαβγ ) , (153)

να ≡ Kα + adbα , (154)

hα = d bα − TAα (bα) , (155)

ϕαβ(hβ) = hα + dδαβ + [aαβ, δαβ ] + Tνα (aαβ)− TAα (δαβ), (156)

and the Bianchi identity

d hα + TKA(bα) = 0 . (157)

Here we introduced δαβ = ϕα(δ̃αβ) . Equations (140)–(145) and (152)–(157) are the
same as those listed after Theorem 6.4 in [26].

We now consider the case Y = �Oα; this up to stable equivalence is always doable.
Given a partition of unity {ρα} subordinate to the covering {Oα} ofM , we have a natural
choice for the H -valued curving 2-form b on �Oα × H . It is the pull-back under the
projection �Oα ×H → �Oα of the 2-form

�
∑
β

ρβkαβ (158)

on Y = �Oα . In this case we have for the local H -valued 2-forms δαβ the following
expression:

δαβ =
∑
γ

ργ (fαβγ kαγ f
−1
αβγ − kαγ + TKα(fαβγ ))

=
∑
γ

ργ (kαβ + ϕαβ(kβγ )− kαγ ) . (159)

We can now use Proposition 25 together with (158) in order to explicitly construct from
the Čech cocycle (f ,ϕ) an H -valued 3-form h.

We conclude this final section by grouping together the global cocycle formulae that
imply all the local expressions (140)–(145) and (152)–(157),

f 124 ϕ12(f 234) = f 134 f 123 , (92)

a12+a23 = f ∗a13 , (125)

δ̃ = b
r1
1 +ka+b2 , (147)

h = Dcb . (148)
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Math. 86, Boston: Birkhäuser 1990, pp. 401–476



400 P. Aschieri, L. Cantini, B. Jurčo
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(communicated by Ronald Brown)

Abstract
For any topological bicategory B, the Duskin nerve NB of

B is a simplicial space. We introduce the classifying topos BB
of B as the Deligne topos of sheaves Sh(NB) on the simplicial
space NB. It is shown that the category of geometric morphisms
Hom(Sh(X),BB) from the topos of sheaves Sh(X) on a topo-
logical space X to the Deligne classifying topos is naturally
equivalent to the category of principal B-bundles. As a simple
consequence, the geometric realization |NB| of the nerve NB of
a locally contractible topological bicategory B is the classifying
space of principal B-bundles, giving a variant of the result of
Baas, Bökstedt and Kro derived in the context of bicategorical
K-theory. We also define classifying topoi of a topological bicat-
egory B using sheaves on other types of nerves of a bicategory
given by Lack and Paoli, Simpson and Tamsamani by means of
bisimplicial spaces, and we examine their properties.

1. Introduction

In a recent paper by Baas, Bökstedt and Kro [1], it was shown that the geometric
realization |NB| of the Duskin nerve NB [11] of a good topological bicategory B is
the classifying space of charted B-bundles. The bicategory is called good if its Duskin
nerve NB is a good simplicial space, i.e., all degeneracy maps are closed cofibrations.
Special cases of topological 2-groups and Lie 2-groups were discussed in [2] and in [15],
respectively.

The result of [1] generalizes the well-known fact that the geometric realization
|NC| of the nerve NC of a locally contractible topological category C is the classi-
fying space of principal C-bundles (on CW-complexes). This is very nicely described
by Moerdijk in [21]. The classifying topos BC of a topological category C is also
described there as the Deligne topos of sheaves Sh(NC) on the nerve NC, and it is
shown that the category of geometric morphisms Hom(Sh(X),BC) from the topos of
sheaves Sh(X) on a topological space X to the Deligne topos is naturally equivalent
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to the category of principal C-bundles. As a simple consequence, it is shown that
the geometric realization |NC| of the nerve NC of a locally contractible topological
category C is the classifying space of principal C-bundles.

One purpose of this note is to introduce the classifying topos BB of a topological
bicategory B as the topos of sheaves Sh(NB) on the Duskin nerve NB of the bicategory
B, which is a simplicial space. The category of geometric morphisms Hom(Sh(X),BB)
from the topos of sheaves Sh(X) on a topological space X to the classifying topos
is naturally equivalent to the category of (suitably defined) principal B-bundles. As
a simple consequence, the geometric realization |NB| of the nerve NB of a locally
contractible topological bicategory B is the classifying space of principal B-bundles.
Hence, we have a variant of the result of Baas, Bökstedt and Kro.

Another purpose of this note is to define classifying topoi of a topological bicategory
B using sheaves on other types of nerves of the bicategory B, the nerves according to
Lack and Paoli [17] (or Simpson [23] and Tamsamani [25]), which can be viewed as
bisimplicial spaces. Again, the category of topos morphisms from the topos of sheaves
Sh(X) on a topological space X to the corresponding classifying topos is naturally
equivalent to the respective category of (suitably defined) principal B-bundles. As
a simple consequence, the geometric realization of any of these nerves of a locally
contractible topological bicategory B is the classifying space of the respective principal
B-bundles.

In Section 2, we recall some prerequisites from [21] regarding sheaves on a simpli-
cial space and augmented linear orders over topological spaces. In Section 3, we recall,
again from [21], the known facts about classifying spaces and topoi of topological cat-
egories (and the corresponding principal bundles). We describe a generalization to the
case of bicategories, based on the Duskin nerve, in Section 4. Further preliminaries
needed for the subsequent discussion of alternative definitions of classifying spaces
and topoi of bicategories are given in Section 5. Finally, in Section 6, we describe a
modification of the classifying topos of a topological bicategory (and the correspond-
ing principal bundles) based on alternative definitions of the nerves according to Lack
and Paoli, Simpson and Tamsamani.

This article is meant to be the first one in a sequence within a program, initi-
ated by the authors, of classifying topoi of higher order structures in topology. It is
a vast generalization of the program initiated by Moerdijk in [21] on the relation
between classifying spaces and classifying topoi. Moerdijk’s lecture notes arose out of
an important question: What does the classifying space of a small category classify?
In the article titled by the same question [30], Weiss proved the classifying property
of the classifying space for slightly different geometric objects than those of Moerdijk,
showing that the answer may not be unique.

Therefore, this article may be seen as an (one possible) answer to the following
question: What does the classifying space of a topological bicategory classify? Bicate-
gories are the weakest possible generalization of ordinary categories to the immediate
next level of dimension. Like categories, bicategories do have a genuine simplicial set
associated with them, their Duskin (geometric) nerve [11]. Based on unpublished
work of Roberts on the characterization of the nerve of a strict n-category, Street
postulated in [24] an equivalence between the category of strict ω-categories and a
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category of certain types of simplicial sets which are called complicial sets. The Street-
Roberts conjecture was proved by Verity in [27], and in his subsequent papers, [28]
and [29], he gave a characterization of weak ω-categories. Under this characteriza-
tion, one should be able to capture classifying spaces and topoi of bicategories and
other higher-dimensional categories, at least in so far as these concepts have found
satisfactory definitions. Following such reasoning, we may define the classifying space
of a weak ω-category as the geometric realization of the complicial set, which is its
nerve, and the classifying topos of a weak ω-category would be the topos of sheaves
on the same complicial set.

It would be interesting to compare this approach to classifying spaces of weak
ω-categories with classifying spaces of crossed complexes defined by Brown and Hig-
gins in [8], since there is a well-known equivalence between strict ω-groupoids and
crossed complexes proved in [7] by the same authors. In particular, it would be inter-
esting to see whether the methods we developed would allow one to define a classifying
space of a weak ω-category by taking a fundamental crossed complex of its coherent
simplicial nerve.

However, this article is not so cosmological in its scope, and its main contribution
is to put together some established results on classifying spaces and classifying topoi
in a new way, with consequences for the theory of bicategories. Since we are following
Moerdijk’s approach to classifying spaces and classifying topoi, we will omit all proofs,
which can be found in Moerdijk’s lecture notes. Many of the definitions and theorems
in Sections 2, 3 and 5 are taken almost verbatim from [21].
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2. Simplicial spaces and linear orders over topological spaces

In this section, we recall some prerequisites regarding sheaves on a simplicial space
and augmented linear orders over topological spaces. Almost all of the definitions
and theorems are taken verbatim from [21], where the proofs of all statements of this
section can be found.

2.1. Topological spaces
Let us recall that a closed set in a (topological) space X is irreducible if it can

not be written as a union of two smaller closed sets. The space X is sober if every
irreducible set is the closure {x} of the one point set {x} of a unique x ∈ X. Every
Hausdorff space is sober. In this note all spaces will be sober by assumption.
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A space X is locally equiconnected (LEC) if the diagonal map X → X ×X is a
closed cofibration. For example, CW-complexes are LEC.

A space X is locally contractible if it has a basis of contractible sets. Examples of
locally contractible spaces are locally equiconnected spaces and, in particular, CW-
complexes. For a locally contractible space the étale homotopy groups πn(Sh(X), x0)
are naturally isomorphic to the ordinary homotopy groups πn(X, x0) for each n.

2.2. Sheaves as étale spaces
Throughout this article, we will consider sheaves as sheaves of cross-sections of

étale spaces. Recall that a bundle p : E → X over X is said to be an étale space over
X if for each e ∈ E there exists an open set V ⊂ E, with e ∈ V , such that p(V ) ⊂ X
is open in X and the restriction p|V : V → p(V ) over V is a homeomorphism. There
is a well-known equivalence

Etale(X)
Γ // Sh(X),
Λ

oo

where Γ: Etale(X) → Sh(X) is a functor which assigns to each étale space p : E
→ X over X the sheaf of all cross-sections of E. The functor Λ: Sh(X) → Etale(X)
assigns to each sheaf S the étale space of germes of S, where the germ at the point
x ∈ X is an equivalence class germx s represented by s ∈ S(U) under the equivalence
relation, which relates two elements s ∈ S(U) and t ∈ S(V ), if there is some open set
W ⊂ U ∩ V such that x ∈ W and s|W = t|W . The stalk of the sheaf S at the point
x ∈ X is the set Sx = {germx s : s ∈ S(U), x ∈ U} of all germs at x, which is formally
a filtered colimit

Sx = lim−→
x∈U

S(U)

of the restriction S(x) : Ox(X)op → Set of the sheaf S to the filtered category Ox(X)op

of open neighborhoods of the point x ∈ X. Then ΛS is an étale space p :
∐

x∈X Sx

→ X whose sheaf of cross sections is canonically isomorphic to S. Therefore, we will
simultaneously use the terms sheaves and étales spaces in the rest of this article.

2.3. Topoi
In the following, a topos will always mean a Grothendieck topos. Sh(X) will denote

topos of sheaves on a (topological) space X. A sober space X can be recovered from
the topos Sh(X), which is the faithful image of the space X in the world of topoi.

Further, Hom(Sh(X),Sh(Y )) will denote the category of geometric morphisms
from Sh(X) to Sh(Y ). We will also use the same notation Hom(F , E) in the more
general case of any two topoi F and E . By definition, a geometric morphism f ∈
Hom(F , E) is a pair of functors f∗ : E → F and f∗ : F → E , f∗ being left adjoint to
f∗, and also f∗ being left exact, i.e., preserving finite limits.

Let us recall that a geometric morphism f : F → E between locally connected
topoi is a weak homotopy equivalence if it induces isomorphisms on étale homotopy
(pro)groups π0(F) ∼= π0(E) and πn(F , p) ∼= πn(E , fq), for n > 1 for any basepoint
q ∈ F .

For the collection of homotopy classes of geometric morphism from F to E the
usual notation [F , E ] will be used.
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2.4. The singular functor
The following construction of a singular functor is taken from [16], where Kelly

described it in the context of enriched V-categories for any symmetric monoidal closed
category V, which is complete and cocomplete. Let

F : A→ E

be a functor from the small category A. The singular functor of F is the functor

E(F, 1) : E→ [Aop,V],

which is obtained as the composite of the Yoneda embedding

Yon: E→ [Ei op,V]

followed by the functor [F op,V] : [Eop,V] → [Aop,V] given by restriction along a func-
tor F . More explicitly, the singular functor E(F, 1) sends any object E in E to the
functor

E(F (−), E) : Aop → V,

which takes an object A in A to the hom-object E(F (A), E) in V. If the category E
is cocomplete, then the singular functor has a left adjoint

L : [Aop,V] → E

defined for each presheaf P : Aop → V as the colimit

L(P ) = lim−→(
∫
A P

πP // A F // E),

where
∫
A P is the so-called Grothendieck construction [20] on a presheaf P : Aop → V.

2.5. Grothendieck nerve as a singular functor
Each ordinal [n] = {0 < 1 < · · · < n} can be seen as a category with the objects

0, 1, . . . , n and a unique arrow i → j for each 0 6 i 6 j 6 n. Also, any monotone
map between two ordinals may be seen as a functor. In this way, ∆ becomes a full
subcategory of Cat1 with a fully faithful inclusion functor

J : ∆ → Cat1.

For any small category B, we see that the composite of the Yoneda embedding
Yon: B→ [Bop, Set], followed by the restriction functor [Bop,Set] → [∆op, Set] along
J , gives a singular functor of J . Specifically, the singular functor of J defines the
Grothendieck nerve functor

N : Cat1 → [∆op, Set],

which sends any category C to the simplicial set NC which is the nerve of C whose
n-simplices are defined by the set

NCn = [J([n]),C],

where the right side denotes the set of functors from an ordinal [n] to the category C.
The nerve functor is fully faithful, which means that the simplicial skeletal category
∆ is an adequate subcategory of the category Cat1 in the sense of Isbell [13, 14]. We
also say that the corresponding embedding is dense, in the sense of Kelly [16].



284 IGOR BAKOVIĆ and BRANISLAV JURČO

2.6. Simplicial spaces
Let ∆ be the simplicial model category having as objects the nonempty finite sets

(ordinals) [n] = {0, 1, . . . , n}, for n > 0, and as arrows the order-preserving functions
α : [n] → [m]. A simplicial space (set) is a contravariant functor from ∆ into the
category of spaces (sets). Its value at [n] is denoted Yn, and its action on the arrow
α : [n] → [m] is denoted as Y (α) : Ym → Yn. A simplicial space Y is called locally
contractible if each Yn has a basis of contractible sets.

For a simplicial space Y , the geometric realization |Y | will always mean the thick-
ened (fat) geometric realization. This is defined as a topological space obtained from
the disjoint sum

∑
n>0 Xn ×∆n by the the equivalence relations

(α∗(x), t) ∼ (x, α(t))

for all injective (order-preserving) arrows α : [n] → [m] ∈ ∆, any x ∈ Xm and any
t ∈ ∆n, where ∆n is the standard topological n-simplex. If all degeneracies are closed
cofibrations, i.e., the simplicial space is a good simplicial space, then this geomet-
ric realization is homotopy equivalent to the geometric realization of the underlying
simplicial set of Y , which is defined as above but allowing for all arrows in ∆. In par-
ticular, Y is good if all spaces Yn are locally equiconnected [1]. Geometric realization
of a locally contractible simplicial space is a locally contractible space.

Definition 2.1. A sheaf S on a simplicial space Y is defined to be a system of
sheaves Sn on Yn, for n > 0, together with sheaf maps S(α) : Y (α)∗Sn → Sm for each
α : [n] → [m]. These maps are required to satisfy the following functoriality conditions:

(i) (normalization). S(id[n]) = idSn , and

(ii) for any α : [n] → [m], β : [m] → [k] the following diagram:

Y (β)∗Y (α)∗Sn

∼=

²²

Y (β)∗S(α) // Y (β)∗Sm

S(β)

²²
Y (βα)∗Sn

S(βα)
// Sk

is commutative. A morphism f : S → T of sheaves on Y consists of the maps fn : Sn →
Tn of sheaves on Yn for each n > 0, which are compatible with the structure maps
S(α) and T (α). This defines the category Sh(Y ) of sheaves on the simplicial space Y .

Proposition 2.2. The category Sh(Y ) of sheaves on a simplicial space is a topos.

Theorem 2.3. For any simplicial space Y , the topoi Sh(Y ) and Sh(|Y |) have the
same weak homotopy type.

Definition 2.4. A linear order over a topological space X is a sheaf p : L → X
on X together with a subsheaf O ⊆ L×X L such that for each point x ∈ X the stalk
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Lx is nonempty and is linearly ordered by the relation

y 6 z if and only if (y, z) ∈ Ox,

for y, z ∈ Lx. A mapping L → L′ between two linear orders over X is a mapping of
sheaves restricting for each x ∈ X to an order-preserving map of stalks Lx → L′x.
This defines a category of linear orders on X.

Example 2.5. An open ordered covering U = {Ui}i∈I of a topological space X is a
covering indexed over a partially ordered set I, which restricts to a total ordering
on every finite subset {i0, . . . , in} of I whenever the finite intersection Ui0,...,in

=
Ui0 ∩ · · · ∩ Uin is nonempty. When a sheaf p : L → X is given by the projection
p :

∐
i∈I Ui → X from the disjoint union of open sets in the open ordered covering

U , the subsheaf p[2] : L×X L → X is given by the induced projection p[2] :
∐

i,j∈I Uij

→ X from the family {Uij}i,j∈I of double intersections of open sets U . The family
of inclusions iij : Uij ↪→ ∐

i,j∈I Uij , for each Uij 6= ∅ such that i < j, defines a sub-
sheaf O =

∐
i<j Uij of L =

∐
i,j∈I Uij whose stalks Ox are linearly ordered for any

x ∈ X. Therefore, open ordered coverings used by Baas, Bökstedt and Kro in [1] are
examples of linear orders over X.

Remark 2.6. A linear order L over X defines an obvious topological category with L
as the space of objects and the order subsheaf O ⊆ L×X L as the space of arrows.
Hence, we can speak of a nerve NL of the linear order L. This nerve is obviously a
simplicial sheaf on X (a simplicial space with étale maps into X).

Recall that any open covering of a topological space X can be assembled into a
simplicial sheaf over X with distinguished properties. Therefore, by the construction
in Example 2.5 and following Remark 2.6, we may regard linear orders as generaliza-
tions of coverings of topological spaces.

Definition 2.7. For any space X and any simplicial space Y , write Lin(X, Y ) for the
category of linear orders (L, aug) over X equipped with a simplicial map (augmen-
tation) aug : NL → Y from the nerve of L to Y . A morphism (L, aug) → (L′, aug′)
in Lin(X,Y ) are maps of linear orders L → L′ such that the induced map NL → NL′

on the nerves respects the augmentations.

If we regard linear orders as generalizations of coverings of topological spaces, then
augmentations of linear orders may be seen as cocycles on such coverings.

Example 2.8. Let NC be the nerve of a topological category C. An augmentation
aug : NL → NC of a linear order L defined by an open ordered covering U = {Ui}i∈I

of a topological space X, as in Example 2.5, is a Čech cocycle on the covering U with
values in the category C.

Definition 2.9. We call two objects E0, E1 ∈ Lin(X, Y ) concordant if there exists
an E ∈ Lin(X × [0, 1], Y ) such that we have E0

∼= i∗0(E) and E0
∼= i∗1(E) under the

obvious inclusions i0, i1 : X ↪→ X × [0, 1]. Linc(X, Y ) will denote the collection of con-
cordance classes of objects from Lin(X, Y ).
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Theorem 2.10. Let Y be a simplicial space. For any space X there is a natural
equivalence of categories

Hom(Sh(X),Sh(Y )) ' Lin(X,Y ).

On homotopy classes of topos morphisms we have the natural bijection

[Sh(X), Sh(Y )] ∼= Linc(X, Y ).

Corollary 2.11. Let X be a CW-complex and Y be a locally contractible simplicial
space. There is a natural bijection between homotopy classes of maps [X, |Y |] and
concordance classes Linc(X, Y ).

Remark 2.12. If, in addition, the simplicial space Y is a good one, then the above
is also true if we use the geometric realization of the underlying simplicial set of Y
instead of its thickened geometric realization. In particular, it does not matter which
geometric realization we use if each of Yn is LEC or a CW-complex.

3. Classifying spaces and classifying topoi of topological cat-
egories

In this section we specify the known results described in Section 1 to the case when
the simplicial space Y is the nerve of a topological category C. The reader who is
interested in more details is referred to [21], which we again follow almost verbatim.

Definition 3.1. Let C be a topological category. The classifying topos BC of a
topological category is defined as the topos Sh(NC).

Definition 3.2. The classifying space BC of a topological category C is the geo-
metric realization |NC| of its nerve NC.

With these definitions we have the following corollary of Theorem 2.3.

Corollary 3.3. For any topological category C, the topos of sheaves Sh(BC) on the
classifying space BC has the same weak homotopy type as the classifying topos BC.

Definition 3.4. For any topological category C, write Lin(X,C) for the category of
linear orders over X equipped with an augmentation NL → NC. An object E of
this category will be called a principal C-bundle. We call two principal C-bundles
E0 and E1 on X concordant if there exists a principal C-bundle on X × [0, 1] such
that we have isomorphisms E0

∼= i∗0(E) and E0
∼= i∗1(E) under the obvious inclusions

i0, i1 : X ↪→ X × [0, 1].

Remark 3.5. The nerve construction leads to a bijection between principal C-bundles
and linear orders L equipped with a continuous functor L → C.

The fact that the classifying topos BC classifies principal C-bundles now follows
immediately from Theorem 2.10.
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Theorem 3.6. For a topological category C and a topological space X, there is a
natural equivalence of categories

Hom(Sh(X),BC) ' Lin(X,C).

On homotopy classes of topos morphisms, we have the natural bijection

[Sh(X),BC] ∼= Linc(X,C).

Similarly, the fact that the classification space BC classifies principal C-bundles
now follows from Corollary 2.11.

Definition 3.7. We say that a topological category C is locally contractible if its
space of objects C0 and its space of arrows C1 are locally contractible. A topological
category C is a good topological category, if its nerve NC is a good simplicial
space.

Corollary 3.8. For a locally contractible category C and a CW-complex X, there is
a natural bijection

[X, BC] ∼= Linc(X,C).

Remark 3.9. If, in addition, the topological category C is a good one, then the above
is also true if we use the geometric realization of the underlying simplicial set instead
of the thickened geometric realization of the nerve. In particular, it does not matter
which geometric realization we use if all NCn are LEC.

4. Classifying spaces and classifying topoi of topological bicat-
egories I

In this section we specify the known results described in Section 1 to the case when
the simplicial space Y is the nerve of a topological bicategory B.

4.1. Duskin nerve as a singular functor
The Duskin nerve [11] can also be obtained as a singular functor when we take

V = Set. Every category (in particular the category defined above by the ordinal [n])
can be seen as a locally discrete bicategory (the only 2-cells are identities) which gives
a fully faithful inclusion

H : ∆ → Bicat1,

where Bicat1 denotes the category of bicategories and normal lax functors or normal
morphisms of bicategories defined by Bénabou in [6]. The singular functor of the
inclusion H is the Duskin nerve functor

N : Bicat1 → [∆op,Set],

which is fully faithful and sends a (small) bicategory B to its nerve NB which is a
simplicial set whose n-simplices are defined by the set

NBn = [H([n]),B].

The right side is a set of normal lax functors from an ordinal [n] to the bicategory B.
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Definition 4.1. For an ordinal [n] and a bicategory B, a normal lax functor
(B, f, β) : [n] → B consists of the following data in B:

(i) an object Bi for each i ∈ [n],
(ii) a morphism fij : Bi → Bj for each i, j ∈ [n] with i 6 j,
(iii) a 2-cell βijk : fij ◦ fjk ⇒ fik for each i, j, k ∈ [n] with i 6 j 6 k

Bk

ÄÄÄÄ{¤ βijk

fjk //

fik

ÂÂ?
??

??
??

??
??

??
??

??
Bj

fij

²²
Bi

such that the following conditions are satisfied:
• (normalization). For any i ∈ [n] we have fii = iBi

: Bi → Bi, and for any
i, j ∈ [n], such that i 6 j, the corresponding 2-cells βiij : fii ◦ fij ⇒ fij and
βijj : fij ◦ fjj ⇒ fij are given by the two 2-simplices

Bj

ÄÄÄÄ{¤ λfij

fij //

fij

ÂÂ?
??

??
??

??
??

??
??

??
Bi

iBi

²²
Bi

Bj

ÄÄÄÄ{¤ ρfij

iBj //

fij

ÂÂ?
??

??
??

??
??

??
??

??
Bj

fij

²²
Bi

where ρfij : fij ◦ ipj ⇒ fij and λfij : ipi ◦ fij ⇒ fij are the components of the
right and left identity natural isomorphisms in B.

• (coherence condition). For each i, j, k, l ∈ [n] such that i 6 j 6 k 6 l the follow-
ing tetrahedron:

Bi

ÄÄÄÄ{¤βijk
????[c

βijl

Bl

ÄÄÄÄ{¤βikl

fil

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ fjl //

fkl

ÂÂ?
??

??
??

??
??

??
Bj

????[c
βjkl

fij

__?????????????

Bk

fik

OO

fjk

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

is commutative. This means that we have the identity of 2-cells in the bicategory
B:

βikl(βijk ◦ fkl) = βijl(fij ◦ βjkl)αijkl.
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Remark 4.2. Simplicial sets that are isomorphic to a nerve of a bicategory have been
characterized in [11] and [12]. Simplicial sets that are isomorphic to a nerve of a
bicategory form a full subcategory of the category of simplicial sets. This category
is equivalent to the category Bicat1 of bicategories with lax normal functors. Let us
recall that a lax functor (F, φ) is normal if F (idx) = idFx and φx : idFx =⇒ F (idx)
is the identity 2-cell, and that oplax means that all the structure maps go in the
opposite direction. This equivalence also holds in the topological setting.

Definition 4.3. Let B be a topological bicategory. The classifying topos BB of the
topological bicategory B is defined as the topos Sh(NB).

Definition 4.4. The classifying space BB of a topological bicategory B is the
geometric realization |NB| of its nerve NB.

With these definitions we have the following corollary of Theorem 2.3.

Corollary 4.5. For any topological bicategory B, the topos of sheaves Sh(BB) on the
classifying space BB has the same weak homotopy type as the classifying topos BB.

Definition 4.6. For a topological bicategory B write Lin(X,B) for the category of
linear orders over X equipped with an augmentation aug : NL → NB. An object E
of this category will be called a Duskin principal B-bundle. We call two Duskin
principal B-bundles E0 and E1 on X concordant, if there exists a Duskin principal
B-bundle on X × [0, 1] such that we have the equivalences E0 ' i∗0(E) and E0 ' i∗1(E)
under the obvious inclusions i0, i1 : X ↪→ X × [0, 1].

Remark 4.7. We can consider a linear order L as a locally trivial bicategory (with only
trivial 2-morphisms). In this case the Duskin nerve of L coincides with the ordinary
nerve of L which justifies the same notation NL for both nerves.

Remark 4.8. By the above remark, an augmentation NL → NB is the same, by the
nerve construction, as a continuous normal lax functor L → B.

Similarly to Theorem 3.6, we have from Theorem 2.10 the following “classifying”
property of the classifying 1-topos BB.

Theorem 4.9. For a topological bicategory B and a topological space X, there is a
natural equivalence of categories

Hom(Sh(X),BB) ' Lin(X,B).

On homotopy classes of topos morphisms we have the natural bijection

[Sh(X),BB] ∼= Linc(X,B).

Definition 4.10. We say that a topological bicategory B is locally contractible B
if its space of objects B0, its space of 1-arrows B1 and its space of 2-arrows B2 are
locally contractible. A topological bicategory B is a good topological bicategory,
if its nerve NB is a good simplicial space.

The “classification” property of the classifying space BB now follows as a corollary
from Corollary 2.11.
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Corollary 4.11. For a locally contractible bicategory B and a CW-complex X, there
is a natural bijection

[X,BB] ∼= Linc(X,B).

Remark 4.12. If, in addition, the topological bicategory B is a good one, then the
above is also true if we use the geometric realization of the underlying simplicial set
instead of the thickened geometric realization of the nerve. In particular, it does not
matter which geometric realization we use if all NBn are LEC. The case of a good
topological bicategory, as well as the sufficient conditions for a bicategory being a
good one, are discussed in [1]. Those conditions actually guarantee that all NBn are
LEC. Thus, our corollary above gives a slight generalization of the result of Baas,
Bökstedt and Kro.

5. Principal bundles under a category

Before introducing an alternative notion of a classifying topos of a bicategory in the
next section, we will introduce some additional background material. Everything up
to and including Remark 5.18 is taken almost verbatim from [21], where the inter-
ested reader can find the missing proofs (as well as more details). Definition 5.20,
Theorem 5.21 and Corollary 5.23 might be new. To make our discussion more com-
plete, we start with the definitions of the classifying topoi in the cases of a small and
s-étale category. We also recall the definition of a principal C-bundles in these cases.

Proposition 5.1. The category of all presheaves on a small category C is a topos.

Definition 5.2. The topos BC of presheaves on a small category C is called the
classifying topos of C.

Remark 5.3. At this point, the reader may wonder how the above Definition 5.2 is
related to the definition of the classifying topos of a topological category given in
Definition 3.1. We will address this question later in 5.11, after we introduce further
relevant material.

Definition 5.4. For a small category C and a space X, a C-bundle over X is a
covariant functor E : C→ Sh(X). Such a C-bundle is called a principal (flat, filter-
ing) if for each point x ∈ X the following conditions — nonemptiness, transitivity
and freeness — are satisfied for the stalks E(c)x for objects c ∈ C:

(i) There is at least one object c in C for which the stalk E(c)x is nonempty.

(ii) For any two points y ∈ E(c)x and z ∈ E(d)x, there are arrows α : b → c and
β : b → d from some object b of C, and an object w ∈ E(b)x such that αw = y
and βw = z.

(iii) For any two parallel arrows α, β : c → d and any y ∈ E(c)x for which αy = βy,
there is an arrow γ : b → c and a point z ∈ E(b)x such that αγ = βγ and γz = y.

A map between two principal C-bundles is a natural transformation between the
corresponding functors. The category of principal C-bundles will be denoted as
Prin(X,C).
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Examples 5.5. The following well-known notions are examples of principal C-bundles:
(i) (principal group bundles). Any group G can be seen as a groupoid (and therefore

a category) with only one object. In this way, the above definition of a principal
C-bundle becomes the usual one, where a principal left G-bundle over X is an
étale space p : P → X with a fibre-preserving left action a : G× P → P of G on
P for which the induced map (a, pr2) : G× P → P × P is a homeomorphism.

(ii) (principal monoid bundles). Any monoid M can be seen as a category with
only one object. If every morphism in a such category is a monomorphism,
then the monoid M is said to have left cancellation if mk = ml implies k = l
for any k, l, m ∈ M . Segal used such a monoid M in order to introduce a right
principal monoid bundle in [22] as an étale space p : P → X over X with a
fibre-preserving right action of M on P , such that each fibre Px is a principal
M -set. A right principal M -set S is a set with a right action of M , which is free
in the sense that sm1 = sm2 for any m1,m2 ∈ M and s ∈ S, and is transitive
in the sense that for any s1, s2 ∈ M there exist m1, m2 ∈ M and s ∈ S such
that s1 = sm1 and s2 = sm2. Although Segal used the right action of a monoid
with left cancellation, it is obvious that when C is a monoid M with right
cancellation, the above definition of a left principal C-bundle becomes a left
principal monoid bundle.

(iii) (principal poset bundles). Any partially ordered set P may be seen as a category
with exactly one morphism i → j if and only if i 6 j. A principal P -bundle over
a topological space X is a covering U = {Ui}i∈P of X such that when i 6 j then
Ui ⊆ Uj and which is locally directed in the sense that any Uij = Ui ∩ Uj is
covered by the family Uij = {Uk : k 6 i ∧ k 6 j}.

(iv) (principal simplicial sets). Any linear order over a topological space defines a
topological category and therefore a simplicial space via its nerve as in Remark
2.6. One can see that a simplicial set S : ∆op → Set is a principal ∆op-bundle if
and only if is the nerve of a (uniquely determined) nonempty linear order.

Definition 5.6. A C-sheaf is an étale space p : S → C0 equipped with a continuous
right C action

α : S ×C0 C1 → S,

which we denote by α(x, f) = x · f . This action is defined for all pairs (x, f) for which
p(x) = t(f), and it satisfies the following axioms:

p(x · f) = s(f), (x · f) · g = x · (fg), x · idp(x) = x.

A map between C-sheaves or a C-equivariant map is a map of étale spaces over C0,
which is compatible with the C-action.

Proposition 5.7. The category of C-sheaves is a topos.

Definition 5.8. The topos BC of C-sheaves is called the classifying topos of the
s-étale topological category C.

Examples 5.9. We now provide some examples of C-sheaves to illustrate their signif-
icance:
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(i) Any small category C can be seen as a topological category with the discrete
topology. Then a C-sheaf is the same thing as a presheaf on C which justifies
the same notation BC, as in Definition 5.2, for the classifying topos of a small
category C.

(ii) Any topological space X may be seen as a discrete topological category X (the
one for which all morphisms are identities). Then an X-sheaf is just a sheaf on
X and the topos BX is the topos Sh(X) of sheaves on X.

(iii) Let G be an action groupoid coming from the right action of a topological group
G on a topological space X. The groupoid G has X as a space of objects and
X ×G as a space of morphisms, where morphisms are of the form (x, g) : x · g
→ x. Then a G-sheaf p : S → X is a sheaf which is G-equivariant. Therefore,
BG is the category of G-equivariant sheaves.

In the case of an s-étale topological category, i.e., a topological category with the
source map s : C1 → C0 being an étale map, we have the following definition.

Definition 5.10. Let C be an s-étale topological category. A C-bundle over a
space X is an étale map (sheaf) p : E → X with a continuous fibrewise left action
given by the maps

π : E → B0, and a : B1 ×B0 E → E.

Such a C-bundle is called principal if the three conditions of nonemptiness, transi-
tivity and freeness hold for each x ∈ X:

(i) The stalk Ex is nonempty.

(ii) For any two points y ∈ Ex and z ∈ Ex, there are a w ∈ Ex and arrows α : π(w)
→ π(y) and β : π(w) → π(z) such that αw = y and βw = z.

(iii) For any point y ∈ Ex and any pair of arrows α, β in B with s(α) = π(y) = s(β)
and αy = βy, there is a point w ∈ Ex and an arrow γ : π(w) → π(y) in C such
that γw = y in Ex and αγ = βγ and γz = y in B.

A map between two principal C-bundles is a sheaf map preserving the C-action.
The resulting category of principal C-bundles will again be denoted as Prin(X,C).

Remark 5.11. A small category can be viewed as an s-étale topological category with
the discrete topology. In this case the respective definitions of principal bundles and of
classifying topoi are of course equivalent. A topological category is locally connected
if the spaces of objects and arrows are locally connected. For a locally connected
s-étale topological category, the classifying topos introduced in this section and the
one defined as the topos of sheaves on the nerve are weak homotopy equivalent.

In both cases (small and s-étale topological) we have the same notion of concor-
dance of principal C-bundles as in topological case (see 2.9).

For either a small or an s-étale topological category, we have:
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Theorem 5.12. There is a natural equivalence of categories

Hom(Sh(X),BC) ' Prin(X,C).

On homotopy classes of topos morphisms we have the natural bijection

[Sh(X),BC] ∼= Princ(X,C).

For a CW-complex X and any small category or any locally contractible s-étale cate-
gory C, there is a natural bijection

[X,BC] ∼= Princ(X,C),

where in the s-étale case the fat geometric realization is taken in order to construct
the classifying space.

Proposition 5.13. For either a small category or a locally connected s-étale category,
there is a natural weak homotopy equivalence

Sh(BC) → BC.

Remark 5.14. Definition 2.1 of the topos Sh(Y ) of sheaves on the simplicial space Y
generalizes to the case when the opposite simplicial model category ∆op is replaced
by an arbitrary small category K. Then, instead of a simplicial space, we have a
diagram of spaces indexed by K, i.e., a covariant functor Y from K into the category
Top topological spaces. With an evident modification of Definition 2.6, we obtain the
topos of sheaves on the diagram of spaces Y .

Remark 5.15. From a diagram of spaces indexed by a small category K, we can
construct a category YK. The object is a pair (k, y), k ∈ K, y ∈ Yk and the arrow
(k, y) → (l, z) is an arrow in K α : k → l such that Y (α)(y) = z. This is just the
Grothendieck construction. The category YK can be equipped with an s-étale topol-
ogy. Further, a diagram of spaces Y is called locally contractible if each Yk is locally
contractible. For a locally contractible Y , the Grothendieck construction gives a
locally contractible s-étale topological category YK.

Proposition 5.16. Let Sh(Y ) be the category of sheaves on a diagram of spaces Y
indexed by a small category K. Then there is a natural equivalence of topoi

Sh(Y ) ' B(YK).

Hence, for any topological space X, there is a natural equivalence

Hom(Sh(X), Sh(Y )) ' Prin(X, YK).

A principal YK-bundle can also be characterized as a principal K-bundle equipped
with an augmentation. Let us recall that a principal K-bundle over X consists of a
system of sheaves Ek for each object k of K on X and sheaf maps E(α) : Ek → El

for each arrow α : k → l. An augmentation on of E over Y is a system of maps
augk : Ek → Yk such that for any arrow α : k → l

Y (α)augk = auglE(α).

Together with the morphisms of principal bundles that respect augmentations, we
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have the category
AugPrin(X,K, Y )

of principal K-bundles with an augmentation to Y .

Proposition 5.17. For X and Y as above, we have a natural equivalence of cate-
gories

Hom(Sh(X), Sh(Y )) ' Prin(X,YK) ' AugPrin(X,K, Y ).

Remark 5.18. The case K = ∆op gives Theorem 2.10 as a corollary. For this, the
following equivalence

Prin(X, ∆op) ' Lin(X)

has to be used. A principal ∆op-bundle E over X is a simplicial sheaf such that each
stalk Ex is a principal ∆op-bundle E over the one-point space x, i.e., a principal
simplicial set. Finally, a simplicial set is principal only if it is a nerve of a (uniquely
determined) nonempty linear order.

Next, let us consider the case K = ∆op ×∆op; i.e., in this case a diagram of spaces
Y labeled by ∆op ×∆op is just a bisimplicial space. Concerning principal ∆op ×∆op-
bundles over X, we have the following result which follows from [20, Chap. VII,
exercise 14].

Proposition 5.19. There are natural equivalences of categories

Prin(X, ∆op ×∆op) ' Prin(X, ∆op)× Prin(X, ∆op) ' Lin(X)× Lin(X).

Now, an augmentation is the same thing as a bisimplicial map from the product of
two linear orders NL×NL′ to a bisimplicial set Y . Hence, similarly to Definition 2.7,
we do have:

Definition 5.20. For any space X and any bisimplicial space Y , write Lin2(X, Y )
for the product category of linear orders (L× L′, aug) over X equipped with a bisim-
plicial map (augmentation) aug : NL×NL′ → Y from the product of nerves of
L and L′ to Y . The morphisms (L× L′, aug) → (L1 × L′1, aug′) in Lin2(X, Y ) are
maps of products of the linear orders L× L′ → L1 × L′1 such that the induced map
NL×NL′ → NL1 ×NL′1 on the products of nerves respects the augmentations.

With the same definition of concordance as in Definition 2.9, we do have similarly
to Theorem 2.10:

Theorem 5.21. Let Y be a bisimplicial space. For any space X there is a natural
equivalence of categories

Hom(Sh(X), Sh(Y )) ' Lin2(X, Y ).

On homotopy classes of topos morphisms we have the natural bijection

[Sh(X),Sh(Y )] ∼= Lin2
c(X, Y ).

Similarly to Theorem 2.3, we have the following theorem, where the geometric
realization |Y | of a a bisimplicial space Y can be taken as the geometric realization of
its diagonal. Equivalently, Y can be defined as the “horizontal” geometric realization
followed by the the “vertical” one or vice-versa.
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Theorem 5.22. For any bisimplicial space Y the topoi Sh(Y ) and Sh(|Y |) have the
same weak homotopy type.

We recall that, in accordance with Remark 5.15, a bisimplicial space Y is locally
contractible if all spaces Yn,m are locally contractible. Again, geometric realization
of a locally contractible bisimplicial space is locally contractible. Hence, we have
similarly to 2.11 the following corollary:

Corollary 5.23. Let X be a CW-complex and Y a locally contractible bisimplicial
space. There is a natural bijection between homotopy classes of the maps [X, |Y |] and
the concordance classes Lin2

c(X, Y ).

6. Classifying spaces and classifying topoi of topological bicat-
egories II

It is beyond the scope of this paper to give a full account of the constructions of
Lack and Paoli, Tamsamani and Simpson. Concerning the latter two, the interested
reader may find the nice survey of definitions of n-categories by T. Leinster [19]. Let
Set and Cat1 denote the categories of (small) sets and (small) categories, respectively,
and let Cat denote the 2-category of (small) categories.

6.1. Lack-Paoli nerve as a singular functor
The nerve construction of Lack and Paoli [17] is obtained as the singular functor

when V = Cat. In order to define the nerve NB of a (small) bicategory B, they
introduced a (strict) 2-category NHom with bicategories as objects, whose 1-cells are
normal homomorphisms (normal lax functors with invertible comparison maps). We
will not give the general definition of 2-cells (icons) here. We describe them below
explicitly in a special case.

Every category (in particular Cat1 and the category defined by the ordinal [n])
can be seen as a locally discrete bicategory with only identity 2-cells. The normal
homomorphism between locally discrete bicategories is just a functor between the
corresponding categories, and there are no nontrivial icons between such functors. In
this way, we obtain a fully faithful inclusion 2-functor

J : ∆ → NHom

and the category ∆ can be seen as a full sub-2-category of NHom. The singular
2-functor

NLP : NHom → [∆op, Cat]

of the inclusion J is a Lack and Paoli 2-nerve. The 2-functor NLP is fully faithful.

Definition 6.1. A normal homomorphism (B, f, β) : [n] → B from an ordinal [n]
to the bicategory B is a lax normal functor for which each 2-cell βijk in Definition
4.1 is invertible.

Definition 6.2. An icon between normal homomorphisms F,G : [n] → B of bicate-
gories is a lax natural transformation φ : F ⇒ G, in which the component φi : Bi → Ci

is an identity, for each i ∈ [n]. More explicitly, an icon φ : (B, f, β) ⇒ (C, g, γ) consists
of the following data:
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(i) For any i ∈ [n] an identity Bi = Ci,

(ii) For each i, j ∈ [n] such that i 6 j, a 2-cell φij : fij ⇒ gij

Bj

fij

!!

gij

==
ÂÂ ÂÂ
®¶ φij Bi

such that for all i, j, k ∈ [n] with i 6 j 6 k we have an equality of pasting dia-
grams

Bj

fij

´´
Bk

fik

%%

gik

99
ÂÂ ÂÂ
®¶ φik

ÂÂ ÂÂ
®¶ βijk

fjk

22

Bi =

Bj

fij

¶¶
gij

++

ÄÄÄÄ{¤ φij

Bk

gik

::
ÂÂ ÂÂ
®¶ γijk

fjk

33

gjk

KK

???? ¾#
φjk

Bi

which means that the following identity of 2-cells holds in B:

φikβijk = γijk(φij ◦ φjk).

6.2. Characterization of Lack-Paoli 2-nerves of bicategories
In their paper [17], Lack and Paoli also described necessary and sufficient con-

ditions for a simplicial object X : ∆op → Cat to be a 2-nerve of a bicategory. In
order to provide such characterization, they used discrete isofibrations which are
functors P : E → B such that for each object e in the category E and each iso-
morphism β : b → P (e) in B there exists a unique isomorphism ε : e′ → e in E with
P (ε) = β. Further, let cn : Xn → Coskn−1(X)n denote the n-component of the sim-
plicial map c : X → Coskn−1(X) from a simplicial object X to its n− 1-coskeleton
Coskn−1(X), which is the unit of an adjunction between (n− 1)-truncation trn and
(n− 1)-coskeleton Coskn−1.

Theorem 6.3. Necessary and sufficient conditions for a 2-functor X : ∆op → Cat to
be a 2-nerve of a bicategory are:

(i) X is 3-coskeletal,

(ii) X0 is discrete,

(iii) the Segal functors Sn : Xn → X1 ×X0 · · · ×X0 X1 are equivalences of categories,

(iv) c2 and c3 are discrete isofibrations.
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6.3. Lack-Paoli 2-nerve as a bisimplicial set (space)
If we apply the Grothendieck nerve functor at each level of the 2-nerve of Lack

and Paoli (6.1), we obtain a functor

BLP : NHom → [∆op, SSet],

where the right-hand side is the category of bisimplicial sets. If we define the 2-
nerve in such bisimplicial terms, then the definition also makes sense for a topological
bicategory B, in which case the 2-nerve will naturally be a bisimplicial space. Although
the above conditions 6.2 can be translated into the bisimplicial language, we will not
do it here. From now on we will understand the 2-nerve of Lack and Paoli as a
bisimplicial set (bisimplicial space in case of a topological bicategory).

6.4. Tamsamani and Simpson
Let Tam denote the full sub-2-category of [∆op,Cat] consisting of those X, for

which X0 is discrete and the Segal maps Sn are equivalences. Further, let Simpson
denote the smaller full sub-2-category of those X for which the Segal maps Sn are
fully faithful and surjective on objects. Also, in these cases we can interpret these
“2-nerves” as bisimplicial sets (see [19, 23, 25], where the corresponding definitions
can be found). We will speak of a Tamsamani 2-nerve (or 2-category) and a Simpson
2-nerve (or 2-category).

Remark 6.4. The Lack-Paoli 2-nerve is also a Simpson 2-nerve and thus also a Tam-
samani 2-nerve. To each Tamsamani 2-nerve X there is a bicategory GX (and vice-
versa) constructed in [25]. For more details on Tamsamani 2-nerves (including a
proper notion of equivalence), we refer the reader to this paper.

Here we only mention the following results of Lack and Paoli:
The (Lack-Paoli) 2-nerve 2-functor NLP : NHom → Tam, seen as landing in the

2-category Tam, has a left 2-adjoint G. Since NLP is fully faithful, the counit GNLP →
1 is invertible. Each component u : X → NLP G of the unit is a pointwise equivalence
(i.e., each component un is an equivalence) and u0 and u1 are identities.

Let Ps(∆op, Cat) denote the 2-category of 2-functors, pseudonatural transforma-
tions and modifications, and let Tamps be its full sub-2-category consisting of Tam-
samani 2-categories. Then the 2-nerve 2-functor NLP : NHom → Tamps is a biequiv-
alence of 2-categories.

Definition 6.5. Let B be a topological bicategory. The classifying topos BLPB
of the topological bicategory B is defined as the topos of sheaves Sh(BLPB) on the
bisimplicial space BLPB (Lack-Paoli bisimplicial nerve).

Definition 6.6. The classifying space BLPB of a topological bicategory B is the
geometric realization |BLPB| of its bisimplicial nerve BLPB.

With these definitions we have the following corollary of Theorem 5.22.

Corollary 6.7. For any topological bicategory B, the topos of sheaves Sh(BLPB) on
the classifying space BLPB has the same weak homotopy type as the classifying topos
BBB.
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Definition 6.8. For a topological bicategory B, write Lin2(X,B) for the product
category of linear orders over X equipped with an augmentation aug : NL×NL′ →
NNB. An object E of this category will be called a Lack-Paoli principal B-bundle.
We call the two Lack-Paoli principal B-bundles E0 and E1 on X concordant, if there
exists a Lack-Paoli principal B-bundle on X × [0, 1] such that we have the equivalences
E0 ' i∗0(E) and E0 ' i∗1(E) under the obvious inclusions i0, i1 : X ↪→ X × [0, 1].

Similarly to Theorems 3.6 and 4.9 we have from Theorem 5.21 the following “clas-
sifying” property of the classifying topos BLPB.

Theorem 6.9. For a topological bicategory B and a topological space X, there is a
natural equivalence of categories

Hom(Sh(X),BLPB) ' Lin2(X,B).

On homotopy classes of topos morphisms we have the natural bijection

[Sh(X),BLPB] ∼= Lin2
c(X,B).

The “classification” property of the classifying space BLPB now follows as a corol-
lary from Corollary 5.23.

Corollary 6.10. For a locally contractible bicategory B and a CW-complex X, there
is a natural bijection

[X, BLPB] ∼= Lin2
c(X,B).

Remark 6.11 (Tamsamani and Simpson principal B-bundles). In the above Defini-
tions 6.5, 6.6 and 6.8 we could have used, instead of a Lack-Paoli 2-nerve, the Tam-
samani or the Simpson 2-nerve (in the case these are bisimplicial spaces). Obviously,
for such Tamsamani and Simpson principal B-bundles, Corollaries 6.7, 6.10 and The-
orem 6.9 are still valid.

References

[1] N.A. Baas, M. Bökstedt and T.A. Kro, Two-categorical bundles and their clas-
sifying spaces, arXiv:math/0612549.

[2] J.C. Baez and D. Stevenson, The classifying space of a topological 2-group,
in Algebraic topology: The Abel symposium 2007 (N. Baas, E. Friedlander,
B. Jahren and P. Arne Østvær, eds.), Springer-Verlag, New York, 2009.

[3] I. Baković, Bigroupoid 2-torsors, Ph.D. thesis, Ludwig-Maximilians-Universität
Munich, 2008.
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a b s t r a c t

We define noncommutative gerbes using the language of star products. Quantized twisted
Poisson structures are discussed as an explicit realization in the sense of deformation
quantization. Our motivation is the noncommutative description of D-branes in the
presence of topologically non-trivial background fields.

© 2010 Published by Elsevier B.V.

1. Introduction

Abelian gerbes,more precisely gerbeswith an abelian band [1–5], are the next step up froma line bundle on the geometric
ladder in the following sense: A unitary line bundle can be represented by a 1-cocycle in Čech cohomology, i.e., a collection
of smooth transition functions gαβ on the intersections Uα ∩ Uβ of an open cover {Uα} of a manifoldM satisfying gαβ = g−1βα
and gαβ gβγ gγα = 1 on Uα ∩ Uβ ∩ Uγ . Similarly, an abelian gerbe can be represented by a 2-cocycle in Čech cohomology,
i.e., by a collection λ = {λαβγ } of maps λαβγ : Uα ∩ Uβ ∩ Uγ → U(1), valued in the abelian group U(1), satisfying

λαβγ = λ
−1
βαγ = λ

−1
αγβ = λ

−1
γ βα (1)

and the 2-cocycle condition

δλ = λβγ δ λ
−1
αγ δ λαβδ λ

−1
αβγ = 1 (2)

on Uα ∩ Uβ ∩ Uγ ∩ Uδ . The collection λ = {λαβγ } of maps with the stated properties represents a gerbe in the same sense
as a collection of transition functions represents a line bundle. In the special case where λ is a Čech 2-coboundary with
λ = δh, i.e., λαβγ = hαβ hβγ hγα , we say that the collection h = {hαβ} of functions hαβ : Uα ∩ Uβ → U(1) represents a
trivialization of a gerbe. Considering the ‘‘difference’’ of two 2-coboundaries {hαβ}, {h′αβ} representing two trivializations of
a gerbe we step down the geometric ladder again and obtain a 1-cocycle: gαβ ≡ hαβ/h′αβ satisfies the 1-cocycle condition
gαβ gβγ gγα = 1.
There exists a local trivialization of a 2-cocycle for any particular open set U0 of the covering: Defining hβγ ≡ λ0βγ with

β, γ 6= 0 we find from the 2-cocycle condition that λαβγ = hαβ hβγ hγα . This observation leads to a definition of an abelian

∗ Corresponding author at: Facoltà di Scienze M.F.N., Dipartimento di Scienze e Tecnologie Avanzate, Viale T. Michel 11, Alessandria, 15121, Italy.
E-mail address: aschieri@to.infn.it (P. Aschieri).

0393-0440/$ – see front matter© 2010 Published by Elsevier B.V.
doi:10.1016/j.geomphys.2010.06.003
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gerbe (more precisely ‘‘gerbe data’’) á la Hitchin [3] in terms of line bundles on the double overlaps of the cover. The only
difference with respect to line bundles from this point of view is that we step up the geometric ladder, in the sense that now
line bundles on Uα ∩ Uβ are used as replacements for transition functions. A gerbe á la Hitchin is then a collection of line
bundles Lαβ for each double overlap Uα ∩ Uβ , such that:

G1. There is an isomorphism Lαβ ∼= L−1βα .
G2. There is a trivialization λαβγ of Lαβ ⊗ Lβγ ⊗ Lγα on Uα ∩ Uβ ∩ Uγ .
G3. The trivialization λαβγ satisfies δλ = 1 on Uα ∩ Uβ ∩ Uγ ∩ Uδ .

In this paperwewill use the term gerbe for an (abelian) gerbe á la Hitchin. In this respect, we should notice that in general
the term gerbe is used to name a locally non-empty and locally connected stack in groupoids [1,2,4,5]. We will use the term
standard gerbe in order to name such gerbes.
Gerbes are interesting in physics for several reasons: One motivation is the interpretation of D-brane charges in terms of

K -theory in the presence of a topologically non-trivial B-field, when the gauge fields living onD-branes become connections
on certain noncommutative algebras rather than on a vector bundle [6–14]. Azumaya algebras appear to be a natural choice
and give the link to gerbes. Gerbes, rather than line bundles, are the structure that arises in the presence of closed 3-form
backgrounds as, e.g., in WZW models and Poisson sigma models with WZW term [11,15,16]. Gerbes help illuminate the
geometry of mirror symmetry of 3-dimensional Calabi–Yau manifolds [3] and they provide a language to formulate duality
transformationswith higher order antisymmetric fields [17]. Ourmotivation is the noncommutative description ofD-branes
in the presence of topologically non-trivial background fields.
The paper is organized as follows: In Section 2, we recall the local description of noncommutative line bundles in the

framework of deformation quantization. Instead of repeating that construction we shall take the properties that were
derived in [18,19] as a formal definition of a noncommutative line bundle. In the same spirit we define noncommutative
gerbes in Section 3, using the language of star products and complement this definition, in Section 4, with an explicit
realization of noncommutative gerbes as quantizations of twisted Poisson structures as introduced in [21] and further
discussed in [22].
Notice that we will use the term noncommutative gerbe to describe a specific non-abelian 2-cocycle. By the

correspondence (in the sense of 2-categories, see [5] for details) between degree two non-abelian cohomology classes and
equivalence classes of (standard) gerbes understood as locally non-empty and locally connected stack in groupoids there
is such a (standard) gerbe corresponding to this specific non-abelian 2-cocycle. Hence our definition of a noncommutative
gerbe leads to a non-abelian gerbe in the standard sense of Giraud, Deligne, Breen and Brylinski [1,2,4,5]. We will discuss
this shortly in Section 5.
Since the first version of this paper was posted on the arXiv, see hep-th/0206101v1 (where Section 5 was not present),

some related work appeared in [23–27].

2. Noncommutative line bundles

Here we collect some facts on noncommutative line bundles [28,18] that we will need in what follows.1 Let (M, θ) be
a general Poisson manifold, and let ? be the Kontsevich’s deformation quantization of the Poisson tensor θ . Further let us
consider a good covering {U i} ofM . For the purposes of this paper a noncommutative line bundleL is defined by a collection
of C[[h̄]]-valued local transition functions Gij ∈ C∞(U i ∩ U j)[[h̄]] (that can be thought valued in the enveloping algebra of
U(1), see [29]), and a collection of maps D i

: C∞(U i)[[h̄]] → C∞(U i)[[h̄]], formal power series in h̄, starting with the
identity, and with coefficients being differential operators, such that

Gij ? Gjk = Gik (3)
on U i ∩ U j ∩ Uk,Gii = 1 on U i, and

Ad?Gij = D i
◦ (D j)−1 (4)

on U i ∩ U j or, equivalently,D i(f ) ? Gij = Gij ? D j(f ) for all f ∈ C∞(U i ∩ U j)[[h̄]]. Obviously, with this definition the local
mapsD i can be used to define globally a new star product ?′ (because the inner automorphisms Ad?Gij do not affect ?′)

D i(f ?′ g) = D if ?D ig. (5)

We say that two line bundlesL1 = {G
ij
1,D

i
1, ?} andL2 = {G

ij
2,D

i
2, ?} are equivalent if there exists a collection of invertible

local functions H i ∈ C∞(U i)[[h̄]] such that

Gij1 = H
i ? Gij2 ? (H

j)−1 (6)
and

D i
1 = Ad?H

i
◦D i

2. (7)

1 A noncommutative line bundle is a finite projective module. In the present context it can be understood as a quantization of a line bundle over a
compact manifold in the sense of deformation quantization. Here we shall take the properties of quantized line bundles as derived in [18,19] as a formal
definition of a noncommutative line bundle.
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The tensor product of two line bundlesL1 = {G
ij
1,D

i
1, ?1} andL2 = {G

ij
2,D

i
2, ?2} is well defined if ?2 = ?

′

1 (or ?1 = ?
′

2).
Then the corresponding tensor product is a line bundleL2 ⊗L1 = L21 = {G

ij
12,D

ij
12, ?1} defined as

Gij12 = D i
1(G

ij
2) ?1 G

ij
1 = G

ij
1 ?1D

j
1(G

ij
2) (8)

and

D i
12 = D i

1 ◦D i
2. (9)

The order of indices of L21 indicates the bimodule structure of the corresponding space of sections to be defined later,
whereas the first index on the G12’s andD12’s indicates the star product (here: ?1) by which the objects multiply.
A section Ψ = (Ψ i) is a collection of functions Ψ i ∈ C∞C (U

i)[[h̄]] satisfying consistency relations

Ψ i = Gij ? Ψ i (10)

on all intersections U i ∩U j. With this definition the space of sections E is a right A = (C∞(M)[[h̄]], ?)module. We shall use
the notation EA for it. The right action of the function f ∈ A is the regular one

Ψ .f = (Ψ k ? f ). (11)

Using the mapsD i it is easy to turn E also into a left A′ = (C∞(M)[[h̄]], ?′)module A′E . The left action of A′ is given by

f .Ψ = (D i(f ) ? Ψ i). (12)

It is easy to check, using (4), that the left action (12) is compatible with (10). From the property (5) of the mapsD i we find

f .(g.Ψ ) = (f ?′ g).Ψ . (13)

Together we have a bimodule structure A′EA on the space of sections.
There is an obvious way of tensoring sections. The section

Ψ i12 = D i
1(Ψ

i
2) ?1 Ψ

i
1 (14)

is a section of the tensor product line bundle (8) and (9). Tensoring of line bundles naturally corresponds to tensoring of
bimodules.
Using theHochschild complexwe can introduce anatural differential calculus on the algebraA.2 The p-cochains, elements

of Cp = HomC(A
⊗p,A), play the role of p-forms and the derivation d : Cp → Cp+1 is given on C ∈ Cp as

dC(f1, f2, . . . , fp+1) = f1 ? C(f2, . . . , fp+1)− C(f1 ? f2, . . . , fp+1)+ C(f1, f2 ? f3, . . . , fp+1)− · · ·

+ (−1)pC(f1, f2, . . . , fp ? fp+1)+ (−1)p+1C(f1, f2, . . . , fp) ? fp+1. (15)

A (contravariant) connection ∇ : E ⊗A Cp → E ⊗A Cp+1 can now be defined by a formula similar to (15) using the natural
extension of the left and right module structure of E to E ⊗A Cp. Namely, for aΦ ∈ E ⊗A Cp we have

∇Φ(f1, f2, . . . , fp+1) = f1.Φ(f2, . . . , fp+1)− Φ(f1 ? f2, . . . , fp+1)+ Φ(f1, f2 ? f3, . . . , fp+1)− · · ·

+ (−1)pΦ(f1, f2, . . . , fp ? fp+1)+ (−1)p+1Φ(f1, f2, . . . , fp).fp+1. (16)

We also have the cup product C1 ∪ C2 of two cochains C1 ∈ Cp and C2 ∈ Cq;

(C1 ∪ C2)(f1, . . . , fp+q) = C1(f1, . . . , fp) ? C2(fp+1, . . . , fq). (17)

The cup product extends to a map from (E ⊗A Cp)⊗A Cq to E ⊗A Cp+q. The connection ∇ satisfies the graded Leibniz rule
with respect to the cup product and thus defines a bona fide connection on the module EA. On the sections, the connection
∇ introduced here is simply the difference between the left and right action of C∞(M)[[h̄]] on E :

∇Ψ (f ) = f .Ψ − Ψ .f =
(
∇
iΨ i(f )

)
=

(
D i(f ) ? Ψ i − Ψ i ? f

)
. (18)

As in [19] we define the gauge potentialA = (Ai), where theAi : C∞(U i)[[h̄]] → C∞(U i)[[h̄]] are local 1-cochains, by

Ai ≡ D i
− id. (19)

Then we have for a section Ψ = (Ψ i), where the Ψ i ∈ C∞C (U
i)[[h̄]] are local 0-cochains,

∇
iΨ i(f ) = dΨ i(f )+Ai(f ) ? Ψ i, (20)

2 Other choices for the differential calculus are of course possible, e.g., the Lie algebra complex.
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Fig. 1. Double intersection Uα ∩ Uβ equipped with a NC line bundle G
ij
αβ ?α G

jk
αβ = G

ik
αβ .

and more generally ∇ iΦ i = dΦ i + Ai ∪ Φ i with Φ = (Φ i) ∈ E ⊗A Cp. In the intersections U i ∩ U j we have the gauge
transformation (cf. (4))

Ai = Ad?Gij ◦Aj + Gij ? d(Gij)−1. (21)
The curvature K∇ ≡ ∇2 : E ⊗A Cp → E ⊗A Cp+2 corresponding to the connection ∇ , measures the difference between the
two star products ?′ and ?. On a section Ψ , it is given by

(K∇Ψ )(f , g) =
(
D i(f ?′ g − f ? g) ? Ψ i

)
. (22)

The connection for the tensor product line bundle (8) is given on sections as

∇12Ψ
i
12 = D i

1(∇2Ψ
i
2) ?1 Ψ

i
1 +D i

1(Ψ2) ?1 ∇1Ψ
i
1. (23)

Symbolically,
∇12 = ∇1 +D1(∇2). (24)

Let us note that if we assume the base manifold M to be compact, then the space of sections E as a right A-module
is projective of finite type. Of course, the same holds if E is considered as a left A′ module. Also let us note that the two
algebras A and A′ are Morita equivalent. Up to a global isomorphism they must be related by an action of the Picard group
Pic(M) ∼= H2(M,Z) as follows. Let L ∈ Pic(M) be a (complex) line bundle on M and c its Chern class. Let F be a curvature
two form on M whose cohomology class [F ] is (the image in R of) the Chern class c. Consider the formal Poisson structure
θ ′ given by the geometric series

θ ′ = θ(1+ h̄Fθ)−1. (25)
In this formula θ and F are understood as maps θ : T ∗M → TM, F : TM → T ∗M and θ ′ is the result of the indicated
map compositions. Then ?′ must (up to a global isomorphism) be the deformation quantization of θ ′ corresponding to
c ∈ H2(M,Z). This construction depends only on the integer cohomology class c , indeed if c is the trivial class then F = da
and the corresponding quantum line bundle is trivial, i.e.,

Gij = (H i)−1 ? H j. (26)
In this case the linear map

D = Ad?H i ◦D i (27)
defines a global equivalence (a stronger notion than Morita equivalence) of ? and ?′.

3. Noncommutative gerbes

Now let us consider any covering {Uα} (not necessarily a good one) of a manifoldM . Here we switch from upper Latin to
lower Greek indices to label the local patches. The reason for the different notation will become clear soon. Consider each
local patch equipped with its own star product ?α the deformation quantization of a local Poisson structure θα . We assume
that on each double intersectionUαβ = Uα∩Uβ the local Poisson structures θα and θβ are related similarly as in the previous
section via some integral closed two form Fβα , which is the curvature of a line bundle Lβα ∈ Pic(Uαβ)

θα = θβ(1+ h̄Fβαθβ)−1. (28)

Let us now consider, as in Fig. 1, a good covering U iαβ of each double intersection Uα ∩ Uβ
3 with a noncommutative line

bundleLβα = {G
ij
αβ ,D

i
αβ , ?α}

Gijαβ ?α G
jk
αβ = G

ik
αβ , Giiαβ = 1, (29)

D i
αβ(f ) ?α G

ij
αβ = G

ij
αβ ?α D

j
αβ(f ) (30)

3 At this point we use so called hypercovers. Hypercovers are defined, e.g., in [20]. A thorough treatment with non-abelian cohomology classes is given
in [5]. The hypercovers are not necessary ifM is paracompact.
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and

D i
αβ(f ?β g) = D i

αβ(f ) ?α D i
αβ(g). (31)

The opposite order of indices labelling the line bundles and the corresponding transition functions and equivalences simply
reflects a choice of convention. As in the previous section the order of indices ofLαβ indicates the bimodule structure of the
corresponding space of sections, whereas the order of Greek indices on G’s and D’s indicates the star product in which the
objects multiply. The product always goes with the first index of the multiplied objects.
A noncommutative gerbe is characterised by the following axioms:

Axiom 1. Lαβ = {G
ij
βα,D

i
βα, ?β} andLβα = {G

ij
αβ ,D

i
αβ , ?α} are related as follows

{Gijβα,D
i
βα, ?β} = {(D

j
αβ)
−1(Gjiαβ), (D

i
αβ)
−1, ?β} (32)

i.e.Lαβ = L−1βα . (Notice also that (D
j
αβ)
−1(Gjiαβ) = (D

i
αβ)
−1(Gjiαβ).)

Axiom 2. On the triple intersection Uα ∩ Uβ ∩ Uγ the tensor product Lγ β ⊗ Lβα is equivalent to the line bundle Lγα .
Explicitly

Gijαβ ?α D
j
αβ(G

ij
βγ ) = Λ

i
αβγ ?α G

ij
αγ ?α(Λ

j)−1αβγ , (33)

D i
αβ ◦D i

βγ = Ad?αΛ
i
αβγ ◦D i

αγ . (34)

Axiom 3. On the quadruple intersection Uα ∩ Uβ ∩ Uγ ∩ Uδ

Λiαβγ ?α Λ
i
αγ δ = D i

αβ(Λ
i
βγ δ) ?α Λ

i
αβδ, (35)

Λiαβγ = (Λ
i
αγβ)

−1 and D i
αβ(Λ

i
βγα) = Λ

i
αβγ . (36)

With slight abuse of notation we have used Latin indices {i, j, . . .} to label both the good coverings of the intersection of
the local patches Uα and the corresponding transition functions of the consistent restrictions of line bundles Lαβ to these
intersections. A short comment on the consistency of Axiom 3 is in order. Let us define

D i
αβγ = D i

αβ ◦D i
βγ ◦D i

γα. (37)

Then it is easy to see that

D i
αβγ ◦D i

αγ δ ◦D i
αδβ = D i

αβ ◦D i
βγ δ ◦D i

βα. (38)

In view of (34) this implies that

Λiαβγ δ ≡ D i
αβ(Λ

i
βγ δ) ?α Λ

i
αβδ ?α Λ

i
αδγ ?α Λ

i
αγβ

is central. Using this and the associativity of ?α together with (33) applied to the triple tensor product Lδγ ⊗ Lγ β ⊗ Lβα

transition functions

Gijαβγ ≡ G
ij
αβ ?α D

j
αβ(G

ij
βγ ) ?α D

j
αβ(D

j
βγ (G

ij
γ δ)) (39)

reveals that Λiαβγ δ is independent of i. It is therefore consistent to set Λ
i
αβγ δ equal to 1. A similar consistency check works

also for (36). If we replace all noncommutative line bundlesLαβ in Axioms 1–3 by equivalent ones, we get by definition an
equivalent noncommutative gerbe.
There is a natural (contravariant) connection on a noncommutative gerbe. It is defined using the (contravariant)

connections ∇αβ = (∇ iαβ) (cf. (16) and (18)) on quantum line bundles Lβα . Let us denote by ∇αβγ the contravariant
connection formed on the triple tensor product Lαγβ ≡ Lαγ ⊗ Lγ β ⊗ Lβα with maps D i

αβγ and transition functions
(39) according to the rule (24). Axiom 2 states thatΛiαβγ is a trivialization ofLαγβ and that

∇
i
αβγΛ

i
αβγ = 0. (40)

Using Axiom 2 one can show that the product bundle

Lαβγ δ = Lαβγ ⊗Lαγ δ ⊗Lαδβ ⊗Lαβ ⊗Lβδγ ⊗Lβα (41)

is trivial: it has transition functions Gijαβγ δ = 1 and mapsD i
αβγ δ = id. The constant unit section is thus well defined on this

bundle. On Lαβγ δ we also have the section (Λiαβγ δ). Axiom 3 implies (Λ
i
αβγ δ) to be the unit section. If two of the indices

α, β, γ , δ are equal, triviality of the bundle Lαβγ δ implies (36). Using for example the first relation in (36) one can show
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that (35) written in the form D i
αβ(Λ

i
βγ δ) ?α Λ

i
αβδ ?α Λ

i
αδγ ?α Λ

i
αγβ = 1 is invariant under cyclic permutations of any three

of the four factors appearing on the l.h.s.
If we now assume that all line bundles Lβα are trivial (this is for example the case when {Uα} is a good covering) then

Fαβ = daαβ for each Uα ∩ Uβ and

Gijαβ = (H
i
αβ)
−1 ?α H

j
αβ

Dαβ = Ad?αH
i
αβ ◦D i

αβ .

It then easily follows that

Λαβγ ≡ H iαβ ?α D i
αβ(H

i
βγ ) ?α D i

αβD
i
βγ (H

i
γα) ?α Λ

i
αβγ (42)

defines a global function on the triple intersection Uα ∩ Uβ ∩ Uγ . Λαβγ is just the quotient of the two sections(
H iαβ ?α D i

αβ(H
i
βγ ) ?α D i

αβD
i
βγ (H

i
γα)

)−1
andΛiαβγ of the triple tensor productLαγ ⊗Lγ β⊗Lβα . On the quadruple overlap

Uα ∩ Uβ ∩ Uγ ∩ Uδ it satisfies conditions analogous to (35) and (36)

Λαβγ ?α Λαγ δ = Dαβ(Λβγ δ) ?α Λαβδ, (43)

Λαβγ = (Λαγβ)
−1 and Dαβ(Λβγα) = Λαβγ . (44)

Also

Dαβ ◦Dβγ ◦Dγα = Ad?αΛαβγ . (45)

So we can take formulas (43)–(45) as a definition of a noncommutative gerbe in the case of a good covering {Uα}. We say
that the gerbe is defined by the local data {?α,Dαβ ,Λαβγ }.
From now on we shall consider only good coverings. A noncommutative gerbe defined by {?α,Dαβ ,Λαβγ } is said to be

trivial if there exists a global star product ? on M and a collection of ‘‘twisted’’ transition functions Gαβ defined on each
overlap Uα ∩ Uβ and a collectionDα of local equivalences between the global product ? and the local products ?α

Dα(f ) ?Dα(g) = Dα(f ?α g) (46)

satisfying the following two conditions:

Gαβ ? Gβγ = Dα(Λαβγ ) ? Gαγ (47)

and

Ad?Gαβ ◦Dβ = Dα ◦Dαβ . (48)

Locally, every noncommutative gerbe is trivial as is easily seen from (43), (44) and (45) by fixing the index α. Defining as in
(19),Aα = Dα − id,Aαβ = Dαβ − id we obtain the ‘‘twisted’’ gauge transformations

Aα = Ad?Gαβ ◦Aβ + Gαβ ? d(Gαβ)−1 −Dα ◦Aαβ . (49)

Two noncommutative gerbes defined4 by their corresponding local data {?α,Dαβ ,Λαβγ } and {?′α,D
′

αβ ,Λ
′

αβγ } are
equivalent if there exist local equivalencesDα of star products ?α and ?′α , i.e.,

Dα(f ) ?′α Dα(g) = Dα(f ?α g) (50)

and local functionsΛαβ such that

Ad?′αΛαβ ◦D ′αβ ◦Dβ = Dα ◦Dαβ (51)

and

Dα(Λαβγ ) ?
′

α Λαγ = Λαβ ?
′

α D ′αβ(Λβγ ) ?
′

α Λ
′

αβγ . (52)

The classical limit of a noncommutative gerbe is the (classical) Hitchin gerbe defined by considering the classical limit
(in the deformation quantization sense) of the structures in Axioms 1–3. Correspondingly the classical limit of the local
data {?α,Dαβ ,Λαβγ } gives the local data {·α, idα, λαβγ }, where ·α is the restriction to Uα of the (globally defined) ordinary
point-wise product of functions on the base manifoldM , and λαβγ is the 2-cocycle of the underlying classical Hitchin gerbe.
We say that the noncommutative gerbe {?α,Dαβ ,Λαβγ } is a trivial deformation quantization of this classical Hitchin gerbe
if it is equivalent to it in the sense of (50)–(52). In particular we have a non-trivial deformation quantization of a Hitchin
gerbe, whenever the local products ?α are not a trivial deformation of (i.e. are not equivalent to) the ordinary commutative
point-wise product (cf. (46) with ? replaced by ·). This is the case considered in the next section, concerning quantization of
twisted Poisson structures.

4 After passing to a common refinement of respective trivializing coverings, if necessary.
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We conclude this section with the following remark concerning the role of local functions Λαβγ and Dαβ satisfying
relations (43)–(45). These represent a honest non-abelian 2-cocycle, as defined for example in [5]. It follows from the
discussion of Section 2, that each Dαβ defines an equivalence, in the sense of deformation quantization, of star products
?α and ?β on Uα ∩ Uβ . The non-triviality of the non-abelian 2-cocycle (43)–(45) can therefore be seen as an obstruction
to gluing the collection of local star products {?α}, i.e., the collection of local rings C∞(Uα)[[h̄]], into a global one. We also
mention that in [30] a 2-cocycle similar to that of (43)–(45) represents an obstruction to gluing together certain local rings
appearing in quantization of contact manifolds.

4. Quantization of twisted Poisson structures

Let H ∈ H3(M,Z) be a closed integral three form onM . Such a form is known to define a gerbe onM . We can find a good
covering {Uα} and local potentials Bα with H = dBα for H . On Uα ∩ Uβ the difference of the two local potentials Bα − Bβ is
closed and hence exact: Bα − Bβ = daαβ . On a triple intersection Uα ∩ Uβ ∩ Uγ we have

aαβ + aβγ + aγα = −iλαβγ dλ−1αβγ . (53)

The collection of local functions {λαβγ } represents a gerbe.
Let us also assume the existence of a formal antisymmetric bivector field θ = θ (0) + h̄θ (1) + · · · onM such that

[θ, θ] = h̄ θ∗H, (54)

where [, ] is the Schouten–Nijenhuis bracket and θ∗ denotes the natural map sending n-forms to n-vector fields by ‘‘using
θ to raise indices’’. Explicitly, in local coordinates, θ∗H ijk = θ imθ jnθ koHmno. We call θ a Poisson structure twisted by
H [21,11,15]. On each Uα we can introduce a local formal Poisson structure θα = θ(1− h̄Bαθ)−1, [θα, θα] = 0. The Poisson
structures θα and θβ are related on the intersection Uα ∩ Uβ as in (28)

θα = θβ(1+ h̄Fβαθβ)−1, (55)

with an exact Fβα = daβα . Now we can use Kontsevich’s formality [31] to obtain local star products ?α and to construct for
each intersection Uα ∩ Uβ the corresponding equivalence mapsDαβ . See [19,18] for an explicit formula for the equivalence
maps. According to our discussion in the previous section theseDαβ , supplemented by trivial transition functions, define a
collection of trivial line bundlesLβα . On each triple intersection we then have

Dαβ ◦Dβγ ◦Dγα = Ad?αΛαβγ . (56)

It follows from the discussion after formula (36) that the collection of local functions {Λαβγ } represents a noncommutative
gerbe (a deformation quantization of the classical gerbe represented by {λαβγ }) if each of the central functions Λαβγ δ
introduced there can be chosen to be equal to 1. See [22, Section 5] and [32] that this is really the case. As mentioned at
the end of the previous section, the non-triviality of the non-abelian 2-cocycle (43)–(45) can be seen as an obstruction to
gluing the collection of local star products {?α}, i.e., the collection of local rings C∞(Uα)[[h̄]], into a global one. Hence, in the
context of this section, this obstruction comes as a deformation quantization of the classical obstruction to gluing together
local formal Poisson structures { , }α into a global one.

5. Relation to [30] and to gerbes in the sense of Giraud, Deligne, Breen, and Brylinski

In the paper of Kashiwara [30] a 2-cocycle, similar to that of (43)–(45), represents an obstruction to gluing together
certain local rings appearing in quantization of contact manifolds. In order to make closer contact with [30], and apply its
results, we consider for each open Uα the corresponding sheaf of local rings C∞(Uα)[[h̄]]. The prestack of left ?α-modules
Mα on Uα is actually a stack [33]. It follows from [18,34] that ?α and ?β are Morita equivalent on Uα ∩ Uβ . The Morita
equivalence is given by the bimodule αEβ of sections of the noncommutative line bundleLαβ . Therefore, we have a functor
(an equivalence of stacks) ϕαβ : Mα|Uα ∩ Uβ → Mβ |Uα ∩ Uβ defined by Lαβ . Because of the Axiom 2 of Section 3, Λαβγ
defines on Uα ∩Uβ ∩Uγ an isomorphism of functors φαβγ : ϕαβϕβγ → ϕαγ , which due to Axiom 3 of Section 3 satisfies the
associativity condition on Uα ∩Uβ ∩Uγ ∩Uδ . Then, according to [30] there exists, up to equivalence, a unique stackM such
that the stacksM|Uα andMα are equivalent.
We now show that our noncommutative gerbe can be seen as a ‘‘standard gerbe’’ in the sense of [1,2,4,5], i.e., a gerbe

understood as locally non-empty and locally connected stacks in groupoids. As already mentioned, the local functions
Λαβγ and Dαβ satisfying relations (43)–(45) represent a honest non-abelian 2-cocycle as defined, e.g., in [5]. Due to the
correspondence (in the sense of 2-categories, see [5] for details) between degree two non-abelian cohomology classes and
equivalence classes of standard gerbes there exists a standard gerbe corresponding to the non-abelian 2-cocycle (43)–(45).
We briefly describe this corresponding standard gerbe.
The collection of data consisting of an open covering {Uα} ofM , local rings C∞(Uα)[[h̄]], isomorphismsDαβ and invertible

sections Λαβγ satisfying 2-cocycle relations (43)–(45) (more precisely the data satisfying relations (34–36)) define up to
equivalence an algebroid stack C in the terminology of [32] (see also [27]) such that C|α is equivalent to the stack of locally
free ?α-modules of rank 1. If we think about this algebroid stack in terms of the corresponding pseudofunctor U 7→ C(U),
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we can consider in each category C(U) its maximal subgroupoid. The associated stack to the corresponding substack is a
standard gerbe. Hence noncommutative gerbes, that we introduced in this article as the deformation quantization of abelian
gerbes and related to the obstruction of defining a global ?-product onM , can be seen as non-abelian gerbes in the standard
sense of Giraud, Deligne, Breen, and Brylinski.
We finish with a short remark concerning the relation to the later paper [23], where a more general question of

deformation of (descent data for) a special kind of stacks is considered. Results of [23] concerning deformations of gerbes
(see Section 2.1. of [23] for a definition of gerbe used there) and the classification of deformations of gerbes (see Section 4 of
[23]) apply to the deformation quantization of Hitchin gerbes as well. We then notice that similarly to [30] and also to the
present paper, the deformation quantization of a gerbe leads to a ‘‘stack of algebras’’. It would be interesting to compare the
approaches of [23] and of the present paper in more detail.
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We define 2-crossed module bundle 2-gerbes related to general Lie 2-crossed modules
and discuss their properties. If (L → M → N) is a Lie 2-crossed module and Y → X
is a surjective submersion then an (L → M → N)-bundle 2-gerbe over X is defined in
terms of a so-called (L → M → N)-bundle gerbe over the fiber product Y [2] = Y ×XY ,
which is an (L → M)-bundle gerbe over Y [2] equipped with a trivialization under the
change of its structure crossed module from L → M to 1 → N , and which is subjected
to further conditions on higher fiber products Y [3], Y [4] and Y [5]. String structures can
be described and classified using 2-crossed module bundle 2-gerbes.

Keywords: 2-crossed module; nonabelian bundle gerbe and 2-gerbe; nonabelian coho-
mology; string group; string structure.

Introduction

The modest purpose of this paper is to introduce nonabelian bundle 2-gerbes related
to 2-crossed modules [20], simultaneously generalizing abelian bundle 2-gerbes [49,
50, 19] and crossed-module bundle gerbes [1, 30]. The idea is to describe objects
in differential geometry, which would, in the terminology of [10], correspond to the
Čech cohomology classes in H1(X, L → M → N), i.e. the first Čech cohomology
classes on a manifold X with values in a Lie 2-crossed module L → M → N . What
we want is a theory, which in the case of the 2-crossed module U(1) → 1 → 1
reproduces the theory of abelian bundle 2-gerbes and in the case of a 2-crossed
module 1 → M → N reproduces the theory of crossed module bundle gerbes
related to the crossed module M → N ((M → N)-bundle gerbes). The latter
requirement can slightly be generalized as follows. Let us assume a given crossed
module L

∂→ M . If we put A := ker ∂ and Q := coker ∂ then we have a 4-term exact
sequence of Lie groups 0 → A → L

∂→ M → Q → 1 with abelian A. Let us assume
that A = U(1) is in the center of L and that the restriction to U(1) of the action of
M on L is trivial. Then we want that an (U(1) → L → M)-bundle 2-gerbe is the
same thing as an (L → M) bundle gerbe twisted with an abelian bundle 2-gerbe [2].

The paper is organized as follows. In Sec. 2, we briefly recall the relevant notions
of a Lie crossed module and Lie 2-crossed module. In Sec. 3, relevant results on
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crossed module bundles and on crossed module bundle gerbes are collected. Let us
mention that crossed module bundles are special kinds of bitorsors [27, 26, 7, 10] and
that crossed module bundle gerbes can be seen as a special case of gerbes with con-
stant bands (this follows, e.g. from discussion in Sec. 4.2 of [10] commenting on the
abelian bundle gerbes of [39], the cocycle bitorsors of [52, 53], and the bouquets of
[24]). In Sec. 4, 2-crossed module bundle gerbes are introduced as crossed module
bundles with an additional structure. 2-crossed module bundle gerbes are to 2-
crossed module bundle 2-gerbes the same as crossed module bundles are to crossed
module bundle gerbes. Finally, in Sec. 5, 2-crossed module bundle 2-gerbes are
introduced and their properties discussed, including their local description in terms
of 3-cocycles similar to those of [23, 9, 10]. The example of a lifting bundle 2-gerbe
is described in some detail. Also, we discuss the relevance of 2-crossed module bun-
dle 2-gerbes to string structures and their classification (see Proposition 4.12 and
Remark 4.14). For the relevance of gerbes and abelian 2-gerbes to the string group
and string structures see, e.g. [5, 17, 16, 30, 41, 48, 54]. For discussions of abelian
2-gerbes in relation to quantum field theory and string theory see, e.g. [37, 18, 19, 2].

Let us mention that in [9, 10] much more general 2-gerbes were introduced in
the language of 2-stacks. These are generalizations of gerbes (defined as locally
nonempty and locally connected stacks in groupoids [26, 38, 10, 7]) and seem to be
related rather to crossed squares than to 2-crossed modules. We hope to return to a
discussion concerning a possible relation of our bundle 2-gerbes and the 2-gerbes of
[9, 10] in the future. Also, we hope to discuss the relevant notion of a 2-bouquet else-
where. Our task here is to describe nonabelian bundle 2-gerbes using a language very
close to that of the classical reference books [34, 29]. This will allow us to introduce
connection, curvature, curving etc. in the forthcoming paper [32] using the language
of differential geometry. For some further related work see, e.g. [45–47, 44, 25].

In this paper, we work in the category of differentiable manifolds. In particular,
all groups (with exception of the string group) are assumed to be Lie groups and
all maps are assumed to be smooth maps. It would be possible to work with (for
instance, paracompact Hausdorff) topological spaces, topological groups and con-
tinuous maps too. For this we would have to use a proper replacement of the notion
of the surjective submersion π : Y → X in the definitions of crossed module bun-
dle gerbes, 2-crossed module bundle gerbes and 2-crossed module bundle 2-gerbes.
For instance, instead of surjective submersions we could consider surjective maps
π : Y → X with the property that for each point y ∈ Y there is a neighborhood
O of π(y) with a section σ : O → Y , such that s(π(y)) = y. Such map may be
called a surjective topological submersion.

1. Crossed Modules, 2-Crossed Modules

Let us recall the notion of a crossed module of Lie groups (see, e.g. [11, 15, 43]).

1.1. Definition. Let L and M be two Lie groups. We say that L is a crossed
M -module if there is a Lie group morphism ∂1 : L → M and a smooth action of M
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on L(m, l) �→ ml such that

∂1(l)l′ = ll′l−1 (Peiffer condition)

for l, l′ ∈ L, and

∂1(ml) = m∂1(l)m−1

for l ∈ L, m ∈ M hold true.
We will use the notation L

∂1→ M or L → M for the crossed module.
Let us also recall that a crossed module is a special case of a pre-crossed module,

in which the Peiffer condition does not necessarily hold. There is an obvious notion
of a morphism of crossed modules.

1.2. Definition. A morphism between crossed modules L
∂1→ M and L′ ∂′

1→ M ′ is
a pair of Lie group morphisms λ : L → L′ and κ : M → M ′ such that the diagram

L
∂1−−−−→ M

λ

�
� κ

L′ ∂′
1−−−−→ M ′

commutes, and for any l ∈ L and m ∈ M we have the following identity

λ(ml) = κ(m)λ(l).

1.3. Remark. A crossed module of Lie groups defines naturally a strict Lie
2-group C (see, e.g. [6]). The Lie group of objects is C0 = {∗}, the Lie group
of 1-arrows is C1 = M and the Lie group of 2-arrows is C2 = M �L. The “vertical”
multiplication is given on C2 by

(m, l1)(∂1(l1)m, l2) = (m, l1l2)

and the “horizontal” multiplication is given by

(m1, l1)(m2, l2) = (m1m2, l1
m1 l2).

See, e.g. [12, 14] for more details on the relation between crossed modules and strict
Lie 2-groups.

1.4. Definition. The definition of a 2-crossed module of groups is due to Con-
duché [20]; (see also, e.g. [21, 42, 13, 43, 44]). A Lie 2-crossed module is a complex
of Lie groups

L
∂1→ M

∂2→ N (1)

together with smooth left actions by automorphisms of N on L and M (and on N by
conjugation), and the Peiffer lifting, which is an equivariant map { , } : M×M → L,
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i.e. n{m1, m2} = {nm1,
nm2} such that:

(i) (1) is a complex of N -modules, i.e. ∂1 and ∂2 are N -equivariant and ∂1∂2(l) = 1
for l ∈ L,

(ii) m1m2m
−1
1 = ∂1{m1, m2}∂2(m1)m2 =: 〈m1, m2〉, for m1, m2 ∈ M ,

(iii) [l1, l2] := l1l2l
−1
1 l−1

2 = {∂1l1, ∂1l2}, for l1, l2 ∈ L,
(iv) {m1m2, m3} = {m1, m2m3m

−1
2 }∂2(m1){m2, m3}, for m1, m2, m3 ∈ M ,

(v) {m1, m2m3} = m1m2m−1
1 {m1, m3}{m1, m2}, for m1, m2, m3 ∈ M ,

(vi) {∂1(l), m}{m, ∂1(l)} = l∂2(m)(l−1), for m ∈ M, l ∈ L,

wherein the notation nm and nl for left actions of the element n ∈ N on elements
m ∈ M and l ∈ L has been used. Also, let us note that ml := l{∂1(l)−1, m} defines a
left action of M on L by automorphisms. This is a consequence of the other axioms
and is proved in [20, 13], where it is also shown that, equipped with this action,
L

∂1→ M defines a crossed module.

1.5. Example. Any crossed module (L δ→ M) determines a 2-crossed module
A := ker(∂) → L → M with an abelian A.

1.6. Remark. In addition to the crossed module L
∂1→ M , there is another crossed

module that can be associated with the 2-crossed module L
∂1→ M

∂2→ N . By defi-
nition, we see that M

∂2→ N is a (special) pre-crossed module in which the Peiffer

condition is satisfied only up to the Peiffer lifting. Hence, M/∂1(L)
∂′
2→ N , with

the induced Lie group homomorphism ∂′
2 and with the induced action of N on

M/∂1(L), is a crossed module.
There is an obvious notion of a morphism of 2-crossed modules.

1.7. Definition. A morphism between 2-crossed modules L
∂1→ M

∂2→ N and L′ ∂′
1→

M ′ ∂′
2→ N ′ is a triple of Lie group morphisms L → L′, M → M ′ and N → N ′

making up, together with the maps ∂1, ∂′
1, ∂2 and ∂′

2 a commutative diagram

L
∂1−−−−→ M

∂2−−−−→ N

λ

� µ

�
� ν

L′ ∂′
1−−−−→ M ′ ∂′

2−−−−→ N ′

(2)

and being compatible with the actions of N on M and L and of N ′ on M ′ and L′,
respectively and with the respective Peiffer liftings.

1.8. Remark. A 2-crossed module of Lie groups defines naturally a Gray (Lie)
3-groupoid with a single object. For the construction and for more details on the
relation between 2-crossed modules and Gray 3-groupoids see [33, 13, 42, 25]. There
are two “vertical” multiplications and one “horizontal” multiplication on triples
(3-cells) (n, m, l) ∈ N ×M ×L. The vertical multiplications are determined by the
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crossed module L → M . The two vertical multiplications are given by

(n, m, l1)(n, ∂1(l1)m, l2) = (n, m, l1l2)

and

(n, m1, l1)(∂2(m1)n, m2, l2) = (n, m1m2, l1
m1 l2)

and the horizontal multiplication is given by

(n1, m1, l1)(n2, m2, l2) = (n1n2, m1
n1m2, l1

m1( n1 l2)).

2. Crossed Module Bundle Gerbes

Let X be a (smooth) manifold. Crossed module bundle gerbes have been introduced,
for instance, in [30, 1]. These can be seen as generalizations of abelian bundle gerbes
[39, 40]. If (L ∂1→ M) is a crossed module of Lie groups, X a manifold and P → X

a left principal L-bundle, we can change the structure group of P from L to M , in
order to obtain a left principal M -bundle P ′ = M ×∂1 P defined as follows. Points
p′ ∈ P ′ correspond to equivalence classes [m, p] ∈ M ×∂1 P with the equivalence
relation on M × P given by (m, p) ∼ (m∂1(l), l−1p). Obviously, the principal left
M -action is given by M × P ′ → P ′, m′ × [m, p] �→ [m′m, p].

2.1. Definition. Let (L ∂1→ M) be a crossed module of Lie groups and X a man-
ifold. Let P → X be a left principal L-bundle, such that the principal M -bundle
M ×∂1 P is trivial with a trivialization defined by a section (i.e. a left L-equivariant
smooth map) m : P → M . We call the pair (P, m) an (L → M)-bundle.

2.2. Remark. If we think about the crossed module L → M as a groupoid with
the Lie group of objects M and the Lie group of arrows M � L then a crossed
module bundle is the same thing as a principal groupoid bundle.

2.3. Definition. Two (L → M)-bundles (P, m) and (P ′, m′) over X are isomor-
phic if they are isomorphic as left L-bundles by an isomorphism � : P → P ′ such
that m′� = m. An (L → M)-bundle is trivial if it is isomorphic to the trivial
(L → M)-bundle (X × L, ∂1prL).

2.4. Example. Notice that a general (L → M)-bundle is not necessarily locally
trivial, although it is locally trivial as a left principal L-bundle. For instance, for a
function m : X → M such that Im(m) is not a subset of Im(∂1) the (L → M)-bundle
(X×L, ∂1prL·mprX) is locally non-trivial. We will refer to such an (L → M)-bundle
as an (L → M)-bundle defined by the M -valued function m. Two such (L → M)-
bundles are isomorphic if their respective sections m and m′ are related by an
L-valued function l on X by m′ = ∂1(l)m. Obviously, compositions of isomorphisms
corresponds to multiplication of the respective L-valued function defining them.



February 28, 2011 13:41 WSPC/S0219-8878 IJGMMP-J043
S0219887811004963

54 B. Jurčo

2.5. Example. A (1 → G)-bundle is the same thing as a G-valued function.

2.6. Example. A pair (T, l), where T is a trivial left principal L-bundle and l :
T → L its trivializing section, defines an (L → M)-bundle with the section m =
∂1l : T → M . (T, l) is a trivial (L → M)-bundle.

2.7. Example. Let L be a normal subgroup of M . The adjoint action of M

restricted to L defines a crossed module structure on L → M with ker∂1 = 1. Let
L be also a closed subgroup of M and assume M to be finite-dimensional. We put
G := L

M , so that we have an exact sequence of Lie groups 1 → L → M
π̄→ G → 1.

It follows that M → G is a left principal L-bundle over G [34] (hence, admitting
smooth local sections).a Moreover, (M → G, m) with m = idM is an (L → M)-
bundle.

2.8. Pullback. Obviously, a pullback of an (L → M)-bundle is again an (L → M)-
bundle. Pullbacks preserve isomorphisms of crossed module bundles, in particular
a pullback of a trivial (L → M)-bundle is again a trivial (L → M)-bundle.

2.9. Change of the structure crossed module. If (L → M) → (L′ → M ′) is
a morphism of crossed modules, there is an obvious way to construct, starting from
an (L → M)-bundle (P, m), an (L′ → M ′)-bundle (L′×λ P, κm) where λ : L → L′

and κ : M → M ′ define the morphism of the two crossed modules. Obviously, the
change of the structure crossed module preserves isomorphisms of crossed module
bundles.

2.10. 1-cocycles. Consider an (L → M)-bundle (P, m) and a trivializing covering∐
Oi = X of the left principal L-bundle P . Let σi : P |Oi → L be the trivializing

sections of L and lij = σ−1
i σj : Oi ∩ Oj → L be the corresponding transition

functions. We put mi = ∂1(σi)−1m, which obviously gives an L-valued function
on Oi. We have ∂1(lij) = mim

−1
j . Hence the (L → M)-bundle (P, m) can be

described by a 1-cocycle given by transition functions (mi, lij), mi : Oi → M ,
lij : Oij = Oi ∩ Oj → L satisfying on nonempty Oij ,

∂1(lij) = mim
−1
j ,

and on nonempty Oijk = Oi ∩ Oj ∩ Ok

lij ljk = lik.

Transition functions (mi, lij) and (m′
i, l

′
ij) corresponding to two isomorphic (L →

M)-bundles are related by

m′
i = ∂1(li)mi,

aMore generally, to assure the existence of smooth local sections of π̄ in a short exact sequence

of topological groups 1 → L → M
π̄→ G → 1, we would have to ask the projection π̄ to be a

Hurewicz fibration.
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and

l′ij = lilij l
−1
i .

We say that two 1-cocycles (mi, lij) and (m′
i, l

′
ij), related as above, are equivalent.

We will denote by H0(X, L → M) the set of corresponding equivalence classes. A
trivial (L → M)-bundle is described by transition functions (∂1(li), lil−1

j ).
On the other hand, given transition functions (mi, lij) we can reconstruct an

(L → M)-bundle. We define a left principal L-bundle P with the total space formed
by equivalence classes of triples [x, l, i] with x ∈ Oi, l ∈ L under the equivalence
relation (x, l, i) ∼ (x′, l′, j) iff x = x′ and l′ = llij. The principal left L-action is
given by l′[x, l, i] = [x, l′l, i]. Now we put m([x, l, i]) = ∂1(l)mi(x). (P, m) is an
(L → M)-bundle.

With the two above constructions it is not difficult to prove that the isomorphism
classes of (L → M)-bundles are 1-1 with elements of H0(X, L → M).

2.11. Lifting crossed module bundle. Let L and M be as above in (2.7). Con-
sider a G-valued function g : X → G. The pullback g∗(M, id) of the (L → M)-
bundle π : M → G is an (L → M)-bundle on X (the lifting crossed module
bundle). It is the obstruction to a lifting of the G-valued function G to some M -
valued function. To go in the opposite direction, we note that we have an obvious
morphism of crossed modules (L → M) → (1 → G). Under the change of the
structure crossed module of an (L → M)-bundle (P, m) to (1 → G), the section
m becomes an L-invariant G-valued function πm on P . Hence, it is identified with
an G-valued function g on X . Two isomorphic (L → M)-bundles give the same
function. The two constructions are inverse to each other up to an isomorphism of
(L → M)-bundles.

It is now easy to give a local description of lifting crossed module bundles.
Let {Oi}i be an open covering on X . Let P be an (L → M)-bundle described
by transition function (lij , mi). Since π∂1 = 1, we have π(mi) = π(mj). Hence,
the collection of local functions {π(mi)}i defines a G-valued function on X . To
go in the opposite direction, let g be a G-valued function on X . Let {Oi}i be a
trivializing covering of the pullback principal bundle g∗(M). The function g can
now be described by a collection of local functions gi : Oi → G such that gi = gj on
Oij . Hence, we have local functions mi : Oi → M the local sections of g∗(M) such
that π(mi) = gi, which are related on double intersections Oij by mi = ∂1(lij)mj

with L-valued functions lij : Oij → L, the transition functions of the principal
L-bundle g∗(M), fulfilling the 1-cocycle condition lij ljk = lik on Oijk .

Concerning crossed module bundles, we have the following lemma and
proposition [1].

Lemma 2.1. The (L → M)-bundle (P, m) is also a right principal L-bundle with
the right action of L given by p.l = m(p)(l).p for p ∈ P, l ∈ L. The left and right
actions commute. The section m is L-biequivariant.
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Proposition 2.1. Let P = (P, m) and P̃ = (P̃ , m̃) are two (L → M)-bundles over
X. Let us define an equivalence relation on the Whitney sum P ⊕ P̃ = P × X P̃ by
(pl, p̃) ∼ (p, lp̃), for (p, p̃) ∈ P ⊕ P̃ and l ∈ L. Then PP̃ := (PP̃ := (P⊕P̃ )/∼,mm̃)
with mm̃([ p, p̃ ]) := m(p)m̃(p̃) is an (L → M)-bundle.

2.12. Remark. Obviously, if P ∼= Q and P̃ ∼= Q̃ then also PP̃ ∼= QQ̃. The set of
isomorphism classes of (L → M)-bundles equipped with the above-defined product
is a group. The unit is given by the class of the trivial bundle (X × L, ∂1prL).
The inverse is given by the class of (L → M)-bundle (P−1, m−1) with P−1 having
the same total space as P , the left L-action on P−1 being the inverse of the right
L-action on P and the trivializing section m−1 being the composition of the inverse
in M with the trivializing section m. Let us note that in the case of an exact
sequence 1 → L → M → N → 1 as above (2.7) this group structure is compatible
with the group structure of G = M

L -valued functions with pointwise multiplication.

2.13. Example. If P = (P = X×L, ∂1prL ·mprX) and P ′ = (P ′ = X×L, ∂1prL ·
m′prX) are (L → M)-bundles defined by two respective M -valued functions m

and m′ on X (2.4) then the product PP ′ is explicitly described again as an (L →
M)-bundle defined by the function mm′ by identifying [(x, l), (x, l′)] ∈ PP ′ with
(x, lml′) ∈ X × L.

2.14. Product on 1-cocycles. Transition functions (m̄i, l̄ij) of the product of
two (L → M)-bundles described by transition functions (mi, lij) and (m̃i, l̃ij) are
given by

m̄i = mim̃i

and

l̄ij = lij
mi l̃ij .

Transition functions of the inverse crossed module bundle are (m−1
j l−1

ij = m−1
i l−1

ij ,
m−1

i ).

2.15. 1-cocycles as functors. The crossed module (L → M) defines naturally
a topological category (groupoid) C with the set of objects C0 = L and the set
of arrows C1 = M × L. Let us consider the topological category O (groupoid)
defined by the good covering {Oi} of X with objects xi := (x, i |x ∈ Oi) and
exactly one arrow from xi to yj iff x = y. Then a 1-cocycle is the same thing as a
continuous functor from O to C. Further, if 2B is a strict topological 2-category, then
the category of 2-arrows with the vertical composition is naturally a topological
category B. The horizontal composition in 2B defines a continuous functor from
the Cartesian product B × B to B. Thus, in case B = C it defines naturally a
multiplication on functors O → C (i.e. on transition functions), which is the same
as the one defined above (2.1).
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2.16. Crossed module bundle gerbes. Let Y be a manifold. Consider a sur-
jective submersion π : Y → X , which in particular admits local sections. Let {Oi}
be the corresponding covering of X with local sections σi : Oi → Y , i.e. πσi = id.
We also consider Y [n] = Y × XY × XY · · · × XY , the n-fold fibre product of Y , i.e.
Y [n] := {(y1, . . . , yn) ∈ Y n | π(y1) = π(y2) = · · ·π(yn)}. Given an (L → M)-bundle
P = (P, m) over Y [2] we denote by P12 = p∗12(P) the crossed module bundle on Y [3]

obtained as a pullback of P under p12 : Y [3] → Y [2] (p12 is the identity on its first
two arguments); similarly for P13 and P23. Consider a quadruple (P , Y, X, �), where
P = (P, m) is a crossed module bundle, Y → X a surjective submersion and � an
isomorphism of crossed module bundles � : P12P23 → P13. We now consider bundles
P12, P23, P13, P24, P34, P14 on Y [4] relative to the projections p12 :Y [4] → Y [2] etc.
and also the crossed module isomorphisms �123, �124, �123, �234 induced by projec-
tions p123 : Y [4] → Y [3] etc.

2.17. Definition. The quadruple (P , Y, X, �), where Y → X is a surjective sub-
mersion, P is a crossed module bundle over Y [2], and � : P12P23 → P13 an isomor-
phism of crossed module bundles over Y [3], is called a crossed module bundle gerbe
if � satisfies the cocycle condition (associativity) on Y [4]

P12P23P34
�234−−−−→ P12P24

�123

�
� �124

P13P34
�134−−−−→ P14 .

(3)

2.18. Abelian bundle gerbes. Abelian bundle gerbes as introduced in [39, 40]
are (U(1) → 1)-bundle gerbes. More generally, if A → 1 is a crossed module then
A is necessarily an abelian group and an abelian bundle gerbe can be identified as
an (A → 1)-bundle gerbe.

2.19. Example. A (1 → G)-bundle gerbe is the same thing as a G-valued function
g on Y [2] (2.5) satisfying on Y [3] the cocycle relation g12g23 = g23 and hence, a
principal G-bundle on X (more precisely a descent datum of a principal G-bundle).

2.20. Pullback. If f : X → X ′ is a map then we can pullback Y → X to f∗(Y ) →
X ′ with a map f̃ : f∗(Y ) → Y covering f . There are induced maps f̃ [n] : f∗(Y )[n] →
Y [n]. Then the pullback f∗(P , Y, X, �) := (f̃ [2]∗P , f∗(Y ), f(X), f̃ [3]∗�) is again an
(L → M)-bundle gerbe.

2.21. Definition. Two crossed module bundle gerbes (P , Y, X, �) and (P ′, Y ′,
X, �′) are stably isomorphic if there exists a crossed module bundle Q → Ȳ =
Y × XY ′ such that over Ȳ [2] the crossed module bundles q∗P and Q1q

′∗P ′Q−1
2 are
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isomorphic. The corresponding isomorphism �̃ : q∗P → Q1q
′∗P ′Q−1

2 should satisfy
on Ȳ [3] (with an obvious abuse of notation) the condition

�̃13� = �′�̃23�̃12. (4)

Here q and q′ are projections onto the first and second factor of Ȳ = Y × XY ′

and Q1 and Q2 are the pullbacks of Q → Ȳ to Ȳ [2] under the respective projections
from Ȳ [2] to Ȳ etc.

A crossed module bundle gerbe (P , Y, X, �) is called trivial if it is stably isomor-
phic to the trivial crossed module bundle gerbe ((Y [2]×L, ∂1prL), Y, X, 1). Pullbacks
preserve stable isomorphisms, in particular a pullback of a trivial crossed module
bundle gerbe is again a trivial crossed module bundle gerbe. If Y = X then the
crossed module bundle gerbe is trivial.

2.22. Definition. Let (P , Y, X, �) and (P ′, Y ′, X, �′) be two crossed module bun-
dle gerbes and (Q, �̃Q) and (R, �̃R) two stable isomorphisms between them. We call
(Q, �̃Q) and (R, �̃R) isomorphic if there is an isomorphism � : Q → R of crossed
module bundles on Ȳ = Y × XY ′ such that (with an obvious abuse of notation)
the diagram

q∗P
˜�Q−−−−→ Q1q

′∗P ′Q−1
2

id

�
� �1�2

−1

q∗P
˜�R−−−−→ R1q

′∗P ′R−1
2

(5)

is commutative.

2.23. Remark. Let π′ : Y ′ → X be another surjective submersion and f :
Y ′ → Y a map such that π′ = πf . Then the crossed module bundle gerbes
Gf = (f∗P , Y ′, X, f [3]∗�) and G = (P , Y, X, �) are stably isomorphic. This can be
easily seen by noticing first that G is stably isomorphic to itself and then using the
obvious fact that pullbacks of crossed module bundles commute with their products
[1]. It follows that locally each crossed module bundle gerbe G is trivial. For this,
take a point x ∈ X and its neighborhood O ⊂ X such that there exists a local
section σ : O → Y of π. Over O we have the bundle gerbe GO, the restriction of G
to O. Now we can put Y ′ := O and π′ := idO and we have πσ = π′. It follows that
Gσ is stably isomorphic to GO. However Gσ is trivial, because of Y ′ = O.

2.24. Change of the structure crossed module. If (L → M) → (L′ → M ′) is
a morphism of crossed modules, there is an obvious way to construct starting from
an (L → M)-bundle gerbe an (L′ → M ′)-bundle gerbe by changing the structure
crossed module of the corresponding (L → M)-bundle over Y [2]. Obviously, the
change of the structure crossed module preserves stable isomorphisms of crossed
module bundle gerbes.
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2.25. 2-cocycles. Locally, crossed module bundle gerbes can be described in
terms of 2-cocycles as follows. First, let us note that the trivializing cover {Oi}
of the map π : Y → X defines a new surjective submersion π′ : Y ′ =

∐
Oi → X .

The local sections of Y → X define a map f : Y ′ → Y , which is compatible with
the maps π and π′, i.e. such that πf = π′. We know that the crossed module bundle
gerbes Gf and G are stably isomorphic. Hence, we can again assume Y =

∐
Oi.

For simplicity, we assume that the covering {Oi} is a good one. Then the crossed
module bundle gerbe can be described by a 2-cocycle (mij , lijk) where the maps
mij : Oij → M and lijk : Oijk → L fulfill the following conditions

mijmjk = ∂1(lijk)mik on Oijk

and

lijklikl = mij ljkllijl on Oijkl .

Two crossed module bundle gerbes are stably isomorphic if their respective
2-cocycles (mij , lijk) and (m′

ij , l
′
ijk) are related (equivalent) by

m′
ij = mi∂1(lij)mijm

−1
j (6)

and

l′ijk = mi lij
mimij ljk

mi lijk
mi l−1

ik (7)

with mi : Oi → M and lij : Oij → L.
We will denote by H1(X, L → M) the set of the corresponding equivalence

classes of 2-cocycles.
A trivial crossed module bundle gerbe is described by transition functions

mij = mi∂1(lij)m−1
j

and

lijk = mi lij
mi ljk

mi l−1
ik .

Two collections of stable isomorphism data (mi, lij) and (m′
i, l

′
ij) are isomorphic if

m′
i = ∂1(li)mi,

l′ij = lilij
mij l−1

j .

Now we briefly describe how an (L → M)-bundle gerbe can be reconstructed from
transition functions (mij , lijk). Put Y =

∐
Oi. On each nonempty Oij consider

the (L → M)-bundle Pij defined by the function mij : Oij → M as in (2.4).
Hence, on Y [2] we have the (L → M)-bundle given by P =

∐
ij Pij . Now we

recall the explicit descriptions of the multiplication (2.13) and isomorphisms (2.4)
of two (L → M)-bundles defined by their respective M -valued functions. Using the
2-cocycle relations, it is now straightforward to show that the collection of functions
lijk defines an isomorphism of P12P23 and P13 on Y [3] satisfying the associativity
condition on Y [4] (compare, e.g. [38, Theorem 3.1]).
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Further, two crossed module bundle gerbes corresponding to two equivalent
2-cocycles are stably isomorphic. To show it let us denote, similarly as above, by P
and P ′ the two (L → M)-bundles over Y [2] defined by the two respective collections
of local functions mij and m′

ij . Note that according to (2.4), the local M -valued
functions mi in (6) define an (L → M)-bundle Q over Y =

∐
Oi and that the local

L-valued functions mi lij define on Y [2] an isomorphism �̃ of the (L → M) bundles
P ′ and Q1PQ−1

2 . Finally, the relation (7) tells us that the isomorphism �̃ fulfills
the requested compatibility condition (4) (cf. the last statement in Example 2.4
concerning the composition of isomorphisms).

Hence, the above discussion of 2-cocycles proves the following proposition.

Proposition 2.2. Stable isomorphism classes of (L → M)-bundle gerbes are in
a bijective correspondence with elements of H1(X, L → M).

2.26. Remark. Actually, when considering isomorphisms of stable isomorphisms,
we have the respective 2-categories of (L → M)-bundle gerbes and transition func-
tions. The correspondence between (L → M)-bundle gerbes and the transition
functions can be formulated in the framework of 2-categories similarly to [9], but
we will not do this here. Further, if we consider the topological category O defined
by the good covering {Oi} of X . Then a 2-valued cocycle can be seen as a continu-
ous normal pseudo-functor from O to the bicategory defined by the crossed module
L → M .

2.27. Lifting crossed module bundle gerbe. Let L → M be a crossed module
associated with a normal subgroup L of M (cf. Example 2.7). We have a Lie group
extension

1 → L
∂1→ M

π̄→ G → 1

and also the (L → M)-bundle M
π̄→ G.

The following statement has appeared in the literature before. In [5]
(cf. Lemma 2) a version of it is attributed to Larry Breen.

Proposition 2.3. Let L → M
π̄→ G be an Lie group extension. Let us also assume

that the conditions for M being a principal L-bundle over G are satisfied.b Then
the isomorphism classes of G-principal bundles are in bijective correspondence with
stable isomorphism classes of (L → M)-bundle gerbes.

Proof. Let E → X be a (locally trivial) left principal G-bundle over X . As a prin-
cipal G-bundle E defines a (division) map g : E[2] → G which gives for two elements
in a fiber of E the group element relating to them. The pullback P = g∗(M, idM ) of
the (L → M)-bundle M → G gives an (L → M)-bundle on E[2]; P is by definition
the lifting (L → M)-bundle corresponding to the division map g (2.11). It follows

bCf. Example 2.4.
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that the crossed module bundles P12P23 and P13 are isomorphic on E[3]. This fol-
lows from the above-mentioned fact that, in case of Lie groups L, M and G as above,
isomorphism classes of (L → M)-bundles are one-to-one to G-valued functions and
that this correspondence respects the respective multiplications (2.11). Such an
isomorphism � fulfills the requested associativity condition because of ker(∂1) = 1.
Hence, we have a crossed module bundle gerbe G, which can be seen as an obstruc-
tion to a lifting of the principal G bundle E to some principal M -bundle. Also,
it is easily seen that lifting two isomorphic G-bundle leads to stably isomorphic
(L → M)-bundle gerbes. On the other hand, if we have a crossed module L → M

with a trivial kernel of ∂1 and hence fitting the exact sequence with G = coker ∂1

we can change the structure crossed module from L → M to 1 → G in a crossed
module bundle gerbe in order to get a principal G-bundle on X . These two construc-
tions are inverse to each other on sets of stable isomorphism classes of (L → M)-
bundle gerbes (with (L → M) as above) and isomorphism classes of principal
G-bundles.

2.28. Remark. It is also easy to give a local description of lifting crossed mod-
ule bundle gerbes. Let {Oi}i again be a good covering of X . Let us consider
an (L → M)-bundle gerbe described by transition functions (mij , lijk). Then
π̄(mij)π̄(mjk) = π̄(mik). Hence, we have a principal G-bundle with transition func-
tions gij = π̄(mij). To go in the opposite direction, let gij be the transition functions
of a principal G-bundle. Since the double intersections Oij are contractible we can
choose lifts mij of the transition functions gij . On Oijk these will be related by
mijmjk = ∂1(lijk)mik with L-valued functions lijk which, because of ker ∂1 = 1,
necessarily satisfy the required compatibility condition on Oijkl (2.16).

2.29. Remark. Note that given three principal G-bundles E, E′′ and E′′′ and iso-

morphisms E
f→ E′, E′ f ′

→ E′′ and E′′ f ′′
→ E′′′ such that f ′f = f ′′ the corresponding

lifting crossed module bundle gerbes G,G′′ and G′′′ will be stably isomorphic, but
the respective stable isomorphisms ff ′ and f ′′ will be only isomorphic in general.

3. 2-Crossed Module Bundle Gerbes

Let (L → M → N) be a Lie 2-crossed module and G be an (L → M)-bundle
gerbe over X . From the definition of the 2-crossed module we see immediately
that the maps L → 1 and ∂2 : M → N define a morphism of crossed modules
µ : (L ∂1→ M) → (1 → N). Thus, we have the following trivial lemma (2.5):

Lemma 3.1. µ(G) is a principal N -bundle on X. If G and G′ are stably isomorphic,
then µ(G) and µ(G′) are isomorphic.

3.1. Definition. Let G be an (L → M)-bundle gerbe such that the principal
bundle µ(G) over X is trivial with a section n : µ(G) → N . We call the pair (G, n)
a 2-crossed module bundle gerbe.
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3.2. Remark. The following interpretation of the trivializing section n will be
useful later. For the (L → M → N)-bundle gerbe (G, n) = (((P, m), Y, X, �), n)
the trivializing section n of the left principal N -bundle µ(G) is the same thing as
an N -valued function n on Y such that ∂2(m) = n1n−1

2 .

3.3. Remark. If we think about the 2-crossed module L → M → N as a
2-groupoid with objects in L, 1-arrows in L× M and 2-arrows in L×N ×M then
(L → M → N)-bundle gerbes should give an example of the bigroupoid 2-torsors
introduced in [3].

3.4. Pullback. If f : X → X ′ then we put f∗(G, n) = (f∗(G), f∗n); this will
again be a 2-crossed module bundle gerbe.

3.5. Definition. We call two (L → M → N)-bundle gerbes (G, n) and (G′, n′)
over the same manifold X stably isomorphic if there exists a stable isomorphism
q := (Q, �̃) : G → G′ of (L → M)-bundle gerbes such that n′µ(q) = n holds true
for the induced isomorphism of trivial bundles µ(q) : µ(G) → µ(G′). An (L → M →
N)-bundle gerbe is trivial if it is stably isomorphic to the trivial (L → M → N)-
bundle gerbe (((Y [2] × L, ∂1prL), Y, X, 1), prN ).

Pullbacks preserve stable isomorphisms, in particular a pullback of a trivial
2-crossed module bundle gerbe is again a trivial 2-crossed module bundle gerbe.

3.6. Example. Note that a general (L → M → N)-bundle gerbe is not necessarily
locally trivial, although it is locally trivial as an (L → M)-bundle gerbe. For a
function n : X → N such that Im(n) is not a subset of Im(∂2) the (L → M → N)-
bundle gerbe (((Y [2] ×L, ∂1prL), Y, X, 1), prN ·nprX) is locally non-trivial. We will
refer to such a 2-crossed module as the 2-crossed module bundle gerbe defined
by the N -valued function n on X . Two such 2-crossed module bundle gerbes are
stably isomorphic iff their respective functions n and n′ are related by an M -
valued function m by n′ = ∂2(m)n. We will refer to such a stable isomorphism as
being defined by the function m. Further, two such stable isomorphisms defined by
respective functions m and m′ are isomorphic iff they are related by an L-valued
function l on X by m′ = ∂1(l)m.

3.7. Example. Consider an (1 → G → N)-bundle gerbe (G, n). As a (1 → G)-
bundle gerbe G gives a principal G-bundle P (more precisely a G-valued function
g on Y [2] satisfying the 1-cocycle relation on Y [3]). The trivializing section n then
gives an N -valued function n (3.2) on Y such that ∂2g12n2 = n1 on Y [2] and hence,
a trivialization of the left principal G-bundle P under the map G → N . Hence, a
(1 → G → N)-bundle gerbe is the same thing as a (G → N)-bundle.

Obviously, isomorphic (G → N)-bundles correspond to stably isomorphic (1 →
G → N)-bundle gerbes.
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3.8. Remark. Let π′ : Y ′ → X be another surjective submersion and f : Y ′ → Y

a map such that π′ = πf . Then the 2-crossed module bundle gerbes (f∗G, n) and
(G, n) are stably isomorphic. This can be shown in a completely analogous way to
the case of a crossed module bundle gerbe (2.23).

3.9. Change of the structure 2-crossed module. If (L → M → N) → (L′ →
M ′ → N ′) is a morphism of 2-crossed modules, there is an obvious way to construct
starting from an (L → M → N)-bundle gerbe (G, n) and (L′ → M ′ → N ′)-bundle
gerbe (G′, n′) by changing the structure crossed module of G from L → M to
L′ → M ′ and putting n′ = νn where ν is the morphism ν : N → N ′ entering
the definition of the morphism of two 2-crossed modules. Obviously, change of
the structure 2-crossed module preserves stable isomorphisms of 2-crossed module
bundle gerbes.

3.10. Definition. Let ((P , Y, X, �), n) and ((P ′, Y ′, X, �′), n′) be two 2-crossed
module bundle gerbes and (Q, �̃Q) and (R, �̃R) two stable isomorphisms between
them, see (2.21). We call (Q, �̃Q) and (R, �̃R) isomorphic if there is an isomorphism
� : Q → R of crossed module bundles on Ȳ = Y × XY ′ such that (with an obvious
abuse of notation) the diagram

q∗P
˜�Q−−−−→ Q1q

′∗P ′Q−1
2

id

�
� �1�

−1
2

q∗P
˜�R−−−−→ R1q

′∗P ′R−1
2

(8)

is commutative. Obviously, pullbacks preserve isomorphisms of stable isomor-
phisms.

3.11. 2-cocycles. Let π : Y → X be the surjective submersion, which was implic-
itly contained in the above-definition of a 2-crossed module bundle gerbe. Since
also for 2-crossed module bundle gerbes it holds true that 2-crossed module bundle
gerbes (f∗G, n) and (G, n) are stably isomorphic if the respective maps π and π′

are related by a compatible map, we can again assume Y =
∐

Oi. For simplicity,
we assume that the covering {Oi} is a good one, in which case the (L → M → N)-
bundle gerbe is characterized by transition functions (ni, mij , lijk), ni : Oi → N ,
mij : Oij → M , lijk : Oijk → L fulfilling 2-cocycle relations

ni = ∂2(mij)nj ,

mijmjk = ∂1(lijk)mik,

lijklikl = mij ljkllijl

on Oij , Oijk and Oijkl, respectively.
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In terms of 2-cocycles the stable isomorphism (lijk, mij , ni) ∼ (l′ijk, m′
ij , n

′
i) is

expressed by relations

n′
i = ∂2(mi)ni, (9)

m′
ij = mi∂1(lij)mijm

−1
j , (10)

m−1
i l′ijk = lij

mij ljklijkl−1
ik . (11)

Two (L → M → N)-valued 2-cocycles related as above will be called equiva-
lent. The corresponding set of equivalence classes will be denoted by H0(X, L →
M → N).

A trivial 2-crossed module bundle gerbe is described by transition functions

ni = ∂2(mi),

mij = mi∂1(lij)m−1
j ,

and
m−1

i lijk = lij ljkl−1
ik .

Locally, two collections of stable isomorphism data (mi, lij) and (m′
i, l

′
ij) are

isomorphic if

m′
i = ∂1(li)mi,

l′ij = lilij
mij l−1

j .

An (L → M → N)-bundle gerbe can be reconstructed from transition functions
(ni, mij , lijk) in complete analogy with the case of an (L → M)-bundle gerbe.
Starting from (10) and (11) we can reconstruct an (L → M)-bundle gerbe G as
in (2.25). Further, the collection of N -valued local functions ni appearing in (9)
defines a trivial principal N -bundle N on X with transition functions nin

−1
j . The

relation (9) then guarantees that the principal N -bundle µ(G) is isomorphic to N .
Hence, G is an (L → M → N)-bundle.

Further, two 2-crossed module bundle gerbes corresponding to two equivalent
2-cocycles are stably isomorphic. Starting from two equivalent 2-cocycles (9)–(11)
we will construct as above the two respective (L → M → N)-bundle gerbes G and
G′. It follows from (2.25) that G and G′ will be stably isomorphic as (L → M)-
bundle gerbes and because of the relation (9) they will also be stably isomorphic
as (L → M → N)-bundle gerbes.

Hence, the above discussion of 2-cocycles proves the following proposition.

Proposition 3.1. Stable isomorphism classes of (L → M → N)-bundle gerbes are
in a bijective correspondence with the set H0(X, L → M → N).

Similarly to the case of crossed module bundles (2.25), we can consider a
2-category of (L → M → N)-bundle gerbes, with 1-arrows being stable isomor-
phisms and 2-arrows being isomorphism of stable automorphisms and similarly a
2-category of 2-cocycles, but we will not use these.
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3.12. Lifting 2-crossed module bundle gerbe. Consider a Lie 2-crossed mod-
ule L → M → N such that ker(∂1) = 1 and ker(∂2) = Im(∂1). Put G := M

L

and Q := N
G . Assume that the conditions are satisfied for having extensions of Lie

groups

1 → L
∂1→ M

∂2→ N
π2→ Q → 1, (12)

1 → L
∂1→ M

π1→ G → 1 (13)

and

1 → G
∂′
2→ N

π2→ Q → 1, (14)

such that M
π1→ G is an (L → M)-bundle and N

π1→ Q is an (G → N)-bundle
(cf. Example 2.7). Also, we have an exact sequence of pre-crossed modules

1 −−−−→ L
∂1−−−−→ M

π1−−−−→ G −−−−→ 1�
� ∂2

� ∂′
2

�
�

1 −−−−→ 1 −−−−→ N −−−−→ N −−−−→ 1 ,

where G is a normal subgroup of N and also a morphism of 2-crossed modules

L
∂1−−−−→ M

∂2−−−−→ N� π1

� id

�

1 −−−−→ G
∂′
2−−−−→ N .

Considering the above extension of Lie groups, we have proved the following
proposition.

Proposition 3.2. Consider an exact sequence (12) of Lie groups such that the
exact sequences (13) and (14) define an (L → M)-bundle and an (G → N)-bundle,
respectively.c Then the stable isomorphism classes of (L → M → N)-bundle gerbes
are in bijective correspondence with the isomorphism classes of (G → N)-bundles.

Proof. Let us first note that given a (G → N)-bundle P = (P, ñ) on X , the left
principal G-bundle P can be lifted to an (L → M)-bundle gerbe G (2.27), which
will actually be an (L → M → N)-bundle gerbe. This is because of the identity
∂′
2π1 = ∂2 the trivialization ñ of P under ∂′

2 naturally defines a trivialization of
the principal N -bundle µ(G) by putting n := ñ (cf. (3.2)). Due to the identification
n := ñ, two isomorphic (G → N)-bundles will lead to two stably isomorphic
(L → M → N)-bundle gerbes. On the other hand, starting with an (L → M → N)-
bundle gerbe (G, n) with the 2-crossed module as above, we can change its structure
2-crossed module to 1 → G → N in order to obtain a principal (G → N)-bundle

cCf. Example 2.4.



February 28, 2011 13:41 WSPC/S0219-8878 IJGMMP-J043
S0219887811004963

66 B. Jurčo

P . The N -valued function n on Y defined by the trivialization n of µ(G) will
give a trivialization of ∂′

2(P), cf. (3.7). From this it is again easy to see that stably
isomorphic (L → M → N)-bundle gerbes will lead to isomorphic (G → N)-bundles.
Lifting an principal (G → N)-bundle to an (L → M → N)-bundle gerbe followed
by the change of structure 2-crossed modules (L → M → N) → (G → N) will give
back the original (G → N)-bundle.

The local description of the above correspondence is similar to the case of crossed
module bundle gerbes (2.28).

Because of (2.7) we also have the following corollary.

Corollary 3.1. Under the hypothesis of Proposition 3.2, stable isomorphism
classes of (L → M → N)-bundle 2-gerbes are in bijective correspondence with
Q-valued functions.

Concerning the corresponding cocycles we have the following isomorphisms of
sets.

Corollary 3.2. Under the hypothesis of Proposition 3.2, we have

H0(X, L → M → N) ∼= H0(X, G → N) ∼= H0(X, Q).

3.13. Remark. Note that given three (G → N)-bundles P ,P ′ and P ′′ and iso-

morphisms P f→ P ′, P ′ f ′
→ P ′′ and P f ′′

→ P ′′ such that f ′f = f ′′ the corresponding
lifting 2-crossed module bundle gerbes will be stably isomorphic, but the respective
stable isomorphisms ff ′ and f ′′ will be only isomorphic in general.

3.14. Remark. Similarly to lifting crossed module bundles (cf. (2.11)), also lifting
2-crossed module bundle gerbes can be interpreted as pullbacks. Starting from exact
sequences (13) and (14) we have a lifting (L → M)-bundle gerbe over Q. Due to
equality ∂′

2 = ∂2π1 this will actually be an (L → M → N)-bundle gerbe Q over
Q. A representative of class of a lifting 2-crossed module bundle gerbe over X

corresponding to a Q-valued function q : X → Q can be obtained as the pullback
q∗(Q).

3.15. Remark. For an (L → M → N)-bundle gerbe (G, n) = (((P, m), Y, X,

�), n) we recall from (3.2) that the trivializing section n of the left principal N -
bundle µ(G) defines an N -valued function n on Y such that ∂2(m) = n1n−1

2 . Let
us recall that on the left principal L-bundle P there is a compatible principal right
L-action. Using the N -valued function n we can introduce a further principal right
L-action on P , which will again commute with the principal left L-action. We will
use the notation (p, l) �→ p · nl for p ∈ P , l ∈ L for this principal right action of
L and put p · nl := pn2(y1,y2)l, where p lies in the fiber over (y1, y2) ∈ Y [2] and n2
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is the pullback to Y [2] of n under the projection to the second factor of Y [2]. It is
easy to check that this formula indeed defines a principal right L-action commuting
with the principal left L-action on P .

Let now (G, n) = (((P, m), Y, X, �), n) and (G̃, ñ) = (((P̃ , m̃), Y, X, �̃), ñ) be
two 2-crossed module bundle gerbes. Let us again consider on Y [2] the Whitney
sum P ⊕ P̃ and introduce an equivalence relation on P ⊕ P̃ by

(p · nl, p̃) ∼ n(p, lp̃),

and define P̄ = P · nP̃ = P⊕P̃
ñ . We will denote an element of P · nP̃ defined by

the equivalence class of (p, p̃) ∈ P ⊕ P̃ as [ p, p̃ ]n in order to distinguish it from
equivalence class [ p, p̃ ] ∈ PP̃ defined previously in (2.1). Also, put

m̄ = m n2m̃.

It is easy to see that P̄ := (P̄ , m̄) is an (L → M)-bundle on Y [2]. Let us note that
also ∂2(m̄) = n̄1n̄2 on Y [2] with

n̄ = nñ.

Now on Y [3] we do have the pullbacks P12, P̃12, P̄12, etc. An element of P̄12P̄23

is then given by ((y1, y2, y3), [[ p, p̃ ]n, [ p′, p̃′ ]n]) with (y1, y2, y3) ∈ Y [3], p ∈ P and
p̃ ∈ P̃ in the respective fibers of P and P̃ over (y1, y2) ∈ Y [2], and p′ ∈ P and
p̃′ ∈ P̃ are in the respective fibers of P and P̃ over (y2, y3) ∈ Y [2]. Finally, we define
�̄ : P̄12P̄23 → P̄13 as

�̄((y1, y2, y3), [[ p, p̃ ]n, [ p′, p̃′ ]n]) := ((y1, y2, y3), [�([ p, p′ ], �̃[p̃, p̃′ ] ]n).

Now it is a rather lengthy but straightforward check to establish the following
proposition.

Proposition 3.3. (Ḡ, n̄) := (((P̄ , m̄), Y, X, �̄), n̄) defines an (L → M → N)-
bundle gerbe, the product of (L → M → N)-bundle gerbes (G, n) = (((P, m), Y,

X, �), n) and (G̃, ñ) = (((P̃ , m̃), Y, X, �̃), ñ).

3.16. Example. If (G, n) = (((P = Y [2] × L, ∂1prL), Y, X, 1), prN · nprX) and
(G̃, ñ) = (((P̃ Y [2] × L, ∂1prL), Y, X), prN · ñprX) are two (L → M → N)-bundle
gerbes defined by two respective N -valued functions n and ñ on X (3.6) then their
product is explicitly described again as an (L → M → N)-bundle gerbe defined
by the function nñ by identifying [(y1, y2, l), (y1, y2, l̃)] ∈ PP ′ with (y1, y2, l

n(x) l̃) ∈
(Y [2] × L). Here (y1, y2) ∈ Y [2] live in the fiber over x ∈ X .

3.17. Remark. The above product defines a group structure on stable isomor-
phism classes of (L → M → N)-bundle gerbes. The unit is given by the class of
the trivial (L → M → N)-bundle gerbe (((Y [2] × L, ∂1prL), Y, X, 1), prN ). We will
give an explicit (local) formula for the inverse later. Let us note that the relation
between the stable isomorphism classes of lifting (L → M → N)-bundle gerbes
described above (3.12) and Q-valued functions (and stable isomorphism classes of
(G → N)-bundle gerbes) is compatible with the respective multiplications.
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3.18. Product on 2-cocycles. The product formulas for the corresponding tran-
sition functions (2-cocycles) of the product Ḡ = GG̃ of two 2-crossed module bundles
are given by

n̄i = niñi,

m̄ij = mij
nj m̃ij ,

l̄ijk = lijk
mik{mjk

−1, nj m̃ij} ni l̃ijk.

The inverse (ni, mij , lijk)−1 is given by

(n−1
i , n−1

j m−1
ij , n−1

k {m−1
jk , m−1

ij }−1 n−1
i l−1

ijk).

3.19. Remark. Let us forget, for the moment, about the “horizontal” composition
in the Gray 3-groupoid corresponding to the 2-crossed module L → M → N .
The two “vertical” compositions define a strict 2-groupoid (a strict topological 2-
category), which we will denote as 2C. Let us again consider the topological O
category defined by the good covering {Oi}. A 2-cocycle is the same thing as a
continuous, normal pseudo-functor from O to 2C. Now we can use the fact that the
horizontal composition in a topological Gray 3-category defines a continuous cubical
functor F : 2C × 2C → 2C from the Cartesian product 2C × 2C to 2C [22]. We may
use the following property of cubical functors, which follows almost immediately
from definition. If F and G are two continuous normal pseudo-functors from O to
2C then F(F ,G) is a pseudo-functor from O to 2C. Hence, we obtain a product on
2-cocycles, which is the same as the one given above (3.3).

4. 2-Crossed Module Bundle 2-Gerbes

Consider again a surjective submersion π : Y → X . Let, as before, pij : Y [3] → Y [2]

denote the projection to the ith and jth component, and similarly for projections
of higher fibered powers Y [n] of Y . Let L

∂1→ M
∂2→ N be a 2-crossed module.

4.1. Definition. A 2-crossed module bundle 2-gerbe is defined by a quintuple
(G, Y, X, m, �), where G = (G, n) is a 2-crossed module bundle gerbe over Y [2],

m : G12G23 → G13

is a stable isomorphism on Y [3] of the product G12G23 of the pullback 2-crossed
module bundle gerbes G12 = p∗12G and G23 = p∗23G and the pullback 2-crossed
module bundle gerbe G13 = p∗13G, and

� : m124m234 → m134m123

is an isomorphism of the composition of pullbacks of stable isomorphisms p∗124m
and p∗234m and the composition of pullbacks of stable isomorphisms p∗123m and



February 28, 2011 13:41 WSPC/S0219-8878 IJGMMP-J043
S0219887811004963

Nonabelian Bundle 2-Gerbes 69

p∗134m on Y [4]. On Y [5], the isomorphism � should satisfy the obvious coherence
relation

�1345�1235 = �1234�1245�2345.

4.2. Abelian bundle 2-gerbes. Abelian bundle 2-gerbes as introduced in [49, 50,
19] are (U(1) → 1 → 1)-bundle 2-gerbes. If A → 1 → 1 is a 2-crossed module then
A is necessarily an abelian group and an abelian bundle 2-gerbe can be identified
as an (A → 1 → 1)-bundle 2-gerbe.

4.3. Example. Consider an (1 → G → N)-bundle 2-gerbe (G, Y, X, m, �). The
(1 → G → N)-bundle gerbe on Y [2] gives a (G → N)-bundle P on Y [2]. The stable
isomorphism m : G12G23 → G13 gives on Y [3] an isomorphism g : P12P23 → P13

satisfying on Y [4] the associativity condition g124g234 = g134g123 since the first Lie
group of the 2-crossed module (1 → G → N) is trivial. Hence, a (1 → G → N)-
bundle 2-gerbe is the same thing as a (G → N)-bundle gerbe. Obviously, stably
isomorphic (1 → G → N)-bundle 2-gerbes correspond to stably isomorphic (G →
N)-bundle gerbes.

4.4. Pullback. If f : X → X ′ is a map then we can pullback Y → X to f∗(Y ) →
X ′ with a map f̃ : f∗(Y ) → Y covering f . There are induced maps f̃ [n] : f∗(Y )[n] →
Y [n]. The pullback f∗(G, Y, X, m, �) := (f̃ [2]∗G, f∗(Y ), f(X), f̃ [3]∗m, f̃ [4]∗�) is
again an (L → M → N)-bundle 2-gerbe.

4.5. Definition. Two 2-crossed module bundle 2-gerbes ((G, Y, X, m, �) and
(G′, Y ′, X, m′, �′)) are stably isomorphic if there exists a 2-crossed module bun-
dle gerbe Q → Ȳ = Y × XY ′ such that over Ȳ [2] the 2-crossed module bundle
gerbes q∗G and Q1q

′∗G′Q−1
2 are stably isomorphic. Let m̃ be the stable isomor-

phism m̃ : q∗G → Q1q
′∗G′Q−1

2 . Then we ask on Y [3] (with an obvious abuse of
notation) for the existence of an isomorphism �̃ of stable isomorphisms

�̃ : m′m̃23m̃12 → m̃13m,

fulfilling on Y [4]

�1234�̃124�̃234 = �̃134�̃123�
′
1234.

Here q and q′ are projections onto first and second factor of Ȳ = Y × XY ′ and Q1

and Q2 are the pullbacks of Q to Ȳ [2] under respective projections p1, p2 from Ȳ [2]

to Ȳ , etc.
A 2-crossed module bundle 2-gerbe (G, Y, X, m, �) is called trivial if it is stably

isomorphic to the trivial 2-crossed module bundle 2-gerbe (T , Y, X, 1, 1), where T
is the trivial 2-crossed module bundle gerbe (((Z [2] × L, ∂1prL), Z, Y [2], 1), prN ).
Pullbacks preserve stable isomorphisms, a pullback of a trivial 2-crossed module
bundle 2-gerbe is again a trivial 2-crossed module bundle 2-gerbe.

If Y = X then the 2-crossed module bundle 2-gerbe is trivial.
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4.6. Definition. Let (G, Y, X, m, �) and (G′, Y ′, X, m′, �′) be two 2-crossed mod-
ule bundle 2-gerbes and (Q, m̃Q, �̃Q) and (R, m̃R, �̃R) two stable isomorphisms
between them. We call these two stable isomorphisms stably isomorphic if there is
a stable isomorphism m : Q → R of 2-crossed module bundles on Ȳ = Y × XY ′

such that (with an obvious abuse of notation) the diagram

q∗G m̃Q−−−−→ Q1q
′∗G′Q−1

2

id

�
� m1m

−1
2

q∗G m̃R−−−−→ R1q
′∗G′R−1

2 ,

commutes up to an isomorphism of stable isomorphisms

� : m̃Qm1m
−1
2 → m̃R

on Ȳ [2], fulfilling on Ȳ [3]

�̃Q�13 = �12�23�̃R.

4.7. Remark. Let π′ : Y ′ →X be another surjective submersion and f : Y ′ →
Y a map such that π′ = πf . Then the 2-crossed module bundle 2-gerbes
(f∗G, Y ′, X, f [3]∗m, f [4]∗�) and (G, Y, X, m, �) are stably isomorphic. It follows that
locally each 2-crossed module bundle 2-gerbe is trivial. The arguments to show the
above two statements are completely analogous to the case of a crossed module
bundle gerbe (3.8).

4.8. Change of the structure 2-crossed module. If (L → M → N) → (L′ →
M ′ → N ′) is a morphism of crossed modules, there is an obvious way to construct,
starting from an (L → M → N)-bundle 2-gerbe (G, Y, X, m, �), an (L′ → M ′ →
N ′)-bundle 2-gerbe (G′, Y, X, m′, �′) by changing the structure 2-crossed module of
G from (L → M → N) to (L′ → M ′ → N ′).

4.9. 3-cocycles. Let π : Y → X be the surjective submersion, which was implic-
itly contained in the above definition of a 2-crossed module bundle 2-gerbe. Let
us recall (4.7) that also for 2-crossed module bundle 2-gerbes it holds true that
2-crossed module bundle 2-gerbes (f∗G, Y ′, X, f [3]∗m, f [4]∗�) and (G, Y, X, m, �)
are stably isomorphic if the respective maps π and π′ are related by a compatible
map f . Hence, we can again assume Y =

∐
Oi. For simplicity, we assume that the

covering {Oi} is a good one, in which case the (L → M → N)-bundle gerbe can be
described by transition functions (nij , mijk, lijkl)nij : Oij → N , mijk : Oijk → M

and lijkl : Oijkl → L satisfying

nijnjk = ∂2(mijk)nik,

mijkmikl = ∂1(lijkl) nij mjklmijl,

lijkl
nij mjkl (lijlm)nij ljklm = mijk liklm{mijk, nikmklm}nijnjk mklm(lijkm).

(15)
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We shall not give explicit formulas relating transition functions (3-cocycles) of two
stably isomorphic 2-crossed module bundle 2-gerbes. We introduce the notation
H1(X, L → M → N) for the equivalence classes of 3-cocycles. We just give the for-
mulas for transition functions (nij , mijk, lijkl) of a trivial 2-crossed module bundle
2-gerbe:

nik = n−1
i ∂2(mij)nj ,

nimijl = ∂1(l−1
ijk)mijmjkm−1

ik ,

ni lijkl =
nimijk(l−1

ikl )l
−1
ijk

mij ljkl{mij ,
nj mjkl}

ninij mjkl(lijl).

(16)

We introduce the notation H1(X, L → M → N) for the corresponding equivalence
classes of 3-cocycles.

Now we briefly describe how an (L → M → N)-bundle 2-gerbe can be recon-
structed from transition functions (nij , mijk, lijkl). This is analogous to the case
of an (L → M)-bundle gerbe (2.25). Put Y =

∐
Oi. On each nonempty Oij con-

sider the (L → M → N)-bundle gerbe Gij defined by the function nij : Oij → N

as in (3.6). Hence, on Y [2] we have the (L → M → N)-bundle gerbe given by
G =

∐
ij Gij . Now, we recall the explicit descriptions of the multiplication (3.16)

and stable isomorphisms (3.6) of two (L → M → N)-bundle gerbes defined by their
respective N -valued functions. Also, recall the description of isomorphisms of stable
isomorphism in case of such (L → M → N)-bundle gerbes. Using the 3-cocycle rela-
tions, it is now straightforward to show that the collection of functions mijk defines
a stable isomorphism of G12G23 and G13 on Y [3] satisfying on Y [4] the associativity
condition up to an isomorphism defined by the collection of functions lijkl, which
fulfills the coherence relation on Y [5]. It is now clear that, in a complete analogy
to the case of a crossed module bundle gerbe (2.25), starting from two equivalent
3-cocycles, we obtain stably isomorphic 2-crossed module bundle 2-gerbes. This is
however a tedious check and we shall omit it.

Hence, we can summarize the discussion in the following proposition.

Proposition 4.1. Stable isomorphism classes of (L → M → N)-bundle 2-gerbes
are in a bijective correspondence with the set H1(X, L → M → N).

It might be interesting to examine possible 3-categorical aspects of the above
constructions.

4.10. Lifting 2-crossed module bundle 2-gerbe. As before (cf. (3.12)), con-
sider a Lie 2-crossed module L → M → N such that ker(∂1) = 1 and ker(∂2) =
Im(∂1). Put G := M

L and Q := N
G . Assume that the conditions are satisfied for

having extensions of Lie groups

1 → L
∂1→ M

∂2→ N
π2→ Q → 1, (17)

1 → L
∂1→ M

π1→ G → 1 (18)
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and

1 → G
∂′
2→ N

π2→ Q → 1, (19)

such that M
π1→ G is an (L → M)-bundle and N

π1→ Q is an (G → N)-bundle
(cf. Example 2.7). Also, we have an exact sequence of pre-crossed modules

1 −−−−→ L
∂1−−−−→ M

π1−−−−→ G −−−−→ 1�
� ∂2

� ∂′
2

�
�

1 −−−−→ 1 −−−−→ N −−−−→ N −−−−→ 1 ,

where G is a normal subgroup of N and also a morphism of 2-crossed modules

L
∂1−−−−→ M

∂2−−−−→ N� π1

� id

�

1 −−−−→ G
∂′
2−−−−→ N .

Proposition 4.2. Consider an exact sequence (17) of Lie groups such that the
exact sequences (18) and (19) define an (L → M)-bundle and an (G → N)-
bundle, respectively.d Then the stable isomorphism classes of (L → M → N)-bundle
2-gerbes are in bijective correspondence with the isomorphism classes of Q-bundles
and hence also with (G → N)-bundle gerbes.

Proof. Recall that in accordance with (3.14) from the 3-term exact sequence
1 → L

∂1→ M
π1→ G → 1 and the right principal (G → N)-bundle N → Q

(given by the 3-term exact sequence 1 → G
∂′
2→ N

π2→ Q → 1) we can construct
a lifting (L → M)-bundle gerbe on Q. This lifting bundle gerbe will actually be
an (L → M → N)-bundle gerbe G (3.12). If P is now a left principal Q-bundle
over X then we can use the corresponding division map d : P [2] → G to pull-
back the 2-crossed module gerbe G from G to P [2]. It follows that the 2-crossed
module bundle gerbes G12G23 and G13 are stably isomorphic on P [3]. This follows
from the above-mentioned fact that, in case of Lie groups L, M , N , and Q as
above, stable isomorphism classes of (L → M → N)-bundle gerbes are one-to-one
to Q-valued functions (3.1) and that this correspondence respects the respective
multiplications. Such a stable isomorphism in general fulfills on P [4] the associa-
tivity condition only up to an isomorphism, which however, due to ker(∂1) = 1,
will fulfill the requested coherence condition on P [5]. Hence, we have obtained
2-crossed module bundle 2-gerbe, the so-called lifting 2-crossed module bundle
2-gerbe. Starting from an isomorphic principal Q-bundle P ′ we obtain a stably
isomorphic (L → M → N)-bundle 2-gerbes. This follows from the fact that on
P̄ [2], where P̄ := P × XP ′ the pullbacks of respective division functions d and d′

dCf. Example 2.4.
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are related by d(p̄1, p̄2) = d̄(p̄1)d′(p̄1, p̄2)d̄(p̄2)−1 with some Q-valued function d̄ on
P̄ . To finish the argumentation, we refer again to the 1-1 relation between stable
isomorphism classes of (L → M → N)-bundle gerbes to Q-valued functions (3.1)
and the fact that this respects the respective multiplication.

Going in the opposite direction, let us consider an (L → M → N)-bundle
2-gerbe (G, X, Y, m, �) with the 2-crossed module (L → M → N) as above. Chang-
ing the structure 2-crossed module to 1 → G → N , we obtain a (G → N)-bundle
gerbe (G, n) on X . After changing its structure crossed module to 1 → Q we obtain
a left principal Q-bundle on X . Since all steps in the construction preserve the
respective stable isomorphisms and isomorphisms, starting from stably isomorphic
2-crossed module bundle 2-gerbes we will obtain isomorphic Q-bundles.

It is a rather tedious task to check that starting from a principal Q-bundle,
constructing the lifting 2-crossed module bundle 2-gerbe and going back will result
in the same principal Q-bundle.

Corollary 4.1. Under the hypothesis of the above proposition,

H1(X, L → M → N) ∼= H1(X, G → N) ∼= H1(X, Q).

4.11. Remark. We can also reinterpret the above-described lifting 2-crossed mod-
ule bundle 2-gerbe as follows. We start again with a principal Q-bundle P as above.
Let us consider the corresponding lifting (G → N)-bundle gerbe P. This in partic-
ular means that on P [2] we have a (G → N)-bundle P which can be lifted to an
(L → M → N)-bundle gerbe G on P [2] (3.12). It follows that the 2-crossed module
bundle gerbes G12G23 and G13 are stably isomorphic with a stable isomorphism m.
This follows, again, from the above-mentioned fact that in case of Lie groups L,
M , N and Q as above stable isomorphism classes of (L → M → N)-bundle gerbes
are one-to-one with Q-valued functions and that this correspondence respects the
respective multiplications. Again, such a stable isomorphism m fulfills the associa-
tivity condition on P [4] only up to an isomorphism fulfilling the coherence relation
on P [5] because of ker ∂1 = 1. This way we obtain an 2-crossed module bundle
2-gerbe stably isomorphic to the lifting 2-crossed module bundle 2-gerbe (4.10).

4.12. Twisting crossed module bundle gerbes with abelian bundle
2-gerbes. Twisted crossed module bundle gerbes as discussed here were intro-
duced in [2]. A more general concept of twisting has been introduced recently in
[47].

Let us consider a 2-crossed module A → L
δ→ M associated to the crossed

module L → M (1.5). Recall that in this case A is necessarily abelian. Putting
Q := coker δ we have an exact sequence

0 → A
∂→ L

δ→ M → Q → 1.
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Assume, similarly to (4.10), that extensions of Lie groups

1 → A
∂→ L

π1→ G → 1 (20)

and

1 → G
δ′
→ M

π2→ Q → 1, (21)

define an (A → L)-bundle and (G → M)-bundle, respectively (cf. (2.7)). However,
now we have an exact sequence of crossed modules

1 −−−−→ A
∂−−−−→ L

π1−−−−→ G −−−−→ 1�
� δ

� δ′
�

�
1 −−−−→ 1 −−−−→ M −−−−→ M −−−−→ 1 .

As before, we have a morphism of 2-crossed modules

A
∂−−−−→ L

δ−−−−→ M� π1

� id

�
1 −−−−→ G

δ′
−−−−→ M .

Hence, starting from a principal Q-bundle P we can construct a lifting (A → L
δ→

M)-bundle 2-gerbe (recall that according to (4.2) there is a 1-1 correspondence
between stable isomorphism classes of (A → L

δ→ M)-bundle 2-gerbes and isomor-
phism classes of principal Q-bundles). Let us further assume that what we have here
is a central extension of L by A, and that M acts trivially on A. Let us assume that
the lifting bundle 2-gerbe G) is described locally, with respect to a good covering,
by a 3-cocycle (mij , lijk, aijkl)

mijmjk = δ(lijk)mik,

lijklikl = ∂(aijkl) mij ljkllijl,

aijklaijlmajklm = aiklmaijkm.

(22)

The collection of A-valued functions aijkl on the quadruple intersections represents
a Čech class in H3(X, A) (which in the case A = U(1) would correspond to a class
in H4(X, Z)). We may think of it as representing an abelian bundle 2-gerbe A. If
we assume that A is trivial, we have

aijkl = ãijk ãiklã
−1
jklã

−1
ijl .

Also, we see that we have a 2-cocycle (lijk∂(aijk)−1, mij) representing a possi-
bly non-trivial (L → M)-bundle gerbe G. Obviously, the (A → 1 → 1)-bundle
2-gerbes represented by non-trivial classes in H3(X, A) represent obstructions to
lift a (G → M)-bundle gerbe (and hence also a Q-bundle) to an (L → M)-bundle
gerbe. Further, if ãijk and ã′

ijk represent two trivializations of aijkl then ãijk(ã′
ijk)−1

represents a Čech class in H2(X, A). We may think of it as representing an abelian
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bundle gerbe, i.e. the (A → 1)-bundle gerbe, A. We can summarize the above
discussion in the following proposition.

Proposition 4.3. Let A → L
δ→ M be a 2-crossed module originating from the

crossed module L
δ→ M e such that the extensions of Lie groups (20) and (21) define

an (A → L)-bundle and (G → M)-bundle, respectively.f Let us also assume that
(20) is a central extension of L by A and that M acts trivially on A:

(i) A principal Q-bundle on X can be lifted to an (L → M)-bundle gerbe if and
only if the corresponding obstruction (A → 1 → 1)-bundle 2-gerbe A is trivial.

(ii) If nonempty, the set of stable isomorphism classes of those (L → M)-bundle
gerbes, which are liftings of Q-principal bundles from the same isomorphism
class, is freely and transitively acted on by the group of stable isomorphism
classes of (A → 1)-bundle gerbes.

Corollary 4.2. Under the assumptions of Proposition 4.3, there is an exact
sequence

H1(X, A → 1 → 1) → H1(X, L → M) → H1(X, Q).

The above proposition and corollary remain true also in cases when the principal
Q-bundles and their isomorphism classes are replaced by (G → M)-bundle gerbes
and their stable isomorphism classes (cf. 2.27).

4.13. Remark. Of course, the above lifting always exists when the 4-term exact
sequence 1 → A → L → M → Q → 1 corresponds to a trivial class in H3(Q, A)
[36, 11], the third Q-cohomology with values in A. The above lifting also trivially
exists when X does not admit non-trivial (A → 1 → 1)-bundle 2-gerbe, i.e. when
[X, B2A] is trivial.

4.14. A remark on string structures. Let Q be a simply-connected compact
simple Lie group. Associated to Q there is a crossed module L → M of infinite-
dimensional Fréchet Lie groups with L := Ω̂Q and M := P0Q, where Ω̂Q is the
centrally extended group of based smooth loops in Q and P0Q is the group of
smooth paths in Q that start at the identity [4]. Hence in the notation of (4.12) we
have A = U(1), and G = ΩQ. Let us note (see [51, 4, 28]) that, in the situation as
above (4.12), the classifying space BU(1) = K(Z, 2) can be equipped with a proper
group structure and a topological group String(Q) can be defined fitting an exact
sequence of groups 1 → K(Z, 2) → String(Q) → Q → 1. Also, it is known [30, 5]
that the categories of (L → M)-bundle gerbes and principal String(Q)-bundles
are equivalent. A string structure is, by definition, a lift of a principal Q-bundle to
a principal String(Q)-bundle and hence equivalently a lift of a (G → M)-bundle

eCf. Example 1.5.
fCf. Example 2.4.



February 28, 2011 13:41 WSPC/S0219-8878 IJGMMP-J043
S0219887811004963

76 B. Jurčo

gerbe to an (L → M)-bundle gerbe. Thus, the above discussion applies to the
existence of string structures and their classification as well.

4.15. Remark. A crossed square (L → A) → (B → N) [35] of Lie groups gives a
2-crossed module, namely L → A�B → N (see, e.g. [42]). A definition of a crossed
square bundle 2-gerbe could possibly be read from [8, 10, 9]. It would be interesting
to compare these bundle 2-gerbes with L → A � B → N -bundle 2-gerbes defined
in this paper.
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[8] L. Breen, Théorie de Schreier supérieure, Ann. Scient. École BreenSchrNorm. Sup.
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We discuss nonabelian bundle gerbes and their differential geometry using simplicial
methods. Associated to a (Lie) crossed module (H → D) there is a simplicial group
NC(H→D), the nerve of the groupoid C(H→D) defined by the crossed module, and its
geometric realization, the topological group |NC(H→D)|. We introduce crossed module
bundle gerbes so that their (stable) equivalence classes are in a bijection with equiva-
lence classes of principal |NC(H→D)|-bundles. We discuss the string group and string
structures from this point of view. Also, we give a simplicial interpretation to the bundle
gerbe connection and bundle gerbe B-field.

Keywords: Nonabelian gerbes; bundle gerbes; B-field.

0. Introduction

Nonabelian gerbes arose in the realms of nonabelian cohomology [1, 2] and higher
category theory [3]. Their differential geometry was described thoroughly by Breen
and Messing [4] from the algebraic geometry point of view (see also [5], for a combi-
natorial description). In [6], nonabelian bundle gerbes, generalizing the nice concept
of an abelian bundle gerbe [7], were introduced. The nonabelian bundle gerbes have
to be shown (along with their connections and curvings) very natural objects from
the point of view of classical fiber bundle theory. There is hope that in this form
gerbes can be of some use in physics (see, e.g. examples of higher Yang–Mills theories
[8] and anomaly cancelation of M5-branes [9]). Closely related to crossed modules
bundle gerbes are two bundles introduced in [10] and discussed together with their
connections and curvings in [11]. For an independent approach, see [17].

The purpose of this paper is to introduce bundle gerbes associated with crossed
modules and discuss their classification. We refer to these bundle gerbes as crossed
module bundle gerbes. In the terminology of [6], the crossed module bundle gerbes
can be understood as bundle gerbes equipped with modules. We relate the crossed
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module bundle gerbes to simplicial principal bundles and interpret their differential
geometry in simplicial terms.

The first section is devoted to simplicial principal bundles. We describe them
as twisted Cartesian products following [18]. Also, we recall the construction of the
universal simplicial bundle.

Connections on simplicial bundles are introduced in Sec. 2. This is done in a
straightforward way, which we believe, is the relevant one for our purposes. Next,
we shortly discuss the corresponding curvature.

Our task in Sec. 3 is to define a simplicial B-field.
In Sec. 4, we describe some simplicial constructions related to a crossed mod-

ule (H → D). We can view a crossed module as a one-groupoid C(H→D) or as a
strict two-group C̃(H→D). We can form the corresponding nerves NC(H→D) and
N C̃(H→D), respectively. The geometric realization |NC(H→D)| is the classifying
space of H-principal bundles with a chosen trivialization under the change in the
structure group from H to D. If H and D are Lie groups, C(H→D) is a simplicial
Lie group and its geometric realization |NC(H→D)| is a topological group. String
group of [12, 13] is an example. We remark on how the construction of [12] relates
to the one of Stolz and Teichner [14].

Crossed module bundle gerbes, also referred to as (H → D)-bundle gerbes,
are introduced in Sec. 5. The geometric realization |N C̃(H→D)| of the nerve of the
two-group C̃(H→D) corresponding to the crossed module (H → D) is identified
as the classifying space of (H → D)-bundle gerbes. Stable equivalence classes of
(H → D)-crossed module bundle gerbes are one-to-one with equivalence classes
of principal bundles with structure group |NC(H→D)|. In particular, string struc-
tures [14] can be described equivalently in terms of crossed module bundle gerbes.
Locally, crossed module bundle gerbes can be described using simplicial maps from
the nerve of an open covering {Oα}α of the manifold X to the nerve of the two-
group |C(H→D)|, which can also be identified as the classifying space WNC(H→D)

of principal NC(H→D)-bundles. Here we have to mention closely related work of
Stevenson [19].

In the last section, we describe how the simplicial connection and B-field (intro-
duced in Secs. 2 and 3) relate to the bundle gerbe connection and the bundle gerbe
B-field. Here as well as in Secs. 2 and 3 we work in the category of manifolds.
However, as Baez pointed out it might be more appropriate to work in the category
of “smooth spaces” studied in the Appendix of [11].

Finally, we should again mention work of Breen [2], where the group |NC(H→D)|
and the classifying space WNC(H→D) are discussed. I thank Stevenson for pointing
out this to me. Also, I am very much indebted to Henriques for help with Secs. 4
and 5.

This paper is a (slightly) revised and updated version of the preprint
arXiv.math/05110078. Some results of this paper we generalized to the case of
two-crossed module bundle two-gerbes in [20]. I am thankful to the referee of [20]
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for encouraging me, in his report concerning [20], to try to publish the present
paper.

1. Simplicial Principal Bundles

We start by recalling some relevant properties of simplicial principal bundles fol-
lowing mainly [18]. Let π :P → X be a simplicial (left) principal G-bundle, with
P and X simplicial sets and G a simplicial group. We will denote by ∂i and si

the corresponding face and degeneracy maps. In the rest of the paper we always
assume, without spelling it out explicitly, P → X to possess a pseudo-cross-section
σ :X → P such that πσ = idX , ∂iσ = σ∂i if i > 0 and siσ = σsi if i ≥ 0. Asso-
ciated with a pseudo-cross-section σ we have the twisting function τ :Xn → Gn−1

defined by

∂0σ(x) = τ(x) · σ(∂0x).

We will use the following description of G-bundles which we alternatively can use
as a definition.

1.1. Twistings

To make this section self-contained we have to describe the twisting first. For a
function τ :Xn → Gn−1 to be a twisting the following conditions should be fulfilled:

∂0τ(x) = τ(∂1x)(τ(∂0x))−1,

∂iτ(x) = τ(∂i+1x) for i ≥ 0,

siτ(x) = τ(si+1x) for i ≥ 0,

τ(s0x) = en for x ∈ Xn.

1.2. Principal bundles as twisted Cartesian products

A principal G-bundle p :P → X with a pseudo-cross-section can be identified with
the simplicial set P (τ) = G×τ X , with simplices

P (τ)n = Gn ×Xn

and with the following face and degeneracy maps

∂i(g, x) = (∂ig, ∂ix) for i ≥ 0,

∂0(g, x) = (∂0g · τ(x), ∂0x),

si(g, x) = (sig, six) for i ≥ 0.

There is a canonical choice for the pseudo-cross-section σ(x) = (en, x), x ∈ Xn and
en the identity in Gn.

Equivalence of two G-bundles P (τ) and P (τ ′) over the same X is described in
terms of twisting as follows.
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1.3. Equivalence of principal bundles

We call two twistings τ ′ and τ equivalent if there exists a map ψ :X → G such that

∂0ψ(x) · τ ′(x) = τ(x) · ψ(∂0x),

∂iψ(x) = ψ(∂ix) if i > 0,

siψ(x) = ψ(six) if i ≥ 0.

It will be convenient to introduce the equivariant map σ̄ :P → G, σ̄(gp) =
g · σ̄(p), by the equation p = σ̄(p)σ(x). In the rest we will always assume
the canonical choice of the pseudo-cross-section has been made, in which case
σ̄(gn, gn−1, . . . , g0) = gn. We have

∂0σ̄(p) = σ̄(∂0p)τ(x)−1.

As with ordinary bundles, simplicial bundles can be pulled back and their struc-
ture groups can be changed using simplicial group homomorphisms. Pseudo-cross-
sections and twistings transform under these operations in an obvious way.

1.4. Universal G-bundle

There is a canonical choice of the classifying space of G-bundles denoted asWG and
constructed as follows. WG0 has one element ∗ and WGn = Gn−1×Gn−2×· · ·×G0

for n > 0. Face and degeneracy maps are

s0(∗) = (e0), ∂i(g0) = ∗ for i = 0 or 1

and

∂0(gn, . . . , g0) = (gn−1, . . . , g0),

∂i+1(gn, . . . , g0) = (∂ign, . . . , ∂1gn−i+1, ∂0gn−i.gn−i−1, gn−i−2, . . . , g0),

s0(gn−1, . . . , g0) = (en, gn−1, . . . , g0),

si+1(gn−1, . . . , g0) = (si, gn, . . . , s0gn−i, en−i, gn−i−1, . . . , g0),

if n > 0. With the choice of a twisting given by

τ(gn−1, . . . , g0) = gn−1

we have the universal G-principal bundle

WG = G×τ WG.

As with ordinary bundles, we have that WG is contractible and is universal in
the following sense.

Theorem 1.1. Let us assign to any simplicial map

f :X → WG

the induced bundle f∗(WG) → X. This defines a one-to-one correspondence
between homotopy classes of maps [X,WG] and the equivalence classes of prin-
cipal G-bundles over the base X.



September 22, 2011 15:52 WSPC/S0219-8878 IJGMMP-J043
S0219887811005555

Crossed Module Bundle Gerbes; Classification 1083

1.5. Remark

The proof of the above theorem is based on the following observation:
The principal G-bundle G×τ X corresponding to the twisting τ is obtained as

a pullback under the map f :X → WG given by

x �→ (τ(x), τ(∂0x), . . . , τ(∂i
0x), . . . , τ(∂

n
0 x)).

It follows (cf. also [21]).

Proposition 1.1. Homotopy classes of twistings are one-to-one to equivalence
classes of twistings.

2. Simplicial Connection, Curvature

In this section we introduce the notion of a connection on a simplicial bundle. Of
course, now we have to assume that G is a simplicial Lie group and P and X are
simplicial manifolds. Also, all maps and actions are assumed to be smooth. For a
simplicial manifold Y , we will use the notation Ωk(Y ) ⊗ Lie(G) for the collection,
for all n, of all Lie(Gn)-valued k-forms on Yn. Here, Lie(G) is the corresponding
simplicial Lie algebra Lie(G)n := Lie(Gn) with the induced face and degeneracy
maps. For purposes of this paper the following definition of a simplicial connection
seems to be adequate.

2.1. Definition

Let A ∈ Ω1(P ) ⊗ Lie(G) be a collection of one-forms An ∈ Ω1(Pn) ⊗ Lie(Gn). We
call A a connection on the simplicial principal G-bundle P → X if it fulfills the
following conditions:

(i) ∂∗i A = ∂iA and s∗i A = siA
where ∂∗i on the left is the pullback of the face map acting on the one-form
part of A and ∂iA on the right is the simplicial Lie algebra face map acting
on the simplicial Lie algebra part of A and similarly for degeneracies

(ii) A is equivariant with respect to the left G-action on P

g∗A = gAg−1

and
(iii) its pullback to the fiber under σ̄ :P → G is the Cartan–Maurer form gdg−1,

i.e. the collection of elements gndg
−1
n ∈ Ω1(Gn) ⊗ Lie(Gn).

2.2. Local connection forms

Let us consider a collection of one-forms A ∈ Ω1(X) ⊗ Lie(G) with the property

∂0A = τ∂∗0Aτ
−1 + τdτ−1, ∂∗i A = ∂iA for i > 0
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and

s∗iA = siA for i ≥ 0.

We call such an A a local connection.
The following proposition is obvious.

Proposition 2.1. Any connection A is of the form

A = σ̄Aσ̄−1 + σ̄dσ̄−1

with

A = σ∗A.
Pullbacks and change of the structure group work as usual.

2.3. Curvature

Curvature is defined exactly in the same way as in the case of ordinary bundles. It
is a collection of two-forms F ∈ Ω2(P )⊗ Lie(G) defined as F = dA+A∧A and it
has the following properties:

(i) ∂∗i F = ∂iF and s∗iF = siF
(ii) F is equivariant with respect to the left G-action on P

g∗F = gFg−1

and
(iii) F is of the form F = σ̄F σ̄−1 with F ∈ Ω2(X) ⊗ Lie(G), i.e. it is horizontal.

Obviously, F = dA+A ∧A. Notice that

∂0F = τ∂∗0Fτ
−1 and ∂iF = ∂∗i F for i > 0

and

siF = s∗iF for i ≥ 0.

3. B̄-Field

Let

Ḡ0 = 1,

Ḡn = ker ∂1 · · · ∂n ⊂ Gn.

Let us note that ∂0Ḡn+1 is a normal subgroup in Gn. Also, ∂iḠn+1 ⊂ Ḡn for
i > 0. From now on we will assume that there exists an action of Gn on Ḡn+1;
gn × ḡn+1 �→ gn ḡn+1 such that

∂0( gn ḡn+1) = gn∂0(ḡn+1)g−1
n

and
∂0ḡn+1 ḡ′n+1 = ḡn+1ḡ

′
n+1ḡ

−1
n+1.
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These conditions will be automatically satisfied in the next sections when we con-
sider simplicial groups originating from crossed modules.

3.1. Definition

B̄-field is a collection of two-forms B̄n+1 ∈ Ω2(Xn) ⊗ (Ḡn+1) such that

τ∂∗0B̄ = ∂1B̄

and

∂∗i B̄ = ∂i+1B̄ for i > 0

and

s∗i B̄ = si+1B̄ for i ≥ 0.

Finally we introduce collection of two-forms ν ∈ Ω2(X) ⊗ Lie(G) as

νn = Fn + ∂0B̄n+1.

Obviously, ν has the same properties with respect to face and degeneration maps
as F .

3.2. Remark

Of course, there is no reason to stop with connection A and B-field here. One
can introduce C-field etc. ad infinitum. We will however not do so here as we are
really interested only in simplicial groups which are algebraic models of homotopy
two-type (crossed modules).

4. Crossed Modules

4.1. Definition

Let H and D be two Lie groups. We say that H is a crossed D-module if there
is a Lie group homomorphism α :H → D and an action of D on H denoted by
(d, h) �→ dh such that

α(h)h′ = hh′h−1 for h, h′ ∈ H

and

α(dh) = dα(h)d−1 for h ∈ H, d ∈ D

holds true.
We will use the following notation (H → D) for a crossed module. If the groups

are infinite-dimensional we will assume that these are Frechét Lie groups.
There are two canonical categorical construction associated with any crossed

module.
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4.2. Crossed module as a one-groupoid

Let us denote C(H→D) the (topological) groupoid with objects being group elements
d ∈ D and morphisms (one-arrows) group elements (h, d) of the semidirect product
H �D.

As with any groupoid (more generally category), we can form the simplicial
space, the nerveNC(H→D) of C(H→D) and its (fat) geometric realization |NC(H→D)|.
The nerve is naturally a simplicial Lie group and its geometric realization becomes
naturally a topological group [12]. We will use the following pictorial representation
for the simplicial group NC(H→D):

d0−→
for the zeroth component,

h01

��

d1

��

d0

��

for the first component,

h12

��

d2

��d1 ��

d0

��

h01

��

for the second component etc. with the obvious face and degeneracy maps.
The (opposite) group multiplication is given by horizontal composition

d1 �� . d0 �� = d0d1 ��

h′
01

��

h01

��

d′
1

��

d′
0

��.

d1

��

d0

�� = h01
d1h′

01

��

d1d′
1

��

d0d′
0

��

etc.
Simplicial homotopy groups of NC(H→D) are trivial except π0(NC(H→D)) =

cokerα and π1(NC(H→D)) = kerα.
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4.3. Definition

Let (H → D) be a crossed module of Lie groups and X a manifold. Let P → X

be a left principal H-bundle, such that the principal D-bundle D ×∂ P is trivial
with a trivialization defined by a section (i.e. a left H-equivariant smooth map)
d :P → D. We call the pair (P,d) an (H → D)-bundle or a crossed module
bundle.

Proposition 4.1. |NC(H→D)| is the classifying space of (H → D)-bundles.

Proof. In other words |NC(H→D)| is the homotopy fiber of BH → BD. This is
the pullback under Bα :BH → BD of the bundle of based paths P0BD → BH .
As a principal ΩBD ∼ D-bundle it can be identified with the homotopy quotient
D//H = EH×αD ofD byH . Let us recall that EH is the (fat) geometric realization
of the following simplicial space (here and in all following pictures, we shall omit
the arrows for degeneracy maps)

h01

���
��

��
��

��
��

��
h1 ��

h0 �� ���� . . .
h0

���������������

From here we get EH ×α D as the geometric realization of the simplicial space

h01

���
��

��
��

��
��

��
d1 ��

d0 �� ���� . . .
d0

���������������

and we see that this is really identical to the simplicial group NC(H→D).

4.4. Remark

Bundles defined in 4.3 are automatically left and right H-principal bundles with
the two principal H-actions commuting. Moreover the multiplication in Subsec. 4.2
gives naturally a multiplication of such bundles. This follows from [6, Proposition 4].

If P and P ′ are two crossed module bundles and f and f ′ the corresponding
classifying maps, then the pointwise product map f · f ′ is a classifying map for a
bundle equivalent to the product bundle P · P ′.
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4.5. String group

Together with a crossed module (H → D) we can consider also crossed modules
(H → Imα) and (1 → cokerα). This gives an exact sequence of (topological) groups

1 → |NC(H→Im α)| → |NC(H→D)| → |NC(1→coker α)| = cokerα→ 1.

String group String is a nice example of the above construction. Let G be a simply
connected compact simple Lie group. The crossed module in question is given by
H = Ω̂G, the centrally extended group of based loops, and D = P0G, the group of
based paths [12, 13] or some modification of these [14].

Of course, we can consider crossed modules (kerα → e) and (Imα) → D as
well, in which case we obtain the exact sequence

1 → |NC(kerα→e)| = B kerα→ |NC(H→D)| → |NC(Im α→D)| → 1.

Let us notice, that the two above exact sequences are (homotopy) equivalent to

1 → B kerα→ |NC(H→D)| → cokerα→ 1.

Hence, we can view the homotopy quotient D//H = EH ×α D as a principal
B kerα-bundle over the base space cokerα. Since EH is the universal bundle for any
subgroup of H it is also the universal bundle for the normal subgroup kerα ⊂ H .
The action of H on EH descents to an action of H/kerα = α(H) on B kerα and
we see that we have |NC(H→D)| ∼ B kerα×α(H) D.

There is another nice description of the above (topological) group structure on
EH ×α D.a EH itself can be thought of as |NC(H→H)|. Hence it is a topological
group. The action of D on H naturally extends to EH and we can form the semidi-
rect product EH �D. This group structure factors to EH �α D. Now, if we equip
B kerα with the factor group structure then the D-action factors to B kerα as it
preserves kerα.

This description of String is very close to the one of Stolz and Teichner [14].
Very briefly, in their construction of String, H is L̃IG, the central extension of LIG

(group of all piecewise smooth loops γ :S1 → G with the support in the upper
semicircle I ∈ S1). Here G is a compact, simply connected Lie group. Their D is
the group of based paths P I

e G = {γ : I → G | γ(1) = e}. With these choices, they
can take PU(Aρ) as a model for B kerα, where Aρ is certain von Neumann algebra
(type III1 factor) associated with the vacuum representation of the loop group LG
at some fixed level l ∈ H4(BG). See [14] for details.

4.6. Crossed module as a (strict) two-group

Similarly we denote C̃(H→D) the (topological, strict) two-group, i.e. the (topological)
two-category with just one object, one-arrows group elements d ∈ D and two-
arrows group elements (h, d) of H�D. Again, we can form the corresponding nerve

aI thank Stevenson for noticing this to me.
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N C̃(H→D) [24]. This simplicial manifold can be pictorially represented as:

Simplicial homotopy groups of N C̃(H→D) are trivial except π1(N C̃(H→D)) = cokerα
and π2(N C̃(H→D)) = kerα.

5. Crossed Module Bundle Gerbes

We will introduce a slight generalization of the definition of a nonabelian bundle
gerbe from [6]. Consider a surjective submersion f :Y → X (i.e. a map onto with
differential onto). It follows that we can always find an open covering {Oα} of
X with local sections σα :Oα → Y , i.e. f ◦ σα = id. We also consider Y [n] =
Y ×X Y ×X Y · · · ×X Y the n-fold fiber product of Y , i.e. Y [n] ≡ {(y1, . . . , yn) ∈
Y n | f(y1) = f(y2) = · · · f(yn)}.

Given a (H → D)-bundle E over Y [2] we denote by E12 = p∗12(E) the (H → D)-
bundle on Y [3] obtained as pullback of p12 :Y [3] → Y [2] (p12 is the identity on its
first two arguments); similarly for E13 and E23.

Consider the quadruple (E , Y,X,h) where E is a crossed module bundle, Y →
X a submersion and h an isomorphism of crossed module bundles h : E12E23 →
E13 (let us recall that two crossed module bundles can be multiplied to obtain
again a crossed module bundle). We now consider Y [4] and the crossed module
bundles E12, E23, E13, E24, E34, E14 on Y [4] relative to the projections p12 :Y [4] →
Y [2] etc. and also the crossed module isomorphisms h123, h124, h223, h234 induced
by projections p123 :Y [4] → Y [3] etc.

5.1. Definition

The quadruple (E , Y,X,h) is called a crossed module bundle gerbe (or an (H → D)-
bundle gerbe) if h satisfies the cocycle condition (associativity) on Y [4]

E12E23E34
h234−−−−→ E12E24

h123

�
� h124

E13E34
h134−−−−→ E14.

5.2. Definition

Two crossed module bundle gerbes (E , Y,X,h) and (E ′, Y ′, X,h′) are stably isomor-
phic if there exist a crossed module bundle N → Z = Y ×X Y ′ such that over Z [2]
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the crossed module bundles q∗EN2 and N1q
′∗E ′ are isomorphic. The corresponding

isomorphism � : q∗EN2 → N1q
′∗E ′ should satisfy on Y [3] the condition

�13 ◦ h = h′ ◦ �12 ◦ �23.

Here q and q′ are projections onto first and second factor of Z = Y ×X Y ′. N1 and
N2 are the pullbacks of N → Z to Z [2] under respective projections from Z [2] to Z
etc.

5.3. Remark

Locally, crossed module bundle gerbes can be described in terms of two-cocycles
as follows. We can consider the trivializing cover {Oα} of the submersion Y →
X be a good one. Then a crossed module bundle gerbe can be described by an
(H → D)-valued two-cocycle {dαβ , hαβγ} where the maps dαβ :Oα ∩Oβ → D and
hαβγ :Oα ∩Oβ ∩Oγ → H fulfill the following cocycle condition

dαβdβγ = α(hαβγ)dαγ on Oα ∩Oβ ∩Oγ

and

hαβγhαγδ = dαβhβγδhαβδ on Oα ∩Oβ ∩Oγ ∩Oδ.

Two crossed module bundle gerbes are stably equivalent if their respective two-
cocycles {dαβ , hαβγ} and {d′αβ , h

′
αβγ} are related as

d′αβ = dαα(hαβ)dαβd
−1
β

and

h′αβγ = dαhαβ
dαdαβhβγ

dαhαβγ
dαh−1

αβ

with dα :Oα → D and hαβ :Oα ∩ Oβ → H . We call two two-cocycles equivalent if
they are related as above.

Pullback of a bundle gerbe is obtained pulling back the corresponding cocycle.
We have the following proposition (cf. [20]).

Proposition 5.1. Stable equivalence classes of (H → D)-bundle gerbes are one-
to-one with equivalence classes of (H → D)-valued two-cocycles.

5.4. Universal NC(H→D) bundle

In Subsec. 4.2 we have described the simplicial Lie group NC(H→D). Now we can
construct the corresponding universal bundle. As a result we get simplicial manifolds
WNCH→D and WN CH→D which are pictorially represented as
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d01

���
��

��
��

��
��

��
��

d1 ��

d0 �� ���� ⇓ h01 . . .
d0

		���������������

Comparing to Subsec. 4.6 gives (cf. also [22]).

Proposition 5.2. WNC(H→D) = N C̃(H→D).

The proof of the following theorem in the original version arXiv: math/0510078
contained some gaps as pointed out in [24], where the proof for a more general case
of a crossed module of topological groups has been given. Hence we omit the formal
proof and make some remarks on the original proof at the end of this section in
Subsec. 5.9. For related statements concerning classification of principal bundles for
topological bicategories, see [15] and [16].

Theorem 5.1. Equivalence classes of principal |NC(H→D)|-bundles are one-to-one
with stable equivalence classes of (H → D)-bundle gerbes. The geometric realization
|WN C(H→D)| = E|NC(H→D)| → |WNC(H→D)| = B|NC(H→D)| gives the universal
|NC(H→D)|-bundle as well as the universal crossed module bundle gerbe.

5.5. Remark

Let us recall that, by definition, under a nonabelian H-bundle gerbe we understand
an (H → Aut(H))-crossed module bundle gerbe [6]. So the universal H-bundle
gerbe is the same as the universal |NC(H→Aut(H))|-bundle.

5.6. String structures

Now we can apply the classifying space functor B to the exact sequence of 4.5.
Hence, have the following exact sequence (kerα is abelian)

1 → B kerα→ |NC(H→D)| → cokerα→ B2 kerα→ B|NC(H→D)|
→ B cokerα→ B3 kerα.

It follows that a lift of a principal cokerα-bundle to a principal |NC(H→D)|-bundle
is the same thing as a lift of an (α(H) → D)-bundle gerbe to an (H → D)-bundle
gerbe.

In the case of String we do have

1 → K(Z, 2) → String → Spin→ K(Z, 3) → BString → BSpin→ K(Z, 4).

String structure is a lift of the structure group of a principal Spin-bundle to the
string group String [14]. So the string structure is also lift of an (ΩSpin→ P0Spin)-

bundle gerbe to an (Ω̂Spin→ P0Spin)-bundle gerbe.
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5.7. Remark

A crossed module bundle gerbe is canonically equipped with a module (see Sec. 6
of [6] for the definition of a bundle gerbe module). The trivial D-principal bundle
D × Y → Y fulfills all the axioms of a module. This is shown in [6] in the case
D = Aut(H) and applies word by word to the more general situation as well.

5.8. Remark

Let us consider the (topological) one-category (actually one-groupoid) C{Oα},
related to an open covering {Oα}, described as follows. Objects are pairs (x,Oα)
with x ∈ Oα and there is unique morphism (x,Oα) → (y,Oβ) iff x = y ∈ Oα ∩Oβ .
Let NC{Oα} denote the nerve of this category. Consider a map of simplicial sets
NC{Oα} → WNC(H→D). Then the maps between one-, two- and three-simplices
give us the gerbe transition functions (5.3). We also see that the simplicial τ0 is

identified with dαβ , τ1 identifies with dαγd
−1
βγ

hαβγ−−→. A similar identification can eas-
ily be done also for the equivalence data of (1.3) and the local stable equivalence
data of (5.3). Hence, we can conclude that locally the stable equivalence classes
of crossed module gerbes are described by homotopy classes of simplicial maps
NC{Oα} → WNC(H→D) = N C̃(H→D), i.e. they are the same things as equivalence
classes of principal NC(H→D)-bundles over NC{Oα}.

5.9. Remark

The incomplete proof of the Theorem 5.1 in the original version arXiv: math/
0510078 was based on a generalization of [6, Sec. 5], where the lifting bundle gerbes
(crossed module bundle gerbes with kerα = 0) were discussed in detail. Here we
first repeat the incomplete argument.

Let f :X → B|NC(H→D)| be the classifying map for an |NC(H→D)|-principal
bundle P . Associated with P there is a map P [2] → |NC(H→D)| which sends
(p, p′) ∈ P in the same fiber into unique group element g ∈ |NC(H→D)| which
relates p and p′. As |NC(H→D)| is the classifying space for crossed module bundles,
we obtain that way a crossed module bundle E → P [2]. It follows from Remark 4.4,
E12E23 is isomorphic to E13, with an isomorphism fulfilling the cocycle condition
of Definition 5.1. So we obtain a bundle gerbe with Y = P . If we start with an
equivalent bundle P ′ we obtain a stably equivalent gerbe.

Conversely, if we start with a crossed module bundle gerbe, the classifying map
of the crossed module bundle E → Y [2] is a map from f :Y [2] → |NC(H→D)| ful-
filling the on Y [3] the cocycle condition f(y1, y2)f(y2, y3) = f(y1, y3) and hence,
giving the descent data of an |NC(H→D)|-principal bundle. Starting from a stably
equivalent gerbe we get an equivalent bundle. Thus we have transition functions
for an |NC(H→D)|-bundle.

It has been correctly noticed in [16] that it is not obvious that the classifying
map f can be chosen to satisfy the cocycle condition. Also, as noticed there, it
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has not been shown that the above two constructions are inverse to each other.
Since [16] already gives a detailed proof of the Theorem 5.1, we will not try to
fill these gaps. We just notice that one possible way to construct an |NC(H→D)|-
bundle starting from an (H → D)-bundle gerbe could be to apply the geometric
realization to the corresponding principal NC(H→D)-bundle over NC{Oα} (5.8) and
use the fact that for a good covering {Oα} of X , X is weakly homotopy equivalent
to NC{Oα}.

6. Connection and B-Field on a Bundle Gerbe

In the previous section we have established a correspondence between |NC(H→D)|-
principal bundles and (H → D)-crossed module bundle gerbes. Now we would like
to extend this relationship to connections, and also discuss the B-field from this
point of view. Let us recall that |NC(H→D)| is only a topological group so in general
there is no differential geometric connection on a principal |NC(H→D)|-bundle over
a manifold X . But we can use the simplicial connection as described in Sec. 2 on
any simplicial NC(H→D)-bundle P → X .

The notion of a bundle gerbe connection (and that of a bundle gerbe B-field
as well) are quite subtle and we are not going to repeat them here in their global
formulations (see [6, 4] for that). Instead, we will give their local description using
cocycles. This description sees to be well suited for our purposes. We will relate the
bundle gerbe connection and B-field to the simplicial connection and simplicial B̄-
field as they were introduced in Secs. 2 and 3 in the case of a simplicial NC(H→D)-
bundle over NC{Oα} described by a classifying map NC{Oα} → WNC(H→D) =
N C̃(H→D) (see Remark 5.8).

Let us now recall the local cocycle description of a connection on an crossed
module bundle gerbe. Again let {Oα} be an open covering of a manifold X .

6.1. Bundle gerbe connection

A collection {Aα, aαβ}, with Aα ∈ Ω1(Oα) ⊗ Lie(D) and aαβ ∈ Ω1(Oα ∩ Oβ) ⊗
Lie(H) is called a connection on crossed module bundle gerbe (characterized by a
nonabelian cocycle {dαβ , hαβγ}) if it fulfills the following conditions

Aα = dαβAβd
−1
αβ + dαβdd

−1
αβ + α(aαβ) on Oα ∩Oβ

and

aαβ + dαβaβγ = hαβγaαγh
−1
αβγ + hαβγdh

−1
αβγ + TAα(h

−1
αβγ) on Oα ∩Oβ ∩Oγ .

Here for A a Lie(D)-valued one-form and h ∈ H the Lie(H)-valued one-form TA(h)
is defined as follows. For X ∈ Lie(D) we put TX(h) = [h exp(tX)(h−1)], where the
square bracket [ ] means the tangent vector to the curve at the group identity
1H . For Lie(D)-valued one-form A = AρXρ, with {Xρ} a basis of Lie(D), we put
TA ≡ AρTXρ .
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The curvature F is given by a collection of local two-forms Fα ∈
Ω2(Oα)⊗Lie(D) defined as Fα = dAα + Aα ∧ Aα; the corresponding cocycle
conditions follow from the definition. We will not repeat the explicit formulas
here, interested reader can find them in e.g. [6, 4]. Now we can compare the
above definition with the definition of a simplicial connection on a NC(H→D)-
principal bundle P → NC{Oα}. Realizing that τ0 corresponds dαγ , τ1 corresponds to

dαγd
−1
βγ

hαβγ−−→ dαβ , A0 corresponds to Aα, a01 of A1 = (∂0A1
a01−→ ∂1A1) corresponds

to −aαβ etc. we easily obtain.

Proposition 6.1. A connection on a crossed module bundle gerbe defines a simpli-
cial connection on the corresponding NC(H→D)-principal bundle over NC{Oα} and
vice versa.

Similar discussion applies to B-field as well.

6.2. Bundle gerbe B-field

B-field on a crossed module bundle gerbe equipped with a connection is a collection
{Bα, δαβ} of local two-forms Bα ∈ Ω2(Oα) ⊗ Lie(H) and δαβ ∈ Ω2(Oαβ) ⊗ Lie(H)
such that

Bα = dαβBβ + δαβ on Oα ∩Oβ

and

δαβ + dαβδβγ = hαβγδαγh
−1
αβγ +Bα − hαβγBαh

−1
αβγ on Oα ∩Oβ ∩Oγ .

Given a simplicial B̄ in the present case then the bundle gerbe B-field is iden-
tified as the morphism B in the B̄1 = (∂0B̄1

−B−→ 0) part of the simplicial B̄ and
the simplicial (∂2B̄2 − ∂1B̄2) is identified with the bundle gerbe δ, we obtain the
following proposition.

Proposition 6.2. A simplicial B̄-field on a NC(H→D) principal bundle over
NC{Oα} gives a B-field on the corresponding bundle gerbe and vice versa.

The bundle gerbe ν-field is defined as ν = F +α(B). This definition guarantees
that it is the same as the simplicial one in the present case.

6.3. Remark

It is generally true only in the case of abelian H that connection A and the B-field
can be chosen such that να = dαβνβd

−1
αβ . We are are not sure what kind of condition

should replace this in the case of nonabelian H .
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Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial
Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the
classifying spaceWG to construct, starting from g, a Lie k-algebra L. The so constructed Lie
k-algebra L is actually a differential graded Lie algebra. The differential and the brackets
are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex
structure of Ng. The result can be seen as a geometric interpretation of Quillen’s (purely
algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie
algebras.

© 2012 Published by Elsevier B.V.

1. Introduction

In this paper we describe a geometric construction leading to Quillen’s relation between simplicial Lie algebras and
differential graded Lie algebras (DGLAs) [1]. We do that following the ideas of Ševera [2], which lead to a construction of
L∞-algebras (or, more generally, L∞-algebroids) as 1-jets (differentiation) of simplicial manifolds. Here, we apply Ševera’s
construction to the case when the simplicial manifold in question is the classifying space WG of a simplicial Lie group
G, the simplicial Lie group G having Moore complex of length k. Main results are Proposition 5.2 and Proposition 5.3. In
Proposition 5.2 we describe explicitly the dgmanifold representing the 1-jet functor FWG

1 and in Proposition 5.3 we describe
explicitly the corresponding L∞-algebra as a k-term differential graded Lie algebra Lwith the differential and brackets given
in terms the hypercrossed complex structure of Ng. The result is the same as the one described by the N-functor in the
Quillen’s adjunction between simplicial Lie algebras and dg-Lie algebras (see Proposition 4.4 of [1]. The construction can
equivalently be viewed as an assignment of a k-termDGLA to a k-hypercrossed complex g. The paper is organized as follows.

In Section 2, we recall the relevant material concerning simplicial Lie groups. In particular, we describe the Moore
complex of a simplicial Lie group and illustrate its Lie hypercrossed complex structure in the low dimensional case of Lie
crossed modules an Lie 2-crossed modules.

In Section 3, we recall the relevant facts regarding simplicial principal bundles.
In Section 4, we summarize Ševera’s construction and give the relevant examples following [2]. In particular, we describe

in detail the construction of a Lie algebra g as a 1-jet of the classifying space BG of the corresponding Lie group G. Also, we
describe in detail the construction of a Lie 2-algebra corresponding to a crossed module of Lie algebras h → d as a 1-jet
of the functor associating to a surjective submersion M → N of (super)manifolds the set of (H → D)-descent data over
M → N .

The examples mentioned above are the starting point of this paper. For this, we note that also the second example can
be reinterpreted as the 1-jet of a simplicial manifold. The relevant simplicial manifold is the Duskin nerve of the strict Lie
2-group defined by the Lie crossed module H → D, which is isomorphic to WG, the classifying space of the simplicial Lie

E-mail addresses: jurco@karlin.mff.cuni.cz, branislav.jurco@googlemail.com.

0393-0440/$ – see front matter© 2012 Published by Elsevier B.V.
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group associated to the Lie crossed module H → D. Therefore, it is natural to generalize the above examples by applying
Ševera’s construction to the case of any simplicial Lie group G and describe explicitly the corresponding 1-jet ofWG. This is
done in Section 5. The resulting dg manifold is described in Proposition 5.2 and the corresponding DGLA in Proposition 5.3.
This DGLA is the same as the one described by Quillen in Section 4 of [1].

In this paper we do not discuss, up to occasional remarks,1 applications to the higher gauge theory. These will be given
in a forthcoming paper.

All commutators are implicitly assumed to be graded. Although we do not mention it explicitly, all constructions extend
more or less straightforwardly to the case when all in involved Lie groups and Lie algebras are super. Hopefully, this is a
wormless paper [3].

2. Simplicial groups and higher crossed modules

Here we briefly sketch the relation between simplicial groups and hypercrossed complexes of groups. The basic idea
comes from [4] and is further developed and formalized in [5]. We follow [4,6,7].

Although the above mentioned references2 work with simplicial sets, the constructions and statements relevant for our
purposes can be straightforwardly formulated in the context of simplicial manifolds. Let G be a simplicial Lie group. We
denote the corresponding face and degeneracy mappings ∂i and si, respectively.

Definition 2.1. TheMoore complex NG of G is the Lie group chain complex (NG, δ)with

NGn :=

n
i=1

ker ∂i

and the differentials δn : NGn → NGn−1 induced from the respective 0th face maps ∂0 by restriction. It is a normal complex,
i.e. δnNGn is a normal subgroup of NGn−1.3 Of course, NG0 = G0. The Moore complex NG is said to be of length k if NGn is
trivial for n > k.4

The Moore complex NG carries a structure of a Lie hypercrossed complex structure, form which it can be reconstructed
[4,5]. To describe the idea behind this, we will need following lemma.

Lemma 2.2. Let G be a simplicial Lie group. Then Gn can be decomposed as a semidirect product of Lie groups

Gn ∼= ker ∂n o sn−1Gn−1.

Explicitly, for g ∈ Gn, the isomorphism is given by

g → (gsn−1∂ng−1, sn−1∂ng).

The following proposition [4] is the result of a repetitive application on the above lemma.

Proposition 2.3. For a simplicial Lie group G,

Gn ∼= (. . . (NGn o s0NGn−1) o · · · o sn−1 . . . s0NG0).

The bracketing an ordering of the terms should be clear from the first few terms of the sequence:

G1 ∼= NG1 o s0NG0

G2 ∼= (NG2 o s0NG1) o (s1NG1 o s1s0NG0)

G3 ∼= ((NG3 o s0NG2) o (s1NG2 o s1s0NG1)) o ((s2NG2 o s2s0NG1) o (s2s1NG1 o s2s1s0NG0)). (2.1)

We are not going to spell out the rather complicated definition of a hypercrossed complex [5]. Instead, we give some
examples.

Example 2.4. A 1-hypercrossed complex of Lie groups is the same thing as a Lie crossed module.

Definition 2.5. Let H and D be two Lie groups. We say that H is a crossed D-module if there is a Lie group morphism
δ1 : H → D and a smooth action of D on H(d, h) →

dh such that
δ1(h)h′

= hh′h−1 (Peiffer condition)

1 Cf. Remarks 5.6 and 5.7.
2 And also our basic reference regarding simplicial objects [8] as well as other useful Refs. [9,10].
3 It is a normal subgroup of Gn−1 too.
4 The objects of the full subcategory of simplicial groups with Moore complex of length k are also called k-hypergroupoids of groups [11].
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for h, h′
∈ H , and

δ1(
dh) = dδ1(h)d−1

for h ∈ H, d ∈ D hold true.

We will use the notation H
δ1
−→ D or H → D for a crossed module.

Definition 2.6. Amorphismbetween Lie crossedmodulesH
δ1
−→ D andH ′

δ′1
−→ D′ is a pair of Lie groupmorphismsλ : H → H ′

and κ : D → D′ such that the diagram

H
δ1

−−−−→ D

λ

  κ
H ′

δ′1
−−−−→ D′

commutes, and for any h ∈ H and d ∈ Dwe have the following identity

λ(dh) =
κ(d)λ(h).

Starting from a Lie crossed module H → D we can build up the corresponding simplicial Lie group. Explicitly,
cf. Proposition 2.3,

G0 = D, G1 = (H o D), G2 = (H o (H o D)), etc.

The construction can be interpreted as the internal nerve of the associated internal category in the category of Lie groups
(a strict Lie 2-group).

Example 2.7. A Lie 2-hypercrossed complex is the same thing as a Lie 2-crossed module [4].

Definition 2.8. A Lie 2-crossed module is a complex of Lie groups

H
δ2
−→ D

δ1
−→ K (2.2)

together with smooth left actions by automorphisms of K on H and D (and on K by conjugation), and the Peiffer pairing,
which is an smooth equivariant map { , } : D × D → H , i.e., k{d1, d2} = {

kd1, kd2} such that:

(i) (2.2) is a complex of K -modules, i.e., δ2 and δ1 are K -equivariant and δ2δ1(h) = 1 for h ∈ H ,
(ii) d1d2d−1

1 = δ2{d1, d2}δ1(d1)d2, for d1, d2 ∈ D,
(iii) h1h2h−1

1 h−1
2 = {δ2h1, δ2h2}, for h1, h2 ∈ H ,

(iv) {d1d2, d3} = {d1, d2d3d−1
2 }

δ1(d1){d2, d3}, for d1, d2, d3 ∈ D,
(v) {d1, d2d3} =

d1d2d
−1
1 {d1, d3}{d1, d2}, for d1, d2, d3 ∈ D,

(vi) {δ2(h), d}{d, δ2(h)} = hδ1(d)(h−1), for d ∈ D, h ∈ H ,

wherein the notation kd and kh for left actions of the element k ∈ K on elements d ∈ D and h ∈ H has been used.

There is an obvious notion of a morphism of Lie 2-crossed modules.

Definition 2.9. A morphism between Lie 2-crossed modules H
δ2
−→ D

δ1
−→ K and H ′

δ′2
−→ D′

δ′1
−→ K ′ is a triple of smooth group

morphisms H → H ′,D → D′ and K → K ′ making up, together with the maps δ2, δ′

2, δ1 and δ′

1, a commutative diagram

H
δ2

−−−−→ D
δ1

−−−−→ K

λ

 µ

  ν
H ′

δ′2
−−−−→ D′

δ′1
−−−−→ K ′

(2.3)

and being compatible with the actions of K on D and H and of K ′ on D′ and H ′, respectively and with the respective Peiffer
pairings.

The corresponding simplicial Lie group is given explicitly by, cf. Proposition 2.3,

G0 = K , G1 = (D o K), G2 = ((H o D) o (D o K)),
G3 = (H o (H o D)) o ((H o D) o (D o K)), etc.

This can be interpreted as an internal Duskin nerve [12].
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Example 2.10. A Lie 3-hypercrossed complex is the same thing as a Lie 3-crossed module of [13].

We refer the interested reader to [5] for a thorough discussion of hypercrossed complexes of groups and their relation
to simplicial groups.

At each level n, there is an lexicographically ordered set S(n) of 2n sets, which defines the compositions of the degeneracy
maps appearing in the decomposition of Gn. Explicitly for S(n)we have:

{∅ < {0} < {1} < {1, 0} < {2} < {2, 0} < {2, 1} < {2, 1, 0} < · · · < {n − 1, . . . , 1} < {n − 1, . . . , 0}}.

The important role in the theory of hypercrossed complexes is played by the actions G0 × NGn → NGn defined by

g0 × gn →
g0gn : (sn−1 . . . s0g0)gn(sn−1 . . . s0g0)−1

and the so called Peiffer pairings. In order to define these, we will use the multi-indices like α and β from


n S(n) to write
sα for products of degeneracy maps

s0, s1, s1s0, s2, s2s0, s2s1, s2s1s0, . . . .

In particular, for g ∈ NGn−♯α we have sαg ∈ Gn. For each n consider the set P(n) of pairs (α, β) such that ∅ < α < β and
α ∩ β = ∅, where α ∩ β is the set of indices belonging to both α and β .

Definition 2.11. The Peiffer pairing (or lifting) Fα,β(g, h) ∈ NGn for g ∈ NGn−♯α, h ∈ NGn−♯β and (α, β) ∈ P(n) is defined
by

Fα,β(g, h) = pn(sα(g)sβ(h)sα(g)−1sβ(h)−1),

where pn is the projection to NGn. For the projector pn, we have pn = p1n . . . p
n
n with pin(g) = gsi−1∂ig−1.

For us, the relevant Peiffer pairings at each level n will be those defined for pairs (α, β) ∈ P(n) such that α ∪ β =

{0, . . . , n}. We shall denote the set of such pairs P̄(n).

Remark 2.12. For a simplicial Lie algebra g, we have the corresponding Moore complex Ng of Lie algebras, which carries a
structure of a hypercrossed complex of Lie algebras, cf. [14]. All the definitions and statements of this section have, of course,
their infinitesimal counterparts. Since these are obvious, we shall not formulate them explicitly.

As shown by Quillen [1] there is an adjunction between simplicial Lie algebras and dg-Lie algebras. The part of the
adjunction going from simplicial Lie algebras to dg-Lie algebras acts on the underlying simplicial vector spaces as theMoore
complex functor N .

3. Simplicial principal bundles

Let G be a simplicial Lie group and X a simplicial manifold. In this paper we use the name principal G-bundle for a twisted
Cartesian product. Therefore, we start with defining twisting functions. Again, we will denote by ∂i and si the corresponding
face and degeneracy maps. We follow [8].5

Definition 3.1. For a smooth function τ : Xn → Gn−1 to be a twisting, the following conditions should be fulfilled:

∂0τ(x)τ (∂0x) = τ(∂1x),
∂iτ(x) = τ(∂i+1x) for i > 0,
siτ(x) = τ(si+1x) for i ≥ 0,
τ (s0x) = en for x ∈ Xn.

Definition 3.2. Let τ be a twisting function. A twisted Cartesian product P(τ ) = G×τ X (alternatively a principal G-bundle,
or simply G-bundle, P → X) is the simplicial manifold with simplices

P(τ )n = Gn × Xn

and with the following face and degeneracy maps

∂i(g, x) = (∂ig, ∂ix) for i > 0,
∂0(g, x) = (∂0g · τ(x), ∂0x),
si(g, x) = (sig, six) for i ≥ 0.

5 Again, passing from sets to manifolds is straightforward.
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The principal (left) G-action

Gn × P(τ )n → P(τ )n, g ′

n × (gn, xn) → (g ′

ngn, xn)

and the projection

πn : Pn → Xn, (gn, xn) → xn

are smooth simplicial maps.

Equivalence of two G-bundles P(τ ) and P(τ ′) over the same X is described in terms of twisting as follows.

Definition 3.3. We call two twistings τ ′ and τ equivalent if there exists a smooth map ψ : X → G such that

∂0ψ(x) · τ ′(x) = τ(x) · ψ(∂0x),
∂iψ(x) = ψ(∂ix) if i > 0,
siψ(x) = ψ(six) if i ≥ 0.

In particular a twisting or the corresponding G-bundle P(τ ) is trivial iff

τ(x) = ∂0ψ(x)−1
· ψ(∂0x),

with ψ as above.

As with ordinary bundles, simplicial principal bundles can be pulled back and their structure groups can be changed
using simplicial Lie group morphisms. Twistings transform under these operations in an obvious way.

There is a canonical construction of the classifying spaceWG and of the universal G-bundleWG.

Definition 3.4. The classifying spaceWG is defined as follows.WG0 has one element ∗ andWGn = Gn−1 ×Gn−2 × · · · ×G0
for n > 0. Face and degeneracy maps are

s0(∗) = e0, ∂i(g0) = ∗ for i = 0 or 1

and

∂0(gn, . . . , g0) = (gn−1, . . . , g0),
∂i+1(gn, . . . , g0) = (∂ign, . . . , ∂1gn−i+1, ∂0gn−i.gn−i−1, gn−i−2, . . . , g0),
s0(gn−1, . . . , g0) = (en, gn−1, . . . , g0),
si+1(gn−1, . . . , g0) = (sign−1, . . . , s0gn−i, en−i, gn−i−1, . . . , g0),

for n > 0. With the choice of a twisting given by

τ(gn−1, . . . , g0) = gn−1

we have the universal G-principal bundle

WG = G×τ WG.

We have a relation between twistings and simplicial maps X → WG given by the following proposition.

Proposition 3.5. The map fτ : X → WG given by

x → ∗ for x ∈ X0

and

x → (τ (x), τ (∂0x), . . . , τ (∂ i0x), . . . , τ (∂
n−1
0 x)) for x ∈ Xn, n > 0

is a smooth simplicial map.
Vice versa, a smooth simplicial map f : X → WG, given by

x → ∗ for x ∈ X0

and

x → (g(n)n−1(x), . . . , g
(n)
0 (x)) for x ∈ Xn, n > 0

defines a twisting by

τf (x) = g(n)n−1(x) for x ∈ Xn, n > 0.

We have τfτ = τ and fτf = f .
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The role of the universal bundle is the following.

Theorem 3.6. The principal G-bundle G×τ X corresponding to the twisting τ is obtained from the universal bundle WG as a
pullback under the simplicial map fτ .

4. L∞-algebroids as 1-jets of simplicial sets

This section is completely based on [2], to which we also refer for the proofs. We keep, maybe with an occasional
exception, the notation and terminology used there. Let SSM denote the category with objects being surjective submersions
between supermanifolds and morphisms commutative squares. Any surjective submersion M → N gives a simplicial
supermanifold X , the nerve of the groupoidM ×N M ⇒ N . Further, let SSM1 denote the full subcategory of SSMwith objects
R0|1

× N
pr2
−→ N , where N is running through all supermanifolds. Let SM[1] be the category of supermanifolds with a right

action of the supersemigroupHom(R0|1,R0|1). Put in otherwords, SM[1] is the category of differential non-negatively graded
supermanifolds. We have the following lemma.

Lemma 4.1. The category SSM1 of presheaves on SSM1 and the category SM[1] of presheaves on SM[1] are equivalent.

Remark 4.2. The above lemma follows from the useful observation

Hom(R0|1
× N → N,R0|1

× X → X) ≃ Hom(N, X)× Hom(R0|1,R0|1)(N),

which just says that the object R0|1
× X ∈ SSM1 corresponds to the object X × Hom(R0|1,R0|1) in SM[1].

Definition 4.3. Let F be a presheaf on SSM. Its restriction to SSM1 is an object in SSM1. The corresponding object F1 in SM[1]
is called the 1-jet of F .

Remark 4.4. The representable 1-jets are of particular interest, since they are represented by differential non-negatively
graded supermanifolds.6 Hence, they can provide us with interesting examples of those. If the Z2 is given by the parity of
the Z-degree, which will be always the case in our examples, then we have a differential non-negatively graded manifold.
Let us recall, that a finite-dimensional, positively graded differential manifold is the same thing as an L∞-algebra. If it is only
a non-negatively graded one then it could be, for good reasons explained in [2], referred to as an L∞-algebroid, cf. also [16]
for a formal definition.

Particular examples of presheaves on SSM come from simplicial supermanifolds. If K is a simplicial supermanifold and X
the nerve of the groupoid defined by the surjective submersionM → N , the corresponding sheaf FK

∈ SSM is defined by

FK (M → N) = Hom(X, K),

i.e. it associates with the surjective submersionM → N the set of all simplicial maps X → K .
In [2], also the following sufficient condition for the 1-jet FK

1 of FK to be representable is given.

Theorem 4.5. Let K be a simplicial supermanifold fulfilling the Kan conditions, which is moreover m-truncated for some m ∈ N.
Then the 1-jet FK

1 is representable.7

Another construction described in [2] is the so called 1-approximation of a presheaf F ∈ SSM. The restriction of F to SSM1
admits a right adjoint, the induction.

Definition 4.6. The presheaf app1F ∈ SSM is defined by successively applying the restriction and induction functors to
F ∈ SSM.

Proposition 4.7. If the jet 1-jet F1 is represented by the differential non-negatively graded supermanifold XF then the sheaf
app1F ∈ SSM is given by

app1F(M → N) = {morphisms of dg manifolds T [1](M → N) → XF }

= {morphisms of dg algebras C∞(XF ) → Ω(M → N)},

where T [1](M → N) is the shifted fibrewise tangent bundle of M and Ω(M → N) = C∞(T [1](M → N)) are the fibrewise
differential forms on M.

If XF is positively graded then it can be identified with an L∞-algebra LF and we have

app1F(M → N) = {Maurer–Cartan elements of LF ⊗Ω(M → N)}.

6 Differential graded supermanifolds, i.e. Q -supermanifolds provide a natural framework for the Batalin–Vilkovisky formalism [15].
7 We refer to the proof as well for explanation of the Kan conditions and m-truncatedness to the Appendix of [2]. These notions were, for simplicial

manifolds, first introduced in [17]. If G is a simplicial Lie group then G,WG and WG fulfill the Kan conditions[18].
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Example 4.8. Consider the presheaf in SSM represented by Y → X . Its 1-jet is 1-representable by T [1](Y → X) (equipped
with the canonical differential), the shifted fibrewise tangent bundle. This is just a fibrewise version of the following well
known fact Hom(R0|1

× N → N, Y → ∗) = Hom(R0|1, Y )(N) ∼= Hom(N, T [1]Y ), i.e. that ‘‘maps from R0|1 to M are the
same things as 1-forms onM ’’.

Example 4.9. Let G be a Lie group with Lie algebra g and M → N a surjective submersion. A G-descent data on M → N ,
i.e a descent of a trivial G-bundle on M to a G-bundle on N , is a map g : M ×N M → G satisfying g(x, x) = e and
g(x, y)g(y, z) = g(x, z) for (x, y, z) ∈ M ×N M ×N M . The G-descent is the same thing as a groupoid morphism from
M ×N M → G. Let us consider the presheaf

F(M → N) = {G − descent data onM → N},

which is in the above notation FN G, with N G the nerve of G.
By definition, we have for the 1-jet FN G

1

F(R0|1
× N → N) = {G − descent data on R0|1

× N → N}.

Such a G-descent data is a map g : R0|1
× R0|1

→ GN satisfying the above descent (1-cocycle) condition and is equivalent
to a map ḡ : R0|1

→ GN , such that ḡ(0) = e. The relation between maps g and ḡ is8

g(θ0, θ1) = ḡ(θ0)−1ḡ(θ1),
ḡ(θ) = g(0, θ).

One way to see what the dg manifold representing the 1-jet looks like is the following. Instead of imposing the condition
ḡ(0) = e, we can consider arbitrary functions ḡ(θ) modulo left multiplications with the constant ones. So what we have
is the shifted tangent bundle T [1]G equipped with the canonical differential induced from the de Rham differential on G
modulo the left G-action. This observation immediately leads to the dg algebra of functions on g[1] ∼= Hom(R0|1,G)/G —
the wedge algebra of left invariant forms on Gwith the de Rham differential, which is just the Chevalley–Eilenberg complex
of g.

Equivalently, with an obvious abuse of notation, which we will commit also in the rest of the paper, we note that we can
write

ḡ(θ) = e − aθ,

with a ∈ gN [1]. Hence, the 1-jet F1 is represented by the shifted Lie algebra g[1]. The differential is computed from

g(θ0, θ1) = 1 + a(θ0 − θ1)+
1
2
[a, a]θ0θ1

by computing

−(da)θ1 = (δϵ ḡ(θ1)− e) =
d
dϵ
(g(θ0 + ϵ, θ1 + ϵ)− e)|ϵ=θ0=0 = −

1
2
[a, a]θ1.

Hence, the differential is

da =
1
2
[a, a].

Finally, the functor app1F associates to a surjective submersionM → N the set of flat fibrewise connections.9

Example 4.10. Let H
δ1
−→ D be a crossed module of Lie groups with the induced crossed module of Lie algebras

h
δ1
−→ d

andM → N a surjective submersion. An H → D-descent data onM → N , is an (H → D)-valued 1-cocycle on the groupoid
Y = M ×N M . Such 1-cocycles describe bundle gerbes, similarly as transition functions describe principal bundles [19].
More explicitly, we have a pair of maps (h, d), d : Y1 → D and h : Y2 → H , such that

d(y1)d(y2) = δ1(h(y1, y2))d(y1 ◦ y2), for (y1, y2) ∈ Y2,

h(y1, y2)h(y1 ◦ y2, y3) =
d(y1)h(y2, y3)h(y1, y2 ◦ y3) for (y1, y2, y3) ∈ Y3,

and

d(ex) = e and h(es(y), y) = h(y, et(y)) = e.

8 Notice that ḡ is just a trivialization of the 1-cocycle g over R0|1 .
9 Vice versa, if G and all the fibers are 1-connected flat fibrewise connections give us G-descents.
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Let us consider the presheaf

F(M → N) = {(H → D)− descent data onM → N},

which is in the above notation FN (H→D), with N (H → D) the Duskin nerve of H → D.
By definition, we have for the 1-jet FN (H→D)

1

F(R0|1
× N → N) = {(H → D)− descent data on R0|1

× N → N}.

Such an (H → D)-descent data is a pair of maps (h, d), d : R0|1
× R0|1

→ DN and h : R0|1
× R0|1

× R0|1
→ HN satisfying

the 1-cocycle condition, and is equivalent to a pair of maps (h̄, d̄), d̄ : R0|1
→ DN and h̄ : R0|1

× R0|1
→ HN such that

d̄(0) = e, h̄(θ, θ) = h̄(0, θ) = e.

The relation between pairs of maps (d, h) and (d̄, h̄) is10

d(θ0, θ1) = d̄(θ0)−1δ1(h̄(θ0, θ1))d̄(θ1),
d̄(θ0)h(θ0, θ1, θ2) = h̄(θ0, θ1)h̄(θ1, θ2)h̄(θ0, θ2)−1

and

d̄(θ) = d(0, θ),
h̄(θ0, θ1) = h(0, θ0, θ1).

Obviously, we can write

d̄(θ) = e − aθ,

with a ∈ d[1] and

h̄(θ0, θ1) = e + bθ0θ1,

with b ∈ h[2]. Hence, the 1-jet F1 is represented by the graded vector space d[1] ⊕ h[2].
The differential is computed in a complete analogy with Example 4.9 using expressions

d(θ0, θ1) = e + a(θ0 − θ1)+


1
2
[a, a] + δ1b


θ0θ1,

h(θ0, θ1, θ2) = e + b(θ0θ1 + θ1θ2 − θ0θ2)−
ab θ0θ1θ2.

The resulting differential is:

da =
1
2
[a, a] + δ1b,

db =
ab.

Since we have a positively graded dg manifold, we can describe it as an L∞-algebra. It is actually a DGLA with generators
only in lowest two degrees, i.e a strict Lie 2-algebra. The nonzero components are L0 = d and L−1 = h. The differential is
δ1 : h → d. The bracket on d is given by its own Lie bracket, and the bracket between d and h is given by the action of d on
h. Let us note that Lie 2-algebras are one to one to crossed modules of Lie groups, cf. [20].

Finally, the functor app1F associates to a surjective submersion M → N the set of (h → d)-valued flat fibrewise
connections.

5. L∞-algebra of WG

In this section we generalize Examples 4.9 and 4.10 to the case of a G-descent, where G is a simplicial Lie group with
Moore complex of length k. The associated simplicial Lie algebra will be denoted by g. Examples 4.9 and 4.10 correspond to
k = 1 and k = 2 respectively. LetM → N be a surjective submersion. We define a G-descent data onM → N as a G-valued
twisting on the nerve of the groupoid N ×M N . We recall, cf. Definition 3.1, that for τ : Xn → Gn−1 to be a twisting, the
following conditions should be fulfilled:

∂0τ(x)τ (∂0x) = τ(∂1x),
∂iτ(x) = τ(∂i+1x) for i > 0,
siτ(x) = τ(si+1x) for i ≥ 0,
τ (s0x) = en for x ∈ Xn.

10 Again, the pair (h̄, d̄) is just a trivialization of the 1-cocycle (h, d).
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Let us consider the presheaf

F(M → N) = {G − descent data onM → N},

which is in the notation of the previous section FWG, i.e. the sheaf associating with the surjective submersion N → M the
set of all simplicial maps from the nerve of the groupoid N ×M N to the classifying spaceWG.

By definition, we have for the 1-jet FWG
1

F(R0|1
× N → N) = {G − descent data on R0|1

× N → N}.

Such a G-descent data is described by a twisting11 τ : (R0|1)n → GN
n−1 and is equivalent to a function ψ : (R0|1)n → GN

n
such that

∂iψ(θ0, . . . θn) = ψ(θ0, . . . , θ̂i, . . . θn) if i > 0,
siψ(θ0, . . . θn) = ψ(θ0, . . . , θi, θi . . . θn) if i ≥ 0.

We have the following relation between τ and ψ12

τ(θ0, . . . θn) = ∂0ψ(θ0, . . . , θn)
−1ψ(θ1, . . . , θn),

ψ(θ0, . . . , θn) = τ(0, θ0, . . . , θn).

From the definition of ψ it follows that

ψ(0, θ1, . . . , θn) = τ(0, 0, θ1, . . . , θn) = τ(s0(0, θ1, . . . , θn)) = en.

Therefore, we write

ψ(θ0, . . . , θn) = 1 − a(θ1, . . . θn)θ0,

with a(θ1, . . . θn) ∈ ⊕
n
i=0

 n
i


gn[i + 1]. The function a fulfills the following identities

∂ia(θ1, . . . θn) = a(θ1, . . . , θ̂i, . . . θn) if i > 0, (5.1)
∂0a(0, θ1, . . . θn) = a(θ1, . . . θn) (5.2)
sia(θ1, . . . θn) = a(θ1, . . . , θi, θi, . . . , θn) if i > 0, (5.3)
s0a(θ1, . . . , θn) = a(0, θ1, . . . , θn). (5.4)

In the above list, the only possibly not completely obvious one is the ∂0 Eq. (5.2). However, this one follows from the s0
Eq. (5.4) by an application of ∂0. From (5.1) we immediately see that

an ∈ Ngn[n + 1],

for the top component an of a(θ1, . . . θn) = anθ1 . . . θn + · · · .
To proceed further, it will be more convenient to change the Grassmann coordinates by θ̄0 = θ1 and θ̄i = θi+1 − θi for

i > 1. In terms of θ̄s, we get the following lemma for the decomposition of a(θ̄0 . . . θ̄n−1) ∈ ⊕
n
i=0

 n
i


gn[i + 1] in terms of

the shifted Moore complex Ngk[k + 1] ⊕ . . .⊕ Ng0[1].

Lemma 5.1. For n ≤ k

a(θ̄0, . . . , θ̄n−1) =


α∈S(n)

sαan−♯α θ̄ S(n)\α,

where θ̄β := θ̄i1 . . . θ̄il for β = {in, . . . , i1} ∈ S(n).

Proof. Straightforward computation using the fact that with the new Grassmann variables θ̄ we have nice simplicial
relations sia(θ̄0, . . . θ̄n−1) = a(θ̄0, . . . , θ̄i−1, 0, θ̄i, . . . , θ̄n−1) and si−1∂ia(θ̄0, . . . , θ̄n−1) = a(θ̄0, . . . , θ̄n−1)|θ̄i−1=0. �

We see that, for n ≤ k, the only independent component of a ∈ ⊕
n
i=0

 n
i


gn[i + 1] is the top one an ∈ gn[n + 1]. Hence,

the 1-jet F1 in this case is represented by Ngk[k + 1] ⊕ · · · ⊕ Ng0[1] as a graded manifold.
The differential can be obtained in analogy with Examples 4.9 and 4.10. We write

τ(θ0, . . . , θn) = e + ∂0a(θ1, . . . , θn)θ0 − a(θ2, . . . , θn)θ1 +
1
2
[∂0a(θ1, . . . θn), a(θ2, . . . , θn)]θ0θ1

= e + ∂0a(θ1, . . . , θn)θ0 − a(θ2, . . . , θn)θ1 +
1
2
[∂0a(0, θ2 . . . θn), a(θ2, . . . , θn)]θ0θ1

= e + ∂0a(θ1, . . . , θn)θ0 − a(θ2, . . . , θn)θ1 +
1
2
[a(θ2, . . . θn), a(θ2, . . . , θn)]θ0θ1.

11 From now on we will omit the annoying N and assume it everywhere implicitly.
12 As before, ψ is a trivialization of τ , cf. Definition 3.3.
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Now, using the above expression for τ ,

−(da(θ2, . . . , θn))θ1 = δϵ(ψ(θ1, . . . , θn)− e) =
d
dϵ
(τ (θ0 + ϵ, . . . , θn + ϵ)− e)|ϵ=θ0=0

=
d
dθ1

∂0a(θ1, . . . , θn)θ1 +

n
i=2

d
dθi

a(θ2, . . . , θn)θ1 −
1
2
[a(θ2, . . . , θn), a(θ2, . . . , θn)]θ1.

Hence, the differential is

da(θ1, . . . , θn) = −
d
dθ0

∂0a(θ0, . . . , θn)−

n
i=1

d
dθi

a(θ1, . . . , θn)+
1
2
[a(θ1, . . . , θn), a(θ1, . . . , θn)]. (5.5)

Now, we proceed in extracting the action dan of differential d on the top component an. For this note: the first term
gives −∂0an+1 and the second does not contribute to dan at all. What remains is to determine the top component of the
commutator [a(θ1, . . . , θn), a(θ1, . . . , θn)]. This leads to the following proposition.

Proposition 5.2. Let G be a simplicial group with the simplicial Lie algebra g. Assume that its Moore complex NG is of length k.
Then the 1-jet F1 of the simplicial manifold WG is representable by the dg manifold ⊕

k
n=0 Ngn[n + 1]. The differential dan on

an ∈ Ngn[n + 1] is described in terms of the face map ∂0, commutator of g0, action of Ng0 on Ngn and Peiffer pairings fα,β with
(α, β) ∈ P̄(n) as follows:

For n = 0

da0 = −∂0a1 +
1
2
[a0, a0],

for n > 0

dan = −∂0an+1
+

a0an +


(α,β)∈P̄(n)

±fα,β(an−♯α, an−♯β),

where the sign is given by the product of parity of (n − ♯α)(n − ♯β + 1) and the parity of the shuffle defined by the pair
(S(n) \ α, S(n) \ β).

Proof. The 0th component is clear. What is left is to justify the form of the second and third term in the above expression
for dan, n > 0. However, this is easily done using the above Lemma 5.1. We just have to be careful about the degrees and
signs. We have

1
2
[a(θ̄0, . . . , θ̄n−1), a(θ̄0, . . . , θ̄n−1)]

n
= [sn1 . . . s0a

0, an] +


(α,β)∈P̄(n)

±[sαan−♯α, sβan−♯β ],

with the sign given as the product of parities of (n−♯α)(n−♯β+1) and of the shuffle defined by the pair (S(n)\α, S(n)\β).
Of course ♯α + ♯β = n.

The first term is just a0an, i.e. describing the action of Ng0 on Ng0 shifted by 1 in degree. Further, note that, by
construction, the face ∂i and degeneracy maps si commute with the differential d. In particular, it follows that dan must
be in ∈


i>0 ker ∂i[n+ 2]. Moreover, since ∂i∂0 = ∂0∂i+1, we also have ∂0an+1

∈


i>0 ker ∂i[n+ 2]. Therefore, we conclude
that the sum over pairs (α, β) ∈ P̄(n) in the above equation is also in


i>0 ker ∂i[n+ 2] and as such can be written, trivially

inserting the projection pn : gn → Ngn, as


(α,β)∈P̄(n) ±pn[sαan−♯α, sβan−♯β ]. �

It is now straightforward to describe the L∞-algebra corresponding to the above dg manifold explicitly. What we have
is a k-term DGLA L = ⊕

k
n=0 L−n with components in degrees 0,−1, . . . − k, given by L−n = Ngn. The differentials

dn : Ngn → Ngn+1 are given by the restrictions dn = ∂0|Ngn of the zeroth face maps, i.e by the differentials δn of the
Moore complex Ng, i.e, for xn ∈ Ngn

dnxn = δnxn. (5.6)

The only nonzero brackets are the binary brackets. The nonzero binary brackets are determined by the following
prescription:

The bracket Ng0 × Ng0 → Ng0 is just the Lie bracket on Ng0, i.e for x0 ∈ Ng0 and y0 ∈ Ng0

[x0, y0]. (5.7)

The brackets Ng0 × Ngn → Ngn: (x, y) → [x0, xn] = −[xn, x0] are given by the action of Ng0 on Ngn

[x0, xn] = −[xn, x0] =
x0xn. (5.8)
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The bracket Ngn1 × Ngn2 → Ngn with n = n1 + n2, for n1 and n2 nonzero, is described as follows: for xn1 ∈ Ngn1 and
xn2 ∈ Ngn2

[xn1 , xn2 ] =


(α,β)∈P̄(n1,n2)

±fα,β(xn1 , xn2)+ (−1)(n1+1)(n2+1)


(α,β)∈P̄(n2,n1)

±fα,β(xn2 , xn1) (5.9)

The± sign is given by the product of parity of n1(n2 +1) and the parity of the shuffle defined by the pair (α, β) ∈ P̄(n1, n2).
Here P̄(n1, n2) ⊂ P̄(n) denotes the subset of P(n) consisting of those pairs (α, β) ∈ P̄(n), forwhich n−♯α = n1, n−♯β = n2.

Let us now consider an arbitrary simplicial Lie algebra g with Moore complex of length k. Associated to g we have the
(unique) simplicial group G integrating it, such that all its components are simply connected. Therefore, starting with g, we
can consider the functor FWG

1 . Correspondingly, we have the following.

Proposition 5.3. Let g be a simplicial Lie group with Moore complex Ng of length k. Then Ng or becomes a DGLA. The differential
and the binary brackets are explicitly given by formulas (5.6)–(5.9). This DGLA structure on Ng is the same one as described by
Quillen’s construction in Proposition 4.4 of [1].

We finish with some remarks:

Remark 5.4. Obviously, one can reformulate the above theorem in terms of a k-hypercrossed complex of Lie algebras g.
Such a k-hypercrossed complex g has a structure of a k-term DGLA described by (5.6)–(5.9).

Remark 5.5. As noted above, crossed modules and Lie 2-algebras are one to one. From the above theorem, we see that for
n > 2 only a part of the full hypercrossed complex structure enters the description of the DGLA L. For instance, already
for n = 3, only the symmetric part of the Peiffer pairing appears. Nevertheless, the simplicial (Kan) manifold WG can be
interpreted as an integration of the DGLA Ng.

On the other hand, any L∞-algebra L, in particular any DGLA, can be integrated to a (Kan) simplicial manifold

L [17].

So one might try to compare the integration

Ng with the Kan simplicial manifold WG, or the corresponding 1-jets

(differentiations). Here we restrict ourselves only to two related (obvious) remarks.
First, there is the following observation: Let M be a simplicial manifold. Assume that its corresponding 1-jet functor FM

1
is representable by an L∞ algebra L, with Chevalley-Eilenberg complex C(L). Also, letΩ(ΘN) be the DGA of (normal) forms
on the simplicial supermanifoldΘN , the nerve associated to the surjective submersion R0|1

× N → N .13 Then, for the 1-jet
corresponding to


L, we have Hom(ΘN ,


L) = {morphisms of dg algebras C(L) → Ω(ΘN)}. This has to be compared to

1-jet corresponding toM , i.e. to the set Hom(ΘN ,M) = {morphisms of dg algebras C(L) → Ω(R0|1
× N → N)}.

Second, in [17], simplicial homotopy groupsπ spl
n


L of


L have been shown to be finite dimensional diffeological groups.

Lie algebra of a diffeological group is defined as the Lie algebra of its universal cover, which is a Lie group. It is a result of [17]
that the Lie algebra of π spl

n

L is canonically isomorphic to Hn−1(L). Specified to the case of our interest: the Lie algebra

of π spl
n


Ng is canonically isomorphic to Hn−1(Ng). If we now consider WG just as a simplicial set then for its simplicial

homotopy groups we have πnWG = πn−1G = Hn−1(NG). Given the Lie structure of G,Hn−1(NG) and hence πnWG can be
considered as diffeological groups. In this sense we can talk about the Lie algebra of πnWG, which is again Hn−1(Ng).

Remark 5.6. The functor app1FWG associates to a surjective submersion M → N the set of L-valued flat fibrewise
connections. To obtain also non-flat connections one may use the Weil algebra of L, similarly as in [22]. This, as well as
applications to higher gauge theory, will be described elsewhere.

Remark 5.7. Regarding applications to higher gauge theory, in the forthcoming work we plan to extend the results
presented here to the case of simplicial groupoids. In particular, we hope to describe a proper generalization of the Atiyah
groupoid to the simplicial case and then obtain the Atiyah L∞-algebroid as a 1-jet of a properly defined simplicial classifying
space. This would lead us directly to the notion of an L-valued connection on a simplicial principal G-bundle (or on the
corresponding hypercrossed complex bundle gerbe). That this should be possible can be seen from the description of
connections and curvings of crossed module bundle gerbes in [23], where a categorification of the Atiyah algebroid is
presented.
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