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Foreword

This work consists essentially of Chapter 7 of the book [HJ], with the following differences:

e the last section, dealing with the approximation of norms, is omitted;
e some special results in Section [2| pertaining to class W are omitted;
e there are some small improvements around Theorem #8§]

The omissions were introduced so that the text is more compact, more “self-contained”, and also
to minimise the input of the coauthor of the book. The work contains results from the author’s
papers [Jol]], [HI2], [HI3]], [Jo2], and [Jo3], of course as well as many results of many other
mathematicians, usually with reworked and streamlined proofs.

The references to statements whose numbering use the dot convention are references to the
book [HJ], e.g. Theorem 1.90 refers to Theorem 90 in Chapter 1 of [HJ].

Notation

We fix some notation for objects and notions that the reader should be familiar with. By N,
Z,Q, R, and C we denote the sets of natural numbers, integers, rational numbers, reals, and
complex numbers respectively. We set Ng = N U {0}. By R* we denote the set of positive real
numbers. By K we denote the scalar field R or C. We use the convention that a sum over an
empty set is zero and a product over an empty set is equal to 1. Further, x° = 1 for any x € K.
For x € R we denote by [x] the integer part of x, i.e. the unique number k € Z satisfying
k < x <k + 1, by [x] we denote the ceiling of x, i.e. the unique number k € Z satisfying
k—1<x<k.

For a set A we denote its cardinality by |A| or card A. By abusing the notation we write
{xy}yer C X meaning that {x,},cr is a collection such that x,, € X foreachy € I'.

Let (P, p) be a metric space. We denote B(x,r) = {y € P; p(y,x) <r}and U(x,r) =
{y € P; p(y,x) < r} the closed, resp. open ball in P centred at x € P with radius r > 0.
In case that it is necessary to distinguish the spaces in which the balls are taken, we will write
Bp(x,r),resp. Up(x,r). By By and Uy we denote the closed, resp. open unit ball of a normed
linear space X. By Sy we denote the unit sphere of a normed linear space X. An interior of a
set A in a topological space is denoted by Int A.

When we speak of a subspace of a Banach space, we always mean a closed subspace.
General subspaces will be referred to as “linear subspaces”. We define span@ = {0}. If X is a
normed linear space with a Schauder basis {e,} and x = Y - | x,e, € X, then suppx = {n €
N; x, # 0} is called a support of x; a finitely supported vector is a vector with finite support. A
topological dual of a topological vector space is denoted by X *. Inner product is denoted by
(x,y).Let X, Y be normed linear spaces. For simplicity we say that X contains Y if X has a
subspace isomorphic to Y.
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viii FOREWORD

By C(X;Y) we denote the set of continuous mappings between topological spaces X, Y. If
Y is a topological vector space, then C(X;Y') is a vector space. For functions, i.e. mappings into
the scalars, we use a shortened notation C(X) = C(X; K); from the context it should always
be clear whether K = R or K = C. For amapping f: X — Y, where Y is a vector space, we
denote supp, f = f~1(Y \ {0}).If X is a topological space, then we denote supp f = supp, f .
An L-Lipschitz mapping is a mapping that is Lipschitz with a constant L. By y4 we denote the
characteristic function of the set A.

The n-dimensional Lebesgue measure will be denoted by A,,, or just A if the dimension is
clear from the context.

All topological spaces are automatically and without mention assumed to be Hausdorff.

By X we denote the Taylor complexification of a real normed linear space X. By H(U;Y)
we denote the vector space of holomorphic mappings from an open set U of a complex normed
linear space into a complex Banach space Y. By C¥(U;Y), resp. C?(U;Y) we denote the
vector space of C*-smooth, resp. analytic, mappings from an open set U of a normed linear
space into a normed linear space Y. If ¥ = K, then we write H(U), resp. C*(U), resp. C*(U)
for short.

Let X, Y be normed linear spaces. By #("X;Y) we denote the space of continuous
n-homogeneous polynomials from X to Y. By #”(X;Y) we denote the space of continuous
polynomials of degree at most n from X to Y. By #(X; Y) we denote the space of continuous
polynomials from X to Y. Again, in the scalar case Y = K we write just 2 ("X), P"(X), or
P(X).

LetU C X beopen, f: U — Y,andx € U. By %(x) we denote the directional derivative
of f at x in the direction 4 € X. By Df(x) we denote the Fréchet derivative of f at x, and by
Df(x)[h] we denote the evaluation of this derivative in # € X. Similarly we denote by D* f(x)
the kth Fréchet derivative of f at x. By d*f(x) we denote the k-homogeneous polynomial
corresponding to the symmetric k-linear mapping D*f(x), so dXf(x)[h] = D*f(x)[h, ..., h].
For convenience we put d°f = f.

A modulus is a non-decreasing function w: [0, +00) — [0, +00] continuous at 0 with
®(0) = 0. The set of all moduli will be denoted by M and the set of all sub-additive moduli
will be denoted by M. If f € C¥(U;Y) and £2 C M is a convex cone, then we say that f
is C*?_smooth on U if d¥f is uniformly continuous on U with modulus  for some w € £2.
We denote by C*?(U; Y) the vector space of all C**?-smooth mappings from U into Y. Let
o € [0, 1]. We say that f is C¥*-smooth on U if f € C*?(U;Y) for 2 = {Kt*; K € R},
i.e. d*f is a-Holder on U. We say that f is C**-smooth on U if f € C¥(U;Y) and d*f
is uniformly continuous on U. The vector spaces of all respective mappings are denoted by
C*(U:Y)and C5+(U;Y). In particular, f € C*(U;Y) if d*f is Lipschitz on U. We say
that f is locally C*!-smooth on U if for each x € U there is a neighbourhood of x on which f
is C*k1-smooth. We denote by Cllg;l (U;Y) the vector space of all Cllggl—smooth mappings from
Uinto Y.




Smooth approximation

We are concerned with the general problem of approximating a given mapping from a subset
of a Banach space X into a Banach space ¥ by means of polynomials or C*-smooth mappings.
The classical example is the Weierstra3-type Theorem @, where arbitrary C*-smooth mapping
from a compact set K C R” is shown to be approximable by polynomials, uniformly on K
together with derivatives of order up to k. The best-known case is when k = 0.

In Section [3] we prove one of the highlights in the theory of smoothness, Theorem [20] of
Jaroslav Kurzweil. This result claims that if a real separable Banach space X admits a separating
polynomial, then every continuous mapping from X into a Banach space can be uniformly
approximated by real analytic mappings. By adjusting the proof somewhat it can be shown
that the result remains true for Banach spaces that admit a separating analytic function with
uniform radii of convergence (e.g. for cy), provided that the approximated mapping is uniformly
continuous.

One of the principal tools for obtaining C*-smooth approximations of continuous mappings
are partitions of unity, which are studied in Section[5] This is a very powerful tool which leads to
general positive results in separable spaces, as well as in non-separable WCG or C(K) spaces,
admitting a C*-smooth bump.

The rest is devoted to the study of smooth approximations preserving special properties of
the approximated mapping. In order to study C*-smooth approximations of Lipschitz mappings
preserving the Lipschitz condition we introduce the concept of sup-partitions of unity and
characterise it by means of componentwise C*-smooth and bi-Lipschitz embeddings into co(I”).
We show that every separable Banach space admitting a Lipschitz and C*-smooth bump admits
C*-smooth sup-partitions of unity. This is applied to establish the existence of C*-smooth and
Lipschitz approximations of a given Lipschitz function in a separable Banach space X admitting
a C*-smooth and Lipschitz bump function. The real analytic case is also included, under the
assumption of the existence of a separating polynomial. We also obtain results of this sort for
vector valued Lipschitz mappings for certain types of the domain or range spaces.

In Section [§] we prove, again for certain types of the domain or range spaces, the existence
of approximations of C !-smooth mappings by C*-smooth mappings for the mapping and its
first derivative.

The last section is devoted to C¥-smooth (and convex) approximations of convex functions.
It is rather easy to see that this problem is essentially equivalent to the statement that every
equivalent norm on X can be approximated by C*-smooth norms. A necessary condition for
this result is clearly the existence of at least some equivalent C*-smooth norm on X (similarly
to the existence of a C¥-smooth bump in the general case). We prove that this condition is also
sufficient for all separable Banach spaces.

The methods can be essentially divided into two groups: Global methods, in which the
approximating mapping is constructed on the whole space at once by a formula — these are
represented by integral and infimal convolutions; and local methods, in which we approximate
locally and then glue together the approximations using for example partitions of unity. Some
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2 SMOOTH APPROXIMATION

of the methods are mixed, for example the real analytic approximations although using the
partitions of unity are necessarily retaining the global flavour. A note on the hypotheses on
the target space: if the method employed uses a limiting procedure (this includes the Bochner
integral, or countable partitions of unity), we need the completeness of the space for the process
to converge. This is not necessary if we use a finite procedure such as the locally finite partitions
of unity. Likewise, the domain space needs to be complete only in some circumstances, for
example when using Schauder bases, or when dealing with real analytic mappings.
All the vector spaces are real unless stated otherwise.

1. Separation

As we shall see, a lot of the approximation methods ultimately boils down to the ability of
separation of certain sets by smooth functions. In this section we present some of the separation
results that will be used later. Some of them are somewhat technical, as we require rather fine
separation properties. Nevertheless, we begin with a lemma that serves as a prominent tool for
smoothing up mappings on R” and lies behind most of the approximation results. The method
was used already by Karl Weierstral3.

Let X be a set, Y a normed linear space, f: X — Y,and S C X. We denote || f||s =
sup,.csll f(x)]. In the following lemma we consider C" with the Euclidean norm.

LEMMA 1. Let Y be a Banach space, C C Y a closed convex set, and let f: R" — C
be strongly measurable (with respect to the Lebesgue measure) and bounded. Put ¥, (z) =
exp (—k Y_7_, 2}) for z € C" and k € R, and define g,: C" — Y by the Bochner integral

1
ge(2) = —/ Ye(z =) f(y)dy,
Kk JR”

where ¢, = [pn Yic(y)dy = (%)% Then g € H(C";Y) and g |rn € C2(R"; C) for every
k € R*. Further, if f is Bochner integrable, then for every § > 0

lim Jgelo, =0

K—

(in case that Gg # 0), where
Gs = {z e C"; |Imz|* < dist(Re z, supp f)* — 82}.

If f is L-Lipschitz, then so is each g [rn, kK € R*. Finally, if f € CKR™;Y) for some
k € NgU{oo}withalld’ f, j =0,...,k bounded and uniformly continuous on R", then for
all0 < j <k

lim |d/g.—d’f]

K—>+00

an = 0.

PROOF. First note that

Y (2)| = exp(—/c ZRe(zjz-)) = exp(—/c ((Re Zj)2 _ (Imzj)z))

Jj=1 Jj=1

= exp(—«(IRez|? — imz?))



SECTION 1. SEPARATION 3

and DY, (2)[h] = -2k W, (2) Z;l=1 Zjh;. Put F(z,y) = ¥(z —y)f(y) and let K > 0 be
such that || f||g» < K. Then for z € C”", ||z|]| < r, and y € R” we have
[D1F(z, p)| = 2«[¥e(z = »llliz = I F D)l
= 2cK exp(kIm z|*) exp(—«[[Rez — y|*) [z = yl|
< 2K exp(kcr?) exp(—k (max{[|y | = r,01)*)(r + [y ]
Hence we can apply Theorem on bounded subsets of C”, which gives g, € H(C";Y) and

thus also g, [r» € C*(R";Y). If g, (x) ¢ C for some x € R”, then by the separation theorem
there are ¢ € Y * and @ € R such that ¢(f(y)) <a< ¢>(gK(x)) for all y € R”. But

M) = — [ = p(0)dy < — [ avix =y =a.

K

which is a contradiction. Hence g, [g» € C*(R"; C).
Further, if f is Bochner integrable, then for a fixed § > 0 and any z € G we can estimate

g (@)l = L W@ = WIS D)l dy

Cx JRn
1
=— [ exp(—(IRez - yI> = JImz|?)) | £ ()]l dy
Ck Jsupp f
1
< Lexp (—x8?) / 1£ Ol dy.
Ck supp f

Since lim L exp(—«§?) = 0, it follows that lim | gc/lg; = O.
Kk—+o00 “K Kk—>+00
For any x € R” we can use the substitution y — x — y to obtain
1
6w = [ w0)fG - 1)
Cx JR7

Thus if f is L-Lipschitz, then for any u, v € R” we have

lge(0) ~ £e0)] =

K

[ worru-nar- [ womrro-na|

IA

= [ wo =) - =l
Kk JR?

1
< Llu=vl- [ #)dy = Liu =,
K n
Now suppose that f € C¥(R";Y) for some k € No U {oo} withall d/f, j = 0,....k
bounded and uniformly continuous on R”. Using (TJ), the boundedness of the differentials,
Theorem |1.90} and induction we get

- 1 : 1 .
o) = = [ IS - yay = [ e a0y

K Kk JR”?

forevery x € R” and 1 < j < k. Fix 0 < j < k and choose an arbitrary ¢ > 0. Consider
R” with the Euclidean norm. By the uniform continuity there is § > 0 such that ||d/ f(x) —

d f(y)|| < 5 whenever x,y € R", |[x — y|| < §. Moreover there is M > 0 such that



4 SMOOTH APPROXIMATION

ld’ f(y)|| < M for all y € R". For k large enough so that DMe 28725 < % we then have

|d7gc(x) —d’ f(x)| =

= [ e -nalrora - - ( [ we-» dy) 47 ()
Rn C R”

Cy K
1 . .
= C—/R e(x —y) (df(y) —d’ f(x)) dy“
1 . .
<— | Wx—y)|d/f(y)—d/f(x)| dy
Cx JRn
1 e 1
< — lp/c(x_y)_dy‘l'_ lPK(x—y)2Mdy
Ce Jx—yll<s 2 Ce Jix—y|=8
oM
<Z Ye(x —y)dy
2 e Jix—ylzs
£ 2M
== exp (—«|lx — y|*) dy
2 e Jix—ylzs
& 2M _lksz K 2
5+ e [ exp (Sl -y IP) 0y

—1ks? Ci/2

e
= — +2Me
2 Ci

€ n
= > + 2Me_%"5225 <eg

for every x € R”.

The next fact is used silently many times throughout this work.

FACT 2. There is a function 6 € C*°(R; [0, 1]) such that 6(t) = 0 fort <0, 8(¢t) € (0, 1)
fort € (0,1),and 6(t) = 1 fort > 1.

PROOF. Define a function 6y by 0y(r) = 0 for # < 0 and 6o(r) = exp (—1) for 7 > 0. It is
standard to check that 6y € C*°(R; [0, 1)). Put 8,(z) = 1 —e®6y (% — t) and finally 68 = 6, o 6.
O

LEMMA 3. Let K C R" be a compact set and U C R" an open neighbourhood of K. Then

there is a function ¢ € C*°(R"; [0, 1]) such that supp ¢ C U and ¢ = 1 on some neighbourhood
of K.

PROOF. Let 6 be the function from Fact and define ¥ € C*®(R") by ¥ (x) = 0(1 — x7 —
-++— x2). Notice that supp ¥ C B(0,1) and (0) = 1. Letd = %dist(K, R*\U).Forw € K
define ¥, (x) = ¥ (53%) and Vyy = {x € R"; Yy (x) > %} Since K is a compact set there are
wi,..., Wk € Ksuchthat K C Vy,, U--- UV, . Put

k
p(x) = (2 > v, <x)).

Jj=1

LEMMA 4. There are functions 6,, € H(C), n € N, with the following properties:
(T1) 6, |'r maps into [0, 1],
(T2) 6, I'r is 4-Lipschitz,
(T3) |0,(2)| < 27" foreveryz € C, |z| < 1,
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(T4) |6,(x) — 1| < 27" forevery x € R, x > 1,
(T5) (6 M) (x)| <277 foreveryx € R, x < S orx > 1.

PROOF. Let f: R — [0, 1] be defined as f (1) = Ofort < 2, f(r) = 4t —2 fortr € (3, %), and
f(@)=1fort > %. Obviously f is a 4-Lipschitz function. We put 6, = g, from Lemma
where k, € R is chosen so that (TH) holds and

ﬁe—xn/IZS < 2—n’ (2)
2k, g2 Qe kn/64 .
e dr = 28— <o, 3)
Cin |t|2% Kn

The function 6, clearly has the properties (T[I)) and (T[2). To prove (T[3) we use successively the
definition of £, the fact that |[Im z| < i, Rez < %, and finally (2)) to obtain

1 ) ekn(Imz)? )
|9n(Z)| < —f f(l‘)e_K" Re(z—1) dr = —[ f(t)e_K”(Rez_t) dr
Cien JR Ciyy R
Tk 400 1 +o0
< / entRez=0? g < L7 "3—2"(;)2/ L Rez-? g,
Cien % Ck, %

< ﬁe—xn/IZS <

Finally, we show (. Suppose that x < % or x > 1. Differentiating under the integral sign

we obtain
2

) = =

n / F(O)(t — x)e ™ n =2 g4y,
kn JR

Since 7 > te™*” is odd and f is constant on [x — %, X+ %], we get (using also (3))

2K,

16, (x)] =

/ FO)(t = x)e ="y
|x—t]>

1
8

2K
< / It — x|e ™ =07 qp < 27",
lx—2]=

Kn Ck, %

O

LEMMA 5. Let {&,}52, and {a,};>, be two sequences of positive real numbers. There
are functions {, € H(C"), n € N, and a sequence {8, },~, of positive real numbers with the
following properties:

(Z1) &, Mrn maps into [0, 1],

(Z2) &y 're is 2-Lipschitz with respect to the maximum norm,

(Z3) |£,(2)| < &n for every z € C" such that there isk € {1,...,n — 1} for which Re z; <
and y77_ a;(Imz;)* < 8.

(Z4) Cn(x) > %foreveryx € R” for whichx, <landx; >1,j =1,....,n—1,

(Z5) Cn(x) < &, for x € R” satisfying x,, > 2.

1
4

PROOF. Let f,: R® — [0, 1] be a 2-Lipschitz function (with respect to the maximum norm)
such that

0 wheneverx, >2or3j €{l,...,n—1}:x; <3,

1 wheneverx, <landVj e {l,....,.n—1}:x; > 1.

fn(x) =
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(See e.g. Lemma/[30]) For each n € N put §, = a,/64 and

$n(2) = CL/R fn(t)eXp(—Kn Za,-(zj —tj)z) dt forz e C",

where ¢, = [, e Yi-1ajt} qp — (%)n [T/=: a;!' and k, € R¥ is chosen so that Ai and
(Z[5) hold (analogously as in Lemma|I]) and
e TKnail64 < =5, forj=1,...,n—1.

The function &, belongs to H(C") and has the properties (Z1)) and (Z2)) (again similarly as in
Lemma . To prove ( we use successively use the definition of f;,, the fact that Re zx < i
and the definition of §; to obtain

n
kn Y. a;(Imz;)?
=1

n n
1 —kn 3 ajRe(z;—1;)? e Ji= —kn 3. aj(Rez;—t;)?
1ta(2)] < — Ja(t)e 7= df = ———— Ju(t)e /=1
cn R~ Cn R~
n
e¥ndk —kn 3 aj(Rez;—t;)?
< pe 7= dt
c teR
n 1
tk>j
n n
e’CnSk —’%’Z aj(Rez;—t;)> —4 Y aj(Rez;—t))
= J= : 7=
c teR” € ¢ g
n 1
k=2
n
s _Kkn . )2
e¥ndk . > aj(Rez;—tj)
< e_%akﬁ e > Jj=1 dr = 2%6—16,1(11(/64 = &n.
Cn n

O

LEMMA 6. Let K be a compact space such that C(K) admits a C*-smooth bump function,
k € N U {occ}. Then for every {,n € R, 0 < ¢ < 1, there is a function B¢, € C*(C(K); [0, 1])
such that
1 when || flloo = ¢,

Ben(f) = {0 when || fllooc = 7.

PROOF. By hypothesis there exists a function ¢ € C¥(C(K);[0,1]) and @ € R, > 0, such
that (/) = 1 for || f||oo < @, while ¢(f) = O for || f|lcc > 1. Choose n € N so that (%)” <«

and put
Ben(f) = ¢ (f;—) |

Since the mapping f +— f" is a continuous n-homogeneous polynomial (and in particular it is
C*°-smooth), the function f¢ , has the required properties.
O

We remark that the Taylor complexification ¢, of the real space ¢y is isometric to the complex
space .

PROPOSITION 7. Let g > 1. There are an open set W C ¢y and a function u € H(W') with
the following properties:

(M1) For every w € ¢ \ {0} there is Ay, > 0 such that Ug, (y, Ay) C W forevery y € cg
satisfying \w| < |y| < g|w|, where the inequalities are understood in the lattice sense.
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(M2) u(w) > 8 for w € cy, |wl| > 8,

M3) |u(z)] < 2forz € Ug(y, Aw), where y € co, ||y[| = 1, and w € co \ {0}, |w| < [y] =
glwl,

(M4) i\, is ~/2-Lipschitz and maps into R.

PROOF. Define i on co as the Minkowski functional of the set {x € Co; Zflozl(x,,)zn < 1.
Then w is an equivalent norm on co for which ||x| < u(x) < +/2||x|| (see also Theorem |[5.104

and Example [I.137). This gives property (MZ2)) and (MH4).
Let f: ¢ x (C \ {0}) — C be defined as f(z,u) = > o, (z»/u)*" — 1. This function is
holomorphic on ¢y x (C \ {0}) and for every x € c¢ \ {0} we have f(x, u(x)) = 0.

2n
Fix w € ¢g \ {0}. Put R = ”w" ,S = ”w” M = 1+Zn=1( T ||w|||wn|) ; m,

r = min {%HR+M,2 \/_} and A, = s as defined in Theorem [1.176, Now choose any

Y € co, |w| =< |y| < g|lw|. Then R < [[w]| < [|y]| < u(y), thus B(u(y),R) C V = C \ {0}.
For any z € B(y,S),u € B(u(y),R) we have [u| > u(y) — R > [y = R = |w| —

R = "%” and |z, < |yul + 120 — Yul < qlwn] + |2 = ¥ = qlwa| + @, and hence
2

F@w)] = 1+ X522 P7 < M. Finally, [Ds f (v, p(0)| = |5 02, 20 (25)"| =

W anl(w’;))zn = ﬁ > f||y|| > a. Thus by Theorem [1.176|the equation f(z,u) = 0

uniquely determines a holomorphic function 3’ on Ug, (v, Ay) with values in U(u(y), r) and
this holds for every y € ¢y, |w| < |y| < gq|w].

Take any two functions p; = ,uy L U2 = w2 defined on open balls U; and U, respectively.
If U, and U, intersect, then it is easy to check that Uy N U, N ¢y is a non-empty set relatively open
in cg. Since ;1 = pon U;Ncp and p, = pon UyNey, it follows that both holomorphic functions
w1 and i, agree on Uy N U, N ¢ and therefore on the whole U; N U, (Corollary [I.158)). This
observation allows us to put W = [ J{Ugs (v, Aw); w € co \ {0}, y € co, |w| < |y| < q|w]|}
and define u on W by u(z) = p}(z) whenever z € U(y, Ay). This gives property (.

To prove (MB) let w € ¢o \ {0}, y € co, |w| < |y| < qlw|, |yl < 1,and z € Ug (y, Aw).
Then by the choice of r above we have u(z) € U(u(y),2 — +/2) and therefore |u(z)| <
kM +2-vV2 = V2|yl +2-V2 <2

O

LEMMA 8 ([Ru]). Let (P, p) be a metric space and U = {Uy}yep an open covering of P.
Then there are open refinements {Vyq ineN.acA» {WaatneN.aca of U that satisfy the following:

o Vg C Wy CUyforalln e N, a € A,

o dist(Vyg, P\ Wyy) = 27" foralln e N, o € A,

o dist(W,q, Wyg) > 27" foranyn e Nand o, f € A, a # P.

e for each x € P there are an open neighbourhood U, of x and a number n, € N such that
(1) ifk > ny, then Uy N\ Wiy = 0 for any a € A,
(i1) ifk < ny, then Uy N Wiy # @ for at most one a € A.

PROOF. Choose some well-ordering of the set A. Define the sets V},, by induction on n € N: If
Vg are already defined for j < n and all B € A, let V,,4, be the union of all U(x,27") such that

(a) « isthe smallest with x € U,,
(b) x ¢ Vigforall j <n,B € A,
(©) Ux,5-27") C U,.
Further, let W, = (J{U(x,27"); x € Vo) foralln € N, @ € A.
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Certainly V,,, C W,y C U, and dist(Vyo, P\ W) > 27" foralln € N, @ € A. To see
that {V},o} covers P, observe that, for x € P, there is a smallest « € A such that x € U, and n
so large that (c) holds. Then, by (b)), x € Vjg for some j <n, B € A.

To prove the third property, suppose thatn € N, o, B € A, < B, p € Wy, and g € Wyg.
There is aball U(y, 27") in the definition of V}, such that p(p, y) < 2-27",and aball U(z,27")
in the definition of V, such that p(¢,z) < 2-27". By (c), U(y,5-27") C U, but, by (@),
2 ¢ Uy.Sop(y,z2) =5-27"and p(p,q) = p(y,2) — p(p,y) — p(q.2) > 27".

Finally assume x € P. Find some pairn € N, B € A such that x € V5, and choose j € N
so that U(x,27/*1) C V5. Putny =n + j — 1 and Uy = U(x,27""7). To show (i), suppose
that k > n, and choose any « € A and z € Wj,. It follows that there is a ball U(y,27¥) in
the definition of Vi, such that p(y,z) < 2-27%. Since k > n, by (B), y ¢ Vyp. And since
Ux,27/tYy Cc Vygandk > j + 1,

p(x,2) > p(x,y) — p(y,z) =277 — p(y,2)
S p—J+1l _p—k+l1 > =i+l _9o=i — 9=/ 5 7N

From the definition of U, and n, it is easy to see that ({i1)) follows from the third property.

2. Approximation by polynomials

In this section we begin by proving the classical Weierstra-type theorem on the density of
polynomials among C*-smooth functions in the uniform topology (together with its derivatives)
on compact subsets of R”. Of course, the proof relies heavily on the compactness argument. The
result can be extended into infinite-dimensional setting if we are interested in uniform topology
on compact sets. We then deal with the approximation in uniform topology on bounded sets,
which is not always possible. Applying the theory of ‘W-spaces we give a generalisation of the
Weierstral} theorem in some special cases. We finish the section by showing that the assumptions
used in order to get positive results are close to being optimal.

THEOREM 9. Let 2 C R” be an open set, Y a Banach space, and f € C*(£2;Y), k € N,.
For every compact subset K C §2 and every & > 0 there is a polynomial p € P (R";Y') such
that |d’ f —d’/pllg <efor0<j <k.

PROOF. By Lemma[3|there is a function ¢ € C*(R”") such that supp ¢ C §2, supp ¢ is compact,

and ¢ = 1 on a neighbourhood of K. Since ¢ f € C*(£2;Y) (Corollary , @f has a compact

support, and d” (¢ f)(x) = d’ f(x) forx € K,0 < j < k, replacing f by a function defined as

@f on £2 and 0 on R” \ £2 we may suppose that f € C¥(R";Y) and S = supp f is compact.
By Lemmathere is k € R such that degK —d/f HRn < ffor0 < j <k.Put

=1
On() = Y 1) (2 4+ 2.
=0 °

Then Q,, € P(R") and lim,, 500 d’Q,, = d’W¥, locally uniformly on R” for0 < j < k
(Theorem|[1.146). Put M = || f||r». The set L = K — S is compact. Therefore there is N € N

such that |d/Q x5 —dflI/KHL < Cﬁﬁ% foreach0 < j < k. Let

0= [ onte-nfmar
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Then p € P(R";Y) (e.g. by Theorem 2.49)). As

) 1 . 1 )
dige(x) = — / AW (x — y) ) dy = — / dWe(y) f(x — ) dy
R” Ci JR7

Ck

and similarly for d/p, we have for any x € K

@) = apol = | [ (@) = d'Qn () fx = 1)y H

K

Ck

1 . .
— /L (d'We(y) —d’On(y)) f(x —y)dy H
M ‘ .
<2 / |dW,(y) = dQx (y)| dy
Kk JL

<X |aion —dw ], aw < 5.
Ci 2
O

DEFINITION 10. Let X, Y be normed linear spaces. By & ("X; Y) we denote the linear
subspace of & ("X ;Y) consisting of all polynomials that can be written in the form P(x) =

Z;‘:l fi(x)"y;, where f; € X*, y; € Y. Weset P(X;Y) = span|Jre, P:("X;Y).

If X is finite-dimensional, then P ("X ; Y) = P ("X; Y). This follows from Proposition
and the fact that span{(y,-)¢; y € R} = £ (?R™) (Section .

FACT 11. Let X, Y be normed linear spaces, P € $:("X), and Q € P:("X;Y). Then
PQ € P:("M*t"X.Y). In particular, P (X) is a subalgebra of the algebra P (X) and p o R €
P¢(X) whenever R € P¢(X) and p € P (R).

PROOF. It is clear that it suffices to show that if f,g € X*, then x — f(x)"g(x)" €
P:(M*T"X). The polynomial g € P ("*"R?), q(u,v) = u™v" can be written as q(u,v) =
Z§=1 cj{(aj,b;), (u,v))™ ™ (Section . Hence f(x)"g(x)" = Z;;l cjhj(x)™*", where
hj =ajf+bjg€X*.

O

The following is an extension of the Weierstral theorem into infinite-dimensional spaces. Of
course the usefulness of this theorem is limited by the fact that here the compact sets are very
small.

THEOREM 12. Let X and Y be normed linear spaces, K C X compact, f € C(K;Y), and
¢ > 0. Then there is a polynomial P € $:(X;Y) such that | f — P||x < e.

For the proof we need the following lemma on separation of sets by polynomials.

LEMMA 13. Let X be a normed linear space, 2 C X a bounded set, C C §2 a closed
convex set, K C $2 a weakly compact set satisfying C N K = 0, and § > 0. Then there is a
polynomial P € P¢(X) such that 0 < P(x) < 1 forx € 2, P(x) > 1—6 forx € C, and
P(x) < forx € K.

PROOF. Without loss of generality we may assume that C is non-empty. By the separation
theorem for every x € K there are f, € X™* and by, cx € R suchthat f,(y) < by < cx < fx(X)
fory € C. Since { St ((cx, —|—oo))}x <k 1s aweakly open covering of the weak compact K, there

are x1,...,x, € K such that K C |, _, fle((cxk, +00)). Denote My = maxyex fx, (y) and
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ar = inf,ec fx,(¥) fork = 1,...,n, and notice that ax € R by the boundedness of C. By
Theorem @ there are polynomials gx € P (R) such that |gx(¢)] < ﬁ fort € [ak,by,] and
qr(t) > lfort € [cx,, Mk],k =1,...,n. Put

Q(x) = D g7 (fu ().
k=1
Then 0 < Q(x) < ﬁ < %forx € Cand Q(x) > 1forx € K.
Denote m = inf,e Q(y) and M = sup, o O(y). By the boundedness of §2 both m and
M are finite. By Theorem [9] there is a polynomial p € #(R) such that 0 < g(¢) < 1 for
t € m,M],q(t) >1—46fort € [m, %], and g(t) < 6 fort € [1, M]. We obtain the desired
polynomial P by setting P = p o Q, noting that P € $;(X) by Fact[11]
O

DEFINITION 14. Let X be a set. A collection {y/, }oe 4 of functions on X is called a partition
of unity if

e Yy: X — [0,1]forallx € A,

e > VYu(x)=1foreachx € X.

aeA
Let U be a covering of X . We say that the partition of unity {14 }4c4 is subordinated to U if
{Suppo 1ﬂot }aGA refines U.

Note that from the second property it immediately follows that the collection {supp, Vo }aes
is point-countable, i.e. for every x € X the set {o € A; ¥, (x) # 0} is countable. In applications
often either the set A itself is countable, which allows for “global” constructions (e.g. analytic
approximation, Section 3)), or the collection {supp, V4 }ac 4 is locally finite, which then preserves
local properties, like C*-smoothness (Section [3)).

LEMMA 15. Let X be a normed linear space, K C X compact, {U(xk,rx)};_, a covering
of K, and § > 0. Then there is a polynomial partition of unity {yx};_, C Pr(X) on K such
that Y (x) < 6 whenever x € K\ U(xg,2rr), k =1,...,n.

PROOF. By Lemma [13|there are polynomials ¢y, ..., ¢, € $(X) satisfying 0 < gr(x) < 1
forx € K, gp(x) > 1 — 6§ forx € B(xg,rx), and ¢r(x) < 6 forx € K \ U(xg,2ry),
k = 1,...,n. We construct inductively polynomials vy, ..., ¥, € $¢(X) that will form a

partition of unity on K. Put ¥; = ¢; and ¥ = ¢ - (1 — Zf;} y;) fork =2,...,n— 1.
Finally set ¢, = 1 — Z;;i Y. Notice that Y, € P:(X) by Factand

k k-1 k—1
ZWJ‘ = (ZW/‘)‘I"‘ <1_Zlﬁj)§0k, k=1,...,n—1.
j=1 j=1 j=1

Thus we can check by induction that

k
0<@(x) <) Yj(x) <1 forxeK k=1..n-1, (4)
j=1
and consequently
0<yYr(x) <gr(x) <1 forxe K, k=1,...,n—1. (5)

It follows that ¥y, . .., ¥, form a partition of unity on K.
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Moreover this partition has the property that ¥ (x) < § whenever x € K \ U(xg, 2r%),

k = 1,...,n. Indeed, for k < n it follows from (§). If k = n and x € K \ U(x,,2r,),

then there is m € {1,...,n — 1} such that x € U(xp, y). Thus, by (5) and @), ¥,(x) <
L= Y i (0) < 1= gm(x) < 6.

O

PROOF OF THEOREM[I2] By the compactness of K there is a covering {U(xx, rx)};_, of K
such that || f(x) — f(xx)|| < 5 whenever x € U(xg,2rr),k =1,...,n.Let M > 0 be such

that || f|lx < M and set § = &/(4nM). Let {1 };_, be the partition of unity from Lemma
Put

P(x) =) yu(0)f(x), x€X
k=1

Obviously P € #:(X;Y). To show that P approximates f on K fixany x € K.Let I = {1 <
k <n; x € U(xg,2rg)yand J = {1,...,n}\ I. Then

(Z Vi (x)) S =D we(x) f (x)
k=1 k=1

< D V@) = I+ Y v (LS + 1/ Gl

kel kel
&
< 5 +2nM§ = ¢.

If(x) = P(x)|| =

<Y @I £ ) —
k=1

O

Note that from Theorem [9]it follows that for any mapping f € C(£2;Y), where 2 C R" is
open and Y is a normed linear space, there is a sequence of polynomials { P72, C P(R";Y)
suchthat P, — f locally uniformly on §2. If we are interested only in the pointwise convergence,
then we have the following infinite-dimensional result:

THEOREM 16. Let X, Y be normed linear spaces, X separable, 2 C X open, and
f € C(82;Y). Then there is a sequence of polynomials {p,}7>, C P:(X;Y) such that
lim p,(x) = f(x) forevery x € 2.
n—>oo

PROOF. Let {x,},en C X be such that span{x,} = X. Put
1
K, = {x e span{xy,...,x,}; dist(x, X \ £2) > —, ||x|| < n}.
n

Then K, is a compact subset of §2. By Theorem |12 there are polynomials p, € P (X;Y)
such that || f — paullx, < % for every n € N. Choose any x € §2 and ¢ > 0. Thereis § > 0
such that U(x,28) C £ and || f(x) — f(y)|| < 5 whenever y € U(x,§). Further, there is
no € N such that ;- < 5,8 > -, [|x|| +8 < no, and span{x, ..., x50} NU(x,8) # @. Choose
Z € span{xy,...,Xn,y N U(x, ). It follows that z € K, for every n > ngo and hence

1f(x) = pa = I/ (x) = FN + 1/ (2) = pa()]l < g + % <e foreveryn = no.
O

In contrast with that, the norm on ¢o(I"), I" uncountable, is not a pointwise limit of a
sequence of polynomials on S, ). Indeed, given any sequence of polynomials { P, } on c¢o(I"),
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by Corollary there is y € I" such that P,(e,) = P,(0) for each n € N. This was first
observed by Aleksander Petczynski.

In a general infinite-dimensional normed linear space X there are always continuous func-
tions on X that cannot be uniformly approximated by polynomials on Sx. Indeed, while every
polynomial is bounded on Sy, it is easy to construct a continuous function on X that is unboun-
ded on Sx. But typically even much more regular functions cannot be uniformly approximated
by polynomials.

THEOREM 17 ([NS])). Let X be an infinite-dimensional Banach space and let S be one of
the spaces C¥(X), C*®(X), or C*2(X), where k € Ng and 2 C M is a convex cone. If X
admits a bump function from S, then there is a bump function f € S such that it cannot be
uniformly approximated on Bx by polynomials.

PROOF. The main ingredient of the proof is the fact that for every degree d there is n € N such

that the unit ball of R” (with an arbitrary norm) contains a %—separated set of cardinality greater

than the dimension of the space $¢(R"). Indeed let A C Bgr» be a maximal %—separated set, i.e.

lx —y| > % forevery x,y € A, x # y. By the maximality, Br» C | J,c4 U(x, %) Therefore
1 1 1

A(Brn) < ZA(U(X’ 3)) < |4IA(B(0, 3)) = |A|2—n)t(BRn),

xe€eA

and hence |A| > 2". On the other hand, dim 24 (R") = (";d) (Section . Since for every

d € N thereis ny € N such that 2"¢ > ("), there is a 1-separated set in Brna of cardinality
greater that dim P4 (R"4).

Put§ = %. Since X is infinite-dimensional, there is a §-separated set {z4; d € N} C
Bx (0, 6). Notice that B(zd, %) C By for every d € N. Let X; be some n4-dimensional
subspace of X that contains z4. By the discussion above there is a %-separated subset Ay
of By, (zd, %) satisfying dim P4 (X4) < |A4| < oo. Consider the space R4< with the su-
premum norm. Define Ry € £(P4(X4);R44) by Ry(p) = p M4, - As dim Ri(P4(Xy)) <
dim P4(X;) < |Ag] = dimR44, the space Ry(P%(Xy)) is a proper subspace of a finite-
dimensional space R4¢ and so there is f; € R4¢ such that dist( fz, Ra (P (X4))) = || fall =
1.

Let ¢ € S be a bump function. By shifting and scaling we may suppose that ¢(0) = 1 and
suppg C By (0, ). Define a function f: X — R by

f) =" faelx —y).

deN yEAd

By the choice of the set {z4} the set |, o Aa 18 @ %-separated subset of By. Using this and the
fact that | f;(v)| < 1 for y € Ay itis easy to check that f € S. Obviously supp f is bounded.

To see that f cannot be approximated on Bx by polynomials pick any p € P(X). Let
d € N be such that p € £4(X). Then p |x, € P*(X4) (Fact. Notice that f 4, = fa.
Thus

sup | f(x) = p(x)| = sup | f(x)=p()| = || fa—Ra(p tx,)|l = dist(fa. Ra(P?(Xa))) = 1.

X€By X€Ay

O
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3. Approximation by real-analytic mappings

We begin with a Whitney-type approximation theorem stating that in a finite-dimensional
case any mapping in C*(£2;Y), k € Ny, can be approximated on the whole £2, in a fine topology,
and together with its derivatives of order up to k by real analytic mappings. Then we present the
famous result of Jaroslav Kurzweil which extends this result (for k' = 0) to infinite-dimensional
separable Banach spaces X that admit a separating polynomial. We also show that if we only
require uniform approximations for uniformly continuous mappings, then it suffices that X
admits a separating real analytic function with uniform radii of convergence.

Let X, Y be normed linear spaces, £2 C X open, and f € C*(£2;Y) for some k € N,. For
S C §2 we define

1S llss = ZSUplld’f(X)ll

i= —o X€S
Clearly ||-||s.x is a semi-norm on the subspace of C*(£2;Y) consisting of mappings with all
derivatives up to k bounded on S.

LEMMA 18. Let X, Y be normed linear spaces over K, 2 C X open, k € Ny, ¢ € C*(2),
feCK(R:Y), and S C 2. Then

oS sk < ([’;

2

])nsous,kufns,k.

PROOF. Fix x € 2 and 0 < j < k. By the Leibniz formula (Corollary [I.116)

J J

@001 = 32 (] ) 107w -a' o] = 32 (] 107 -ty o

= (i )Zudf o] - [ ).
Therefore |
e Z( ) )21 o sa'f | = ([’g])éguw—’wusud’flls
< ( ’g );i\}d’wllsl}d’f\ls - ([g])ngons,knfus,k.

In the next theorem we consider C” with the Euclidean norm.

THEOREM 19. Let Y be a Banach space, 2 C R" open, k € Ny U {oo}, f € CK(2:7),
ande € C($2;R™). Put G = {z € C"; |Imz| < dist(Rez, R"\ £2)}. Then there is a mapping
g€ H(G:;Y) suchthat g} o € C?(2;Y) and ||d’ f(x) —d’ (g M 2)(x)| < &(x) forall x € £,
0 < j < min{k, 1/e(x)}.

Notice in particular, that if in the preceding theorem §2 = R”", then the approximating
mapping g will be an entire mapping, i.e. a mapping that is holomorphic on the whole C”.
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PROOF. Define K_; = Ko = 0, K; = {x € R"; dist(x,R" \ £2) > 277} N B(0, j), L; =
Ki\IntK;_;,and U; = (IntK;11) \ K;—, for j € N. Note that K; C K;;, L; is compact,
U; C £2 is an open neighbourhood of L;, 2 = U;‘;l Li,and L; NU; =@ forl > j + 1.
By Lemma 3| there are functions ¢; € C*°(R"; [0, 1]), j € N, satisfying supp ¢; C U; (hence
supp ¢; is compact) and ¢; = 1 on a neighbourhood of L;.

Further, we put gg = 1, &; = min{ej_l,minxeLj e(x)}, ko = 0,k; = kif k < oo, and
finally k; = max{k;_;, [maxyer, ?lx)]} if k = oo. Notice that the sequence {¢;}72, is non-
increasing, while the sequence {k;}?2, is non-decreasing. Put M; = vy, ||¢;|rnk;, where

v = ([g]). For each j € N let §; > 0 be such that
8.
§i(1 4+ Mjy) < 2—§ (6)

To slightly shorten our notation we denote § = gt yr» for g: M — Y, where M C C".
For each j € N we define inductively mappings f; € C¥(R";Y) and g; € H(C";Y) such that
g; maps into Y as follows: We put f; = 0 on R” \ £2 and

f;‘=<ﬂj'(f—§§l) 7)
=1

on 2. Then f; € C¥(R";Y) and since supp ¢; is compact, so is supp f;. By Lemmathere is
amapping g; € H(C";Y) such that g; maps into ¥,

/i — &jllrmk; < ;. (8)
and ||gjlle, < 57, where G; = {z € C"; |[Imz]|* < dist(Re z, supp f;)* — 77}
Put
o0
g=> g )
j=1

Fix any z € G and put § = 5 min{dist(Re z, R” \ £2) — [[Im z||, 1}. (We note that the minimum
here is to cater for the case when dist(Rez, R” \ £2) = 400, i.e. £ = R”.) Further, put
V = {w € C"; |[Rew —Rez| + [|[Imw —Imz| < 8}, which is a neighbourhood of z. Let
jo € N be such that 2770 < 55 and ||Rez| + [[Imz|| + %5 < jo. We claim that V' C G; for all
J = jo+2.Indeed, pick any w € V. Since j is chosen so that Ug» (Re z, |[Im z|| 4 28) C K;
we have

0°

[Imw]|| < |Imz|| + [Imw —Imz| < ||[Imz|| + 8 — |[Rew —Rez||
< |Imz| + 8 + dist(Re w, R" \ Kj,) — dist(Re z, R" \ K},)

5
<dist(Rew,R" \ Kj,) — 7

Hence, using the fact that (a — b)? < a® — b? whenevera,b € R,a —b > 0,and b > 0,

52 §2

IImw||* < dist(Re w, R" \ K,)* — T < dist(Rew,R" \ K;_»)* — -
. , 8 , & , 1
< dist(Rew, U;)” — T < dist(Re w, supp f;)* — T < dist(Re w, supp f;)~ — Ty
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and the claim follows. This means that ||g; ||y < 2, for j > jo + 2. Therefore the series (9)

converges absolutely locally uniformly on G and so g € H(G; Y). Obviously since each g;
maps into Y, so does g.

To show the approximation property of the mapping g fix x € 2 and 0 </ < min{k, 1/e(x)}.
There is p € N such that x € L,. Hence | < k, and ¢, < e(x). Since ¢, = 1 on a
neighbourhood of L,, by (7) and (§)) we have

p
2

j=1

= /o — &pllL, K, < Sp. (10)
Lp.kp

From Lemma 18] the fact that the sequences {k; } and {v;} are non-decreasing, (8)), and we
obtain

Igp+1llL,k, < N€p+1 — fotrillL, ik, + I for1llL, &,

p
_Zg—]

< lgp+1 — fp+1||Lp,k,, + Vk,,||‘/’p+1||Lp,kp f

= Ly,
4

< gp+1 — So+1llRnk, 1 + Vi i lOp+1llR K, 4 || — Zg_j
=1 Lk,

< 8p+1 + Mp+18p.

Finally, for j > p+1 wehave U;NL, = @ and since supp f; C Uj;, f; = 0 on aneighbourhood
of L,. Hence

18z, ke, = 185 — fillLye, = &5 — fillRrk, < 3.
Putting all this together with (6)) yields

+Z ld'g; ()l

Jj=p+1

d'f(x) - Zd @) < d'fx) - ngxx)

j=1

+ > NG Lk, <8+ My + Y 65

Lk, Jj=p+l j=p+1

ld'f(x) = d'g (o)l =

IA

p
_Zgj

j=1

o0 o0 & o0 e
Z (1+M,+1)<22—§.§Z2—’J’.§ep§s(x).
j=pr J=p J=p
We note that the first equality follows from the fact that the series (9) is a locally uniformly

convergent series of holomorphic mappings.
O

Now we move on to the infinite-dimensional case. First we state the results and then prove
them both together.

THEOREM 20 (Jaroslav Kurzweil, [K1]]). Let X be a separable Banach space that admits

a separating polynomial and Y a Banach space. Let 2 C X be open, f € C(£2;Y), and
e € C(2;R™). Then thereis g € C®(82;Y) such that || f(x) — g(x)| < &(x) forall x € £2.

DEFINITION 21. Let X be a Banach space. We say that X has property (K) if there exists a
separating real analytic function ¢ on X and d > 0 such that for each x € X the radius of norm
convergence of the Taylor series of g at x is at least d.
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Given metric spaces P, Q we denote by C,(P; Q) the space of all uniformly continuous
mappings from P to Q.

THEOREM 22 ([|[CH], [Fryl]). Let X be a separable Banach space with property (K) and Y
a Banach space. Let 2 C X be open, f € Cy(£2;Y), and & > 0. Then there is g € C®(£2;Y)
such that || f — g|le < e

We prove both Theorem [20{and Theorem [22| together, with the help of the next two lemmata.

LEMMA 23. Let X be a separable Banach space and §2 C X open. Suppose there is oo > 0
such that for any open covering {U(x,, 1) }5>, (or for any uniform open covering {U(x,,1)}0>,,
i.e.r, =r foralln € N) of §2 and any sequence {w, |5~ of positive real numbers there exists
an open neighbourhood V-.C X of 2 and a sequence of functions {¢, o1 C H(V) with the
following properties:

(i) The sum o2, wa@y converges absolutely locally uniformly on V,
(i) ¢, e maps into [0, +00) for everyn € N,
(i) wpn(x) < 327" for every x € 2\ U(xn,ary), n € N, and
(iv) for every x € S2 there is k € N such that x € U(xy, ary) and gi(x) > wg.
Then for every mapping f € C(82; C), where C is a closed convex subset of a Banach space Y ,
(resp. for every [ € Cy(82;C)) there is a mapping g € C®(82; C) satisfying | f — gllo < 1.

PROOF. Using the separability of £2 and the continuity (resp. uniform continuity) of f we find
a covering (resp. uniform covering) {U(x,,7,)}ne, of §2 such that

| f(x)— f(xn)]| < % for x € U(x,,ar,) N S2. (11)

Put w, = 1+ || f(x,)||. Let {¢,} be the sequence of functions satisfying (i)—(iv).
The function ¢(z) = Y ro, ¥x(z) is well-defined for every z € V by (i) and moreover
¢ € H(V). Further, by (ii) and (iv), for every x € §2

P(x) = gr(x) = 1. (12)

Hence there is an open neighbourhood W of §2 in X such that W C V and @ # 0on W. Define
Vn(2) = ¢a(2)/@(2) for z € W. Then the functions 1, are holomorphic on W and have the
following properties:

(a) {¥, [} is a partition of unity on £2,
(b) V()| f(xn)] < iZ_” forevery x € 2 \ U(x,,,ar,),n € N, and
©) V()| FCO)|| < 127" forevery x € 2 \ U(x,,ar,),n € N.
Indeed, (a) follows from (ii) and the definition of v, and ¢, and (b) follows from (iii)
and (12). To prove (c) choose n € N and x € 2 \ U(x,,ary,). Then ¢(x) > ¢r(x) > wy =

L+ /@) > /()] by Gv) and (@), Thus ¥, ()] F )] < ¥a(X)e(x) = gu(x) <
Wagn(x) < 1271 by i),

Finally we put g(z) = 3,2, ¥n(2) f(xn) forz € W. As

g(x) = (1/9(2) Y ¢n(2) f(xn)

n=1

and the sum converges locally uniformly on W by (i), we obtain g € H(W; Y). Clearly
glo € C%(£2;C). Further, choose an arbitrary x € 2. Put I = {n € N; x € U(x,,ar,)}.
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Then using (a), (T1)), (b), and (c) we obtain

If(x) =gl =

D () (f(x) = f(xa))
n=1

<D VNS = DI+ Y vaIF@I+ 1L/ Ga)) < 1.

nel neN\7

O

LEMMA 24. Let X be a Banach space, 2 C X open, and {U(xy,1,)}5>, an open covering
of §2 in X. Suppose that there are a function ¢ € H(G) and a > 0 such that G = {z €
X; |Imz| < Asup,en %}forsome A > 0, g 'x maps into [0, +00), g(x) > 2 for x € X \ Uy,

Req(z) < ifor z € Uz (0,1/@), and suppose there is a sequence {a,};>, of positive real

numbers such that for each x € S2 the function

2 Y an(Img((x = x, + 2)/(@rn)))’ (13)

n=1

is defined on some neighbourhood of 0 in X and is continuous at 0.

Then for every sequence {w,}5>, of positive real numbers there are an open neighbourhood
V C X of 2 and a sequence of functions {¢, o 1 C H(V) satisfying the properties (i)—(iv) in
Lemma

PROOF. Put &, = 15127 and let ¢, be the functions and {§,} the sequence from Lemma

2w2 4

Denote o, = 1/(ar,) and G, = {z € X; |[Imz]|| < aA} and put

@n(2) = 2wn &, (q(ozl(z —x1))s ... q(an(z —xn))) forz € Gy, n € N,

Then ¢, € H(Gy) and by (Z]1), ¢, | x maps into [0, +00).

Pick any x € £2. Then there is j € N such that x € U(x;,r;) and hence g(o; (x — x;)) <
i < 1. Let k € N be the smallest index such that g (o (x — xx)) < 1. Then x € U(xg, arg) and
property (Z4) implies that g (x) > wg.

Let §x > 0 be such that ||x —x; + z|| < r; and > e | an(Img(ata(x — x, + z)))2 <
whenever z € X, ||z|| < 8. Then Reg(oj(x—x;+2z)) < % and hence, by (, |[wron(x+2)| <
27" forn > j. It follows that Y .- | w,¢, converges absolutely uniformly on Uy (x, 8y). We
put V.= Gy N U, co Ug(x,85).

Finally we show that (iii) is satisfied. Fix n € N. For x € £ \ U(x,,ar,) we have
q(an(x — xp)) > 2, hence, by (, Wp@n(x) < iZ‘".

O

The next lemma shows that in certain circumstances it is possible to pass from uniform
approximations to fine approximations.

LEMMA 25 ([K1]). Let §2 be a topological space and Y a normed linear space. Let S C
C(2;Y) and S C C(82) be such that h/n € S for any positive function n € S; and any
mapping h € S. Suppose that forany f € C(82;Y) thereish € S such that || f —hl||o < 1 and
for any ¢ € C(82) there is n € Sy such that |¢p — n|e < 1. Then for any f € C(£2;Y) and any
positive function ¢ € C(S2) there is g € S such that || f(x) — g(x)|| < e(x) for every x € §2.
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PROOF. Define ¢ € C(£2) by ¢ = 1 + 2/¢. According to the assumptions there is n € S
such that |¢(x) — n(x)| < 1 forevery x € §2. Since nf € C(£2;Y), there is h € S such that
In(x) f(x)—h(x)| < 1forevery x € £2. Notice that n(x) > ¢(x)—1 =2/e(x) > 1/e(x) >0
forevery x € 2. Thus g = h/n e Sand || f(x) —g(x)| < 1/n(x) < &(x) for every x € £2.
O

PROOF OF THEOREM 20 By Fact[4.45|we may assume that there is an m-homogeneous poly-
nomial p on X such that p(x) > 2 forx € X \ Ux. Let ¢ = p. Because ¢(0) = 0, by the
continuity there is @ > 0 such that Re ¢(z) < i forz e Ug(0,1/a).

Suppose that {U(x,, r,)}52, is an open covering of §2. Put

r2m
anp = 2
27(1 + [|xn )™
Then
2 2 Ix — x, + z|I?"
an(Im g ((x =20 +2)/@rn))” < an g (@ =20 +2)/ () [” < anlg P T— 05
gl Ix — xn + 2P ligll? om 1
< < 1 -
= o2 2n(1 + |xa )2 ~ azm( + x| + ||Z||) o

and hence for every x € X the sum in (13) converges absolutely locally uniformly to a continuous
function on X. Thus the hypotheses of Lemma [24| are satisfied and using it together with
Lemma [23| we can conclude that for any Banach space Z and any continuous mapping f €
C($2; Z) there is a mapping h € C®($2; Z) satisfying || f — h|le < 1. Finally Lemma 25|
appliedto S = C?(£2;Y) and S; = C®(£2) finishes the proof.

O

PROOF OF THEOREM 22l By Theorem there are d > 0 and a function ¢ € H(G),
G = {z € X; |Imz|| < d},such that ¢ |x: X — [0,4+00), ¢(0) = 0, g(x) > 2 for
x € X \ Uy, and the radius of norm convergence of the Taylor series of ¢ at every point x € X
is at least d. Let « > 0 be such that Reg(z) < % forz € Ug(0,1/a) and %ozd > 1.

Suppose {U(x,,r)}7>, is a uniform open covering of §2. Put

M, = sup{‘q((xj — X, + w)/(ozr)){; weX,|w|< %ard,l <j< n}

anda, = 1/(2"M?). (Note that by the assumption on the radius of the Taylor series M,, < +00.)
Fix x € 2. There is k € N such that x € U(xx, 7). Forz € X, ||z|| < r(lad — 1) we have
lx —xx + z|| < %ard and hence forn > k

1
o
Therefore the sum in converges absolutely uniformly on B 3 (0, r(%ad — l)) to a continuous

function. Using Lemma [24] together with Lemma[23]|and a suitable scaling finishes the proof.
a

a,,(Imq((x — Xp + z)/(oer)))2 <a, !q((xk —Xp X — X + z)/(ozr))}2 < anM,f =

The space ¢o does not admit a separating polynomial (Proposition [5.49|or Corollary [3.59),

but it has property (K) (take P,(x) = (e,’;‘ (x))zn in Example |1.137|and combine it with Co-
rollary [I.165). The property (K) is inherited by subspaces and finite direct sums. In certain
circumstances it can also pass to infinite direct sums: Assume that all members of a sequence
of Banach spaces { X, } have property (K) witnessed by non-negative functions ¢, with radii
at least d,, and satistying ¢, (0) = 0 and ¢, (x) > 1 whenever ||x|| > 1. Suppose that there are
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0<d < %infneN d, and a sequence {&,} C N such that sup, <y SUP_cp - 0. ldn(@)|% < 1,

where ¢, is the analytic extension of g, to a neighbourhood of X,, in X, » (Theorem|1.171). Then
(D,=, X,,)C0 has property (K) witnessed by g(x1, X2,...) = > oo gn(x,)?"* with radii at
least d (use Corollary . Thus for example (co ® P, 62,,)60 has property (K).

By Theorem 5.64]a space with property (K) that does not contain ¢ admits a separating poly-
nomial. By Corollary [5.68|every space with (K) is saturated by spaces from {£,; p even} U {co}.
Let us mention without proof the next result, which should be compared with Corollary [5.105]

PROPOSITION 26 ([CH])). Let X be a Banach space with property (K) such that all poly-
nomials on X are weakly sequentially continuous. Then X is isomorphic to a subspace of
Co.

Whence all Banach spaces with the Dunford-Pettis property and (K) are isomorphic to
subspaces of ¢o (Theorem [3.68). In particular, since every C(K) space which is isomorphic to a
subspace of ¢ is isomorphic to ¢y [LP], we have the following corollary:

COROLLARY 27. If the Banach space C(K) has property (K), then it is isomorphic to c.

4. Infimal convolution

The infimal convolution is another global approximation technique, which similarly to the
integral convolution preserves certain regularity properties of the approximated function, like
for example the Lipschitzness. The undisputable advantage is that it does not need any finite-
dimensional structure and it works equally well even on non-separable spaces. The drawback is
that this technique is fundamentally scalar and also it usually produces only smoothness of the
first order. The notion goes back to Felix Hausdorff around 1919.

DEFINITION 28. Let X beaset, f: X — R U {+o0},and K: X? — R U {+00}. We
define the infimal convolution of f and K by

(f BK)@) = inf (f() + K(x.p), x€X.

The function K is called a kernel. If (X, +) is a commutative group, then we associate with
each g: X — R U {+o0} the kernel K, (x,y) = g(x — y). We may then define the infimal
convolutionof fandgas f g = f O K,,i.e.

(f D)) = inf (/) +8(x ).
Note that in thiscase f O g =g 0O f.

FACT 29. Let X beaset, f: X — R U {+oo}, and K: X?> — R.
(1) If K(x,x) =0 forevery x € X, then f O K < f.
(i) If f is proper, then f O K < 400 everywhere.
(iii) If X is a metric space, f is proper, and the functions x — K(x,y), y € X, are uniformly
continuous with modulus w € M, then either f O K is identically —oo, or f O K is
real-valued and uniformly continuous with modulus .

PROOF. Both (i) and (ii) are obvious.
(iii) Let p be the metric on X . Suppose there is z € X such that (f O K)(z) = —oo. Then
there is a sequence {y,} in X satisfying f(y,) + K(z, y») < —n for eachn € N. Now for any
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x € X wehave (fOK)(x) < f(yn)+K(x,yn) = f(yn)+K(Z, yn)—K(2, yn)+ K(x, yn) <
—n + w(p(x, z)), which implies that ( f O K)(x) = —oo. Therefore f [J K is either identically
—o0, or f [0 K is real-valued and uniformly continuous with modulus w, as it is an infimum of
a family of uniformly continuous functions with modulus w.

O

The following extension lemma is useful for example when we deal with smooth approxima-
tions of Lipschitz functions defined on some subset of a normed linear space X : It suffices to
formulate the approximation results for functions defined on the whole of X.

LEMMA 30. Let (P, p) be a metric space, 9 # A C P, and f: A — R a uniformly
continuous function with modulus w € M. Then there is an extension of f to the whole of P
which is uniformly continuous with modulus w.

PROOF. Define f: P - Rby f = fonAdand f = +ocoon P\ A.Put g = f O (w o p).
Then

g) = inf (/) + w(px. 1))

Forany x,y € A wehave f(x)— f(y) = w(p(x, y)) and hence f(x) = f(y) +w(p(x,y)). It
follows that /' < g on A. This together with Fact[29(i) implies that g = f on A. Consequently

by Fact 29(iii) g is real-valued and uniformly continuous with modulus .
O

The next lemma tells us that the results on uniform approximation of Lipschitz functions
immediately give also approximation of uniformly continuous functions.

LEMMA 31. Let (P, p) be a metric space, f: P — R a uniformly continuous function with
modulus @ € M, and ¢ > 0. Further, let a € R be such that w(a) < &. Then there is an
2-Lipschitz function g: P — R such that | f — g|p < e.

PROOF. We let g = f O Zp. Fix x € P. Clearly g(x) < f(x) (Fact[29(i)). From the sub-
additivity of w it follows that for any y € P

FC) = FO) < w(p(x, ) < o (["(’Ca’ y)] a) < P’(’;’ yﬂ @) < ("();’ M, 1) .

Thus f(y)+Zp(x,y) > f(x)—e, which implies that g(x) > f(x)—e. Finally, g is £-Lipschitz
by Fact[29(iii).

O

THEOREM 32 (Jean-Michel Lasry and Pierre-Louis Lions, [LL]). Let H be a Hilbert
space, f: H — R an L-Lipschitz function, and ¢ > 0. Then there is an L-Lipschitz function

g € CYY(H) satisfying | f — glg < e.
For the proof we need a few auxiliary results concerning convex functions.

LEMMA 33. Let X be a normed linear space, f € C(X), and suppose there exist functions
w,v € CH(X), a € (0,1], such that f + ju is convex and f —v is concave. Then f € C1*(X).

PROOF. It clearly suffices to show that f + u € C'*(X) which we show using Lemma
Notice that u +v = (f + u) + (—f + v) is necessarily convex. From the concavity of f —v it
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follows that (f —v)(x +h) + (f —v)(x —h) —2(f —v)(x) <0 forany x,h € X and hence

(f & +h) 4+ (f + ) =h) =2(f +)x)
=(f+wW+n)+(f +wk—h)=2(f +rx)
—((f =&+ 1)+ (f =v)(x = h) =2(f = v)(x))
= (1 +v)(x +h) + (1 +v)(x —h) = 2(n +v)(x) < ClA|"™,

where the last inequality follows from Lemma [5.20jused on p + v.
O

Let X be a normed linear space. For any f: X — R U {+o00} and t > 0 we define the
Moreau-Yosida regularisation f; = f O % |-I?. We note that the constant % is useless (and
perhaps even annoying) in our proofs but using this particular kernel is customary in convex
analysis for many good reasons.

FACT 34. Let H be a Hilbert space and f: H — R U {+00} a proper function.

(1) The extended real-valued function — f; + % |-I? is convex for every t > 0.
(i1) Suppose that f is real-valued and f—l—% |1 is convex for some t > 0. Then fs+ﬁ 117
is convex for every 0 < s < t.

PROOF. (i) This follows from the fact that
£+ —lxl? = — inf (FO) + —lx = y1P) + ~ ]2
—fi(x) + —||x|| = — in —|lx — —|lx
! 2t yer \ W) T o Y 2t

= sup (i(IIXII2 —[lx = ylI?) - f(y))

yeH Zt
Loy = -y I = £)
=sup | —(x,y) — =— — ,
yeg ) =iy y

which is a supremum of affine functions.
(i1) We have

1 1
1)+ 5l = g (£0)+ 5ol = 1P + 1)

2(t —s)

1 1 1 1
— inf 2 o _ 2 - 2 2
inf (f(y)+—2t||y|| + o X =yl +2(Z_S)|IXII il

2)
It is easy to verify that for any convex function ¢: X x ¥ — R, where X, Y are vector spaces,

the function x — inf,cy ¢(x, y) is also convex (“a convex body casts a convex shadow”), from
which the result follows if we set ¢(x, y) = () + 5 Iy[I* + 521 5x =yl

2st S

t
—x_
t—s Y

{ —

1
— inf _ 2
inf (f(y)+2t||y|| + 5

O
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PROOF OF THEOREM [32]. For every C-Lipschitz function #: H — R we have lim |h, —

t—>0+
h|g = 0. Indeed,

1
0 < () = hi(0) =) = ing () + 5 =17

= h(x) + sup (—h(y) ol - y||2)

yeH

1 2 1 2
= — [ — < ( — - —_
sup (h(x) h(y) Y [x = ¥l ) = sup ( [x =yl T [x =l )

yeEH yeH
1 C?t
= sup (C5 — —82) = —
§€[0,+00) 2t 2

for any x € H, where the first inequality follows from Fact i). Moreover, as h; = % -1 O A,
each h, is C-Lipschitz by Fact[29(iii).

So choose 7 > 0 such that | f; — f|g < 5. Then f; is L-Lipschitz. Next, find 0 < s < 1
such that ‘(—f,)s — (—f,)}H < Sandput g = —(—f)s. Then | f — g|g < & and the function
g is L-Lipschitz.

Further, the function — f; + 2it||-||2 is convex by Fact i), and hence the function g —
ﬁ ||-||? is concave by Fact ii). Using Fact i) again, this time on the function — f;, we
can conclude that g + 2_1s [|-1I? is convex. Since the function ||-||? is a 2-homogeneous polynomial,
it belongs to C ! (H), and so Lemma 33| finishes the proof.

O

Another nice application of the infimal convolution gives the next result.

PROPOSITION 35 ([Well). Let A be a closed subset of a Hilbert space H. Then there is a
function f € CYY(H) such that A = f~1({0}).

PROOF. Let 34: H — R U {400} be the indicator function of the set 4, i.e. 34(x) = 0 for
x € Aand 3y = +ooforx € H\ A. Welet f = —(—(SA)I)%. Without loss of generality
we may assume that A is non-empty and hence 34 is proper. It is easy to see that (34),(x) =
% dist?>(x, A) for every x € H,t > 0. Thus (34); is real-valued and using Fact [34|similarly as
in the proof of Theorem [32| we can conclude that f + ||-||? is convex and f — ||-||* is concave.

Next, notice the following observation: Suppose that2: X — RU{+o00} is a proper function
on a normed linear space X and 0 < s < 7. For any x, y,z € X we have

(feo)+ (- 50 0)

2

#(1-7)

Ix =y 1%,

2

)

1 2
Zk—ﬂl—

i(x—y)

_ _ 2
YL TP
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where we used the convexity of ||-||2. From this and Fact[29(i) we obtain

o 1 1 .
i) = =) = sup int () + 52 =517 = - 2P

zeX VE

< sup in}t; (h(y) +

lx — y||2) = h,—s(x) foreveryx € X.
zeX Y€

1
2(t — )
This gives us %distz(x, A) < f(x) < dist?(x, A) for every x € H. It follows that f~1({0}) =
A and that f + ||-||? is locally bounded and thus convex continuous. Now Lemma [33]implies
that f € CV1(H).

O

5. Approximation of continuous mappings and partitions of
unity

In this section we investigate smooth partitions of unity, the main tool for obtaining C*-
smooth approximations of continuous mappings in Banach spaces. We show that several rather
general classes of Banach spaces admit C*-smooth approximations provided they have a C*-
smooth bump. This applies especially to separable spaces, WCG spaces, or C(K) spaces. We
finish by showing that super-reflexive spaces admit partitions of unity consisting of functions
with Holder derivative.

DEFINITION 36. Let § be a class of functions. We say that a topological space X admits § -
partitions of unity if for any open covering U of X there is a partition of unity on X subordinated
to U such that each member of the partition belongs to §.

DEFINITION 37. A family of subsets of a topological space X is called

e locally finite if for each point x € X there is a neighbourhood of x that meets only finitely
many members of this family;

e discrete if for each point x € X there is a neighbourhood of x that meets at most one
member of this family;

e o-locally finite if it can be decomposed into countably many locally finite families;

e o-discrete if it can be decomposed into countably many discrete families.

A family of subsets of a metric space P is called

e uniformly discrete if there is d > 0 such that the distance of any two members of this
family is at least d;

e o-uniformly discrete if it can be decomposed into countably many uniformly discrete
families.

A partition of unity {¥, }4e 4 is called locally finite if {supp, ¥ }ec4 is locally finite, it is called
o-discrete if {supp, Vg }aea 1s o-discrete, and it is called o-uniformly discrete if {supp, Vo }aca
is o-uniformly discrete.

If § is a class of mappings, then we use the notation S(X;Y) = SNYX,ie. S(X;Y) is the
set of mappings from X to Y that belong to S. A class of C*-smooth mappings will be denoted
by €¥ and similarly for other smoothness classes from Section
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DEFINITION 38. Let P be a metric space and S C C(P) a ring of functions. We say that S
is a partition ring if it satisfies the following conditions:

(i) For each Sy C S with {supp, f; f € So} uniformly discrete in P and supp, f bounded
for each f € Sy thereis a g € S with supp, § = (g, suppo /-
(i) Let f € S and supp, f = U; U U,, where U; and U, are open subsets of P with
dist(U;, Uy) > 0. Then yy, - f € S.
(iii) For each f € § bounded below and ¢ > O thereisa g € S suchthat 0 < g < 1,

7N (=00, €]) € g71({0}) and f7([2¢, +00)) C g7 ({1}).

Note that if S C C(P) is such that it is for example stable under composition with functions
in C*°(RR) that have zero derivative outside a bounded interval, then S satisfies the condition
(iii) in the above definition. Indeed, if f € S and ¢ > 0, then we find 6 € C*°(R; [0, 1]) such
that 6(r) = 0 for ¢ < ¢ and 6(¢t) = 1 for ¢t > 2¢ (Fact2), and we set g = 6o f. Theng € §
and has the properties required in (iii).

Examples of partition rings: C*-smooth functions on normed linear spaces, smooth bounded
Lipschitz functions, or smooth bounded Lipschitz functions with Holder derivatives (see the
proof of Theorem #8).

DEFINITION 39. Let § be a class of mappings defined on a topological space X. We say
that § is determined locally if whenever f is a mapping defined on X such that for every x € X
there are a neighbourhood U of x and a mapping g € § such that f = gon U, then f € S.

Examples of classes determined locally are €X classes or class of continuous Géteaux
differentiable mappings. Note that if a ring of functions on a metric space is determined locally,
then conditions (i) and (1)) in the definition of a partition ring are automatically satisfied.

LEMMA 40. Let P be a metric space and S a partition ring of functions on P. Consider the
following statements.

(i) Forevery A C W C P, A closed and W open there is ¢ € S such that ¢ = 1 on A and
supp, @ C W.
(ii) Forevery V.C W C P bounded open sets satisfying dist(V, P \ W) > O there is ¢ € S
such that V' C supp, ¢ C W.
(iii) For every V.C W C P bounded open sets satisfying dist(V, P \ W) > 0 there are ¢, € S,
n €N, such that V- C |, cn Suppo ¢n C W.
(iv) The family {supp, f; f € S} contains a o-uniformly discrete basis for the topology of P.
(v) The space P admits locally finite and o -uniformly discrete S-partitions of unity.
(vi) The space P admits locally finite S-partitions of unity.
(vii) The family {supp, f; f € S} contains a o-locally finite basis for the topology of P.

Then (i)=(ii)=(iii)=(iv)<&(v)=(vi)=(vii). If S is moreover determined locally, then all seven
Statements are equivalent.

We note that the o -uniformly discrete partitions of unity will prove very useful in Sections
and (8} as they allow us to use certain separable techniques in a non-separable setting.

PROOF. (i)=(ii)=>(iii) is obvious.

(ii))=(@v) Let U, = {U'}qea,, be a uniform covering of P by open balls with radius
%. By Lemmathere are open refinements {V," },eN.acA,, > AWon neN aca,, Of Uy such that
vre cwr Ul dis(V,e, P\ Wn) > 27" and the family {W,"}c 4,, is uniformly discrete
for all n € N. Thus, by ({ii), there are ¢ . € S such that V) C (Jgen Suppo @i € Wi The
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family {supp, ¢, m.n.k € N,a € A} is therefore a o-uniformly discrete basis for the
topology of P.

(iv)=(v) Let U be an open covering of P. We construct a locally finite and o-uniformly
discrete S -partition of unity subordinated to U. Without loss of generality we may assume that
U consists of bounded sets. By (iv) there are S; C S, j € N, such that {supp, f; f € §;} are
uniformly discrete and {supp, f; f € S;,j € N} is an open covering of P that refines U. By
property (i) of a partition ring there are functions f; € S such that supp, f; = | res; SUPPo f.

Replacing f; by sz if necessary we may assume that f; > 0. By property of a partition ring
there are functions gjx € S suchthat0 < gjx < 1, supp, gjx C supp, f;,and fj‘l([%, +oo)) C
gj_k1 ({1}). Letn — (ju, k,) be a bijection of N onto N x N and put ¢, = gj,«,-

Now forn € N let ¥, = ¢, ]_[Z;ll(l — ¢r). Then ¥, € S (as S is aring) and {V,, }nen
is a locally finite partition of unity on P. Indeed, for any x € P there is j € N such that
X € supp, f; and hence there are a neighbourhood U of x and k € N such that f;(y) > % for
y € U. It follows that g;x(y) = 1 for y € U. Letm € N be such that j = j,, and k = k,,.
Choose any y € U. Then ¢,,(y) = gjx(¥) = 1 and hence ¥,(y) = 0 for n > m. Since

(1—<P1)(1_902)(1—<Pm) = 1_W1_"'_Wm,

it follows that > oo ¥ (y) = Y0 Ym(y) = 1.

Finally, forn € N and f € S;, let ¥, r = Xupp, 5 - ¥n. Using the fact that supp, ¥, C
suppo ¢¥» C supp, fj, and the uniform discreteness of {supp, f; f € S, } it follows that
> res;, VY, r = ¥n and from property of a partition ring also that ¥, r € S. As moreover
supp, ¥, 7 C supp, f, we can conclude that {y/,, r}nen. res .. is a locally finite, o-uniformly
discrete S-partition of unity on P subordinated to U.

(v)=(iv) Let U,, be a uniform covering of P by open balls with radius % By (v) there is an
S-partition of unity {?, },eN,«c4,, subordinated to U, such that {supp, Ve }aca,, is uniformly
discrete for each n € N. It follows that the family {supp, ¥/%,; m € N,n € N,a € A,}isa
o-uniformly discrete basis for the topology of P.

(v)=(vi) is obvious.

(vi)=(vii) Let U,, be a uniform covering of P by open balls with radius % By (vi) there is
a locally finite S-partition of unity {{)"}4c 4,, subordinated to U,,. It follows that the family
{supp, ¥2'; m € N,«a € A,} is a o-locally finite basis for the topology of P.

Now suppose that S is determined locally.

(vi)=(i) Let {{4}aca be a locally finite S-partition of unity subordinated to the open
covering {W, P\ A} of P.Let Ay = {a € A; supp, Vo C W}handpute = > 4 Va. As
the sum is locally finite and S is determined locally, ¢ € S. Obviously supp, ¢ C W. Further,
supp, Yo C P\ Afora € A\ A and hence ¢(x) = D 4, Va(X) = D 4cq Valx) = 1 for
x € A.

(vii)=(iii) By (vii) there is {¢ne; n € N, o € A,} C S suchthat V = |, N wea, SUPPo Pna
and {Supp, ¢¥na}aca, is locally finite foreachn € N. Put ¢, = > .4 @2,. As the sum is
locally finite and S is a ring determined locally, ¢, € S. Further, supp, ¢, = |« 4,, SUPPo ¥nas
hence (iii) follows.

O

COROLLARY 41 ([BF]). Let X be a separable normed linear space and S a partition ring
on X such that for every f € S, a € R, and b € X the function g(x) = f(ax + b) belongs
to S. Then X admits locally finite and o-uniformly discrete S-partitions of unity if and only
there is a bump function in S.
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PROOF. Suppose ¢ € S is a bump function. Since S is stable under shifts and scaling, we may
suppose that ¢(0) > 0 and supp, ¢ C Ux. By the continuity of ¢ there is 0 < r < 1 such that
@ >00onU(0,r).

We show that in Lemma [40] is satisfied. So let V C W C X be bounded open sets
satisfying dist(V, P \ W) = § > 0. By the Lindelof property of V' there is a countable subset
{Xn}nen of V such that V C | J, ey U(xs. 87). We put ¢, (x) = ¢((x — x,)/8). Then ¢, € S
and V C U, ey U(xn, 87) C U, ey SUPPo @n C Upeny U(xn, 8) C W.

The reverse implication is clear for example from Lemma [@0|(vii).

O

COROLLARY 42. Let P be a metric space, Q C P, let R be a partition ring on P and S a
partition ring on Q such that each function from R restricted to Q belongs to S. If P admits
locally finite and o-uniformly discrete R-partitions of unity, then Q admits locally finite and
o-uniformly discrete S -partitions of unity.

PROOF. By the equivalence of and (v) in Lemma 40| the family {supp, f; f € R} contains
a o-uniformly discrete basis B for the topology of P. Consider the family A = {G N Q; G €
B}. It is clear that 4 is a o-uniformly discrete basis for the topology of Q. Moreover, A C
{supp, f; f € S}.Indeed, if G € A, then there is f € R such that G = supp, f N Q. Then
suppo f o = {x € O; f(x) #0} =supp, f N Q = G and f o € S. Now it suffices to
apply Lemma 40| again.

O

DEFINITION 43. Let ¥ be a class of normed linear spaces and § be a class of mappings
from a metric space P into spaces from ¥. We say that § is an approximation class if

e § is determined locally,

e S(P;R) is a partition ring,

e f + g € S whenever f, g € § map into the same space,

e forevery Y € Y, every y € Y, and every ¢ € S(P;][0,1]) the mapping x — ¢(x)y
belongs to S.

Notice that the second property implies that the class ¥ must contain at least R.
The following theorem goes back to Kazimierz Kuratowski around 1922.

THEOREM 44. Let P be a metric space and S an approximation class on P. Then the
following statements are equivalent:
(1) P admits locally finite S-partitions of unity.
(ii) For any convex subset C of a normed linear space of class Y, any f € C(P;C), and any
e € C(P;R™) thereis g € S(P;C) such that || f(x) — g(x)|| < &(x) for every x € P.
(iii) For any 1-Lipschitz f: P — [0,1] and any ¢ > 0 there is g € S(P;R) such that

|f —¢glp < e
PROOF. (i)=>(ii) For each x € P find r(x) > 0 such that
e(y) > izx) and || f(y)— f(x)] < ? foreach y € U(x, r(x)).

It follows that

I/ () = f)I <e(y) foreachy € U(x,r(x)). (14)
By (i) there is a locally finite §-partition of unity {4 }4e4 on P subordinated to the covering
{U(x,r(x)); x € P}. Foreacha € A let U, = U(xq, r(xy)) be such that supp, ¥ C U,.
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Define
gx) =) Va(x) f(Xa). (15)

acA
By the properties of § each mapping v, f(x,) belongs to § as well as finite sums of these
mappings. Since the sum in the definition of g is locally finite and § is determined locally, g € §.
Moreover, as g(x) is a convex combination of points from C forevery x € P, g € S(P;C).
Finally, choose any x € P. Then

1f ) =gl = | YY) (f() = fE)) | = Y Y@ f(x) = f(xa)ll
a€A acA: xeUy
<e(x) D Yalx) = e(x),
a€A: xeU,

where the last inequality follows from (14).

(i1)=>(iii) is obvious.

(iii)=(i) We show that the condition (i) in Lemma [40| is satisfied. Let V. C W C P
be bounded open sets satisfying dist(V, P \ W) > 3§ for some 0 < § < % Put f(x) =
min{dist(x, P \ W), 1}. By (iii) there is g € S(P;R) such that | f — g|p < §. Then g < § on
P\ W and g > 2§ on V. By property of a partition ring there is ¢ € S(P;R) such that
o =0onP\Wandgp >0onV.

O

Next we show how to construct smooth partitions of unity on various classes of Banach
spaces. In the following theorem the mapping @ introduces a “coordinate system” on X,
while the mappings P serve as the “projections” associated to this “coordinate system”. The
requirement is that for every x € X if we take “large coordinates of x”, then the associated
“projection” approximates x well.

THEOREM 45 ([H])). Let X be a normed linear space that admits a C*-smooth bump function,
k € N U {oo}. Let I' be a set and ®: X — co(I") a continuous mapping such that for every
y € I' the function ey o @ is C k_smooth on the set where it is non-zero. For each finite F C I’
let Pr € CK(X; X) be such that the space span Pr(X) admits locally finite €*-partitions of
unity. Assume that for each x € X and each & > 0 there exists § > 0 such that |x — Pr(x)| < &
ifweset F ={y e I'; |@(x)(y)| > 8}. Then X admits locally finite and o -uniformly discrete
€k _partitions of unity.

PROOF. Denote by F a set of all finite subsets of I (including an empty set). For any ¢ € R
let {; € C*°(R;[0,1]) be such that {,(r) = O for [t| > ¢, 0 < §u(t) < 1 for < |t] < g,
and {,(¢) = 1fort € [£, 1] (Fact . For each F € ¥ and ¢,r € R™ we define a function

@F.qr: co(I") = R by
orar@ = [1(1 -t x0) TT &),
yeF yel'\F
Forx € co(I") let H ={y € I'; |x(y)| > £}. Then H € ¥ and |y(y)| < £ for y € U(x, %),
y € I' \ H. Thus

orar) = [1(1-0:06®)) TT &) (16)

yeF yeH\F
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for y € U(x, %), which implies that ¢ 4, is LFC-{ej}yer and pF 4, € C®(co(17); [0, 1]). It
is easy to check that supp, ¢r.4,r = WF 4,r, Where

WEqr = {x € co(I'); min|x(y)| >r, sup |x(y)| < q}.
yer yel\F

Notice that dist(Wg 4., Wh 4,») > r —q whenever F, H € ¥, F # H,and r > g. Therefore
the family {Wr 4 ,; F € ¥.,q,r € Q,r > g > 0} is o-uniformly discrete.

Further, ¢, , o ® € C*(X). This follows from (T6), the fact that ¢, o e,oP € C*(X) for
eachy € I' and s € R, and the continuity of @.

Note that C¥(Z), where Z is a normed linear space, is a partition ring determined locally.
By the hypothesis and Lemma[0|for each F € ¥ there is a o-discrete basis 'V for the topology
of span Pr (X) formed by the sets in {supp, f; f € C¥(span Pr(X))}. Further, as X admits a
C*-smooth bump function, the family {supp, f; f € C*(X)} contains a neighbourhood basis
of 0, say {Up }men-

In X consider the family

(&' Wrqr) NP (V)N (Id — Pp) ' (Upn): F€ F,q.reQ,0<q <r,VeVp,meN}.

Using the continuity of @ it is easy to verify that this is a o-discrete (and in particular o -locally
finite) subfamily of {supp, f; f € C¥(X)} (notice that ®~Y(Wg ;) = supp, ¢ 4.» © ®). To
finish the proof using Lemma 40| we need to show that this family forms a basis for the topology
of X.
To this end choose x € X and & > 0. Let m € N be such that U,, C U(0, g) and further let
8 > 0 be such that
x — Pr(x) e Uy,

whenwe set F = {y € I'; |®(x)(y)| > §}. Because @(x) € co(I"), there exist g, r € Q with
0 < g <r < § satisfying |@(x)(y)| < ¢ whenevery € I' \ F. Thus x € @' (Wg,,). Since
VF is a basis for the topology of span Pg (X), there exists V' € Vg such that

PﬂmchU(muLQ.

It follows that x € @' (Wg4,) N Pr1(V) N (Id — Pr)~'(Uy). If y is any other member of
this set, then we have || Pr(x) — Pr(y)|l < 3 because Pr(y) € V, while [|[Pr(y) —y| < 3
because y — Pr(y) € Uy. Thus ||x — y|| < &, which is what we wanted to prove.

O

COROLLARY 46 ([H]). Let X be a normed linear space that admits a C*-smooth bump
function, k € N U {oo}. Let ju be a limit ordinal and let {Py, € C*¥(X;X); a < u} be an
equi-continuous family of mappings having the property that for every x € X the mapping
P, : [0, u] — X defined by Py(a) = Py(x) for o < u, Py(t) = x, is continuous. If for each
o < the space span Py(X) admits locally finite €*-partitions of unity, then so does X .

PROOF. Since X admits a C*-smooth bump function, there exist a function 7 € C*(X;[0, 1])
and n > 0 such that A(x) = 0 for || x| < n, while A(x) = 1 whenever ||x|| > 1. We set
I' = [0, ) x N and define @: X — £ (") by

O(x)(@.n) = 27" h(2" (Pas1 (x) = Pu(x))).

We note that the enlargement of the index set by the factor N would not be necessary if we knew
that / is zero only at the origin. Such function however may not exist, cf. Theorem|[5.161
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Given x € X and ¢ > 0 we fix m € N such that 27" < ¢ and note that the quantity
| Poy1(x) — Py(x)]| can exceed 277 only for  in some finite H C [0, 11). Indeed, otherwise
there would be an increasing sequence {o, } of ordinals with || Py, +1(x) — Py, (x)| > 271,
which contradicts the continuity of P, at the ordinal supca, = lima,. We thus have 0 <
®d(x)(y) < eexceptwheny € K = H x{0,1,2,...,m — 1}. This shows that @ maps into
co(I"). Furthermore, because of the equi-continuity of { Py }y<,,, there is a neighbourhood U
of x such that || Py4+1(y) — Pa(y)|| < 27™nfory € U and o € [0, ) \ H. It follows that
|D(x)(y) —P(y)(y)| <efory e U,y € I' \ K. Since K is finite, there is a neighbourhood V
of x such that | @(x) — @(y)|lco < € whenever y € V. This shows that @ is continuous.

To define the “projections associated to @ we set Py = Py and Pr = Py(F)+1 Where, for
a finite non-empty subset F of I, «(F) = max{«; («,n) € F for some n € N}. Notice that
since u is a limit ordinal, «(F) + 1 < p and P is thus well-defined. We shall show that the
hypothesis of Theorem [43]is satisfied. Given x € X and & > 0 it may be that ||x — Py (x)|| < &
for all @ < p; in this case there is clearly no problem. Otherwise, there is a maximal 8 < p with
|x — Pg(x)| > e. (Set B = min{y € [0, n); ||[x — Py(x)|| < eforall y < o < pu} and use the
continuity of P.) It follows that || Pgy1(x) — Pg(x)|| = ||lx — Pg(x)|| — [[x — Pg+1(x)|| >
e — ||lx — Pgy1(x)|| > 0. Now we fix m € N such that 2| Pg41(x) — Pg(x)| > 1, noting
that @(x)(B,m) = 27, andset 6 = 27" If F = {(«,n) € I'; |®(x)(a,n)| > §}, then
(B,m) € F and so a(F) > B, whence | x — Pr(x)]|| < &, as required.

O

We say that a class X of Banach spaces is a J?-class if for every non-separable X € X there
exists a projectional resolution of the identity { P,; @ < o < u} on X such that P,(X) € X for
all @ < pu, where u is the first ordinal with cardinality dens X. (We remark that this definition
is slightly different from that of a £-class in [HMVZ].) Examples of P-classes are reflexive
spaces, WCG spaces, WCD spaces, WLD spaces, 1-Plichko spaces (see [KKL, Theorem 17.6]),
or duals of Asplund spaces.

The following theorem was shown for P-class spaces by Gilles Godefroy, Stanimir Troy-
anski, John Whitfield, and Véclav Zizler in [GTWZ], for preduals of WCG spaces by David
McLaughlin in [McL], and for C(K) spaces by Petr Hijek and Richard Haydon in [HH].

THEOREM 47. Let X be a Banach space such that

e X belongs to a P-class, or
o X = C(K) for K compact, or
e X*isa WCG space.

The space X admits a C*-smooth bump function, k € N U {oo}, if and only if for any open 2 C
X, any convex subset C of a normed linear space, any f € C(82;C), and any ¢ € C(£2;R™)
there is g € C*(§2; C) such that || f(x) — g(x)|| < &(x) for every x € £2.

PROOF. <= is obvious — to construct a C¥-smooth bump function we just approximate the norm
and then compose the approximation with a suitable function from C*°(R).

= Note that the class of C*-smooth mappings from £2 into normed linear spaces is an
approximation class. Further, by Corollary 42} and Lemma (40| the existence of locally finite
€k _partitions of unity on £2 follows from the existence of locally finite €¥-partitions of unity
on the whole of X . Thus it remains to prove that X admits locally finite €*-partitions of unity.
The approximation then follows by Theorem

First we consider the case that X belongs to a #-class X. We use transfinite induction
on the density of X. If X is separable, then by Corollary @] the space X admits locally finite



30 SMOOTH APPROXIMATION

€*_partitions of unity. Now suppose that X is non-separable and each space in X, with density
smaller than dens X admits locally finite €*-partitions of unity. Let x be the first ordinal with
cardinality dens X and {P,; w < o < u} be a projectional resolution of the identity on X
with Py(X) € X forall o < o < u. Define P, = P, for o € [0, w). By the inductive
hypothesis all the spaces P, (X) admit locally finite €*-partitions of unity, hence the hypotheses
of Corollary 46|are satisfied and X admits locally finite €¥-partitions of unity.

Next we consider the case X = C(K), K compact. Since X admits a C*-smooth bump
function, X is an Asplund space (Corollary [5.3]), which is equivalent to K being scattered
(Theorem [5.125)). We will exploit this fact heavily in our construction. In particular, the zero-
dimensionality of K provides a rich supply of projections given by restrictions to clopen subsets
of K.

First we shall examine the structure of closed subsets of K. For each t € K there is a unique
ordinal & = «(t) such thatt € K@ \ K@D Since ¢ is an isolated point of K® and K is
zero-dimensional, there is a clopen neighbourhood V' of ¢ such that V' N K© = {t}; we choose
such a V and call it V;. Note that V, N K® = ¢ for B > «a. For finite subsets B of K we
set Vg = |J,cp Vi- We shall say that a finite subset 4 of K is admissible if s ¢ V; whenever
s,t € A, s #t.

Suppose that H is a closed subset of K. We claim that there is a unique admissible set A
with the property that A C H C Vy4. If H = @, then this is obviously satisfied with A = @
and no other. For a non-empty H we construct an admissible A with the required property. Let
op = maxjo; H N K@ = @); thus H N K@) is a non-empty finite set, which we shall call 4.
If H C Vy,, weset A = Ay and stop. Otherwise, we set H; = H \ Vj,, which is a closed set,
oy = max{e; HiNK@® #£ @Y, and A, = H; N K@, and repeat the procedure. In this way we
construct a decreasing (and so necessarily finite) sequence o9 > «; > -+ > o of ordinals, and
finite sets A; = (H \ (V4o U---UVy4,_))NK®) j =1,...,[,suchthat H C Vg, U---UVy,.
By construction, the set A = Ay U --- U A; is admissible and A C H C Vjy.

Now suppose that there are two different admissible sets B and D satisfying B C H C V3
and D C H C Vp. Let B = max{a; BN K@ £ D N K@}, Without loss of generality we
may assume that there isu € (B \ D) N K®_ Sinceu € B ¢ H C Vp, thereis s € D such
that u € V;. Because u € V; N K® \ D and K@) NV, = {s}, it must be that a(s) > B. By
the maximality of 8 we have B N K*®) = D N K*®), whence s € B, which contradicts the
admissibility of B.

We now pass to the construction of partitions of unity. We shall proceed by transfinite
induction on the height of K. Let 1 be an ordinal satisfying ht(K) = pu + 1, i.e. K® is finite
and non-empty. If u = 0, then C(K) is finite-dimensional, and so has the required partitions of
unity for example by Corollary 41} For 1 > 0 we assume inductively that if L is a compact space
with ht(L) < p + 1 and such that C(L) has a C*-smooth bump function, then C (L) admits
locally finite €*-partitions of unity. To show that C(K) also admits locally finite €*-partitions
of unity it will be enough to construct the partitions of unity on the finite-codimensional subspace
Z ={feC(K); f(t)=0forallt € K™}, (Using Lemmait is not difficult to ascertain
that whenever some normed linear spaces ¥ and Z admit locally finite €*-partitions of unity,
then so does the space Y @ Z.) To this end we construct the mappings required by Theorem 45|

Put I' = @ x s, where @ is the set of all triples (£, 7,§) € Q3 with0 < ¢ < 5 < €,
and 4 consists of the admissible subsets A4 of K for which A N K™ = @. Letn: @ — N
be some one-to-one mapping, B¢, be as in Lemma[6] and 6§ € C*°(R; [0, 1]) be such that
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671({0}) = [~1, 1] (Fact2). We define @: Z — £ (I") by

1
D6 A) = B N 0 (%) .
n ted

Notice that as V4 is clopen, yg\v, € C(K). We shall show that @ is actually a continuous
mapping into ¢o(I"). To do so fix f € Z and & > 0. The quantity n(¢, n, &)~ is greater than
¢ only for (¢, 7,£) in some finite subset R of @. Put A = min{(§ —7); (¢, n.§) € R} > 0.
For a given (£, n, &) € R we have @(g)(¢,n,&, A) = 0 foreach g € U(f, A) unless A C {t €
K:|f@)] > %(n + 5)} C V4, which can happen for at most one set A € #, as we have shown
earlier. It follows easily that @ is a continuous mapping into co(I"). Moreover, f +— yx\v, - f
and f > f() are bounded linear operators, whence each ey o @,y € I',is C k_smooth.

Finally we define the associated projections Pr: Z — Z as follows: if F C I' is a finite
subset with elements (§;,7n;,§;.4;), ] = 1,...,m, we set V(F) = U;"zl V4, , and define
Pr(f) = xv(r) - f. Because V(F) is a clopen set with V(F) N KW = @, Pr is a well-
defined linear projection of norm 1, the image Pr(Z) is isometric to the space C(V(F)), and
ht(V(F)) < jt+ 1. Hence by the inductive hypothesis Pr (Z) admits locally finite €*-partitions
of unity.

It only remains to check the required relation between @ and the projections. So let f € Z
and ¢ > O be given. Let H = {t € K; | f(t)| > &} and let A be the admissible set such that
A C H C V4. Then A € s, since H N K™ = @ by the definition of Z. There is (£, 7,£) € @
satisfying || xx\v, - flloo < ¢ < n < & < e. It follows that @(f)({,n.§, A) > 0. We set
§=@(f)(¢ & A), F={yel;|®x)(y)| =4}, and note that V(F) D V4. So

If = Pr(Plleo = llxx\vee) - flloo = Ixxvva - flloo <

For the proof of the case of X* being WCG see [McL].
a

THEOREM 48 (UTZ], [FWZ]). Let X be a Banach space and o € (0, 1]. Then every open
subset of X admits locally finite and o -uniformly discrete €Y*-partitions of unity if and only if
X admits an equivalent norm with modulus of smoothness of power type 1 + «. In particular, a
super-reflexive Banach space admits locally finite and o -uniformly discrete €*-partitions of
unity for some a € (0, 1].

For the proof we need two auxiliary statements.

LEMMA 49. Let I" be a non-empty set, p,q € [1,+00), and r € N odd such that rq > p.
Then the Mazur mapping @, : £,(I") — £,(I") defined by ®,(x)(y) = x(y)" is a one-to-one
r-homogenous polynomial with ||, || = 1. Further, ®, is 1,—7, continuous and on bounded sets
even t,—1, uniformly continuous, where t, is the topology of pointwise convergence. If ¢ > 1,
then @, is t,—w uniformly continuous on bounded sets and in particular w—w sequentially
continuous.

PROOF. Define a mapping M : £,(I"')" — {oo(I") by M(x1,....x:)(y) = x1(y) - x. ().
Obviously M is an r-linear mapping and @, (x) = M(x, ..., x). Hence &, is an r-homogeneous

polynomial. Moreover, for any x € £,(I"),
1 1
rq\ 4 P\ ¢4
) < ||x||;,(2 ) = [lxIl.

(me”-'); = ||x||;,(2 2

yell yell

x(y)
x|

x(y)
[l
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and hence @, maps into {,(I") and ||®,|| < 1. Further, ®,(e,) = e,, which implies that
|@,|| = 1. As r is odd, @, is obviously one-to-one.

The 7,—7, continuity is obvious. Moreover, if x, y € B(0, R), then |®,(x)(y)—D,(»)(y)| <
rR™'x(y) — y(y)| for y € I', from which the uniform t,~7, continuity on B(0, R) follows.
Further, if ¢ > 1, then the weak and pointwise uniformity coincide on bounded subsets of £, (1)
(and of course @, maps bounded sets to bounded sets).

O

PROPOSITION 50. Let X be a super-reflexive Banach space and I' a set with card [’ =
dens X.

(i) There are p € (1, +00) and a one-to-one bounded linear operator T : X — £,(I").
(ii) There is a one-to-one homogeneous continuous polynomial P: X — £,(I") that is also
w—w uniformly continuous on bounded sets.
(iii) If X admits an equivalent norm with modulus of smoothness of power type 1 + o, a € (0, 1],
then there is a homeomorphic embedding W of X into £y(I") such that W € CY(X;£,(I"))
with DY «-Holder on bounded sets.

PROOF. (i) By the Gurarii-James theorem ([FHHMZ, Theorem 9.25]) there are p € (1, +00)
and K > 0 such that for any semi-normalised monotone basic sequence {x,} C X (finite
or infinite) and ) a,x, € X we have |[(a,)|l¢, < K ||>_ anx,|. Using transfinite induction
on dens Y we show that for every subspace Y of X there is a one-to-one bounded linear operator
T:Y — {,(A) for some set A withcard A = densY.If Y is separable, then Y is isometric to
a subspace of £, and the mapping 7 : {oc — £, T((an)) ( an) is a one-to-one bounded
linear operator.

Now suppose that Y is non-separable and for each subspace of X with density smaller
than dens Y there exists the corresponding one-to-one operator. Let i be the first ordinal with
cardinality dens Y and let { Py; w < a < u} be a projectional resolution of the identity on ¥
([FHHMZ, Theorem 13.6]). Denote S, = Py41 — Py for w < o < . Since dens Sy (Y) <
cardo < card u, by the inductive hypothesis there are sets A, with card A, < card u and
one-to-one linear operators Ty : So(Y) — £,(Ag) of norm one.

Fix an arbitrary x € Y \{0}. Thenx = }_ _,_ Sa(x) = D_ Sa, (x), where @y < otz < -
is the enumeration of the countable set {& € [w, it); Sq(x) # 0}. Notice that the (finite or
infinite) sequence {Sy,, (x)} is a monotone basic sequence. Indeed, Py, +1© Sq, = Sq, forn <k
and Py, 110S,, = 0forn > k, and hence HZLI nSa, ()| = || Pay+1(X e @nSa, ()| <
”ZZ;I anSq, (X) H fork <manda,...,a, € R. Thus {S,, (x)/|| S, (x)||} is a normalised
monotone basic sequence and so

1

( Z1se1)" = (Zhsua1?)” = K| Zhsa, ol et |

w<a<pu
= K[ Su, )] = Kllx.

It follows that we can define 7: Y — (@wSOKM Ep(Aa))p by T(x) = (Ta o Sa(x))w5a<ﬂ.
Then T is clearly a bounded linear operator. Finally, if 7(x) = 0, then S,(x) = 0 for all
w<o<pandsox = Zw<a<M S« (x) = 0, which means that T is one-to-one.

(ii) By (i) there are p € (1, +00) and a one-to-one bounded linear operator 7: X — Lp(I).
Let 7 € N be odd and satisfy 2r > p. By Lemma[49]the Mazur mapping @, : £,(I") — {>(I")



SECTION 5. APPROXIMATION OF CONTINUOUS MAPPINGS AND PARTITIONS OF UNITY 33

is a one-to-one homogeneous polynomial that is w—w uniformly continuous on bounded sets
and sowemay put P = @, o T.

(iii) Let ||-|| be an equivalent norm on X which is uniformly rotund and its derivative is
a-Holder on the unit sphere, see e.g. [DGZ, Proposition IV.5.2] and the remark after, combined
with [DGZ, Lemma IV.5.1]. It is easy to check that then the function ||-||* € C!(X) with its
derivative a-Holder on bounded sets. By (ii) there are a set A with card A = dens X and
0 ¢ A, and a one-to-one continuous polynomial P: X — £,(A) that is also w—w continuous
on bounded sets. Then DP is Lipschitz on bounded sets and hence also «-Holder on bounded
sets. Put I' = A U {0} and define ¥: X — £,(I") by ¥(x) = (P(x), || x||?). Then obviously
W is one-to-one and ¥ € C!(X;{,(I")) with D¥ a-Hélder on bounded sets.

It remains to show that ¥~! is continuous. Let x,,, x € X be such that ¥(x,) — ¥(x). Then
|xx || = |lx|| and P(x,) — P(x).Let B C X be aclosed ball containing {x, } and x. Since B is

weakly compact and P is one-to-one, P | g is a w—w homeomorphism and so x, % x. The weak
lower semi-continuity of ||| implies || x + x|| < liminf||x,, + x| < limsup|x, + x| < 2| x|,
hence lim||x,, + x|| = 2||x||, and by the uniform rotundity we finally get x,, — Xx.

O

PROOF OF THEOREM [48]. = follows from Theorem[5.50| and [DGZ, Lemma IV.5.1].

To prove <« first recall the following easy fact used several times in this proof: A bounded
Lipschitz mapping is a-Holder for every o € (0, 1].

Let 2 C X be open and let S be the set of functions from C :%(£2) that are Lipschitz and
bounded. Proposition[I.129|implies that S is a ring. We show that S is a partition ring.

Property (i): Let { f,},ea C S be such that {supp, f, },e4 is uniformly discrete. Let g, =
¢y f, for some suitable constants ¢, # 0 chosen so that |g, |e < 1, g, is 1-Lipschitz, and Dg,
is a-Holder with constant 1 for all y € A. Put g = ZyeA gy. It is obvious that g € C'(£2)
and g is bounded. To see that g is Lipschitz and Dg is a-Holder, pick any x, y € §2. Suppose
there are y, 8 € A, y # B, such that x € suppg, and y € supp gg. Then |g(x) — g(¥)| =
gy (x) — g = |gy(x) =0 + 10— ggW)| = [gy(x) — & W) + [gp(x) — gg(¥)| =
2[lx — y|| and similarly || Dg(x) — Dg(»)[| = | Dgy(x) ~ Dgs()ll < | Dgy(x) — Dgy ()]l +
|IDgg(x) — Dgg(y)|| < 2||x — y||*. The other cases are obvious. So g € S and clearly
suppo § = U, e SUPPo fy-

Property (ii): Let f € S and supp, f = U; U U,, where U; and U, are open subsets of
§2 with d = dist(U, U,) > 0. Consider the function g = yy, f. Then g = f on an open set
2\ U, and g = 0 on some neighbourhood of U,, hence g € C!(£2) and both g and Dg are
bounded, say by M. To see that g is Lipschitz and Dg is a-Holder, pick any x, y € £2. Suppose
that x € U; and y € U,. Then |g(x) — g(y)| = |g(x) = 0| < M < M||x — y|| and similarly

[Dg(x)—Dg(y)| = Dg(x) =0 =M < & M || x — y||*. The other cases are obvious and so
ges.

Property (iii) holds by the remark after Definition 38| combined with Proposition[I.128§]

To finish the proof we show that (i) of Lemma (0] is satisfied. Let ¥ be the embedding
of X into £,(I") from Proposition Let W C £2 be an arbitrary bounded open set. Then
Y (W) is open in ¥ (X) and so there is an open U C £,(I") such that (W) = U N ¥(X). By
Proposition 35| there is f € C'!({,(I")) such that supp, f = U.Putg = f o W.

The mapping DV is Holder on bounded sets, therefore bounded on bounded sets. Con-
sequently, ¥ is Lipschitz on bounded sets, hence bounded on bounded sets. Further, Df is
Lipschitz and hence bounded on bounded sets. Therefore D¢ is bounded and «-Holder on
bounded sets by Proposition [I.128] Finally, as ¥ is one-to-one, supp, ¢ = W, which is a
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bounded set and so D¢ is globally o-Holder and bounded. So we have found a function ¢ € S
for which supp, ¢ = W.
O

We remark that the last part of the proof, namely the fact that for any open W C X there is
@ € C1¥(X) with supp, ¢ = W, can be shown directly without embedding X into £,(I"). The
proof is similar in spirit to that of Proposition [35]but technically much more involved, see [Cel
Corollary 2].

6. Non-linear embeddings into co(1")

We begin by giving a characterisation of the existence of €¥-partitions of unity on a normed
linear space X by means of non-linear componentwise C*-smooth embeddings of X into co(I”).
This result is not essential in our approach to smooth partitions of unity, but it nicely completes
the picture in view of the main result of this section: In our aim towards the approximation
of Lipschitz functions by smooth functions preserving the Lipschitz property we introduce an
important technique of supremal partitions and characterise it again by means of bi-Lipschitz
componentwise C*-smooth embeddings into co(I"). We show that every separable normed
linear space with a C¥-smooth Lipschitz bump admits C*-smooth Lipschitz sup-partitions of
unity (and a bi-Lipschitz componentwise C*-smooth embedding into cy).

It is useful to explicitly state the following fact.

FACT 51. For any set I' the space co(I") admits locally finite and o-uniformly discrete
C°-smooth and LFC-{e;}yer partitions of unity.

PROOF. The family {WFr,,; F € ¥,q,r € Q,r > g > 0} from the proof of Theoremis a
o-uniformly discrete basis for the topology of co(I") such that Wr 4, = supp, ¢F 4.» and each
@F.q,r 18 C°°-smooth and LFC—{e;}yep, so we can use Lemma
It is also instructive to notice that the uniform refinements from Factfor r= %, neN,
form a o-locally finite basis for the topology of co(/"). Thus combined with the following
observation it gives another proof: For any x € co(I") and r > 0 there is ¢ € C*(co(I"))
which is LFC-{e}},er and such that supp, ¢ = U(x,r). Indeed, it suffices to take ¢(y) =
]_[yer G(y(y) — x(y)), where 6 € C*°(R, [0, 1]) is such that 6(¢) = 1 whenever |¢| < 7 and
f(¢t) = 0 if and only if |¢| > .
O

PROPOSITION 52 ([T]). Let X be a normed linear space and k € Ny U {co}. The space X
admits locally finite €*-partitions of unity if and only if there are a set I' and a homeomorphism
@: X = co(I) such that ey o d € CK(X) foreveryy € I.

PROOF. = By Lemmathere is a basis V C {supp, f: f € C¥(X)} for the topology of X
such that V = |, ey Vi, Where each 'V, is discrete and V, N V,, = @ for m # n. For every
V € V we choose gy € C¥(X;[0,1]) such that V = supp, ¢y. We put I" = 'V and define
@: X —> L(I) by

V) = gy (),

where n € N is the uniquely determined number for which V' € V.
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The mapping @ is one-to-one. Indeed, if x,y € X, x # y, then there is IV € V such that
x € V,y # V. It follows that gy (x) > 0, while gy (y) = 0, and consequently @ (x)(V) #
D(y)(V).

Moreover, @ is a continuous mapping into co(I"). To see this, for a given x € X and ¢ > 0
we find ng € N such that % < e Then 0 < @(x)(V) < eand |2(x)(V) —@(y)(V)| < ¢
whenever y € X and V' € 'V, for n > ny. Further, by the discreteness of the families V,, there
is a neighbourhood U of x such that U meets only finitely many setsin W = V; U--- U V,,,
say Vi,..., Vi, m € Ny. Then @(y)(V) = 0 whenever y € U and V € W\ {V1,...,Vu}.
It follows that @ maps into c¢(I”). Finally, using the continuity of ¢y,, ..., ¢y, we can find
a neighbourhood W C U of x such that |@(x)(V,,) — @(y)(V,)| < & whenever y € W,
nef{l,...,m}. Thus ||@(x) — D(y)|le < € for each y € W. This shows the continuity of @.

To show that ®~! continuous fix x € X and & > 0. Since V is a basis for the topology
of X,thereis V € Vsuchthatx € V C U(x,¢). Letn € N be such that V€ V, and
choose some 0 < § < ~y(x). Suppose y € X is such that |@(x) — @(y)|ls < 8. Then
%(py(x) — %(py(y) < § and hence ¢y (y) > 0. It follows that y € V C U(x, ¢).

< Denote S = {f € C®(co(I)); f is LFC-{e}},er}. By Factand Lemmathere
is a o-locally finite basis 'V for the topology of co(I") consisting of the sets supp, f with
f € S. Using the homeomorphism @ we pull this basis back onto X . Moreover, if f € S, then
fo® e C¥(X) (Lemmal5.81). Lemma@ now finishes the proof.

O

In particular, when k& = 0, the previous result together with Lemma [8| implies that any
normed linear space is homeomorphic to a subset of ¢y (") for some set I". This is no longer true
for uniform homeomorphisms: the space C ([0, w;]) is not uniformly homeomorphic to a subset
of any co(I"). This is a result of Jan Pelant, [PHK]]. However, for any separable normed linear
space X there is a bi-Lipschitz homeomorphism @ : X — ¢(. This result of Israel Aharoni,
[Ah], can be recovered from Corollary [S7|when k = 0.

DEFINITION 53. Let X be a set. A collection {1/, }4e 4 Of functions on X is called a supremal
partition (sup-partition) if

e Yy: X — [0,1]forall € A,

e there is a Q > 0 such that sup,c 4 Vo (x) > Q foreachx € X,

e foreach x € X and for each ¢ > 0 the set {& € A; ¥,(x) > &} is finite (or in other words

(Va(x))aca € co(A)).

If in the second property Q = 1, then {V/, }ne 4 is called a sup-partition of unity.

Let U be a covering of X. We say that the sup-partition {4 }qc4 is subordinated to U
if {supp, Va faca refines U. We say that {4 }aeca is locally finite if {supp, V¥ }aeca is locally
finite.

Notice that in fact in the above definition for each x € X there is « € A such that
Va(x) = Q.

For a metric space P we denote by U(r) = {U(x,r); x € P} the full uniform covering
of P.

FACT 54. Let I" be an infinite set, r > 0, and 0 < § < 5. There is an open locally finite
uniform refinement V = {V, }yer of the uniform covering U(r) of co(I") such that U(5 — &)
refines V. Moreover, 'V is formed by the translates of the open ball U(0, r — §). Further, there is
a C*-smooth LFC-{e;}yer and (% + §)-Lipschitz locally finite sup-partition of unity {{, }yer
on co(I") subordinated to U(r).
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PROOF. Notice that by the homogeneity it suffices to prove all the statements only for r = 1.

Let {a, },er be the set of all vectors in ¢o(I") with coordinates in Z. (Notice that the
cardinality of such set is |I'| and so we may index its points by I".) We claim that V =
{U(ay,1 —8)}yer is the desired refinement.

Clearly, 'V is an open refinement of U(1). To see that it is locally finite, pick any x € co(I")
and find a finite ' C I” such that |x(y)| < % whenever y € I' \ F. Suppose that « € I is such
that y € U(ay, 1 — 8) for some y € U(x, g). Ify e '\ F,then |ag(y)| < |aa(y) —y(¥)| +
Y@ = x|+ 1x()] < 1=8+ 5+ § = 1and 50 ag(y) = 0. From |x(y) —da(y)| < 1—35
and a,(y) € Z it follows that there are at most two possibilities for a,(y) for each y € F. From
this we can conclude that }{a; Ulag, 1 —8) NU(x, %) # @}| < 2lFl,

Finally, we show that ‘U(% — §) refines V. Choose any x € ¢o(I") and find B € I" such
that ||x —agl| < % This is always possible, since there is a finite ' C I” such that |x(y)| < %
whenever y ¢ F, and so ag(y) = 0 for such y. Suppose z € U(x, 3 — §). Then |lap — z||oc <
lag — X|loo + I|1X — Z]loo < % + % — & = 1 —§, which implies that U(x, % —48) C U(ag, 1 —9).

To construct the sup-partition of unity subordinated to U(1) finde > 0and 0 < n < % such
that0 < 1/ (1—n—2F) <2+ Sand (1 +e) 2+ 2) <2+8.Let W= {U(ay, 1 —0)}yer
be the locally finite refinement of U (1) from the first part of the proof such that ‘L((% —-n)
refines 'W. Further, let [|-|| be an equivalent C*°-smooth LFC-{e}},er norm ||-|| on co(1")
such that ||x||ec < ||X]| < (1 4+ &)||x]||eo for all x € co(I"). (To construct such a norm, take
for example the Minkowski functional of the set {x € co(I"); Zye ro(x(y)) < 1}, where

@ € C*®(R), ¢ is convex and even, ¢(1) = 1, and ¢(¢) = 0 for ¢t € [—%ﬂ, 1+r€].) For each

y € I' we put ¥, (x) = q(||x — ay||), where ¢ € C*(R;[0,1]), g is (2 + %)—Lipsohitz,
qt) =0fort >1—n,andgq(t) = 1fort < % The collection {, },<r is a locally finite
sup-partition of unity. Indeed, clearly supp, ¥, C U(a,,1 —n) foreach y € I'. It also follows
that the set {y € I'; ¥, (x) > 0} is finite for each x € X. Further, fix any x € X. There
isan a € I such that U(x, 1 —n) C U(aq, 1 — 1), which gives ||x — dglleo < % Hence
lx — agll < (14 &)llx — aglloo < 122, which in turn implies that ¥, (x) = 1.

As the function ¢ is (2 + £)-Lipschitz and the function ||-|| is (1 + &)-Lipschitz (with respect
to the norm ||-|| ), the functions v, are (2 + §)-Lipschitz according to the choice of €. The rest
of the properties of the functions v, is obvious.

O

THEOREM 55. Let X be a normed linear space, I' an infinite set, and k € Ny U {oo}. Then
the following statements are equivalent:

(i) There is M € R such that there is a C*-smooth and M -Lipschitz sup-partition {oy}yer

on X subordinated to U(1).

(ii) Thereis M € R such that there is a C*-smooth and M -Lipschitz locally finite sup-partition
of unity {¢y }yer on X subordinated to U(1).

(ili) X is uniformly homeomorphic to a subset of co(I") and for each ¢ > 0 there is K > 0
such that for each 1-Lipschitz function f: X — [0, 1] there is a K-Lipschitz function
g € CK(X) such that |g — fl|x <e.

(iv) There is a bi-Lipschitz homeomorphism ® : X — co(I") such that the component functions
e,oP € C*(X) foreveryy € T.

PROOF. (ii)=> (i is obvious.
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(= (iv) Let Q be the quantity from the definition of the sup-partition. Then there is § € I"
such that ¢g(0) > Q. By scaling and composing ¢g with a suitable function we construct a
C -Lipschitz function & € C¥(X;[0, 1]) such that 7 = 0 on B(0,r) and h = 1 outside U(0, 1)
for some constants C,r € R, r > 0. (We may for example choose r such that Q —2Mr > 0
and take h(x) = q(¢p(2x)), where ¢ € C*°(R), ¢ is Lipschitz, ¢([0, 1]) = [0, 1], g(0) =1,
and g(s) =0fors > Q —2Mr.)

Choose ¢ > 1 and for eachn € Z and y € I' define functions ¢, € C k(X) by

@ =1"e, (5)h(5)-

The properties of the functions ¢, and i guarantee that each ¢y is (M + C)-Lipschitz. Let
d:7Z x I’ — I be some one-to-one mapping and define ®: X — R’ by ®(x)(a) = @y (x) if
a =d(n,y)forsomen € Z,y € I'; @(x)(«) = 0 otherwise.

We show that @ actually maps into co(I"). Choose an arbitrary x € X and ¢ > 0. There
iSng € Z such that t" < g foralln < ng and n; € Z such that ||x|| < rt” foralln > n,. It
follows that [ (x)| < e foralln < ngandy € I', and, by the properties of i, 7 (x) = 0 for all
n>njyandy € I'. As foreachng <n < ny, ¢,(x/t") > ¢/t" only for finitely many y € I,
we can conclude that @: X — co(I"). Since each ¢} is (M + C)-Lipschitz, the mapping @ is
(M + C)-Lipschitz as well.

To prove that @ is one-to-one and @ ! is Lipschitz too, choose any two points x,y € X,
x # y,and find m € Z such that 2t™ < ||x — y|| < 2¢™*1. Without loss of generality we may
assume that ||x|| > ™. Then h(x/t™) = 1 and so there is y € I" such that ¢'(x) > Q™.
Now suppose that z € X is such that ¢7'(z) > 0. As supp, ¢, C U(w, 1) for some w € X,

|5 — 7|l < 2 and consequently ||x — z|| < 2¢™. But this means that ¢*(y) = 0 and therefore

[2(x) = PVl = [0y (X) — )" (V)] = @)’ (x) = Q1™ > %IIX =yl

(iv)=(1) Let A, B > 0 be such that A||x — y|| < [|@(x) — @(¥)|looc < Bllx — y|| for all
x,y € X.By Factthere are C > 0 and a C*-smooth LFC-{eJ},er and C-Lipschitz locally

finite sup-partition of unity {y, },er on co(I") subordinated to ‘U(%). Putting ¢, = ¥, 0 @,
{¢y }yer is a BC-Lipschitz locally finite sup-partition of unity subordinated to U(1). Moreover,
each ¢, is C k_smooth by Lemma

()= (i) We already know that holds and from this the first part of follows im-
mediately. To prove the second part of (iii), let ¢ > 0. The basic idea of the proof is that
Lipschitz functions are stable under the operation of pointwise supremum. To preserve the
smoothness, we will use a “smoothened supremum”, or an equivalent smooth norm on ¢ (I").
Let ||-|| be an equivalent C*°-smooth LFC-{e}},er norm on ¢o(/”) and let C > 0 be such that

x]lse < [|X|| < C||x|loo for all x € co(I"). We will show that K = 4C3M /¢ satisfies our
claim.

By adding the constant 1 we may and do assume that / maps into [1,2]. Put§ = & and
Vy(x) = @y(35) forall x € X,y € I'. It follows that {{,, },er is a C*-smooth and M/§-
Lipschitz sup-partition of unity subordinated to U(§). Recall that (¥, (x)),er € co(I") for
each x € X. Foreach y € I there is a point x,, € X such that supp, ¥, C U(x,, ). The

boundedness of the function f guarantees that also ( Jf(x)yy, (x))y o €co(l") foreachx € X.
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Therefore we can define the function g: X — R by

2(x) = ” (f(xy)‘/fy(x))yeru
[ (vy (), cr |
As
[y CDN = [1(Pry (¥) loo = sup Yy(x) =1 foreachx € X, (17)
ye

the function g is well-defined on all of X.

The mapping x +> (\/fy(x)) and, by the boundedness of f, also the mapping x >
(f(x))¥y(x)) are Lipschitz mappings from X into co(I") \ U(0, 1). (Notice that for each
x € X thereis y € I" such that ¥, (x) = 1 and f(x,)¥,(x) > 1.) Since ||| is C°°-smooth
and depends locally on finitely many coordinates away from the origin, and since v, € C k(X)
and f(x,)y, € C*¥(X) foreach y € I', using Lemmawe infer that g € C*(X).

Using the facts that f maps into [1,2], the functions v, are M/§-Lipschitz and map
into [0, 1], and ||-|| is C-Lipschitz as a function on (co(I"), ||||sc), We obtain that the func-
tion x — H ( f ()Y (x)) H is 2C M /§-Lipschitz and bounded by 2C. Similarly, the function
X H (w,, (x)) H is CM /§-Lipschitz and bounded below by 1. It follows that the function g is
K-Lipschitz.

Finally, to show that g approximates f, choose an arbitrary x € X. Applying successively
the inequality and the facts that supp, ¥, C U(x,,§) and f is 1-Lipschitz, we obtain

[ vy D] M@ J((F) = F)y ()]
[y ()] [yl ~ [y ()]
= C 1 ((FGep) = FENY (), = € sup {11 ) = F @ ()}

=C sup {If (o) = F@Py (0} = C sup {llx, — x|} = Cs =
yell yell
xeU(xy,6) xeU(xy,06)

(it)= (i) Let @ be the uniform homeomorphism and let > 0 be such that ||@~1(x) —
@~ 1(y)|| < 1 whenever x, y € @(X) are such that ||x — y|| < 2n. Take an open locally finite
uniform refinement of the uniform covering U(n) of ¢o(I") from Fact[54] and pull it back onto
X using @. We obtain an open locally finite uniform refinement V = {V,,}, < of the covering
U(1) of X.Let 0 < & < 1 be such that U(H) refines V. For each y € I we define the function
fy: X = [0,1] by f,(x) = min{dist(x, X \ V,), §}.

)

Choose some 0 < 6 < . For each y € I' the function f, is 1-Lipschitz and so, by (fii),

there is a K-Lipschitz function g, € C*(X) such that |g, — f,|x < 0. Letq € C¥(R;][0, 1])
be a C-Lipschitz function for some C € R, such that g(¢) = 0 for¢ < 6 and g(t) = 1 for
t > 6 — 0. Finally, we let ¢, (x) = q(g,(x)) for each y € I'. Clearly, each function ¢, belongs
to C*(X; [0, 1]) and is M -Lipschitz, where M = CK. Further, for any x € X thereisa € I
such that U(x, §) C Vg, hence f,(x) = § and consequently ¢, (x) = 1. As supp, ¢, C V,, for

all y € I' and 'V is locally finite, {¢, },<r is a locally finite sup-partition of unity subordinated
to U(1).

lg(x) = f(0)| =

O

We note that the proof could be made considerably shorter by proving (iv)=>(iii) directly
using Theorem [71] instead of (ii)=> (i) and (iv)=(ii). However, the reasons for our strategy
of the proof were two: First, we do not need the full generality (and associated machinery) of
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Theorem [71] (or Theorem [66)) and second, the proof of (ii)=>(iil) shows an interesting technique
for constructing smooth Lipschitz approximations (due to Robb Fry, [Fry2]]), and in fact shows
the reason for the definition of the notion of sup-partition of unity.

THEOREM 56 (Robb Fry, [Fry2]). Let X be a separable normed linear space that admits a
C*-smooth Lipschitz bump function, k € Ng U {oo}. Then there is M € R such that there is a
C*-smooth M -Lipschitz sup-partition of unity {¥}52, on X subordinated to U(1).

PROOF. Using the C¥-smooth Lipschitz bump function on X as a start, by shifting, scaling,
and composing with a suitable real function we construct two functions f,g € C*(X;[0, 1])
along with real numbers C > 0and 0 < § < r < 1 suchthat f(x) =0forall x € X \ U(0, 1),
f(x) =1forall x € B(0,r), g(x) = 1forallx € X \ U(0,r), g(x) = 0 for all x € B(0,9),
and both functions are C-Lipschitz (see also the proof of Theorem [53).

Let {x;}72, C X be such that {U(x;, §)};2, is a covering of X. We put f;(x) = f(x —x;)
and gj(x) = g(x — x;) foreach x € X, j € N. Choose 0 < 1 < 1 and for each j € N let
@; € C*(R7) be a 1-Lipschitz function (with respect to the maximum norm) such that

min{wy, ..., w;} < ¢j(w) < min{wy,...,w;} +n foreachw € [0, 1)/

(use Lemmal(I). We note that the functions ¢; will serve as a “smoothened minimum”. Finally, to
confine the sup-partition into the interval [0, 1], let & € C¥(R; [0, 1]) be a D-Lipschitz function
such that i(t) = Ofort <npand h(t) = 1fort > 1.

For each j € N we define

vi(x) = h(%‘(&(x), e gim1(x), f,-(x))) foreach x € X.

Clearly, ¥; € C¥(X;[0,1]) and ¥; is M -Lipschitz for each j € N, where M = CD. Moreover,
{¥}72, is a sup-partition of unity. Indeed, choose an arbitrary x € X. Let k € N be the
smallest index for which x € U(xg,d). Then gr(x) = 0, which implies that for j > k,
®j (gl(x), oo 8i—1(x), fj(x)) < nand so ¥;(x) = 0. Therefore the set {j € N; ¥;(x) > 0}
is finite. Further, let n € N be the smallest index for which x € U(x,,r). It follows that
gj(x) = 1foreach j <nand f,(x) = 1, hence ¥,(x) = 1.
Finally, if ||x —x;|| > 1, then f;j(x) = 0 and hence ¥;(x) = 0, which shows that {/;}72
is subordinated to U(1).
O

COROLLARY 57. Let X be a separable normed linear space that admits a C*-smooth
Lipschitz bump function, k € Ny U {oo}. Then there is a bi-Lipschitz homeomorphism @ : X —
Co such that the component functions ef o @ € C k(X) for every j € N.

7. Approximation of Lipschitz mappings

In this section we turn our attention to the problem of approximating Lipschitz mappings by
smooth Lipschitz mappings, preferably keeping the control over the Lipschitz constant. Such
approximations have applications for example in the theory of Banach manifolds. The finite-
dimensional case is easy — the integral convolution respects the Lipschitz property and in fact it
preserves the Lipschitz constant.

In the infinite-dimensional case, the infimal convolution preserves the Lipschitz constant
too, but unfortunately it gives only the first order smoothness and works only for functions
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(i.e. mappings into R). Using the local techniques (partitions of unity) alone to obtain the
global property (Lipschitzness) presents some insurmountable obstacles. First, it is essentially
impossible to gain any global control over the Lipschitz constant of the individual functions in
the partition and regardless, there is no control over the cardinality of the (locally finite) sum
in (I3). Therefore we have to develop several alternative approaches to this problem.

The first one is using the integral convolution even in the infinite-dimensional setting.
We show two cases when this is possible. The first one is for separable spaces, where we
can use “convolution in a dense set of directions” and then exploit the Lipschitz property of
the approximated mapping. The gain is however not particularly strong, as we obtain merely
Gateaux (or uniformly Gateaux) smooth approximation. More interesting is the use of the integral
convolution in the space co(I"), which is possible thanks to the very strong LFC structure in this
space. The latter result has interesting corollaries when either the source or the target space have
certain special properties.

The above techniques are somewhere in-between local and global — they use approximation
on finite-dimensional subspaces, which are then somehow “glued together”. Another example of
this approach is a technique of Nicole Moulis that uses an unconditional basis for gluing together
the finite-dimensional approximations. There is also a “local” procedure: the supremal partitions,
developed in the previous section, which essentially replace the sum in by supremum, which
preserves the Lipschitz property.

All the above results give approximations in the uniform topology. Using the o-discrete
partitions of unity we show how to proceed from uniform approximations to the approximation
in fine topology. Finally, we prove an analogue of Theorem [22](the real analytic approximation)
for Lipschitz functions.

We start with a notion of a uniform Gateaux differentiability. If f is Gateaux differentiable
and for a fixed x in the domain we require the uniformity of the limit defining %(x) in h € By,
we obtain the notion of Fréchet differentiability. If, on the other hand, for each fixed 4 € By we
require the uniformity in x, then we obtain uniform Gateaux differentiability. Uniformity of this
type will prove important later, for example in the applications of Theorem

DEFINITION 58. Let X, Y be normed linear spaces, U C X open,and f: U — Y a
Gateaux differentiable mapping. We say that f is uniformly Gateaux differentiable (UG for
short) if for each fixed & € Sy the limit defining %(x) is uniform for x € U.

LEMMA 59. Let X, Y be normed linear spaces, U C X open, and let f: U — Y be a
Gdteaux differentiable mapping. If for each h € Sx the mapping x +— §f (x)[h] is uniformly
continuous on U, then f is uniformly Gateaux differentiable on U provided that U is convex;
otherwise f is uniformly Gateaux differentiable on any open V- C U satisfying dist(V, X \U) >
0. Conversely, if f is uniformly Gateaux differentiable and uniformly continuous on U, then
for each h € X the mapping x +— §f (x)[h] is uniformly continuous on any A C U satisfying
dist(4, X \U) > 0.

PROOF. Choose i € Sy and ¢ > 0, and find 6 > 0 such that ||§f(x + th)[h] — §f (x)[h]|| < &
forall x € U andt € (-0, 0) satisfying x + th € U. If U is convex we set V = U and
n = 6, otherwise we let n = min{6,dist(V, X \ U)}. Fix x € V and define a mapping
g: 1 - Ybygt) = f(x +th) —t5f(x)[h], where I = {t € (—n,n); x +th € U}.
Notice that / is an open interval containing 0 and g'(t) = &§f(x + th)[h] — 5f(x)[h] for
t € I. By the assumption, ||g’(¢)|| < e fort € I, hence g is e-Lipschitz on I, and so

12(f(x +th) — f(x)) = 8f )R] = |2 () — g(0))| < e foralls e 1.
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To prove the converse statement, choose 7 € X, h # 0,a subset A C U for which
dist(4, X \ U) > 0,and ¢ > 0. Find 0 < < dist(4, X \ U)/||A such that | ;(f(x + nh) —
f(x)) = 8f(x)[h] H < £ forany x € A. Let 6 > 0 be such that || f(x) — f(y)| < n§ whenever
X,y € A are such that ||x — y|| < 6. Then, for such x, y, we have

Jaf th) =8 I < &+ LG+ 1) = £ = S5+ 0+ £0)] <
a

We remark thatif f: U — Y, U C X open, is such that for each & € Sy the mapping x +—
%(x) is uniformly continuous on U, then f | gny is C ' *-smooth for each finite-dimensional
affine subspace £ C X (Theorem [1.96)). In particular, if X is a Banach space and f is Baire
measurable, then in view of Theorem we do not need to assume that f is Gateaux
differentiable in Lemma

LEMMA 60. Let X, Y be normed linear spaces, H a dense subset of X, U C X open, and
let f: U — Y be a Gdteaux differentiable Lipschitz mapping such that for each h € H the
mapping x +— §f(x)[h] is uniformly continuous on U. Then the mapping x +— &f(x)[h] is
uniformly continuous on U for every h € X.

PROOF. Let L be a Lipschitz constant of f. Pick an arbitrary 7 € X andlete > 0. Find hg € H
such that ||z — hg|| < ;7. By the uniform continuity of x > 8/ (x)[ho] there is n > 0 such that
16/ (x)[ho] — &/ (¥)[holll < 5 whenever x,y € U, ||x — y|| < n. Then

|87 )] = 8 WA < |81 (x)Thol = 8f Tkl | + |8 (X)[h — hol|| + || 8 (»)[h — hol||
< g F2L|h —ho| < ¢

whenever x,y € U, ||x — y| < 1.
O

The following approximation lemma introduces the technique of “convolution in a dense set
of directions”.

LEMMA 61. Let X be a separable normed linear space, Y a Banach space, U C X open,
f: U — Y an L-Lipschitz mapping, € > 0, and let V' C U be open such that dist(V, X \ U) >
57 Let {hj} be a dense subset of Sx and let 9; € C*®(R), j € N, be such that ¢; > 0,
[z i =1, and supp ¢; C [—ﬁ, 17 |- Extend f 1o the whole of X by setting f(x) = 0 for
x € X\ U and define g,: V — Y, n € N, by

gn(x) = /R f(x — thhj) H%-(t,-)dxn(z), (18)

where A, denotes the n-dimensional Lebesgue measure. Then g, — g uniformly on V and
the mapping g: V — Y has the following properties: It is L-Lipschitz, Gateaux differentiable,
satisfies || f — g||lv < &, and for each h € X the mapping x — §g(x)[h] is uniformly continuous
onV. Moreover, if Y =R and U, V, f are convex, then so is g.

PROOF. Denote K, = [172,[—5757- 5757] € R™. Since x — Y7, 1;h; € U forx € V and

(t1,...,tm) € Ky, using the Fubini theorem and the fact that fR ¢; = 1 we obtain form > n
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andany x € V

||gm<x>—gn<x)||=”[Rm<f(x—iz,-h,-) (x—Zz, ))ﬁa(r,-)dxm

~ a
/ Zt, Hw;(@)dAmSL/ ( Z|rj|)1‘[soj(rj)dxm
j=n+1 j=1 Km \j=n+1 / j=1

It follows that there is g: V' — Y such that g, — g uniformly on V.
The mappings g, are L-Lipschitz on V. Indeed, for any x, y € V we have

f(x - th-h.,-) - f(y - ijhj)
j=1 j=1 j=1

n
< Llx =l | TTest)dh = Lix =yl
nj=1

1gn(x) — gn(Wl = () dAy

Therefore g is also L-Lipschitz. Similarly we can check that the functions g, and g are convex
under the additional convexity assumptions.
Moreover, || f — gllv < e. Indeed, pick n € N such that ||g, — g[lv < 5. Then

£ (x) =g < 1/ (x) = gn() | + [lgn(x) — g(X)
— h

</Rn f(x ;t, J) 11

< L/I(n<j2=2|zj|)11:[1¢j(zj)dxn + g <e

&
() dA, + =
(1)) dhn +

forany x € V.

Next we show that g is Gateaux differentiable on V. Fix n € N, x € V and define
T:R" — X by T(t) = x + Y_7_; t;h;. Let A > 0 be such that T'((—A, A)") C V. Using
substitution ¢ — s — ¢ we obtain

gnoT()=| foTts—0)]]e)dr.) = [ foT@) [[eits —1)dra()
R j=1 K j=1

forany s € (—A, A)", where K = ]_[;;1 [—ﬁ —A, == 2L2, +A] It follows from Corollary-
that the mapping g, o T is C'-smooth on (—A, A)". = D(gn o
T)O0)[(s1,...,8,)] forall h = s1hy + -+ + sphy, it follows that & +— ag” 2 (x) is linear on
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span{hy,...,h,} and

g"( )= [ £oTwwi- 0 [T o) a0

j=1
JF#i
n n
= / f(x -> t,-h,-)ga;(z,-) []e@)dra@)
R j=1 j=1
J#i
foreachi € {1,...,n}.
Further, {ag” ; converges uniformly for x € V. Indeed, using the Fubini theorem and the

fact that fR Yj = 1 we have form >n >iandany x € V

' ( (x—thhj)—f(x—thhj))%{(fi)H‘Pj(fj)dkm
R™ j=1 j=1 =1

J#i

agm agn
8h,~

)| =

sL/K ( 2l )|¢,<t,)|1‘[¢,(r,)dxm_ PR /|¢,(r)|dt

j=n+1
J#i

By Theorem (1.85| (used on the restrictions to x + span{A;}) we obtam that (x) exists for all

x € V,i € N. From the above it also follows that W(x) (x) + ag (x) forall x € V,
i,j € N.

To see that for given x € V the derivative 2 3% (x) exists for all 1 € Sy choose 1 > 0 and let
i € N be such that || — &;|| < 37. Then for any t € R \ {0} small enough so that x + th € V,
X + th; € V we have

=< —IIT(h hi)ll < 3

|~ (et o) ) - %(g(»c + o)~ ()| = =

Thus there is 8 > 0 such that

1

T2

1
Hf—l(g(x + 11h) — g(x)) — —(g(x + ©2h) — g(x)) H

2

<=-n++

3 %(g(xmhi)— (x))——( (x + 22hi) — g (x))

1

for0 < |11] < 0,0 < || < 6.
Next we show that the mapping 7 +— g—i(x) is L-Lipschitz. For arbitrary u,v € X and
n > 0 we have

oo+ e = g00)| | e+ 0 -t 4 7o)

ag 1
[0~ e+ - eoo)
<n+Lfu—v]
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for t small enough. Thus H g—i(x) — g—i(x) ” < L||u —v]||. It follows that & > g—i(x) e L(X;Y),
since it is a Lipschitz mapping that is linear on a dense subset of X . Therefore g is Gateaux
differentiable on V.

It remains to prove that x — g (x)[h] is uniformly continuous on V for any & € X.
To this end, first note that the mapping x > O (x) is L;-Lipschitz for any n > i, where

oh;
Li = L flg}(o)]dr:

0gn 0gn
H TR TS

)

=

[Rn (f (X - thhj) - f(y - thhj))‘/)z{(li) [Te)dr,
j=1 j=1 j=1

J#i

< Lix—y] wa;(mdr — Lillx—yl.

Thus the mapping x +—> 8g(x)[h;] is L;-Lipschitz for each i € N. It follows from Lemma 60|
that x — 8g(x)[h] is uniformly continuous on V for any € X.
O

COROLLARY 62. Let X be a separable normed linear space, Y a Banach space, U C X
open, k € Ny, f € C¥U;Y) such that d’ f is L;-Lipschitz for j = 0,...,k, ¢ > 0, and
let V.C U be open such that dist(V, X \ U) > 0. Then there is g € CK(V:Y) such that d’g
is Lj-Lipschitz for j = 0,...,k, d kg is uniformly Gateaux differentiable (in particular, g is
G**smooth), and ||d’g — d' f|v < € forall j € {0, ..., k}.

PROOF. Let W C U be open such that dist(W, X \ U) > 0 and dist(V, X \ W) > 0. We define
mappings g,: W — Y by formula (18). By Corollary we have g, € CK(W:Y) and

Paat) = [ a7 (v = 3 ) [Tont arat0 (19)
R I=1 I=1

forx e W,j =0,...,k.Since eachd’ f is L;-Lipschitz, by Lemmaused on (19) we obtain
that there are L;-Lipschitz mappings ¢;: W — £(/X;Y) such that d’g, — ¢, uniformly on
W and ||d’f — q;llw < &. Moreover, g is Gateaux differentiable on W and x > 8qx[h] is
uniformly continuous on W for each 4 € X. Therefore g is uniformly Gateaux differentiable
on V by Lemma Theorem implies that g, — g € C*(W:Y) uniformly on W and
d’g =gqj,] =0,....k.

O

The following version of Lemma|[61]is for mappings that are only locally Lipschitz.

LEMMA 63. Let X be a separable Banach space, Y a Banach space, U C X open, f: U —
Y alocally Lipschitz mapping, and let V- C U be open such that § = dist(V, X \ U) > 0. Let
{h;} be a dense subset of Sx and let ¢; € C®°(R), j € N, be such that ; > 0, [ ¢; =1,
and supp ¢; C [—%, %] Extend f to the whole of X by setting f(x) = 0forx € X \U
and define g, V — Y, n € N, by formula (I8)). Then g, — g locally uniformly on V and the
mapping g: V — Y is locally Lipschitz and Gateaux differentiable. Moreover, if Y = R and U,

V, f are convex, then so is g.

PROOF. Let K = {Zjoil tihj; |ti| < %} Then K is a compact subset of X and so it is easy
to show that for each x € V' there is a neighbourhood V,, C V of x such that f is Lipschitz on
Vy — K. Note that for y € V, each g,(y) is defined using values of f on V, — K only. So we
may repeat the proof of Lemma 61| with the following differences:
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e g, — g only locally uniformly on V.

e g, are only locally Lipschitz and so is g.

° {%gT'l_’ o2 ; converges only locally uniformly on V.

o In the proof of the Gateaux differentiability of g we use the fact that g is locally Lipschitz.

O

COROLLARY 64. Let X be a separable Banach space that admits a Cllggl—smooth bump for
some k € No. Then X admits a Clﬁgl-smooth bump with Gateaux differentiable kth derivative
(in particular it admits G**'-smooth bump).

PROOF. Let f € C k1 pe a non-negative bump function with supp f C B(0,1). Let ¢; €

loc

C>®(R), j € N, be such that ¢; > 0, [p ¢; = 1, and suppg; C [—%, 2%] Define mappings
gn: X — Y by formula (I8)). By Corollary we have g, € CK(X) and (T9) holds for
x € X,j =0,...,k. Since each d/ f is locally Lipschitz, by Lemma (63| used on (TI9) we
obtain that there are locally Lipschitz mappings ¢;: X — £ (/X) such that d’g, — ¢; locally
uniformly on X. Moreover, g is Géteaux differentiable on X. Theorem [I.85] implies that
gn — g € C¥(X) locally uniformly on X and d’g = gj.j = 0,..., k. Finally, since by the
definition each g, is zero outside B(0, 2), g is a bump.

O

To proceed to integral convolutions in ¢o(/") we need an auxiliary notion. Let X be a
topological vector space, £2 C X an open subset, £ an arbitrary set, M C X*,and g: 2 — E.
Let U be a neighbourhood of zero in X. We say that g depends U -uniformly locally on finitely
many coordinates from M (U-ULFC-M for short) if for each x € §2 there is a finite subset
F C M such that g depends only on F on (x + U) N §2 (cf. Definition [5.78).

For any subset F' C I we denote the associated projection in co(I") by PF,i.e. Pr(x) =
Zye F e, (x)ey for x € co(I"). By coo(I") we denote the linear subspace of ¢o(1”) consisting of
finitely supported vectors.

LEMMA 65. Let I be an arbitrary set, Y a Banach space, and let f: co(I') — Y be a
mapping that is U(0, r)-ULFC-{e}}yer for some r > 0. Further, let 2 C co(I") be open, let f
be uniformly continuous on §2 with modulus w, and suppose that f = 0 on co(I") \ §2. Then
for every V. C 2 with dist(V, co(I") \ §2) > 0 and for every & > 0 there is a U(0, 5)-ULFC-
{ey}yer mapping g € C™(co(I');Y) suchthat || | — gllv < &, g is uniformly continuous on
V with modulus w, and the mapping x +— Dg(x)[h] is uniformly continuous on V for any
h € coo(I'). If [ is even, then so is g. If moreover Y = R and f is convex, then so is g.

PROOF. Let n = dist(V, co(I") \ £2) and find 0 < § < min{n, 5} such that w(§) < e. Choose
an even C *°-smooth non-negative function ¢ on R such that suppg C [—6,8] and [ ¢ = 1.
We denote C = [g|¢/(t)|dA. Let ¥ C 27" be a partially ordered set of non-empty finite subsets
of I" ordered by inclusion. For any F € ¥ we define the mapping gr: co(I") — Y by

gr(x) = / f(x -3 lyey) [ o) drr ).
RI7| yeF yeF
Notice that the integral is well-defined, since f = 0 on the closed set co(I") \ £2 and f is
uniformly continuous on £2 and so it is bounded on totally bounded sets.
The net {gr}# converges on co(I") to a mapping g: c¢o(I") — Y. In fact, we claim that
for any x € co(I") there is an F € ¥ such that gp(y) = gg(y) forany F C H € ¥ and
any y € U(x, 5). Indeed, for a fixed x € co(I") let F € ¥ be such that f* depends only on
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{ey}yer on U(x,r) and || x — Pr(x)|| < 5. Choose any y € U(x,5)and H € ¥, H D F.

Suppose that 7, € [-7, 5] forall y € H. Then Hx — (y — D el tyey) H < r and consequently
(=2, cutyey) = f (y — X, cF tyey). Thus, by the Fubini theorem,

gu(y) = /[_g,gpm f(y -> lyey) [ @) drim@)

yeH yeH
= [ = Xee) Temwno T1 [ owai= e
[-8,8]1F1 yeF yeF yEH\F

Moreover, |x — PE(V)|| < ||lx — Pr(x)|| + || Pr|lllx — || < r and so we can easily see that
gr(¥) = gr(Pr(y)). The mapping gr | p.(co(r)) 18 in fact a finite-dimensional convolution
with a smooth kernel on R!F!, and so g is a C *°-smooth mapping on U(x, 5) (Corollary
recall that a uniformly continuous mapping is bounded on totally bounded sets). The mapping g is
therefore U(0, 5)-ULFC-{e}}yer and g € C®(co(I");Y), as forany x € co(I"), g = gr © PF
on U(x, 5) for some F € ¥

To show that || f — g|ly < e choose any x € V. Let F € ¥ be such that g(x) = gr(x).
Notice that |x — (x — Y cptyey)| = | X, er tyey|| <8 < n whenever 1, € [, 8] for all

y € F.Hencex — ) ptye, € 2 and

/() =gl = 1/ (x) = gr ()]

_ H /R 1 TT o) ahm - [ ) (x— Zzyey) [T o) dhir @

ver yeF yEF
= /[—S,S]IFI Jx) = (x N Z t,,ey) l_[ @(ty) dA|p(t)
= /[—5,8]|F|w(8) 1_[ o(ty) dA|F|(1) = ©(8) <.

yeF yeF
yEeF

To see that g is uniformly continuous on V' with modulus w, choose x,y € V and find
F,H € ¥ such that g(x) = gr(x) and g(y) = gg(y). Then for K = F U H we have

glx) = gK(x) and g(y) = gk (¥)- Asx =) cxtyey € 2andy—) g tye, € 2 whenever
ty € (—n,n) forall y € K,
lg(x) — gl = llgx (x) —gx W)

5/[_8’8]|K| f(x -3 t,,ey) - f(y -3 tye,,)

y€K yeK
<o(llx—yl).

[ ] o) driki@)

yeK

Similarly we can check that g is even if f is even and g is convex under the additional
assumptions that Y = R and f is convex.

We finish the proof by showing that the directional derivatives of g in the directions of Coo (I)
are uniformly continuous on V. So first, choose any « € I". For x, y € V find F, H € ¥ such
that g(x) = gr(x) on U(x, 5) and g(y) = gu(y) on U(y, 5). Put K = F U H U {a}. Using
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Corollary and substitution we obtain

Dgk(x)leq] = /lel f(x— Ztyey)w/(ta) [1 @) drix@).

vekK yeK\{a}

Hence, similarly as above,
|Dg(x)lea] — Dg(y)leal |

= [RK f(x - Z tyéy) - f(y - Z tyey) H|(p/(ta)| H @(t,) dA k(1)

yeK yekK yeK\{a}
= o(lx = 1) [ 1¢/0)1dk = Co(lx - yI).
Finally, choose any & € coo(I") and x, y € V. It follows from the above estimate that

| Dg)h] = Del| < Y | De)le;(hey] — De(y)ley(hye,]|

yEsupp h

< Co(lx—=yl) D lesm)] = Clihlle,(llx = yl).

yEsupp h

O

THEOREM 66. Let I' be an arbitrary set, Y a Banach space, U C co(I") open, and let
f: U — Y be a uniformly continuous mapping with modulus w. Then for every V. C U
with dist(V, co(I") \ U) > 0 and every ¢ > 0 there is a mapping g € C*®(co(I");Y) which
uniformly locally depends on finitely many coordinates {e}}yer, such that || f — gllv < e
and g is uniformly continuous on 'V with modulus . If f is moreover L-Lipschitz, then g is
L-Lipschitz on V and uniformly Gateaux differentiable on Int V.

PROOF. Letr = dist(V, co(I") \U) and find 0 < n < 7 such that w(n) < 5. Definep: R — R
by ¢(t) = max{0,7 — n} + min{0, ¢ + n}. Then ¢ is 1-Lipschitz and |¢(¢) — ¢| < 7 for all
t € R. Further, define a mapping @: co(I") — co(I") by @(x) = Zye]" @(ey(x))ey. (Notice
that in fact @ maps into coo(/").) Then @ is 1-Lipschitz and || @(x) — x| < n forall x € co(I").
Moreover, we claim that @ is U(O0, 2)—ULFC—{e;j},,e r.

Indeed, fix x € co(I") and find a finite F C I” such that ||x — Pr(x)|| < . Then for
any y € U(x,2) we have ||y — Pr(y)|| < n. This means that if y,z € U(x, 7) are such that
e, (y) =ej(z) forally € F, then ¢(e;(y)) =0 = ¢(e;(z)) forall y € I" \ F and of course
p(ey(y)) = ¢(ey(z)) forall y € F. Hence @(y) = @(z), and so @ depends only on {e)},eF
on U(x, 1).

We extend f to the whole of co(I") by f(x) = 0forx € co(I') \U andputh = f o ®.
Clearly, the mapping h: co(I") — Y is U(0, Q)-ULFC-{@;}),E]“. Put 2 = @ 1(U). Then £ is
open and dist(V, co(I") \ §2) > 7 (in particular V' C §2). Indeed, choose x € V and y € ¢o(I")
such that [|x — y|| < 3. Then |@(y) — x|| = [@(y) — Il + lly — x|l < n+ 3 = r, which
means that @(y) € U and so y € §2. Moreover, / is uniformly continuous on §2 with modulus
. To see this, choose any x,y € §2. Then @(x),@(y) € U and hence ||h(x) — h(y)| <
o([2x) =) < o(lx = yl).

Finally, || f — hlly < sup,ey @(|lx — @(x)]|) < w(n) < £, and Lemma 65| used on A
together with Lemma [60]and Lemma [59|finishes the proof.

O
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Let (X, v) be a normed linear space. The norm v is said to be UG-smooth (or just UG) if it is
Gateaux differentiable on X \ {0} and for each fixed & € Sy the limit defining g—;’l(x) is uniform
for x € Sy.

PROOF OF THEOREM [3.126] Define a function f: ¢o(I") — R by f(x) = max{0, || x| — 1}.
Then f is a 1-Lipschitz convex even function which is U(0, %)—ULFC—{e;‘}ye r. (Notice that
f = ||l e @ as in the proof of Theorem [66|for n = 1.)

Let g € C*(co(I")) be a 1-Lipschitz convex even function with uniformly continuous
directional derivatives produced by Lemma [65|combined with Lemma such that |g(x) —
f(x)| < 1forall x € c¢o(I'). Then g is separating, as g(0) < 1 and g(x) > 2 on 4S,(r). The
function g is also UG by Lemma [59] and so we can finish by using the next lemma.

O

LEMMA 67. Let X be a normed linear space, k € N U {oo}, and let g: X — R be a
C*-smooth, UG, Lipschitz, even, and convex separating function. Then X admits an equivalent
C*-smooth UG norm.

PROOF. As shown in [HJ2], the Minkowski functional of a sub-level set of a convex separating
UG function need not be UG. To be able to use the Minkowski functional we need to gain
more control over Dg(x)[x]. To this end we introduce an additional transformation. Basically,
we construct a function that is “directionally primitive” to g in a sense, so that its directional
derivative is g back again (more or less), hence Lipschitz. So, define f: X — R by

£ = / ¢(x) dA().
[0,1]

Let L be the Lipschitz constant of g. It is easy to check that f is %-Lipschitz, even, and convex.

Without loss of generality we may assume that g(0) = 0. By the convexity of g and the fact
that g is even, g(x) > 0 for x € X. Since g is separating, there are r > 0 and a > 0 such that
g(x) > a forall x € rSy. Hence g(tx) > a — Lr(1 —t) whenever ¢ € [0, 1] and || x| = r. It
follows that

1 2
f(x) > / » )(a —Lr(l1— t)) dA(z) = ;E = b forany x € rSy.
1—a r

By Corollary the function f is C*-smooth and

Df (] = / Dy (t)[th] dA(1). 20)

[0,1]

By the proof of Lemma there is an equivalent C*-smooth norm v on X satisfying v(x) = 1
if and only if f(x) = b, and

Dv(x) =

1 Df ( X )
DI Gollim] ™ )

Using Lemma |59 and we can see that the function x +— Df(x)[h] is uniformly
continuous on X for any 7 € X. Moreover, the function x — Df(x)[x] is Lipschitz on X.
Indeed, using the substitution (1 + ) = s we get f(x + Tx) = f[o 1 gltx +ttx)dA(r) =
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ﬁ f[o 141] g(sx) dA(s). Thus, using the continuity of g along the way,

Df(x)[x] = lim — (f(x +1x) = f(x))

1+t 1+t
= 3&%((1 j_ - 1) /o g(tx)dA(r) + /1 g(tx) dk(t))

1+t 1+t

=1 1
= gl_r)r(l) 172 ; gtx)dA(r) + }1_1)1}) ;/; g(tx)dA(r)

= g(0) - [0 ¢ dA() = g(x) — f(x).

Since both f and g are L-Lipschitz, the function x +— Df(x)[x] is 2L-Lipschitz. Clearly,
f(0) = 0. So, the convexity of f implies that Df(x)[x] > f(x) for any x € X, and in
particular Df(x)[x] > b forx € X, v(x) = 1.

Finally, we claim that the function x + Dv(x)[h] is uniformly continuous on Ag =
X \ B(0,R) forany &7 € X and any R > 0, which according to Lemma |59 means that the
norm v is UG. Fix any R > O and & € X. Denote S = {x € X; v(x) = 1}. As the mapping
Y Ar — S, ¥(x) = x/v(x) is Lipschitz and Dv(x) = Dv(y(x)), it is enough to show
that x + Dv(x)[h] is uniformly continuous on S. Let ¢ > 0. Find 0 < § < & such that
|Df(x)[h] — Df(y)[h]| < & whenever ||x — y|| < §. Then forany x,y € S, ||x — y|| < & we
have

Df(x)[n] — Df(y)lh]
Df( )x] - Df(MIY]

= | Df (X)[1] = Df (»)[h]|

|Dv(x)[h] = Dv(y)[h]| =

= (7Rl
1
DS ‘Df(x)[x] Zon]
Lok, o P70 = D] Lyl
; DM B0l <5

1 L?

Assume that a normed linear space X can be embedded in ¢y (/") by a bi-Lipschitz homeo-
morphism @. Then we can use Theorem [66|to approximate mappings on X provided that we
can extend the approximated mapping from @ (X ) onto some uniform neighbourhood of @(X).
Since the extensions are intimately tied with retractions (see e.g. [BL]), we recall the following
notions.

A retraction of a set A onto B C A is amapping r: A — B such that r [ p = Id. A metric
space P is called an absolute Lipschitz (resp. uniform) retract if for every metric space Q
containing P as a subspace there is a Lipschitz (resp. uniformly continuous) retraction of Q
onto P. The space P is called an absolute Lipschitz (resp. uniform) uniform neighbourhood
retract if for every metric space Q containing P as a subspace there is a uniform neighbourhood
U of P in Q (i.e. dist(P, Q \ U) > 0) and a Lipschitz (resp. uniformly continuous) retraction
of U onto P.

O
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FACT 68. Let I' be an arbitrary set, (P, p) a metric space, Q C P,and f: Q — Loo(I") a
uniformly continuous mapping with modulus w € M. Then f can be extended to a uniformly
continuous mapping g: P — Lo (I") with modulus w. In particular, an L-Lipschitz mapping
can be extended to an L-Lipschitz mapping.

PROOF. For each y € I' the function f, = e} o f is a uniformly continuous function on Q
with modulus . By Lemma [30| there are extensions g, : P — R of f, which are uniformly
continuous with modulus w. Fix a € Q. For any x € P we have |g,(x)| < |g,(a)| + |g,(x) —
gy(@)] = gy (@) + w(p(x,a)) = ley(f(a)| + w(p(x,a)) < [ f(@)]| + @(p(x,a)). It follows
that (g, (x))yer € £oo(I") and the mapping g can be defined as g(x) = (g, (x)),er. Further,

wg <, as [|g(x) — gl = sup,erlgy(x) — gy (V)| < w(p(x, y)).
O

FACT 69. Every metric space X is isometric to a subset of £, (X).

PROOF. Let p be the metric on X. Fix a € X and define the isometric embedding ®: X —

loo(X) by @(x)(y) = p(x.y) —pla,y) forx,y € X.
O

PROPOSITION 70. Let X be a metric space. Then X is an absolute Lipschitz uniform
neighbourhood retract if and only if there are K > 0 and § > 0 such that for any two metric
spaces Q C P and every L-Lipschitz mapping f: Q — X there are a uniform neighbourhood
U C P of Q withdist(Q,P \U) > % and a KL-Lipschitz mapping g: U — X which
extends f .

Similarly, X is an absolute uniform uniform neighbourhood retract if and only if there are
wg € M and § > 0 such that for any two metric spaces Q C P and every uniformly continuous
mapping f: QO — X with modulus w € Mg there are a uniform neighbourhood U C P of
O with dist(Q, P \ U) > n, where 1 is any number satisfying w(n) < 8, and a uniformly
continuous mapping g: U — X with modulus wq o v which extends f .

PROOF. = Embed X isometrically into £ (/7). Let V' C £ (I") be a uniform open neigh-
bourhood of X and let r: V' — X be a K-Lipschitz retraction. Let § = dist(X, £oo(I7) \ V).
By Fact[68]there is an L-Lipschitz extension i: P — £oo(I') of f: Q — X C £oo(I"). Put
U = h (V). Then U is openin P and dist(Q, P\U) > % Indeed, if y € U(z, 8/ L) for some
z € Q,then h(y) € U(h(z), §), where h(z) € X; hence h(y) € V. Finally, put g(x) = r(h(x))
forany x € U.

< Let X be a subspace of a metric space P and put Q = X. The Lipschitz extension of
the identity mapping Id : X — X to a uniform neighbourhood of X in P serves as the desired
retraction.

The proof for the uniformly continuous version is analogous.

Now we are ready to prove the approximation theorem.

THEOREM 71. Let Y be a Banach space, k € N U {o0}, and let X be a normed linear
space such that there are a set I' and a bi-Lipschitz homeomorphism @ : X — co(I") such
that the component functions e, o & € C k(X) for every y € I'. Assume further that X or Y
is an absolute Lipschitz uniform neighbourhood retract. There is a constant C € R such that
if f: X = Y is L-Lipschitz and & > 0, then there is a C L-Lipschitz mapping g € C*(X;Y)
such that || f — gllx < e.
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Moreover; if Cy, C, € R are such that @ is C,-Lipschitz and ® ' is C,-Lipschitz, and if K
is the constant from Proposition[70} then C = C;C,K.

This theorem immediately follows from the following more general version.

THEOREM 72. Let Y be a Banach space, k € N U {o0}, and let X be a normed linear
space such that there are a set I' and a uniform homeomorphism ® : X — co(I") such that
we-1 < w1 € My and the component functions e, o ® € C*(X) for every y € I'. Assume
further that X orY is an absolute uniform uniform neighbourhood retract. If f: X — Y is
uniformly continuous and & > 0, then there is a uniformly continuous mapping g € C*(X;Y)
such that || f — gllx < e.

Moreover, if wy € M is the modulus from Proposition |70, for the space X, then wy <
wr o Wy o w1 © wp. If wg € M is the modulus from Proposition |70 for the space Y, then
Wg = Wo © Wf © W1 ° We.

PROOF. Define f: ®(X) — Y by f(z) = f(®!(z)) for any z € ®(X). The mapping f
is uniformly continuous with modulus wys o w; € M. If Y is an absolute uniform uniform
neighbourhood retract, then by Proposition /0| there are a uniform open neighbourhood U of
@(X) in ¢o(I") and an extension f: U — Y off such that w 7 < w2 = wo © Wy © 1.

In case that X is an absolute uniform uniform neighbourhood retract, we use the Propos-
ition {70/ to a mapping @ ! to obtain a uniform open neighbourhood U of @(X) in co(I")
and an extension ¢: U — X of @~! such that w; < wg o ;. Now put f = f ogq. Then
WF < Wy = Wf © Wy oW and f is an extension of f

By Theorem [66] there is a mapping g € C*°(co(I"); Y) locally dependent on finitely many
coordinates and such that | g(z) — f(z)| < & for any z € @(X) and g is uniformly continuous
on @(X) with modulus w,. We define the mapping g: X — Y by g = g o @. By Lemma|5.81],
g € C¥(X;Y). Clearly, w, < w, o wg. To see that g approximates f, choose any x € X. Then

lg(x) = f)] = (@) = f (@) = |g(@(x) — F(@x)] <e.
0

Let V be a topological space and vy € V. By Bo(V') we denote the space of all bounded
real-valued functions f on V for which f(v) — 0 whenever v — v, considered with the
supremum norm. Given a metric space P we denote by Cy,(P) the space of all bounded,
uniformly continuous real-valued functions on P with the supremum norm. By the result of
Joram Lindenstrauss [L, Theorem 6] (see also [BL]), both By(V) and C,,(P) are absolute
Lipschitz retracts. Therefore using Corollary |57|and Theorem [/1| we obtain the following result:

COROLLARY 73. Let X be a separable normed linear space that admits a C*-smooth
Lipschitz bump function, k € N U {oo}. Let Y be a Banach space. If at least one of the spaces X
orY is equal to either By(V') for some topological space V, or Cy,(P) for some metric space
P, then there is a constant C € R such that for any L-Lipschitz mapping f: X — Y and any
¢ > 0 there is a CL-Lipschitz mapping g € C*(X:;Y) for which | f — gllx < e.

Further, by another result of J. Lindenstrauss, [L, Theorem 8] (see also [BL, Corollary 1.26]),
super-reflexive Banach spaces are absolute uniform uniform neighbourhood retracts. Hence
using Corollary |57/ and Theorem /2| we obtain the following result:

COROLLARY 74. Let X be a separable normed linear space that admits a C*-smooth
Lipschitz bump function, k € N U {oo}. Let Y be a Banach space. If X or Y is a super-reflexive
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Banach space, then there are a constant C € R and a modulus wy € M such that for any
uniformly continuous mapping f: X — Y and any ¢ > 0 there is a uniformly continuous
mapping g € CK(X;Y) for which | f — gllx < & and wg(§) < ws(wo(C9)) (if X is super-
reflexive) or wg(8) < wo(wr(CE)) (if Y is super-reflexive) for § € [0, +00).

Next, we show another way how to glue together the finite-dimensional approximations.
In what follows, the unconditional basis is instrumental so that we can arbitrarily perturb the
coordinates of a given vector with a control over the norm.

LEMMA 75 ([Mol]). Let X be a Banach space with an unconditional Schauder basis
{e;}72, that admits a C k_smooth Lipschitz bump function. Denote X, = span{e; Vi Xoo =
span{e; };";1 = U2 Xn. Then there is a constant K > 0 such that for any ¢ > 0 there is a
K -Lipschitz mapping ¥ € C*(X; Xoo) such that for each x € X there are a neighbourhood U

of x andn € N such that W(U) C X, and ||x — ¥ (x)|| < e.

PROOF. Let { f,} be the biorthogonal functionals to {e,}. Let A be the unconditional basis
constant of {e,} and B the basis constant of {e,}. Let ¢ € C*(X;[0, 1]) be a Lipschitz function
such that ¢(x) = 1 whenever ||x|| > 1/A4 and ¢(x) = 0 whenever ||x|| < r for some r > 0.
Such a function can be constructed from the C*-smooth Lipschitz bump function, which we
have at our disposal, by translating, scaling, and composing with a suitable real function. Let
M be the Lipschitz constant of ¢ and K = A + M(1 + B). Denote R, = Id — P, forn € N,
where P, are the projections associated with the basis, Py = 0, and Ry = Id.

Lete > 0. Define ¥: X — Xoo by ¥(x) = > oo, 9(Ru—1(x)/€) fu(x)en. Suppose that
x € X. Then there is an N € N such that |R,(x)| < &5 foralln > N and thus there is
a neighbourhood U of x such that |R,(y)| < er whenevern > N and y € U. It follows
that ¥ (y) = Zflv:l ©(Ry—1(y)/¢e) fu(y)e, and hence ¥ (U) C Xy . This fact also implies that
¥ e C*(X; Xs), as it is locally a finite sum of C¥-smooth mappings.

To see that ||x — ¥(x)|| < ¢ for all x € X, fix an arbitrary x € X and find ny € Ny such
that || R,,(x)|| < &/A4 and ||R,(x)| > e/Aforall 0 <n < ny. Then

Ix =¥ ()| = > (1= @(Ry_1(x)/8)) fu(x)en

n>no

3 (1= @(Rae1(x)/€)) fu()en

> e

n>no

<A

&
= ARy, < A< = .

To show that ¥ is Lipschitz we estimate the norm of the derivative of ¥. Let x € X.
Find nyp € Np such that [|R,,(x)|| < ¢/A and ||R,(x)|| > ¢/A forall 0 < n < ny. Let
h € Byx. Notice that all the sums in the following computation are in fact finite and that
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Dp(R,—1(x)/e) =0for1 <n < ny.

IDE A = | Y D(#(Ra-1()/€) fuen) ()]

n=1

= 1> @(Ru_1(x)/e) fu(M)ew + fa(x)en - Do(Ru—1(x)/&)[Rn_1(h)/e]
n=1

= ' Z QO(Rn_l(X)/S)fn (h)en + Z fn (x)en . Dw(Rn—l(x)/S)[Rn—l(h)/g]
n=1 n=1
< AllRll +{ D ful¥)en - Dp(Ry—1(x)/e)[Ru-1(h)/e]

<A+ A sup ‘D(p(Rn—l(x)/g)[Rn—l(h)/g]‘

n>ngo

Y falx)en

n>no

= A+ 4 sup | De(Ru—1(x)/e) | (1 + B)[1/ell - [| R () ]

1
§A+AM(1+B)—%=A—|—M(1+B)=K.
&
O

THEOREM 76 (Nicole Moulis, [Moll). Let X be a Banach space with a monotone uncon-

ditional Schauder basis {e; 721 that admits a C k_smooth Lipschitz bump function. Denote
X, = span{e; }7=1. There is a constant C > 0 such that if Y is a Banach space, M C X is such
that P,(M) C M foralln € N, 2 is a uniform open neighbourhood of M, f: 2 — Y isan
L-Lipschitz mapping such that f | @nx, is CUF-smooth for eachn € N, V.C M is open such
that dist(V, X \M) > 0, and & > 0, then there is g € C*(X;Y) such that | Dg|ly < C(1+¢)L
and || f —gllv < e.
PROOF. Without loss of generality we may assume that {e;} is normalised. Denote Xo, =
span{e; }72, = U2, X». Let us extend the mapping f to the whole of X by f(x) = 0
for x € X \ £2 and denote f, = f |x,. For each n € N denote by 7, the isomorphism
T,: R" - X,, T,(y) = 2;7:1 yjej, and define a mapping g,: X, — Y by the Bochner
integral

&0 = [l = T00)en() a3,

where ¢, € C*°(R") are smooth functions with sufficiently small compact supports chosen so
that

1
lgn(x) — fu(x)] < 4512_” forevery x € M N X, 21)
1
|Dgn(x) — D (x)| < ng—n for every x € M N X,,. (22)
This is possible, since the mappings f,, and Df, are uniformly continuous on £2 N X,, (see the

proof of Lemmal(l]). Using Corollary [[.91]and substitution (recall that a uniformly continuous
mapping is bounded on totally bounded sets) it is easy to see that g, € C*®°(X,; Y).
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Now let us define inductively a sequence of mappings g,: X, — Y. Let g1 = g1. Suppose
thatn € N, n > 1, and the mapping g,—, is already defined. Then we put

Zn(x) = gn(x) + gn-1(Pp-1(x)) — gn(Pn-1(x)) forall x € X,,.

Notice that g, x, , = gn—1, thatis g, is an extension of g,_;. Furthermore, by induction we
can show that

gn € C®(X,:Y) foreachn € N, (23)
1
lgn(x) — fu(x)]l <§(1—2—n) foreveryx e M N X,,,n € N, (24)
1
|Dgn(x) — Dfu(x)|| < Le (1 — 2—n) forevery x e M N X,,n € N. (25)

Indeed, (23) is obvious. For n = 1 the inequality (24) follows from (21)). Letn € N, n > 1, and
suppose the inequality (24) holds for n — 1. Then, using (21,

(82 (x) = fu (O < [lgn(x) — fu()]| + “gn—l(Pn—l(x)) - gn(Pn—l(x))H

< Zut (Pt (D) = foma (Pay ()]

427
+ H Jn(Prn—1(x)) — gn(Pn—l(x))H
<£L+E(1_L)+EL:£(1_L)
427 2 2n—1 427 2 2"

for any x € M N X,,. Notice, that here we used the fact that P,_; (M) C M.
The inequality (25) for n = 1 follows from (22). Let n € N, n > 1, and suppose the
inequality (25) holds for n — 1. Then, using (22),

ID&n(x) = Dfa()Il < IDgn(x) = Dfu ()| + | D(Gn—1© Pu1)(x) = D(gn © Pu1)(x) |

< LS D@t o Pae)(X) = D(fu o Pat)()]

22n
+ | D(fy 0 Pac)(x) = D(gn © Pao)(x)
=13 2i + [ D2n1(Paci(x)) © Pacy = Dyt (Paci(x)) © Poc |

+ ”Dfn(Pn—l(x)) © Pn—l - Dgn(Pn—l(x)) 0 I'p—1 ”

SIS L B LN PR
2on T T e 2on = A T
for any x € M N X,. Here we used the fact that P,_;(M) C M and also the fact that
[ Ppsll = 1.
Next, we define the mapping g: Xoo — Y by g(x) = lim,,_, o g, (x) forall x € X . Recall
that g,(x) = gm(x) for all n > m whenever x € X,, and thus the mapping g is well-defined.
From (24)) it readily follows that

lg(x)— f(x)| < % forevery x € M N Xo. (26)

Now, let ¥ € C*(X;X4) be the mapping from Lemma [75| such that |¥(x) — x| <
min{5%, &, dist(V, X \ M)} forall x € X. Let C > 0 be the Lipschitz constant of ¥. We define
the mapping g: X — Y by g = g o ¥. For each x € X there are a neighbourhood U of x and
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n € N such that (U) C X,. Hence g = g, o ¥ on U which together with implies that
g e Ck(X;Y).
To see that g approximates f, choose an arbitrary x € V. Then ¥(x) € M N X, which
used together with (26) gives
e

lg(x) = FCOl = Ig(#(x) = FPEI + /(W) = f)l < % +Lor

Finally, we estimate the derivative of g on V. Fix any x € V. There are a neighbourhood U
of x andn € N such that ¥(U) C X, andso g = g, o ¥ on U. Also, ¥(x) € M N X,, and
therefore we can use (25) to obtain

IDg() || = [1D(gn o W)Xl = [[Dgn(¥(x)) o D¥(x)|| = [ Dgn(P I D¥ ()]

< C(| D2 (¥(x)) = DA )| + DA @) < C(Le + L) = C(1 + )L,
O

= E&.

Combining Lemma [61] and Theorem [76] we would obtain a uniform approximation res-
ult on spaces with unconditional basis. However, we postpone the precise formulation until
Corollary [/9] where we obtain even stronger statement.

Next, we prove a result that allows us to pass from uniform approximations to fine ap-
proximations. We start with the existence of smooth and Lipschitz o-discrete partitions of
unity.

LEMMA 77. Let X, Y be normed linear spaces and k € N U {oo}. Suppose that for each
1-Lipschitz mapping f: 2Ux — Y and & > 0 there is a Lipschitz mapping g € C*(Ux;Y)
satisfying || f — glluy < €. Let 2 C X be open. Then for any open covering U of §2 there
is a Lipschitz and C*-smooth locally finite and o -uniformly discrete partition of unity on 2
subordinated to U.

PROOF. Let S C C*(£2) be the subset consisting of bounded Lipschitz functions. Analog-
ously as in the proof of Theorem [48]it can be shown that S is a partition ring. Further, notice
that approximation of mappings into ¥ gives us also approximations of functions. Indeed, if
f: 2Ux — Ris 1-Lipschitz, then choose some y € Sy and consider the mapping f: 2Ux — Y,
f(x) = f(x)-y.Let g € CK(Ux;Y) be an approximation of f provided by our assumption
and F € Y * be a Hahn-Banach extension of the norm-one functional ¢y > ¢ defined on span{y}.
Then g = F o g is the desired approximation of the function f. Thus by approximating the
function x > dist(x, £2 \ W) we can show that (i) in Lemma 0] is satisfied, which finishes the
proof.

O

THEOREM 78. Let X, Y be normed linear spaces and k € N U {oco}. Suppose that there is a
C > 1 such that for each L-Lipschitz mapping f : 2Ux — Y and & > O there is a C L-Lipschitz
mapping g € C*¥(Ux:Y) satisfying | f — glluy < & Let 2 C X be open. Then for any
L-Lipschitz mapping f: 2 — Y, any continuous function ¢: 2 — R™, and any n > 1 there
is an nC L-Lipschitz mapping g € C*(2;Y) such that || f(x) — g(x)|| < e(x) for all x € £2.

PROOF. First notice that from approximations on Uy by translating and scaling we immediately
obtain approximations on any open ball in X. For each x € £ find r(x) > 0 such that
U(x,4r(x)) C £2 and

£(x)

e(y) > 5 foreach y € U(x, r(x)). (27)
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By Lemma [77| there is a locally finite and o-discrete C*-smooth Lipschitz partition of unity
on §2 subordinated to {U(x, r(x)); x € §£2}. We may assume that the partition of unity is of
the form {¥,q }neN.aea, Where for each n € N the family {supp, ¥4 aca is discrete in §2. For
eachn € Nand o € A let U,y = U(Xpq, r(xnq)) be such that supp, Ve C Uyg. Let Ly, be
the Lipschitz constant of ¥,,, and without loss of generality assume that L,, > 1. Further,
denote Vo = U(Xpq, 27 (Xna))-

For eachn € N and @ € A we approximate f on V,, by CL-Lipschitz mapping g, €
C*(Ve: Y) such that

(Tl—l)CL 8(xnot)
L., 3

| f(x) — gna(x)|| < min < e(x) foreach x € Uy,. (28)

(The second inequality follows from (27).) Define the mapping g,q: 2 — Y by gue(x) =
gna(x) for x € Vo, gno(x) = 0 otherwise.
Finally, we define the mapping g: £2 — Y by

g(x): Z Wna(x)gna(x)-

neN,xeA

Since supp, ¥na C Unas 8na € C k(Vya: Y), and the sum is locally finite, the mapping g is
well-defined and moreover g € C*¥(2;7).
Choose x € §2 and let us compute how far g(x) is from f(x):

@ =gl ={ DY Yua(f()=Zna®)| = Y Vel f(x) = gna(®)ll

neN,xeA neN
a€A: xeUyqy
<e(x) Y Yna(x) = e(x),
neN

a€A: xeUyq

where the last inequality follows from (28).

To estimate the derivative of g at some fixed x € £2, notice that by the discreteness of
{SUppo ¥netaeca, for each n € N there is at most one « € A such that Dy, (x) # 0. Put
M = {n € N; o € A: DY,u(x) # 0}. Then there is a mapping B: M — A such that
foreachn € M, Dype(x) = 0 whenever @ # B(n) and moreover x € Up,p(,). (Notice
that if Dv/,4(x) # 0, then necessarily x € U,y.) Further, since Y ¥, = 1, it follows that
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> Dvne = 0. Hence

”Dg(x)“ = Z D (Ynagna)(x)

neN,axeA

= Z D(wnagna)(x)

neN
a€A: xeUyqy

= Z Vna(X)Dgna(x) + Z Drng(x) - gna(x)

neN neN
a€A: xeUy,qy a€A: xeU,qy

= Z 1,”noe(x)Dgnot(x) + Z Dwna(x) ' (gna(x) - f(x))

neN neN
a€A: xeUyqy a€A: xeUyqy
< Y Yna@IDgraN + D I DYnginy | npiy (x) = f (X))
neN neMm

a€A: xeUyqy

< Z CLWna(x) + Z Lnﬂ(n)“gnﬂ(n)(x) - f(x)”

neN neM
a€A: xeU,q

where the last but one inequality follows from (28]).

To finish the proof we show that g is nC L-Lipschitz on the set 2. Without loss of generality
we may assume that e(x) < (nC — 1)L dist(x, X \ £2) forevery x € 2. Now fix x,y € 2. If
the line segment / with end points x and y lies in £2, then ||g(x) — g(»)|| < nCL|x — y| by
Proposition [1.71} Otherwise there is z € [ N (X \ £2). Then

lg(x) =g < llg(x) = fFOI + 1 )= SO+ 1) =gl
<e(x)+ Llx =yl +&(y)
<mC-DLlx=zll+ Llx =yl +®C —-DL|y —zll = nCL|lx - y|.
O

COROLLARY 79. Let X be a separable normed linear space that admits a C*-smooth
Lipschitz bump function, k € N U {oo}. Let Y be a Banach space. Suppose further that one of
the following conditions is satisfied:

e X is a Banach space with an unconditional Schauder basis, or
e at least one of the spaces X or Y is equal to Bo(V') for some topological space V', or
e at least one of the spaces X or Y is equal to Cy,(P) for some metric space P.

Then there is a constant C € R such that for any open §2 C X, any L-Lipschitz mapping
f: 82 — Y, and any continuous function : 2 — R there is a CL-Lipschitz mapping
g € CK(2:Y) for which || f(x) — g(x)|| < &(x) forall x € £2.

PROOF. It suffices to notice that under our assumptions the hypothesis of Theorem|[78]is satisfied.
Indeed, since By is a 2-Lipschitz retract of X, every L-Lipschitz mapping defined on By can
be extended to a 2L-Lipschitz mapping defined on X. Thus we may apply either Corollary
or (in the case of the unconditional basis) we combine Lemma [61] and Theorem

O
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Further, Theorem [/8|together with Theorem [32] gives us the next corollary.

COROLLARY 80. Let X be a Hilbert space and §2 C X an open set. Then for any L-
Lipschitz function f: 2 — R, any continuous function ¢: 2 — R, and any n > 1 there is an
nL-Lipschitz function g € C1(§2) such that | f(x) — g(x)| < e(x) forall x € £2.

Similarly, Theorem [7§] together with Theorem [66] produces the following corollary.

COROLLARY 81. Let I' be an arbitrary set, §2 C co(I") an open set, and Y a Banach space.
Then for any L-Lipschitz mapping f: 2 — Y, any continuous function : 2 — R™, and any
n > 1 there is an nL-Lipschitz mapping g € C*(82;Y) such that || f(x) — g(x)| < e(x) for
all x € £2.

In the rest of the section we deal with the approximation of Lipschitz functions by real
analytic Lipschitz functions.

THEOREM 82. Let X be a separable Banach space that admits a Lipschitz separating
real-analytic function with uniform radii of convergence as in property (K). Then there is a
constant K € R such that for each ¢ > 0 and any L-Lipschitz function f: X — R there is a
K L-Lipschitz function g € C®(X) satisfying | f — glx < e.

We remark that the assumption is in particular satisfied if X admits a separating polynomial.
Indeed, by Fact there is P € P ("X) for some n € N even such that P(x) > 1 for

x € Sx. Let0 < r < 1 be such that r2||i’/||(l + )" < 1+ t" foreacht € [0, 400).
Consider the function ¢(z) = (1 + }S(z))%. By Proposition |1.61| we have Re P (x + iy) >
P@) — 1P, G lx 241y 12 = Jlx]” —[IPllr2(1 + [x[)" > —1 forallx,y € X,
|yl < r.Thus g € H(G), where G = {z € X; |Imz| < r}, and by Corollarythe
radius of norm convergence of the Taylor series of g at each x € X is at least r. Further,
q |'x is clearly separating. Finally, using the fact that P(x) > |x|” for x € X we obtain
1Dg b ()]l = L1+ P)FMDPOI < L1+ x| [DP x|~ < L] DP]. and
so ¢ |'x is Lipschitz.

The proof of Theorem [82]is divided into a few steps (Proposition [§3] Proposition [84] and
Lemma [85]). We begin by introducing an auxiliary notion. Let X be a normed linear space and
let U = {Uy; x € Uy C X, x € X} bea collection of open neighbourhoods in X. Let 4 C X.
We say that a function /4 : U U — C separates A with respect to U if
(S1) h|'x mapsinto R,

(S2) h(x) > 1 whenever x € A,
(S3) |h(2)| < %wheneverz € Uy, x € X, dist(x, A) > 1.

PROPOSITION 83. Let X be a Banach space. Assume that there are U = {Uy; x € Uy C
X.xeX } a collection of open neighbourhoods in X and C > 0 such that foreach A C X
there is a function hy € H (U ‘U) which separates A with respect to U and such that hy |'x
is C-Lipschitz. Then for every ¢ > 0 and every L-Lipschitz function f: X — R there is a
10C L-Lipschitz function g € C®(X) satisfying | f — g|lx < e.

PROOF. Let us define a function f: X — R by f(x) = £ f (). This function is obviously
1-Lipschitz. Denote f* = max{f,0} and f~ = max{— f, 0} and notice that both functions
are again 1-Lipschitz. Next, let us define the sets 4, = {x € X; f +(x) > n} forn € Nj.

Clearly, A, C A,—; foralln € N, and using the 1- L1psch1tz property of f 7 itis easy to check
that

dist(X \ 4,, Ay+1) > 1 foralln € N. (29)
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Denote /1, = 6, o hy, forn € N, where the functions 6, come from Lemmaf] For eachn € N,
h, € H(IJU) and h, }x is 4C-Lipschitz. Put h* = Y7 | h,.
Fix an arbitrary x € X. Then there is m € N such that x € A4,,—; \ 4,,. Hence

x € Ay forn <m and x € X\ A,— forn > m. (30)

From this, (29), (S3), and (T[3)) it follows that |/, (z)| < 27" forall n > m and z € U,. Hence
the sum in the definition of 4™ converges absolutely uniformly on U, and so h* € H (U ‘L()
This together with (S1)) and (T[1)) implies that 2+ }x € C®(X).

Using (B0), (S2)) and (T4), @9), (S3) and (T[3)), and finally m — 1 + h,,(x) € [m — 1,m] and

ft(x) € [m — 1, m), we obtain

| (x) — )| = Zh (%) + i (x) + Z hn(x) — £ (x)

n=m-+1
< Zlh (x) — 1] + Z ()] + |m = 1+ By (x) — fT(x))|
n=m-+1
<Zz + Z 27" 41 < 2.

n=m+1

Further, (30), (29), and ( 5 imply [| D(hn tx) )| = [(6n Tr) (ha, DD (ha, tx) ()] =
27"C forn € N \ {m}. Hence by Corollary|1.166

IDGF b)) < D IDU b)) < Y 27"C + [P bx)(x)]| < € +4C = 5C.

n=1 n#m

Similarly we obtain an approximation of f~ denoted by h~. Put h = h*t — h~. Then
hix € f(x)| < 4forevery x € X,and [ D(h1x)(x)| < DO Px)(x)| +
ID(h~ tx)(x)| < 10C forevery x € X.

Finally, let g(x) = %h (%x) for x € X. It is straightforward to check that g satisfies the
conclusion of our proposition.

O

PROPOSITION 84. Let X be a Banach space. Suppose that there are an open neighbourhood
Gof X in X and a collection {Vntnen of functions on G with the following properties:
(P1) {¥, ['x }nen is a sup-partition on X,
(P2) the mapping z +— (by ¥y (2))nen is a holomorphic mapping from G into ¢y for any
(bn) € Loo,
(P3) there is M > O such that each V¥, |'x is M -Lipschitz,
(P4) for eachn € N there is x,, € X such that ¥,,(x) < %forx € X, ||x —xu|| = %, where Q
is the quantity from the definition of a sup-partition.
Then there is a collection U of open neighbourhoods in X such that for each A C X there is a
functionhgq € H (U ‘l,{) which separates A with respect to U and such that h4 | x is C -Lipschitz,

where C = /2M/ Q.

PROOF. Let W, 1, and A,, be as in Propositionfor g = %. Denote w(z) = (¥(2))nen for
z € G. By the continuity of the mapping w (which follows from (P2))), for each x € X there
is an open neighbourhood U, of x in X such that Uy C G and ||w(z) — w(x)| < Awx)/q
whenever z € U,. (Notice that w(x) € ¢o \ {0}.) Put U = {Uy; x € X}.
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Let A C X.Foreachn € N put b, = ¢ if dist(x,, A) < % and b,, = 1 otherwise. Choose
z € |J U and let x € X be such that z € Uy. Then

H (ann (Z)) - (bnwn (X))” = Sug‘bn(WM (Z) - wn (X))‘ =q Sungn (Z) - Wn (X)|

= qw(@) —wE)| < dwe

and since 0 < w(x) < (by¥n(x)) < qw(x) in the lattice sense, from (M) it follows that
(bn¥a(z)) € W. Therefore we may define h4(z) = gu((ba¥n(2))) for z € |J U and (
implies that hy € H (U ‘l,() Further, /14 |'x is obviously C -Lipschitz.

Next we show that /14 separates A with respect to U. Clearly /14 has property (I)). Pick any
x € A. From ( and ( it follows that sup {V¥,,(x); n € N, dist(x,, A) < %} > Q. Therefore

| (bnn(x))]| = gQ = 8 and consequently (M2) gives property (S2)). Finally, to show (SJ)) let
x € X be such that dist(x, A) > 1. Then, by (, Yn(x) < % for those n € N for which

diSt(xn’ A) E % Thus ||(bn W’l (X))” E max{q%, 1} = 1 NOW @ tOgether Wlth ( lmplles
|ha(z)| < % for z € Uy.

(31)

O

LEMMA 85. Let X be a separable Banach space and {x,}>, a dense sequence in X.
Suppose that there are A > 0 and a function ¢ € H(2) where 2 = {z € X; |[Imz| < A},
such that q 'x is Lipschitz and maps into [0, +00), ¢(0) = 0, g(x) > 2 forx € X, ||x]| > %,
and suppose there is a sequence {a, v, of positive real numbers such that for each x € X the
function

o0
Z Zan(lmq(x — Xy, —|—z))2 (32)

n=1
is defined on some neighbourhood of 0 in X and is continuous at 0. Then there are an open
neighbourhood G of X in X and a collection of functions {{,, }neN satisfying the properties

(HI)—(PH) in Proposition

PROOF. Puteg, = min{27", %} and let ¢, be the functions and {§, } the sequence from Lemma
Put

Vn(2) =gz —x1),....q(z —xn)) forz e 2,neN.
Then ¥, € H($2) and by (Z1) ¥, | x maps into [0, 1].

Pick any x € X. Then from the density of {x,} and the fact that ¢(0) = 0 it follows that there
is I € N such that g(x — x;) < 1. Let k € N be the smallest such number. Then property (Z4)
implies that ¥ (x) > % Thus sup, cp ¥n(x) > Q foreach x € X, where Q = %

By the continuity of ¢ there is p > 0 such that Reg(z) < % whenever z € X, |z|| < p.
Now fix x € X and find an index j € N such that ||x; — x|| < p. Let 6, > 0 be such that
|x —x; + w| < pand Y 7, a,,(Imq(x —Xp + w))2 < §; whenever w € X, |lw|| < 8. Then
Reg(x—x;+w) < iandhence, by (, |Yn(z)] <27 forn > jandz € Uy = Ug(x,6y). It
follows that for any (b,) € Loo, (bn¥n(2))nen = Y pey Pa¥n(2)en € ¢ and the sum converges
absolutely uniformly on U,. As the mappings z +— b, V¥, (2)e, are holomorphic as mappings
from £2 into ¢y, we can conclude that (b, V) is a holomorphic mapping from G = | J, .y Ux
into ¢o, which gives (P2). (FI)) then immediately follows.

Property (P3)) obviously holds by (Z2). Finally we show that (P4) is satisfied. Indeed, fix
neN.Forx € X, ||x —x,| > % we have ¢(x — x,) > 2, hence, by (, Ya(x) < 1—16 = %

O
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PROOF OF THEOREM[82] There are d > 0 and a functiong € H(G),G = {z € X; |[Imz| <
d}, such that g 'y is Lipschitz and maps into [0, +00), ¢(0) = 0, g(x) > 2 forx € X, ||x| > 1,
and the radius of convergence of the Taylor expansion of ¢ at every point x € X is at least d

(Theorem [1.171)).

Let {x,}7>, be a dense sequence in X . Put
M, = sup{‘q(xj — X, + w)}; weX,|w|< %,1 <j< n}

anda, = 1/(2" an). (Note that by the assumption on the radius of the Taylor series M,, < +00.)
Fix x € X. There is k € N such that x € U(xk, %). For z € X satisfying ||z| < % we have
lx —xx + 2| < % and hence forn > k

1
an(Img(x — X +2))° < an|q(xx — X0 +x —xp +2)|* < anM? = TR
Therefore the sum in converges absolutely uniformly on B 3 (O, %) to a continuous function.
Using Lemma 85| together with Proposition |84 and Proposition [83| finishes the proof.
O

8. Approximation of C!-smooth mappings

In this section we prove our most general result on an approximation of a C!-smooth
mapping together with its first derivative by a C*-smooth mapping in the fine topology. A
concise formulation is in Corollary [88]

In order to avoid repeating the same argument in various contexts, we prove the following
somewhat technical proposition. One of the main ideas is based on the same argument as the
proof of Theorem 78]

PROPOSITION 86. Let X, Y be normed linear spaces, k € N U {oo}, and §2 C X open.
Suppose that for any open covering U of 2 there is a C*-smooth Lipschitz locally finite and o -
discrete partition of unity on 2 subordinated to U. Suppose further that {Y, },er is a collection
of closed subspaces of Y such that for each y € I there is a constant C,, € R such that for
any L-Lipschitz mapping f € C'(2Ux;Y,) and any ¢ > 0 there is a C,, L-Lipschitz mapping
g € CK(Ux:Y) satisfying || f — glluy < e Let f € CY(2:;Y) be such that it is locally
a mapping into some Y,, y € I'. Then for any continuous function ¢: 2 — R™ there is
g € CK(2:Y) such that || f(x) — g(x)|| < e(x) and | Df (x) — Dg(x)|| < &(x) forall x € £2.

PROOF. First notice that from approximations on Ux by translating and scaling we immediately
obtain approximations on any open ball in X. For each x € £2 find r(x) > O and y(x) € I"
such that U(x, 4r(x)) C £2, f(U(x,4r(x))) C Yyx)

e(y) > 8(3—)6) foreach y € U(x, 4r(x)), and (33)
IDFG) = DFO) < <0 foreach y € Ux, 4r(x)). (34)
9Cy @)

By our assumption there is a locally finite and o-discrete C*-smooth Lipschitz partition of unity
on §2 subordinated to {U(x,r(x)); x € £2}. We may assume that the partition of unity is of
the form {V,q }neN aca, Where for each n € N the family {supp, Vo }aeca 1s discrete in §2. For
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eachn € Nand o € A let U,y = U(Xpq, " (Xne)) be such that supp, ¥ne C Uy Let Lyg
be the Lipschitz constant of ,,q. Further, denote Cp, = Cy(x,,,,) and Vig = U(Xnq, 27 (Xpa)).
Without loss of generality assume that L,, > 1 and C,, > 1.

For eachn € N and o € A let us define the mapping f,o: U(Xna. 47 (Xna)) = Yy (xma) DY

Jua(x) = f(x) — Df (xna)[x]. Then, by (34) and (33),

[Dfna ()| = [Df (x) = Df (xna) ||

35
< 89(2':;) < 3852 < 8(;) for each x € U(Xna, 47 (Xna)). (5)

According to our assumption, for each n € N and o« € A we can approximate f,, on V4
by gna € C*(Ve: Y) such that

| Dgne(x)|| < 8(x9"a) < 8(3—x) for each x € Vj,,, (36)
| fra(X) = gna ()] < 98(xm) £x) < e(x) foreach x € V. (37)

2" Lpg 3:2"Ly,

(The second inequalities follow from (33)).) Define the mapping gno: 2 — Y by gpe(x) =
gna(x) for x € Vi, gne(x) = 0 otherwise. Finally, we define the mapping g: £2 — Y by

g) =" Yna(¥)(Zna(x) + Df (xna)[x]).

neN,aeA

Since supp, Vne C Unas gne € C k(Vna; Y), and the sum is locally finite, the mapping g is
well-defined and moreover g € C*(2;7).
Choose x € 2 and let us compute how far g(x) is from f(x):

/) =g =| D Vnal@)(f(x) = Zna(x) = Df (¥na)[x]) H

neN,xeA

= ZWn(x(x)(fna(x) _g”“(x))

neN
a€A: xeU,q

= Z Vne (X)) || frne (X) — gna (X) || < &(x) Z Vna(x) = &(x),
vl SeUna wed S eUna

where the last inequality follows from (37).

To estimate the distance between the derivatives at some fixed x € £2, notice that by
the discreteness of {Supp, ¥uqelaca, for each n € N there is at most one « € A such that
DyYna(x) # 0. Put M = {n € N; Ja € A: Dype(x) # 0}. Then there is a mapping
B: M — A such that for eachn € M, Dy,,(x) = 0 whenever « # fB(n), and moreover
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X € Upp(ny- (Notice that if Dv,q(x) # 0, then necessarily x € U,q.) Hence

IDf(0) = Dgll = ID(f =)@l = | > D(¥na* (f = Ena — DF (¥na)) ) (¥)

neN,xeA

= X D(Va- (f — g0 = DS (x0) ) )

neN
a€A: xeU,q

= Z D(wna . (fnoe - gnot))(x)

neN
ac€A: xeU,qy

= Z Vna (X) D (fra — gna) (X) + Z Drna(x) - (fmx(x) - gna(x))

aeAnzeinU,m aeAnzexNeUna
= Z Vna (x) ”Dfnot(x) - Dgna(x)” + Z 1D Ynp ey (X) |l ”fnﬂ(n)(x) — &npm)(X) H
neN neM

aceA: xeUpyy

< > ana(X)(IIDfna(X)II + IIDgna(X)H) + D Lupon | fopon () = g () |

neN neM
acA: xeU,q

< (%X) + 8(3_X)) Z 1/fnoz(x) + Z nB(n)32n—) = S(X)a

neN neM Lnpny
a€A: xeU,qy

where the last but one inequality follows from (33)), (36)), and (37).
O

THEOREM 87. Let X, Y be normed linear spaces, k € N U {oo}. Consider the following
statements:

(i) There is C € R such that for any L-Lipschitz mapping [ : 2Ux — Y and any € > 0 there
is a C L-Lipschitz; mapping g € C*¥(Ux:;Y) such that || f — gllu, < e.

(ii) Forany open 2 C X and any open covering U of 2 there is a C*-smooth Lipschitz locally
finite and o -discrete partition of unity on §2 subordinated to U. There is C € R such that
for any L-Lipschitz mapping f € C'(2Ux:Y) and any ¢ > 0 there is a C L-Lipschitz
mapping g € CK(Ux:Y) such that || f — g||UX <e.

(iii) For any open 2 C X, any mapping f € C'(82;Y), and any continuous function s: 2 —
R thereis g € C*(2;Y) suchthat || f(x)—g(x)|| < e(x) and | Df (x)—Dg(x)| < &(x)
forall x € £2.

(iv) For any open 2 C X, any L-Lipschitz mapping f € CY(82;Y), any continuous function
e: 2 — R*, and any n > 1 there is an nL-Lipschitz mapping g € C*(2;Y) such that
| f(x)—g(x)| < e(x)forall x € $2.

Then (i)=(ii)=(iii)=(iv).
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PROOF. (i)=(ii) follows from Lemma([77] (ii)=>(iii) follows from Proposition [86|(consider the
collection of subspaces of Y consisting only of the space Y itself), and for (iii)=(iv) see the
end of the proof of Theorem 78]

O

COROLLARY 88. Let X be a separable normed linear space that admits a C*-smooth
Lipschitz bump function, k € N U {o0}. Let Y be a Banach space. Suppose further that one of
the following conditions is satisfied:

at least one of the spaces X or Y is equal to Bo(V') for some topological space V', or
at least one of the spaces X orY is equal to Cy,(P) for some metric space P, or

X is a Banach space with an unconditional Schauder basis, or

Y is a Banach space with an unconditional Schauder basis and with a separable dual.

Then for any open 2 C X, any mapping f € C1(£2;Y), and any continuous function ¢: 2 —
R* there is g € CK(2;Y) such that || f(x) — g(x)|| < e(x) and |Df(x) — Dg(x)| < e(x)
forall x € £2.

PROOF. Suppose that one of the first three conditions is satisfied. Then our corollary follows
from Theorem §7] It suffices to notice that under our assumptions the statement (i) of Theorem 87
holds. We may either apply Corollary [/9] or the less involved Corollary [/3|together with the
observation that since By is a 2-Lipschitz retract of X, every L-Lipschitz mapping defined on
Bx can be extended to a 2 L-Lipschitz mapping defined on X.

It remains to prove the case that Y has an unconditional Schauder basis {e,} and has a
separable dual (which means that ¥ admits a C '-smooth Lipschitz bump function, Theorem .
We will show that statement (ii) in Theorem [87]is satisfied, which will prove our claim. For the
first part we use Lemma [//| together with the approximation of Lipschitz functions given by
either Corollary [73] or the less involved combination of Theorem [55and Theorem [56] (Although,
since X is separable, it is not overly difficult to construct the required partitions of unity directly.)

To prove the second assertion in statement (ii) of Theorem [87]1let K be the constant from
Lemmaused on the space Y. Put C = 2K.Let f € C!(Ux;Y) be L-Lipschitz and ¢ > 0.
Denote Y, = span{e;}7_,. By Lemmathere is a K-Lipschitz mapping ¥ € C!(Y;Y) which
locally maps into some Y, and such that ||y — ¥(y)|| < 5 forevery y € Y. Puth = ¥ o f.
Then h € C'(Uy;Y) is a KL-Lipschitz mapping which locally maps into some Y, and such
that || f — h|lyy < 5. Since the spaces Y,,, n € N, are finite-dimensional, by Corollarythere
are constants C, such that any M -Lipschitz mapping from Uy into Y, can be approximated
by C*-smooth C, M -Lipschitz mapping. Therefore we can use Proposition [86|to find a CL-
Lipschitz mapping g € C*(Uy:Y) such that ||g — &y, < 5. As |l f —glluy <&, we have just
shown that the statement (ii) in Theorem (87| holds.

O

Finally, combining Theorem [66|and Theorem [87 we obtain the following corollary.

COROLLARY 89. Let I' be an arbitrary set, Y a Banach space, §2 C co(I") open, [ €
CY(£2:Y), and ¢: 2 — R™ a continuous function. Then there is g € C*®(82;Y) such that
1f(x) — gl <e(x)and | Df (x) — Dg(x)|| < &(x) forall x € £2.
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9. Notes and remarks

In [AS] approximations in the spaces of holomorphic functions under various topologies are
studied.

Section[2 Theorem [9] was proved by Karl WeierstraB in 1885 for functions in C(R), by
Emile Picard in 1891 for functions in C(R"), and by Charles de la Vallée Poussin in 1908—12
for functions in C*(R"). Theoremis due to Stanistaw Mazur, Theorem [16[is due to Maurice
Fréchet. Theorem 17| was proved by Arkadij Semenovich Nemirovskij.

The origin of some of the polynomial approximation results in infinite-dimensional spaces
can be traced to Guillermo Restrepo’s work [Re]], and also Georgiy Evgenievich Shilov’s
paper [Sh] where the relevant problem of characterising the closure of the space of continuous
polynomials was posed. For results regarding approximations on compact sets together with
higher derivatives see e.g. [Pr], [AP], [AS].

Section 3} The real-analytic part of Theorem [19 was proved by Hassler Whitney ([Wh]).
Torsten Carleman ([|Ca]) proved the approximation of functions in C(R) by entire functions and
Stephen Scheinberg generalised it in [Sc] for functions in C(R").

Theorem [20]is a pioneering result of Jaroslav Kurzweil, whose influence on this area cannot
be exaggerated. Various versions of Theorem 22| have been proved independently by Robb Fry
[Fry1], Manuel Cepedello-Boiso, and Petr Hdjek. The last two authors decided to publish a joint
paper [CHI.

The following is one of the main open problems in this area.

PROBLEM 90. Is every continuous function on ¢, uniformly approximable by real analytic
functions?

The method of proof of Theorem [22]is not strong enough to make this conclusion. If the
answer is negative, then Theorem would have a converse, via Deville’s Theorem namely
the existence of analytic approximations for all continuous functions on a separable space X
would imply that X has a separating polynomial. This fact was also noted, for super-reflexive
spaces, in [K2].

Section[d} Lemma [30]is usually attributed to Edward James McShane [McS]], but it was
known at least two years earlier to H. Whitney [Wh]. For more information on the infimal convo-
lution see e.g. the survey [St]. Extending further the infimal convolution technique M. Cepedello-
Boiso obtained the following result.

THEOREM 91 ([Cel). Let X be a super-reflexive Banach space. Then there is « € (0, 1]
such that for any Lipschitz function f: X — R and any ¢ > 0 there is a function g € C'(X)
with its derivative a-Holder on bounded sets (and so g is Lipschitz on bounded sets) such that

|f —glx <e

Many versions of Proposition |35| exist in the literature, e.g. for compact K it is true for
analytic functions on £,, [Do2]|. This is related to the negligibility theory of subsets of Banach
spaces, initiated by Czestaw Bessaga in [B]], and studied in detail e.g. in [Dol], [Do2], [Do3],
[Az], [AD], [De]], [DHI.
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Section[5} Most of Lemma 0] was obtained in a seminal work by Henryk Torunczyk, [T].
The main open problem in this area is the following one.

PROBLEM 92 ([DGZ]). Suppose that a Banach space X admits a C*-smooth bump function.
Does X have C¥-smooth partitions of unity, or equivalently are continuous mappings on X
approximable by C¥-smooth mappings?

As we have seen, the answer is positive for some classes of Banach spaces, including
separable, WCG, and C(K) spaces. Some earlier results on smooth partitions of unity on C(K)
spaces were obtained in [DGZ1]. In [JZ] it is shown that WCG spaces always admit Gateaux
smooth partitions of unity. It is shown in [Fro]] that if a Banach space X has an LUR norm and
every Lipschitz convex function on X can be approximated by C*-smooth functions, then X
has C*-smooth partitions of unity.

Recently, several papers focused on the problem of C¥-smooth approximations by functions
that lack critical points, or more generally their derivative avoids a prescribed set of values, e.g.
[AC], [HI1], [AJ], [J1]. This interest was spurred by the result on the existence of bump functions
without critical points we referred to earlier.

Section |6} The important technique of approximation of Lipschitz functions using supremal
partitions of unity is due to R. Fry [Fry2]. It is closely related, in spirit and technique, to the
method of boundaries or generalised boundaries used for obtaining C*-smooth renormings. It is
however a purely scalar method, and so the results concerning C*-smooth Lipschitz approxima-
tions are less satisfactory than the continuous case.

The first part of Fact[54 was shown in [Pe], Proposition 2.3]. Many of the results in Sections [6}-
[8| come from [HI3]].

A natural question is the following.

PROBLEM 93. Let X be a Banach space (e.g. WCG) with a Lipschitz and C*-smooth bump
function. Does X admit C¥-smooth Lipschitz sup-partitions of unity?

Section[7, The method of Lemma[61]originated from [FWZ]]. Similar results are for example
in [Jolf], [FZ2]. Corollary for k = 1is proved in [FZ1]| and its older norm variant (for k = 1)
is proved in [FWZ]. Theorem [82]is proved in [AFK] under slightly stronger assumptions.

The results given in this section are partial cases of the following general open problem.

PROBLEM 94. Suppose that a Banach space X admits a C¥-smooth and Lipschitz bump
function. Are Lipschitz mappings into another Banach space Y approximable by C*-smooth
and Lipschitz mappings?

This problem is open even for a pair of general separable X and Y, or for a general X and
Y =R.

Section 8 The implication (i)=>(iii) in Theorem [§7]in the separable case was proved by
Nicole Moulis [Mo]]. The case of Corollary 8§ when X has an unconditional Schauder basis was
proved by N. Moulis [Mo], although the result is stated only for ¢ and €,, spaces. This seminal
paper has essentially started the line of research into approximations together with derivatives.
The motivation for N. Moulis’s results apparently comes from the investigation of Banach
manifolds, where they find important applications. The only result available for approximations
together with higher derivatives comes again from [Mo] and applies only to the Hilbert space.
The statement of this result, unlike that of the first order, is nevertheless not very satisfactory, as
it requires C2*~'-smoothness for approximation of the kth order derivatives.

The most general form of the approximation problem can be stated as follows.
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PROBLEM 95. Let X be a (separable) Banach space admitting a C*-smooth bump function.
Is it true that every C"-smooth mapping from X into a Banach space Y (or just into R) can be
approximated, together with all derivatives of order up to n < k, by C*-smooth mappings?
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