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Foreword
This work consists essentially of Chapter 7 of the book [HJ], with the following differences:

� the last section, dealing with the approximation of norms, is omitted;
� some special results in Section 2 pertaining to class W are omitted;
� there are some small improvements around Theorem 48.

The omissions were introduced so that the text is more compact, more “self-contained”, and also
to minimise the input of the coauthor of the book. The work contains results from the author’s
papers [Jo1], [HJ2], [HJ3], [Jo2], and [Jo3], of course as well as many results of many other
mathematicians, usually with reworked and streamlined proofs.

The references to statements whose numbering use the dot convention are references to the
book [HJ], e.g. Theorem 1.90 refers to Theorem 90 in Chapter 1 of [HJ].

Notation
We fix some notation for objects and notions that the reader should be familiar with. By N,

Z, Q, R, and C we denote the sets of natural numbers, integers, rational numbers, reals, and
complex numbers respectively. We set N0 D N [ f0g. By RC we denote the set of positive real
numbers. By K we denote the scalar field R or C. We use the convention that a sum over an
empty set is zero and a product over an empty set is equal to 1. Further, x0 D 1 for any x 2 K.
For x 2 R we denote by Œx� the integer part of x, i.e. the unique number k 2 Z satisfying
k � x < k C 1, by dxe we denote the ceiling of x, i.e. the unique number k 2 Z satisfying
k � 1 < x � k.

For a set A we denote its cardinality by jAj or cardA. By abusing the notation we write
fxg2� � X meaning that fxg2� is a collection such that x 2 X for each  2 � .

Let .P; �/ be a metric space. We denote B.x; r/ D fy 2 P I �.y; x/ � rg and U.x; r/ D
fy 2 P I �.y; x/ < rg the closed, resp. open ball in P centred at x 2 P with radius r > 0.
In case that it is necessary to distinguish the spaces in which the balls are taken, we will write
BP .x; r/, resp. UP .x; r/. By BX and UX we denote the closed, resp. open unit ball of a normed
linear space X . By SX we denote the unit sphere of a normed linear space X . An interior of a
set A in a topological space is denoted by IntA.

When we speak of a subspace of a Banach space, we always mean a closed subspace.
General subspaces will be referred to as “linear subspaces”. We define span; D f0g. If X is a
normed linear space with a Schauder basis feng and x D

P1
nD1 xnen 2 X , then supp x D fn 2

NI xn ¤ 0g is called a support of x; a finitely supported vector is a vector with finite support. A
topological dual of a topological vector space is denoted by X�. Inner product is denoted by
hx; yi. Let X , Y be normed linear spaces. For simplicity we say that X contains Y if X has a
subspace isomorphic to Y .
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viii FOREWORD

By C.X IY / we denote the set of continuous mappings between topological spaces X , Y . If
Y is a topological vector space, then C.X IY / is a vector space. For functions, i.e. mappings into
the scalars, we use a shortened notation C.X/ D C.X IK/; from the context it should always
be clear whether K D R or K D C. For a mapping f W X ! Y , where Y is a vector space, we
denote suppo f D f

�1.Y n f0g/. IfX is a topological space, then we denote suppf D suppo f .
An L-Lipschitz mapping is a mapping that is Lipschitz with a constant L. By �A we denote the
characteristic function of the set A.

The n-dimensional Lebesgue measure will be denoted by �n, or just � if the dimension is
clear from the context.

All topological spaces are automatically and without mention assumed to be Hausdorff.
By QX we denote the Taylor complexification of a real normed linear space X . By H.U IY /

we denote the vector space of holomorphic mappings from an open set U of a complex normed
linear space into a complex Banach space Y . By C k.U IY /, resp. C!.U IY / we denote the
vector space of C k-smooth, resp. analytic, mappings from an open set U of a normed linear
space into a normed linear space Y . If Y D K, then we write H.U /, resp. C k.U /, resp. C!.U /
for short.

Let X , Y be normed linear spaces. By P .nX IY / we denote the space of continuous
n-homogeneous polynomials from X to Y . By P n.X IY / we denote the space of continuous
polynomials of degree at most n from X to Y . By P .X IY / we denote the space of continuous
polynomials from X to Y . Again, in the scalar case Y D K we write just P .nX/, P n.X/, or
P .X/.

Let U � X be open, f W U ! Y , and x 2 U . By @f

@h
.x/ we denote the directional derivative

of f at x in the direction h 2 X . By Df.x/ we denote the Fréchet derivative of f at x, and by
Df.x/Œh� we denote the evaluation of this derivative in h 2 X . Similarly we denote by Dkf .x/

the kth Fréchet derivative of f at x. By dkf .x/ we denote the k-homogeneous polynomial
corresponding to the symmetric k-linear mapping Dkf .x/, so dkf .x/Œh� D Dkf .x/Œh; : : : ; h�.
For convenience we put d 0f D f .

A modulus is a non-decreasing function ! W Œ0;C1/ ! Œ0;C1� continuous at 0 with
!.0/ D 0. The set of all moduli will be denoted by M and the set of all sub-additive moduli
will be denoted by Ms. If f 2 C k.U IY / and ˝ � M is a convex cone, then we say that f
is C k;˝-smooth on U if dkf is uniformly continuous on U with modulus ! for some ! 2 ˝.
We denote by C k;˝.U IY / the vector space of all C k;˝-smooth mappings from U into Y . Let
˛ 2 Œ0; 1�. We say that f is C k;˛-smooth on U if f 2 C k;˝.U IY / for ˝ D fKt˛I K 2 RCg,
i.e. dkf is ˛-Hölder on U . We say that f is C k;C-smooth on U if f 2 C k.U IY / and dkf
is uniformly continuous on U . The vector spaces of all respective mappings are denoted by
C k;˛.U IY / and C k;C.U IY /. In particular, f 2 C k;1.U IY / if dkf is Lipschitz on U . We say
that f is locally C k;1-smooth on U if for each x 2 U there is a neighbourhood of x on which f
is C k;1-smooth. We denote by C k;1loc .U IY / the vector space of all C k;1loc -smooth mappings from
U into Y .



Smooth approximation
We are concerned with the general problem of approximating a given mapping from a subset

of a Banach space X into a Banach space Y by means of polynomials or C k-smooth mappings.
The classical example is the Weierstraß-type Theorem 9, where arbitrary C k-smooth mapping
from a compact set K � Rn is shown to be approximable by polynomials, uniformly on K
together with derivatives of order up to k. The best-known case is when k D 0.

In Section 3 we prove one of the highlights in the theory of smoothness, Theorem 20 of
Jaroslav Kurzweil. This result claims that if a real separable Banach space X admits a separating
polynomial, then every continuous mapping from X into a Banach space can be uniformly
approximated by real analytic mappings. By adjusting the proof somewhat it can be shown
that the result remains true for Banach spaces that admit a separating analytic function with
uniform radii of convergence (e.g. for c0), provided that the approximated mapping is uniformly
continuous.

One of the principal tools for obtaining C k-smooth approximations of continuous mappings
are partitions of unity, which are studied in Section 5. This is a very powerful tool which leads to
general positive results in separable spaces, as well as in non-separable WCG or C.K/ spaces,
admitting a C k-smooth bump.

The rest is devoted to the study of smooth approximations preserving special properties of
the approximated mapping. In order to study C k-smooth approximations of Lipschitz mappings
preserving the Lipschitz condition we introduce the concept of sup-partitions of unity and
characterise it by means of componentwise C k-smooth and bi-Lipschitz embeddings into c0.� /.
We show that every separable Banach space admitting a Lipschitz and C k-smooth bump admits
C k-smooth sup-partitions of unity. This is applied to establish the existence of C k-smooth and
Lipschitz approximations of a given Lipschitz function in a separable Banach space X admitting
a C k-smooth and Lipschitz bump function. The real analytic case is also included, under the
assumption of the existence of a separating polynomial. We also obtain results of this sort for
vector valued Lipschitz mappings for certain types of the domain or range spaces.

In Section 8 we prove, again for certain types of the domain or range spaces, the existence
of approximations of C 1-smooth mappings by C k-smooth mappings for the mapping and its
first derivative.

The last section is devoted to C k-smooth (and convex) approximations of convex functions.
It is rather easy to see that this problem is essentially equivalent to the statement that every
equivalent norm on X can be approximated by C k-smooth norms. A necessary condition for
this result is clearly the existence of at least some equivalent C k-smooth norm on X (similarly
to the existence of a C k-smooth bump in the general case). We prove that this condition is also
sufficient for all separable Banach spaces.

The methods can be essentially divided into two groups: Global methods, in which the
approximating mapping is constructed on the whole space at once by a formula – these are
represented by integral and infimal convolutions; and local methods, in which we approximate
locally and then glue together the approximations using for example partitions of unity. Some
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2 SMOOTH APPROXIMATION

of the methods are mixed, for example the real analytic approximations although using the
partitions of unity are necessarily retaining the global flavour. A note on the hypotheses on
the target space: if the method employed uses a limiting procedure (this includes the Bochner
integral, or countable partitions of unity), we need the completeness of the space for the process
to converge. This is not necessary if we use a finite procedure such as the locally finite partitions
of unity. Likewise, the domain space needs to be complete only in some circumstances, for
example when using Schauder bases, or when dealing with real analytic mappings.

All the vector spaces are real unless stated otherwise.

1. Separation
As we shall see, a lot of the approximation methods ultimately boils down to the ability of

separation of certain sets by smooth functions. In this section we present some of the separation
results that will be used later. Some of them are somewhat technical, as we require rather fine
separation properties. Nevertheless, we begin with a lemma that serves as a prominent tool for
smoothing up mappings on Rn and lies behind most of the approximation results. The method
was used already by Karl Weierstraß.

Let X be a set, Y a normed linear space, f W X ! Y , and S � X . We denote kf kS D
supx2Skf .x/k. In the following lemma we consider Cn with the Euclidean norm.

LEMMA 1. Let Y be a Banach space, C � Y a closed convex set, and let f W Rn ! C

be strongly measurable (with respect to the Lebesgue measure) and bounded. Put 	�.´/ D
exp

�
��

Pn
jD1 ´

2
j

�
for ´ 2 Cn and � 2 RC, and define g� W Cn ! QY by the Bochner integral

g�.´/ D
1

c�

Z
Rn
	�.´ � y/f .y/ dy;

where c� D
R

Rn 	�.y/ dy D
�
�
�

�n
2 . Then g� 2 H.CnI QY / and g��Rn 2 C

!.RnIC/ for every
� 2 RC. Further, if f is Bochner integrable, then for every ı > 0

lim
�!C1

kg�kGı D 0

(in case that Gı ¤ ;), where

Gı D
˚
´ 2 Cn

I kIm ´k2 < dist.Re ´; suppf /2 � ı2
	
:

If f is L-Lipschitz, then so is each g��Rn , � 2 RC. Finally, if f 2 C k.RnIY / for some
k 2 N0 [ f1g with all d jf , j D 0; : : : ; k bounded and uniformly continuous on Rn, then for
all 0 � j � k

lim
�!C1

d jg� � d jf Rn
D 0:

PROOF. First note that

j	�.´/j D exp
�
��

nX
jD1

Re.´2j /
�
D exp

�
��

nX
jD1

�
.Re j́ /

2
� .Im j́ /

2
��

D exp
�
��
�
kRe ´k2 � kIm ´k2

��



SECTION 1. SEPARATION 3

and D	�.´/Œh� D �2�	�.´/
Pn
jD1 j́hj . Put F.´; y/ D 	�.´ � y/f .y/ and let K > 0 be

such that kf kRn � K. Then for ´ 2 Cn, k´k < r , and y 2 Rn we have

kD1F.´; y/k D 2�j	�.´ � y/jk´ � ykkf .y/k

D 2�K exp
�
�kIm ´k2

�
exp

�
��kRe ´ � yk2

�
k´ � yk

� 2�K exp.�r2/ exp
�
��.maxfkyk � r; 0g/2

�
.r C kyk/:

Hence we can apply Theorem 1.90 on bounded subsets of Cn, which gives g� 2 H.CnI QY / and
thus also g��Rn 2 C

!.RnIY /. If g�.x/ … C for some x 2 Rn, then by the separation theorem
there are � 2 Y � and ˛ 2 R such that �

�
f .y/

�
< ˛ < �

�
g�.x/

�
for all y 2 Rn. But

�
�
g�.x/

�
D

1

c�

Z
Rn
	�.x � y/�

�
f .y/

�
dy <

1

c�

Z
Rn
˛	�.x � y/ dy D ˛;

which is a contradiction. Hence g��Rn 2 C
!.RnIC/.

Further, if f is Bochner integrable, then for a fixed ı > 0 and any ´ 2 Gı we can estimate

kg�.´/k �
1

c�

Z
Rn
j	�.´ � y/jkf .y/k dy

D
1

c�

Z
suppf

exp
�
��
�
kRe ´ � yk2 � kIm ´k2

��
kf .y/k dy

�
1

c�
exp

�
��ı2

� Z
suppf
kf .y/k dy:

Since lim
�!C1

1
c�

exp.��ı2/ D 0, it follows that lim
�!C1

kg�kGı D 0.

For any x 2 Rn we can use the substitution y ! x � y to obtain

g�.x/ D
1

c�

Z
Rn
	�.y/f .x � y/ dy: (1)

Thus if f is L-Lipschitz, then for any u; v 2 Rn we have

kg�.u/ � g�.v/k D
1

c�

Z
Rn
	�.y/f .u � y/ dy �

Z
Rn
	�.y/f .v � y/ dy


�
1

c�

Z
Rn
	�.y/kf .u � y/ � f .v � y/k dy

� Lku � vk
1

c�

Z
Rn
	�.y/ dy D Lku � vk:

Now suppose that f 2 C k.RnIY / for some k 2 N0 [ f1g with all d jf , j D 0; : : : ; k

bounded and uniformly continuous on Rn. Using (1), the boundedness of the differentials,
Theorem 1.90, and induction we get

d jg�.x/ D
1

c�

Z
Rn
	�.y/d

jf .x � y/ dy D
1

c�

Z
Rn
	�.x � y/d

jf .y/ dy

for every x 2 Rn and 1 � j � k. Fix 0 � j � k and choose an arbitrary " > 0. Consider
Rn with the Euclidean norm. By the uniform continuity there is ı > 0 such that kd jf .x/ �
d jf .y/k < "

2
whenever x; y 2 Rn, kx � yk < ı. Moreover there is M > 0 such that



4 SMOOTH APPROXIMATION

kd jf .y/k �M for all y 2 Rn. For � large enough so that 2Me�
1
2
�ı22

n
2 < "

2
we then haved jg�.x/ � d jf .x/ D  1c�

Z
Rn
	�.x � y/d

jf .y/ dy �
1

c�

�Z
Rn
	�.x � y/ dy

�
d jf .x/


D

 1c�
Z

Rn
	�.x � y/

�
d jf .y/ � d jf .x/

�
dy


�
1

c�

Z
Rn
	�.x � y/

d jf .y/ � d jf .x/ dy

�
1

c�

Z
kx�yk<ı

	�.x � y/
"

2
dy C

1

c�

Z
kx�yk�ı

	�.x � y/2M dy

�
"

2
C
2M

c�

Z
kx�yk�ı

	�.x � y/ dy

D
"

2
C
2M

c�

Z
kx�yk�ı

exp
�
��kx � yk2

�
dy

�
"

2
C
2M

c�
e�

1
2
�ı2
Z

Rn
exp

�
�
�

2
kx � yk2

�
dy

D
"

2
C 2Me�

1
2
�ı2 c�=2

c�
D
"

2
C 2Me�

1
2
�ı22

n
2 < "

for every x 2 Rn.
ut

The next fact is used silently many times throughout this work.

FACT 2. There is a function � 2 C1.RI Œ0; 1�/ such that �.t/ D 0 for t � 0, �.t/ 2 .0; 1/
for t 2 .0; 1/, and �.t/ D 1 for t � 1.

PROOF. Define a function �0 by �0.t/ D 0 for t � 0 and �0.t/ D exp
�
�
1
t

�
for t > 0. It is

standard to check that �0 2 C1.RI Œ0; 1//. Put �1.t/ D 1� ee�0
�
1
e
� t
�

and finally � D �1 B �0.
ut

LEMMA 3. Let K � Rn be a compact set and U � Rn an open neighbourhood of K. Then
there is a function ' 2 C1.RnI Œ0; 1�/ such that supp' � U and ' D 1 on some neighbourhood
of K.

PROOF. Let � be the function from Fact 2 and define  2 C1.Rn/ by  .x/ D �.1 � x21 �

� � � � x2n/. Notice that supp � B.0; 1/ and  .0/ D 1. Let d D 1
2

dist.K;Rn nU/. For w 2 K
define  w.x/ D  

�
x�w
d

�
and Vw D fx 2 RnI  w.x/ >

1
2
g. Since K is a compact set there are

w1; : : : ; wk 2 K such that K � Vw1 [ � � � [ Vwk . Put

'.x/ D �

 
2

kX
jD1

 wj .x/

!
:

ut

LEMMA 4. There are functions �n 2 H.C/, n 2 N, with the following properties:
(T1) �n�R maps into Œ0; 1�,
(T2) �n�R is 4-Lipschitz,
(T3) j�n.´/j � 2�n for every ´ 2 C, j´j � 1

4
,



SECTION 1. SEPARATION 5

(T4) j�n.x/ � 1j � 2�n for every x 2 R, x � 1,
(T5) j.�n�R/

0.x/j � 2�n for every x 2 R, x � 1
2

or x � 1.

PROOF. Let f W R! Œ0; 1� be defined as f .t/ D 0 for t � 5
8

, f .t/ D 4t � 5
2

for t 2
�
5
8
; 7
8

�
, and

f .t/ D 1 for t � 7
8
. Obviously f is a 4-Lipschitz function. We put �n D g�n from Lemma 1,

where �n 2 RC is chosen so that (T4) holds and
p
2e��n=128 � 2�n; (2)

2�n

c�n

Z
jt j� 1

8

jt je��nt
2

dt D
2e��n=64

c�n
� 2�n: (3)

The function �n clearly has the properties (T1) and (T2). To prove (T3) we use successively the
definition of f , the fact that jIm ´j � 1

4
, Re ´ � 1

4
, and finally (2) to obtain

j�n.´/j �
1

c�n

Z
R
f .t/e��n Re.´�t/2 dt D

e�n.Im´/
2

c�n

Z
R
f .t/e��n.Re´�t/2 dt

�
e
1
16
�n

c�n

Z C1
5
8

e��n.Re´�t/2 dt �
e
1
16
�n

c�n
e�

�n
2
. 3
8
/2
Z C1
5
8

e�
�n
2
.Re´�t/2 dt

�
p
2e��n=128 � 2�n:

Finally, we show (T5). Suppose that x � 1
2

or x � 1. Differentiating under the integral sign
we obtain

� 0n.x/ D
2�n

c�n

Z
R
f .t/.t � x/e��n.t�x/

2

dt:

Since t 7! te��t
2

is odd and f is constant on Œx � 1
8
; x C 1

8
�, we get (using also (3))

j� 0n.x/j D
2�n

c�n

ˇ̌̌̌
ˇ
Z
jx�t j� 1

8

f .t/.t � x/e��n.t�x/
2

dt

ˇ̌̌̌
ˇ � 2�nc�n

Z
jx�t j� 1

8

jt � xje��n.t�x/
2

dt � 2�n:

ut

LEMMA 5. Let f"ng1nD1 and fang1nD1 be two sequences of positive real numbers. There
are functions �n 2 H.Cn/, n 2 N, and a sequence fıng1nD1 of positive real numbers with the
following properties:

(Z1) �n�Rn maps into Œ0; 1�,
(Z2) �n�Rn is 2-Lipschitz with respect to the maximum norm,
(Z3) j�n.´/j � "n for every ´ 2 Cn such that there is k 2 f1; : : : ; n � 1g for which Re ´k � 1

4

and
Pn
jD1 aj .Im j́ /

2 � ık.
(Z4) �n.x/ � 1

2
for every x 2 Rn for which xn � 1 and xj � 1, j D 1; : : : ; n � 1,

(Z5) �n.x/ � "n for x 2 Rn satisfying xn � 2.

PROOF. Let fn W Rn ! Œ0; 1� be a 2-Lipschitz function (with respect to the maximum norm)
such that

fn.x/ D

(
0 whenever xn � 2 or 9j 2 f1; : : : ; n � 1g W xj � 1

2
,

1 whenever xn � 1 and 8j 2 f1; : : : ; n � 1g W xj � 1.
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(See e.g. Lemma 30.) For each n 2 N put ın D an=64 and

�n.´/ D
1

cn

Z
Rn
fn.t/ exp

 
��n

nX
jD1

aj . j́ � tj /
2

!
dt for ´ 2 Cn,

where cn D
R

Rn e
��n

Pn
jD1 aj t

2
j dt D

q�
�
�n

�nQn
jD1 a

�1
j and �n 2 RC is chosen so that (Z4) and

(Z5) hold (analogously as in Lemma 1) and

e��naj =64 � 2�
n
2 "n for j D 1; : : : ; n � 1.

The function �n belongs to H.Cn/ and has the properties (Z1) and (Z2) (again similarly as in
Lemma 1). To prove (Z3) we use successively use the definition of fn, the fact that Re ´k � 1

4
,

and the definition of ık to obtain

j�n.´/j �
1

cn

Z
Rn
fn.t/e

��n
nP

jD1

ajRe. j́�tj /2

dt D
e
�n

nP
jD1

aj .Im j́ /
2

cn

Z
Rn
fn.t/e

��n
nP

jD1

aj .Re j́�tj /
2

dt

�
e�nık

cn

Z
t2Rn

tk>
1
2

e
��n

nP
jD1

aj .Re j́�tj /
2

dt

D
e�nık

cn

Z
t2Rn

tk>
1
2

e
�
�n
2

nP
jD1

aj .Re j́�tj /
2

� e
�
�n
2

nP
jD1

aj .Re j́�tj /
2

dt

�
e�nık

cn
e�

�n
2
ak

1
16

Z
Rn
e
�
�n
2

nP
jD1

aj .Re j́�tj /
2

dt D 2
n
2 e��nak=64 � "n:

ut

LEMMA 6. Let K be a compact space such that C.K/ admits a C k-smooth bump function,
k 2 N [ f1g. Then for every �; � 2 R, 0 < � < �, there is a function ˇ�;� 2 C k.C.K/I Œ0; 1�/
such that

ˇ�;�.f / D

(
1 when kf k1 � �,
0 when kf k1 � �.

PROOF. By hypothesis there exists a function ' 2 C k.C.K/I Œ0; 1�/ and ˛ 2 R, ˛ > 0, such
that '.f / D 1 for kf k1 � ˛, while '.f / D 0 for kf k1 � 1. Choose n 2 N so that . �

�
/n � ˛

and put

ˇ�;�.f / D '

�
f n

�n

�
:

Since the mapping f 7! f n is a continuous n-homogeneous polynomial (and in particular it is
C1-smooth), the function ˇ�;� has the required properties.

ut

We remark that the Taylor complexification Qc0 of the real space c0 is isometric to the complex
space c0.

PROPOSITION 7. Let q � 1. There are an open set W � Qc0 and a function � 2 H.W / with
the following properties:
(M1) For every w 2 c0 n f0g there is �w > 0 such that U Qc0.y;�w/ � W for every y 2 c0

satisfying jwj � jyj � qjwj, where the inequalities are understood in the lattice sense.
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(M2) �.w/ � 8 for w 2 c0, kwk � 8,
(M3) j�.´/j < 2 for ´ 2 U Qc0.y;�w/, where y 2 c0, kyk � 1, and w 2 c0 n f0g, jwj � jyj �

qjwj,
(M4) ��c0 is

p
2-Lipschitz and maps into R.

PROOF. Define � on c0 as the Minkowski functional of the set
˚
x 2 c0I

P1
nD1.xn/

2n � 1
	
.

Then � is an equivalent norm on c0 for which kxk � �.x/ �
p
2kxk (see also Theorem 5.104

and Example 1.137). This gives property (M2) and (M4).
Let f W Qc0 � .C n f0g/! C be defined as f .´; u/ D

P1
nD1.´n=u/

2n � 1. This function is
holomorphic on Qc0 � .C n f0g/ and for every x 2 c0 n f0g we have f .x; �.x// D 0.

Fix w 2 c0 n f0g. Put R D kwk
2

, S D kwk
4

,M D 1C
P1
nD1

�
1
2
C

2q

kwk
jwnj

�2n
, a D 1

p
2qkwk

,

r D min
n
1
2

aR2

aRCM
; 2 �

p
2
o
, and �w D s as defined in Theorem 1.176. Now choose any

y 2 c0, jwj � jyj � qjwj. Then R < kwk � kyk � �.y/, thus B.�.y/; R/ � V D C n f0g.
For any ´ 2 B.y; S/, u 2 B.�.y/; R/ we have juj � �.y/ � R � kyk � R � kwk �

R D kwk

2
and j´nj � jynj C j´n � ynj � qjwnj C k´ � yk � qjwnj C

kwk

4
, and hence

jf .´; u/j � 1C
P1
nD1j

´n
u
j2n � M . Finally, jD2f .y; �.y//j D

ˇ̌̌
�

1
�.y/

P1
nD1 2n

�
yn
�.y/

�2n ˇ̌̌
�

1
�.y/

P1
nD1

�
yn
�.y/

�2n
D

1
�.y/
�

1
p
2kyk
� a. Thus by Theorem 1.176 the equation f .´; u/ D 0

uniquely determines a holomorphic function �wy on U Qc0.y;�w/ with values in U.�.y/; r/ and
this holds for every y 2 c0, jwj � jyj � qjwj.

Take any two functions �1 D �w1y1 , �2 D �w2y2 defined on open balls U1 and U2 respectively.
IfU1 andU2 intersect, then it is easy to check thatU1\U2\c0 is a non-empty set relatively open
in c0. Since�1 D � onU1\c0 and�2 D � onU2\c0, it follows that both holomorphic functions
�1 and �2 agree on U1 \ U2 \ c0 and therefore on the whole U1 \ U2 (Corollary 1.158). This
observation allows us to put W D

S
fU Qc0.y;�w/I w 2 c0 n f0g; y 2 c0; jwj � jyj � qjwjg

and define � on W by �.´/ D �wy .´/ whenever ´ 2 U.y;�w/. This gives property (M1).
To prove (M3) let w 2 c0 n f0g, y 2 c0, jwj � jyj � qjwj, kyk � 1, and ´ 2 U Qc0.y;�w/.

Then by the choice of r above we have �.´/ 2 U.�.y/; 2 �
p
2/ and therefore j�.´/j <

j�.y/j C 2 �
p
2 �
p
2kyk C 2 �

p
2 � 2.

ut

LEMMA 8 ([Ru]). Let .P; �/ be a metric space and U D fU˛g˛2� an open covering of P .
Then there are open refinements fVn˛gn2N;˛2�, fWn˛gn2N;˛2� of U that satisfy the following:
� Vn˛ � Wn˛ � U˛ for all n 2 N, ˛ 2 �,
� dist.Vn˛; P nWn˛/ � 2�n for all n 2 N, ˛ 2 �,
� dist.Wn˛; Wnˇ / � 2�n for any n 2 N and ˛; ˇ 2 �, ˛ ¤ ˇ.
� for each x 2 P there are an open neighbourhood Ux of x and a number nx 2 N such that

(i) if k > nx, then Ux \Wk˛ D ; for any ˛ 2 �,
(ii) if k � nx, then Ux \Wk˛ ¤ ; for at most one ˛ 2 �.

PROOF. Choose some well-ordering of the set �. Define the sets Vn˛ by induction on n 2 N: If
Vjˇ are already defined for j < n and all ˇ 2 �, let Vn˛ be the union of all U.x; 2�n/ such that

(a) ˛ is the smallest with x 2 U˛,
(b) x … Vjˇ for all j < n, ˇ 2 �,
(c) U.x; 5 � 2�n/ � U˛.

Further, let Wn˛ D
S
fU.x; 2�n/I x 2 Vn˛g for all n 2 N, ˛ 2 �.
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Certainly Vn˛ � Wn˛ � U˛ and dist.Vn˛; P nWn˛/ � 2�n for all n 2 N, ˛ 2 �. To see
that fVn˛g covers P , observe that, for x 2 P , there is a smallest ˛ 2 � such that x 2 U˛, and n
so large that (c) holds. Then, by (b), x 2 Vjˇ for some j � n, ˇ 2 �.

To prove the third property, suppose that n 2 N, ˛; ˇ 2 �, ˛ < ˇ, p 2 Wn˛, and q 2 Wnˇ .
There is a ballU.y; 2�n/ in the definition of Vn˛ such that �.p; y/ < 2 �2�n, and a ballU.´; 2�n/
in the definition of Vnˇ such that �.q; ´/ < 2 � 2�n. By (c), U.y; 5 � 2�n/ � U˛ but, by (a),
´ … U˛. So �.y; ´/ � 5 � 2�n and �.p; q/ � �.y; ´/ � �.p; y/ � �.q; ´/ > 2�n.

Finally assume x 2 P . Find some pair n 2 N, ˇ 2 � such that x 2 Vnˇ , and choose j 2 N
so that U.x; 2�jC1/ � Vnˇ . Put nx D nC j � 1 and Ux D U.x; 2�n�j /. To show (i), suppose
that k > nx and choose any ˛ 2 � and ´ 2 Wk˛. It follows that there is a ball U.y; 2�k/ in
the definition of Vk˛ such that �.y; ´/ < 2 � 2�k. Since k > n, by (b), y … Vnˇ . And since
U.x; 2�jC1/ � Vnˇ and k � j C 1,

�.x; ´/ � �.x; y/ � �.y; ´/ � 2�jC1 � �.y; ´/

> 2�jC1 � 2�kC1 � 2�jC1 � 2�j D 2�j > 2�n�j :

From the definition of Ux and nx it is easy to see that (ii) follows from the third property.
ut

2. Approximation by polynomials
In this section we begin by proving the classical Weierstraß-type theorem on the density of

polynomials among C k-smooth functions in the uniform topology (together with its derivatives)
on compact subsets of Rn. Of course, the proof relies heavily on the compactness argument. The
result can be extended into infinite-dimensional setting if we are interested in uniform topology
on compact sets. We then deal with the approximation in uniform topology on bounded sets,
which is not always possible. Applying the theory of W -spaces we give a generalisation of the
Weierstraß theorem in some special cases. We finish the section by showing that the assumptions
used in order to get positive results are close to being optimal.

THEOREM 9. Let ˝ � Rn be an open set, Y a Banach space, and f 2 C k.˝IY /, k 2 N0.
For every compact subset K � ˝ and every " > 0 there is a polynomial p 2 P .RnIY / such
that kd jf � d jpkK � " for 0 � j � k.

PROOF. By Lemma 3 there is a function ' 2 C1.Rn/ such that supp' � ˝, supp' is compact,
and ' D 1 on a neighbourhood ofK. Since 'f 2 C k.˝IY / (Corollary 1.84), 'f has a compact
support, and d j .'f /.x/ D d jf .x/ for x 2 K, 0 � j � k, replacing f by a function defined as
'f on ˝ and 0 on Rn n˝ we may suppose that f 2 C k.RnIY / and S D suppf is compact.

By Lemma 1 there is � 2 RC such that
d jg� � d jf Rn

< "
2

for 0 � j � k. Put

Qm.y/ D

mX
lD0

1

lŠ
.��/l

�
y21 C � � � C y

2
n

�l
:

Then Qm 2 P .Rn/ and limm!1 d
jQm D d j	� locally uniformly on Rn for 0 � j � k

(Theorem 1.146). Put M D kf kRn . The set L D K � S is compact. Therefore there is N 2 N
such that

d jQN � d
j	�


L
�

c�
M

1
�.L/

"
2

for each 0 � j � k. Let

p.x/ D
1

c�

Z
Rn
QN .x � y/f .y/ dy:
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Then p 2 P .RnIY / (e.g. by Theorem 2.49). As

d jg�.x/ D
1

c�

Z
Rn
d j	�.x � y/f .y/ dy D

1

c�

Z
Rn
d j	�.y/f .x � y/ dy

and similarly for d jp, we have for any x 2 K

kd jg�.x/ � d
jp.x/k D

 1c�
Z

Rn

�
d j	�.y/ � d

jQN .y/
�
f .x � y/ dy


D

 1c�
Z
L

�
d j	�.y/ � d

jQN .y/
�
f .x � y/ dy


�
M

c�

Z
L

d j	�.y/ � d jQN .y/
 dy

�
M

c�

d jQN � d
j	�


L
�.L/ �

"

2
:

ut

DEFINITION 10. Let X , Y be normed linear spaces. By Pf .
nX IY / we denote the linear

subspace of P .nX IY / consisting of all polynomials that can be written in the form P.x/ DPk
jD1 fj .x/

nyj , where fj 2 X�, yj 2 Y . We set Pf .X IY / D span
S1
nD0 Pf .

nX IY /.

IfX is finite-dimensional, then Pf .
nX IY / D P .nX IY /. This follows from Proposition 1.23

and the fact that spanfhy; �id I y 2 Rmg D P .dRm/ (Section 2.4).

FACT 11. Let X , Y be normed linear spaces, P 2 Pf .
mX/, and Q 2 Pf .

nX IY /. Then
PQ 2 Pf .

mCnX IY /. In particular, Pf .X/ is a subalgebra of the algebra P .X/ and p B R 2
Pf .X/ whenever R 2 Pf .X/ and p 2 P .R/.

PROOF. It is clear that it suffices to show that if f; g 2 X�, then x 7! f .x/mg.x/n 2

Pf .
mCnX/. The polynomial q 2 P .mCnR2/, q.u; v/ D umvn can be written as q.u; v/ DPk

jD1 cj h.aj ; bj /; .u; v/i
mCn (Section 2.4). Hence f .x/mg.x/n D

Pk
jD1 cjhj .x/

mCn, where
hj D ajf C bjg 2 X

�.
ut

The following is an extension of the Weierstraß theorem into infinite-dimensional spaces. Of
course the usefulness of this theorem is limited by the fact that here the compact sets are very
small.

THEOREM 12. Let X and Y be normed linear spaces, K � X compact, f 2 C.KIY /, and
" > 0. Then there is a polynomial P 2 Pf .X IY / such that kf � P kK � ".

For the proof we need the following lemma on separation of sets by polynomials.

LEMMA 13. Let X be a normed linear space, ˝ � X a bounded set, C � ˝ a closed
convex set, K � ˝ a weakly compact set satisfying C \ K D ;, and ı > 0. Then there is a
polynomial P 2 Pf .X/ such that 0 � P.x/ � 1 for x 2 ˝, P.x/ > 1 � ı for x 2 C , and
P.x/ < ı for x 2 K.

PROOF. Without loss of generality we may assume that C is non-empty. By the separation
theorem for every x 2 K there are fx 2 X� and bx; cx 2 R such that fx.y/ < bx < cx < fx.x/
for y 2 C . Since

˚
f �1x

�
.cx;C1/

�	
x2K

is a weakly open covering of the weak compactK, there
are x1; : : : ; xn 2 K such that K �

Sn
kD1 f

�1
xk

�
.cxk ;C1/

�
. Denote Mk D maxy2K fxk.y/ and
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ak D infy2C fxk.y/ for k D 1; : : : ; n, and notice that ak 2 R by the boundedness of C . By
Theorem 9 there are polynomials qk 2 P .R/ such that jqk.t/j < 1

2n
for t 2 Œak; bxk � and

qk.t/ > 1 for t 2 Œcxk ;Mk�, k D 1; : : : ; n. Put

Q.x/ D

nX
kD1

q2k
�
fxk.x/

�
:

Then 0 � Q.x/ < 1
4n
�

1
4

for x 2 C and Q.x/ > 1 for x 2 K.
Denote m D infy2˝Q.y/ and M D supy2˝Q.y/. By the boundedness of ˝ both m and

M are finite. By Theorem 9 there is a polynomial p 2 P .R/ such that 0 � q.t/ � 1 for
t 2 Œm;M�, q.t/ > 1 � ı for t 2 Œm; 1

4
�, and q.t/ < ı for t 2 Œ1;M �. We obtain the desired

polynomial P by setting P D p BQ, noting that P 2 Pf .X/ by Fact 11.
ut

DEFINITION 14. LetX be a set. A collection f ˛g˛2� of functions onX is called a partition
of unity if
�  ˛ W X ! Œ0; 1� for all ˛ 2 �,
�
P̨
2�

 ˛.x/ D 1 for each x 2 X .

Let U be a covering of X . We say that the partition of unity f ˛g˛2� is subordinated to U if
fsuppo ˛g˛2� refines U.

Note that from the second property it immediately follows that the collection fsuppo ˛g˛2�
is point-countable, i.e. for every x 2 X the set f˛ 2 �I  ˛.x/ ¤ 0g is countable. In applications
often either the set � itself is countable, which allows for “global” constructions (e.g. analytic
approximation, Section 3), or the collection fsuppo ˛g˛2� is locally finite, which then preserves
local properties, like C k-smoothness (Section 5).

LEMMA 15. Let X be a normed linear space, K � X compact, fU.xk; rk/gnkD1 a covering
of K, and ı > 0. Then there is a polynomial partition of unity f kgnkD1 � Pf .X/ on K such
that  k.x/ < ı whenever x 2 K n U.xk; 2rk/, k D 1; : : : ; n.

PROOF. By Lemma 13 there are polynomials '1; : : : ; 'n 2 Pf .X/ satisfying 0 � 'k.x/ � 1
for x 2 K, 'k.x/ > 1 � ı for x 2 B.xk; rk/, and 'k.x/ < ı for x 2 K n U.xk; 2rk/,
k D 1; : : : ; n. We construct inductively polynomials  1; : : : ;  n 2 Pf .X/ that will form a
partition of unity on K. Put  1 D '1 and  k D 'k �

�
1 �

Pk�1
jD1 j

�
for k D 2; : : : ; n � 1.

Finally set  n D 1 �
Pn�1
jD1 j . Notice that  k 2 Pf .X/ by Fact 11 and

kX
jD1

 j D

 
k�1X
jD1

 j

!
� 1C

 
1 �

k�1X
jD1

 j

!
'k; k D 1; : : : ; n � 1:

Thus we can check by induction that

0 � 'k.x/ �

kX
jD1

 j .x/ � 1 for x 2 K, k D 1; : : : ; n � 1, (4)

and consequently

0 �  k.x/ � 'k.x/ � 1 for x 2 K, k D 1; : : : ; n � 1. (5)

It follows that  1; : : : ;  n form a partition of unity on K.
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Moreover this partition has the property that  k.x/ < ı whenever x 2 K n U.xk; 2rk/,
k D 1; : : : ; n. Indeed, for k < n it follows from (5). If k D n and x 2 K n U.xn; 2rn/,
then there is m 2 f1; : : : ; n � 1g such that x 2 U.xm; rm/. Thus, by (5) and (4),  n.x/ �
1 �

Pm
jD1 j .x/ � 1 � 'm.x/ < ı.

ut

PROOF OF THEOREM 12. By the compactness of K there is a covering fU.xk; rk/gnkD1 of K
such that kf .x/ � f .xk/k < "

2
whenever x 2 U.xk; 2rk/, k D 1; : : : ; n. Let M > 0 be such

that kf kK �M and set ı D "=.4nM/. Let f kgnkD1 be the partition of unity from Lemma 15.
Put

P.x/ D

nX
kD1

 k.x/f .xk/; x 2 X:

Obviously P 2 Pf .X IY /. To show that P approximates f on K fix any x 2 K. Let I D f1 �
k � nI x 2 U.xk; 2rk/g and J D f1; : : : ; ng n I . Then

kf .x/ � P.x/k D


 

nX
kD1

 k.x/

!
f .x/ �

nX
kD1

 k.x/f .xk/

 �
nX
kD1

 k.x/kf .x/ � f .xk/k

�

X
k2I

 k.x/kf .x/ � f .xk/k C
X
k2J

 k.x/
�
kf .x/k C kf .xk/k

�
�
"

2
C 2nMı D ":

ut

Note that from Theorem 9 it follows that for any mapping f 2 C.˝IY /, where ˝ � Rn is
open and Y is a normed linear space, there is a sequence of polynomials fPkg1kD1 � P .RnIY /

such thatPk ! f locally uniformly on˝. If we are interested only in the pointwise convergence,
then we have the following infinite-dimensional result:

THEOREM 16. Let X , Y be normed linear spaces, X separable, ˝ � X open, and
f 2 C.˝IY /. Then there is a sequence of polynomials fpng1nD1 � Pf .X IY / such that
lim
n!1

pn.x/ D f .x/ for every x 2 ˝.

PROOF. Let fxngn2N � X be such that spanfxng D X . Put

Kn D fx 2 spanfx1; : : : ; xngI dist.x;X n˝/ �
1

n
; kxk � ng:

Then Kn is a compact subset of ˝. By Theorem 12 there are polynomials pn 2 Pf .X IY /

such that kf � pnkKn �
1
n

for every n 2 N. Choose any x 2 ˝ and " > 0. There is ı > 0

such that U.x; 2ı/ � ˝ and kf .x/ � f .y/k < "
2

whenever y 2 U.x; ı/. Further, there is
n0 2 N such that 1

n0
< "

2
, ı > 1

n0
, kxkC ı � n0, and spanfx1; : : : ; xn0g\U.x; ı/ ¤ ;. Choose

´ 2 spanfx1; : : : ; xn0g \ U.x; ı/. It follows that ´ 2 Kn for every n � n0 and hence

kf .x/ � pn.x/k � kf .x/ � f .´/k C kf .´/ � pn.´/k <
"

2
C
1

n
< " for every n � n0.

ut

In contrast with that, the norm on c0.� /, � uncountable, is not a pointwise limit of a
sequence of polynomials on Sc0.� /. Indeed, given any sequence of polynomials fPng on c0.� /,
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by Corollary 3.62 there is  2 � such that Pn.e/ D Pn.0/ for each n 2 N. This was first
observed by Aleksander Pełczyński.

In a general infinite-dimensional normed linear space X there are always continuous func-
tions on X that cannot be uniformly approximated by polynomials on SX . Indeed, while every
polynomial is bounded on SX , it is easy to construct a continuous function on X that is unboun-
ded on SX . But typically even much more regular functions cannot be uniformly approximated
by polynomials.

THEOREM 17 ([NS]). Let X be an infinite-dimensional Banach space and let S be one of
the spaces C k.X/, C1.X/, or C k;˝.X/, where k 2 N0 and ˝ � M is a convex cone. If X
admits a bump function from S , then there is a bump function f 2 S such that it cannot be
uniformly approximated on BX by polynomials.

PROOF. The main ingredient of the proof is the fact that for every degree d there is n 2 N such
that the unit ball of Rn (with an arbitrary norm) contains a 1

2
-separated set of cardinality greater

than the dimension of the space P d .Rn/. Indeed let A � BRn be a maximal 1
2

-separated set, i.e.
kx � yk � 1

2
for every x; y 2 A, x ¤ y. By the maximality, BRn �

S
x2A U.x;

1
2
/. Therefore

�.BRn/ �
X
x2A

�
�
U.x; 1

2
/
�
� jAj�

�
B.0; 1

2
/
�
D jAj

1

2n
�.BRn/;

and hence jAj � 2n. On the other hand, dim P d .Rn/ D
�
nCd

d

�
(Section 2.1). Since for every

d 2 N there is nd 2 N such that 2nd >
�
ndCd

d

�
, there is a 1

2
-separated set in BRnd of cardinality

greater that dim P d .Rnd /.
Put ı D 3

4
. Since X is infinite-dimensional, there is a ı-separated set f´d I d 2 Ng �

BX.0; ı/. Notice that B
�
´d ;

ı
3

�
� BX for every d 2 N. Let Xd be some nd -dimensional

subspace of X that contains ´d . By the discussion above there is a ı
6
-separated subset Ad

of BXd
�
´d ;

ı
3

�
satisfying dim P d .Xd / < jAd j < 1. Consider the space RAd with the su-

premum norm. Define Rd 2 L.P d .Xd /IRAd / by Rd .p/ D p�Ad . As dimRd .P
d .Xd // �

dim P d .Xd / < jAd j D dim RAd , the space Rd .P d .Xd // is a proper subspace of a finite-
dimensional space RAd and so there is fd 2 RAd such that dist

�
fd ; Rd .P

d .Xd //
�
D kfdk D

1.
Let ' 2 S be a bump function. By shifting and scaling we may suppose that '.0/ D 1 and

supp' � BX
�
0; ı
18

�
. Define a function f W X ! R by

f .x/ D
X
d2N

X
y2Ad

fd .y/'.x � y/:

By the choice of the set f´d g the set
S
d2N Ad is a ı

6
-separated subset of BX . Using this and the

fact that jfd .y/j � 1 for y 2 Ad it is easy to check that f 2 S . Obviously suppf is bounded.
To see that f cannot be approximated on BX by polynomials pick any p 2 P.X/. Let

d 2 N be such that p 2 P d .X/. Then p�Xd 2 P d .Xd / (Fact 1.35). Notice that f �Ad D fd .
Thus

sup
x2BX

jf .x/�p.x/j � sup
x2Ad

jf .x/�p.x/j D kfd�Rd .p�Xd /k � dist
�
fd ; Rd .P

d .Xd //
�
D 1:

ut
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3. Approximation by real-analytic mappings
We begin with a Whitney-type approximation theorem stating that in a finite-dimensional

case any mapping in C k.˝IY /, k 2 N0, can be approximated on the whole˝, in a fine topology,
and together with its derivatives of order up to k by real analytic mappings. Then we present the
famous result of Jaroslav Kurzweil which extends this result (for k D 0) to infinite-dimensional
separable Banach spaces X that admit a separating polynomial. We also show that if we only
require uniform approximations for uniformly continuous mappings, then it suffices that X
admits a separating real analytic function with uniform radii of convergence.

Let X , Y be normed linear spaces, ˝ � X open, and f 2 C k.˝IY / for some k 2 N0. For
S � ˝ we define

kf kS;k D

kX
jD0

sup
x2S

kd jf .x/k:

Clearly k�kS;k is a semi-norm on the subspace of C k.˝IY / consisting of mappings with all
derivatives up to k bounded on S .

LEMMA 18. Let X , Y be normed linear spaces over K, ˝ � X open, k 2 N0, ' 2 C k.˝/,
f 2 C k.˝IY /, and S � ˝. Then

k'f kS;k �

�
k�
k
2

��k'kS;kkf kS;k:
PROOF. Fix x 2 ˝ and 0 � j � k. By the Leibniz formula (Corollary 1.116)

kd j .'f /.x/k �

jX
lD0

�
j

l

�d j�l'.x/ � d lf .x/ � jX
lD0

�
j

l

�d j�l'.x/ � d lf .x/
�

�
j�
j

2

�� jX
lD0

d j�l'.x/ � d lf .x/:
Therefore

k'f kS;k �

kX
jD0

�
j�
j

2

�� jX
lD0

d j�l'
S

d lf 
S
�

�
k�
k
2

�� kX
jD0

jX
lD0

d j�l'
S

d lf 
S

�

�
k�
k
2

�� kX
jD0

kX
lD0

d j'
S

d lf 
S
D

�
k�
k
2

��k'kS;kkf kS;k:
ut

In the next theorem we consider Cn with the Euclidean norm.

THEOREM 19. Let Y be a Banach space, ˝ � Rn open, k 2 N0 [ f1g, f 2 C k.˝IY /,
and " 2 C.˝IRC/. PutG D

˚
´ 2 CnI kIm ´k < dist.Re ´;Rn n˝/

	
. Then there is a mapping

g 2 H.GI QY / such that g�˝ 2 C!.˝IY / and kd jf .x/� d j .g�˝/.x/k < ".x/ for all x 2 ˝,
0 � j � minfk; 1=".x/g.

Notice in particular, that if in the preceding theorem ˝ D Rn, then the approximating
mapping g will be an entire mapping, i.e. a mapping that is holomorphic on the whole Cn.
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PROOF. Define K�1 D K0 D ;, Kj D fx 2 RnI dist.x;Rn n ˝/ � 2�j g \ B.0; j /, Lj D
Kj n IntKj�1, and Uj D .IntKjC1/ nKj�2 for j 2 N. Note that Kj � KjC1, Lj is compact,
Uj � ˝ is an open neighbourhood of Lj , ˝ D

S1
jD1Lj , and Lj \ Ul D ; for l > j C 1.

By Lemma 3 there are functions 'j 2 C1.RnI Œ0; 1�/, j 2 N, satisfying supp'j � Uj (hence
supp'j is compact) and 'j D 1 on a neighbourhood of Lj .

Further, we put "0 D 1, "j D minf"j�1;minx2Lj ".x/g, k0 D 0, kj D k if k < 1, and
finally kj D maxfkj�1; Œmaxx2Lj

1
".x/

�g if k D 1. Notice that the sequence f"j g1jD1 is non-
increasing, while the sequence fkj g1jD1 is non-decreasing. Put Mj D �kj k'jkRn;kj , where
�l D

�
l

Œ l
2
�

�
. For each j 2 N let ıj > 0 be such that

ıj .1CMjC1/ <
"j

2j
: (6)

To slightly shorten our notation we denote Ng D g�M\Rn for g W M ! Y , where M � Cn.
For each j 2 N we define inductively mappings fj 2 C k.RnIY / and gj 2 H.CnI QY / such that
xgj maps into Y as follows: We put fj D 0 on Rn n˝ and

fj D 'j �

�
f �

j�1X
lD1

xgl

�
(7)

on ˝. Then fj 2 C k.RnIY / and since supp'j is compact, so is suppfj . By Lemma 1 there is
a mapping gj 2 H.CnI QY / such that xgj maps into Y ,

kfj � xgjkRn;kj < ıj ; (8)

and kgjkGj <
1
2j

, where Gj D
˚
´ 2 CnI kIm ´k2 < dist.Re ´; suppfj /2 � 1

4j

	
.

Put

g D

1X
jD1

gj : (9)

Fix any ´ 2 G and put ı D 1
2

min
˚
dist.Re ´;Rn n˝/� kIm ´k; 1

	
. (We note that the minimum

here is to cater for the case when dist.Re ´;Rn n ˝/ D C1, i.e. ˝ D Rn.) Further, put
V D

˚
w 2 CnI kRew � Re ´k C kImw � Im ´k < ı

	
, which is a neighbourhood of ´. Let

j0 2 N be such that 2�j0 < ı
2

and kRe ´k C kIm ´k C 3
2
ı � j0. We claim that V � Gj for all

j � j0C2. Indeed, pick any w 2 V . Since j0 is chosen so that URn
�
Re ´; kIm ´kC 3

2
ı
�
� Kj0 ,

we have

kImwk � kIm ´k C kImw � Im ´k < kIm ´k C ı � kRew � Re ´k

� kIm ´k C ı C dist.Rew;Rn
nKj0/ � dist.Re ´;Rn

nKj0/

� dist.Rew;Rn
nKj0/ �

ı

2
:

Hence, using the fact that .a � b/2 � a2 � b2 whenever a; b 2 R, a � b � 0, and b � 0,

kImwk2 � dist.Rew;Rn
nKj0/

2
�
ı2

4
� dist.Rew;Rn

nKj�2/
2
�
ı2

4

� dist.Rew;Uj /2 �
ı2

4
� dist.Rew; suppfj /2 �

ı2

4
< dist.Rew; suppfj /2 �

1

4j
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and the claim follows. This means that kgjkV < 1
2j

for j � j0 C 2. Therefore the series (9)
converges absolutely locally uniformly on G and so g 2 H.GI QY /. Obviously since each xgj
maps into Y , so does Ng.

To show the approximation property of the mapping Ng fix x2˝ and 0 � l � minfk; 1=".x/g.
There is p 2 N such that x 2 Lp. Hence l � kp and "p � ".x/. Since 'p D 1 on a
neighbourhood of Lp, by (7) and (8) we havef �

pX
jD1

xgj


Lp;kp

D kfp � xgpkLp;kp < ıp: (10)

From Lemma 18, the fact that the sequences fkj g and f�j g are non-decreasing, (8), and (10) we
obtain

kgpC1kLp;kp � kgpC1 � fpC1kLp;kp C kfpC1kLp;kp

� kgpC1 � fpC1kLp;kp C �kpk'pC1kLp;kp

f �
pX
jD1

xgj


Lp;kp

� kgpC1 � fpC1kRn;kpC1 C �kpC1k'pC1kRn;kpC1

f �
pX
jD1

xgj


Lp;kp

< ıpC1 CMpC1ıp:

Finally, for j > pC1we haveUj\Lp D ; and since suppfj � Uj , fj D 0 on a neighbourhood
of Lp. Hence

k xgjkLp;kp D k xgj � fjkLp;kp � k xgj � fjkRn;kj < ıj :

Putting all this together with (6) yields

kd lf .x/ � d l Ng.x/k D

d lf .x/ �
1X
jD1

d lxgj .x/

 �
d lf .x/ �

pX
jD1

d lxgj .x/

C
1X

jDpC1

kd lxgj .x/k

�

f �
pX
jD1

xgj


Lp;kp

C

1X
jDpC1

k xgjkLp;kp < ıp.1CMpC1/C

1X
jDpC1

ıj

�

1X
jDp

ıj .1CMjC1/ <

1X
jDp

"j

2j
�

1X
jDp

"p

2j
� "p � ".x/:

We note that the first equality follows from the fact that the series (9) is a locally uniformly
convergent series of holomorphic mappings.

ut

Now we move on to the infinite-dimensional case. First we state the results and then prove
them both together.

THEOREM 20 (Jaroslav Kurzweil, [K1]). Let X be a separable Banach space that admits
a separating polynomial and Y a Banach space. Let ˝ � X be open, f 2 C.˝IY /, and
" 2 C.˝IRC/. Then there is g 2 C!.˝IY / such that kf .x/ � g.x/k < ".x/ for all x 2 ˝.

DEFINITION 21. Let X be a Banach space. We say that X has property (K) if there exists a
separating real analytic function q on X and d > 0 such that for each x 2 X the radius of norm
convergence of the Taylor series of q at x is at least d .
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Given metric spaces P , Q we denote by Cu.P IQ/ the space of all uniformly continuous
mappings from P to Q.

THEOREM 22 ([CH], [Fry1]). Let X be a separable Banach space with property (K) and Y
a Banach space. Let ˝ � X be open, f 2 Cu.˝IY /, and " > 0. Then there is g 2 C!.˝IY /
such that kf � gk˝ � ".

We prove both Theorem 20 and Theorem 22 together, with the help of the next two lemmata.

LEMMA 23. Let X be a separable Banach space and ˝ � X open. Suppose there is ˛ > 0
such that for any open covering fU.xn; rn/g1nD1 (or for any uniform open covering fU.xn; r/g1nD1,
i.e. rn D r for all n 2 N) of ˝ and any sequence fwng1nD1 of positive real numbers there exists
an open neighbourhood V � QX of ˝ and a sequence of functions f'ng1nD1 � H.V / with the
following properties:

(i) The sum
P1
nD1wn'n converges absolutely locally uniformly on V ,

(ii) 'n�˝ maps into Œ0;C1/ for every n 2 N,
(iii) wn'n.x/ � 1

4
2�n for every x 2 ˝ n U.xn; ˛rn/, n 2 N, and

(iv) for every x 2 ˝ there is k 2 N such that x 2 U.xk; ˛rk/ and 'k.x/ � wk.
Then for every mapping f 2 C.˝IC/, where C is a closed convex subset of a Banach space Y ,
(resp. for every f 2 Cu.˝IC/) there is a mapping g 2 C!.˝IC/ satisfying kf � gk˝ � 1.

PROOF. Using the separability of ˝ and the continuity (resp. uniform continuity) of f we find
a covering (resp. uniform covering) fU.xn; rn/g1nD1 of ˝ such that

kf .x/ � f .xn/k <
1

2
for x 2 U.xn; ˛rn/ \˝. (11)

Put wn D 1C kf .xn/k. Let f'ng be the sequence of functions satisfying (i)–(iv).
The function '.´/ D

P1
nD1 'n.´/ is well-defined for every ´ 2 V by (i) and moreover

' 2 H.V /. Further, by (ii) and (iv), for every x 2 ˝

'.x/ � 'k.x/ � 1: (12)

Hence there is an open neighbourhoodW of˝ in QX such thatW � V and ' ¤ 0 onW . Define
 n.´/ D 'n.´/='.´/ for ´ 2 W . Then the functions  n are holomorphic on W and have the
following properties:
(a) f n�˝g is a partition of unity on ˝,
(b)  n.x/kf .xn/k � 1

4
2�n for every x 2 ˝ n U.xn; ˛rn/, n 2 N, and

(c)  n.x/kf .x/k � 1
4
2�n for every x 2 ˝ n U.xn; ˛rn/, n 2 N.

Indeed, (a) follows from (ii) and the definition of  n and ', and (b) follows from (iii)
and (12). To prove (c) choose n 2 N and x 2 ˝ n U.xn; ˛rn/. Then '.x/ � 'k.x/ � wk D
1 C kf .xk/k > kf .x/k by (iv) and (11). Thus  n.x/kf .x/k �  n.x/'.x/ D 'n.x/ �

wn'n.x/ �
1
4
2�n by (iii).

Finally we put g.´/ D
P1
nD1 n.´/f .xn/ for ´ 2 W . As

g.´/ D .1='.´//

1X
nD1

'n.´/f .xn/

and the sum converges locally uniformly on W by (i), we obtain g 2 H.W I QY /. Clearly
g�˝ 2 C!.˝IC/. Further, choose an arbitrary x 2 ˝. Put I D fn 2 NI x 2 U.xn; ˛rn/g.
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Then using (a), (11), (b), and (c) we obtain

kf .x/ � g.x/k D


1X
nD1

 n.x/
�
f .x/ � f .xn/

�
�

X
n2I

 n.x/kf .x/ � f .xn/k C
X
n2NnI

 n.x/
�
kf .x/k C kf .xn/k

�
< 1:

ut

LEMMA 24. Let X be a Banach space, ˝ � X open, and fU.xn; rn/g1nD1 an open covering
of ˝ in X . Suppose that there are a function q 2 H.G/ and ˛ > 0 such that G D f´ 2
QX I kIm ´k < � supn2N

1
rn
g for some� > 0, q�X maps into Œ0;C1/, q.x/ � 2 for x 2 X nUX ,

Re q.´/ � 1
4

for ´ 2 U QX.0; 1=˛/, and suppose there is a sequence fang1nD1 of positive real
numbers such that for each x 2 ˝ the function

´ 7!

1X
nD1

an
�
Im q

�
.x � xn C ´/=.˛rn/

��2 (13)

is defined on some neighbourhood of 0 in QX and is continuous at 0.
Then for every sequence fwng1nD1 of positive real numbers there are an open neighbourhood

V � QX of ˝ and a sequence of functions f'ng1nD1 � H.V / satisfying the properties (i)–(iv) in
Lemma 23.

PROOF. Put "n D 1

2w2n

1
4
2�n and let �n be the functions and fıng the sequence from Lemma 5.

Denote ˛n D 1=.˛rn/ and G˛ D f´ 2 QX I kIm ´k < ˛�g and put

'n.´/ D 2wn�n

�
q
�
˛1.´ � x1/

�
; : : : ; q

�
˛n.´ � xn/

��
for ´ 2 G˛, n 2 N.

Then 'n 2 H.G˛/ and by (Z1), 'n�X maps into Œ0;C1/.
Pick any x 2 ˝. Then there is j 2 N such that x 2 U.xj ; rj / and hence q. j̨ .x � xj // �

1
4
< 1. Let k 2 N be the smallest index such that q.˛k.x � xk// < 1. Then x 2 U.xk; ˛rk/ and

property (Z4) implies that 'k.x/ � wk.
Let ıx > 0 be such that kx � xj C ´k < rj and

P1
nD1 an

�
Im q.˛n.x � xn C ´//

�2
� ıj

whenever ´ 2 QX , k´k � ıx . Then Re q. j̨ .x�xjC´// �
1
4

and hence, by (Z3), jwn'n.xC´/j <
2�n for n > j . It follows that

P1
nD1wn'n converges absolutely uniformly on U QX.x; ıx/. We

put V D G˛ \
S
x2˝ U QX.x; ıx/.

Finally we show that (iii) is satisfied. Fix n 2 N. For x 2 ˝ n U.xn; ˛rn/ we have
q.˛n.x � xn// � 2, hence, by (Z5), wn'n.x/ � 1

4
2�n.

ut

The next lemma shows that in certain circumstances it is possible to pass from uniform
approximations to fine approximations.

LEMMA 25 ([K1]). Let ˝ be a topological space and Y a normed linear space. Let S �
C.˝IY / and S1 � C.˝/ be such that h=� 2 S for any positive function � 2 S1 and any
mapping h 2 S . Suppose that for any f 2 C.˝IY / there is h 2 S such that kf �hk˝ � 1 and
for any ' 2 C.˝/ there is � 2 S1 such that j' � �j˝ � 1. Then for any f 2 C.˝IY / and any
positive function " 2 C.˝/ there is g 2 S such that kf .x/ � g.x/k < ".x/ for every x 2 ˝.
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PROOF. Define ' 2 C.˝/ by ' D 1 C 2=". According to the assumptions there is � 2 S1
such that j'.x/ � �.x/j � 1 for every x 2 ˝. Since �f 2 C.˝IY /, there is h 2 S such that
k�.x/f .x/�h.x/k � 1 for every x 2 ˝. Notice that �.x/ � '.x/�1 D 2=".x/ > 1=".x/ > 0
for every x 2 ˝. Thus g D h=� 2 S and kf .x/ � g.x/k � 1=�.x/ < ".x/ for every x 2 ˝.

ut

PROOF OF THEOREM 20. By Fact 4.45 we may assume that there is an m-homogeneous poly-
nomial p on X such that p.x/ � 2 for x 2 X n UX . Let q D Qp. Because q.0/ D 0, by the
continuity there is ˛ > 0 such that Re q.´/ � 1

4
for ´ 2 U QX.0; 1=˛/.

Suppose that fU.xn; rn/g1nD1 is an open covering of ˝. Put

an D
r2mn

2n.1C kxnk/2m

Then

an
�
Im q

�
.x � xn C ´/=.˛rn/

��2
� an

ˇ̌
q
�
.x � xn C ´/=.˛rn/

�ˇ̌2
� ankqk

2kx � xn C ´k
2m

.˛rn/2m

�
kqk2

˛2m
kx � xn C ´k

2m

2n.1C kxnk/2m
�
kqk2

˛2m

�
1C kxk C k´k

�2m 1
2n

and hence for every x 2 X the sum in (13) converges absolutely locally uniformly to a continuous
function on QX . Thus the hypotheses of Lemma 24 are satisfied and using it together with
Lemma 23 we can conclude that for any Banach space Z and any continuous mapping f 2
C.˝IZ/ there is a mapping h 2 C!.˝IZ/ satisfying kf � hk˝ � 1. Finally Lemma 25
applied to S D C!.˝IY / and S1 D C!.˝/ finishes the proof.

ut

PROOF OF THEOREM 22. By Theorem 1.171 there are d > 0 and a function q 2 H.G/,
G D f´ 2 QX I kIm ´k < dg, such that q�X W X ! Œ0;C1/, q.0/ D 0, q.x/ � 2 for
x 2 X n UX , and the radius of norm convergence of the Taylor series of q at every point x 2 X
is at least d . Let ˛ > 0 be such that Re q.´/ � 1

4
for ´ 2 U QX.0; 1=˛/ and 1

2
˛d > 1.

Suppose fU.xn; r/g1nD1 is a uniform open covering of ˝. Put

Mn D sup
nˇ̌
q
�
.xj � xn C w/=.˛r/

�ˇ̌
I w 2 QX; kwk � 1

2
˛rd; 1 � j � n

o
and an D 1=.2nM 2

n /. (Note that by the assumption on the radius of the Taylor seriesMn < C1.)
Fix x 2 ˝. There is k 2 N such that x 2 U.xk; r/. For ´ 2 QX , k´k � r.1

2
˛d � 1/ we have

kx � xk C ´k �
1
2
˛rd and hence for n � k

an
�
Im q

�
.x � xn C ´/=.˛r/

��2
� an

ˇ̌
q
�
.xk � xn C x � xk C ´/=.˛r/

�ˇ̌2
� anM

2
n D

1

2n
:

Therefore the sum in (13) converges absolutely uniformly on B QX
�
0; r.1

2
˛d �1/

�
to a continuous

function. Using Lemma 24 together with Lemma 23 and a suitable scaling finishes the proof.
ut

The space c0 does not admit a separating polynomial (Proposition 5.49 or Corollary 3.59),
but it has property (K) (take Pn.x/ D

�
e�n.x/

�2n in Example 1.137 and combine it with Co-
rollary 1.165). The property (K) is inherited by subspaces and finite direct sums. In certain
circumstances it can also pass to infinite direct sums: Assume that all members of a sequence
of Banach spaces fXng have property (K) witnessed by non-negative functions qn with radii
at least dn and satisfying qn.0/ D 0 and qn.x/ � 1 whenever kxk � 1. Suppose that there are
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0 < d � 1
2

infn2N dn and a sequence f˛ng � N such that supn2N sup´2B zXn .0;d/j Qqn.´/j
˛n < 1,

where Qqn is the analytic extension of qn to a neighbourhood of Xn in zXn (Theorem 1.171). Then�L1
nD1Xn

�
c0

has property (K) witnessed by q.x1; x2; : : : / D
P1
nD1 qn.xn/

2n˛n with radii at
least d (use Corollary 1.165). Thus for example

�
c0 ˚

L1
nD1 `2n

�
c0

has property (K).
By Theorem 5.64 a space with property (K) that does not contain c0 admits a separating poly-

nomial. By Corollary 5.68 every space with (K) is saturated by spaces from f p̀I p eveng [ fc0g.
Let us mention without proof the next result, which should be compared with Corollary 5.105.

PROPOSITION 26 ([CH]). Let X be a Banach space with property .K/ such that all poly-
nomials on X are weakly sequentially continuous. Then X is isomorphic to a subspace of
c0.

Whence all Banach spaces with the Dunford-Pettis property and (K) are isomorphic to
subspaces of c0 (Theorem 3.68). In particular, since every C.K/ space which is isomorphic to a
subspace of c0 is isomorphic to c0 [LP], we have the following corollary:

COROLLARY 27. If the Banach space C.K/ has property (K), then it is isomorphic to c0.

4. Infimal convolution
The infimal convolution is another global approximation technique, which similarly to the

integral convolution preserves certain regularity properties of the approximated function, like
for example the Lipschitzness. The undisputable advantage is that it does not need any finite-
dimensional structure and it works equally well even on non-separable spaces. The drawback is
that this technique is fundamentally scalar and also it usually produces only smoothness of the
first order. The notion goes back to Felix Hausdorff around 1919.

DEFINITION 28. Let X be a set, f W X ! R [ fC1g, and K W X2 ! R [ fC1g. We
define the infimal convolution of f and K by

.f �K/.x/ D inf
y2X

�
f .y/CK.x; y/

�
; x 2 X:

The function K is called a kernel. If .X;C/ is a commutative group, then we associate with
each g W X ! R [ fC1g the kernel Kg.x; y/ D g.x � y/. We may then define the infimal
convolution of f and g as f � g D f �Kg , i.e.

.f � g/.x/ D inf
y2X

�
f .y/C g.x � y/

�
:

Note that in this case f � g D g � f .

FACT 29. Let X be a set, f W X ! R [ fC1g, and K W X2 ! R.
(i) If K.x; x/ D 0 for every x 2 X , then f �K � f .

(ii) If f is proper, then f �K < C1 everywhere.
(iii) If X is a metric space, f is proper, and the functions x 7! K.x; y/, y 2 X , are uniformly

continuous with modulus ! 2 M, then either f � K is identically �1, or f � K is
real-valued and uniformly continuous with modulus !.

PROOF. Both (i) and (ii) are obvious.
(iii) Let � be the metric on X . Suppose there is ´ 2 X such that .f �K/.´/ D �1. Then

there is a sequence fyng in X satisfying f .yn/CK.´; yn/ < �n for each n 2 N . Now for any
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x 2 X we have .f �K/.x/ � f .yn/CK.x; yn/ D f .yn/CK.´; yn/�K.´; yn/CK.x; yn/ <
�nC!.�.x; ´//, which implies that .f �K/.x/ D �1. Therefore f �K is either identically
�1, or f �K is real-valued and uniformly continuous with modulus !, as it is an infimum of
a family of uniformly continuous functions with modulus !.

ut

The following extension lemma is useful for example when we deal with smooth approxima-
tions of Lipschitz functions defined on some subset of a normed linear space X : It suffices to
formulate the approximation results for functions defined on the whole of X .

LEMMA 30. Let .P; �/ be a metric space, ; ¤ A � P , and f W A ! R a uniformly
continuous function with modulus ! 2Ms. Then there is an extension of f to the whole of P
which is uniformly continuous with modulus !.

PROOF. Define Nf W P ! R by Nf D f on A and Nf D C1 on P n A. Put g D Nf � .! B �/.
Then

g.x/ D inf
y2A

�
f .y/C !

�
�.x; y/

��
For any x; y 2 A we have f .x/�f .y/ � !.�.x; y// and hence f .x/ � f .y/C!.�.x; y//. It
follows that f � g on A. This together with Fact 29(i) implies that g D f on A. Consequently
by Fact 29(iii) g is real-valued and uniformly continuous with modulus !.

ut

The next lemma tells us that the results on uniform approximation of Lipschitz functions
immediately give also approximation of uniformly continuous functions.

LEMMA 31. Let .P; �/ be a metric space, f W P ! R a uniformly continuous function with
modulus ! 2 Ms, and " > 0. Further, let a 2 RC be such that !.a/ � ". Then there is an
"
a

-Lipschitz function g W P ! R such that jf � gjP � ".

PROOF. We let g D f � "
a
�. Fix x 2 P . Clearly g.x/ � f .x/ (Fact 29(i)). From the sub-

additivity of ! it follows that for any y 2 P

f .x/ � f .y/ � !
�
�.x; y/

�
� !

��
�.x; y/

a

�
a

�
�

�
�.x; y/

a

�
!.a/ �

�
�.x; y/

a
C 1

�
":

Thus f .y/C "
a
�.x; y/ � f .x/�", which implies that g.x/ � f .x/�". Finally, g is "

a
-Lipschitz

by Fact 29(iii).
ut

THEOREM 32 (Jean-Michel Lasry and Pierre-Louis Lions, [LL]). Let H be a Hilbert
space, f W H ! R an L-Lipschitz function, and " > 0. Then there is an L-Lipschitz function
g 2 C 1;1.H/ satisfying jf � gjH � ".

For the proof we need a few auxiliary results concerning convex functions.

LEMMA 33. Let X be a normed linear space, f 2 C.X/, and suppose there exist functions
�; � 2 C 1;˛.X/, ˛ 2 .0; 1�, such that f C� is convex and f �� is concave. Then f 2 C 1;˛.X/.

PROOF. It clearly suffices to show that f C � 2 C 1;˛.X/ which we show using Lemma 5.20.
Notice that �C � D .f C�/C .�f C �/ is necessarily convex. From the concavity of f � � it
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follows that .f � �/.xC h/C .f � �/.x � h/� 2.f � �/.x/ � 0 for any x; h 2 X and hence

.f C �/.x C h/C .f C �/.x � h/ � 2.f C �/.x/

� .f C �/.x C h/C .f C �/.x � h/ � 2.f C �/.x/

�
�
.f � �/.x C h/C .f � �/.x � h/ � 2.f � �/.x/

�
D .�C �/.x C h/C .�C �/.x � h/ � 2.�C �/.x/ � Ckhk1C˛;

where the last inequality follows from Lemma 5.20 used on �C �.
ut

Let X be a normed linear space. For any f W X ! R [ fC1g and t > 0 we define the
Moreau-Yosida regularisation ft D f � 1

2t
k�k2. We note that the constant 1

2
is useless (and

perhaps even annoying) in our proofs but using this particular kernel is customary in convex
analysis for many good reasons.

FACT 34. Let H be a Hilbert space and f W H ! R [ fC1g a proper function.

(i) The extended real-valued function �ft C 1
2t
k�k2 is convex for every t > 0.

(ii) Suppose that f is real-valued and f C 1
2t
k�k2 is convex for some t > 0. Then fsC 1

2.t�s/
k�k2

is convex for every 0 < s < t .

PROOF. (i) This follows from the fact that

�ft.x/C
1

2t
kxk2 D � inf

y2H

�
f .y/C

1

2t
kx � yk2

�
C
1

2t
kxk2

D sup
y2H

�
1

2t

�
kxk2 � kx � yk2

�
� f .y/

�
D sup

y2H

�
1

t
hx; yi �

1

2t
kyk2 � f .y/

�
;

which is a supremum of affine functions.
(ii) We have

fs.x/C
1

2.t � s/
kxk2 D inf

y2H

�
f .y/C

1

2s
kx � yk2 C

1

2.t � s/
kxk2

�
D inf

y2H

�
f .y/C

1

2t
kyk2 C

1

2s
kx � yk2 C

1

2.t � s/
kxk2 �

1

2t
kyk2

�
D inf

y2H

 
f .y/C

1

2t
kyk2 C

t � s

2st

 t

t � s
x � y

2
!
:

It is easy to verify that for any convex function � W X � Y ! R, where X , Y are vector spaces,
the function x 7! infy2Y �.x; y/ is also convex (“a convex body casts a convex shadow”), from
which the result follows if we set �.x; y/ D f .y/C 1

2t
kyk2 C t�s

2st
k
t
t�s
x � yk2.

ut
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PROOF OF THEOREM 32. For every C -Lipschitz function h W H ! R we have lim
t!0C
jht �

hjH D 0. Indeed,

0 � h.x/ � ht.x/ D h.x/ � inf
y2H

�
h.y/C

1

2t
kx � yk2

�
D h.x/C sup

y2H

�
�h.y/ �

1

2t
kx � yk2

�
D sup

y2H

�
h.x/ � h.y/ �

1

2t
kx � yk2

�
� sup
y2H

�
Ckx � yk �

1

2t
kx � yk2

�
D sup

ı2Œ0;C1/

�
Cı �

1

2t
ı2
�
D
C 2t

2

for any x 2 H , where the first inequality follows from Fact 29(i). Moreover, as ht D 1
2t
k�k2�h,

each ht is C -Lipschitz by Fact 29(iii).
So choose t > 0 such that jft � f jH � "

2
. Then ft is L-Lipschitz. Next, find 0 < s < t

such that
ˇ̌
.�ft/s � .�ft/

ˇ̌
H
�

"
2

and put g D �.�ft/s. Then jf � gjH � " and the function
g is L-Lipschitz.

Further, the function �ft C 1
2t
k�k2 is convex by Fact 34(i), and hence the function g �

1
2.t�s/

k�k2 is concave by Fact 34(ii). Using Fact 34(i) again, this time on the function �ft , we
can conclude that gC 1

2s
k�k2 is convex. Since the function k�k2 is a 2-homogeneous polynomial,

it belongs to C 1;1.H/, and so Lemma 33 finishes the proof.
ut

Another nice application of the infimal convolution gives the next result.

PROPOSITION 35 ([We]). Let A be a closed subset of a Hilbert space H . Then there is a
function f 2 C 1;1.H/ such that A D f �1.f0g/.

PROOF. Let IA W H ! R [ fC1g be the indicator function of the set A, i.e. IA.x/ D 0 for
x 2 A and IA D C1 for x 2 H n A. We let f D �

�
�.IA/1

�
1
2

. Without loss of generality
we may assume that A is non-empty and hence IA is proper. It is easy to see that .IA/t.x/ D
1
2t

dist2.x; A/ for every x 2 H , t > 0. Thus .IA/1 is real-valued and using Fact 34 similarly as
in the proof of Theorem 32 we can conclude that f C k�k2 is convex and f � k�k2 is concave.

Next, notice the following observation: Suppose that h W X ! R[fC1g is a proper function
on a normed linear space X and 0 < s < t . For any x; y; ´ 2 X we have

1

2t
k´ � yk2 D

1

2t

st
�
t

s
.´ � x/

�
C

�
1 �

s

t

�� t

t � s
.x � y/

�2
�
1

2t

 
s

t

 ts .´ � x/
2 C �1 � st �

 t

t � s
.x � y/

2
!

D
1

2s
k´ � xk2 C

1

2.t � s/
kx � yk2;
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where we used the convexity of k�k2. From this and Fact 29(i) we obtain

ht.x/ � �.�ht/s.x/ D sup
´2X

inf
y2X

�
h.y/C

1

2t
k´ � yk2 �

1

2s
kx � ´k2

�
� sup
´2X

inf
y2X

�
h.y/C

1

2.t � s/
kx � yk2

�
D ht�s.x/ for every x 2 X .

This gives us 1
2

dist2.x; A/ � f .x/ � dist2.x; A/ for every x 2 H . It follows that f �1.f0g/ D
A and that f C k�k2 is locally bounded and thus convex continuous. Now Lemma 33 implies
that f 2 C 1;1.H/.

ut

5. Approximation of continuous mappings and partitions of
unity

In this section we investigate smooth partitions of unity, the main tool for obtaining C k-
smooth approximations of continuous mappings in Banach spaces. We show that several rather
general classes of Banach spaces admit C k-smooth approximations provided they have a C k-
smooth bump. This applies especially to separable spaces, WCG spaces, or C.K/ spaces. We
finish by showing that super-reflexive spaces admit partitions of unity consisting of functions
with Hölder derivative.

DEFINITION 36. Let � be a class of functions. We say that a topological space X admits �-
partitions of unity if for any open covering U ofX there is a partition of unity onX subordinated
to U such that each member of the partition belongs to � .

DEFINITION 37. A family of subsets of a topological space X is called
� locally finite if for each point x 2 X there is a neighbourhood of x that meets only finitely

many members of this family;
� discrete if for each point x 2 X there is a neighbourhood of x that meets at most one

member of this family;
� � -locally finite if it can be decomposed into countably many locally finite families;
� � -discrete if it can be decomposed into countably many discrete families.

A family of subsets of a metric space P is called
� uniformly discrete if there is d > 0 such that the distance of any two members of this

family is at least d ;
� �-uniformly discrete if it can be decomposed into countably many uniformly discrete

families.
A partition of unity f ˛g˛2� is called locally finite if fsuppo ˛g˛2� is locally finite, it is called
� -discrete if fsuppo ˛g˛2� is � -discrete, and it is called � -uniformly discrete if fsuppo ˛g˛2�
is � -uniformly discrete.

If � is a class of mappings, then we use the notation S.X IY / D � \Y X , i.e. S.X IY / is the
set of mappings from X to Y that belong to � . A class of C k-smooth mappings will be denoted
by Ck and similarly for other smoothness classes from Section 1.5.
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DEFINITION 38. Let P be a metric space and S � C.P / a ring of functions. We say that S
is a partition ring if it satisfies the following conditions:

(i) For each S0 � S with fsuppo f I f 2 S0g uniformly discrete in P and suppo f bounded
for each f 2 S0 there is a g 2 S with suppo g D

S
f 2S0

suppo f .
(ii) Let f 2 S and suppo f D U1 [ U2, where U1 and U2 are open subsets of P with

dist.U1; U2/ > 0. Then �U1 � f 2 S .
(iii) For each f 2 S bounded below and " > 0 there is a g 2 S such that 0 � g � 1,

f �1
�
.�1; "�

�
� g�1.f0g/ and f �1

�
Œ2";C1/

�
� g�1.f1g/.

Note that if S � C.P / is such that it is for example stable under composition with functions
in C1.R/ that have zero derivative outside a bounded interval, then S satisfies the condition
(iii) in the above definition. Indeed, if f 2 S and " > 0, then we find � 2 C1.RI Œ0; 1�/ such
that �.t/ D 0 for t � " and �.t/ D 1 for t � 2" (Fact 2), and we set g D � B f . Then g 2 S
and has the properties required in (iii).

Examples of partition rings: C k-smooth functions on normed linear spaces, smooth bounded
Lipschitz functions, or smooth bounded Lipschitz functions with Hölder derivatives (see the
proof of Theorem 48).

DEFINITION 39. Let � be a class of mappings defined on a topological space X . We say
that � is determined locally if whenever f is a mapping defined on X such that for every x 2 X
there are a neighbourhood U of x and a mapping g 2 � such that f D g on U , then f 2 � .

Examples of classes determined locally are Ck classes or class of continuous Gâteaux
differentiable mappings. Note that if a ring of functions on a metric space is determined locally,
then conditions (i) and (ii) in the definition of a partition ring are automatically satisfied.

LEMMA 40. Let P be a metric space and S a partition ring of functions on P . Consider the
following statements.

(i) For every A � W � P , A closed and W open there is ' 2 S such that ' D 1 on A and
suppo ' � W .

(ii) For every V � W � P bounded open sets satisfying dist.V; P nW / > 0 there is ' 2 S
such that V � suppo ' � W .

(iii) For every V � W � P bounded open sets satisfying dist.V; P nW / > 0 there are 'n 2 S ,
n 2 N, such that V �

S
n2N suppo 'n � W .

(iv) The family fsuppo f I f 2 Sg contains a � -uniformly discrete basis for the topology of P .
(v) The space P admits locally finite and � -uniformly discrete S -partitions of unity.

(vi) The space P admits locally finite S -partitions of unity.
(vii) The family fsuppo f I f 2 Sg contains a � -locally finite basis for the topology of P .
Then (i))(ii))(iii))(iv),(v))(vi))(vii). If S is moreover determined locally, then all seven
statements are equivalent.

We note that the � -uniformly discrete partitions of unity will prove very useful in Sections 7
and 8, as they allow us to use certain separable techniques in a non-separable setting.

PROOF. (i))(ii))(iii) is obvious.
(iii))(iv) Let Um D fU

m
˛ g˛2�m be a uniform covering of P by open balls with radius

1
m

. By Lemma 8 there are open refinements fV mn˛gn2N;˛2�m , fW m
n˛gn2N;˛2�m of Um such that

V mn˛ � W
m
n˛ � U

m
˛ , dist.V mn˛; P nW

m
n˛/ � 2

�n and the family fW m
n˛g˛2�m is uniformly discrete

for all n 2 N. Thus, by (iii), there are 'm
n˛k
2 S such that V mn˛ �

S
k2N suppo '

m
n˛k
� W m

n˛. The
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family fsuppo '
m
n˛k
I m; n; k 2 N; ˛ 2 �mg is therefore a �-uniformly discrete basis for the

topology of P .
(iv))(v) Let U be an open covering of P . We construct a locally finite and �-uniformly

discrete S -partition of unity subordinated to U. Without loss of generality we may assume that
U consists of bounded sets. By (iv) there are Sj � S , j 2 N, such that fsuppo f I f 2 Sj g are
uniformly discrete and fsuppo f I f 2 Sj ; j 2 Ng is an open covering of P that refines U. By
property (i) of a partition ring there are functions fj 2 S such that suppo fj D

S
f 2Sj

suppo f .
Replacing fj by f 2j if necessary we may assume that fj � 0. By property (iii) of a partition ring
there are functions gjk 2 S such that 0 � gjk � 1, suppo gjk � suppo fj , and f �1j

�
Œ 1
k
;C1/

�
�

g�1
jk
.f1g/. Let n 7! .jn; kn/ be a bijection of N onto N �N and put 'n D gjnkn .
Now for n 2 N let  n D 'n

Qn�1
kD1.1 � 'k/. Then  n 2 S (as S is a ring) and f ngn2N

is a locally finite partition of unity on P . Indeed, for any x 2 P there is j 2 N such that
x 2 suppo fj and hence there are a neighbourhood U of x and k 2 N such that fj .y/ > 1

k
for

y 2 U . It follows that gjk.y/ D 1 for y 2 U . Let m 2 N be such that j D jm and k D km.
Choose any y 2 U . Then 'm.y/ D gjk.y/ D 1 and hence  n.y/ D 0 for n > m. Since

.1 � '1/.1 � '2/ � � � .1 � 'm/ D 1 �  1 � � � � �  m;

it follows that
P1
nD1 n.y/ D

Pm
nD1 n.y/ D 1.

Finally, for n 2 N and f 2 Sjn let  n;f D �suppo f �  n. Using the fact that suppo n �

suppo 'n � suppo fjn and the uniform discreteness of fsuppo f I f 2 Sjng it follows thatP
f 2Sjn

 n;f D  n and from property (ii) of a partition ring also that  n;f 2 S . As moreover
suppo n;f � suppo f , we can conclude that f n;f gn2N;f 2Sjn is a locally finite, �-uniformly
discrete S -partition of unity on P subordinated to U.

(v))(iv) Let Um be a uniform covering of P by open balls with radius 1
m

. By (v) there is an
S -partition of unity f mn˛gn2N;˛2�m subordinated to Um such that fsuppo n˛g˛2�m is uniformly
discrete for each n 2 N. It follows that the family fsuppo 

m
n˛I m 2 N; n 2 N; ˛ 2 �mg is a

� -uniformly discrete basis for the topology of P .
(v))(vi) is obvious.
(vi))(vii) Let Um be a uniform covering of P by open balls with radius 1

m
. By (vi) there is

a locally finite S-partition of unity f m˛ g˛2�m subordinated to Um. It follows that the family
fsuppo 

m
˛ I m 2 N; ˛ 2 �mg is a � -locally finite basis for the topology of P .

Now suppose that S is determined locally.
(vi))(i) Let f ˛g˛2� be a locally finite S-partition of unity subordinated to the open

covering fW;P n Ag of P . Let �1 D f˛ 2 �I suppo ˛ � W g and put ' D
P
˛2�1

 ˛. As
the sum is locally finite and S is determined locally, ' 2 S . Obviously suppo ' � W . Further,
suppo ˛ � P n A for ˛ 2 � n�1 and hence '.x/ D

P
˛2�1

 ˛.x/ D
P
˛2� ˛.x/ D 1 for

x 2 A.
(vii))(iii) By (vii) there is f'n˛I n 2 N; ˛ 2 �ng � S such that V D

S
n2N;˛2�n

suppo 'n˛
and fsuppo 'n˛g˛2�n is locally finite for each n 2 N. Put 'n D

P
˛2�n

'2n˛. As the sum is
locally finite and S is a ring determined locally, 'n 2 S . Further, suppo 'n D

S
˛2�n

suppo 'n˛,
hence (iii) follows.

ut

COROLLARY 41 ([BF]). Let X be a separable normed linear space and S a partition ring
on X such that for every f 2 S , a 2 R, and b 2 X the function g.x/ D f .ax C b/ belongs
to S . Then X admits locally finite and �-uniformly discrete S-partitions of unity if and only
there is a bump function in S .
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PROOF. Suppose ' 2 S is a bump function. Since S is stable under shifts and scaling, we may
suppose that '.0/ > 0 and suppo ' � UX . By the continuity of ' there is 0 < r < 1 such that
' > 0 on U.0; r/.

We show that (iii) in Lemma 40 is satisfied. So let V � W � X be bounded open sets
satisfying dist.V; P nW / D ı > 0. By the Lindelöf property of V there is a countable subset
fxngn2N of V such that V �

S
n2N U.xn; ır/. We put 'n.x/ D '

�
.x � xn/=ı

�
. Then 'n 2 S

and V �
S
n2N U.xn; ır/ �

S
n2N suppo 'n �

S
n2N U.xn; ı/ � W .

The reverse implication is clear for example from Lemma 40(vii).
ut

COROLLARY 42. Let P be a metric space, Q � P , let R be a partition ring on P and S a
partition ring on Q such that each function from R restricted to Q belongs to S . If P admits
locally finite and �-uniformly discrete R-partitions of unity, then Q admits locally finite and
� -uniformly discrete S -partitions of unity.

PROOF. By the equivalence of (iv) and (v) in Lemma 40 the family fsuppo f I f 2 Rg contains
a � -uniformly discrete basis B for the topology of P . Consider the family A D fG \QI G 2
Bg. It is clear that A is a �-uniformly discrete basis for the topology of Q. Moreover, A �
fsuppo f I f 2 Sg. Indeed, if G 2 A, then there is f 2 R such that G D suppo f \Q. Then
suppo f �Q D fx 2 QI f .x/ ¤ 0g D suppo f \Q D G and f �Q 2 S . Now it suffices to
apply Lemma 40 again.

ut

DEFINITION 43. Let Y be a class of normed linear spaces and � be a class of mappings
from a metric space P into spaces from Y. We say that � is an approximation class if
� � is determined locally,
� S.P IR/ is a partition ring,
� f C g 2 � whenever f; g 2 � map into the same space,
� for every Y 2 Y, every y 2 Y , and every ' 2 S.P I Œ0; 1�/ the mapping x 7! '.x/y

belongs to � .

Notice that the second property implies that the class Y must contain at least R.
The following theorem goes back to Kazimierz Kuratowski around 1922.

THEOREM 44. Let P be a metric space and � an approximation class on P . Then the
following statements are equivalent:

(i) P admits locally finite �-partitions of unity.
(ii) For any convex subset C of a normed linear space of class Y, any f 2 C.P IC/, and any

" 2 C.P IRC/ there is g 2 S.P IC/ such that kf .x/ � g.x/k < ".x/ for every x 2 P .
(iii) For any 1-Lipschitz f W P ! Œ0; 1� and any " > 0 there is g 2 S.P IR/ such that
jf � gjP � ".

PROOF. (i))(ii) For each x 2 P find r.x/ > 0 such that

".y/ >
".x/

2
and kf .y/ � f .x/k <

".x/

2
for each y 2 U.x; r.x//.

It follows that
kf .y/ � f .x/k < ".y/ for each y 2 U.x; r.x//. (14)

By (i) there is a locally finite �-partition of unity f ˛g˛2� on P subordinated to the covering
fU.x; r.x//I x 2 P g. For each ˛ 2 � let U˛ D U.x˛; r.x˛// be such that suppo ˛ � U˛.
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Define
g.x/ D

X
˛2�

 ˛.x/f .x˛/: (15)

By the properties of � each mapping  ˛f .x˛/ belongs to � as well as finite sums of these
mappings. Since the sum in the definition of g is locally finite and � is determined locally, g 2 � .
Moreover, as g.x/ is a convex combination of points from C for every x 2 P , g 2 S.P IC/.
Finally, choose any x 2 P . Then

kf .x/ � g.x/k D

X
˛2�

 ˛.x/
�
f .x/ � f .x˛/

� � X
˛2� W x2U˛

 ˛.x/kf .x/ � f .x˛/k

< ".x/
X

˛2� W x2U˛

 ˛.x/ D ".x/;

where the last inequality follows from (14).
(ii))(iii) is obvious.
(iii))(i) We show that the condition (ii) in Lemma 40 is satisfied. Let V � W � P

be bounded open sets satisfying dist.V; P n W / > 3ı for some 0 < ı < 1
3
. Put f .x/ D

minfdist.x; P nW /; 1g. By (iii) there is g 2 S.P IR/ such that jf � gjP � ı. Then g � ı on
P nW and g > 2ı on V . By property (iii) of a partition ring there is ' 2 S.P IR/ such that
' D 0 on P nW and ' > 0 on V .

ut

Next we show how to construct smooth partitions of unity on various classes of Banach
spaces. In the following theorem the mapping ˚ introduces a “coordinate system” on X ,
while the mappings PF serve as the “projections” associated to this “coordinate system”. The
requirement is that for every x 2 X if we take “large coordinates of x”, then the associated
“projection” approximates x well.

THEOREM 45 ([H]). LetX be a normed linear space that admits aC k-smooth bump function,
k 2 N [ f1g. Let � be a set and ˚ W X ! c0.� / a continuous mapping such that for every
 2 � the function e� B ˚ is C k-smooth on the set where it is non-zero. For each finite F � �
let PF 2 C k.X IX/ be such that the space spanPF .X/ admits locally finite Ck-partitions of
unity. Assume that for each x 2 X and each " > 0 there exists ı > 0 such that kx�PF .x/k < "
if we set F D f 2 � I j˚.x/./j � ıg. Then X admits locally finite and �-uniformly discrete
Ck-partitions of unity.

PROOF. Denote by F a set of all finite subsets of � (including an empty set). For any q 2 RC

let �q 2 C1.RI Œ0; 1�/ be such that �q.t/ D 0 for jt j � q, 0 < �q.t/ < 1 for q

2
< jt j < q,

and �q.t/ D 1 for t 2 Œq
2
; q
2
� (Fact 2). For each F 2 F and q; r 2 RC we define a function

'F;q;r W c0.� /! R by

'F;q;r.x/ D
Y
2F

�
1 � �2r

�
x./

�� Y
2� nF

�q
�
x./

�
:

For x 2 c0.� / let H D f 2 � I jx./j � q

4
g. Then H 2 F and jy./j < q

2
for y 2 U.x; q

4
/,

 2 � nH . Thus

'F;q;r.y/ D
Y
2F

�
1 � �2r

�
y./

�� Y
2HnF

�q
�
y./

�
(16)
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for y 2 U.x; q
4
/, which implies that 'F;q;r is LFC-fe� g2� and 'F;q;r 2 C1.c0.� /I Œ0; 1�/. It

is easy to check that suppo 'F;q;r D WF;q;r , where

WF;q;r D
n
x 2 c0.� /I min

2F
jx./j > r; sup

2� nF

jx./j < q
o
:

Notice that dist.WF;q;r ; WH;q;r/ � r � q whenever F;H 2 F , F ¤ H , and r > q. Therefore
the family fWF;q;r I F 2 F ; q; r 2 Q; r > q > 0g is � -uniformly discrete.

Further, 'F;q;r B ˚ 2 C k.X/. This follows from (16), the fact that �s B e� B ˚ 2 C
k.X/ for

each  2 � and s 2 RC, and the continuity of ˚ .
Note that C k.Z/, where Z is a normed linear space, is a partition ring determined locally.

By the hypothesis and Lemma 40 for each F 2 F there is a � -discrete basis VF for the topology
of spanPF .X/ formed by the sets in fsuppo f I f 2 C

k.spanPF .X//g. Further, as X admits a
C k-smooth bump function, the family fsuppo f I f 2 C

k.X/g contains a neighbourhood basis
of 0, say fUmgm2N .

In X consider the family˚
˚�1.WF;q;r/ \ P

�1
F .V / \ .Id � PF /

�1.Um/I F 2 F; q; r 2 Q; 0 < q < r; V 2 VF ; m2 N
	
:

Using the continuity of ˚ it is easy to verify that this is a � -discrete (and in particular � -locally
finite) subfamily of fsuppo f I f 2 C

k.X/g (notice that ˚�1.WF;q;r/ D suppo 'F;q;r B ˚). To
finish the proof using Lemma 40 we need to show that this family forms a basis for the topology
of X .

To this end choose x 2 X and " > 0. Let m 2 N be such that Um � U.0; "6/ and further let
ı > 0 be such that

x � PF .x/ 2 Um

when we set F D f 2 � I j˚.x/./j � ıg. Because ˚.x/ 2 c0.� /, there exist q; r 2 Q with
0 < q < r < ı satisfying j˚.x/./j < q whenever  2 � n F . Thus x 2 ˚�1.WF;q;r/. Since
VF is a basis for the topology of spanPF .X/, there exists V 2 VF such that

PF .x/ 2 V � U
�
PF .x/;

"

3

�
:

It follows that x 2 ˚�1.WF;q;r/ \ P �1F .V / \ .Id � PF /
�1.Um/. If y is any other member of

this set, then we have kPF .x/ � PF .y/k < "
3

because PF .y/ 2 V , while kPF .y/ � yk < "
3

because y � PF .y/ 2 Um. Thus kx � yk < ", which is what we wanted to prove.
ut

COROLLARY 46 ([H]). Let X be a normed linear space that admits a C k-smooth bump
function, k 2 N [ f1g. Let � be a limit ordinal and let fP˛ 2 C k.X IX/I ˛ < �g be an
equi-continuous family of mappings having the property that for every x 2 X the mapping
Px W Œ0; ��! X defined by Px.˛/ D P˛.x/ for ˛ < �, Px.�/ D x, is continuous. If for each
˛ < � the space spanP˛.X/ admits locally finite Ck-partitions of unity, then so does X .

PROOF. Since X admits a C k-smooth bump function, there exist a function h 2 C k.X I Œ0; 1�/
and � > 0 such that h.x/ D 0 for kxk � �, while h.x/ D 1 whenever kxk � 1. We set
� D Œ0; �/ �N and define ˚ W X ! `1.� / by

˚.x/.˛; n/ D 2�nh
�
2n.P˛C1.x/ � P˛.x//

�
:

We note that the enlargement of the index set by the factor N would not be necessary if we knew
that h is zero only at the origin. Such function however may not exist, cf. Theorem 5.161.
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Given x 2 X and " > 0 we fix m 2 N such that 2�m < " and note that the quantity
kP˛C1.x/ � P˛.x/k can exceed 2�m�

2
only for ˛ in some finite H � Œ0; �/. Indeed, otherwise

there would be an increasing sequence f˛ng of ordinals with kP˛nC1.x/ � P˛n.x/k > 2�m�
2
,

which contradicts the continuity of Px at the ordinal sup˛n D lim˛n. We thus have 0 �
˚.x/./ < " except when  2 K D H � f0; 1; 2; : : : ; m � 1g. This shows that ˚ maps into
c0.� /. Furthermore, because of the equi-continuity of fP˛g˛<�, there is a neighbourhood U
of x such that kP˛C1.y/ � P˛.y/k < 2�m� for y 2 U and ˛ 2 Œ0; �/ n H . It follows that
j˚.x/./�˚.y/./j < " for y 2 U ,  2 � nK. Since K is finite, there is a neighbourhood V
of x such that k˚.x/ � ˚.y/k1 < " whenever y 2 V . This shows that ˚ is continuous.

To define the “projections associated to ˚” we set P; D P0 and PF D P˛.F /C1 where, for
a finite non-empty subset F of � , ˛.F / D maxf˛I .˛; n/ 2 F for some n 2 Ng. Notice that
since � is a limit ordinal, ˛.F /C 1 < � and PF is thus well-defined. We shall show that the
hypothesis of Theorem 45 is satisfied. Given x 2 X and " > 0 it may be that kx � P˛.x/k < "
for all ˛ < �; in this case there is clearly no problem. Otherwise, there is a maximal ˇ < � with
kx � Pˇ .x/k � ". (Set ˇ D minf 2 Œ0; �/I kx � P˛.x/k < " for all  < ˛ < �g and use the
continuity of Px.) It follows that kPˇC1.x/ � Pˇ .x/k � kx � Pˇ .x/k � kx � PˇC1.x/k �
" � kx � PˇC1.x/k > 0. Now we fix m 2 N such that 2mkPˇC1.x/ � Pˇ .x/k � 1, noting
that ˚.x/.ˇ;m/ D 2�m, and set ı D 2�m. If F D f.˛; n/ 2 � I j˚.x/.˛; n/j � ıg, then
.ˇ;m/ 2 F and so ˛.F / � ˇ, whence kx � PF .x/k < ", as required.

ut

We say that a class X of Banach spaces is a P -class if for every non-separable X 2 X there
exists a projectional resolution of the identity fP˛I ! � ˛ � �g on X such that P˛.X/ 2 X for
all ˛ < �, where � is the first ordinal with cardinality densX . (We remark that this definition
is slightly different from that of a P -class in [HMVZ].) Examples of P -classes are reflexive
spaces, WCG spaces, WCD spaces, WLD spaces, 1-Plichko spaces (see [KKL, Theorem 17.6]),
or duals of Asplund spaces.

The following theorem was shown for P -class spaces by Gilles Godefroy, Stanimir Troy-
anski, John Whitfield, and Václav Zizler in [GTWZ], for preduals of WCG spaces by David
McLaughlin in [McL], and for C.K/ spaces by Petr Hájek and Richard Haydon in [HH].

THEOREM 47. Let X be a Banach space such that

� X belongs to a P -class, or
� X D C.K/ for K compact, or
� X� is a WCG space.

The space X admits a C k-smooth bump function, k 2 N [f1g, if and only if for any open˝ �
X , any convex subset C of a normed linear space, any f 2 C.˝IC/, and any " 2 C.˝IRC/
there is g 2 C k.˝IC/ such that kf .x/ � g.x/k < ".x/ for every x 2 ˝.

PROOF. ( is obvious – to construct a C k-smooth bump function we just approximate the norm
and then compose the approximation with a suitable function from C1.R/.
) Note that the class of C k-smooth mappings from ˝ into normed linear spaces is an

approximation class. Further, by Corollary 42 and Lemma 40 the existence of locally finite
Ck-partitions of unity on ˝ follows from the existence of locally finite Ck-partitions of unity
on the whole of X . Thus it remains to prove that X admits locally finite Ck-partitions of unity.
The approximation then follows by Theorem 44.

First we consider the case that X belongs to a P -class X. We use transfinite induction
on the density of X . If X is separable, then by Corollary 41 the space X admits locally finite
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Ck-partitions of unity. Now suppose that X is non-separable and each space in X with density
smaller than densX admits locally finite Ck-partitions of unity. Let � be the first ordinal with
cardinality densX and fP˛I ! � ˛ � �g be a projectional resolution of the identity on X
with P˛.X/ 2 X for all ! � ˛ < �. Define P˛ D P! for ˛ 2 Œ0; !/. By the inductive
hypothesis all the spaces P˛.X/ admit locally finite Ck-partitions of unity, hence the hypotheses
of Corollary 46 are satisfied and X admits locally finite Ck-partitions of unity.

Next we consider the case X D C.K/, K compact. Since X admits a C k-smooth bump
function, X is an Asplund space (Corollary 5.3), which is equivalent to K being scattered
(Theorem 5.125). We will exploit this fact heavily in our construction. In particular, the zero-
dimensionality of K provides a rich supply of projections given by restrictions to clopen subsets
of K.

First we shall examine the structure of closed subsets of K. For each t 2 K there is a unique
ordinal ˛ D ˛.t/ such that t 2 K.˛/ n K.˛C1/. Since t is an isolated point of K.˛/ and K is
zero-dimensional, there is a clopen neighbourhood V of t such that V \K.˛/ D ftg; we choose
such a V and call it Vt . Note that Vt \ K.ˇ/ D ; for ˇ > ˛. For finite subsets B of K we
set VB D

S
t2B Vt . We shall say that a finite subset A of K is admissible if s … Vt whenever

s; t 2 A, s ¤ t .
Suppose that H is a closed subset of K. We claim that there is a unique admissible set A

with the property that A � H � VA. If H D ;, then this is obviously satisfied with A D ;
and no other. For a non-empty H we construct an admissible A with the required property. Let
˛0 D maxf˛I H \K.˛/ ¤ ;g; thusH \K.˛0/ is a non-empty finite set, which we shall call A0.
If H � VA0 , we set A D A0 and stop. Otherwise, we set H1 D H n VA0 , which is a closed set,
˛1 D maxf˛I H1\K

.˛/ ¤ ;g, and A1 D H1\K
.˛1/, and repeat the procedure. In this way we

construct a decreasing (and so necessarily finite) sequence ˛0 > ˛1 > � � � > ˛l of ordinals, and
finite sets Aj D

�
H n .VA0[� � �[VAj�1/

�
\K. j̨ /, j D 1; : : : ; l , such thatH � VA0[� � �[VAl .

By construction, the set A D A0 [ � � � [ Al is admissible and A � H � VA.
Now suppose that there are two different admissible sets B and D satisfying B � H � VB

and D � H � VD. Let ˇ D maxf˛I B \K.˛/ ¤ D \K.˛/g. Without loss of generality we
may assume that there is u 2 .B nD/ \K.ˇ/. Since u 2 B � H � VD, there is s 2 D such
that u 2 Vs. Because u 2 Vs \K.ˇ/ nD and K.˛.s// \ Vs D fsg, it must be that ˛.s/ > ˇ. By
the maximality of ˇ we have B \K˛.s/ D D \K˛.s/, whence s 2 B , which contradicts the
admissibility of B .

We now pass to the construction of partitions of unity. We shall proceed by transfinite
induction on the height of K. Let � be an ordinal satisfying ht.K/ D �C 1, i.e. K.�/ is finite
and non-empty. If � D 0, then C.K/ is finite-dimensional, and so has the required partitions of
unity for example by Corollary 41. For � > 0 we assume inductively that ifL is a compact space
with ht.L/ < �C 1 and such that C.L/ has a C k-smooth bump function, then C.L/ admits
locally finite Ck-partitions of unity. To show that C.K/ also admits locally finite Ck-partitions
of unity it will be enough to construct the partitions of unity on the finite-codimensional subspace
Z D ff 2 C.K/I f .t/ D 0 for all t 2 K.�/g. (Using Lemma 40 it is not difficult to ascertain
that whenever some normed linear spaces Y and Z admit locally finite Ck-partitions of unity,
then so does the space Y ˚Z.) To this end we construct the mappings required by Theorem 45.

Put � D Q � A, where Q is the set of all triples .�; �; �/ 2 Q3 with 0 < � < � < �,
and A consists of the admissible subsets A of K for which A \ K.�/ D ;. Let n W Q ! N
be some one-to-one mapping, ˇ�;� be as in Lemma 6, and � 2 C1.RI Œ0; 1�/ be such that
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��1.f0g/ D Œ�1; 1� (Fact 2). We define ˚ W Z ! `1.� / by

˚.f /.�; �; �; A/ D
1

n.�; �; �/
ˇ�;�.�KnVA � f /

Y
t2A

�

�
f .t/

�

�
:

Notice that as VA is clopen, �KnVA 2 C.K/. We shall show that ˚ is actually a continuous
mapping into c0.� /. To do so fix f 2 Z and " > 0. The quantity n.�; �; �/�1 is greater than
" only for .�; �; �/ in some finite subset R of Q. Put � D min

˚
1
2
.� � �/I .�; �; �/ 2 R

	
> 0.

For a given .�; �; �/ 2 R we have ˚.g/.�; �; �; A/ D 0 for each g 2 U.f;�/ unless A �
˚
t 2

KI jf .t/j � 1
2
.�C �/

	
� VA, which can happen for at most one set A 2 A, as we have shown

earlier. It follows easily that ˚ is a continuous mapping into c0.� /. Moreover, f 7! �KnVA � f

and f 7! f .t/ are bounded linear operators, whence each e� B ˚ ,  2 � , is C k-smooth.
Finally we define the associated projections PF W Z ! Z as follows: if F � � is a finite

subset with elements .�j ; �j ; �j ; Aj /, j D 1; : : : ; m, we set V.F / D
Sm
jD1 VAj , and define

PF .f / D �V.F / � f . Because V.F / is a clopen set with V.F / \ K.�/ D ;, PF is a well-
defined linear projection of norm 1, the image PF .Z/ is isometric to the space C.V.F //, and
ht.V .F // < �C1. Hence by the inductive hypothesis PF .Z/ admits locally finite Ck-partitions
of unity.

It only remains to check the required relation between ˚ and the projections. So let f 2 Z
and " > 0 be given. Let H D ft 2 KI jf .t/j � "g and let A be the admissible set such that
A � H � VA. Then A 2 A, since H \K.�/ D ; by the definition of Z. There is .�; �; �/ 2 Q
satisfying k�KnVA � f k1 � � < � < � < ". It follows that ˚.f /.�; �; �; A/ > 0. We set
ı D ˚.f /.�; �; �; A/, F D f 2 � I j˚.x/./j � ıg, and note that V.F / � VA. So

kf � PF .f /k1 D k�KnV.F / � f k1 � k�KnVA � f k1 < ":

For the proof of the case of X� being WCG see [McL].
ut

THEOREM 48 ([JTZ], [FWZ]). Let X be a Banach space and ˛ 2 .0; 1�. Then every open
subset of X admits locally finite and � -uniformly discrete C1;˛-partitions of unity if and only if
X admits an equivalent norm with modulus of smoothness of power type 1C ˛. In particular, a
super-reflexive Banach space admits locally finite and �-uniformly discrete C1;˛-partitions of
unity for some ˛ 2 .0; 1�.

For the proof we need two auxiliary statements.

LEMMA 49. Let � be a non-empty set, p; q 2 Œ1;C1/, and r 2 N odd such that rq � p.
Then the Mazur mapping ˚r W p̀.� /! `q.� / defined by ˚r.x/./ D x./r is a one-to-one
r-homogenous polynomial with k˚rk D 1. Further, ˚r is �p–�p continuous and on bounded sets
even �p–�p uniformly continuous, where �p is the topology of pointwise convergence. If q > 1,
then ˚r is �p–w uniformly continuous on bounded sets and in particular w–w sequentially
continuous.

PROOF. Define a mapping M W p̀.� /
r ! `1.� / by M.x1; : : : ; xr/./ D x1./ � � � xr./.

ObviouslyM is an r-linear mapping and˚r.x/ DM.x; : : : ; x/. Hence˚r is an r-homogeneous
polynomial. Moreover, for any x 2 p̀.� /, X

2�

jx./r jq

! 1
q

D kxkrp

 X
2�

ˇ̌̌̌
x./

kxkp

ˇ̌̌̌rq! 1
q

� kxkrp

 X
2�

ˇ̌̌̌
x./

kxkp

ˇ̌̌̌p! 1
q

D kxkrp;
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and hence ˚r maps into `q.� / and k˚rk � 1. Further, ˚r.e/ D e , which implies that
k˚rk D 1. As r is odd, ˚r is obviously one-to-one.

The �p–�p continuity is obvious. Moreover, if x; y 2 B.0;R/, then j˚r.x/./�˚r.y/./j �
rRr�1jx./ � y./j for  2 � , from which the uniform �p–�p continuity on B.0;R/ follows.
Further, if q > 1, then the weak and pointwise uniformity coincide on bounded subsets of `q.� /
(and of course ˚r maps bounded sets to bounded sets).

ut

PROPOSITION 50. Let X be a super-reflexive Banach space and � a set with card� D
densX .

(i) There are p 2 .1;C1/ and a one-to-one bounded linear operator T W X ! p̀.� /.
(ii) There is a one-to-one homogeneous continuous polynomial P W X ! `2.� / that is also

w–w uniformly continuous on bounded sets.
(iii) IfX admits an equivalent norm with modulus of smoothness of power type 1C˛, ˛ 2 .0; 1�,

then there is a homeomorphic embedding 	 of X into `2.� / such that 	 2 C 1.X I `2.� //
with D	 ˛-Hölder on bounded sets.

PROOF. (i) By the Gurariı̆-James theorem ([FHHMZ, Theorem 9.25]) there are p 2 .1;C1/
and K > 0 such that for any semi-normalised monotone basic sequence fxng � X (finite
or infinite) and

P
anxn 2 X we have k.an/k`p � K k

P
anxnk. Using transfinite induction

on densY we show that for every subspace Y of X there is a one-to-one bounded linear operator
T W Y ! p̀.�/ for some set � with card� D densY . If Y is separable, then Y is isometric to
a subspace of `1 and the mapping T W `1 ! p̀, T

�
.an/

�
D
�
1
2n
an
�

is a one-to-one bounded
linear operator.

Now suppose that Y is non-separable and for each subspace of X with density smaller
than densY there exists the corresponding one-to-one operator. Let � be the first ordinal with
cardinality densY and let fP˛I ! � ˛ � �g be a projectional resolution of the identity on Y
([FHHMZ, Theorem 13.6]). Denote S˛ D P˛C1 � P˛ for ! � ˛ < �. Since densS˛.Y / �
card˛ < card�, by the inductive hypothesis there are sets �˛ with card�˛ < card� and
one-to-one linear operators T˛ W S˛.Y /! p̀.�˛/ of norm one.

Fix an arbitrary x 2 Y n f0g. Then x D
P
!�˛<� S˛.x/ D

P
S˛n.x/, where ˛1 < ˛2 < � � �

is the enumeration of the countable set f˛ 2 Œ!; �/I S˛.x/ ¤ 0g. Notice that the (finite or
infinite) sequence fS˛n.x/g is a monotone basic sequence. Indeed, P˛kC1 BS˛n D S˛n for n � k
and P˛kC1 BS˛n D 0 for n > k, and hence

Pk
nD1 anS˛n.x/

 D P˛kC1�Pm
nD1 anS˛n.x/

� �Pm
nD1 anS˛n.x/

 for k < m and a1; : : : ; am 2 R. Thus fS˛n.x/=kS˛n.x/kg is a normalised
monotone basic sequence and so� X

!�˛<�

kS˛.x/k
p

� 1
p

D

�X
kS˛n.x/k

p
� 1
p

� K

XkS˛n.x/k S˛n.x/kS˛n.x/k


D K

XS˛n.x/
 D Kkxk:

It follows that we can define T W Y !
�L

!�˛<� p̀.�˛/
�
p

by T .x/ D
�
T˛ B S˛.x/

�
!�˛<�

.
Then T is clearly a bounded linear operator. Finally, if T .x/ D 0, then S˛.x/ D 0 for all
! � ˛ < � and so x D

P
!�˛<� S˛.x/ D 0, which means that T is one-to-one.

(ii) By (i) there are p 2 .1;C1/ and a one-to-one bounded linear operator T W X ! p̀.� /.
Let r 2 N be odd and satisfy 2r � p. By Lemma 49 the Mazur mapping ˚r W p̀.� /! `2.� /
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is a one-to-one homogeneous polynomial that is w–w uniformly continuous on bounded sets
and so we may put P D ˚r B T .

(iii) Let k�k be an equivalent norm on X which is uniformly rotund and its derivative is
˛-Hölder on the unit sphere, see e.g. [DGZ, Proposition IV.5.2] and the remark after, combined
with [DGZ, Lemma IV.5.1]. It is easy to check that then the function k�k2 2 C 1.X/ with its
derivative ˛-Hölder on bounded sets. By (ii) there are a set � with card� D densX and
0 … �, and a one-to-one continuous polynomial P W X ! `2.�/ that is also w–w continuous
on bounded sets. Then DP is Lipschitz on bounded sets and hence also ˛-Hölder on bounded
sets. Put � D � [ f0g and define 	 W X ! `2.� / by 	.x/ D .P.x/; kxk2/. Then obviously
	 is one-to-one and 	 2 C 1.X I `2.� // with D	 ˛-Hölder on bounded sets.

It remains to show that 	�1 is continuous. Let xn; x 2 X be such that 	.xn/! 	.x/. Then
kxnk ! kxk andP.xn/! P.x/. LetB � X be a closed ball containing fxng and x. SinceB is
weakly compact andP is one-to-one,P�B is aw–w homeomorphism and so xn

w
! x. The weak

lower semi-continuity of k�k implies kx C xk � lim infkxn C xk � lim supkxn C xk � 2kxk,
hence limkxn C xk D 2kxk, and by the uniform rotundity we finally get xn ! x.

ut

PROOF OF THEOREM 48. ) follows from Theorem 5.50 and [DGZ, Lemma IV.5.1].
To prove( first recall the following easy fact used several times in this proof: A bounded

Lipschitz mapping is ˛-Hölder for every ˛ 2 .0; 1�.
Let ˝ � X be open and let S be the set of functions from C 1;˛.˝/ that are Lipschitz and

bounded. Proposition 1.129 implies that S is a ring. We show that S is a partition ring.
Property (i): Let ffg2� � S be such that fsuppo fg2� is uniformly discrete. Let g D

cf for some suitable constants c ¤ 0 chosen so that jg j˝ � 1, g is 1-Lipschitz, and Dg
is ˛-Hölder with constant 1 for all  2 �. Put g D

P
2� g . It is obvious that g 2 C 1.˝/

and g is bounded. To see that g is Lipschitz and Dg is ˛-Hölder, pick any x; y 2 ˝. Suppose
there are ; ˇ 2 �,  ¤ ˇ, such that x 2 suppg and y 2 suppgˇ . Then jg.x/ � g.y/j D
jg.x/ � gˇ .y/j � jg.x/ � 0j C j0 � gˇ .y/j D jg.x/ � g.y/j C jgˇ .x/ � gˇ .y/j �

2kx�yk and similarly kDg.x/�Dg.y/k D kDg.x/�Dgˇ .y/k � kDg.x/�Dg.y/kC
kDgˇ .x/ � Dgˇ .y/k � 2kx � yk˛. The other cases are obvious. So g 2 S and clearly
suppo g D

S
2� suppo f .

Property (ii): Let f 2 S and suppo f D U1 [ U2, where U1 and U2 are open subsets of
˝ with d D dist.U1; U2/ > 0. Consider the function g D �U1f . Then g D f on an open set
˝ n U2 and g D 0 on some neighbourhood of U2, hence g 2 C 1.˝/ and both g and Dg are
bounded, say by M . To see that g is Lipschitz and Dg is ˛-Hölder, pick any x; y 2 ˝. Suppose
that x 2 U1 and y 2 U2. Then jg.x/ � g.y/j D jg.x/ � 0j � M � M

d
kx � yk and similarly

kDg.x/ �Dg.y/k D kDg.x/ � 0k �M � M
d˛
kx � yk˛. The other cases are obvious and so

g 2 S .
Property (iii) holds by the remark after Definition 38 combined with Proposition 1.128.
To finish the proof we show that (ii) of Lemma 40 is satisfied. Let 	 be the embedding

of X into `2.� / from Proposition 50. Let W � ˝ be an arbitrary bounded open set. Then
	.W / is open in 	.X/ and so there is an open U � `2.� / such that 	.W / D U \ 	.X/. By
Proposition 35 there is f 2 C 1;1.`2.� // such that suppo f D U . Put ' D f B 	 .

The mapping D	 is Hölder on bounded sets, therefore bounded on bounded sets. Con-
sequently, 	 is Lipschitz on bounded sets, hence bounded on bounded sets. Further, Df is
Lipschitz and hence bounded on bounded sets. Therefore D' is bounded and ˛-Hölder on
bounded sets by Proposition 1.128. Finally, as 	 is one-to-one, suppo ' D W , which is a
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bounded set and so D' is globally ˛-Hölder and bounded. So we have found a function ' 2 S
for which suppo ' D W .

ut

We remark that the last part of the proof, namely the fact that for any open W � X there is
' 2 C 1;˛.X/ with suppo ' D W , can be shown directly without embedding X into `2.� /. The
proof is similar in spirit to that of Proposition 35 but technically much more involved, see [Ce,
Corollary 2].

6. Non-linear embeddings into c0.� /

We begin by giving a characterisation of the existence of Ck-partitions of unity on a normed
linear space X by means of non-linear componentwise C k-smooth embeddings of X into c0.� /.
This result is not essential in our approach to smooth partitions of unity, but it nicely completes
the picture in view of the main result of this section: In our aim towards the approximation
of Lipschitz functions by smooth functions preserving the Lipschitz property we introduce an
important technique of supremal partitions and characterise it again by means of bi-Lipschitz
componentwise C k-smooth embeddings into c0.� /. We show that every separable normed
linear space with a C k-smooth Lipschitz bump admits C k-smooth Lipschitz sup-partitions of
unity (and a bi-Lipschitz componentwise C k-smooth embedding into c0).

It is useful to explicitly state the following fact.

FACT 51. For any set � the space c0.� / admits locally finite and �-uniformly discrete
C1-smooth and LFC-fe� g2� partitions of unity.

PROOF. The family fWF;q;r I F 2 F ; q; r 2 Q; r > q > 0g from the proof of Theorem 45 is a
� -uniformly discrete basis for the topology of c0.� / such that WF;q;r D suppo 'F;q;r and each
'F;q;r is C1-smooth and LFC-fe� g2� , so we can use Lemma 40.

It is also instructive to notice that the uniform refinements from Fact 54 for r D 1
n

, n 2 N,
form a �-locally finite basis for the topology of c0.� /. Thus combined with the following
observation it gives another proof: For any x 2 c0.� / and r > 0 there is ' 2 C1.c0.� //
which is LFC-fe� g2� and such that suppo ' D U.x; r/. Indeed, it suffices to take '.y/ DQ
2� �

�
y./ � x./

�
, where � 2 C1.R; Œ0; 1�/ is such that �.t/ D 1 whenever jt j � r

2
and

�.t/ D 0 if and only if jt j � r .
ut

PROPOSITION 52 ([T]). Let X be a normed linear space and k 2 N0 [ f1g. The space X
admits locally finite Ck-partitions of unity if and only if there are a set � and a homeomorphism
˚ W X ! c0.� / such that e� B ˚ 2 C

k.X/ for every  2 � .

PROOF. ) By Lemma 40 there is a basis V � fsuppo f W f 2 C
k.X/g for the topology of X

such that V D
S
n2N Vn, where each Vn is discrete and Vn \ Vm D ; for m ¤ n. For every

V 2 V we choose 'V 2 C k.X I Œ0; 1�/ such that V D suppo 'V . We put � D V and define
˚ W X ! `1.� / by

˚.x/.V / D
1

n
'V .x/;

where n 2 N is the uniquely determined number for which V 2 Vn.
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The mapping ˚ is one-to-one. Indeed, if x; y 2 X , x ¤ y, then there is V 2 V such that
x 2 V , y ¤ V . It follows that 'V .x/ > 0, while 'V .y/ D 0, and consequently ˚.x/.V / ¤
˚.y/.V /.

Moreover, ˚ is a continuous mapping into c0.� /. To see this, for a given x 2 X and " > 0
we find n0 2 N such that 1

n0
< ". Then 0 � ˚.x/.V / < " and j˚.x/.V / � ˚.y/.V /j < "

whenever y 2 X and V 2 Vn for n � n0. Further, by the discreteness of the families Vn, there
is a neighbourhood U of x such that U meets only finitely many sets in W D V1 [ � � � [ Vn0 ,
say V1; : : : ; Vm, m 2 N0. Then ˚.y/.V / D 0 whenever y 2 U and V 2 W n fV1; : : : ; Vmg.
It follows that ˚ maps into c0.� /. Finally, using the continuity of 'V1; : : : ; 'Vm we can find
a neighbourhood W � U of x such that j˚.x/.Vn/ � ˚.y/.Vn/j < " whenever y 2 W ,
n 2 f1; : : : ; mg. Thus k˚.x/ � ˚.y/k1 < " for each y 2 W . This shows the continuity of ˚ .

To show that ˚�1 continuous fix x 2 X and " > 0. Since V is a basis for the topology
of X , there is V 2 V such that x 2 V � U.x; "/. Let n 2 N be such that V 2 Vn and
choose some 0 < ı < 1

n
'V .x/. Suppose y 2 X is such that k˚.x/ � ˚.y/k1 < ı. Then

1
n
'V .x/ �

1
n
'V .y/ < ı and hence 'V .y/ > 0. It follows that y 2 V � U.x; "/.

( Denote S D ff 2 C1.c0.� //I f is LFC-fe� g2� g. By Fact 51 and Lemma 40 there
is a �-locally finite basis V for the topology of c0.� / consisting of the sets suppo f with
f 2 S . Using the homeomorphism ˚ we pull this basis back onto X . Moreover, if f 2 S , then
f B ˚ 2 C k.X/ (Lemma 5.81). Lemma 40 now finishes the proof.

ut

In particular, when k D 0, the previous result together with Lemma 8 implies that any
normed linear space is homeomorphic to a subset of c0.� / for some set � . This is no longer true
for uniform homeomorphisms: the space C.Œ0; !1�/ is not uniformly homeomorphic to a subset
of any c0.� /. This is a result of Jan Pelant, [PHK]. However, for any separable normed linear
space X there is a bi-Lipschitz homeomorphism ˚ W X ! c0. This result of Israel Aharoni,
[Ah], can be recovered from Corollary 57 when k D 0.

DEFINITION 53. LetX be a set. A collection f ˛g˛2� of functions onX is called a supremal
partition (sup-partition) if
�  ˛ W X ! Œ0; 1� for all ˛ 2 �,
� there is a Q > 0 such that sup˛2� ˛.x/ � Q for each x 2 X ,
� for each x 2 X and for each " > 0 the set f˛ 2 �I  ˛.x/ > "g is finite (or in other words
. ˛.x//˛2� 2 c0.�/).

If in the second property Q D 1, then f ˛g˛2� is called a sup-partition of unity.
Let U be a covering of X . We say that the sup-partition f ˛g˛2� is subordinated to U

if fsuppo ˛g˛2� refines U. We say that f ˛g˛2� is locally finite if fsuppo ˛g˛2� is locally
finite.

Notice that in fact in the above definition for each x 2 X there is ˛ 2 � such that
 ˛.x/ � Q.

For a metric space P we denote by U.r/ D fU.x; r/I x 2 P g the full uniform covering
of P .

FACT 54. Let � be an infinite set, r > 0, and 0 < ı < r
2
. There is an open locally finite

uniform refinement V D fVg2� of the uniform covering U.r/ of c0.� / such that U. r
2
� ı/

refines V . Moreover, V is formed by the translates of the open ball U.0; r � ı/. Further, there is
a C1-smooth LFC-fe� g2� and .2

r
C ı/-Lipschitz locally finite sup-partition of unity f g2�

on c0.� / subordinated to U.r/.
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PROOF. Notice that by the homogeneity it suffices to prove all the statements only for r D 1.
Let fag2� be the set of all vectors in c0.� / with coordinates in Z. (Notice that the

cardinality of such set is j� j and so we may index its points by � .) We claim that V D
fU.a ; 1 � ı/g2� is the desired refinement.

Clearly, V is an open refinement of U.1/. To see that it is locally finite, pick any x 2 c0.� /
and find a finite F � � such that jx./j < ı

2
whenever  2 � n F . Suppose that ˛ 2 � is such

that y 2 U.a˛; 1 � ı/ for some y 2 U.x; ı
2
/. If  2 � n F , then ja˛./j � ja˛./ � y./j C

jy./� x./j C jx./j < 1� ıC ı
2
C

ı
2
D 1 and so a˛./ D 0. From jx./� a˛./j < 1� ı

2

and a˛./ 2 Z it follows that there are at most two possibilities for a˛./ for each  2 F . From
this we can conclude that

ˇ̌
f˛I U.a˛; 1 � ı/ \ U.x;

ı
2
/ ¤ ;g

ˇ̌
� 2jF j.

Finally, we show that U.1
2
� ı/ refines V . Choose any x 2 c0.� / and find ˇ 2 � such

that kx � aˇk � 1
2
. This is always possible, since there is a finite F � � such that jx./j < 1

2

whenever  … F , and so aˇ ./ D 0 for such  . Suppose ´ 2 U.x; 1
2
� ı/. Then kaˇ � ´k1 �

kaˇ � xk1Ckx � ´k1 <
1
2
C

1
2
� ı D 1� ı, which implies that U.x; 1

2
� ı/ � U.aˇ ; 1� ı/.

To construct the sup-partition of unity subordinated to U.1/ find " > 0 and 0 < � < 1
2

such
that 0 < 1=

�
1 � � � 1C"

2

�
< 2C ı

4
and .1C "/

�
2C ı

2

�
� 2C ı. Let W D fU.a ; 1� �/g2�

be the locally finite refinement of U.1/ from the first part of the proof such that U.1
2
� �/

refines W . Further, let k�k be an equivalent C1-smooth LFC-fe� g2� norm k�k on c0.� /
such that kxk1 � kxk � .1 C "/kxk1 for all x 2 c0.� /. (To construct such a norm, take
for example the Minkowski functional of the set fx 2 c0.� /I

P
2� '.x.// � 1g, where

' 2 C1.R/, ' is convex and even, '.1/ D 1, and '.t/ D 0 for t 2 Œ� 1
1C"

; 1
1C"

�.) For each
 2 � we put  .x/ D q

�
kx � ak

�
, where q 2 C1.RI Œ0; 1�/, q is

�
2C ı

2

�
-Lipschitz,

q.t/ D 0 for t � 1 � �, and q.t/ D 1 for t � 1C"
2

. The collection f g2� is a locally finite
sup-partition of unity. Indeed, clearly suppo  � U.a ; 1 � �/ for each  2 � . It also follows
that the set f 2 � I  .x/ > 0g is finite for each x 2 X . Further, fix any x 2 X . There
is an ˛ 2 � such that U.x; 1

2
� �/ � U.a˛; 1 � �/, which gives kx � a˛k1 � 1

2
. Hence

kx � a˛k � .1C "/kx � a˛k1 �
1C"
2

, which in turn implies that  ˛.x/ D 1.
As the function q is

�
2C ı

2

�
-Lipschitz and the function k�k is .1C "/-Lipschitz (with respect

to the norm k�k1), the functions   are .2C ı/-Lipschitz according to the choice of ". The rest
of the properties of the functions   is obvious.

ut

THEOREM 55. Let X be a normed linear space, � an infinite set, and k 2 N0 [ f1g. Then
the following statements are equivalent:

(i) There is M 2 R such that there is a C k-smooth and M -Lipschitz sup-partition f'g2�
on X subordinated to U.1/.

(ii) There isM 2 R such that there is a C k-smooth andM -Lipschitz locally finite sup-partition
of unity f'g2� on X subordinated to U.1/.

(iii) X is uniformly homeomorphic to a subset of c0.� / and for each " > 0 there is K > 0

such that for each 1-Lipschitz function f W X ! Œ0; 1� there is a K-Lipschitz function
g 2 C k.X/ such that jg � f jX � ".

(iv) There is a bi-Lipschitz homeomorphism ˚ W X ! c0.� / such that the component functions
e� B ˚ 2 C

k.X/ for every  2 � .

PROOF. (ii))(i) is obvious.
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(i))(iv) Let Q be the quantity from the definition of the sup-partition. Then there is ˇ 2 �
such that 'ˇ .0/ � Q. By scaling and composing 'ˇ with a suitable function we construct a
C -Lipschitz function h 2 C k.X I Œ0; 1�/ such that h D 0 on B.0; r/ and h D 1 outside U.0; 1/
for some constants C; r 2 R, r > 0. (We may for example choose r such that Q � 2Mr > 0

and take h.x/ D q.'ˇ .2x//, where q 2 C1.R/, q is Lipschitz, q.Œ0; 1�/ D Œ0; 1�, q.0/ D 1,
and q.s/ D 0 for s � Q � 2Mr .)

Choose t > 1 and for each n 2 Z and  2 � define functions 'n 2 C
k.X/ by

'n .x/ D t
n'

� x
tn

�
h
� x
tn

�
:

The properties of the functions ' and h guarantee that each 'n is .M C C/-Lipschitz. Let
d W Z� � ! � be some one-to-one mapping and define ˚ W X ! R� by ˚.x/.˛/ D 'n .x/ if
˛ D d.n; / for some n 2 Z,  2 � ; ˚.x/.˛/ D 0 otherwise.

We show that ˚ actually maps into c0.� /. Choose an arbitrary x 2 X and " > 0. There
is n0 2 Z such that tn < " for all n < n0 and n1 2 Z such that kxk � rtn for all n > n1. It
follows that j'n .x/j < " for all n < n0 and  2 � , and, by the properties of h, 'n .x/ D 0 for all
n > n1 and  2 � . As for each n0 � n � n1, '.x=tn/ > "=tn only for finitely many  2 � ,
we can conclude that ˚ W X ! c0.� /. Since each 'n is .M C C/-Lipschitz, the mapping ˚ is
.M C C/-Lipschitz as well.

To prove that ˚ is one-to-one and ˚�1 is Lipschitz too, choose any two points x; y 2 X ,
x ¤ y, and find m 2 Z such that 2tm � kx � yk < 2tmC1. Without loss of generality we may
assume that kxk � tm. Then h.x=tm/ D 1 and so there is  2 � such that 'm .x/ � Qt

m.
Now suppose that ´ 2 X is such that 'm .´/ > 0. As suppo ' � U.w; 1/ for some w 2 X ,
k
x
tm
�

´
tm
k < 2 and consequently kx � ´k < 2tm. But this means that 'm .y/ D 0 and therefore

k˚.x/ � ˚.y/k1 � j'
m
 .x/ � '

m
 .y/j D '

m
 .x/ � Qt

m >
Q

2t
kx � yk:

(iv))(ii) Let A;B > 0 be such that Akx � yk � k˚.x/ � ˚.y/k1 � Bkx � yk for all
x; y 2 X . By Fact 54 there are C > 0 and a C1-smooth LFC-fe� g2� and C -Lipschitz locally
finite sup-partition of unity f g2� on c0.� / subordinated to U.A

2
/. Putting ' D   B ˚ ,

f'g2� is a BC -Lipschitz locally finite sup-partition of unity subordinated to U.1/. Moreover,
each ' is C k-smooth by Lemma 5.81.

(ii))(iii) We already know that (iv) holds and from this the first part of (iii) follows im-
mediately. To prove the second part of (iii), let " > 0. The basic idea of the proof is that
Lipschitz functions are stable under the operation of pointwise supremum. To preserve the
smoothness, we will use a “smoothened supremum”, or an equivalent smooth norm on c0.� /.
Let k�k be an equivalent C1-smooth LFC-fe� g2� norm on c0.� / and let C > 0 be such that
kxk1 � kxk � Ckxk1 for all x 2 c0.� /. We will show that K D 4C 3M=" satisfies our
claim.

By adding the constant 1 we may and do assume that f maps into Œ1; 2�. Put ı D "
C

and
 .x/ D '.

x
ı
/ for all x 2 X ,  2 � . It follows that f g2� is a C k-smooth and M=ı-

Lipschitz sup-partition of unity subordinated to U.ı/. Recall that . .x//2� 2 c0.� / for
each x 2 X . For each  2 � there is a point x 2 X such that suppo  � U.x ; ı/. The
boundedness of the function f guarantees that also

�
f .x/ .x/

�
2�
2 c0.� / for each x 2 X .
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Therefore we can define the function g W X ! R by

g.x/ D

�f .x/ .x/�2� � .x/�2�  :

As
k. .x//k � k. .x//k1 D sup

2�

 .x/ D 1 for each x 2 X , (17)

the function g is well-defined on all of X .
The mapping x 7!

�
 .x/

�
and, by the boundedness of f , also the mapping x 7!�

f .x/ .x/
�

are Lipschitz mappings from X into c0.� / n U.0; 1/. (Notice that for each
x 2 X there is  2 � such that  .x/ D 1 and f .x/ .x/ � 1.) Since k�k is C1-smooth
and depends locally on finitely many coordinates away from the origin, and since   2 C k.X/
and f .x/  2 C k.X/ for each  2 � , using Lemma 5.81 we infer that g 2 C k.X/.

Using the facts that f maps into Œ1; 2�, the functions   are M=ı-Lipschitz and map
into Œ0; 1�, and k�k is C -Lipschitz as a function on .c0.� /; k�k1/, we obtain that the func-
tion x 7!

�f .x/ .x/� is 2CM=ı-Lipschitz and bounded by 2C . Similarly, the function
x 7!

� .x/� is CM=ı-Lipschitz and bounded below by 1. It follows that the function g is
K-Lipschitz.

Finally, to show that g approximates f , choose an arbitrary x 2 X . Applying successively
the inequality (17) and the facts that suppo  � U.x ; ı/ and f is 1-Lipschitz, we obtain

jg.x/ � f .x/j D

ˇ̌̌̌
ˇ
�f .x/ .x/�� .x/� � f .x/

� .x/�� .x/�
ˇ̌̌̌
ˇ �

�.f .x/ � f .x// .x/�� .x/�
� C

�.f .x/ � f .x// .x/�1 D C sup
2�

˚
jf .x/ � f .x/j .x/

	
D C sup

2�
x2U.x ;ı/

˚
jf .x/ � f .x/j .x/

	
� C sup

2�
x2U.x ;ı/

˚
kx � xk

	
� Cı D ":

(iii))(ii) Let ˚ be the uniform homeomorphism and let � > 0 be such that k˚�1.x/ �
˚�1.y/k < 1 whenever x; y 2 ˚.X/ are such that kx � yk < 2�. Take an open locally finite
uniform refinement of the uniform covering U.�/ of c0.� / from Fact 54 and pull it back onto
X using ˚ . We obtain an open locally finite uniform refinement V D fVg2� of the covering
U.1/ of X . Let 0 < ı � 1 be such that U.ı/ refines V . For each  2 � we define the function
f W X ! Œ0; 1� by f.x/ D minfdist.x;X n V/; ıg.

Choose some 0 < � < ı
2
. For each  2 � the function f is 1-Lipschitz and so, by (iii),

there is a K-Lipschitz function g 2 C k.X/ such that jg � f jX � � . Let q 2 C k.RI Œ0; 1�/
be a C -Lipschitz function for some C 2 R, such that q.t/ D 0 for t � � and q.t/ D 1 for
t � ı � � . Finally, we let '.x/ D q.g.x// for each  2 � . Clearly, each function ' belongs
to C k.X I Œ0; 1�/ and is M -Lipschitz, where M D CK. Further, for any x 2 X there is ˛ 2 �
such that U.x; ı/ � V˛, hence f˛.x/ D ı and consequently '˛.x/ D 1. As suppo ' � V for
all  2 � and V is locally finite, f'g2� is a locally finite sup-partition of unity subordinated
to U.1/.

ut

We note that the proof could be made considerably shorter by proving (iv))(iii) directly
using Theorem 71 instead of (ii))(iii) and (iv))(ii). However, the reasons for our strategy
of the proof were two: First, we do not need the full generality (and associated machinery) of
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Theorem 71 (or Theorem 66) and second, the proof of (ii))(iii) shows an interesting technique
for constructing smooth Lipschitz approximations (due to Robb Fry, [Fry2]), and in fact shows
the reason for the definition of the notion of sup-partition of unity.

THEOREM 56 (Robb Fry, [Fry2]). Let X be a separable normed linear space that admits a
C k-smooth Lipschitz bump function, k 2 N0 [ f1g. Then there is M 2 R such that there is a
C k-smooth M -Lipschitz sup-partition of unity f j g1jD1 on X subordinated to U.1/.

PROOF. Using the C k-smooth Lipschitz bump function on X as a start, by shifting, scaling,
and composing with a suitable real function we construct two functions f; g 2 C k.X I Œ0; 1�/
along with real numbers C > 0 and 0 < ı < r < 1 such that f .x/ D 0 for all x 2 X n U.0; 1/,
f .x/ D 1 for all x 2 B.0; r/, g.x/ D 1 for all x 2 X n U.0; r/, g.x/ D 0 for all x 2 B.0; ı/,
and both functions are C -Lipschitz (see also the proof of Theorem 55).

Let fxj g1jD1 � X be such that fU.xj ; ı/g1jD1 is a covering of X . We put fj .x/ D f .x � xj /
and gj .x/ D g.x � xj / for each x 2 X , j 2 N. Choose 0 < � < 1 and for each j 2 N let
'j 2 C

k.Rj / be a 1-Lipschitz function (with respect to the maximum norm) such that

minfw1; : : : ; wj g � 'j .w/ � minfw1; : : : ; wj g C � for each w 2 Œ0; 1�j

(use Lemma 1). We note that the functions 'j will serve as a “smoothened minimum”. Finally, to
confine the sup-partition into the interval Œ0; 1�, let h 2 C k.RI Œ0; 1�/ be a D-Lipschitz function
such that h.t/ D 0 for t � � and h.t/ D 1 for t � 1.

For each j 2 N we define

 j .x/ D h
�
'j
�
g1.x/; : : : ; gj�1.x/; fj .x/

��
for each x 2 X .

Clearly, j 2 C k.X I Œ0; 1�/ and j isM -Lipschitz for each j 2 N, whereM D CD. Moreover,
f j g

1
jD1 is a sup-partition of unity. Indeed, choose an arbitrary x 2 X . Let k 2 N be the

smallest index for which x 2 U.xk; ı/. Then gk.x/ D 0, which implies that for j > k,
'j
�
g1.x/; : : : ; gj�1.x/; fj .x/

�
� � and so  j .x/ D 0. Therefore the set fj 2 NI  j .x/ > 0g

is finite. Further, let n 2 N be the smallest index for which x 2 U.xn; r/. It follows that
gj .x/ D 1 for each j < n and fn.x/ D 1, hence  n.x/ D 1.

Finally, if kx � xjk � 1, then fj .x/ D 0 and hence  j .x/ D 0, which shows that f j g1jD1
is subordinated to U.1/.

ut

COROLLARY 57. Let X be a separable normed linear space that admits a C k-smooth
Lipschitz bump function, k 2 N0 [ f1g. Then there is a bi-Lipschitz homeomorphism ˚ W X !

c0 such that the component functions e�j B ˚ 2 C
k.X/ for every j 2 N.

7. Approximation of Lipschitz mappings
In this section we turn our attention to the problem of approximating Lipschitz mappings by

smooth Lipschitz mappings, preferably keeping the control over the Lipschitz constant. Such
approximations have applications for example in the theory of Banach manifolds. The finite-
dimensional case is easy – the integral convolution respects the Lipschitz property and in fact it
preserves the Lipschitz constant.

In the infinite-dimensional case, the infimal convolution preserves the Lipschitz constant
too, but unfortunately it gives only the first order smoothness and works only for functions
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(i.e. mappings into R). Using the local techniques (partitions of unity) alone to obtain the
global property (Lipschitzness) presents some insurmountable obstacles. First, it is essentially
impossible to gain any global control over the Lipschitz constant of the individual functions in
the partition and regardless, there is no control over the cardinality of the (locally finite) sum
in (15). Therefore we have to develop several alternative approaches to this problem.

The first one is using the integral convolution even in the infinite-dimensional setting.
We show two cases when this is possible. The first one is for separable spaces, where we
can use “convolution in a dense set of directions” and then exploit the Lipschitz property of
the approximated mapping. The gain is however not particularly strong, as we obtain merely
Gâteaux (or uniformly Gâteaux) smooth approximation. More interesting is the use of the integral
convolution in the space c0.� /, which is possible thanks to the very strong LFC structure in this
space. The latter result has interesting corollaries when either the source or the target space have
certain special properties.

The above techniques are somewhere in-between local and global – they use approximation
on finite-dimensional subspaces, which are then somehow “glued together”. Another example of
this approach is a technique of Nicole Moulis that uses an unconditional basis for gluing together
the finite-dimensional approximations. There is also a “local” procedure: the supremal partitions,
developed in the previous section, which essentially replace the sum in (15) by supremum, which
preserves the Lipschitz property.

All the above results give approximations in the uniform topology. Using the �-discrete
partitions of unity we show how to proceed from uniform approximations to the approximation
in fine topology. Finally, we prove an analogue of Theorem 22 (the real analytic approximation)
for Lipschitz functions.

We start with a notion of a uniform Gâteaux differentiability. If f is Gâteaux differentiable
and for a fixed x in the domain we require the uniformity of the limit defining @f

@h
.x/ in h 2 BX ,

we obtain the notion of Fréchet differentiability. If, on the other hand, for each fixed h 2 BX we
require the uniformity in x, then we obtain uniform Gâteaux differentiability. Uniformity of this
type will prove important later, for example in the applications of Theorem 76.

DEFINITION 58. Let X , Y be normed linear spaces, U � X open, and f W U ! Y a
Gâteaux differentiable mapping. We say that f is uniformly Gâteaux differentiable (UG for
short) if for each fixed h 2 SX the limit defining @f

@h
.x/ is uniform for x 2 U .

LEMMA 59. Let X , Y be normed linear spaces, U � X open, and let f W U ! Y be a
Gâteaux differentiable mapping. If for each h 2 SX the mapping x 7! ıf .x/Œh� is uniformly
continuous on U , then f is uniformly Gâteaux differentiable on U provided that U is convex;
otherwise f is uniformly Gâteaux differentiable on any open V � U satisfying dist.V;X nU/ >
0. Conversely, if f is uniformly Gâteaux differentiable and uniformly continuous on U , then
for each h 2 X the mapping x 7! ıf .x/Œh� is uniformly continuous on any A � U satisfying
dist.A;X n U/ > 0.

PROOF. Choose h 2 SX and " > 0, and find � > 0 such that kıf .x C th/Œh� � ıf .x/Œh�k < "
for all x 2 U and t 2 .��; �/ satisfying x C th 2 U . If U is convex we set V D U and
� D � , otherwise we let � D minf�; dist.V;X n U/g. Fix x 2 V and define a mapping
g W I ! Y by g.t/ D f .x C th/ � tıf .x/Œh�, where I D ft 2 .��; �/I x C th 2 U g.
Notice that I is an open interval containing 0 and g0.t/ D ıf .x C th/Œh� � ıf .x/Œh� for
t 2 I . By the assumption, kg0.t/k � " for t 2 I , hence g is "-Lipschitz on I , and so1
t

�
f .x C th/ � f .x/

�
� ıf .x/Œh�

 D 1
t

�
g.t/ � g.0/

� � " for all t 2 I .
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To prove the converse statement, choose h 2 X , h ¤ 0, a subset A � U for which
dist.A;X n U/ > 0, and " > 0. Find 0 < � < dist.A;X n U/=khk such that

1
�

�
f .x C �h/ �

f .x/
�
� ıf .x/Œh�

 < "
4

for any x 2 A. Let � > 0 be such that kf .x/ � f .y/k < � "
4

whenever
x; y 2 A are such that kx � yk < � . Then, for such x; y, we haveıf .x/Œh� � ıf .y/Œh� < "

2
C
1

�

f .x C �h/ � f .x/ � f .y C �h/C f .y/ < ":
ut

We remark that if f W U ! Y , U � X open, is such that for each h 2 SX the mapping x 7!
@f

@h
.x/ is uniformly continuous on U , then f �E\U is C 1;C-smooth for each finite-dimensional

affine subspace E � X (Theorem 1.96). In particular, if X is a Banach space and f is Baire
measurable, then in view of Theorem 1.101 we do not need to assume that f is Gâteaux
differentiable in Lemma 59.

LEMMA 60. Let X , Y be normed linear spaces, H a dense subset of X , U � X open, and
let f W U ! Y be a Gâteaux differentiable Lipschitz mapping such that for each h 2 H the
mapping x 7! ıf .x/Œh� is uniformly continuous on U . Then the mapping x 7! ıf .x/Œh� is
uniformly continuous on U for every h 2 X .

PROOF. LetL be a Lipschitz constant of f . Pick an arbitrary h 2 X and let " > 0. Find h0 2 H
such that kh � h0k < "

4L
. By the uniform continuity of x 7! ıf .x/Œh0� there is � > 0 such that

kıf .x/Œh0� � ıf .y/Œh0�k <
"
2

whenever x; y 2 U , kx � yk < �. Thenıf .x/Œh� � ıf .y/Œh� � ıf .x/Œh0� � ıf .y/Œh0�C ıf .x/Œh � h0�C ıf .y/Œh � h0�
<
"

2
C 2Lkh � h0k < "

whenever x; y 2 U , kx � yk < �.
ut

The following approximation lemma introduces the technique of “convolution in a dense set
of directions”.

LEMMA 61. Let X be a separable normed linear space, Y a Banach space, U � X open,
f W U ! Y an L-Lipschitz mapping, " > 0, and let V � U be open such that dist.V;X nU/ >
"
2L

. Let fhj g be a dense subset of SX and let 'j 2 C1.R/, j 2 N, be such that 'j � 0,R
R 'j D 1, and supp'j �

�
�

"
2L2j

; "
2L2j

�
. Extend f to the whole of X by setting f .x/ D 0 for

x 2 X n U and define gn W V ! Y , n 2 N, by

gn.x/ D

Z
Rn
f

�
x �

nX
jD1

tjhj

� nY
jD1

'j .tj / d�n.t/; (18)

where �n denotes the n-dimensional Lebesgue measure. Then gn ! g uniformly on V and
the mapping g W V ! Y has the following properties: It is L-Lipschitz, Gâteaux differentiable,
satisfies kf �gkV < ", and for each h 2 X the mapping x 7! ıg.x/Œh� is uniformly continuous
on V . Moreover, if Y D R and U , V , f are convex, then so is g.

PROOF. Denote Km D
Qm
jD1

�
�

"
2L2j

; "
2L2j

�
� Rm. Since x �

Pm
jD1 tjhj 2 U for x 2 V and

.t1; : : : ; tm/ 2 Km, using the Fubini theorem and the fact that
R

R 'j D 1 we obtain for m > n
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and any x 2 V

kgm.x/ � gn.x/k D


Z

Rm

 
f

�
x �

mX
jD1

tjhj

�
� f

�
x �

nX
jD1

tjhj

�! mY
jD1

'j .tj / d�m


� L

Z
Km


mX

jDnC1

tjhj


mY
jD1

'j .tj / d�m � L
Z
Km

 
mX

jDnC1

jtj j

!
mY
jD1

'j .tj / d�m

� L

 
mX

jDnC1

"

2L2j

!Z
Km

mY
jD1

'j .tj / d�m <
"

2 � 2n
:

It follows that there is g W V ! Y such that gn ! g uniformly on V .
The mappings gn are L-Lipschitz on V . Indeed, for any x; y 2 V we have

kgn.x/ � gn.y/k �

Z
Kn

f �x � nX
jD1

tjhj

�
� f

�
y �

nX
jD1

tjhj

� nY
jD1

'j .tj / d�n

� Lkx � yk

Z
Kn

nY
jD1

'j .tj / d�n D Lkx � yk:

Therefore g is also L-Lipschitz. Similarly we can check that the functions gn and g are convex
under the additional convexity assumptions.

Moreover, kf � gkV < ". Indeed, pick n 2 N such that kgn � gkV < "
2
. Then

kf .x/ � g.x/k � kf .x/ � gn.x/k C kgn.x/ � g.x/k

<

Z
Rn

f .x/ � f �x � nX
jD1

tjhj

� nY
jD1

'j .tj / d�n C
"

2

� L

Z
Kn

 
nX

jD1

jtj j

!
nY

jD1

'j .tj / d�n C
"

2
< "

for any x 2 V .
Next we show that g is Gâteaux differentiable on V . Fix n 2 N, x 2 V and define

T W Rn ! X by T .t/ D x C
Pn
jD1 tjhj . Let � > 0 be such that T

�
.��;�/n

�
� V . Using

substitution t ! s � t we obtain

gn B T .s/ D

Z
Rn
f B T .s � t /

nY
jD1

'j .tj / d�n.t/ D
Z
K

f B T .t/

nY
jD1

'j .sj � tj / d�n.t/

for any s 2 .��;�/n, whereK D
Qn
jD1

�
�

"
2L2j
��; "

2L2j
C�

�
. It follows from Corollary 1.91

that the mapping gn B T is C 1-smooth on .��;�/n. Since by the definition @gn
@h
.x/ D D.gn B

T /.0/Œ.s1; : : : ; sn/� for all h D s1h1 C � � � C snhn, it follows that h 7! @gn
@h
.x/ is linear on
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spanfh1; : : : ; hng and

@gn

@hi
.x/ D

Z
K

f B T .t/' 0i.�ti/

nY
jD1
j¤i

'j .�tj / d�n.t/

D

Z
Rn
f

�
x �

nX
jD1

tjhj

�
' 0i.ti/

nY
jD1
j¤i

'j .tj / d�n.t/

for each i 2 f1; : : : ; ng.
Further, f@gn

@hi
g1nDi converges uniformly for x 2 V . Indeed, using the Fubini theorem and the

fact that
R

R 'j D 1 we have for m > n � i and any x 2 V@gm@hi .x/ � @gn@hi .x/
 D


Z

Rm

 
f

�
x �

mX
jD1

tjhj

�
� f

�
x �

nX
jD1

tjhj

�!
' 0i.ti/

mY
jD1
j¤i

'j .tj / d�m


� L

Z
Km

 
mX

jDnC1

jtj j

!
j' 0i.ti/j

mY
jD1
j¤i

'j .tj / d�m �
"

2 � 2n

Z
R
j' 0i.t/j dt:

By Theorem 1.85 (used on the restrictions to x C spanfhig) we obtain that @g

@hi
.x/ exists for all

x 2 V , i 2 N. From the above it also follows that @g

@.hiChj /
.x/ D @g

@hi
.x/C @g

@hj
.x/ for all x 2 V ,

i; j 2 N.
To see that for given x 2 V the derivative @g

@h
.x/ exists for all h 2 SX choose � > 0 and let

i 2 N be such that kh� hik < �

3L
. Then for any � 2 R n f0g small enough so that x C �h 2 V ,

x C �hi 2 V we have1� �g.x C �h/ � g.x/� � 1� �g.x C �hi/ � g.x/�
 � L

j� j
k�.h � hi/k <

�

3
:

Thus there is � > 0 such that 1�1 �g.x C �1h/ � g.x/� � 1

�2

�
g.x C �2h/ � g.x/

�
<
2

3
�C

 1�1 �g.x C �1hi/ � g.x/� � 1

�2

�
g.x C �2hi/ � g.x/

� < �
for 0 < j�1j < � , 0 < j�2j < � .

Next we show that the mapping h 7! @g

@h
.x/ is L-Lipschitz. For arbitrary u; v 2 X and

� > 0 we have@g@u.x/ � @g@v .x/
 � @g@u.x/ � 1� �g.x C �u/ � g.x/�

C 1� �g.x C �u/ � g.x C �v/�


C

@g@v .x/ � 1� �g.x C �v/ � g.x/�


� �C Lku � vk
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for � small enough. Thus
@g
@u
.x/� @g

@v
.x/
 � Lku� vk. It follows that h 7! @g

@h
.x/ 2 L.X IY /,

since it is a Lipschitz mapping that is linear on a dense subset of X . Therefore g is Gâteaux
differentiable on V .

It remains to prove that x 7! ıg.x/Œh� is uniformly continuous on V for any h 2 X .
To this end, first note that the mapping x 7! @gn

@hi
.x/ is Li -Lipschitz for any n � i , where

Li D L
R

Rj'
0
i.t/j dt :@gn@hi .x/ � @gn@hi .y/

 �

Z

Rn

 
f

�
x �

nX
jD1

tjhj

�
� f

�
y �

nX
jD1

tjhj

�!
' 0i.ti/

nY
jD1
j¤i

'j .tj / d�n


� Lkx � yk

Z
R
j' 0i.t/j dt D Likx � yk:

Thus the mapping x 7! ıg.x/Œhi � is Li -Lipschitz for each i 2 N. It follows from Lemma 60
that x 7! ıg.x/Œh� is uniformly continuous on V for any h 2 X .

ut

COROLLARY 62. Let X be a separable normed linear space, Y a Banach space, U � X
open, k 2 N0, f 2 C k.U IY / such that d jf is Lj -Lipschitz for j D 0; : : : ; k, " > 0, and
let V � U be open such that dist.V;X n U/ > 0. Then there is g 2 C k.V IY / such that d jg
is Lj -Lipschitz for j D 0; : : : ; k, dkg is uniformly Gâteaux differentiable (in particular, g is
GkC1-smooth), and kd jg � d jf kV < " for all j 2 f0; : : : ; kg.

PROOF. Let W � U be open such that dist.W;X nU/ > 0 and dist.V;X nW / > 0. We define
mappings gn W W ! Y by formula (18). By Corollary 1.91 we have gn 2 C k.W IY / and

d jgn.x/ D

Z
Rn
d jf

�
x �

nX
lD1

tlhl

� nY
lD1

'l.tl/ d�n.t/ (19)

for x 2 W , j D 0; : : : ; k. Since each d jf is Lj -Lipschitz, by Lemma 61 used on (19) we obtain
that there are Lj -Lipschitz mappings qj W W ! P .jX IY / such that d jgn ! qj uniformly on
W and kd jf � qjkW < ". Moreover, qk is Gâteaux differentiable on W and x 7! ıqkŒh� is
uniformly continuous on W for each h 2 X . Therefore qk is uniformly Gâteaux differentiable
on V by Lemma 59. Theorem 1.85 implies that gn ! g 2 C k.W IY / uniformly on W and
d jg D qj , j D 0; : : : ; k.

ut

The following version of Lemma 61 is for mappings that are only locally Lipschitz.

LEMMA 63. LetX be a separable Banach space, Y a Banach space,U � X open, f W U !
Y a locally Lipschitz mapping, and let V � U be open such that ı D dist.V;X n U/ > 0. Let
fhj g be a dense subset of SX and let 'j 2 C1.R/, j 2 N, be such that 'j � 0,

R
R 'j D 1,

and supp'j �
�
�
ı
2j
; ı
2j

�
. Extend f to the whole of X by setting f .x/ D 0 for x 2 X n U

and define gn W V ! Y , n 2 N, by formula (18). Then gn ! g locally uniformly on V and the
mapping g W V ! Y is locally Lipschitz and Gâteaux differentiable. Moreover, if Y D R and U ,
V , f are convex, then so is g.

PROOF. Let K D
˚P1

jD1 tjhj I jtj j �
ı
2j

	
. Then K is a compact subset of X and so it is easy

to show that for each x 2 V there is a neighbourhood Vx � V of x such that f is Lipschitz on
Vx �K. Note that for y 2 Vx each gn.y/ is defined using values of f on Vx �K only. So we
may repeat the proof of Lemma 61 with the following differences:
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� gn ! g only locally uniformly on V .
� gn are only locally Lipschitz and so is g.
� f

@gn
@hi
g1nDi converges only locally uniformly on V .

� In the proof of the Gâteaux differentiability of g we use the fact that g is locally Lipschitz.
ut

COROLLARY 64. Let X be a separable Banach space that admits a C k;1loc -smooth bump for
some k 2 N0. Then X admits a C k;1loc -smooth bump with Gâteaux differentiable kth derivative
(in particular it admits GkC1-smooth bump).

PROOF. Let f 2 C k;1loc be a non-negative bump function with suppf � B.0; 1/. Let 'j 2
C1.R/, j 2 N, be such that 'j � 0,

R
R 'j D 1, and supp'j �

�
�
1
2j
; 1
2j

�
. Define mappings

gn W X ! Y by formula (18). By Corollary 1.91 we have gn 2 C k.X/ and (19) holds for
x 2 X , j D 0; : : : ; k. Since each d jf is locally Lipschitz, by Lemma 63 used on (19) we
obtain that there are locally Lipschitz mappings qj W X ! P .jX/ such that d jgn ! qj locally
uniformly on X . Moreover, qk is Gâteaux differentiable on X . Theorem 1.85 implies that
gn ! g 2 C k.X/ locally uniformly on X and d jg D qj , j D 0; : : : ; k. Finally, since by the
definition each gn is zero outside B.0; 2/, g is a bump.

ut

To proceed to integral convolutions in c0.� / we need an auxiliary notion. Let X be a
topological vector space, ˝ � X an open subset, E an arbitrary set, M � X�, and g W ˝ ! E.
Let U be a neighbourhood of zero in X . We say that g depends U -uniformly locally on finitely
many coordinates from M (U -ULFC-M for short) if for each x 2 ˝ there is a finite subset
F �M such that g depends only on F on .x C U/ \˝ (cf. Definition 5.78).

For any subset F � � we denote the associated projection in c0.� / by PF , i.e. PF .x/ DP
2F e

�
 .x/e for x 2 c0.� /. By c00.� / we denote the linear subspace of c0.� / consisting of

finitely supported vectors.

LEMMA 65. Let � be an arbitrary set, Y a Banach space, and let f W c0.� / ! Y be a
mapping that is U.0; r/-ULFC-fe� g2� for some r > 0. Further, let ˝ � c0.� / be open, let f
be uniformly continuous on ˝ with modulus !, and suppose that f D 0 on c0.� / n˝. Then
for every V � ˝ with dist.V; c0.� / n˝/ > 0 and for every " > 0 there is a U.0; r

2
/-ULFC-

fe� g2� mapping g 2 C1.c0.� /IY / such that kf � gkV � ", g is uniformly continuous on
V with modulus !, and the mapping x 7! Dg.x/Œh� is uniformly continuous on V for any
h 2 c00.� /. If f is even, then so is g. If moreover Y D R and f is convex, then so is g.

PROOF. Let � D dist.V; c0.� / n˝/ and find 0 < ı < minf�; r
2
g such that !.ı/ < ". Choose

an even C1-smooth non-negative function ' on R such that supp' � Œ�ı; ı� and
R

R ' D 1.
We denote C D

R
Rj'
0.t/j d�. Let F � 2� be a partially ordered set of non-empty finite subsets

of � ordered by inclusion. For any F 2 F we define the mapping gF W c0.� /! Y by

gF .x/ D

Z
RjF j

f

�
x �

X
2F

te

� Y
2F

'.t/ d�jF j.t/:

Notice that the integral is well-defined, since f D 0 on the closed set c0.� / n ˝ and f is
uniformly continuous on ˝ and so it is bounded on totally bounded sets.

The net fgF gF converges on c0.� / to a mapping g W c0.� / ! Y . In fact, we claim that
for any x 2 c0.� / there is an F 2 F such that gF .y/ D gH .y/ for any F � H 2 F and
any y 2 U.x; r

2
/. Indeed, for a fixed x 2 c0.� / let F 2 F be such that f depends only on
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fe� g2F on U.x; r/ and kx � PF .x/k < r
2
. Choose any y 2 U.x; r

2
/ and H 2 F , H � F .

Suppose that t 2 Œ� r2 ;
r
2
� for all  2 H . Then

x � �y �P2H te
� < r and consequently

f
�
y �

P
2H te

�
D f

�
y �

P
2F te

�
. Thus, by the Fubini theorem,

gH .y/ D

Z
Œ�ı;ı�jH j

f

�
y �

X
2H

te

� Y
2H

'.t/ d�jH j.t/

D

Z
Œ�ı;ı�jF j

f

�
y �

X
2F

te

� Y
2F

'.t/ d�jF j.t/
Y

2HnF

Z
Œ�ı;ı�

'.t/ d� D gF .y/:

Moreover, kx � PF .y/k � kx � PF .x/k C kPF kkx � yk < r and so we can easily see that
gF .y/ D gF .PF .y//. The mapping gF�PF .c0.� // is in fact a finite-dimensional convolution
with a smooth kernel on RjF j, and so gF is a C1-smooth mapping on U.x; r

2
/ (Corollary 1.91;

recall that a uniformly continuous mapping is bounded on totally bounded sets). The mapping g is
therefore U.0; r

2
/-ULFC-fe� g2� and g 2 C1.c0.� /IY /, as for any x 2 c0.� /, g D gF BPF

on U.x; r
2
/ for some F 2 F .

To show that kf � gkV � " choose any x 2 V . Let F 2 F be such that g.x/ D gF .x/.
Notice that

x � �x �P2F te
� D P

2F te
 � ı < � whenever t 2 Œ�ı; ı� for all

 2 F . Hence x �
P
2F te 2 ˝ and

kf .x/ � g.x/k D kf .x/ � gF .x/k

D


Z

RjF j
f .x/

Y
2F

'.t/ d�jF j.t/ �
Z

RjF j
f

�
x �

X
2F

te

� Y
2F

'.t/ d�jF j.t/


�

Z
Œ�ı;ı�jF j

f .x/ � f �x �X
2F

te

� Y
2F

'.t/ d�jF j.t/

�

Z
Œ�ı;ı�jF j

!.ı/
Y
2F

'.t/ d�jF j.t/ D !.ı/ < ":

To see that g is uniformly continuous on V with modulus !, choose x; y 2 V and find
F;H 2 F such that g.x/ D gF .x/ and g.y/ D gH .y/. Then for K D F [ H we have
g.x/ D gK.x/ and g.y/ D gK.y/. As x�

P
2K te 2 ˝ and y�

P
2K te 2 ˝ whenever

t 2 .��; �/ for all  2 K,

kg.x/ � g.y/k D kgK.x/ � gK.y/k

�

Z
Œ�ı;ı�jKj

f �x �X
2K

te

�
� f

�
y �

X
2K

te

� Y
2K

'.t/ d�jKj.t/

� !
�
kx � yk

�
:

Similarly we can check that g is even if f is even and g is convex under the additional
assumptions that Y D R and f is convex.

We finish the proof by showing that the directional derivatives of g in the directions of c00.� /
are uniformly continuous on V . So first, choose any ˛ 2 � . For x; y 2 V find F;H 2 F such
that g.x/ D gF .x/ on U.x; r

2
/ and g.y/ D gH .y/ on U.y; r

2
/. Put K D F [H [ f˛g. Using
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Corollary 1.91 and substitution we obtain

DgK.x/Œe˛� D

Z
RjKj

f

�
x �

X
2K

te

�
' 0.t˛/

Y
2Knf˛g

'.t/ d�jKj.t/:

Hence, similarly as above,Dg.x/Œe˛� �Dg.y/Œe˛�
�

Z
RjKj

f �x �X
2K

te

�
� f

�
y �

X
2K

te

�j' 0.t˛/j Y
2Knf˛g

'.t/ d�jKj.t/

� !
�
kx � yk

� Z
R
j' 0.t/j d� D C!

�
kx � yk

�
:

Finally, choose any h 2 c00.� / and x; y 2 V . It follows from the above estimate thatDg.x/Œh� �Dg.y/Œh� � X
2supph

Dg.x/Œe� .h/e � �Dg.y/Œe� .h/e �
� C!

�
kx � yk

� X
2supph

je� .h/j D Ckhk`1!
�
kx � yk

�
:

ut

THEOREM 66. Let � be an arbitrary set, Y a Banach space, U � c0.� / open, and let
f W U ! Y be a uniformly continuous mapping with modulus !. Then for every V � U

with dist.V; c0.� / n U/ > 0 and every " > 0 there is a mapping g 2 C1.c0.� /IY / which
uniformly locally depends on finitely many coordinates fe� g2� , such that kf � gkV � ",
and g is uniformly continuous on V with modulus !. If f is moreover L-Lipschitz, then g is
L-Lipschitz on V and uniformly Gâteaux differentiable on IntV .

PROOF. Let r D dist.V; c0.� /nU/ and find 0 < � � r
2

such that !.�/ < "
2

. Define ' W R! R
by '.t/ D maxf0; t � �g C minf0; t C �g. Then ' is 1-Lipschitz and j'.t/ � t j � � for all
t 2 R. Further, define a mapping ˚ W c0.� /! c0.� / by ˚.x/ D

P
2� '.e

�
 .x//e . (Notice

that in fact ˚ maps into c00.� /.) Then ˚ is 1-Lipschitz and k˚.x/� xk � � for all x 2 c0.� /.
Moreover, we claim that ˚ is U.0; �

2
/-ULFC-fe� g2� .

Indeed, fix x 2 c0.� / and find a finite F � � such that kx � PF .x/k < �

2
. Then for

any y 2 U.x; �
2
/ we have ky � PF .y/k < �. This means that if y; ´ 2 U.x; �

2
/ are such that

e� .y/ D e
�
 .´/ for all  2 F , then '.e� .y// D 0 D '.e

�
 .´// for all  2 � n F and of course

'.e� .y// D '.e
�
 .´// for all  2 F . Hence ˚.y/ D ˚.´/, and so ˚ depends only on fe� g2F

on U.x; �
2
/.

We extend f to the whole of c0.� / by f .x/ D 0 for x 2 c0.� / n U and put h D f B ˚ .
Clearly, the mapping h W c0.� /! Y is U.0; �

2
/-ULFC-fe� g2� . Put ˝ D ˚�1.U /. Then ˝ is

open and dist.V; c0.� / n˝/ � r
2

(in particular V � ˝). Indeed, choose x 2 V and y 2 c0.� /
such that kx � yk < r

2
. Then k˚.y/ � xk � k˚.y/ � yk C ky � xk < � C r

2
� r , which

means that ˚.y/ 2 U and so y 2 ˝. Moreover, h is uniformly continuous on ˝ with modulus
!. To see this, choose any x; y 2 ˝. Then ˚.x/; ˚.y/ 2 U and hence kh.x/ � h.y/k �
!
�
k˚.x/ � ˚.y/k

�
� !

�
kx � yk

�
.

Finally, kf � hkV � supx2V !
�
kx � ˚.x/k

�
� !.�/ < "

2
, and Lemma 65 used on h

together with Lemma 60 and Lemma 59 finishes the proof.
ut
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Let .X; �/ be a normed linear space. The norm � is said to be UG-smooth (or just UG) if it is
Gâteaux differentiable on X n f0g and for each fixed h 2 SX the limit defining @�

@h
.x/ is uniform

for x 2 SX .

PROOF OF THEOREM 5.126. Define a function f W c0.� /! R by f .x/ D maxf0; kxk � 1g.
Then f is a 1-Lipschitz convex even function which is U.0; 1

2
/-ULFC-fe� g2� . (Notice that

f D k�k B ˚ as in the proof of Theorem 66 for � D 1.)
Let g 2 C1.c0.� // be a 1-Lipschitz convex even function with uniformly continuous

directional derivatives produced by Lemma 65 combined with Lemma 60, such that jg.x/ �
f .x/j � 1 for all x 2 c0.� /. Then g is separating, as g.0/ � 1 and g.x/ � 2 on 4Sc0.� /. The
function g is also UG by Lemma 59, and so we can finish by using the next lemma.

ut

LEMMA 67. Let X be a normed linear space, k 2 N [ f1g, and let g W X ! R be a
C k-smooth, UG, Lipschitz, even, and convex separating function. Then X admits an equivalent
C k-smooth UG norm.

PROOF. As shown in [HJ2], the Minkowski functional of a sub-level set of a convex separating
UG function need not be UG. To be able to use the Minkowski functional we need to gain
more control over Dg.x/Œx�. To this end we introduce an additional transformation. Basically,
we construct a function that is “directionally primitive” to g in a sense, so that its directional
derivative is g back again (more or less), hence Lipschitz. So, define f W X ! R by

f .x/ D

Z
Œ0;1�

g.tx/ d�.t/:

Let L be the Lipschitz constant of g. It is easy to check that f is L
2

-Lipschitz, even, and convex.
Without loss of generality we may assume that g.0/ D 0. By the convexity of g and the fact

that g is even, g.x/ � 0 for x 2 X . Since g is separating, there are r > 0 and a > 0 such that
g.x/ � a for all x 2 rSX . Hence g.tx/ � a � Lr.1 � t / whenever t 2 Œ0; 1� and kxk D r . It
follows that

f .x/ �

Z 1

1�a=.Lr/

�
a � Lr.1 � t /

�
d�.t/ D

a2

2Lr
D b for any x 2 rSX .

By Corollary 1.91 the function f is C k-smooth and

Df.x/Œh� D

Z
Œ0;1�

Dg.tx/Œth� d�.t/: (20)

By the proof of Lemma 5.23 there is an equivalent C k-smooth norm � on X satisfying �.x/ D 1
if and only if f .x/ D b, and

D�.x/ D
1

Df
�
x
�.x/

��
x
�.x/

�Df � x

�.x/

�
:

Using Lemma 59 and (20) we can see that the function x 7! Df.x/Œh� is uniformly
continuous on X for any h 2 X . Moreover, the function x 7! Df.x/Œx� is Lipschitz on X .
Indeed, using the substitution t .1C �/ D s we get f .x C �x/ D

R
Œ0;1�

g.tx C t�x/ d�.t/ D
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1
1C�

R
Œ0;1C��

g.sx/ d�.s/. Thus, using the continuity of g along the way,

Df.x/Œx� D lim
�!0

1

�

�
f .x C �x/ � f .x/

�
D lim

�!0

1

�

 �
1

1C �
� 1

�Z 1C�

0

g.tx/ d�.t/C
Z 1C�

1

g.tx/ d�.t/

!

D lim
�!0

�1

1C �

Z 1C�

0

g.tx/ d�.t/C lim
�!0

1

�

Z 1C�

1

g.tx/ d�.t/

D g.x/ �

Z 1

0

g.tx/ d�.t/ D g.x/ � f .x/:

Since both f and g are L-Lipschitz, the function x 7! Df.x/Œx� is 2L-Lipschitz. Clearly,
f .0/ D 0. So, the convexity of f implies that Df.x/Œx� � f .x/ for any x 2 X , and in
particular Df.x/Œx� � b for x 2 X , �.x/ D 1.

Finally, we claim that the function x 7! D�.x/Œh� is uniformly continuous on AR D
X n B.0;R/ for any h 2 X and any R > 0, which according to Lemma 59 means that the
norm � is UG. Fix any R > 0 and h 2 X . Denote S D fx 2 X I �.x/ D 1g. As the mapping
 W AR ! S ,  .x/ D x=�.x/ is Lipschitz and D�.x/ D D�. .x//, it is enough to show
that x 7! D�.x/Œh� is uniformly continuous on S . Let " > 0. Find 0 < ı < " such that
jDf.x/Œh� �Df.y/Œh�j < " whenever kx � yk < ı. Then for any x; y 2 S , kx � yk < ı we
haveˇ̌
D�.x/Œh� �D�.y/Œh�

ˇ̌
D

ˇ̌̌̌
Df.x/Œh�

Df .x/Œx�
�
Df.y/Œh�

Df .y/Œy�

ˇ̌̌̌
�

1

jDf.x/Œx�j

ˇ̌
Df.x/Œh� �Df.y/Œh�

ˇ̌
C jDf.y/Œh�j

ˇ̌̌̌
1

Df .x/Œx�
�

1

Df .y/Œy�

ˇ̌̌̌
�
"

b
C
L

2
khk

ˇ̌
Df.x/Œx� �Df.y/Œy�

ˇ̌
jDf.x/Œx�j � jDf.y/Œy�j

�
"

b
C
L

2
khk

2Lkx � yk

b2

< "

�
1

b
C
L2

b2
khk

�
:

ut

Assume that a normed linear space X can be embedded in c0.� / by a bi-Lipschitz homeo-
morphism ˚ . Then we can use Theorem 66 to approximate mappings on X provided that we
can extend the approximated mapping from ˚.X/ onto some uniform neighbourhood of ˚.X/.
Since the extensions are intimately tied with retractions (see e.g. [BL]), we recall the following
notions.

A retraction of a set A onto B � A is a mapping r W A! B such that r�B D Id . A metric
space P is called an absolute Lipschitz (resp. uniform) retract if for every metric space Q
containing P as a subspace there is a Lipschitz (resp. uniformly continuous) retraction of Q
onto P . The space P is called an absolute Lipschitz (resp. uniform) uniform neighbourhood
retract if for every metric space Q containing P as a subspace there is a uniform neighbourhood
U of P in Q (i.e. dist.P;Q n U/ > 0) and a Lipschitz (resp. uniformly continuous) retraction
of U onto P .
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FACT 68. Let � be an arbitrary set, .P; �/ a metric space, Q � P , and f W Q! `1.� / a
uniformly continuous mapping with modulus ! 2Ms. Then f can be extended to a uniformly
continuous mapping g W P ! `1.� / with modulus !. In particular, an L-Lipschitz mapping
can be extended to an L-Lipschitz mapping.

PROOF. For each  2 � the function f D e� B f is a uniformly continuous function on Q
with modulus !. By Lemma 30 there are extensions g W P ! R of f which are uniformly
continuous with modulus !. Fix a 2 Q. For any x 2 P we have jg.x/j � jg.a/j C jg.x/ �
g.a/j � jg.a/j C!.�.x; a// D je

�
 .f .a//j C!.�.x; a// � kf .a/kC!.�.x; a//. It follows

that .g.x//2� 2 `1.� / and the mapping g can be defined as g.x/ D .g.x//2� . Further,
!g � !, as kg.x/ � g.y/k D sup2� jg.x/ � g.y/j � !.�.x; y//.

ut

FACT 69. Every metric space X is isometric to a subset of `1.X/.

PROOF. Let � be the metric on X . Fix a 2 X and define the isometric embedding ˚ W X !
`1.X/ by ˚.x/./ D �.x; / � �.a; / for x;  2 X .

ut

PROPOSITION 70. Let X be a metric space. Then X is an absolute Lipschitz uniform
neighbourhood retract if and only if there are K > 0 and ı > 0 such that for any two metric
spaces Q � P and every L-Lipschitz mapping f W Q! X there are a uniform neighbourhood
U � P of Q with dist.Q;P n U/ � ı

L
and a KL-Lipschitz mapping g W U ! X which

extends f .
Similarly, X is an absolute uniform uniform neighbourhood retract if and only if there are

!0 2M and ı > 0 such that for any two metric spaces Q � P and every uniformly continuous
mapping f W Q ! X with modulus ! 2 Ms there are a uniform neighbourhood U � P of
Q with dist.Q;P n U/ � �, where � is any number satisfying !.�/ < ı, and a uniformly
continuous mapping g W U ! X with modulus !0 B ! which extends f .

PROOF. ) Embed X isometrically into `1.� /. Let V � `1.� / be a uniform open neigh-
bourhood of X and let r W V ! X be a K-Lipschitz retraction. Let ı D dist.X; `1.� / n V /.
By Fact 68 there is an L-Lipschitz extension h W P ! `1.� / of f W Q ! X � `1.� /. Put
U D h�1.V /. Then U is open in P and dist.Q;P nU/ � ı

L
. Indeed, if y 2 U.´; ı=L/ for some

´ 2 Q, then h.y/ 2 U.h.´/; ı/, where h.´/ 2 X ; hence h.y/ 2 V . Finally, put g.x/ D r.h.x//
for any x 2 U .
( Let X be a subspace of a metric space P and put Q D X . The Lipschitz extension of

the identity mapping Id W X ! X to a uniform neighbourhood of X in P serves as the desired
retraction.

The proof for the uniformly continuous version is analogous.
ut

Now we are ready to prove the approximation theorem.

THEOREM 71. Let Y be a Banach space, k 2 N [ f1g, and let X be a normed linear
space such that there are a set � and a bi-Lipschitz homeomorphism ˚ W X ! c0.� / such
that the component functions e� B ˚ 2 C

k.X/ for every  2 � . Assume further that X or Y
is an absolute Lipschitz uniform neighbourhood retract. There is a constant C 2 R such that
if f W X ! Y is L-Lipschitz and " > 0, then there is a CL-Lipschitz mapping g 2 C k.X IY /
such that kf � gkX � ".
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Moreover, if C1; C2 2 R are such that ˚ is C1-Lipschitz and ˚�1 is C2-Lipschitz, and if K
is the constant from Proposition 70, then C D C1C2K.

This theorem immediately follows from the following more general version.

THEOREM 72. Let Y be a Banach space, k 2 N [ f1g, and let X be a normed linear
space such that there are a set � and a uniform homeomorphism ˚ W X ! c0.� / such that
!˚�1 � !1 2 Ms and the component functions e� B ˚ 2 C

k.X/ for every  2 � . Assume
further that X or Y is an absolute uniform uniform neighbourhood retract. If f W X ! Y is
uniformly continuous and " > 0, then there is a uniformly continuous mapping g 2 C k.X IY /
such that kf � gkX � ".

Moreover, if !0 2 M is the modulus from Proposition 70 for the space X , then !g �
!f B !0 B !1 B !˚ . If !0 2 M is the modulus from Proposition 70 for the space Y , then
!g � !0 B !f B !1 B !˚ .

PROOF. Define Of W ˚.X/ ! Y by Of .´/ D f .˚�1.´// for any ´ 2 ˚.X/. The mapping Of
is uniformly continuous with modulus !f B !1 2 Ms. If Y is an absolute uniform uniform
neighbourhood retract, then by Proposition 70 there are a uniform open neighbourhood U of
˚.X/ in c0.� / and an extension Nf W U ! Y of Of such that ! Nf � !2 D !0 B !f B !1.

In case that X is an absolute uniform uniform neighbourhood retract, we use the Propos-
ition 70 to a mapping ˚�1 to obtain a uniform open neighbourhood U of ˚.X/ in c0.� /
and an extension q W U ! X of ˚�1 such that !q � !0 B !1. Now put Nf D f B q. Then
! Nf � !2 D !f B !0 B !1 and Nf is an extension of Of .

By Theorem 66 there is a mapping Ng 2 C1.c0.� /IY / locally dependent on finitely many
coordinates and such that

 Ng.´/ � Nf .´/ � " for any ´ 2 ˚.X/ and Ng is uniformly continuous
on ˚.X/ with modulus !2. We define the mapping g W X ! Y by g D Ng B ˚ . By Lemma 5.81,
g 2 C k.X IY /. Clearly, !g � !2 B!˚ . To see that g approximates f , choose any x 2 X . Then

kg.x/ � f .x/k D
 Ng.˚.x// � Of .˚.x// D  Ng.˚.x// � Nf .˚.x// � ":

ut

Let V be a topological space and v0 2 V . By B0.V / we denote the space of all bounded
real-valued functions f on V for which f .v/ ! 0 whenever v ! v0, considered with the
supremum norm. Given a metric space P we denote by Cub.P / the space of all bounded,
uniformly continuous real-valued functions on P with the supremum norm. By the result of
Joram Lindenstrauss [L, Theorem 6] (see also [BL]), both B0.V / and Cub.P / are absolute
Lipschitz retracts. Therefore using Corollary 57 and Theorem 71 we obtain the following result:

COROLLARY 73. Let X be a separable normed linear space that admits a C k-smooth
Lipschitz bump function, k 2 N [f1g. Let Y be a Banach space. If at least one of the spaces X
or Y is equal to either B0.V / for some topological space V , or Cub.P / for some metric space
P , then there is a constant C 2 R such that for any L-Lipschitz mapping f W X ! Y and any
" > 0 there is a CL-Lipschitz mapping g 2 C k.X IY / for which kf � gkX � ".

Further, by another result of J. Lindenstrauss, [L, Theorem 8] (see also [BL, Corollary 1.26]),
super-reflexive Banach spaces are absolute uniform uniform neighbourhood retracts. Hence
using Corollary 57 and Theorem 72 we obtain the following result:

COROLLARY 74. Let X be a separable normed linear space that admits a C k-smooth
Lipschitz bump function, k 2 N [ f1g. Let Y be a Banach space. If X or Y is a super-reflexive
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Banach space, then there are a constant C 2 R and a modulus !0 2 M such that for any
uniformly continuous mapping f W X ! Y and any " > 0 there is a uniformly continuous
mapping g 2 C k.X IY / for which kf � gkX � " and !g.ı/ � !f .!0.Cı// (if X is super-
reflexive) or !g.ı/ � !0.!f .Cı// (if Y is super-reflexive) for ı 2 Œ0;C1/.

Next, we show another way how to glue together the finite-dimensional approximations.
In what follows, the unconditional basis is instrumental so that we can arbitrarily perturb the
coordinates of a given vector with a control over the norm.

LEMMA 75 ([Mo]). Let X be a Banach space with an unconditional Schauder basis
fej g

1
jD1 that admits a C k-smooth Lipschitz bump function. Denote Xn D spanfej gnjD1, X1 D

spanfej g1jD1 D
S1
nD1Xn. Then there is a constant K > 0 such that for any " > 0 there is a

K-Lipschitz mapping 	 2 C k.X IX1/ such that for each x 2 X there are a neighbourhood U
of x and n 2 N such that 	.U / � Xn and kx � 	.x/k < ".

PROOF. Let ffng be the biorthogonal functionals to feng. Let A be the unconditional basis
constant of feng and B the basis constant of feng. Let ' 2 C k.X I Œ0; 1�/ be a Lipschitz function
such that '.x/ D 1 whenever kxk � 1=A and '.x/ D 0 whenever kxk � r for some r > 0.
Such a function can be constructed from the C k-smooth Lipschitz bump function, which we
have at our disposal, by translating, scaling, and composing with a suitable real function. Let
M be the Lipschitz constant of ' and K D ACM.1C B/. Denote Rn D Id � Pn for n 2 N,
where Pn are the projections associated with the basis, P0 D 0, and R0 D Id .

Let " > 0. Define 	 W X ! X1 by 	.x/ D
P1
nD1 '.Rn�1.x/="/fn.x/en. Suppose that

x 2 X . Then there is an N 2 N such that kRn.x/k < " r
2

for all n � N and thus there is
a neighbourhood U of x such that kRn.y/k < "r whenever n � N and y 2 U . It follows
that 	.y/ D

PN
nD1 '.Rn�1.y/="/fn.y/en and hence 	.U / � XN . This fact also implies that

	 2 C k.X IX1/, as it is locally a finite sum of C k-smooth mappings.
To see that kx � 	.x/k < " for all x 2 X , fix an arbitrary x 2 X and find n0 2 N0 such

that kRn0.x/k < "=A and kRn.x/k � "=A for all 0 � n < n0. Then

kx � 	.x/k D


1X
nD1

�
1 � '.Rn�1.x/="/

�
fn.x/en

 D
X
n>n0

�
1 � '.Rn�1.x/="/

�
fn.x/en


� A

X
n>n0

fn.x/en

 D AkRn0.x/k < A "A D ":

To show that 	 is Lipschitz we estimate the norm of the derivative of 	 . Let x 2 X .
Find n0 2 N0 such that kRn0.x/k � "=A and kRn.x/k > "=A for all 0 � n < n0. Let
h 2 BX . Notice that all the sums in the following computation are in fact finite and that
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D'.Rn�1.x/="/ D 0 for 1 � n � n0.

kD	.x/Œh�k D


1X
nD1

D
�
'.Rn�1.�/="/fnen

�
.x/Œh�


D


1X
nD1

'.Rn�1.x/="/fn.h/en C fn.x/en �D'.Rn�1.x/="/ŒRn�1.h/="�


�


1X
nD1

'.Rn�1.x/="/fn.h/en

C

1X
nD1

fn.x/en �D'.Rn�1.x/="/ŒRn�1.h/="�


� Akhk C

X
n>n0

fn.x/en �D'.Rn�1.x/="/ŒRn�1.h/="�


� AC A sup

n>n0

ˇ̌
D'.Rn�1.x/="/ŒRn�1.h/="�

ˇ̌ X
n>n0

fn.x/en


� AC A sup

n>n0

D'.Rn�1.x/="/.1C B/kh="k � kRn0.x/k
� AC AM.1C B/

1

"

"

A
D ACM.1C B/ D K:

ut

THEOREM 76 (Nicole Moulis, [Mo]). Let X be a Banach space with a monotone uncon-
ditional Schauder basis fej g1jD1 that admits a C k-smooth Lipschitz bump function. Denote
Xn D spanfej gnjD1. There is a constant C > 0 such that if Y is a Banach space,M � X is such
that Pn.M/ �M for all n 2 N, ˝ is a uniform open neighbourhood of M , f W ˝ ! Y is an
L-Lipschitz mapping such that f �˝\Xn is C 1;C-smooth for each n 2 N, V �M is open such
that dist.V;X nM/ > 0, and " > 0, then there is g 2 C k.X IY / such that kDgkV � C.1C"/L
and kf � gkV � ".

PROOF. Without loss of generality we may assume that fej g is normalised. Denote X1 D
spanfej g1jD1 D

S1
nD1Xn. Let us extend the mapping f to the whole of X by f .x/ D 0

for x 2 X n ˝ and denote fn D f �Xn . For each n 2 N denote by Tn the isomorphism
Tn W Rn ! Xn, Tn.y/ D

Pn
jD1 yj ej , and define a mapping gn W Xn ! Y by the Bochner

integral

gn.x/ D

Z
Rn
fn
�
x � Tn.y/

�
'n.y/ d�n.y/;

where 'n 2 C1.Rn/ are smooth functions with sufficiently small compact supports chosen so
that

kgn.x/ � fn.x/k <
"

4

1

2n
for every x 2M \Xn, (21)

kDgn.x/ �Dfn.x/k < L
"

2

1

2n
for every x 2M \Xn. (22)

This is possible, since the mappings fn and Dfn are uniformly continuous on ˝ \Xn (see the
proof of Lemma 1). Using Corollary 1.91 and substitution (recall that a uniformly continuous
mapping is bounded on totally bounded sets) it is easy to see that gn 2 C1.XnIY /.
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Now let us define inductively a sequence of mappings Ngn W Xn ! Y . Let Ng1 D g1. Suppose
that n 2 N, n > 1, and the mapping Ngn�1 is already defined. Then we put

Ngn.x/ D gn.x/C Ngn�1.Pn�1.x// � gn.Pn�1.x// for all x 2 Xn.

Notice that Ngn�Xn�1 D Ngn�1, that is Ngn is an extension of Ngn�1. Furthermore, by induction we
can show that

Ngn 2 C
1.XnIY / for each n 2 N, (23)

k Ngn.x/ � fn.x/k <
"

2

�
1 �

1

2n

�
for every x 2M \Xn, n 2 N, (24)

kD Ngn.x/ �Dfn.x/k < L"

�
1 �

1

2n

�
for every x 2M \Xn, n 2 N. (25)

Indeed, (23) is obvious. For n D 1 the inequality (24) follows from (21). Let n 2 N, n > 1, and
suppose the inequality (24) holds for n � 1. Then, using (21),

k Ngn.x/ � fn.x/k � kgn.x/ � fn.x/k C
 Ngn�1.Pn�1.x// � gn.Pn�1.x//

<
"

4

1

2n
C
 Ngn�1.Pn�1.x// � fn�1.Pn�1.x//
C
fn.Pn�1.x// � gn.Pn�1.x//

<
"

4

1

2n
C
"

2

�
1 �

1

2n�1

�
C
"

4

1

2n
D
"

2

�
1 �

1

2n

�
for any x 2M \Xn. Notice, that here we used the fact that Pn�1.M/ �M .

The inequality (25) for n D 1 follows from (22). Let n 2 N, n > 1, and suppose the
inequality (25) holds for n � 1. Then, using (22),

kD Ngn.x/ �Dfn.x/k � kDgn.x/ �Dfn.x/k C
D. Ngn�1 B Pn�1/.x/ �D.gn B Pn�1/.x/

< L
"

2

1

2n
C
D. Ngn�1 B Pn�1/.x/ �D.fn B Pn�1/.x/

C
D.fn B Pn�1/.x/ �D.gn B Pn�1/.x/

D L
"

2

1

2n
C
D Ngn�1.Pn�1.x// B Pn�1 �Dfn�1.Pn�1.x// B Pn�1

C
Dfn.Pn�1.x// B Pn�1 �Dgn.Pn�1.x// B Pn�1

< L
"

2

1

2n
C L"

�
1 �

1

2n�1

�
C L

"

2

1

2n
D L"

�
1 �

1

2n

�
for any x 2 M \ Xn. Here we used the fact that Pn�1.M/ � M and also the fact that
kPn�1k D 1.

Next, we define the mapping Ng W X1 ! Y by Ng.x/ D limn!1 Ngn.x/ for all x 2 X1. Recall
that Ngn.x/ D Ngm.x/ for all n � m whenever x 2 Xm and thus the mapping Ng is well-defined.
From (24) it readily follows that

k Ng.x/ � f .x/k <
"

2
for every x 2M \X1. (26)

Now, let 	 2 C k.X IX1/ be the mapping from Lemma 75 such that k	.x/ � xk <
minf "

2L
; "; dist.V;X nM/g for all x 2 X . Let C > 0 be the Lipschitz constant of 	 . We define

the mapping g W X ! Y by g D Ng B 	 . For each x 2 X there are a neighbourhood U of x and



SECTION 7. APPROXIMATION OF LIPSCHITZ MAPPINGS 55

n 2 N such that 	.U / � Xn. Hence g D Ngn B 	 on U which together with (23) implies that
g 2 C k.X IY /.

To see that g approximates f , choose an arbitrary x 2 V . Then 	.x/ 2 M \X1, which
used together with (26) gives

kg.x/ � f .x/k � k Ng.	.x// � f .	.x//k C kf .	.x// � f .x/k <
"

2
C L

"

2L
D ":

Finally, we estimate the derivative of g on V . Fix any x 2 V . There are a neighbourhood U
of x and n 2 N such that 	.U / � Xn and so g D Ngn B 	 on U . Also, 	.x/ 2 M \ Xn and
therefore we can use (25) to obtain
kDg.x/k D kD. Ngn B 	/.x/k D kD Ngn.	.x// BD	.x/k � kD Ngn.	.x//kkD	.x/k

� C
�D Ngn.	.x// �Dfn.	.x//C kDfn.	.x//k� < C.L"C L/ D C.1C "/L:

ut

Combining Lemma 61 and Theorem 76 we would obtain a uniform approximation res-
ult on spaces with unconditional basis. However, we postpone the precise formulation until
Corollary 79, where we obtain even stronger statement.

Next, we prove a result that allows us to pass from uniform approximations to fine ap-
proximations. We start with the existence of smooth and Lipschitz �-discrete partitions of
unity.

LEMMA 77. Let X , Y be normed linear spaces and k 2 N [ f1g. Suppose that for each
1-Lipschitz mapping f W 2UX ! Y and " > 0 there is a Lipschitz mapping g 2 C k.UX IY /
satisfying kf � gkUX � ". Let ˝ � X be open. Then for any open covering U of ˝ there
is a Lipschitz and C k-smooth locally finite and �-uniformly discrete partition of unity on ˝
subordinated to U.

PROOF. Let S � C k.˝/ be the subset consisting of bounded Lipschitz functions. Analog-
ously as in the proof of Theorem 48 it can be shown that S is a partition ring. Further, notice
that approximation of mappings into Y gives us also approximations of functions. Indeed, if
f W 2UX ! R is 1-Lipschitz, then choose some y 2 SY and consider the mapping Nf W 2UX ! Y ,
Nf .x/ D f .x/ � y. Let Ng 2 C k.UX IY / be an approximation of Nf provided by our assumption

and F 2 Y � be a Hahn-Banach extension of the norm-one functional ty 7! t defined on spanfyg.
Then g D F B Ng is the desired approximation of the function f . Thus by approximating the
function x 7! dist.x;˝ nW / we can show that (ii) in Lemma 40 is satisfied, which finishes the
proof.

ut

THEOREM 78. Let X , Y be normed linear spaces and k 2 N [f1g. Suppose that there is a
C � 1 such that for each L-Lipschitz mapping f W 2UX ! Y and " > 0 there is a CL-Lipschitz
mapping g 2 C k.UX IY / satisfying kf � gkUX � ". Let ˝ � X be open. Then for any
L-Lipschitz mapping f W ˝ ! Y , any continuous function " W ˝ ! RC, and any � > 1 there
is an �CL-Lipschitz mapping g 2 C k.˝IY / such that kf .x/ � g.x/k < ".x/ for all x 2 ˝.

PROOF. First notice that from approximations on UX by translating and scaling we immediately
obtain approximations on any open ball in X . For each x 2 ˝ find r.x/ > 0 such that
U.x; 4r.x// � ˝ and

".y/ >
".x/

3
for each y 2 U.x; r.x//. (27)
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By Lemma 77 there is a locally finite and �-discrete C k-smooth Lipschitz partition of unity
on ˝ subordinated to fU.x; r.x//I x 2 ˝g. We may assume that the partition of unity is of
the form f n˛gn2N;˛2�, where for each n 2 N the family fsuppo n˛g˛2� is discrete in ˝. For
each n 2 N and ˛ 2 � let Un˛ D U.xn˛; r.xn˛// be such that suppo n˛ � Un˛. Let Ln˛ be
the Lipschitz constant of  n˛, and without loss of generality assume that Ln˛ � 1. Further,
denote Vn˛ D U.xn˛; 2r.xn˛//.

For each n 2 N and ˛ 2 � we approximate f on Vn˛ by CL-Lipschitz mapping gn˛ 2
C k.Vn˛IY / such that

kf .x/ � gn˛.x/k � min
�
.� � 1/CL

2nLn˛
;
".xn˛/

3

�
< ".x/ for each x 2 Un˛. (28)

(The second inequality follows from (27).) Define the mapping Ngn˛ W ˝ ! Y by Ngn˛.x/ D
gn˛.x/ for x 2 Vn˛, Ngn˛.x/ D 0 otherwise.

Finally, we define the mapping g W ˝ ! Y by

g.x/ D
X

n2N;˛2�

 n˛.x/ Ngn˛.x/:

Since suppo n˛ � Un˛, gn˛ 2 C k.Vn˛IY /, and the sum is locally finite, the mapping g is
well-defined and moreover g 2 C k.˝IY /.

Choose x 2 ˝ and let us compute how far g.x/ is from f .x/:

kf .x/ � g.x/k D

 X
n2N;˛2�

 n˛.x/
�
f .x/ � Ngn˛.x/

� � X
n2N

˛2� W x2Un˛

 n˛.x/kf .x/ � gn˛.x/k

< ".x/
X
n2N

˛2� W x2Un˛

 n˛.x/ D ".x/;

where the last inequality follows from (28).
To estimate the derivative of g at some fixed x 2 ˝, notice that by the discreteness of

fsuppo n˛g˛2�, for each n 2 N there is at most one ˛ 2 � such that D n˛.x/ ¤ 0. Put
M D fn 2 NI 9˛ 2 � W D n˛.x/ ¤ 0g. Then there is a mapping ˇ W M ! � such that
for each n 2 M , D n˛.x/ D 0 whenever ˛ ¤ ˇ.n/ and moreover x 2 Unˇ.n/. (Notice
that if D n˛.x/ ¤ 0, then necessarily x 2 Un˛.) Further, since

P
 n˛ D 1, it follows that
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D n˛ D 0. Hence

kDg.x/k D

 X
n2N;˛2�

D. n˛ Ngn˛/.x/

 D


X
n2N

˛2� W x2Un˛

D. n˛ Ngn˛/.x/


D


X
n2N

˛2� W x2Un˛

 n˛.x/Dgn˛.x/C
X
n2N

˛2� W x2Un˛

D n˛.x/ � gn˛.x/


D


X
n2N

˛2� W x2Un˛

 n˛.x/Dgn˛.x/C
X
n2N

˛2� W x2Un˛

D n˛.x/ �
�
gn˛.x/ � f .x/

�
�

X
n2N

˛2� W x2Un˛

 n˛.x/kDgn˛.x/k C
X
n2M

kD nˇ.n/.x/kkgnˇ.n/.x/ � f .x/k

�

X
n2N

˛2� W x2Un˛

CL n˛.x/C
X
n2M

Lnˇ.n/kgnˇ.n/.x/ � f .x/k

� CLC
X
n2M

Lnˇ.n/
.� � 1/CL

2nLnˇ.n/
� �CL;

where the last but one inequality follows from (28).
To finish the proof we show that g is �CL-Lipschitz on the set˝. Without loss of generality

we may assume that ".x/ � .�C � 1/L dist.x;X n˝/ for every x 2 ˝. Now fix x; y 2 ˝. If
the line segment l with end points x and y lies in ˝, then kg.x/ � g.y/k � �CLkx � yk by
Proposition 1.71. Otherwise there is ´ 2 l \ .X n˝/. Then
kg.x/ � g.y/k � kg.x/ � f .x/k C kf .x/ � f .y/k C kf .y/ � g.y/k

< ".x/C Lkx � yk C ".y/

� .�C � 1/Lkx � ´k C Lkx � yk C .�C � 1/Lky � ´k D �CLkx � yk:

ut

COROLLARY 79. Let X be a separable normed linear space that admits a C k-smooth
Lipschitz bump function, k 2 N [ f1g. Let Y be a Banach space. Suppose further that one of
the following conditions is satisfied:
� X is a Banach space with an unconditional Schauder basis, or
� at least one of the spaces X or Y is equal to B0.V / for some topological space V , or
� at least one of the spaces X or Y is equal to Cub.P / for some metric space P .

Then there is a constant C 2 R such that for any open ˝ � X , any L-Lipschitz mapping
f W ˝ ! Y , and any continuous function " W ˝ ! RC there is a CL-Lipschitz mapping
g 2 C k.˝IY / for which kf .x/ � g.x/k < ".x/ for all x 2 ˝.

PROOF. It suffices to notice that under our assumptions the hypothesis of Theorem 78 is satisfied.
Indeed, since BX is a 2-Lipschitz retract of X , every L-Lipschitz mapping defined on BX can
be extended to a 2L-Lipschitz mapping defined on X . Thus we may apply either Corollary 73,
or (in the case of the unconditional basis) we combine Lemma 61 and Theorem 76.

ut
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Further, Theorem 78 together with Theorem 32 gives us the next corollary.

COROLLARY 80. Let X be a Hilbert space and ˝ � X an open set. Then for any L-
Lipschitz function f W ˝ ! R, any continuous function " W ˝ ! RC, and any � > 1 there is an
�L-Lipschitz function g 2 C 1.˝/ such that jf .x/ � g.x/j < ".x/ for all x 2 ˝.

Similarly, Theorem 78 together with Theorem 66 produces the following corollary.

COROLLARY 81. Let � be an arbitrary set,˝ � c0.� / an open set, and Y a Banach space.
Then for any L-Lipschitz mapping f W ˝ ! Y , any continuous function " W ˝ ! RC, and any
� > 1 there is an �L-Lipschitz mapping g 2 C1.˝IY / such that kf .x/ � g.x/k < ".x/ for
all x 2 ˝.

In the rest of the section we deal with the approximation of Lipschitz functions by real
analytic Lipschitz functions.

THEOREM 82. Let X be a separable Banach space that admits a Lipschitz separating
real-analytic function with uniform radii of convergence as in property (K). Then there is a
constant K 2 R such that for each " > 0 and any L-Lipschitz function f W X ! R there is a
KL-Lipschitz function g 2 C!.X/ satisfying jf � gjX � ".

We remark that the assumption is in particular satisfied if X admits a separating polynomial.
Indeed, by Fact 4.45 there is P 2 P .nX/ for some n 2 N even such that P.x/ � 1 for
x 2 SX . Let 0 < r � 1 be such that r2k}P k.1 C t /n < 1 C tn for each t 2 Œ0;C1/.

Consider the function q.´/ D
�
1 C QP .´/

� 1
n . By Proposition 1.61 we have Re QP .x C iy/ �

P.x/ � k}P kPŒn
2
�

kD1

�
n

2k

�
kxkn�2kkyk2k � kxkn � k}P kr2.1 C kxk/n > �1 for all x; y 2 X ,

kyk � r . Thus q 2 H.G/, where G D f´ 2 QX I kIm ´k < rg, and by Corollary 1.165 the
radius of norm convergence of the Taylor series of q at each x 2 X is at least r . Further,
q�X is clearly separating. Finally, using the fact that P.x/ � kxkn for x 2 X we obtain
kDq�X.x/k D 1

n
.1C P.x//

1
n
�1kDP.x/k � 1

n
.1C kxkn/

1
n
�1kDP kkxkn�1 � 1

n
kDP k, and

so q�X is Lipschitz.
The proof of Theorem 82 is divided into a few steps (Proposition 83, Proposition 84, and

Lemma 85). We begin by introducing an auxiliary notion. Let X be a normed linear space and
let U D fUxI x 2 Ux � QX; x 2 Xg be a collection of open neighbourhoods in QX . Let A � X .
We say that a function h W

S
U! C separates A with respect to U if

(S1) h�X maps into R,
(S2) h.x/ � 1 whenever x 2 A,
(S3) jh.´/j � 1

4
whenever ´ 2 Ux, x 2 X , dist.x; A/ � 1.

PROPOSITION 83. Let X be a Banach space. Assume that there are U D fUxI x 2 Ux �
QX; x 2 Xg a collection of open neighbourhoods in QX and C > 0 such that for each A � X

there is a function hA 2 H
�S

U
�

which separates A with respect to U and such that hA�X
is C -Lipschitz. Then for every " > 0 and every L-Lipschitz function f W X ! R there is a
10CL-Lipschitz function g 2 C!.X/ satisfying jf � gjX � ".

PROOF. Let us define a function Nf W X ! R by Nf .x/ D 4
"
f
�
"
4L
x
�
. This function is obviously

1-Lipschitz. Denote Nf C D maxf Nf ; 0g and Nf � D maxf� Nf ; 0g and notice that both functions
are again 1-Lipschitz. Next, let us define the sets An D fx 2 X I Nf C.x/ � ng for n 2 N0.
Clearly, An � An�1 for all n 2 N, and using the 1-Lipschitz property of Nf C it is easy to check
that

dist.X n An; AnC1/ � 1 for all n 2 N. (29)
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Denote hn D �n B hAn for n 2 N, where the functions �n come from Lemma 4. For each n 2 N,
hn 2 H

�S
U
�

and hn�X is 4C -Lipschitz. Put hC D
P1
nD1 hn.

Fix an arbitrary x 2 X . Then there is m 2 N such that x 2 Am�1 n Am. Hence

x 2 An for n < m and x 2 X n An�1 for n > m. (30)

From this, (29), (S3), and (T3) it follows that jhn.´/j � 2�n for all n > m and ´ 2 Ux. Hence
the sum in the definition of hC converges absolutely uniformly on Ux and so hC 2 H

�S
U
�
.

This together with (S1) and (T1) implies that hC�X 2 C!.X/.
Using (30), (S2) and (T4), (29), (S3) and (T3), and finally m� 1C hm.x/ 2 Œm� 1;m� and

Nf C.x/ 2 Œm � 1;m/, we obtainˇ̌
hC.x/ � Nf C.x/

ˇ̌
D

ˇ̌̌̌
ˇ
m�1X
nD1

hn.x/C hm.x/C

1X
nDmC1

hn.x/ � Nf
C.x/

ˇ̌̌̌
ˇ

�

m�1X
nD1

jhn.x/ � 1j C

1X
nDmC1

jhn.x/j C
ˇ̌
m � 1C hm.x/ � Nf

C.x/
ˇ̌

<

m�1X
nD1

2�n C

1X
nDmC1

2�n C 1 < 2:

Further, (30), (29), and (T5) imply kD.hn�X/.x/k D j.�n�R/
0.hAn.x//jkD.hAn�X/.x/k �

2�nC for n 2 N n fmg. Hence by Corollary 1.166

kD.hC�X/.x/k �
1X
nD1

kD.hn�X/.x/k �
X
n¤m

2�nC C kD.hm�X/.x/k < C C 4C D 5C:

Similarly we obtain an approximation of Nf � denoted by h�. Put h D hC � h�. Then
h�X 2 C!.X/,

ˇ̌
h.x/ � Nf .x/

ˇ̌
< 4 for every x 2 X , and kD.h�X/.x/k � kD.hC�X/.x/k C

kD.h��X/.x/k < 10C for every x 2 X .
Finally, let g.x/ D "

4
h
�
4L
"
x
�

for x 2 X . It is straightforward to check that g satisfies the
conclusion of our proposition.

ut

PROPOSITION 84. Let X be a Banach space. Suppose that there are an open neighbourhood
G of X in QX and a collection f ngn2N of functions on G with the following properties:
(P1) f n�Xgn2N is a sup-partition on X ,
(P2) the mapping ´ 7! .bn n.´//n2N is a holomorphic mapping from G into Qc0 for any

.bn/ 2 `1,
(P3) there is M > 0 such that each  n�X is M -Lipschitz,
(P4) for each n 2 N there is xn 2 X such that  n.x/ � Q

8
for x 2 X , kx � xnk � 1

2
, where Q

is the quantity from the definition of a sup-partition.
Then there is a collection U of open neighbourhoods in QX such that for each A � X there is a
function hA 2 H

�S
U
�

which separates A with respect to U and such that hA�X is C -Lipschitz,
where C D

p
2M=Q.

PROOF. Let W , �, and �w be as in Proposition 7 for q D 8
Q

. Denote w.´/ D . n.´//n2N for
´ 2 G. By the continuity of the mapping w (which follows from (P2)), for each x 2 X there
is an open neighbourhood Ux of x in QX such that Ux � G and kw.´/ � w.x/k < �w.x/=q

whenever ´ 2 Ux. (Notice that w.x/ 2 c0 n f0g.) Put U D fUxI x 2 Xg.
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Let A � X . For each n 2 N put bn D q if dist.xn; A/ � 1
2

and bn D 1 otherwise. Choose
´ 2

S
U and let x 2 X be such that ´ 2 Ux. Then.bn n.´// � .bn n.x// D sup

n2N

ˇ̌
bn. n.´/ �  n.x//

ˇ̌
� q sup

n2N
j n.´/ �  n.x/j

D qkw.´/ � w.x/k < �w.x/

(31)

and since 0 � w.x/ � .bn n.x// � qw.x/ in the lattice sense, from (M1) it follows that
.bn n.´// 2 W . Therefore we may define hA.´/ D 1

8
�
�
.bn n.´//

�
for ´ 2

S
U and (P2)

implies that hA 2 H
�S

U
�
. Further, hA�X is obviously C -Lipschitz.

Next we show that hA separates A with respect to U. Clearly hA has property (S1). Pick any
x 2 A. From (P1) and (P4) it follows that sup f n.x/I n 2 N; dist.xn; A/ � 1

2
g � Q. Therefore

k.bn n.x//k � qQ D 8 and consequently (M2) gives property (S2). Finally, to show (S3) let
x 2 X be such that dist.x; A/ � 1. Then, by (P4),  n.x/ � Q

8
for those n 2 N for which

dist.xn; A/ � 1
2
. Thus k.bn n.x//k � max

˚
qQ
8
; 1
	
D 1. Now (31) together with (M3) implies

jhA.´/j �
1
4

for ´ 2 Ux.
ut

LEMMA 85. Let X be a separable Banach space and fxng1nD1 a dense sequence in X .
Suppose that there are � > 0 and a function q 2 H.˝/ where ˝ D f´ 2 QX I kIm ´k < �g,
such that q�X is Lipschitz and maps into Œ0;C1/, q.0/ D 0, q.x/ � 2 for x 2 X , kxk � 1

2
,

and suppose there is a sequence fang1nD1 of positive real numbers such that for each x 2 X the
function

´ 7!

1X
nD1

an
�
Im q.x � xn C ´/

�2 (32)

is defined on some neighbourhood of 0 in QX and is continuous at 0. Then there are an open
neighbourhood G of X in QX and a collection of functions f ngn2N satisfying the properties
(P1)–(P4) in Proposition 84.

PROOF. Put "n D minf2�n; 1
16
g and let �n be the functions and fıng the sequence from Lemma 5.

Put
 n.´/ D �n

�
q.´ � x1/; : : : ; q.´ � xn/

�
for ´ 2 ˝, n 2 N.

Then  n 2 H.˝/ and by (Z1)  n�X maps into Œ0; 1�.
Pick any x 2 X . Then from the density of fxng and the fact that q.0/ D 0 it follows that there

is l 2 N such that q.x � xl/ < 1. Let k 2 N be the smallest such number. Then property (Z4)
implies that  k.x/ � 1

2
. Thus supn2N  n.x/ � Q for each x 2 X , where Q D 1

2
.

By the continuity of q there is � > 0 such that Re q.´/ � 1
4

whenever ´ 2 QX , k´k < �.
Now fix x 2 X and find an index j 2 N such that kxj � xk < �. Let ıx > 0 be such that
kx � xj Cwk < � and

P1
nD1 an

�
Im q.x � xnCw/

�2
� ıj whenever w 2 QX , kwk � ıx . Then

Re q.x�xjCw/ � 1
4

and hence, by (Z3), j n.´/j � 2�n for n > j and ´ 2 Ux D U QX.x; ıx/. It
follows that for any .bn/ 2 `1, .bn n.´//n2N D

P1
nD1 bn n.´/en 2 Qc0 and the sum converges

absolutely uniformly on Ux. As the mappings ´ 7! bn n.´/en are holomorphic as mappings
from ˝ into Qc0, we can conclude that .bn n/ is a holomorphic mapping from G D

S
x2X Ux

into Qc0, which gives (P2). (P1) then immediately follows.
Property (P3) obviously holds by (Z2). Finally we show that (P4) is satisfied. Indeed, fix

n 2 N. For x 2 X , kx � xnk � 1
2

we have q.x � xn/ � 2, hence, by (Z5),  n.x/ � 1
16
D

Q

8
.
ut
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PROOF OF THEOREM 82. There are d > 0 and a function q 2 H.G/,G D f´ 2 QX I kIm ´k <

dg, such that q�X is Lipschitz and maps into Œ0;C1/, q.0/ D 0, q.x/ � 2 for x 2 X , kxk � 1
2

,
and the radius of convergence of the Taylor expansion of q at every point x 2 X is at least d
(Theorem 1.171).

Let fxng1nD1 be a dense sequence in X . Put

Mn D sup
nˇ̌
q.xj � xn C w/

ˇ̌
I w 2 QX; kwk � d

2
; 1 � j � n

o
and an D 1=.2nM 2

n /. (Note that by the assumption on the radius of the Taylor seriesMn < C1.)
Fix x 2 X . There is k 2 N such that x 2 U

�
xk;

d
4

�
. For ´ 2 QX satisfying k´k � d

4
we have

kx � xk C ´k �
d
2

and hence for n � k

an
�
Im q.x � xn C ´/

�2
� an

ˇ̌
q.xk � xn C x � xk C ´/

ˇ̌2
� anM

2
n D

1

2n
:

Therefore the sum in (32) converges absolutely uniformly on B QX
�
0; d

4

�
to a continuous function.

Using Lemma 85 together with Proposition 84 and Proposition 83 finishes the proof.
ut

8. Approximation of C 1-smooth mappings

In this section we prove our most general result on an approximation of a C 1-smooth
mapping together with its first derivative by a C k-smooth mapping in the fine topology. A
concise formulation is in Corollary 88.

In order to avoid repeating the same argument in various contexts, we prove the following
somewhat technical proposition. One of the main ideas is based on the same argument as the
proof of Theorem 78.

PROPOSITION 86. Let X , Y be normed linear spaces, k 2 N [ f1g, and ˝ � X open.
Suppose that for any open covering U of ˝ there is a C k-smooth Lipschitz locally finite and � -
discrete partition of unity on ˝ subordinated to U. Suppose further that fYg2� is a collection
of closed subspaces of Y such that for each  2 � there is a constant C 2 R such that for
any L-Lipschitz mapping f 2 C 1.2UX IY/ and any " > 0 there is a CL-Lipschitz mapping
g 2 C k.UX IY / satisfying kf � gkUX � ". Let f 2 C 1.˝IY / be such that it is locally
a mapping into some Y ,  2 � . Then for any continuous function " W ˝ ! RC there is
g 2 C k.˝IY / such that kf .x/ � g.x/k < ".x/ and kDf.x/ �Dg.x/k < ".x/ for all x 2 ˝.

PROOF. First notice that from approximations on UX by translating and scaling we immediately
obtain approximations on any open ball in X . For each x 2 ˝ find r.x/ > 0 and .x/ 2 �
such that U.x; 4r.x// � ˝, f

�
U.x; 4r.x//

�
� Y.x/,

".y/ >
".x/

3
for each y 2 U.x; 4r.x//, and (33)

kDf.x/ �Df.y/k <
".x/

9C.x/
for each y 2 U.x; 4r.x//. (34)

By our assumption there is a locally finite and � -discrete C k-smooth Lipschitz partition of unity
on ˝ subordinated to fU.x; r.x//I x 2 ˝g. We may assume that the partition of unity is of
the form f n˛gn2N;˛2�, where for each n 2 N the family fsuppo n˛g˛2� is discrete in ˝. For
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each n 2 N and ˛ 2 � let Un˛ D U.xn˛; r.xn˛// be such that suppo n˛ � Un˛. Let Ln˛
be the Lipschitz constant of  n˛. Further, denote Cn˛ D C.xn˛/ and Vn˛ D U.xn˛; 2r.xn˛//.
Without loss of generality assume that Ln˛ � 1 and Cn˛ � 1.

For each n 2 N and ˛ 2 � let us define the mapping fn˛ W U.xn˛; 4r.xn˛//! Y.xn˛/ by
fn˛.x/ D f .x/ �Df.xn˛/Œx�. Then, by (34) and (33),

kDfn˛.x/k D kDf.x/ �Df.xn˛/k

<
".xn˛/

9Cn˛
<
".x/

3Cn˛
�
".x/

3
for each x 2 U.xn˛; 4r.xn˛//.

(35)

According to our assumption, for each n 2 N and ˛ 2 � we can approximate fn˛ on Vn˛
by gn˛ 2 C k.Vn˛IY / such that

kDgn˛.x/k �
".xn˛/

9
<
".x/

3
for each x 2 Vn˛, (36)

kfn˛.x/ � gn˛.x/k �
".xn˛/

9 � 2nLn˛
<

".x/

3 � 2nLn˛
< ".x/ for each x 2 Vn˛. (37)

(The second inequalities follow from (33).) Define the mapping Ngn˛ W ˝ ! Y by Ngn˛.x/ D
gn˛.x/ for x 2 Vn˛, Ngn˛.x/ D 0 otherwise. Finally, we define the mapping g W ˝ ! Y by

g.x/ D
X

n2N;˛2�

 n˛.x/
�
Ngn˛.x/CDf.xn˛/Œx�

�
:

Since suppo n˛ � Un˛, gn˛ 2 C k.Vn˛IY /, and the sum is locally finite, the mapping g is
well-defined and moreover g 2 C k.˝IY /.

Choose x 2 ˝ and let us compute how far g.x/ is from f .x/:

kf .x/ � g.x/k D

 X
n2N;˛2�

 n˛.x/
�
f .x/ � Ngn˛.x/ �Df.xn˛/Œx�

�
D


X
n2N

˛2� W x2Un˛

 n˛.x/
�
fn˛.x/ � gn˛.x/

�
�

X
n2N

˛2� W x2Un˛

 n˛.x/kfn˛.x/ � gn˛.x/k < ".x/
X
n2N

˛2� W x2Un˛

 n˛.x/ D ".x/;

where the last inequality follows from (37).
To estimate the distance between the derivatives at some fixed x 2 ˝, notice that by

the discreteness of fsuppo n˛g˛2�, for each n 2 N there is at most one ˛ 2 � such that
D n˛.x/ ¤ 0. Put M D fn 2 NI 9˛ 2 � W D n˛.x/ ¤ 0g. Then there is a mapping
ˇ W M ! � such that for each n 2 M , D n˛.x/ D 0 whenever ˛ ¤ ˇ.n/, and moreover
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x 2 Unˇ.n/. (Notice that if D n˛.x/ ¤ 0, then necessarily x 2 Un˛.) Hence

kDf.x/ �Dg.x/k D kD.f � g/.x/k D


X

n2N;˛2�

D
�
 n˛ �

�
f � Ngn˛ �Df.xn˛/

��
.x/


D


X
n2N

˛2� W x2Un˛

D
�
 n˛ �

�
f � gn˛ �Df.xn˛/

��
.x/


D


X
n2N

˛2� W x2Un˛

D
�
 n˛ � .fn˛ � gn˛/

�
.x/


D


X
n2N

˛2� W x2Un˛

 n˛.x/D.fn˛ � gn˛/.x/C
X
n2N

˛2� W x2Un˛

D n˛.x/ �
�
fn˛.x/ � gn˛.x/

�
�

X
n2N

˛2� W x2Un˛

 n˛.x/
Dfn˛.x/ �Dgn˛.x/CX

n2M

kD nˇ.n/.x/k
fnˇ.n/.x/ � gnˇ.n/.x/

�

X
n2N

˛2� W x2Un˛

 n˛.x/
�
kDfn˛.x/k C kDgn˛.x/k

�
C

X
n2M

Lnˇ.n/
fnˇ.n/.x/ � gnˇ.n/.x/

<

�
".x/

3
C
".x/

3

� X
n2N

˛2� W x2Un˛

 n˛.x/C
X
n2M

Lnˇ.n/
".x/

3 � 2nLnˇ.n/
� ".x/;

where the last but one inequality follows from (35), (36), and (37).
ut

THEOREM 87. Let X , Y be normed linear spaces, k 2 N [ f1g. Consider the following
statements:

(i) There is C 2 R such that for any L-Lipschitz mapping f W 2UX ! Y and any " > 0 there
is a CL-Lipschitz mapping g 2 C k.UX IY / such that kf � gkUX � ".

(ii) For any open˝ � X and any open covering U of˝ there is a C k-smooth Lipschitz locally
finite and � -discrete partition of unity on ˝ subordinated to U. There is C 2 R such that
for any L-Lipschitz mapping f 2 C 1.2UX IY / and any " > 0 there is a CL-Lipschitz
mapping g 2 C k.UX IY / such that kf � gkUX � ".

(iii) For any open ˝ � X , any mapping f 2 C 1.˝IY /, and any continuous function " W ˝ !
RC there is g 2 C k.˝IY / such that kf .x/�g.x/k < ".x/ and kDf.x/�Dg.x/k < ".x/
for all x 2 ˝.

(iv) For any open ˝ � X , any L-Lipschitz mapping f 2 C 1.˝IY /, any continuous function
" W ˝ ! RC, and any � > 1 there is an �L-Lipschitz mapping g 2 C k.˝IY / such that
kf .x/ � g.x/k < ".x/ for all x 2 ˝.

Then (i))(ii))(iii))(iv).
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PROOF. (i))(ii) follows from Lemma 77, (ii))(iii) follows from Proposition 86 (consider the
collection of subspaces of Y consisting only of the space Y itself), and for (iii))(iv) see the
end of the proof of Theorem 78.

ut

COROLLARY 88. Let X be a separable normed linear space that admits a C k-smooth
Lipschitz bump function, k 2 N [ f1g. Let Y be a Banach space. Suppose further that one of
the following conditions is satisfied:

� at least one of the spaces X or Y is equal to B0.V / for some topological space V , or
� at least one of the spaces X or Y is equal to Cub.P / for some metric space P , or
� X is a Banach space with an unconditional Schauder basis, or
� Y is a Banach space with an unconditional Schauder basis and with a separable dual.

Then for any open ˝ � X , any mapping f 2 C 1.˝IY /, and any continuous function " W ˝ !
RC there is g 2 C k.˝IY / such that kf .x/ � g.x/k < ".x/ and kDf.x/ �Dg.x/k < ".x/

for all x 2 ˝.

PROOF. Suppose that one of the first three conditions is satisfied. Then our corollary follows
from Theorem 87. It suffices to notice that under our assumptions the statement (i) of Theorem 87
holds. We may either apply Corollary 79, or the less involved Corollary 73 together with the
observation that since BX is a 2-Lipschitz retract of X , every L-Lipschitz mapping defined on
BX can be extended to a 2L-Lipschitz mapping defined on X .

It remains to prove the case that Y has an unconditional Schauder basis feng and has a
separable dual (which means that Y admits a C 1-smooth Lipschitz bump function, Theorem 5.2).
We will show that statement (ii) in Theorem 87 is satisfied, which will prove our claim. For the
first part we use Lemma 77 together with the approximation of Lipschitz functions given by
either Corollary 73, or the less involved combination of Theorem 55 and Theorem 56. (Although,
sinceX is separable, it is not overly difficult to construct the required partitions of unity directly.)

To prove the second assertion in statement (ii) of Theorem 87 let K be the constant from
Lemma 75 used on the space Y . Put C D 2K. Let f 2 C 1.UX IY / be L-Lipschitz and " > 0.
Denote Yn D spanfej gnjD1. By Lemma 75 there is aK-Lipschitz mapping 	 2 C 1.Y IY / which
locally maps into some Yn and such that ky � 	.y/k < "

2
for every y 2 Y . Put h D 	 B f .

Then h 2 C 1.UX IY / is a KL-Lipschitz mapping which locally maps into some Yn and such
that kf � hkUX �

"
2
. Since the spaces Yn, n 2 N, are finite-dimensional, by Corollary 73 there

are constants Cn such that any M -Lipschitz mapping from UX into Yn can be approximated
by C k-smooth CnM -Lipschitz mapping. Therefore we can use Proposition 86 to find a CL-
Lipschitz mapping g 2 C k.UX IY / such that kg � hkUX �

"
2

. As kf � gkUX � ", we have just
shown that the statement (ii) in Theorem 87 holds.

ut

Finally, combining Theorem 66 and Theorem 87 we obtain the following corollary.

COROLLARY 89. Let � be an arbitrary set, Y a Banach space, ˝ � c0.� / open, f 2
C 1.˝IY /, and " W ˝ ! RC a continuous function. Then there is g 2 C1.˝IY / such that
kf .x/ � g.x/k < ".x/ and kDf.x/ �Dg.x/k < ".x/ for all x 2 ˝.
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9. Notes and remarks
In [AS] approximations in the spaces of holomorphic functions under various topologies are

studied.

Section 2. Theorem 9 was proved by Karl Weierstraß in 1885 for functions in C.R/, by
Émile Picard in 1891 for functions in C.Rn/, and by Charles de la Vallée Poussin in 1908–12
for functions in C k.Rn/. Theorem 12 is due to Stanisław Mazur, Theorem 16 is due to Maurice
Fréchet. Theorem 17 was proved by Arkadij Semenovich Nemirovskij.

The origin of some of the polynomial approximation results in infinite-dimensional spaces
can be traced to Guillermo Restrepo’s work [Re], and also Georgiy Evgenievich Shilov’s
paper [Sh] where the relevant problem of characterising the closure of the space of continuous
polynomials was posed. For results regarding approximations on compact sets together with
higher derivatives see e.g. [Pr], [AP], [AS].

Section 3. The real-analytic part of Theorem 19 was proved by Hassler Whitney ([Wh]).
Torsten Carleman ([Ca]) proved the approximation of functions in C.R/ by entire functions and
Stephen Scheinberg generalised it in [Sc] for functions in C.Rn/.

Theorem 20 is a pioneering result of Jaroslav Kurzweil, whose influence on this area cannot
be exaggerated. Various versions of Theorem 22 have been proved independently by Robb Fry
[Fry1], Manuel Cepedello-Boiso, and Petr Hájek. The last two authors decided to publish a joint
paper [CH].

The following is one of the main open problems in this area.

PROBLEM 90. Is every continuous function on c0 uniformly approximable by real analytic
functions?

The method of proof of Theorem 22 is not strong enough to make this conclusion. If the
answer is negative, then Theorem 20 would have a converse, via Deville’s Theorem 5.67, namely
the existence of analytic approximations for all continuous functions on a separable space X
would imply that X has a separating polynomial. This fact was also noted, for super-reflexive
spaces, in [K2].

Section 4. Lemma 30 is usually attributed to Edward James McShane [McS], but it was
known at least two years earlier to H. Whitney [Wh]. For more information on the infimal convo-
lution see e.g. the survey [St]. Extending further the infimal convolution technique M. Cepedello-
Boiso obtained the following result.

THEOREM 91 ([Ce]). Let X be a super-reflexive Banach space. Then there is ˛ 2 .0; 1�
such that for any Lipschitz function f W X ! R and any " > 0 there is a function g 2 C 1.X/
with its derivative ˛-Hölder on bounded sets (and so g is Lipschitz on bounded sets) such that
jf � gjX � ".

Many versions of Proposition 35 exist in the literature, e.g. for compact K it is true for
analytic functions on p̀, [Do2]. This is related to the negligibility theory of subsets of Banach
spaces, initiated by Czesław Bessaga in [B], and studied in detail e.g. in [Do1], [Do2], [Do3],
[Az], [AD], [De], [DH].
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Section 5. Most of Lemma 40 was obtained in a seminal work by Henryk Toruńczyk, [T].
The main open problem in this area is the following one.

PROBLEM 92 ([DGZ]). Suppose that a Banach space X admits a C k-smooth bump function.
Does X have C k-smooth partitions of unity, or equivalently are continuous mappings on X
approximable by C k-smooth mappings?

As we have seen, the answer is positive for some classes of Banach spaces, including
separable, WCG, and C.K/ spaces. Some earlier results on smooth partitions of unity on C.K/
spaces were obtained in [DGZ1]. In [JZ] it is shown that WCG spaces always admit Gâteaux
smooth partitions of unity. It is shown in [Fro] that if a Banach space X has an LUR norm and
every Lipschitz convex function on X can be approximated by C k-smooth functions, then X
has C k-smooth partitions of unity.

Recently, several papers focused on the problem of C k-smooth approximations by functions
that lack critical points, or more generally their derivative avoids a prescribed set of values, e.g.
[AC], [HJ1], [AJ], [Ji]. This interest was spurred by the result on the existence of bump functions
without critical points we referred to earlier.

Section 6. The important technique of approximation of Lipschitz functions using supremal
partitions of unity is due to R. Fry [Fry2]. It is closely related, in spirit and technique, to the
method of boundaries or generalised boundaries used for obtaining C k-smooth renormings. It is
however a purely scalar method, and so the results concerning C k-smooth Lipschitz approxima-
tions are less satisfactory than the continuous case.

The first part of Fact 54 was shown in [Pe, Proposition 2.3]. Many of the results in Sections 6–
8 come from [HJ3].

A natural question is the following.

PROBLEM 93. Let X be a Banach space (e.g. WCG) with a Lipschitz and C k-smooth bump
function. Does X admit C k-smooth Lipschitz sup-partitions of unity?

Section 7. The method of Lemma 61 originated from [FWZ]. Similar results are for example
in [Jo1], [FZ2]. Corollary 64 for k D 1 is proved in [FZ1] and its older norm variant (for k D 1)
is proved in [FWZ]. Theorem 82 is proved in [AFK] under slightly stronger assumptions.

The results given in this section are partial cases of the following general open problem.

PROBLEM 94. Suppose that a Banach space X admits a C k-smooth and Lipschitz bump
function. Are Lipschitz mappings into another Banach space Y approximable by C k-smooth
and Lipschitz mappings?

This problem is open even for a pair of general separable X and Y , or for a general X and
Y D R.

Section 8. The implication (i))(iii) in Theorem 87 in the separable case was proved by
Nicole Moulis [Mo]. The case of Corollary 88 when X has an unconditional Schauder basis was
proved by N. Moulis [Mo], although the result is stated only for c0 and p̀ spaces. This seminal
paper has essentially started the line of research into approximations together with derivatives.
The motivation for N. Moulis’s results apparently comes from the investigation of Banach
manifolds, where they find important applications. The only result available for approximations
together with higher derivatives comes again from [Mo] and applies only to the Hilbert space.
The statement of this result, unlike that of the first order, is nevertheless not very satisfactory, as
it requires C 2k�1-smoothness for approximation of the kth order derivatives.

The most general form of the approximation problem can be stated as follows.
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PROBLEM 95. Let X be a (separable) Banach space admitting a C k-smooth bump function.
Is it true that every C n-smooth mapping from X into a Banach space Y (or just into R) can be
approximated, together with all derivatives of order up to n < k, by C k-smooth mappings?
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