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Preface

This habilitation thesis consists of eight papers listed below, together with an introduction
that puts them in context of the current research.

[1] Matt DeVos, Bojan Mohar, Robert Šámal: Unexpected behaviour of crossing se-
quences, Journal of Combinatorial Theory Series B 101 (2011), no.6, 448–463.

[2] Matt DeVos, Agelos Georgakopoulos, Bojan Mohar, Robert Šámal: An Eberhard-
Like Theorem for Pentagons and Heptagons, Discrete & Computational Geometry
44 (2010), no. 4, 931–945.

[3] Matt DeVos, Luis Goddyn, Bojan Mohar, Robert Šámal: Cayley sum graphs and
eigenvalues of (3,6)-fullerenes, Journal of Combinatorial Theory Series B 99 (2009),
no. 2, 358–369.

[4] Matt DeVos, Bojan Mohar, Robert Šámal: Highly arc-transitive digraphs – structure
and counterexamples, Combinatorica 34 (2014), no. 4, 1–19.

[5] Chris Godsil, David E. Roberson, Robert Šámal, Simone Severini: Sabidussi Versus
Hedetniemi for Three Variations of the Chromatic Number, accepted to Combina-
torica (Jan 31, 2014)

[6] Robert Šámal: Cubical coloring – fractional covering by cuts & Semidefinite pro-
gramming (submitted)

[7] Jaroslav Nešetřil, Robert Šámal: Flow-continuous mappings – The influence of the
group, European Journal of Combinatorics 36 (2014), 342–347.

[8] Robert Šámal: Cycle-continuous mappings – order structure, Publications of the
Scuola Normale Superiore, Vol. 16, CRM Series. Eurocomb 2013 – Pisa (journal
version submitted)

The papers represent my research from various periods. Papers [1–4] have been con-
ceived during my postdoctoral stay at Simon Fraser University, [6–7] are an extension of
topics from my Ph.D. thesis obtained when I regained my interest in flow-related questions
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after returning to Prague. Finally, [5] and [8] are recent and represent two directions that I
plan to pursue further in the years to come.

This work was supported by several grants over the years, including ITI 1M0545, CE-
ITI P202/12/G061, GA ČR P201/10/P337, Neuron 201201, and ERC-CZ LL1201 as well
as by PIMS postdoctoral fellowship st SFU.

But most of all, the success of every research is very much affected by people. I was
happy I had met colleagues with whom it was a pleasure to collaborate, their contribution
is gratefully acknowledged. Finally, I thank to my family for their extraordinary under-
standing for the peculiarities that living with a research mathematician brings.

Prague, November 28, 2014
Robert Šámal
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Introduction

Discrete mathematics, and in particular graph theory, is for computer science what set the-
ory is for mathematics and mathematics for physics – the underlying language on which
everyone relies without thinking. This thesis is about several aspects of graph theory
and, in particular, of mappings of graphs. Some results are directly relevant to computer
science: using semidefinite programming to analyze/define variants of graph coloring,
see Appendix E and F. Other develop structural view on graphs by means of various
mappings between graphs, either homomorphisms (Appendix D) or continuous mappings
(Appendix G and H). Finally, some results contribute to the depth of the subject by study-
ing in detail some structural aspects of graph theory – Appendices A, B and C deal with
geometric structure of graphs. Frequently, the motivation is multidisciplinary, for instance
the result in Appendix C is motivated by a question from mathematical chemistry, while
Appendix D is relevant for group theory.

As all of this thesis is concerned with graphs, we start with the basic definitions to
fix terminology. More specialized definitions will be introduced later on as needed. A
graph consists of a finite set V (whose elements are called vertices) and another set E of
edges, each of the edges connecting two vertices. Most of the time we avoid loops (edges
connecting a vertex to itself) and parallel edges (multiple edges connecting the same pair
of vertices. In this (typical) case, we may considerE to be some set of two-element subsets
of V , that is E is a subset of

(
V
2

)
.

While there are many alleys in the realm of graph theory, our path will be guided by
the notion of mappings of graphs – in several, seemingly different, guises.

Many questions we will consider deal with graph coloring of some sort. A coloring of a
graph (V,E) is simply a mapping from V to a finite set (elements of which are traditionally
called colors), where vertices connected by an edge are required to have different image
– color. The chromatic number of a graph G is the minimal number of colors for which
a coloring exists, it is denoted χ(G). A more general way to look at this is by means of
graph homomorphisms: a homomorphism from a graph G to a graph H is a mapping f
from V (G) to V (H) that preserves edges: if {u, v} is an edge of G, then {f(u), f(v)}
is an edge of H . This obviously generalizes the concept of graph colorings (we let H be
the complete graph Kn, graph with n vertices and all possible edges). However, it also
includes graph theory in more general framework of category theory; we will see some
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benefits of this later. Another use of graph homomorphisms that we will see is that it
captures the notion of a symmetry of a graph, when we consider invertible homorphisms
from G to itself.

1 Geometric and structural aspects
Another important point of view is to consider geometric representations of a graph. Prob-
ably the oldest notion of this type is that of plane embedding: vertices of the graph are
mapped to points in a plane, edges to continuous curves between the corresponding ver-
tices. No curve corresponding to an edge contains interior point of another curve. A graph
for which such embedding is possible is called a planar graph. Given a particular em-
bedding, we call a face a connected component of the plane with the embedded edges
removed. (This alludes to the original motivation to study planar graphs, as a way to rep-
resent 3D polytopes.) The boundary (in the topological sense of the word) of a face is
formed by edges, that we also call the boundary of the face. When tracing a closed curve
inside the face near its boundary, we are approaching the boundary walk. The number of
edges in this walk is the length of the face.

Various modifications of this are possible, we mention two natural ones. We may
be looking for embedding into surfaces different from a plane (usually compact two-
dimensional manifolds without border, for our purposes we mainly need torus (orientable
surface of genus 1) and double torus (orientable surface of genus 2). Another notion re-
laxes the condition that curves do not cross: instead, we try to minimize the number of
crossings. Minimal such count shall be called the crossing number of the graph G and
denoted by cr(G).

Both these notions (crossing numbers and embedding into surfaces) have been studied
to a great extent. Surprisingly little is known about the combination of these two ap-
proaches: We will draw a graph on various surfaces and try to minimize the number of
crossings. This idea was first considered by Širáň [21]. He showed that for any decreasing
convex sequence (ai) of integers that is eventually zero exists a graph G such that ai is the
minimal number of crossings needed to draw G on an orientable surface of genus i (we
will write shortly cri(G) = ai).

The convexity requirement says that the differences ai−ai+1 are non-increasing. Thus,
the improvements in the number of crossings that we get from increasing the genus by 1
is a non-increasing sequence – this enables a natural construction, where each of these
improvements are done locally in separate parts of the graph.

It was, and still is, very much open, what is the general characterization: for what
sequences a0 > a1 > · · · > ak = 0 is there a graph G such that cri = ai. Archdeacon et
al. [1] conjectured that we can find such graph G for every decreasing sequence (ai).

On the other hand, Salazar [18] considered this unlikely, for the following (heuristic)
reason due to Dan Archdeacon: Take a0 = N (large), a1 = N − 1, a2 = 0. We get
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the double-torus from plane by adding two handles. (Adding a handle means cutting the
surface by two circles, removing their interior and adding a tube connecting them.) And,
somehow, adding the first handle saved us from just a single crossing, while adding the
second one saved N − 1 of them. So why not just add the second one first?

Of course, this line of reasoning is flawed, one can construct a graph, where the two
handles work together very efficiently, while adding just a single one is not worth much.
We did exactly this in the paper

Matt DeVos, Bojan Mohar, Robert Šámal: Unexpected behaviour of crossing
sequences, Journal of Combinatorial Theory Series B 101 (2011), no.6, 448–
463.

The key to the proof is of course a clever (albeit simple) construction. The proof itself,
however, is by no means trivial, as one needs to discuss all possibilities to draw our graph
on the torus. This involves using several standard gadgets to tame the possibilities how
to draw the graph and then discussing homotopy types of closed curves in a surface. It is
worthwhile to note, that it is an open problem to determine the crossing number of very
simple graphs (such as the complete graph K13). Thus, we need a specially crafted graph
that is easier to analyze.

Recently, McConvey [16] has extended our research in his Ph.D. thesis. He is able to
create graphs with long non-convex crossing sequence, i.e., he can control the number of
crossings on surfaces of higher genus. However, the complete solution is still elusive.

An obvious collection of numbers associated with a graph G is the degree sequence:
sequence (deg(v))v∈V , where deg(v) is the degree of v, i.e., the number of edges contain-
ing v. It has been known for decades (Havel–Hakimi algorithm, or Erdős–Gallai theorem)
how to tell whether a sequence of integers is the degree sequence of some graph. More
complicated considerations characterize degree sequences of split graphs, C4-minor free
graphs, unicyclic graphs, cacti graphs, and Halin graphs. Despite much effort, no such
characterization is known for planar graphs. Our next paper can be understood as a partial
attempt to address this question.

To be consistent with the literature, we address an important case of the dual question:
we get a sequence (pk)k≥1 of integers and ask whether there exists a connected 3-regular
plane graph with pk faces of length k. There is an obvious restriction: if such graph
exists then

∑
k≥1 kpk is twice the number of edges, thus even. Furthermore, Euler formula

implies that ∑

k≥1
(6− k)pk = 12 (1)

otherwise such graph does not exist. We say a sequence (pk) is plausible if it satisfies (1).
A natural question is whether all plausible sequences correspond to a 3-regular plane graph
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– or how to strengthen the condition to make it a sufficient condition. It turns out the
question is not so simple, in fact it is still open after many decades of work. The beginning
of this research goes back to Eberhard in 1891 [4]; he proved that every plausible sequence
can be realized by a 3-regular plane graph, provided we are allowed to change the value
of p6 (number of hexagonal faces). To date, this is still the most general result in this
direction, recent progress is summarized in [9]. We contribute to this line of research in
our paper

Matt DeVos, Agelos Georgakopoulos, Bojan Mohar, Robert Šámal: An Eberhard-
Like Theorem for Pentagons and Heptagons, Discrete & Computational Ge-
ometry 44 (2010), no. 4, 931–945.

We did show an extension of Eberhard’s result: any plausible sequence can be realized
if we replace p5 by p5 + x and p7 by p7 + x for some integer x. We conjecture that this
holds more generally, namely for any sequence of non-negative integers (qk) satisfying∑

k≥1(6−k)qk = 0 and any plausible sequence pk, the sum (pk+xqk) can be realized; this
is left for further research, though. Eberhard’s result is a special case of this for sequence
(qk) satisfying q6 = 1 (and zero elsewhere), our result deals with the case q5 = q7 = 1 (and
zero elsewhere). It may perhaps seem that this extension is a mild one; it was, however,
an important test case of the above more general conjecture. It also shows the flexibility
of the construction; in particular, it applies to any surface besides the plane (unlike the
Eberhard’s result that is not valid for torus).

Matt DeVos, Luis Goddyn, Bojan Mohar, Robert Šámal: Cayley sum graphs
and eigenvalues of (3,6)-fullerenes, Journal of Combinatorial Theory Series B
99 (2009), no. 2, 358–369.

In this paper we solve a question of Fowler from 1995 [6] that belongs to the field of
mathematical chemistry. Hückel’s model of hydrocarbons (LCAO-MO theory) is a tool to
estimate stability of various hydrocarbon molecules. The mathematical part of this leads
to the need of computing the eigenvalues and eigenvectors of the hydrogen-suppressed
molecular graph; they correspond to the energy levels and orbitals of the molecule, re-
spectively. Therefore, a (simple) method that enables these quantities to be determined is
required.

A particularly important class of such graphs is that corresponding to fullerenes. From
mathematical point of view, these are planar 3-regular graphs with four triangles and ar-
bitrary many hexagons. We need to compute the eigenvalues and eigenvectors of such a
graph, that is, of its adjacency matrix (adjacency matrix of a graph is a square matrix with
columns and rows indexed by the vertices and with all entries 0 or 1, the 1’s are in positions
that correspond to edges of the graph). Fowler observed by numerical experiments, that
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adjacency matrix of a fullerene has always a special type of spectrum (set of eigenvalues):
There are special eigenvalues {3,−1,−1,−1} and all other eigenvalues come in pairs±λ.
He asked [6] whether this is, indeed, always true. We answered this affirmatively.

The proof consists of nice structural and geometric considerations: we construct a
universal cover of our fullerene (which is the infinite hexagonal lattice), consider its em-
bedding in the plane and then discuss how our graph is obtained by a suitable factorization
of this hexagonal grid. This factorization allows us to realize every fullerene as a Cayley
sum graph for an abelian group which can be generated by two elements. Using characters
of the underlying group, we can then exactly describe the eigenvalues of the graph. This
is possible to do efficiently for a given graph using the Smith normal form of a matrix. As
a result, we not only prove Fowler’s conjecture, but also describe all possible spectra of
fullerenes and give an easy algorithm to compute the spectrum.

The underlying idea of the previous paper was to understand and use symmetries of
a given graph. In the next paper we take a different view on the topic, discussing graphs
that posses as much symmetry as possible. For a digraph (graph with directed edges,
usually called arcs), an s-arc is an s-tuple of arcs that are consecutive in a directed walk
(in the interesting cases, a directed path of length s). A digraph D is s-arc transitive, if
any two s-arcs are the same. Formally, for any pair of s-arcs there is an automorphism
of D that maps one s-arc to the other. Finally, a digraph is highly arc transitive, if it is
s-arc transitive for every s ≥ 0. To exclude trivialities, we assume that each vertex has at
least one incoming and at least one outgoing arc. With the exception of (disjoint unions
of) cycles, every highly arc transitive digraph (or a HAT for short) is infinite.

The study of HATs is an enticing endeavor, both from the graph theory and group the-
ory perspective. Perhaps the main reason is that the notion is rather strict (indeed, it is
hard to imagine a nontrivial example of a HAT at first), which gives hope for a complete
description. At the same time, there are surprising constructions of HATs that use interest-
ing techniques on the graph and group theory side (such as horocyclic product of graphs
and lamplighter product of groups).

The notion was defined by Cameron, Praeger, and Wormald [2] in 1993. The authors
provide several nontrivial constructions and structural properties. They also posed several
questions aimed at testing from various points of view, whether every HAT is (close to)
one of the presented constructions. After an intensive research (over 25 citations in WoS)
the structure of HATs was much better understood, but some of the original questions still
remained without an answer. In our paper

Matt DeVos, Bojan Mohar, Robert Šámal: Highly arc-transitive digraphs –
structure and counterexamples, Combinatorica 34 (4) (2014), 1–19.

we resolve two of these questions. The first of them concerns the notion of reachability
– an equivalence relation on arcs, defined by declaring two arcs equivalent if they share a
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head or a tail and taking the transitive closure. If a HAT has more than one equivalence
class of the reachability relation then this can be used to describe its structure. It was
known previously, that if a HAT has only one reachability class, then there is a d such that
every vertex has in-degree and out-degree d, and d is not a prime. However, such graphs
were only known to exist for d infinite. We settle the question completely by constructing
a HAT with in- and out-degree d and universal reachability relation for every d that is not
a prime.

The second question concerns HATs with two ends (roughly speaking, with a linear
structure). It was conjectured, that each such digraph can be built in a controlled way
from complete bipartite digraphs. More precisely, each class of the reachability relation
was conjectured to be formed by arcs of a complete bipartite digraph. We disprove this
by providing two more general constructions. We also work towards describing all HATs
with two ends, but the complete characterization remains out of reach.

2 Variants of coloring

For our next results we need to define variants of graph coloring, so-called vector color-
ing and strict vector coloring, as defined by Karger, Motwani, and Sudan [13]. Given a
graph G, a mapping f : V (G) → Rn (for n = |V (G)|, say) is called a vector k-coloring
(for a real k ≥ 2) if ‖f(v)‖ = 1 for every vertex v and 〈f(u), f(v)〉 ≤ − 1

k−1 for every
edge uv. For strict vector k-coloring we demand equality instead of inequality here. It
is easy to see that Kn (a graph with n vertices and all possible edges) has a vector (and
also strict vector) n-coloring using vertices of a simplex; it is not hard to show that no
better solution exists. Thus, one may be inclined to define the (strict) vector chromatic
number of G to be the minimal k such that (strict) vector k-coloring exists. Compactness
of the unit sphere implies that this minimum always exists, we will use χv(G) (or χsv(G),
respectively) to denote these numbers. It is not hard to show that

ω(G) ≤ χv(G) ≤ χsv(G) ≤ χ(G) ,

where ω(G) is the maximum number of pairwise adjacent points in G.
These parameters, in particular χsv have a long history behind them. Under the name

theta function of the complement graph, ϑ(Ḡ), it was defined by Lovász [15] as a tool to
solve the problem of computing the Shannon capacity of C5. Later it played an important
role in research concerning perfect graphs and semidefinite optimization. Finally, Karger,
Motwani, and Sudan [13] (independently of Lovász) defined χv to apply semidefinite op-
timization approach of Goemans and Williamson [8] to graph coloring; later they noticed
their parameter is closely related to Lovász’s ϑ. In fact, the strict vector chromatic num-
ber is exactly equal to the Lovász’s ϑ of the complement graph, while vector chromatic
number is equal to less well-known number ϑ′ defined by Schrijver and (independently)



2. VARIANTS OF COLORING 7

by McEliece, Rodemich, and Rumsey; illustrating the fact that important notions tend to
be discovered over and over again.

In many instances one can use χsv or χv to find estimates of χ or ω. Somewhat sur-
prisingly, it is much easier to compute (estimate) these parameters than the chromatic
number χ or the clique number ω. For any ε > 0 one can approximate χv or χsv in time
polynomial in the size of the graph and log 1/ε with additive error at most ε. On the other
hand, it is impossible to approximate χ or ω with multiplicative error smaller then n1−ε,
unless P = NP .

Unlike previous researchers, who concentrated on the utilitarian function of χv and
χsv, we study them more as a graph parameter per se. To describe our results we need to
pause to define the notion of categorical graph product. Given two graphs G, H , there are
many ways to create their product. We will discuss the definition that is also natural from
point of view of category theory (indeed, it is the product in the category of graphs with
graph homomorphisms as morphisms).

The vertex set of the product G × H is the Cartesian product of vertex sets of the
factors, V (G × H) = V (G) × V (H). The edges correspond to pairs that form an edge
in both coordinates. That is, (u1, v1) is connected by an edge to (u2, v2) whenever u1u2 ∈
E(G) and v1v2 ∈ E(H). It is immediate that any graph coloring of G using k colors
yields a coloring of G × H using k colors (color vertex (u, v) by the color of u in the
coloring of G). This implies χ(G × H) ≤ χ(G). In the same way, χ(G × H) ≤ χ(H).
Hedetniemi [10] conjectured that one of these bounds always applies, that is, χ(G×H) =
min{χ(G), χ(H)}. Despite many attempts (see [23] and the references within), the only
affirmative answer is for χ(G), χ(H) ≤ 4.

Chris Godsil, David E. Roberson, Robert Šámal, Simone Severini: Sabidussi
Versus Hedetniemi for Three Variations of the Chromatic Number, accepted
to Combinatorica (Jan 31, 2014)

In this paper we proved the result for a related graph parameter, namely for the strict vector
coloring χsv. Perhaps surprisingly, the proof involves two other notions of graph product.
Less surprising is the occurrence of tensor products (of vectors), as these correspond nat-
urally to the categorical product of graphs. We also discuss connections with quantum
coloring and spectrum of 1-homogeneous graphs. In a follow-up work (still in progress)
we extended the result also for χv, and resolved the relation of the two variants of vector
coloring: previously it was open, whether the fraction χsv(G)/χv(G) is bounded or not;
we proved that the latter case is true.

I will conclude this overview by discussing three papers related to continuous map-
pings between graphs. Unlike graph homomorphisms, continuous mappings operate on
edges. We say a mapping f : E(G)→ E(H) is cut-continuous if for every set X of edges
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in H that is a cut, the preimage f−1(X) is a cut. Here, a cut is a set of edges of form δ(U)
– all edges leaving some set of vertices of the graph.

Similarly, f is cycle-continuous, if the preimage of every cycle is a cycle. A cycle
means simply a set of edges with all degrees even – some authors call this an even sub-
graph. In the defined sense, cuts and cycles are dual notions (actually in two different
ways: by means of dual plane graphs and as orthogonal vector spaces), giving the subject
much of its richness.

Similarly as for homomorphisms, both cut- and cycle-continuous mappings form a
category, but unlike graphs with homomorphisms, this is a category without products [19].
Back in my Ph.D. thesis I thoroughly analyzed cut-continuous mappings and their relation
to graph homomorphisms. Surprisingly, there is a close connection between these.

Robert Šámal: Cubical coloring — fractional covering by cuts & Semidefinite
programming (submitted)

In this paper I investigated another type of graph coloring, the cubical coloring, that mea-
sures how efficiently can we cover all edges of a graph by cuts. More precisely: we want to
find a collection of n cuts (in the sense defined above) such that every edge is in at least k
of them; we want to do this so that we minimize the ratio k/n and denote this x(G). The
rescaling χq(G) = 2

2−x(G)
is called the cubical chromatic number of G; it shares many

properties with the usual chromatic number. Besides being an interesting parameter in its
own right, it is useful as an invariant that is monotone with respect to cut-continuous map-
pings. With this intention, I started the study of χq in my Ph.D. thesis, the paper contains
new developments:

• In my Ph.D. thesis I stated a conjecture about the behaviour of cubical chromatic
number on its “natural scale”: The property of having a k-fold cover by n cuts can
be equivalently characterized by existence of a homomorphism to a graphQn/k – the
vertices are all binary strings of length n, edge corresponds to Hamming distance
at least k. In parallel with the properties of the normal chromatic number (it can
be defined by homomorphisms to complete graphs Kn and χ(Kn) = n), of frac-
tional chromatic number (defined by homomorphisms to Kneser graphs K(n, k)
and χf (K(n, k)) = n/k), etc., we demand analogous property here: namely that
x(Qn/k) = n/k. In cooperation with Engström et al. [5, 7]) this is now resolved for
all cases that satisfy an obvious necessary condition.

• Further, it is possible to use semidefinite programming to find a relation between
cubical chromatic number and vector chromatic number (as defined earlier). This
allows for a polynomial-time algorithm to approximate the cubical chromatic num-
ber up to a constant factor.
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As already hinted, the theory of continuous mappings between graphs is a rich one
with promising developments. However, there are more reasons to study these mappings,
in particular the cycle-continuous ones. Many central conjectures in graph theory are
(equivalent to) questions about covering the edges by cycles. As an example we mention
the Cycle double cover conjecture [20, 22]: for every bridgeless graph there is a collection
of cycles such that every edge is in precisely two of them. If the graph is planar, one may
use the cycles that form the face boundaries. However, for non-planar graphs this idea
does not help: even though one may embed every graph in some surface, in general the
face boundaries will not be cycles. While this suggests an approach (choose a better em-
bedding), it is by no means clear whether it is a viable one. Another approach (suggested
by Jaeger in [12], by Linial, Meshulam, and Tarsi in [14] and further pursued by DeVos,
Nešetřil, and Raspaud [3]) is to use cycle-continuous mappings. A cycle-continuous map-
ping from G to H enables us to “reduce” the problem to find double cover by cycles in G
to doing the same in H: as we then can take preimages of the cycles and have the prob-
lem solved for G as well. Because of this, the following conjecture of Jaeger is of utmost
interest: For every bridgeless graph G there is a cycle-continuous mapping from G to the
Petersen graph. (The Petersen graph – see Fig. 1 – is the prototypical testing example for
conjectures in the area, Cycle double cover conjecture is true for it.)

Figure 1: The Petersen graph.

In [3] the concept of cycle-continuous mappings was in fact studied in greater general-
ity as group-flow continuous mappings. The underlying groups were mostly either Z2 and
Z. The case of Z2 corresponds naturally to the cycle-continuous mappings, while group Z
allows to study questions related to orientations.

In the paper

Jaroslav Nešetřil, Robert Šámal: Flow-continuous mappings – influence of the
group European Journal of Combinatorics 36 (2014), 342–347.

we study what happens in other cases. In general, we find that there is a nice algebraic
structure describing for what groups A an A-flow continuous mapping between two given
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graphs exists. On the other hand, for cubic graphs, which are most relevant to the original
motivation, we show that one can restrict to the case when A is one of Z2, Z3 and Z.

Robert Šámal: Cycle-continuous mappings – order structure, Publications of
the Scuola Normale Superiore, Vol. 16, CRM Series. Eurocomb 2013 – Pisa.
(journal version submitted)

In this paper I prove two results that give further evidence to Jaeger’s conjecture being
hard (that is, besides the fact that a positive answer would imply many other long-standing
conjectures). I study the structure of cycle-continuous mappings. If the structure was
easy, say if all antichains were finite, then this would make the conjecture a finite problem
(possibly large, though) and thus arguably a simple one. Indeed, we want to show that
the underlying partially ordered set has only one maximal element, the Petersen graph.
Equivalently, we want to show, that the antichain formed by all maximal elements is of
size one. Showing this antichain is finite would be a good first step.

However, all such hopes are dashed by this paper. First, answering a question by
DeVos et al., I prove that there is an infinite antichain: an infinite set of graphs with no
cycle-continuous mapping between any two of them. Second, any countable partially
ordered set can be represented by a collection of finite 3-regular graphs, with existence of
a cycle-continuous mapping as the ordering relation.

This mimics the development done in the study of graph homomorphisms. Back in
1980’s, Pultr and Trnková [17] proved that any concrete category can be represented using
graphs and their homomorphisms. Later, people started to study whether smaller classes
of graphs suffice to represent any category, or a poset. In this paper I use a recent re-
sult of Hubička et al. [11] on representing posets by homomorphisms of finite directed
paths. However, the application is by no means straightforward. Indeed, on the first sight,
cycle-continuous mappings behave rather differently than homomorphisms (nonexistence
of products, lack of locality) and it takes special constructions using particular properties
of snarks to control the behaviour of these mappings. This paper really defines a new line
of research: as for the homomorphisms, it makes very good sense to study the same ques-
tion for restricted class of graphs. This time, a reasonable class would be cubic graphs with
no nontrivial 3-edge cut, as many conjectures in the area can be restricted to this class. As
usual in mathematical research, answering a question opens several new ones, which is a
good thought to close the introduction with.

Bibliography
[1] Dan Archdeacon, C. Paul Bonnington, and Jozef Širáň, Trading crossings for handles
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[11] Jan Hubička and Jaroslav Nešetřil, Finite paths are universal, Order 22 (2005), no. 1,
21–40.

[12] François Jaeger, On graphic-minimal spaces, Ann. Discrete Math. 8 (1980), 123–
126, Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part I.
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1. Introduction

Planarity is ubiquitous in the world of structural graph theory, and perhaps the two most obvious
generalizations of this concept—crossing number, and embeddings in more complicated surfaces—are
topics which have been thoroughly researched. Despite this, relatively little work has been done on
the common generalization of these two: crossing numbers of graphs drawn on surfaces. This sub-
ject seems to have been introduced in [6], and studied further in [1]. Following these authors, we
define for every nonnegative integer i and every graph G , the ith crossing number, cri(G), (and also
the ith nonorientable crossing number, c̃ri(G)) to be the minimum number of crossings in a draw-
ing of G on the orientable (nonorientable, respectively) surface of genus i. We consider drawings
where each vertex x of G is represented by a point φ(x) of the surface, each edge uv by a curve
with ends at points φ(u) and φ(v) and with interior avoiding all points φ(x) for x ∈ V (G). More-
over, we assume that no three edges are drawn so that they have an interior point in common.
Observe that cri(G) = 0 (respectively, c̃ri(G) = 0) if and only if i is greater or equal to the genus
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(resp., nonorientable genus) of G . This gives, for every graph G , two finite sequences of integers,
(cr0(G), cr1(G), . . . ,0) and (c̃r0(G), c̃r1(G), . . . ,0), both of which terminate with a single zero. The first
of these is the orientable crossing sequence of G , the second the nonorientable crossing sequence of G .

A natural question is to characterize crossing sequences of graphs. This is the focus of both [6] and
[1]. If we are given a drawing of a graph in a surface S with at least one crossing, then modifying
our surface in the neighborhood of this crossing by either adding a crosscap or a handle gives rise
to a drawing of G in a higher genus surface with one crossing less. It follows from this that every
orientable and nonorientable crossing sequence is strictly decreasing until it hits 0. This necessary
condition was conjectured to be sufficient in [1].

Conjecture 1.1 (Archdeacon, Bonnington, and Širáň). If (a1,a2, . . . ,0) is a sequence of integers which
strictly decreases until 0, then there is a graph whose crossing sequence (nonorientable crossing sequence)
is (a1,a2, . . . ,0).

To date, there has been very little progress on this appealing conjecture. For the special case of se-
quences of the form (a,b,0), Archdeacon, Bonnington, and Širáň [1] constructed some interesting ex-
amples for both the orientable and nonorientable cases. We shall postpone discussion of their exam-
ples for the oriented case until later, but let us highlight their result for the nonorientable case here.

Theorem 1.2 (Archdeacon, Bonnington, and Širáň). If a and b are integers with a > b > 0, then there exists a
graph G with nonorientable crossing sequence (a,b,0).

It has been believed by some that such a result cannot hold for the orientable case. For the most
extreme special case (N, N − 1,0), where N is a large integer, Salazar asked [5] if this sequence could
really be the crossing sequence of a graph. The following quote of Dan Archdeacon illustrates why
such crossing sequences are counterintuitive:

If G has crossing sequence (N, N − 1,0), then adding one handle enables us to get rid of no more
than a single crossing, but by adding the second handle, we get rid of many. So, why would we
not rather add the second handle first?

Our main theorem is an analogue of Theorem 1.2 for the orientable case, and its special case a = N ,
b = N − 1 resolves Salazar’s question [5].

Theorem 1.3. If a and b are integers with a > b > 0, then there exists a graph G whose orientable crossing
sequence is (a,b,0).

Quite little is known about constructions of graphs for more general crossing sequences. Next we
shall discuss the only such construction we know of. Consider a sequence a = (a0,a1, . . . ,ag) and
define the sequence (d1, . . . ,dg) by the rule di = ai−1 − ai . If a is the crossing sequence of a graph,
then, roughly speaking, di is the number of crossings which can be saved by adding the ith handle.
It seems intuitively clear that sequences for which d1 � d2 � · · · � dg should be crossing sequences,
since here we receive diminishing returns for each extra handle we use. Indeed, Širáň [6] constructed
a graph with crossing sequence a whenever d1 � d2 � · · · � dg .

Constructing graphs for sequences which violate the above condition is rather more difficult. For
instance, it was previously open whether there exist graphs with crossing sequence (a,b,0) where
a/b is arbitrarily close to 1. The most extreme examples are due to Archdeacon, Bonnington and Širáň
[1] and have a/b approximately equal to 6/5. Although our main theorem gives us a graph with every
possible crossing sequence of the form (a,b,0), we don’t know what happens for longer sequences.
In particular, it would be nice to resolve the following problem which asks for graphs where the first
s handles save only an epsilon fraction of what is saved by the s + 1st handle.

Problem 1.4. For every positive integer s and every ε > 0, construct a graph G for which cr0(G) −
crs(G) � ε(crs(G) − crs+1(G)).
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For graph embeddings, the genus of a disconnected graph is the sum of the genera of its connected
components. For drawing, this situation is presently unclear. If we have a graph which is a disjoint
union of G1 and G2, then we can always “use part of the surface for G1 and the other part for G2”,
leading to

cri(G1 ∪ G2) � min
j

(
cr j(G1) + cri− j(G2)

)
.

To the best of our knowledge, this inequality might always be an equality. More generally we shall
pose the following problem.

Problem 1.5. Let G be a disjoint union of the graphs G1 and G2, and let S be a (possibly nonori-
entable) surface. Is there an optimal drawing of G on S , such that no edge of G1 crosses an edge
of G2?

This problem is trivially true when S is the plane, but it also holds when S is the projective plane:

Proposition 1.6. Let G be a disjoint union of the graphs G1 and G2 . Then

c̃r1(G) = min
{

c̃r1(G1) + cr0(G2), cr0(G1) + c̃r1(G2)
}
.

In other words, there is an optimal drawing of G where planar drawing of G2 is put into one of the regions
defined by the drawing of G1; or vice versa.

Proof. To see this, consider an optimal drawing of G on the projective plane, and suppose (for a
contradiction) that some edge of G1 crosses an edge of G2. If there is a crossing involving two edges
in G1, then by creating a new vertex at this crossing point, we obtain an optimal drawing of this new
graph. Continuing in this manner, we may assume that both G1 and G2 are individually embedded
in the projective plane. For i = 1,2, let ai be the length of a shortest noncontractible cycle in the
dual graph of the embedding of Gi . Note that ai � 2 as otherwise Gi embeds in the plane, so G
embeds in the projective plane. Assume (without loss) that a1 � a2. Now, it follows from a theorem
of Lins [2] that there exists a half-integral packing of noncontractible cycles in Gi with total weight
ai for i = 1,2. Since any two noncontractible curves in the projective plane meet, it follows that the
total number of crossings in this drawing is at least a1a2. However, we can draw G in the projective
plane by embedding G2 and then drawing G1 in a face of this embedding with a total of

(a1
2

) =
1
2 a1(a1 − 1) < a1a2 crossings, a contradiction. �

Our primary family of graphs used in proving Theorem 1.3 can be constructed with relatively little
machinery, so we shall introduce them here. We will however use a couple of gadgets which are
common in the study of crossing numbers [1,4]. Let us pause here to define them precisely. A special
graph is a graph G together with a distinguished subset T ⊆ E(G) of thick edges, a subset U ⊆ V (G)

of rigid vertices and a family {πu}u∈U of prescribed local rotations for the rigid vertices. Here, πu

describes the cyclic ordering of the ends of edges incident with u. A drawing of a special graph G in
a surface Σ is a drawing of the underlying graph G with the added property that for every u ∈ U ,
the local rotation of the edges incident with u given by this drawing either in the local clockwise
or counterclockwise order matches πu . The crossing number of a drawing of the special graph G is
∞ if there is an edge in T which contains a crossing, and otherwise it is the same as the crossing
number of the drawing of the underlying graph. We define the crossing number of a special graph G
in a surface Σ to be the minimum crossing number of a drawing of G in Σ , and cri(G) to be the
crossing number of G in a surface of genus i. In the next section, we shall prove the following result.

Lemma 1.7. If G is a special graph with crossing sequence a consisting of real numbers, then there exists an
(ordinary) simple graph with crossing sequence a.
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Fig. 1. The graph Hn (for n = 6).

This result permits us to use special graphs in our constructions. Indeed, starting in the third
section, we shall consider special graphs on par with ordinary ones, and we shall drop the term
special. When defining a (special) graph with a diagram, we shall use the convention that thick edges
are drawn thicker, and vertices which are marked with a box instead of a circle have the distinguished
rotation scheme as given by the figure. With this terminology, we can now introduce our principal
family of graphs.

The nth hamburger graph Hn is a special graph with 3n + 8 vertices. Its thick edges form a cycle
C = qv1 . . . vnrr′s′sun . . . u1tt′q′q of length 2n +8 together with two additional thick edges τ0 = qr and
τ1 = st . See Fig. 1. In addition to these, Hn has n special vertices u′

i (for odd values of i) and v ′
i (for

even values of i) with rotation as shown in the figure. These vertices are of degree 4 and they lie on
paths r1 = q′v ′

2 v ′
4 . . . v ′

mr′ (where m = n if n is even and m = n − 1 otherwise) and r2 = t′u′
1u′

3 . . . u′
l s

′
(where l = n if n is odd and m = n − 1 otherwise). These two paths will be referred to as the rows
of Hn . Each u′

i and each v ′
i is adjacent to ui and vi , and the 2-path ci = uiu′

i vi (or ci = ui v ′
i vi ,

depending on the parity of i) is called a column of Hn , i = 1, . . . ,n.
We claim that the hamburger graph Hn has crossing sequence (n,n − 1,0) whenever n � 5 (or

n = 3). Although this does not handle all possible sequences of the form (a,b,0), as discussed above,
these are in some sense the most difficult and counterintuitive cases. Indeed, a rather trivial modifi-
cation of these will be used to get all possible sequences.

Since it is quite easy to sketch proofs of cr0(Hn) = n and cr2(Hn) = 0, let us pause to do so here
(rigorous arguments will be given later). The first of these equalities follows from the observation that
every row must meet every column in any planar drawing in which thick edges are crossing-free. The
second equality follows from the observation that Hn minus the thick edges τ0, τ1 is a graph which
can be embedded in the sphere. Using an extra handle for each of τ0, τ1 gives an embedding of the
whole graph in a surface of genus 2. Of course, it is possible to draw Hn in the torus with only n − 1
crossings by starting with the drawing in the figure and then adding a handle to remove one crossing.
In the third section we shall show that these are indeed optimal drawings (for n = 3 and n � 5).

2. Gadgets

The goal of this section is to establish Lemma 1.7 which permits us to use special graphs in our
constructions. Similar gadgets as used in our proof have been used previously, cf., e.g., Pelsmajer et
al. [4] or Archdeacon et al. [1]. We include the constructions and proofs for reader’s convenience.

2.1. Thick edges

For every e ∈ E(G) choose positive integer w(e) and replace e by a graph Le (see Fig. 2) with w(e)
new vertices. Let G ′ be the resulting graph. We claim, that the crossing number of G ′ is the same
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Fig. 2. Putting weights on the edges (here w(e) = 5).

Fig. 3. Controlling the prescribed local rotations.

as the “weighted crossing number” of G: each crossing of edges e1, e2 is counted w(e1)w(e2)-times.
Obviously, cr(G ′) is at most that, as we can draw each Le sufficiently close to where e was drawn.
Moreover, there is an optimal drawing of this form (which proves the converse inequality): Given an
optimal embedding of G ′ , consider the subgraph Le and from the w(e) paths of length 2 between its
“end-points” pick the one, that is crossed the least number of times. We can draw the whole subgraph
Le close to this path without increasing the number of crossings.

This shows that we can “simulate weighted crossing number” by crossing number of a modified
graph. In particular, we can let w(e) = 1 for each ordinary edge and w(e) > cr(G) for each thick edge
e of G . This proves Lemma 1.7 for graphs with thick edges.

2.2. Rigid vertices

Suppose that we are considering drawings in surfaces of Euler genus � g; put n = 3g + 2. Let G
be a special graph with rigid vertices. We replace each rigid vertex v by a copy of Vn,deg(v) . That is,
we add n nested thick cycles of length d = deg(v) around v as shown in Fig. 3 for d = 6 and n = 5.
When doing this, the cycles meet the edges incident with v in the same order as requested by the
local rotation πv around v . If an edge incident with v is thick, then all edges in G ′ arising from it are
thick too (as indicated in the figure for one of the edges). Call the resulting graph G ′ .

We claim that the crossing number of G ′ (graph with thick edges but no rigid vertices) is the same
as that of G . Any drawing of G that respects the rotations at each rigid vertex can be extended to a
drawing of G ′ without any new crossing; in this drawing all n thick cycles in each V v are contractible
and v is contained in the disc that any of them is bounding. We will show, that there is an optimal
drawing of G ′ of this “canonical” type.

Let us consider an optimal drawing (respecting thick edges) of G ′ in S (of genus � g). Let v be a
rigid vertex of G , and consider the inner n − 1 out of the n thick cycles in V v . No edge of these cycles
is crossed; so by [3, Proposition 4.2.6], either one of these cycles is contractible in S , or two of them
are homotopic.

Suppose first, that one of the cycles, Q , is contractible. Since Q separates the graph into two
connected components, either the disk D bounded by Q or its exterior contains no vertex or edge of
G ′ apart from some cycles and edges of V v . Let us assume that this is the interior of D . Now delete
the drawing of all thick cycles in V v except Q , and delete the drawing of all deg(v) paths from
Q to v . Now think of Q as the outermost cycle of V v and draw the rest on V v inside D without
crossings.

Suppose next, that two of the cycles, Q 1 and Q 2 are homotopic (and that Q 1 is closer to v in G ′).
We cut S along Q 1, and patch the two holes with a disc. This simplifies the surface, so if we can
draw G ′ on it without new crossings, we get a contradiction. Such drawing of G ′ indeed exists, as we
may delete the drawing of all of V v that is “inside” Q 1 and draw it in one of the new discs.
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Fig. 4. Main constituents of the graph Hn (for n = 5).

By performing such a change to each rigid vertex, we obtain an optimum drawing of G ′ which is
canonical. Consequently, it gives rise to a legitimate drawing of the special graph G , and which is also
optimal for G . This shows that Lemma 1.7 holds also when there are special vertices.

3. Hamburgers

The goal of this section is to prove Theorem 1.3, showing the existence of a graph with crossing
sequence (a,b,0) for every a > b > 0. The hamburger graphs Hn (defined in the introduction) have all
of the key features of interest. These are actually special graphs, but thanks to Lemma 1.7 it is enough
to consider crossing sequences of special graphs. Indeed, in the remainder of the paper we will omit
the term ‘special’.

We have redrawn Hn (for n = 5) again in Fig. 4 where we have given names to numerous sub-
graphs of it. We have previously defined the rows r1, r2 and columns c1, . . . , cn . For convenience we
add rows r0 and r3 and columns c0 and cn+1 (see Fig. 4). The cycle C (consisting of c0, r0, cn+1, and
r3) has two trivial bridges (the thick edges τ0 and τ1) and two other bridges. The first, denoted by B1,
consists of the row r1 together with all columns ci with i even (and, of course, 1 � i � n). The second
one is denoted by B2 and consists of the row r2 and columns ci with i odd (and, again, 1 � i � n).

To get every possible crossing sequence (a,b,0), we will also require a slightly more general class
of graphs. For every n,k ∈ N with n � 3, we define the graph Hn,k , which is obtained from Hn by
adding k duplicates of the second column c2 as shown in Fig. 5 for the case of n = 4 and k = 3. Note
that Hn ∼= Hn,0.

We shall denote by Sg (g � 0) the orientable surface of genus g .

Lemma 3.1. cr2(Hn,k) = 0 for every n,k ∈ N with n � 3.

Proof. To draw Hn in the double torus S2, start by embedding Hn − τ0 − τ1 in the sphere S0. Now,
use one handle to route the edge τ0, and another handle for τ1. �
Lemma 3.2. cr0(Hn,k) = n + k for every n,k ∈ N with n � 3.

Proof. Consider a drawing of Hn,k in the sphere. If this drawing has finite crossing number, the cycle
C must be embedded as a simple closed curve which separates the surface into two discs D1, D2 and
is not crossed by any edge. Moreover, both thick edges τ0 and τ1 are drawn in the same disc, say D2.
Now every column of B1 crosses the row r2 and every column of B2 crosses the row r1, so we have
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Fig. 5. The graph Hn,k (for n = 4 and k = 3).

at least n + k crossings. Since Hn,k is drawn in S0 with n + k crossings in Fig. 5, we conclude that
cr0(Hn,k) = n + k as required. �

Not surprisingly, the situation when drawing our graphs Hn on the torus is considerably more
complicated to analyze. By drawing Hn in the plane with n crossings and then using a handle to
remove one crossing, we see that cr1(Hn) � n − 1 for all n � 3 (even cr1(Hn,k) � n − 1 for all n � 3
and k � 0). For n � 5, we shall prove that this is the best which can be achieved. For n � 4, however,
there is some exceptional behavior (cf. Lemma 3.7).

Lemma 3.3. For every optimal drawing of Hn (in some surface), each column ci (1 � i � n) is a simple curve.

Proof. It is easy to see that in every optimal drawing, every edge is represented by a simple curve.
Let us now consider a column ci = vi v ′

iui (or similarly for viu′
iui ) and suppose that the edges e = vi v ′

i
and f = ui v ′

i cross. Suppose that e is represented by the simple curve α(t), 0 � t � 1, where α(0) = vi

and α(1) = v ′
i . Similarly, let f be represented by the simple curve β(t), 0 � t � 1, where β(0) = ui

and β(1) = v ′
i . Let α(t′) = β(t′) (0 < t′ < 1) be where they cross. Now let α̃(t) = α(t) for t � t′

and α̃(t) = β(t) for t � t′ . Change similarly β to β̃ . Then the crossing becomes a touching of the
two curves, which can be eliminated yielding a drawing with fewer crossings. Observe that the local
rotation at the special vertex v ′

i changes from clockwise to anticlockwise but this is still consistent
with the requirement for this special vertex. Therefore the new drawing contradicts the optimality of
the original one. �

At several occasions in the proof we will use the following well-known fact about closed curves
on the torus.

Lemma 3.4. (See [3, Proposition 4.2.6].) Let ϕ , ψ be two simple closed noncontractible curves on the torus that
are not freely homotopic. Then ϕ and ψ cross each other.

The following is well known (cf., e.g., [7]).

Lemma 3.5. Let ϕ , ψ be two closed curves on some surface; assume ψ is contractible. The curves may intersect
themselves and each other, but we assume that

1. the total number of intersections is finite, and
2. each point of intersection is a crossing (the curves do not touch and there are no more than two arcs that

run through the point).

Then, the number of intersections of ϕ with ψ is even.
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Fig. 6. Illustration for the proof of Lemma 3.5.

Fig. 7. Nine special types of embedding of the thick subgraph C + τ0 + τ1 in the torus. In types B–E ′′′ , the cycle C is drawn on
the top and bottom sides of the square.

Proof (hint). Let us transform ψ continuously to a trivial curve. The number of intersections of ϕ with
ψ stays the same, or changes by 2 when we modify ψ as in Fig. 6.

It will be convenient for us to classify different types of drawings of Hn in the torus depending on
the drawing of the thick subgraph C + τ0 + τ1. In Fig. 7 we have listed nine possible embeddings of
C + τ0 + τ1 in S1, where τ0 and τ1 are drawn with dashed lines. We shall say that a drawing of Hn is
of type A, B , C , C ′ , D , E , E ′ , E ′′ , or E ′′′ if the induced drawing of C +τ0 +τ1 is as in the corresponding
part of Fig. 7. Although there are other possible drawings of C + τ0 + τ1 in the torus, our next lemma
shows that the only ones which extend to finite crossing number drawings of Hn have one of these
types.

Lemma 3.6. Every drawing of Hn for n � 3 on a torus S with crossing number less than n has type A, B, C ,
C ′ , D, E, E ′ , E ′′ , or E ′′′ .

Proof. Let S ′ be the bordered surface obtained from S by cutting along the cycle C . First suppose that
C is contractible. Then S ′ is disconnected, with one component a disc D , and the other component
S ′′ homeomorphic to S1 minus a disc. If both B1 and B2 are drawn in D , then we have at least n
crossings (as in Lemma 3.2). If only one of B1 or B2, say B1 is drawn in D , then B2 and the edges τ0
and τ1 are drawn in S ′′ (else the crossing number is infinite). Consider the curves τ0 ∪ r0 and τ1 ∪ r3
in S ′′ . If either of these is contractible, then B2 must cross it (yielding infinite crossing number).
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Fig. 8. Exceptional drawings of H3.

Fig. 9. Exceptional type B drawing of H4.

Otherwise (using the Lemma 3.4) they must be freely homotopic noncontractible curves in S ′′ , so
τ0 ∪ c0 ∪ τ1 ∪ cn+1 is a contractible curve. Therefore B2 must cross it, yielding again infinitely many
crossings. Thus, we may assume that both τ0 and τ1 are drawn in the disc D and B1 and B2 are
drawn in S ′′ so our drawing is of type A.

Next suppose that C is not contractible. In this case, the surface S ′ is a cylinder bounded by two
copies of the cycle C . If both τ0 and τ1 have all of their ends on the same copy of C , we must have a
drawing of type B , C , or C ′ . If one has both ends on one copy of C , and the other has both ends on
the other copy of C , then there are infinitely many crossings, unless the drawing is of type D . Finally,
if one of τ0, τ1, has its ends on distinct copies of C , then the crossing number will be infinite unless
the other one of τ0, τ1, has both ends on the same copy of C giving us a drawing of type E , E ′ , E ′′ ,
or E ′′′ . �

If G is a graph drawn on a surface and A, B ⊆ G , then we shall denote by Cr(A | B) the total
number of crossings of an edge from A with an edge from B , where crossings of an edge e ∈ E(A ∩ B)

with another edge f ∈ E(A ∩ B) are counted only once. In particular, the total number of crossings of
graph G is equal to Cr(G | G).

Lemma 3.7. cr1(Hn) = n − 1 if n = 3 or n � 5, while cr1(H4) = 2. Furthermore, Fig. 8(a)–(c′) shows the only
drawings of H3 in the torus with two crossings and the added property that Cr(r2 | G) = 0. Fig. 9 displays the
unique drawing of H4 in the torus with two crossings.
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Proof. We proceed by induction on n. Consider a drawing D of Hn in a surface S homeomorphic
to the torus, such that D yields minimum crossing number. We shall frequently use the inductive
assumption for n − 1 and n − 2, since by deleting the edges of the column c1, the column cn , or
two consecutive columns ci and ci+1 we obtain a new graph which is a subdivision of Hn−1 or Hn−2
(assuming n � 3). This technique will be used throughout the proof. It is also worth noting that after
applying this operation to D, the drawing of the smaller hamburger graph is of the same type as the
drawing D.

The cycle C is not crossed in D, so we may cut our surface along this curve. This leaves us with a
drawing of Hn in a closed bordered surface—which we shall denote S ′—where each edge of C appears
twice on the boundary. We shall use C1 and C2 to denote these copies.

Essential to our proof is an analysis of the homotopy behavior of the rows and columns. To make
this precise, let us now choose a point N in the interior of the row r0, S in the interior of r3, W
in the interior of c0 and E in the interior of cn+1. (Actually, for each of these points we have two
copies: N1 and N2, etc. But we will avoid distinguishing these if there is no danger of confusion.)
For each column ci (0 � i � n + 1) let c+

i be a simple curve in S ′ obtained by extending ci along
the appropriate copies of the rows r0 and r3 so that it has ends N and S . Similarly, for each row
ri (0 � i � 3) let r+

i be a curve in S ′ obtained by extending ri along the appropriate copies of the
columns c0 and cn+1 so that it has ends E and W . We shall focus our attention on the homotopy
types in S ′ of the curves c+

i where N and S are the fixed end points (and similarly r+
i where E and

W are fixed): we say that c+
i and c+

j are homotopic if c+
i may be continuously deformed to c+

j in

the surface S ′ , while keeping their endpoints fixed. Note that c+
i and c+

j can only be homotopic if
ci and c j are connecting the same copies of N and S—that is they attach on the same side of C in
the original surface S . Also note, that for i = 0 or i = n + 1 we actually have two copies of ci , so we
should be speaking of, e.g., c+

0
1 and c+

0
2. We will refrain from this distinction whenever possible to

keep the notation clearer—so when saying c+
0 and c+

1 are homotopic we will actually mean that c+
1 is

homotopic to c+
0

s for some s ∈ {1,2}.
We will use frequently the following fact that connects the homotopy types of columns and their

crossing behaviour with respect to the rows (and vice versa). We will refer to this statement as to
“the Claim”.

Claim. If c+
i and c+

i+1 are homotopic (1 � i < n), then Cr(r j | ci ∪ ci+1) � 1 for j = 1,2. Similarly, if r+
1 and

r+
2 are homotopic, then Cr(r1 ∪ r2 | ci) � 1 for every 1 � i � n.

To see this, let us observe that the closed curve obtained by following c+
i from S to N and then

c+
i+1 from N to S is contractible, after deleting part of its intersection with the cycle C , we get a

contractible curve ψ that intersects itself only at finitely many points. The row r j must cross either
c+

i or c+
i+1 (depending on the parity) in their common vertex (it cannot only touch it as their common

vertex has prescribed local rotation). We may extend r+
j into a closed curve ϕ by following closely

along the cycle C . This way we are adding two (or zero) intersections with ψ . By Lemma 3.5 curves
ϕ and ψ have an even number of intersection, thus r j must have another crossing with ψ and we
are done. The same argument holds when the rows and columns exchange their roles.

Corollary. If r+
1 and r+

2 are homotopic, we are done, as there are at least n intersections.

In light of Lemma 3.6 we may assume that our drawing is of type A, B , C , C ′ , D , E , E ′ , E ′′ , or E ′′′ ,
and we now split our argument into these nine cases.

Case 1. Type A.
Let us first suppose that n � 4. If there exists 1 � i � n so that c+

i is homotopic to c+
0 , then either

c1 crosses ci , or c+
1 is homotopic to c+

0 . In the latter case, c1 crosses r1. So, in short, Cr(c1 | Hn) � 1
and by removing this column and applying induction, we deduce that there are at least n−1 crossings
in our drawing. Note here that the resulting drawing of Hn−1 is still of type A, so it must have at
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least (n − 1) − 1 crossings, even if n = 5. Thus, we may assume that c+
i is not homotopic to c+

0 for
any 1 � i � n. By a similar argument, c+

i is not homotopic to c+
n+1. If there exist i, j ∈ {1, . . . ,n} with

c+
i not homotopic to c+

j , then c+
i and c+

j cross (Lemma 3.4), and further, Cr(ck | ci ∪ c j) � 1 for every
k ∈ {1, . . . ,n} with k 	= i, j. This implies that we have at least n − 1 crossings, as desired. The only
other possibility is that c+

i and c+
j are homotopic for every i, j ∈ {1, . . . ,n}. In this case, it follows

from the Claim (applied to c+
1 and c+

2 , c+
3 and c+

4 , . . .) that there are at least n − 1 crossings.
Suppose now that n = 3. If c+

2 is homotopic to c+
1 or c+

3 , then it follows from the Claim that
each row has at least one crossing, and we are done. Thus, we may assume that c+

2 has distinct
homotopy type from that of c+

1 and from that of c+
3 . If c+

2 is homotopic to c+
0 , then Cr(c2 | r2) � 1

and Cr(c2 | c1) � 2 (since c+
1 is not homotopic to c+

2 ) giving us too many crossings. Thus, c+
2 is not

homotopic to c+
0 , and by a similar argument, we find that c+

2 is not homotopic to c+
4 . Now, either

c+
1 is homotopic to c+

0 (in which case Cr(c1 | r1) � 1) or c+
1 is not homotopic to c+

0 (in which case
Cr(c1 | c2) � 1). So, in short Cr(c1 | r1 ∪ c2) � 1. By a similar argument, Cr(c3 | r1 ∪ c2) � 1. Since there
are at most two crossings, we must have Cr(c1 ∪ c3 | r1 ∪ c2) = 2 and this accounts for all of our
crossings. In particular, this implies that r1 and r2 are simple curves. Since Cr(r2 | G) = 0, it follows
that r+

2 is not homotopic to r+
0 or r+

3 . By the Claim, r+
1 is not homotopic to r+

2 , and this together with
Cr(r1 | r2) = 0 implies that r+

1 is homotopic to r+
0 . It follows from this that Cr(r1 | ci) = 1 for i = 1,3

and this accounts for all of the crossings. Such a drawing is possible, but must be equivalent with
that in Fig. 8(a).

In all the remaining cases, we have that S ′ is a cylinder, and in our figures we have drawn S ′ with
the boundary component C1 on the top and C2 on the bottom.

Case 2. Type B .
Here all of the column curves c+

i have ends N2 and S2. Recall that these are copies of N and S
drawn at the “bottom copy” C2 of C . Since all of these curves are simple, it follows that for every
1 � i � n, the curve c+

i is either homotopic to the simple curve N2–W 2–S2 in C2 (we shall call this
homotopy type �), or to the simple curve N2–E2–S2 in C2 (homotopy type r). Let a = a1a2 . . .an be
the word given by the rule that ai is the homotopy type of c+

i . We now have the following simple
crossing property.

P1. If ai = r and a j = � where 1 � i < j � n, then Cr(ci | c j) � 2.

If there exists an i (1 � i � n) so that Cr(ci | Hn) � 4, then n � 5 (otherwise the drawing is not
optimal), and by removing ci and either ci−1 or ci+1 and applying the theorem inductively to the
resulting graph, we deduce that there are at least 4 + cr1(Hn−2) � n crossings in our drawing, a
contradiction. It follows from this and P1, that either a = �irn−i or a = �ir�rn−i−2. We now split into
subcases depending on n.

Suppose first that n = 3. If a1 = a2 = � or a2 = a3 = r, then it follows from the Claim that Cr(r j |
c1 ∪ c2 ∪ c3) � 1 for j = 1,2 and we are finished. Otherwise, a must be �r� or r�r and Cr(c2 | c1 ∪
c3) � 2. These configurations are possible, but require that our drawing is equivalent with the one in
Fig. 8(b)—this comes from a = �r�, if a = r�r we get a mirror image.

Next we consider the case when n = 4 and a = �ir4−i . Applying the Claim for the columns c1, c2
and c3, c4 resolves the cases when a is one of �4, r4, or �2r2 (each gives at least four crossings—a
contradiction). Suppose that a = �3r (or, with the same argument, a = �r3). It follows from the Claim
that Cr(c1 ∪ c2 | r1 ∪ r2) � 2 and Cr(c2 ∪ c3 | r1 ∪ r2) � 2, so the only possibility for fewer than three
crossings is that our drawing has 2 crossings, both of which are between c2 and the rows r1 and r2.
But then c2 does not cross c1 or c3, so c2 is separated from c0 by c+

1 ∪ c+
3 , so Cr(r1 | c1 ∪ c3) > 0, a

contradiction.
Next suppose that n = 4 and a = �ir�r2−i . If a = �2r�, then it follows from P1 that Cr(c3 | c4) � 2

and from the Claim that Cr(c1 ∪ c2 | r1 ∪ r2) � 2, so we have at least four crossings—a contradiction.
Similarly a = r�r2 is impossible. The only remaining possibility is a = �r�r. In this case, we have
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Cr(c2 | c3) � 2, so the only possibility is that there are exactly two crossings, both between c2 and c3.
This case can be realized, but requires that our drawing is equivalent to that of Fig. 9.

Lastly, suppose that n � 5. Since a ∈ {�irn−i, �ir�rn−i−2}, either a1 = a2 = � or an−1 = an = r. As
these arguments are similar, we shall consider only the former case. Now, it follows from the Claim
that Cr(c1 ∪ c2 | r1 ∪ r2) � 2, so removing the first two columns gives us a drawing of Hn−2 with
at least two crossings less than in our present drawing of Hn . By applying our theorem inductively
to this new drawing, we find that the only possibility for less than n − 1 crossings is that n = 6
and a = �3r�r. In this case, we have Cr(c4 | c5) � 2, so we may eliminate two crossings by removing
columns 4 and 5. This leaves us with a drawing of a graph isomorphic to H4 as above with the
pattern �3r. It follows from our earlier analysis, that this drawing has at least three crossings. This
completes the proof of this case.

Case 3. Type C .
Now each column curve has one end on the segment of C2 between q2 and r2. As above, every

curve c+
i with both ends on C2 must be homotopic with either the simple curve N2–W 2–S2 in C2

(denoted by �), or with the simple curve N2–E2–S2 in C2 (homotopy type r). Each row has both its
ends on C2.

The homotopy types of the other column curves will be represented by integers. Since S ′ is a
cylinder, we may choose a continuous deformation Ψ of S ′ onto the circle S1 with the property that
C1 and C2 map bijectively to S1, and N2 and S1 map to the same point x ∈ S1. Now, each curve c+

i
maps to a closed curve in S1 from x to x, and for an integer α ∈ Z, we say that c+

i has homotopy type
α if the corresponding curve in S1 has (counterclockwise) winding number α. It follows that c+

i and
c+

j are homotopic if and only if they have the same homotopy type. As before, we let a = a1a2 . . .an

be the word given by the rule that ai is the homotopy type of c+
i . We now have the following crossing

properties (for the appropriate choice of “clockwise” direction), whenever 1 � i < j � n:

P1. Cr(ci | c j) � |ai − a j − 1| if ai,a j ∈ Z.
P2. Cr(ci | c j) � 2 if ai = r and a j = �.
P3. Cr(ci | c j) � 1 if either ai = r and a j ∈ Z or ai ∈ Z and a j = �.

By choosing Ψ appropriately, we may further assume that the smallest integer 1 � i � n for which
ai ∈ Z (if such i exists) satisfies ai = 0. Again, we split into subcases depending on n.

Suppose first that n = 3. Note that every column of type r or � separates the segment q2t2 on C2

from r2s2. Consequently, Cr(r1 ∪ r2 | ci) � 1 whenever ai ∈ {�, r}. Next we shall consider the homotopy
types of our rows. If r+

1 is not homotopic to r+
0 or r+

3 , then Cr(r1 | r1) � 1 and further Cr(r1 | c1 ∪ c3) �
2 (as in this case, r1 separates C2 from C1 and also segment q2r2 from s2t2) which gives us too many
crossings. If r+

2 is not homotopic to r+
0 or r+

3 , then Cr(r2 | r2) � 1 and Cr(r2 | c2) � 1, and we have
nothing left to prove. Thus, we may assume that r+

1 (and also r+
2 ) is homotopic to one of r+

0 , r+
3 . If

r+
1 and r+

2 are homotopic, then the Claim implies that there are at least three crossings. Hence, we
may assume that r+

1 is homotopic to r+
0 and r+

2 to r+
3 (the other possibility yields two crossings and

each row crossed). It now follows from our assumptions that Cr(r1 | ci) � 1 for i = 1,3, so assuming
we have at most two crossings, our only crossings are between r1 and c1 and between r1 and c3.
If ai ∈ Z for i ∈ {1,3}, then ci also crosses r2 because of the requirements concerning local rotations
at the special vertices u′

1 and u′
3. It follows that there are at least three crossings unless a = �0�,

�0r, r0�, or r0r. Each of these, except �0r gives at least three crossings by P3. The remaining case is
possible, but only as it appears in Fig. 8(c).

Suppose now that n � 4. If either c1 or cn is crossed, then we delete it and use the induction
hypothesis. If neither has a crossing, then both a1 and an are integers (otherwise Cr(c1 ∪ cn | r1 ∪
r2) � 1 as above). It follows that a1 = 0, and an = −1 (otherwise c1 and cn cross). Now there is no
value for a2 to avoid crossing with either c1 or cn . Hence one of c1, and cn is crossed, after all, and
we may use induction. This completes the proof of Case 3.
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Fig. 10. Part of a type D drawing of H3.

Case 4. Type C ′ .
This case is nearly identical to the previous one. We may define the homotopy types for the

columns to be r, �, or an integer, exactly as before, so that the same homotopy properties are satisfied.
Then the analysis for n � 4 is identical, and the only difference is the case when n = 3. As before, if
r+

1 is not homotopic to r+
0 or r+

3 , then Cr(r1 | r1) � 1 and Cr(r1 | c1 ∪ c3) � 2 giving us too many
crossings. Similarly, if r+

2 is not homotopic to r+
0 or r+

3 , then Cr(r2 | r2) � 1 and Cr(r2 | c2) � 1 and
there is nothing left to prove. Now, using the Claim, we deduce that r+

1 is homotopic to r+
0 and r+

2 is
homotopic to r+

3 . It follows from this that Cr(c2 | r2) � 1. If a2 ∈ Z then, as the vertex v ′
2 is rigid, it

follows that Cr(c2 | r1) � 1 and we have nothing left to prove. Thus, we may assume that a2 ∈ {�, r}. If
ai ∈ {�, r} for i = 1 or i = 3, then ci crosses r1 and we are done. Thus, we may assume that a1,a3 ∈ Z.
It now follows that Cr(c2 | c1 ∪ c3) � 1. This can be realized with exactly two crossings, but row r2
must be crossed.

Case 5. Type D .
In this case, every column has one end on r2

0 and one end on r1
3 . We define the homotopy types of

curves c+
i using integers as in the previous case. Again, c+

i and c+
j are homotopic if and only if they

have the same homotopy type. As before, we let a = a1a2 . . .an be the word given by the rule that ai
is the homotopy type of c+

i . And as before, we have the following useful crossing property:

P1. Cr(ci | c j) � |ai − a j − 1| if 1 � i < j � n.

Suppose first that n � 4. If the first column c1 does not cross any other columns, then a =
0(−1)n−1. Similarly, if the last column does not cross any other columns, then a = 0n−1(−1). Since
these cases are mutually exclusive for n � 4, either the first, or the last column contains a crossing.
Then we may remove it and apply induction.

If n = 3, we proceed as follows. Using P1 (and the convention a1 = 0) we get that the number of
crossings between the columns is at least |a2 + 1| + |a3 + 1| + |a2 − a3 − 1| � |a2 + 1| + |a2| (using
the triangle inequality). Symmetrically, we get another lower bound for the number of crossings:
|a3 + 1| + |a3 + 2|. If any of these bounds is at least 3, we are done. It follows that a2 ∈ {0,−1} and
a3 ∈ {−1,−2}. Now, if there are two consecutive columns with the same homotopy type, then each
row will cross some of these columns, and we are done. Consequently a = 0,−1,−2. It follows that
Cr(c1 | c3) � 1. If c2 crossed either c1 or c3, then it would have to cross the column twice—which
would yield too many crossings. Similarly, if Cr(c1 | c3) > 1, then Cr(c1 | c3) � 3 and we would have
too many crossings. It follows that the three columns c1, c2, c3 are drawn as in Fig. 10. Now we have
that c1 and c3 separate c2 from c1

0, c2
0, c1

n+1, and c2
n+1. It follows that Cr(r1 | c1 ∪ c3) � 2 giving us too

many crossings.

Case 6. Type E .
In this case, every curve c+

i must have one end in r2
3 and the other end in either r1

0 or r2
0 . In

the first case, we say that c+
i has homotopy type 0 and in the second we say it has type �. It is

immediate that any two such curves of the same type are homotopic. As usual, we let a = a1a2 . . .an
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Fig. 11. Towards type E drawings of H3.

be the word given by the rule that ai is the homotopy type of c+
i . The following rule indicates some

forced crossing behavior.

P1. Cr(ci | c j) � 1 if ai = 0 and 1 � i < j � n.

Let us first treat the case when n � 4. If the last column cn contains at least one crossing, then we
may remove it and apply induction. Otherwise, P1 implies that a = �n or a = �n−10. It follows from
the Claim that Cr(c1 ∪ c2 | r1 ∪ r2) � 2. Thus, if n � 5, we may remove the first two columns and apply
induction. If n = 4 and a = �4, then the Claim gives us at least four crossings—a contradiction with
the minimality of our drawing. It remains to check a = �30. If there are fewer than three crossings,
then (again by applying the Claim twice) there are exactly two, and both occur on c2. However, in
this case Cr(r1 | c3) = 0. As c3 separates c2 from both r1s1 and r2s2 and r1 has a common vertex with
c2, we get a contradiction.

Finally, suppose that n = 3. If there are two consecutive columns with the same homotopy type,
then we are finished (by the Claim), so we may assume a = 0�0 or a = �0�. In the former case, we
have Cr(c1 | c2 ∪ c3) � 2, so we may assume that there are exactly two crossings, and the columns
must be drawn as in Fig. 11(a). However, it is impossible to complete this drawing to a drawing of
H3 with fewer than three crossings.

In the case a = �0� we have Cr(c2 | c3) � 1 (see Fig. 11(b)) and the total number of crossings is at
most two. If r2 is crossed, then the drawing is not exceptional and we are done. There is a unique
way to add r2 to Fig. 11(b) without creating any new crossing. Then there is no way to add r1 without
crossing r2.

Case 7. Type E ′ .
This case is very close to the previous one. A similar analysis reduces the problem to the case

when n = 3. This case is actually identical to the above: By reflecting both the torus pictured in E ′
and the standard drawing of H3 (as in Fig. 1) about a vertical symmetry axis we find ourselves in this
previous case.

Case 8. Type E ′′ .
This case is somewhat similar to that of type E . We may define the homotopy types for the

columns 0, � exactly as before, so that the crossing property (P1) from type E is satisfied. Then the
analysis for n � 4 is identical, and the only difference is the case when n = 3. As before, if there are
two consecutive columns with the same homotopy type, we are finished. Thus we may assume that
a = 0�0 or a = �0�. Then we get another drawing of H3 with two crossings, but again, in this case r1
and r2 cross each other.

Case 9. Type E ′′′ .
This case is essentially the same as the previous one, in the same way as type E ′ was related to E .

This completes the proof of Lemma 3.7. �
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Fig. 12. The special graph H+
3 .

Next we bootstrap to the following lemma.

Lemma 3.8. The graph Hn,k has crossing sequence (n + k,n − 1,0) for every n � 3 and k � 0 with the
exception of n = 4 and k = 0.

Proof. Lemmas 3.1 and 3.2 show that cr0(Hn,k) = n + k and cr2(Hn,k) = 0. We can draw Hn,k in the
torus with n − 1 crossings by adding a handle to the drawing from Fig. 5. It remains to show that
cr1(Hn,k) � n − 1 (for n � 3, unless n = 4 and k = 0). Take a drawing of Hn,k in the torus. By removing
the k extra columns we obtain a drawing of Hn,0 in the torus, which (by Lemma 3.7) has � n − 1
crossings, unless n = 4. This completes the proof in all cases except when n = 4.

If n = 4, the same argument as above shows that cr1(H4,k) � cr1(H4,1); we shall prove now that
cr1(H4,1) � 3. Suppose this is false, and consider a drawing of H4,1 in the torus with at most two
crossings. By removing the added column, we obtain a drawing of H4 in the torus with at most
two crossings. It follows from Lemma 3.7 that this drawing is equivalent to that in Fig. 9. Since this
drawing does not extend to a drawing of H4,1 with � 2 crossings, this gives us a contradiction.

Thus Hn,k (for (n,k) 	= (4,0)), has crossing sequence (n + k,n − 1,0) as claimed. �
Next we introduce one additional graph to get the crossing sequence (4,3,0). We define the graph

H+
3 in the same way as H3 except that we have three rows instead of two. See Fig. 12.

Lemma 3.9. The graph H+
3 has crossing sequence (4,3,0).

Proof. It follows from an argument as in Lemma 3.2 that cr0(H+
3 ) = 4. Since H+

3 − τ0 − τ1 is pla-
nar, it follows that cr2(H+

3 ) = 0. It remains to show that cr1(H+
3 ) = 3. Since cr1(H+

3 ) � 3, we need
only to show the reverse inequality. Consider an optimal drawing of H+

3 in the torus, and suppose
(for a contradiction) that it has fewer than three crossings. If the first row contains a crossing, then
by removing its edges, we obtain a drawing of a subdivision of H3 in the torus with at most one
crossing—a contradiction. Thus, the first row must not have a crossing, and by a similar argument,
the third row must not have a crossing. Now, we again remove the first row. This leaves us with a
drawing of a subdivision of H3 in the torus with at most two crossings, and with the added property
that one row (r2 in this H3) has no crossings. By Lemma 3.7 this must be a drawing as in Fig. 8.
A routine check of these drawings shows that none of them can be extended to a drawing of H+

3
with fewer than 3 crossings. �

We require one added lemma for some simple crossing sequences.

Lemma 3.10. For every a > 1 there is a graph with crossing sequence (a,1,0).
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Proof. Let G1 be a copy of K5, let G2 be the graph obtained from a copy of K5 by replacing each
edge, except for one of them, with a − 1 parallel edges joining the same pair of vertices. Let G be the
disjoint union of G1 and G2. It is immediate that cr0(G) = a, cr2(G) = 0, and cr1(G) � 1. A drawing of
G in S1 with this crossing number is easy to obtain by embedding G2 in the torus, and then drawing
G1 disjoint from G2 with one crossing. Thus, G has crossing sequence (a,1,0) as required. �
Proof of Theorem 1.3. Let (a,b,0) be given with integers a > b > 0. If b = 1, then the previous lemma
shows that there is a graph with crossing sequence (a,b,0). If (a,b,0) = (4,3,0) then Lemma 3.9
provides such a graph. Otherwise, Lemma 3.8 shows that the graph Hb+1,a−b−1 has crossing sequence
(a,b,0). �
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Abstract Eberhard proved that for every sequence (pk), 3 ≤ k ≤ r , k �= 6, of non-
negative integers satisfying Euler’s formula

∑
k≥3(6 − k)pk = 12, there are infinitely

many values p6 such that there exists a simple convex polyhedron having precisely
pk faces of size k for every k ≥ 3, where pk = 0 if k > r . In this paper we prove a sim-
ilar statement when nonnegative integers pk are given for 3 ≤ k ≤ r , except for k = 5
and k = 7 (but including p6). We prove that there are infinitely many values p5,p7

such that there exists a simple convex polyhedron having precisely pk faces of size k

for every k ≥ 3. We derive an extension to arbitrary closed surfaces, yielding maps of
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arbitrarily high face-width. Our proof suggests a general method for obtaining results
of this kind.

Keywords Eberhard theorem · Simple polyhedron · Planar graph · Face-width

1 Introduction

Consider a cubic (i.e., 3-regular) plane graph, and let pk (k ≥ 1) denote the number
of its k-gonal faces. It is a simple corollary of Euler’s formula that

∑

k≥1

(6 − k)pk = 12. (1)

It is natural to ask for which sequences (pk)k≥1 satisfying (1) there exists a cubic
plane graph whose face sizes comply with the sequence (pk). This question is even
more interesting when additional restrictions on the graph are given. The most im-
portant case is to consider graphs of three-dimensional convex polyhedra, so-called
polyhedral graphs. By Steinitz’s theorem, this is the same as requiring the graphs to
be 3-connected. An important subcase is where the polyhedra are simple, in other
words, where the corresponding graphs are cubic.

The general problem about the existence of polyhedral graphs with given face
sizes is still wide open. However, there are many special cases that have been solved.
For example [9, Theorem 13.4.1], it is known that there exists a simple polyhedron
with six quadrangular faces and p6 faces of size six if and only if p6 �= 1; and there
exists a simple polyhedron with twelve pentagonal faces and p6 faces of size six
(a “fullerene” graph) if and only if p6 �= 1. A similar case of four triangular faces
and p6 faces of size 6 has infinitely many exceptions: such a polyhedron exists if and
only if p6 is even. We refer to [9] for a complete overview. The most fundamental
result in this area is the following classical theorem of Eberhard [3], stating that there
is always a solution, provided that we are allowed to replace p6 (whose value does
not affect the satisfaction of (1)) by a large enough integer.

Theorem 1.1 (Eberhard [3]) For every sequence (pk), 3 ≤ k ≤ r, k �= 6, of nonneg-
ative integers satisfying (1), there are infinitely many values p6 such that there exists
a simple convex polyhedron having precisely pk faces of size k for every k ≥ 3, where
pk = 0 if k > r .

Eberhard’s proof is not only long and messy, but also some of its parts may not
satisfy today’s standards of rigor. Grünbaum [9] gave a simpler complete proof utiliz-
ing graphs and Steinitz’s Theorem. This result was strengthened by Fisher [5], who
proved that there is always a value of p6 that satisfies p6 ≤ p3 +p4 +p5 +∑

k≥7 pk .
Grünbaum also considered a 4-valent analogue of Eberhard’s theorem. Fisher [6]

proved a similar result for 5-valent polyhedra, establishing existence for all sequences
of face sizes with p4 ≥ 6 that comply with Euler’s formula.

Various other generalizations of Eberhard’s theorem have been discovered. Papers
by Jendrol’ [10, 11] give a good overview and bring some of today’s most general
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results in this area. Some other relevant works include [1, 2, 4, 8, 13]. Several pa-
pers treat extensions of Eberhard’s theorem to the torus [7, 12, 15, 16] and more
general surfaces [10]. It is worth pointing out that on the torus there is precisely one
admissible sequence (namely p5 = p7 = 1 and pi = 0 for i /∈ {5,7}), for which an
Eberhard-type result with added hexagons does not hold [12].

In this paper we consider a similar problem that is also motivated by (1). Let us
suppose that we are given face sizes as before, but we are only allowed to change
p5 and p7 (or p6−t and p6+t for some t , 1 ≤ t ≤ 3). In this case, we think of pk

(for k ≥ 3, k �= 5,7) as being fixed and p5,p7 as being free to choose. Equation
(1) determines the difference s = p7 − p5, and we are asking if there exist p5 and
p7 = p5 + s with a polyhedral realization. We give an affirmative answer to this
question and derive an extension solving the corresponding problem on an arbitrary
closed surface. Our construction gives simple (i.e., 3-regular) polyhedral maps on a
surface, and one can impose the additional conditions that these maps have large face-
width and that their graphs are 3-connected. More precisely, we prove the following:

Theorem 1.2 Let (pk), 3 ≤ k ≤ r, k �= 5,7, be a sequence of nonnegative integers,
let S be a closed surface, and let w be a positive integer. Then there exist infinitely
many pairs of integers p5 and p7 such that there is a 3-connected cubic map re-
alizing S, with face-width at least w, having precisely pk faces of size k for every
k ∈ {3, . . . , r}.

It is worth observing that we also fix the number p6 of hexagonal faces. Secondly,
observe that the extension of Eberhard’s Theorem to a surface S other than the sphere
needs an adjustment in (1); the right-hand side has to be replaced by 6χ(S) where
χ(S) is the Euler characteristic of S. However, in our setting the formula adjusts itself
by using an appropriate number of pentagons and heptagons.

Finally, as we point out in Sect. 4, our proof suggests a general method for obtain-
ing results of this kind.

2 Definitions

A finite sequence p = (p3,p4, . . . , pr) is plausible for a closed surface S if
∑

3≤k≤r

(6 − k)pk = 6χ(S), (2)

where χ(S) is the Euler characteristic of S. By Euler’s formula, (2) is a necessary con-
dition for the existence of a cubic graph embeddable in S with precisely pk k-gons
for 3 ≤ k ≤ r and no other faces. If there exists a cubic graph which is 2-cell embed-
dable in S with precisely pk faces of size k for 3 ≤ k ≤ r and no other faces, then
we say that p is realizable in S. If

∑
3≤k≤r (6 − k)pk = 0, then we call p a neutral

sequence. For any two such sequences, one can consider their sum which is defined
in the obvious way. Let us observe that the sum of a neutral sequence and a plau-
sible sequence is a plausible sequence. We would like to understand in this context
which plausible sequences are realizable and try to do so by asking when a sum of a
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plausible sequence with an appropriate neutral sequence is realizable. For the neutral
sequence (0,0,0,1), this is Eberhard’s theorem.

The most important building block in both Eberhard’s and our proofs is a construc-
tion called a triarc. A triarc is a plane graph T such that the boundary C of the outer
face of T is a cycle, and moreover the following conditions are satisfied (examples
are the graphs in Fig. 4 with the half-edges in the outer face removed):

• every vertex of T − C has degree 3 in T ;
• C contains distinct vertices x, y, z of degree 2 (called the corners of the triarc) such

that the degrees (in T ) of the vertices on each of the three paths in C − {x, y, z}
alternate between 2 and 3, starting and ending with a vertex of degree 2.

A side of a triarc T as above is a subpath of C that starts and ends at distinct corners
of T and does not contain the third corner. The length of a side P of T is the number
of inner vertices of degree 2 on P ; note that although the corners of a triarc have
degree 2, they are not counted when calculating the lengths of its sides. A triarc with
sides of lengths a, b, c is called an (a, b, c)-triarc. Of course, we can flip or rotate
such a triarc and consider it, for example, as a (b, a, c)-triarc.

Triarcs are very versatile tools. Firstly, if the length of some side of a triarc T

equals the length of some side of another triarc R, then T and R can be glued together
along those sides to yield a new plane graph with all inner vertices having degree 3;
see, for example, Fig. 1. Secondly, every triarc T has zero total curvature; to see this,
take two copies of T , turn one of them upside down, glue them along a common
side to obtain a “parallelogram” (see Fig. 1 again), and identify opposite sides of
this parallelogram to obtain a graph embeddable in the torus. But perhaps the most
important property of triarcs is the possibility to “glue” them together to obtain larger
triarcs; we describe this operation below.

Suppose we have an (a1, b1, c1)-triarc and an (a2, b2, c2)-triarc such that b1 = 2m

and c2 = 2l are even. Then, we may combine these triarcs (and several pentagons and
heptagons) to construct an (a1 + a2, b1 + b2, c1 + c2)-triarc. To do this, we identify
a corner (and an incident edge) of the first triarc with a corner (and an edge) of the
second triarc—see Fig. 2—so that the two identified corners yield a vertex of degree 3
on a side of length a1 + a2 in a new triarc. Then, we can add a “parallelogram”
consisting of hexagons to obtain an (a1 + a2, b1 + b2, c1 + c2)-triarc. However, we
do not want to add hexagons. Instead, we decompose the parallelogram into tiles,
each consisting of four hexagons as depicted in Fig. 2, and replace each of these tiles
by two pentagons and two heptagons as indicated in Fig. 3. The “tile” on the right of
Fig. 3 will be used several times in the sequel, and we shall refer to it as a H-tile.

We are going to use this operation of glueing two triarcs into a larger one several
times in the following section.

Fig. 1 Glueing two triarcs
along sides of equal length. The
dots represent the corners of the
triarcs
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Fig. 2 Glueing two triarcs with
two sides of even length
together using the tile of Fig. 3

Fig. 3 In a configuration of 4 hexagons we may contract the central edge and then “uncontract” it in the
other direction. A “tile” consisting of two pentagons and two heptagons results; we use such tiles in Fig. 2

3 Proof of Theorem 1.2

We are ready to state and prove our main result. Let us observe that, unlike Eberhard’s
theorem, we do not need to assume that the given face-sizes form a plausible sequence
(although we make this assumption in the formulation of the theorem) because given
a sequence (pk), 3 ≤ k ≤ r , k �= 5,7, the sequence can always be appended by appro-
priate values p5 and p7 to become plausible.

Theorem 3.1 Let p = (p3,p4, . . . , pr) be a plausible sequence for the sphere. Then
there exist infinitely many integers n ∈ N such that the sequence p + n · (0,0,1,0,1)

is realizable in the sphere.

Proof We will give an explicit construction of a cubic graph embeddable in the sphere
whose face sequence is of the form p +n · (0,0,1,0,1). The rough plan for this is as
follows. For each face imposed by the sequence p, we create a basic triarc containing
this face as well as some pentagons and heptagons. Then, we glue all these triarcs
together and extend to a triarc with sides of suitable lengths. Finally, we construct
a new triarc having the same side lengths and glue these two triarcs together (as
explained later) to obtain the desired graph embedded in the sphere.

To construct a basic triarc for a k-gon (we will make pk copies of it), we surround
the k-gon by three heptagons and k − 3 pentagons as shown in the right half of Fig. 4
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Fig. 4 A (4,4,3)-triarc and a (2,2,4)-triarc

(where the k-gon we are surrounding happens to be a pentagon). Note that we can
always make the basic triarc isosceles with the equal sides having even length. We
call the k-gon we started with the nucleus of this triarc.

Having constructed all basic triarcs, our next step is to glue them all together to
obtain a single triarc T containing them all. We do so recursively, attaching one basic
triarc at a time as shown in Fig. 2, where we use many copies of the H-tile in order
to build the parallelogram needed. Each time we use this gluing operation, we are
assuming that both triarcs in Fig. 2 are isosceles, with the equal sides having even
length, and align them so that the two equal even sides are the upper left and upper
right sides. Note that the resulting triarc is also isosceles with two equal sides of even
length. Thus, we can continue recursively to glue all basic triarcs into one isosceles
triarc T .

Our next aim is to enlarge T into an equilateral triarc T ′ with sides of length n,
where n is a multiple of 8 and satisfies n ≡ 2 (mod 3), using only pentagons and
heptagons. To this end, we will use the gluing operation of Fig. 2 and many copies of
a (4,4,3)-triarc and a (2,2,4)-triarc. Figure 4 shows how to construct those triarcs
with pentagons and heptagons only.

Note that gluing T ′ with a (4,4,3)-triarc (as in Fig. 2) keeps it isosceles and
decreases the difference of lengths between the “base” and the other two sides by 1,
while gluing with a (2,2,4)-triarc increases that difference by 2. Thus, recursively
gluing with such triarcs we can enlarge T into an equilateral triarc S with sides of
even length.

Moreover, using the gluing operation of Fig. 2 three times, once with a (2,2,4)-
triarc and twice with a (4,4,3)-triarc, we can increase the side-lengths by (2,2,4) +
(4,4,3) + (4,4,3) = (10,10,10). Thus we can increase the length of each side of S

by 10. Since 10 ≡ 1 (mod 3), we can use this operation to enlarge S into an equilat-
eral triarc S′ with even sides of length 2 (mod 3). Moreover, since performing this
operation three times increases the length of each side by 30, and 30 ≡ 6 (mod 8),
we can enlarge S′ into an equilateral triarc T ′ with the length of each side being a
multiple of 8 and congruent to 2 modulo 3.
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Fig. 5 Gluing R and T ′
together along a “ring”
consisting of pentagons and
heptagons. This operation is
possible because we made sure
that every side of T ′ , and thus
also of R, has length congruent
to 2 (mod 3)

Next, we are going to construct a triarc R that has the same side lengths as T ′
but consists of pentagons and heptagons only. By gluing together a (2,2,4)-triarc,
a (2,4,2)-triarc, and a (4,2,2)-triarc (that is, the same triarc in three different ro-
tations), we get an (8,8,8)-triarc, which we will call D. Since the sides of T ′ have
length a multiple of 8, by gluing copies of D together recursively as in Fig. 2 we can
indeed construct a triarc R that has the same dimensions as T ′.

We can now combine R and T ′ together to produce a cubic graph tiling the sphere
as shown in Fig. 5. By construction, this graph has for every k ∈ N\{0,1,2,5,7},
precisely pk faces of size k, and moreover it has at least p5 pentagons and at least
p7 heptagons. Thus its face sequence is of the form p + (0,0, n,0,m) for some
n,m ∈ N+. Since both p and p + (0,0, n,0,m) satisfy Euler’s formula (the former
by assumption, the latter because the plane graph we just constructed implements it),
we have n = m.

This completes the construction and shows the existence of one particular value of
n as desired. However, observe that the construction of T ′ and R allows us to make
the side lengths of these triarcs arbitrarily large. This shows that we can get examples
for infinitely many values of n and thus completes the proof. �

We now turn from planar graphs to maps on arbitrary (compact) surfaces. A map
on a surface S is a graph together with a 2-cell embedding in S. A map is polyhedral
if all faces are closed disks in the surface and the intersection of any two faces is
either empty, a common vertex, or a common edge. If the graph of the map is cubic,
then we say that the map is simple.

A cycle contained in the graph of a map is contractible if it bounds a disk on the
surface. The edge-width of a map M is the length of a shortest noncontractible cycle
in M . The face-width of M is the minimum number of faces, the union of whose
boundaries contains a noncontractible cycle. We refer the reader to [14] for more
about the basic properties and the importance of these parameters of maps. At this
point we only note that a map is polyhedral if and only if its graph is 3-connected and
its face-width is at least three, see [14, Proposition 5.5.12]. We also note that if r is
the largest size of a face of M , then the edge-width of M cannot exceed r

2 times the
face-width of M .

We now restate and prove our main result, Theorem 1.2.
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Corollary 3.2 Let (pk), 3 ≤ k ≤ r, k �= 5,7, be a sequence of nonnegative integers,
let S be a closed surface, and let w be a positive integer. Then there exist infi-
nitely many pairs of integers p5 and p7 such that the sequence (p3,p4,p5, . . . , pr)

is realizable in S and there is a 3-connected realizing cubic map of face-width at
least w.

Proof Let us first describe a construction that does not necessarily achieve the desired
face-width; we will later explain how to modify this construction in order to get large
face-width.

The rough sketch of this construction is as follows. Firstly, we increase the num-
ber of hexagons in the sequence (pk) to p′

6 := p6 + 2h + c, where h is the number
of handles of S and c the number of its crosscaps (by the surface classification the-
orem we may assume that one of h, c is zero, but we do not have to). It follows
from Theorem 3.1 that we can increase the numbers p5 and p7 of this sequence to
some appropriate values so that the resulting sequence p′ is realized by a map on the
sphere. We will then use the 2h+c auxiliary hexagons of this map we added above to
introduce some handles and/or crosscaps. After doing so, all auxiliary hexagons will
have disappeared, and we obtain a map on S whose sequence of faces differs from
(pk) by some pentagons and heptagons only.

More precisely, similarly to the proof of Theorem 3.1, we construct a basic triarc
for each face in p′, but with one modification: for each hexagon, we construct a triarc
like the one in Fig. 6 (on the left) rather than one with two even sides of equal lengths
(in fact, we need this modification for the auxiliary hexagons only, but we might as
well use it for the original hexagons in p as well).

Next, we proceed as in Theorem 3.1 to glue all basic triarcs together into one
triarc T . However, since we now have basic triarcs with all sides odd (the ones of
Fig. 6), the gluing operation of Fig. 2 will not work for these triarcs. For this reason,
we first extend each such triarc into an equilateral triarc with even sides using three
copies of the (2,2,4)-triarc of Fig. 4 as shown in Fig. 6 (right).

We continue imitating the proof of Theorem 3.1 to obtain a cubic graph G embed-
ded in a homeomorphic copy S′ of the sphere that contains all basic triarcs. We will

Fig. 6 On the left: the new basic triarc for a hexagon. On the right: extending the triarc from the left into
an equilateral triarc with even sides
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Fig. 7 The situation arising
after introducing a handle. The
12-cycle C consists of the
dashed and the thick edges

now perform some cutting and gluing operations on both S′ and G to obtain a new
surface, homeomorphic to S, with a cubic graph G′ embedded in it.

Suppose that h > 0. Then, pick h pairs (F1,F
′
1), . . . , (Fh,F

′
h) of hexagonal faces

of G such that all the faces Fi and F ′
i are distinct (there are enough hexagonal faces

by our choice of the sequence p′). Now, for each pair (Fi,F
′
i ), perform the follow-

ing operations. Cut out the two discs of S′ corresponding to Fi,F
′
i and glue their

boundaries together with a half-twist; that is, each vertex of the boundary of Fi is
identified with the midpoint of an edge of F ′

i and vice-versa. This operation creates
a handle in S′, and the embedded graph remains cubic; however, it also gives rise to
some unwanted faces: the size of each face that was incident to Fi or F ′

i has now been
increased by 1. We thus have the situation depicted in Fig. 7, where C is the cycle of
length 12 resulting from the boundaries of Fi and F ′

i . Recall that since every hexagon
is put in a basic triarc like the one in Fig. 6, the sizes of the faces on each side of C

alternate between 6 and 8 as shown in Fig. 7. But now, contracting and uncontracting
each of the three thick edges (in the way explained in Fig. 3) turns each of the faces
incident with C into a heptagon.

On the other hand, if c > 0, then pick c distinct hexagonal faces F1, . . . ,Fc , and
for every i, cut out the disc corresponding to Fi and glue in its place the outside
of the hexagon of Fig. 8 with a half twist. Each such operation gives rise to a new
crosscap and also to unwanted faces just like in Fig. 7. But again, contracting and
uncontracting each of the three thick edges, we can turn all these unwanted hexagons
and octagons into heptagons.

Thus, after all these operations have been completed, we obtain a surface with h

handles and c crosscaps with a cubic graph embedded in it whose face sequence is
p + (0,0, n,0,m) for some n,m ∈ N+. Note that all auxiliary hexagons in p′ − p

have disappeared after the above operations.
It is easy to check that our maps are 3-connected. Indeed, our “building blocks”—

the basic triarcs and the triarcs of Fig. 4—are 3-connected after suppressing the de-
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Fig. 8 The gadget used to
create a crosscap inside a
hexagon

gree 2 vertices. This property is also true for triarcs in Fig. 6, and it is maintained
by the gluing operation of Fig. 2. By gluing two triarcs along a “circumference,”
using the ring in Fig. 5, we get a 3-connected graph. The gadget we used for in-
troducing cross-caps (Fig. 8) is 3-connected, and it is not hard to see that we main-
tain 3-connectivity when adding this gadget or when creating a handle as depicted
in Fig. 7.

It remains to discuss how to modify this construction to obtain maps with arbitrar-
ily large face-width. By the remark preceding Corollary 3.2, it suffices to construct
maps with arbitrarily large edge-width z since the face sizes are bounded from above
by r . This is achieved as follows.

First of all, we make every basic triarc used in the construction large enough that
the distance from its nucleus to the boundary of the triarc is at least z, and the length
of each side of each triarc is at least 3z. To achieve this, we first glue the triarc with
several (2,2,4)-triarcs (or any other triarcs) both on the left and on the right, to obtain
a large triarc with the nucleus in the middle of the bottom side. Then we possibly
glue it with a (4,4,3)-triarc to create a triarc with all sides even. Finally, we rotate
the triarc by 120◦ and perform more glueing with (2,2,4)-triarcs to get the nucleus
away from the boundary. (The notions “left”, “right”, and “120◦” in this paragraph
refer to the gluing operation of Fig. 2.)

Next, we replace the auxiliary hexagons used in order to add handles and crosscaps
with 6N -gons, where N is odd and greater than z/2. Of course, this will force us to
add some more pentagons to our sequence pk to make it plausible. Note that we can
generalize the triarc on the left of Fig. 6 so that the inner 6-gon is replaced by a 6N -
gon surrounded by three heptagons and 6N − 3 pentagons, arranged in a symmetric
way so that any two heptagons separate 2N − 1 pentagons from the rest. We will
make use of the fact that 2N − 1 is odd. We need to adapt the right half of Fig. 6
as well, since the inner triarc has now grown larger. For this, note that each side of
the inner triarc has now length 2N + 1, and so in order to use the method of the
right half of Fig. 6, the three peripheral triarcs must have a base of length 2N + 2
(in addition to having their other two sides of equal length). Since we chose N to
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be odd, it turns out that 2N + 2 is a multiple of four, and so we can construct the
required peripheral triarcs by gluing several (2,2,4)-triarcs together, using Fig. 2,
into a (N + 1,N + 1,2N + 2)-triarc.

Moreover, the crosscap gadget shown in Fig. 8 can be generalized so that the
inner 6-gon is replaced by a 6N -gon that is surrounded by 3N heptagons and 3N

pentagons, arranged alternatingly around the 6N -gon (here it is also important that
we chose N to be odd).

When the time comes to insert crosscaps or glue pairs of such 6N -gons together
(after a half-twist), we obtain a similar configuration as in Fig. 7, but with 3N thick
edges. Some of these thick edges are surrounded by faces of sizes 8,6,8,6 (as in
Fig. 7), while others are surrounded by four hexagons or by one octagon and three
hexagons. Note, however, that for parity reasons, we can make sure that every octagon
is incident with a thick edge, and still every fourth edge on the dashed cycle is thick.
Finally, the contract–uncontract operation of Fig. 3 turns these faces into pentagons
and heptagons only.

It is easy to see that these changes did not hurt 3-connectivity. Let us now argue
that the resulting map G has edge-width at least z. Recall that the surface S is ob-
tained from a plane graph G′, embedded in the sphere, that is composed of large basic
triarcs T1, . . . , Tm, some large parallelograms used to glue the basic triarcs together
into a large triarc T , and a remainder X comprising the material we used to enlarge
T into T ′, the ring of Fig. 5, and the triarc R. Let Li be the nucleus of Ti . Then S is
obtained from G′ by gluing the crosscap gadget into some of the 6N -gons Li and/or
by identifying some pairs Li,Lj of the 6N -gons to create handles.

We claim that for every basic triarc Ti such that the nucleus Li of Ti is a 6N -gon
and

for every side P of Ti , there is a set of z pairwise disjoint Li–P paths. (3)

Indeed, recall that in order to construct Ti , we first surrounded Li by several pen-
tagons and heptagons, 6N in total, to obtain a triarc T 1

i , then we performed the oper-
ation of the right half of Fig. 6 to obtain a triarc T 2

i , and finally we enlarged this into
a larger triarc T 3

i = Ti using the operation of Fig. 2 several times (this final step was
described later, in the part of the current proof concerning large face-width). Now
given any side P ′ of T 2

i , it is possible to find, within T 2
i , a set of z pairwise disjoint

Li–P ′ paths, see Fig. 9. Then, every time we use the operation of Fig. 2 while en-
larging T 2

i into T 3
i , it is possible to recursively propagate those paths to reach the

side of T 3
i corresponding to P ′; if P ′ is included within a side of T 3

i , then nothing
needs to be done, and if not, then we can propagate our paths through the parallel-
ogram of Fig. 2 while keeping them disjoint (this is true even after performing the
contract–uncontract operations of Fig. 3). This proves our claim (3).

Next, we claim that any two nuclei Li,Lj can be joined by z pairwise disjoint
paths in G′. Indeed, this follows easily from (3) and the fact that whenever we glue
two triarcs T ,T ′ together as in Fig. 2 by a parallelogram R with side-lengths m,n,
then we can find a set of m pairwise disjoint paths within R joining its two opposite
sides of length m, as well as a set of min(m,n) pairwise disjoint paths within R

joining the sides of T and T ′ incident with R.
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Fig. 9 Constructing z disjoint
Li–P ′ paths, in the case that the
auxiliary hexagons are replaced
with 42-gons (6N for N = 7). In
light gray are the
(2,2,4)-triarcs, in dark gray the
H-tiles resulting from the
glueing operation of Figs. 2
and 3. The empty triangle at the
bottom is a part of the triarc,
isomorphic to the top-left and
top-right ones. As our paths do
not use the bottom part, we
don’t show the details in the
figure. The white triangular
shape in the middle represents
the nucleus. The 16 thick paths
are the ones we need in order to
prove that our graphs have large
face-width

We distinguish two cases.

Case 1: the surface S is orientable There are three types of noncontractible cycles
in G. The first one comes from a path P in G′ that connects two nuclei Li , Lj such
that these nuclei are glued to create a handle. As the distance from each nucleus to
the boundary of the corresponding triarc Ti is at least z, the length of P is at least z

as well (even at least 2z).
The second type of noncontractible cycle C comes from a cycle C′ in G′ such that

|C′| ≤ |C| and C′ separates some nucleus Li from some other nucleus Lj in G′. We
use the above construction of z pairwise disjoint paths from Li to Lj to conclude that
|C| ≥ z as desired (in fact, we have |C| ≥ 2z because the graph is cubic and so any
two paths that have a common inner vertex must have a common edge).

The last type is similar to the second one: it is a cycle C that crosses some cycle
L of G obtained by gluing two nuclei Li , Lj to introduce a handle. Such a cycle C

comes from a k-tuple of paths in G′, where k is the number of times that C crosses L,
half of which paths have ends on Li , and the other half of them on Lj . We may
assume that none of these paths P leaves the triarc containing the endpoints of P ,
for otherwise |P | ≥ z holds. We will consider again the z pairwise disjoint paths
connecting Li to Lj . In fact, we only need to consider their parts that are contained
in the triarcs Ti , Tj : Let these parts be Pi,1, . . . , Pi,z (connecting Li to the boundary
of Ti ) and Pj,1, . . . , Pj,z (connecting Lj to the boundary of Tj ). As the paths Pi,t

start regularly along two thirds of the nucleus Li and the same holds for Lj , we
can use them to create z/2 pairwise disjoint paths Q1, . . . , Qz/2 in G connecting the
boundary of Ti to the boundary of Tj . Note that the part of the surface S containing Ti

and Tj is a cylinder, and the cycle C goes around this cylinder. Thus C must intersect
all of the paths Qt . As the graph is cubic, each intersection with a path has to use at
least two vertices, proving again that |C| ≥ z.

Case 2: S is nonorientable In this case a noncontractible cycle C in G will either
yield a cycle C′ as above, in which case the same argument applies, or it will yield
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a path P ′ in G′ whose endpoints were identified when introducing crosscaps. Recall
that we made every basic triarc used in the construction large enough that the distance
from its nucleus to the boundary of the triarc is at least z; thus P ′ is, without loss of
generality, contained within one of the triarcs in which a crosscap was introduced.
With the help of Fig. 9 and Fig. 8 (modified with a 6N -gon replacing the hexagon as
described above), it is now not hard to see that |P ′| ≥ z as desired. �

4 Other Neutral Sequences

In this paper we concentrated on the neutral sequence (0,0,1,0,1), but we believe
that our methods and results apply in a much more general setting—see also Sect. 5—
and it is the purpose of this section to explain this.

In Sect. 3 we showed that every plausible sequence can be extended into a real-
izable one by adding pentagons and heptagons only. In what follows we are going
to give a rough sketch of a proof that an arbitrary neutral sequence s can be used to
extend any plausible sequence into a realizable one under the assumption that a cou-
ple of basic building blocks can be constructed using precisely the faces that appear
in some multiple of s. We expect that our construction will help yield more general
results in the future, by showing that these building blocks can indeed be constructed.

So let p = (p3,p4, . . . , pr) be a plausible sequence for the sphere or the torus, and
let s = (p′

3,p
′
4, . . . , p

′
t ) be a neutral sequence. In order to prove that there is some n

such that p +ns is realizable, it suffices to find some k ∈ N for which it is possible to
construct the following building blocks using precisely the faces that appear in some
multiple of s:

(i) a (k, k, k)-triarc
(ii) a (k, k, k − 1)-triarc

(iii) for every nonzero entry pl in p, a triarc containing a face of size l, such that the
length of two of the sides of this triarc is a multiple of k

(iv) a “ring” like the one in Fig. 5 (using the faces from s in the right proportion
rather than pentagons and heptagons) for combining two equilateral triarcs

Indeed, to begin with, construct a parallelogram with all sides of length k out of
two (k, k, k − 1)-triarcs (supplied by (ii)) as shown in Fig. 10. (In figures explaining

Fig. 10 Constructing a parallelogram out of two (k, k, k − 1)-triarcs
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Fig. 11 Gluing R and T ′
together. The black dots depict
the faces imposed by the
sequence p

our construction, we shall use triarcs made of hexagonal faces, but this is for illustra-
tion purposes only; in fact they have to be made of multiples of s.) This also allows
us to construct any parallelogram with dimensions mk, lk for every m, l ∈ N.

Next, similarly to the construction in Theorem 3.1, construct a “basic” triarc as
in (iii) for each face-size l for which pl �= 0; in fact, we construct pl copies of this
basic triarc for every l. Then, using the parallelograms, we constructed earlier, we
recursively glue all those triarcs together into a single triarc T , in a manner very
similar to the operation of Fig. 2.

By recursively gluing the resulting triarc with a (k, k, k − 1)-triarc provided by
(ii) using the glueing operation of Fig. 2, we can transform T into an equilateral
(mk,mk,mk)-triarc T ′ for some (large) m ∈ N.

Using the glueing operation of Fig. 2 it is possible to construct a triarc R with the
same side-lengths as T ′, using only (k, k, k)-triarcs (provided by (i)) and the above
parallelograms.

In the case of the sphere, we can combine R and T ′ by using the “ring” provided
by (iv) to complete the construction.

If the underlying surface S is the torus, we glue R and T ′ together along one of
their sides to obtain a parallelogram and glue two opposite sides of this parallelogram
together to obtain a cylinder C both of whose bounding cycles are in–out alternating
cycles of length mk, see Fig. 11. We then glue the two bounding cycles of C together
to obtain a realization of a torus.

If p is plausible for some other surface S, then we would need additional gadgets
like those used in the proof of Corollary 3.2.

5 Outlook

Trying to achieve a better understanding of the implications of Euler’s formula, we
studied the question of whether, given a plausible sequence p and a neutral se-
quence q , it is possible to combine p and q into a realizable sequence p +nq , but we
did so in very restricted cases. The general problem remains wide open; in particular,
we would be interested to see an answer to the following problem.
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Problem 5.1 Given a closed surface S, is it true that for every plausible sequence p

for S and every neutral sequence q , there is an n ∈ N such that p + nq is realizable
in S with the exception of only finitely many pairs (p, q)?

(As mentioned in the introduction, if S is the torus, then the list of exceptional pairs
(p, q) is not empty.)
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We determine the spectra of cubic plane graphs whose faces have
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1. Introduction

A (3,6)-fullerene is a cubic plane graph whose faces have sizes 3 and 6. (In fact, Euler’s formula
implies that there are exactly four faces of size 3.) These graphs have received recent attention from
chemists due to their similarity to ordinary fullerenes. (Such graphs are sometimes called (3,6)-cages
in that community, but in graph theory this term already has a different, well-established meaning.)
In 1995, Patrick Fowler (see [7]) conjectured the following result, which we prove here. Prior to this
work, this result had been established for several subfamilies of (3,6)-fullerenes [5,7,14]. Recall that
the spectrum of a graph is the multiset of eigenvalues of its adjacency matrix.
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Fig. 1. Examples of some small (0,3,6)-fullerenes.

Theorem 1.1. If G is a (3,6)-fullerene, then the spectrum of G has the form {3,−1,−1,−1}∪ L ∪ (−L) where
L is a multiset of nonnegative real numbers, and −L is the multiset of their negatives.

In fact we prove (as Theorem 3.2) an extended conjecture of Fowler et al. [7]. They propose that a
generalized class of graphs called (0,3,6)-fullerenes also exhibit this “spectrally nearly bipartite” be-
havior. A semiedge of a graph is an edge with one endpoint, but unlike a loop, a semiedge contributes
just one to both the valency of its endpoint6 and the corresponding diagonal entry of the adjacency
matrix. In a plane embedding, a semiedge s with endpoint v is drawn as an arc with one end at v
which sits in a face f , and s contributes one to the length of f . A (0,3,6)-fullerene is a connected
3-regular graph, possibly with semiedges, embedded in the plane so that each face has length 3 or 6.
(The “0” in the above definition comes from the fact, that in physics literature, they treat semiedges
as faces of length 0.) Fig. 1 displays some examples of small (0,3,6)-fullerenes. It can be proved that
(0,3,6)-fullerenes have at most four semiedges, see (1).

The outline of our proof is as follows. We show that every (0,3,6)-fullerene can be represented
as a quotient of a certain lattice-like graph in the plane. This geometric description allows us to prove
that these graphs are Cayley sum graphs. Then we call on a theorem which describes the spectral
behavior of Cayley sum graphs in terms of the characters of the group.

In fact, the geometric description of (0,3,6)-fullerenes which is inherent in our proof is just a
slight extension of a construction for (3,6)-fullerenes which has been discovered by several authors
[5,7,16], and follows easily from a deep theorem on the intrinsic metric of polygonal surfaces by
Alexandrov [1]. In Section 4, we give a proper exposition of this construction, and a proof that it is
universal.

With this construction in hand, it is possible to explicitly compute the spectrum of (0,3,6)-
fullerenes, and in Section 5 we detail precisely how this computation can be carried out. Finally, in
Section 6, we generalize this construction to show how a general Cayley sum graph can be obtained
from a similar construction.

2. Cayley sum graphs

Let Γ be a finite additive abelian group, and let S ⊆ Γ . We define the Cayley sum graph CayS(Γ, S)

to be the graph (V , E) with V = Γ , and uv ∈ E if and only if u + v ∈ S . If S is a multiset, then
CayS(Γ, S) contains multiple edges, and if there exists u ∈ Γ with 2u ∈ S , then the edge uu is a

6 Still, we use v v to denote a semiedge at a vertex v .
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semiedge. This definition is a variation of the well-studied Cayley graph Cay(Γ, S), in which uv forms
an edge if and only if u − v ∈ S .

In contrast with Cayley graphs, there are only a few appearances of Cayley sum graphs in the lit-
erature (see [9] and references therein). For this reason we state some of their elementary properties.
The graph G = CayS(Γ, S) is |S|-regular. While G is not generally vertex-transitive, the map x �→ x + t
is an isomorphism from G to CayS(Γ, S + 2t), for every t ∈ Γ . Finally, the squared graph G(2) , which
has an edge for each walk of length 2 in G , is the ordinary Cayley graph Cay(Γ, S − S) where S − S
is the multiset {s1 − s2 | s1, s2 ∈ S}.

The spectrum of a (finite abelian) Cayley graph Cay(Γ, S) is easy to describe (see [10, Ex. 11.8]
or [11], where the nonabelian case is dealt with). Every character χ of Γ is a (complex-valued)
eigenvector corresponding to the eigenvalue

χ(S) :=
∑
s∈S

χ(s).

We may assume Γ = Zn1 × · · · × Znu , where |Γ | = ∏
i ni and Zk denotes the cyclic group of order k.

To each a = (a1, . . . ,au) ∈ Γ we associate the group character

χa : (x1, . . . , xu) �→ exp

(
2π i

∑
j

a j x j

n j

)
.

The characters for a and −a satisfy χ−a(x) = χa(x), so χa is a real-valued (indeed ±1-valued) eigen-
vector of Cay(Γ, S) if and only if a is an involutive group element. If a is not involutive, then the
real and imaginary parts of χa provide real-valued eigenvectors for the conjugate pair of eigenvalues
χa(S),χ−a(S).

Cayley sum graphs exhibit a similar phenomenon. Let R = {χa | a + a = 0} be the real-valued
characters of Γ , and let C be a set containing exactly one character from each conjugate pair {χa,χ−a}
(where a ∈ Γ and a + a �= 0). So the set of characters of Γ is R ∪ {χ,χ | χ ∈ C}. Versions of the
following result can be found in the literature [6,2].

Theorem 2.1. Let G = CayS(Γ, S) be a Cayley sum graph on a finite abelian group Γ , and let R, C be as above.
The multiset of eigenvalues of G is

{
χ(S): χ ∈ R

} ∪ {±∣∣χ(S)
∣∣: χ ∈ C

}
.

The corresponding eigenvectors are χ (for χ ∈ R), and the real and the imaginary parts of αχ (for χ ∈ C with
a suitable complex scalar α which depends only on χ(S)).

Proof. Let χ be a character of Γ and u ∈ Γ a vertex of CayS(Γ, S). Then∑
v∈N(u)

χ(v) =
∑
s∈S

χ(s − u) = χ(S)χ(u).

This shows that every real-valued character is an eigenvector corresponding to the eigenvalue χ(S).
If χ ∈ C , then χ is not an eigenvector. In this case we choose a complex number α such that |α| = 1
and α2χ(S) = |χ(S)| and we define x(v) = αχ(v). It follows that for every u ∈ Γ ,∑

v∈N(u)

x(v) = α2χ(S) · α−1χ(u) = ∣∣χ(S)
∣∣ · x(u).

Consequently, Re x and Im x are real eigenvectors corresponding to eigenvalues |χ(S)| and −|χ(S)|,
respectively. Both of these vectors are nonzero, as they generate the same 2-dimensional (complex)
vector space as the characters {χ,χ}. This, together with the orthogonality of characters, implies that
we have described the complete set of eigenvectors, and thus the entire spectrum of CayS(Γ, S). �
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3. (0,3,6)-fullerenes as Cayley sum graphs

The goal of this section is to prove that (0,3,6)-fullerenes are Cayley sum graphs, and to subse-
quently prove Fowler’s conjecture regarding their spectra.

The proof of Theorem 3.1 utilizes structural properties of 3-regular hexagonal tilings (hereafter
called hexangulations) of the torus. This class of graphs was classified by Altshuler [4] and studied by
many others (e.g., Thomassen [15]). In a recent work of Alspach and Dean [3], it is shown that they
are indeed Cayley graphs, and a description of the group is given. Although the properties we require
of these graphs are similar to those found elsewhere, our approach is novel since it is inherently
geometric.

A polygonal surface H is a connected 2-manifold without boundary which is obtained from a col-
lection of disjoint simple polygons in E2 by identifying them along edges of equal length. Thus we
view H both (combinatorially) as an embedded graph with vertices, edges, and faces, and as a mani-
fold with a (local) metric inherited from E2.

Theorem 3.1. Every (0,3,6)-fullerene is isomorphic to a Cayley sum graph for an abelian group which can be
generated by two elements.

Proof. Let G be a cubic (0,3,6)-fullerene with vertex set V . Let G2 = G × K2 (the categorical graph
product); G2 is also known as the Kronecker double cover of G . Let (V•, V◦) be the corresponding
bipartition of V (G2), and for every v ∈ V , let v• ∈ V• and v◦ ∈ V◦ be the vertices of G2 which cover v .
Every semiedge v v ∈ E(G) lifts to the edge v•v◦ in G2. Each facial walk of G bounding a face of size 6
lifts to two closed walks of length 6 in G2, and each facial walk of G bounding a face of size 3 lifts
to a closed walk of length 6 in G2. Accordingly, we may extend G2 to a polygonal surface H by
treating all edges as having equal length and adding a regular hexagon to each closed walk which is
the preimage of a facial walk of G , with clockwise orientation as given by the clockwise orientation
of that face. Now, H is an orientable polygonal surface, all vertices have degree three, and all faces
are regular hexagons, so H is a regular hexangulation of the flat torus. Let H̃ be the universal cover
of H and let p : H̃ → H be the covering map. Then H̃ (with the metric inherited from H) is the
regular hexangulation of the Euclidean plane. We define Ṽ• = p−1(V•), Ṽ◦ = p−1(V◦), and x̃ = p−1(x)
for x ∈ V• ∪ V◦ .

Fix a vertex u• ∈ V• , and treat H̃ as a regular hexangulation of E2 with p((0,0)) = u• . This
equips H̃ with an (additive abelian) group structure. The point set Ṽ• is a geometric lattice. The
point set ũ• is a sublattice of Ṽ• . Any fundamental parallelogram of ũ• is a fundamental region of
the cover p. We may identify H with H̃/ũ• , and this equips H with a group structure whose identity
is u• .

For every y ∈ H (y ∈ H̃) the map x �→ x + y is an isometry of H (H̃, respectively). This map may
or may not preserve the combinatorial structure of H (H̃). An isometry μ : H → H is respectful if μ
is an automorphism of the embedded graph associated with H. An isometry μ̃ : H̃ → H̃ is respectful
if it is a lift of a respectful isometry of H. Now, for every y ∈ Ṽ• the map x �→ x + y is a respectful
isometry of H̃. Accordingly, V• is a subgroup of H with identity u• , and for every y ∈ V• the map
x �→ x + y is a respectful isometry of H.

Let ρ be the automorphism of the graph G2 given by the rule ρ(v◦) = v• and ρ(v•) = v◦ for every
v ∈ V . Now, ρ extends naturally to a respectful isometry of H which preserves the orientation of the
hexagons, but interchanges V◦ and V• . We choose a respectful isometry ρ̃ of E2 so that ρ lifts to ρ̃ .
Because ρ̃ preserves the orientation of E2, the isometry ρ̃ is either a rotation or translation. Since ρ̃
is respectful and maps Ṽ• to Ṽ◦ , it easily follows that either ρ̃ is a rotation by π about the center of
an edge or a face, or ρ̃ is a rotation by π/3 about the center of a face F .

We first consider the latter case. Here, all three vertices of Ṽ• which are on the boundary of F , lie
in the same orbit of ρ̃2. Since ρ2 is the identity, all three vertices cover the same vertex, say v• in H.
The other three vertices of F cover v◦ . In this case G2 is the theta-graph with vertex set {v•, v◦}; we
have G ∼= CayS({0}, {0,0,0}), the graph with one vertex and three semiedges, and there is nothing left
to prove.

We henceforth assume that ρ̃ is a rotation by π . Let x, y ∈ V• and choose x̃, ỹ ∈ Ṽ• which project
(respectively) to x, y. Then (using the fact that ρ̃ is a rotation by π ) we find that
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ρ
(
ρ(x) + y

) = p
(
ρ̃
(
ρ̃(x̃) + ỹ

))
= p(x̃ − ỹ)

= x − y.

In other words, for any fixed y ∈ V• , conjugating the map on H given by x �→ x + y, by ρ yields the
map x �→ x − y.

We define a labeling � : V• ∪ V◦ → V• by the rule �(v•) = �(v◦) = v• . We regard � to be a labeling
of V (G2) by elements of the abelian group V• . Let v ∈ V and y ∈ V• . Then we have

�(v• + y) = �(v•) + y

and

�(v◦ + y) = �
(
ρ(v◦ + y)

)
= �

(
ρ
(
ρ(v•) + y

))
= �(v• − y)

= �(v◦) − y.

That is, the group V• acts on the labels of points in V• by addition and on the labels of points in V◦
by subtraction. Let S be the multiset of labels of the three vertices in V◦ which are adjacent to u•
(recall that u• is the group identity for V•). Then, for every v• ∈ V• , the labels of the three neighbors
of v• in G2 form the multiset S − v• . In particular, v and v ′ are adjacent vertices in G if and only if
�(v•) + �(v ′◦) = v• + v ′• ∈ S . It follows immediately from this that G ∼= CayS(V•, S). Since Ṽ• can be
generated by two elements, V• = Ṽ•/̃u• can also be generated by two elements, and this completes
the proof. �

We need only one quick observation before we resolve Theorem 1.1 and the extended conjecture
of Fowler et al. If G is a cubic plane graph with s semiedges, and f i faces of size i for every i � 1,
then 3|V (G)| = 2|E(G)|− s = ∑

i�1 i f i . Applying Euler’s formula, we find that
∑

i�1(6− i) f i = 12−3s.
In particular, every (0,3,6)-fullerene satisfies

s + f3 = 4. (1)

Theorem 3.2. If G is a (0,3,6)-fullerene with s semiedges, then the spectrum of G may be partitioned as
M ∪ L ∪ (−L) where one of the following holds:

(a) s = 0 and M = {3,−1,−1,−1},
(b) s = 2 and M = {3,−1},
(c) s = 3 and M = {3}, or
(d) s = 4 and M = {3,1}.

Proof. By the previous theorem, there is an abelian group Γ which can be generated by two ele-
ments so that G ∼= CayS(Γ, S) for some S ⊆ Γ with |S| = 3. By Theorem 2.1, we may partition the
eigenvalues of G into multisets M, L,−L where M = {χ(S): χ ∈ R} and R is the set of ±1-valued
characters of Γ . Every eigenvalue in M is the sum of three integers in {±1}. The identity character
corresponds to 3 ∈ M . Since G is not bipartite,7 we have −3 /∈ M , so every other element of M is ±1.
The trace of the adjacency matrix is equal to s, and is also equal to the sum of the eigenvalues. Since
L and −L sum to 0, we conclude that s = ∑

M .
We have |R| ∈ {1,2,4} because Γ has 2k involutive elements, for some k � 2. If |R| = 1, then

M = {3} and s = 3 as in the statement. If |R| = 2, then s = ∑
M = 3 ± 1, so we have either the case

7 Note that in this context, no graph with semiedge is bipartite.
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s = 2 or s = 4 of the statement. Finally, we assume |R| = 4. By Eq. (1) we have s � 4, so
∑

M ∈
{0,2,4}. If

∑
M = 0, then s = 0 (G is a (3,6)-fullerene), and we have case (a). Finally, if

∑
M ∈ {2,4},

then M contains both a 1 and a −1. By transferring these two entries from M to the multisets L
and −L, we find ourselves again in either the case s = 2 or the case s = 4 of the statement. This
completes the proof. �

We remark that there are infinitely many (0,3,6)-fullerenes with s semiedges, for each s = 0, 2,
3, 4. As shown by Theorem 3.2, there are none with s = 1, a fact that is non-trivial to prove from the
first principles (compare Theorem 2 (with k = 3) in [8, Section 13.4, p. 272]).

4. An explicit construction

It is known (see references in the Introduction) that all (3,6)-fullerenes arise from the so-called
grid construction. Roughly speaking, the grid construction expresses the dual plane graph, which is
a triangulation of the sphere, as a quotient of the regular triangular grid. The grid construction is
also used by physicists [5,14] (sometimes without formal justification) since it is a convenient way to
classify (3,6)-fullerenes and compute their invariants.

We describe an extension of the grid construction and show that it characterizes the (0,3,6)-
fullerenes. The construction makes clear how semiedges arise. The group structure of (0,3,6)-
fullerenes is explicitly determined as a quotient of the group of translations of the triangular grid.
With this, we can easily find the Cayley sum graph representation via standard lattice computations,
and thereby determine the spectrum and the eigenvectors of every (0,3,6)-fullerene.

In the following, T denotes the infinite triangular grid. Its vertices (called gridpoints) form the
so-called A2 lattice. The midpoint of any edge in T is called an edgepoint. The dual G∗ of a plane
graph G with semiedges is defined as an obvious extension of the dual of an ordinary graph; every
semiedge in G which is incident with vertex v and face f corresponds to a semiedge in G∗ which is
incident with the dual vertex f ∗ and the dual face v∗ .

Construction 4.1. The following procedure results in a (0,3,6)-fullerene G.

1. Let �ABC be a triangle having no obtuse angle, and whose vertices are gridpoints of T . Let Ā, B̄ , C̄ be the
midpoints of the edges which are opposite to A, B, C (respectively) in �ABC.

2. Optionally, translate �ABC so that A coincides with an edgepoint of T .
3. From �ABC, we fold an (isosceles) tetrahedron Q = A Ā B̄C̄ by identifying the boundary segment ĀB with

ĀC , B̄C with B̄ A, and C̄ A with C̄ B (so A, B, and C are identified into a single vertex in Q ). The portion of
T lying within �ABC becomes a finite graph G∗ , possibly with semiedges, and drawn on the surface of Q .

4. Let G be the dual of the plane graph G∗ .

Every gridpoint within or on the boundary of �ABC, except A, Ā, B̄ , and C̄ , has degree 6 in G∗ ,
and corresponds to a hexagonal face of G . After Step 2, each of A, Ā, B̄ , C̄ is either a gridpoint or
an edgepoint of T . If X ∈ {A, Ā, B̄, C̄} is a gridpoint, then X becomes a vertex of degree 3 in G∗ , and
corresponds to a triangular face in G . If X is an edgepoint, then X becomes one end of a semiedge
in G∗ , which corresponds to a semiedge in G . It follows that Construction 4.1 results in a (0,3,6)-
fullerene.

We remark that Construction 4.1 works even if �ABC has an obtuse angle (although it does not
yield a geometric tetrahedron). However, this does not give any new (0,3,6)-fullerenes, as the fol-
lowing theorem shows. By forbidding obtuse triangles, we lose no generality and gain canonicality.

Theorem 4.2. Every (0,3,6)-fullerene arises from Construction 4.1.

Proof. Let G be a (0,3,6)-fullerene. If G has just one vertex, then G arises from the construction
when �ABC is a triangular face of T . We assume next that G has at least two vertices. The proof
of Theorem 3.1 shows that the direct product G2 = G × K2 is a bipartite hexangulation H of the flat
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torus. Moreover, H is the image of a covering map p : H̃ → H from a hexagonal tessellation of the
plane.

We further recall that there is an isometry ρ of H which is respectful of G2 and interchanges its
partite sets V• and V◦ . This isometry lifts to an isometry of H̃ which is a rotation ρ̃ by π about a
point, say A ∈ H̃, which is either the center of a hexagonal face, or the midpoint of an edge of H̃.
(More precisely ρ̃ : x �→ 2A − x is the central symmetry through A.) The kernel of p (more precisely,
the set p−1(p(A))) is a geometric lattice Λ in H̃, and rotation by π about any point in the scaled
lattice 1

2 Λ projects to ρ . Let B , C be points in H̃ such that the vectors AB , AC form a lattice basis
for Λ. By possibly translating C by a (unique) integer multiple of AB , we can assume that �ABC has
no obtuse angles. This lattice basis defines a fundamental parallelogram ABDC where AD = AB + AC .
Scaling the parallelogram by 1

2 results in a fundamental parallelogram for 1
2 Λ whose vertices we may

label AC̄ Ā B̄ as in Construction 4.1.
Now each vertex v of G lifts to a unique pair of vertices v•, v◦ in the (half-open) parallelogram

ABDC. If one of the vertices in {v◦ , v•} is not on the boundary of �ABC, then v◦ , v• are centrally
symmetric about Ā; we may represent v by the unique vertex in {v◦ , v•} which lies in �ABC. Other-
wise, both vertices in {v◦ , v•} lie on the same edge of �ABC, and they are centrally symmetric about
either Ā, B̄ , or C̄ , so they will be identified in Step 3 of the construction. In this way we obtain an
isomorphic copy of G . Finally, Construction 4.1 is stated in terms of the triangular grid T , which is
the plane dual of H̃. �

We remark that Construction 4.1 in fact produces a (0,3,6)-fullerene G rooted at a triangle or a
semiedge labeled with A. Two triangles drawn in T result in isomorphic pairs (G, A) if and only if
the triangles are congruent. Therefore the map �ABC �→ G is at most 4-to-1 up to symmetries of T .

5. Computing the spectrum

In this section, we use Construction 4.1 to compute the group and spectrum of any particular
(0,3,6)-fullerene G .

The faces of T consist of up-triangles (
) and down-triangles (∇). Let Λ• be the set of (the centers
of) the up-triangles in T . We regard Λ• to be a lattice (called the A2-lattice) generated by unit-length
vectors a,b with � ab = π/3. With A being the gridpoint selected in Step 1 of Construction 4.1, we
shall assume that the origin of Λ• is (the center of) the up-triangle u• := �A(A + a)(A + b). Note
that Λ• is a translation of the gridpoints of T and corresponds to Ṽ• in the proof of Theorem 3.1.
We denote by Λ the sublattice of Λ• generated by vectors

−−→
AB and

−−→
AC . (A translation of Λ is used in

the proof of Theorem 4.2.) In Step 2, we translate �ABC by a vector

c := p1

2
a + p2

2
b (2)

for integers p1, p2. We may assume without loss of generality that p1, p2 ∈ {0,1}, so, after Step 2,
the point A is either a vertex or an edgepoint on the boundary of u• .

Let p, q, r, s be integers satisfying

AB = pa + qb, AC = ra + sb. (3)

(Observe that the construction results in a graph G with no semiedges if and only if each of
p1, p2, p,q, r, s is an even integer.) Let Ā, B̄ , C̄ and T be as in the construction of G .

To express G as a Cayley sum graph we label the faces of T with elements of the finite abelian
group presented as Γ = 〈α,β | pα + qβ = 0, rα + sβ = 0〉. We define f : Λ• → Γ by

f (ia + jb) = iα + jβ, (4)

and extend f to the down-triangles in such a way that triangles which are centrally symmetric with
respect to A receive the same value of f . The kernel of f is the lattice Λ generated by AB and AC .
We observe the following properties:
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• f assigns the same value to triangles that are identified during the ‘folding’ stage of the construc-
tion. This is because the triangles that are identified are symmetric with respect to one of C̄ , B̄ ,
and Ā; each of these symmetries is a composition of the symmetry through A and a translation
by an element of Λ = ker f .

• f is a bijection from V (G) to Γ . By construction, the up-triangles within the fundamental region
ABDC correspond to elements of Γ . The down-triangles within the triangle ABC correspond to
up-triangles within DC B .

• If u1 and u2 are two up-triangles, then f (u2) = f (u1) + f (u2 − u1). If d1 and d2 are two down-
triangles then f (d2) = f (d1) − f (d2 − d1).

Now let u be any up-triangle and d1, d2, d3 its neighbors. We define the sum-set S = { f (u) + f (di) |
i = 1,2,3}. From the above-mentioned properties of f it follows that S does not depend on the
choice of u. The symmetry around A shows that we get the same sum-set if we consider neighbors
of a down-triangle to define S . It follows that G ∼= CayS(Γ, S).

We can explicitly compute Γ and S by applying standard lattice computations. We recall that the
Smith normal form of a nonsingular integer matrix M is the unique matrix diag(δ1, δ2, . . . , δk) = UMV
where U and V are unimodular and δ1 | δ2 | . . . . The product δ1δ2 · · · δi is the g.c.d. of the order i
subdeterminants of M , whenever 1 � i � k (see, e.g., [12, Section 4.4]).

Lemma 5.1. Let G be a (0,3,6)-fullerene obtained from Construction 4.1, and let c, p, q, r, s be as in (2)
and (3). Let diag(m,n) = UMV be the Smith normal form of the matrix M = ( p r

q s

)
. Let u, v denote the columns

of U . Then G = CayS(Γ, S) where Γ = Zm × Zn and

S = {
(p1 − 1)u + p2v, p1u + (p2 − 1)v, (p1 − 1)u + (p2 − 1)v

}
.

Here we interpret each column vector
(x1

x2

) ∈ S to be the group element (x1 mod m, x2 mod n) ∈ Γ .

Proof. The columns of the matrix B := (a,b) form a lattice basis for Λ• whereas those of BM
generate the sublattice Λ. Since U and V are unimodular, the columns of B ′ := BU−1 also gen-
erate Λ• . Accordingly, Λ is generated by the columns of BMV = B ′ diag(m,n). It follows that Γ =
Λ•/Λ ∼= Zm × Zn . If we index the up-triangles with respect to the basis B ′ , then the mapping
f : B ′( i′

j′
) �→ (i′ mod m, j′ mod n) is the one defined in (4). Changing the basis to B = B ′U , we find

that f (ia + jb) = iu + jv, where we again interpret iu + jv to be an element of Zm × Zn .
After Step 1 of the construction, the three down-triangles which are neighbours of u• reflect

through A to the up-triangles at −a, −b and −a − b. When A is translated by c in Step 2, the
three up-triangles are accordingly translated by 2c = p1a + p2b. Therefore

S = {
f
(
(p1 − 1)u + p2v

)
, f

(
p1u + (p2 − 1)v

)
, f

(
(p1 − 1)u + (p2 − 1)v

)}
as claimed. �

We present a sample computation illustrating the determination of the group and spectrum.

Example 5.2. The example of Fig. 2 corresponds to (p1, p2) = (0,0) and (p,q, r, s) = (6,2,−2,6). All
six integers are even, so the resulting graph G has no semiedges. We compute the Smith normal form
to be

UMV =
(

0 1
−1 −7

)(
6 −2
2 6

)(−2 −3
1 1

)
=

(
2 0
0 20

)
.

Hence Γ = Z2 × Z20. Furthermore, the generating set is

S = {−u + 0v,0u − v,−u − v} =
{(

0

1

)
,

(
1

7

)
,

(
1

8

)}
.
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Fig. 2. An example of Construction 4.1.

This implies G has eigenvalues 3,−1,−1,−1, and{±∣∣εb + (−1)aε7b + (−1)aε8b
∣∣: 0 � a � 1, 1 � b � 9

}
,

where ε = e2π i/20.
If we were to translate �ABC by ( 1

2 a,0), then we get a (0,3,6)-fullerene G ′ with four semiedges.
Here we have (p1, p2) = (1,0), which has the effect of translating the generating set by u. That is,

G ′ = CayS
(
Z2 × Z20,

{
(0,0), (1,6), (1,7)

})
,

and the spectrum of G ′ is

{3,1,1,−1} ∪ {±∣∣1 + (−1)aε6b + (−1)aε7b
∣∣: 0 � a � 1, 1 � b � 9

}
.

It is worth noting that the symmetric parts of the spectra of G and G ′ coincide. The four semiedges
of G ′ are incident with the vertices (0,0), (1,0), (0,10), (1,10) ∈ Γ .

6. The geometry of Cayley sum graphs

In Section 4 we saw how the geometric description of (0,3,6)-fullerenes in terms of the A2 lattice
implies that they are Cayley sum graphs. Therefore their eigenvectors are easy to calculate, and their
spectra are “nearly bipartite.” Here we explore the circumstances under which Cayley sum graphs
arise from geometric lattices in this manner. In fact we will see that every Cayley sum graph arises as
a quotient of two cosets of a geometric lattice. We then exhibit some families of Cayley sum graphs
which have a recognizable crystallographic local structure.

It is an easy fact that a graph G is a Cayley graph on a group Γ if and only if Γ is isomorphic to a
subgroup of the automorphism group which acts regularly on V (G). Next we shall describe a similar
equivalence for Cayley Sum graphs. Let G2 = G × K2 be the Kronecker double cover with bipartition
(V•, V◦). Note that G2 has a natural automorphism, ρ ,—we call it the inversion map—which transposes
the two vertices within each fibre. By following the proof of Theorem 1.1, we find that G is a Cayley
sum graph on an abelian group Γ if (and only if) Γ acts regularly on each of V• and V◦ as a group
of G2-automorphisms, and this action satisfies

ρ−1 gρ = −g for each g ∈ Γ . (5)

Our construction proceeds with a sequence of graphs

G̃ �→ G̃2 �→ G2 �→ G.
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Fig. 3. Constructing finite Cayley sum graph from a lattice. Illustrated with the D2-lattice, resulting in a 28-vertex Cayley sum
graph which is also a 4-regular quadrangulation of the tetrahedron (one semiedge appears in each corner of the tetrahedron).

We start with a geometric lattice Λ• ⊂ Ed and a Cayley sum graph G̃ = CayS(Λ•, S). When G̃ is drawn
with edges as straight line segments, each generator s ∈ S corresponds to a set of edges of G̃ whose
midpoints are concurrent at the point 1

2 s. Let Λ◦ be any nontrivial coset of Λ• , and let A ∈ Rd be such
that Λ◦ = 2A+Λ• . Let ρ̃ : x �→ 2A−x be the inversion map through A. Note that (since Λ• is a lattice)
we have ρ̃(Λ•) = Λ◦ . As above, we construct G̃2 = G̃ × K2 with partite sets (Ṽ•, Ṽ◦) = (Λ•,Λ◦),
where the fibres of G̃2 are the orbits of ρ̃ . Note that the adjacency rule in G̃2 is similar to that of
Cayley graphs (vertices u ∈ Λ• and v ∈ Λ◦ are adjacent iff u − v ∈ S − 2A); the vertex set, however,
is not a group.

The graph G̃2 is drawn in Euclidean d-space Ed with straight line segments for edges. Let Ed/ρ̃
denote the quotient space (an orbifold) whose points are the ρ̃-orbits {x, ρ̃(x)}, x ∈ Ed . Geometrically
speaking, Ed/ρ̃ is a cone with apex A having the solid angle of a halfspace. By mapping each point
in Ed to its ρ̃-orbit, we may view G̃ ∼= G̃2/ρ̃ as being naturally embedded in Ed/ρ̃ . Every edge of G̃2
whose midpoint is A folds to a semiedge of G̃ . In the case of (0,3,6)-fullerenes, G̃2 is the plane
hexagonal grid, and G̃ is a grid drawn on a cone where every face is a hexagon except at A, where A
is either the midpoint of a triangular face, or the end of a semiedge.

Now let Λ be any sublattice of Λ• , and let p be the natural projection from Ed to the d-torus
Ed/Λ. Then G2 := p(G̃2) is a finite bipartite graph with partite sets (V•, V◦) := (p(Λ•),p(Λ◦)), which
is embedded in Ed/Λ. Then ρ̃ projects to ρ , a symmetry of order 2 in the d-torus. Evidently ρ is an
inversion map for G2 satisfying (5) with Γ = Λ•/Λ. Therefore G ∼= G2/ρ is a finite Cayley sum graph
embedded in the orbifold (Ed/Λ)/ρ (hereafter denoted by Ed/ρΛ). Let A⊂ Ed/Λ be the fixed points
of ρ . Then A = p(A + 1

2 Λ) consists of exactly 2d points and ρ acts on Ed/Λ as an inversion through
any point in A. As an orbifold, Ed/ρΛ is orientable if and only if d is even. To visualize Ed/ρΛ, it is
convenient to select a fundamental region for Ed/Λ whose 2d extreme points belong to A +Λ. Choose
a hyperplane H , which contains the region’s centroid and let T be the part of the region which lies on
the positive side of H . All points in A lie on the boundary of T so we obtain Ed/ρΛ by an appropriate
gluing of the boundary of T . The graph G is embedded in T with each vertex {x,ρ(x)} represented
by the unique point in {x,ρ(x)} ∩ T . For example, E2/ρΛ is an isosceles tetrahedron, whose four
extreme points comprise A. The grid construction of (0,3,6)-fullerenes corresponds to selecting H to
be a diagonal of a fundamental parallelogram. The Cayley sum graph G has one semiedge for every
point of A which lies on an edge of G2. Fig. 3 summarizes the commuting projections and the four
embedded graphs.
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Since every finite abelian group is the quotient of two geometric lattices, it follows that every finite
Cayley sum graph G arises from a quadruple (Λ•, S, A,Λ) as described above. By employing a linear
transformation we can even assume that Λ• = Zd . We do not make this assumption here, since that
would obfuscate the following examples. When the sum set S is a set of lattice points which are close
to 2A, then each edge of G̃2 is a short line segment, and G̃2 is often a recognizable bipartite crys-
tallographic configuration. After selecting Λ and applying the above construction, we obtain a finite
Cayley sum graph embedded in T with a local geometry that reflects the crystallographic structure
of G̃2. We present some examples.

• For d = 1, if G̃2 is the two-way infinite path, then G̃ is the infinite ray with a semiedge at its
origin, and G2 is an even cycle. The inversion ρ identifies points reflected through a line which
bisects a pair of opposite edges of the cycle (when it is drawn as a regular polygon). Consequently,
G is a finite path with a semiedge at each end. It is easy to observe (either directly, or by realizing
G as a Cayley sum graph) that the spectrum of G takes the form M ∪ L ∪ (−L) where M = {2} or
M = {2,0} (depending on the parity of |V (G)|).

• (Grid-like examples.) If Λ• = Dd , the lattice of integer points of even weight, and Λ◦ = Λ• +
(1,0,0, . . .), then Λ•∪Λ◦ = Zd , and we may (by a suitable choice of S) take G̃2 to be the standard
cartesian grid. If A = ( 1

2 ,0,0, . . .), then applying the construction with any sublattice Λ of Λ•
leads to a Cayley sum graph G having exactly 2d semiedges.
If d = 2, then G is a 4-regular quadrangulation of an isosceles tetrahedron, with a semiedge at
each tetrahedral vertex. Such a graph is illustrated in Fig. 3. The set of unmatched eigenvalues
of G is either M = {4} or M = {4,0}. Indeed, every 4-regular quadrangulation of a sphere can be
expressed in this way. To see this fact, we need only adapt the proof of Theorem 3.1.
Another possibility (for an odd d > 1) is to start with the same Λ• , Λ◦ and S as above, and to
take A = ( 1

2 , 1
2 , 1

2 , . . .). Since A is not on an edge of the ‘hypercubic’ grid, this results in a grid-like
Cayley sum graph G having fewer than 2d semiedges. Indeed G has no semiedges at all if Λ is a
sublattice of 2Λ• .

• (Diamond-like examples.) Again we take Λ• to be the Dd-lattice, but put Λ◦ = Λ• + ( 1
2 , 1

2 , 1
2 , . . .).

The set Λ• ∪ Λ◦ is commonly called the generalized diamond packing, and is denoted by D+
d (see

[13, p. 119]). The diamond grid is the graph G̃2 in which each point in Λ• is joined to the 2d−1

nearest points in Λ◦ . Putting A = ( 1
4 , 1

4 , 1
4 , . . .) results in a Cayley sum graph having at least 2d−1

semiedges. A more attractive option is to put A = ( 5
4 , 1

4 , 1
4 , . . .), which lies on no edge of G̃2.

Provided that Λ is a sublattice of 2Λ• , this results in a Cayley sum graph having no semiedges.
When d = 3, this construction gives a class of Cayley sum graphs having the local structure of
diamond crystal. Such graphs satisfy M = {4,0,−2,−2}. Another attractive class is based on D+

8 ,
otherwise known as the E8 lattice.

• The 24-dimensional Leech lattice Λ24 arises as the union of two cosets of a lattice hΛ24 which is
obtained from the binary Golay code (see [13, p. 124]). This yields a particularly attractive class
of crystallographic Cayley sum graphs of high dimension.

We have constructed infinite families of Cayley sum graphs whose spectra have the form M ∪ L ∪
(−L), where M is a fixed finite multiset. It would be interesting to find other natural examples of this
phenomenon.
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Two problems of Cameron, Praeger, and Wormald [Infinite highly arc transitive digraphs
and universal covering digraphs, Combinatorica (1993)] are resolved. First, locally finite
highly arc-transitive digraphs with universal reachability relation are presented. Second,
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ing block’ is a finite bipartite digraph that is not a disjoint union of complete bipartite
digraphs. Both of these were conjectured impossible in the above-mentioned paper. We
also describe the structure of two-ended highly arc-transitive digraphs in more generality,
heading towards a characterization of such digraphs. However, the complete characteriza-
tion remains elusive.

1. Introduction

A digraph D consists of a set of vertices V (D) and arcs (also termed edges)
E(D) ⊆ V (D)× V (D). We consider digraphs without loops and rely on
standard terminology and notation as in [2] or [4]. In particular, an edge
(u,v) ∈ E(D) is shortly written as uv and interpreted as the edge from u
to v.
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An s-arc in a digraph is an (s+ 1)-tuple of vertices (v0,v1, . . . ,vs) such
that vi−1vi is an edge for each i=1, . . . ,s. A digraph D is s-arc transitive if
for every two s-arcs (vi)

s
i=0, (v′i)

s
i=0, there is an automorphism f of D such

that f(vi) = v′i for each i. To exclude trivialities, it is also assumed that D
has no isolated vertices and that every arc of D lies on some s-arc.

The notion of s-arc transitive digraphs parallels that of s-arc transitive
undirected graphs. For those, an s-arc corresponds to a nonretracting walk
of length s. Celebrated result of Tutte [13] states that a finite 3-regular
graph can be s-arc transitive only if s≤ 5. Weiss [14] extended this (using
the classification of finite simple groups) to finite r-regular graphs (r > 2);
these can be s-arc transitive only if s ≤ 8. (Somewhat trivially, cycles are
s-arc transitive for every s.)

A digraph is highly arc-transitive if it is s-arc transitive for every s≥ 0.
As one may expect, this is very demanding definition. Indeed, the only con-
nected finite highly arc-transitive digraphs are the directed cycles (including
cycles of length 1 and 2). Among infinite digraphs, the number of highly arc-
transitive ones is much larger. Still, they are rather restricted, which makes
the constructions nontrivial, and one may hope to characterize all such di-
graphs, at least to some extent.

The motivation to study highly arc-transitive digraphs does not come
solely from combinatorics. There is an intimate connection to totally dis-
connected locally compact groups that is presented in Möller [9], see also
Malnič et al. [6].

An obvious infinite highly arc-transitive digraph is the two-way-infinite
directed path, which we shall denote by Z. Another immediate example is
obtained when we replace each vertex of Z by an independent set of size
k and every arc by a (directed) complete bipartite graph ~Kk,k – formally

this is the lexicographic product Z[Kk] with Kk denoting the graph with k
vertices and no edges. Confirm also Lemma 4.3 and Theorem 4.5 in [3] for
more on products and high arc-transitivity.

The question of what other highly arc-transitive digraphs exist has
started a substantial amount of research. The question was originally con-
sidered by Cameron, Praeger, and Wormald [3]. They presented some non-
trivial constructions (details can be found in Section 3) and worked on ways
to describe all highly arc-transitive digraphs. One approach to this involves
the reachability relation.

Given a digraph D, an alternating walk is a sequence (v0,v1, . . . ,vs) of
vertices such that vivi+1 and vivi−1 are arcs of D either for all even i or
for all odd i; informally, when visiting the vertices v0,v1, . . . ,vs, we use the
arcs of D alternately in the forward and backward direction. When e, e′
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are two arcs of D, we say that e′ is reachable from e, in symbols e∼ e′, if
there is an alternating walk which has e as the first arc and e′ as the last
one. One can easily see that this is an equivalence relation. Moreover, this
relation is preserved by any digraph automorphism. Thus, whenever D is
1-arc transitive, then the digraphs induced by the equivalence classes are
isomorphic to a fixed digraph, which will be denoted by R(D) (R stands for
reachability).

It is shown in [3] that if the reachability relation has more than one class,
then R(D) is bipartite and a construction is presented that, for an arbitrary
directed bipartite digraph R, gives a highly arc-transitive digraph D with
R(D) ' R. In fact, a universal cover for all such digraphs is constructed.
Thus a question arises, whether there are highly arc-transitive digraphs for
which the reachability relation is universal (by which it is meant that there is
just one equivalence class), as this approach to classify highly arc-transitive
digraphs would not work for them. Actually, such digraphs are rather easy
to construct if we allow infinite degree. One example would be the digraph
Q whose vertex set are all rational numbers, V (Q)=Q, and two vertices u,v
are adjacent if u<v. So, the following question was asked in [3].

Question 1.1. Is there a locally finite highly arc-transitive digraph with
universal reachability relation?

In Section 2 we present a construction of such digraphs – showing, in
effect, that highly arc-transitive digraphs form a richer class of digraphs
than one might expect.

Many highly arc-transitive digraphs possess a homomorphism onto Z.
That is a mapping f : V → Z such that for every edge uv we have f(v) =
f(u) + 1. This is called property Z in [3], and the authors ask, whether
all locally finite highly arc-transitive digraphs have this property. The first
examples of locally finite highly arc-transitive digraphs without property
Z were constructed by Malnič et al. in [7]. Our digraphs with universal
reachability relation provide further examples, as a digraph with property
Z has infinitely many reachability classes.

Another approach to classify highly arc-transitive digraphs is to use the
number of ends. (See [4] for the definition of an end of a graph.)

It is well known that every infinite vertex-transitive graph, and hence
also every highly arc-transitive digraph, has 1, 2, or infinitely many ends.
An example with two ends is Z, with infinitely many ends a tree (where the
in-degree of all vertices is some constant d− and the out-degree of all vertices
is some constant d+). An example of a highly arc-transitive digraph with



68 APPENDIX D. HIGHLY ARC-TRANSITIVE DIGRAPHS

4 MATT DEVOS, BOJAN MOHAR, ROBERT ŠÁMAL

just one end is Q. Locally finite examples are known, but they are harder to
construct. In a few words, one can construct them as horocyclic products of
trees, see [8] for details.

Let us focus on two-ended digraphs. This class includes the afore-
mentioned basic examples Z and Z[Kk], as well as a more complicated
construction by McKay and Praeger [3, Remark 3.4] that is also discussed
in our Section 3 as Construction 1. This construction was generalized in [3,
Definition 4.6].

Based on their generalization and the lack of other examples, it was
conjectured in [3] that for each connected highly arc-transitive digraph D
with two ends, the reachability digraph R(D) is either infinite, or a com-
plete bipartite digraph. We disprove this conjecture in Section 3, where we
present several constructions that behave in a more complicated way. Inde-
pendently from us, Christoph Neumann has constructed counterexample to
Conjecture 3.1 using a different method.

Finally, in Section 4 we work towards characterizing all two-ended highly
arc-transitive digraphs. We show, in particular, that every such digraph ei-
ther admits a quotient by which we can reduce it to a simpler structure, or
some lexicographic product G[Kk] (digraph G with cloned vertices) can be
constructed by a rather complicated Construction 4 described in Section 4.
This construction uses a finite digraph with colored edges as a ‘template’.
While this construction provides many complicated new examples and is
shown to be universal (upto cloning of vertices), we are lacking full under-
standing of when precisely it gives rise to a highly arc-transitive digraph.

2. Highly arc-transitive digraphs with universal reachability
relation

The following result answers Question 1.1 in the affirmative.

Theorem 2.1. There is a locally finite highly arc-transitive digraph for
which the reachability relation is universal. In fact, for every composite
integer d ≥ 4 there is such digraph with all in-degrees and all out-degrees
equal to d.

Proof. Pick integers a,b ≥ 3. We will construct a digraph Ga,b, in which
every vertex has in- and out-degree equal to (a−1)(b−1) and which satisfies
the conditions of the theorem. Let T =Ta,b be the infinite tree with vertex set
A∪̇B, where every vertex in A has a neighbours in B, and every vertex in B
has b neighbours in A. Next, we define the desired digraph with V (Ga,b) =
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Figure 1. The digraph G3,3 – a part of the digraph (with the underlying
tree), without directions of edges. Vertices of the set A are small circles,

vertices of B are squares.

e1 e e2

u v

Figure 2. The digraph G3,3 – description of the direction of edges.
Vertices of the set A are small circles, vertices of B are squares.

E(Ta,b). For each e=uv ∈E(Ta,b), where u∈A, v ∈B, we add an arc from
each e1 6= e incident with u to each e2 6= e that is incident with v. For each
such pair e1,e2 we put c(e1,e2) :=e. We let G=Ga,b be the resulting digraph;
in Fig. 1 and 2 we display part of G3,3.

First we prove that G is highly arc-transitive. Suppose e=(e0,e1, . . . ,es)
is an s-arc in G, and let P (e) be e0, c(e0,e1),e1, . . . , c(es−1,es),es, the corre-
sponding path in T . Now let e′ be another s-arc in G. Obviously P (e) and
P (e′) are paths in T of the same length, both starting at a vertex of B.
Consequently, there is an automorphism ϕ of T that maps P (e) to P (e′).
The mapping that ϕ induces on E(T ) = V (G) is clearly an automorphism
of G that sends e to e′.
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We still need to show that the reachability relation of G is universal.
Suppose e,e′∈V (G) are adjacent as edges in T , and that h (resp. h′) is an
arc of G starting at e (resp. e′). We will show that h ∼ h′; this is clearly
sufficient. Assume first that e and e′ share a vertex of A. Let h1, h2 be arcs
of G as depicted in the left part of Fig. 3 (recall that a ≥ 3). Obviously
h,h1,h2,h

′ is an alternating walk, thus h ∼ h′. Secondly, assume e and e′

share a vertex of B. In this case pick arcs h1, h2 according to the right part
of Fig. 3, utilizing that b≥3. Now h∼h1 and h2∼h′ according to the first
case. This shows that h1∼h2 and completes the proof.

h

h1

h′

h2

h

h1 h2

h′

Figure 3. Two arcs of Ga,b that start at adjacent edges of Ta,b are
equivalent.

Remark. It is known that highly arc-transitive digraphs with universal
reachability relation do not exist if indegrees d− and outdegrees d+ are not
the same [11], and neither they exist if d+ = d− is a prime [3]. However,
whenever d+ = d− is not a prime, it can be written as (a− 1)(b− 1) for
a,b≥3, so Theorem 2.1 provides an example of such a digraph.

Note that the structure of the digraph Ga,b can also be described as
follows. Consider a partition of the vertices of Ka,a(b−1) into a copies of
a star, K1,b−1. Let us denote these copies by S1, . . . , Sa. We let H be
Ka,a(b−1)−∪iE(Si). Then we take countably many copies of H and glue them
together (in a tree-like fashion) by identifying in pairs the sets corresponding
to some of the Si’s. From this description it is immediate that Ga,b has
universal reachability relation.



71

HIGHLY ARC-TRANSITIVE DIGRAPHS 7

3. Two-ended constructions

As mentioned in the introduction, a highly arc-transitive digraph can have
1, 2, or infinitely many ends; in the rest of this paper we concentrate on the
case of two ends. It is not hard to show (see the proof of Proposition 4.1)
that every two-ended 1-arc transitive digraph D has the following structure:
the vertices can be partitioned as V (D) =

⋃∞
i=−∞Vi and all arcs go from

some Vi to Vi+1. Moreover, if D is also vertex-transitive, then each of the
induced digraphs Bi=D[Vi∪Vi+1] is isomorphic to a fixed bipartite ‘tile’ B.

If B is a complete bipartite digraph ~Kk,k, we get the basic example Z[Kk].
If B is not the complete bipartite digraph, then D is not determined just by
B, as we need to specify how are consecutive copies Bi and Bi+1 of B ‘glued’
together at Vi+1. It is easy to see that all components of B are isomorphic
to the reachability digraph R(D). The following was conjectured in [3].

Conjecture 3.1 (Cameron, Praeger, and Wormald [3]). If D is a con-
nected highly arc-transitive digraph such that there exists a homomorphism
f : D→Z and f−1(0) is finite, then R(D) is a complete bipartite digraph.

Next, we describe several constructions. We start with the one found by
McKay and Praeger [3, Remark 3.4], that, while nontrivial, concurs with
the above conjecture. Next, we shall present our construction (Construc-
tion 2), disproving the conjecture. Continuing, we shall provide some more
complicated examples. In Section 4, we introduce a very general construc-
tion and provide some evidence that this construction essentially describes
all two-ended highly arc symmetric digraphs.

We want to mention here that recently (and independently) Christoph
Neumann has constructed [10] counterexample to Conjecture 3.1 using a
different setting. His method (as well as ours) allows for many modifications
and extensions, however his and ours smallest counterexamples are isomor-
phic.

Construction 1 (McKay and Praeger [3, Remark 3.4]). Let S be a
finite set, n a positive integer, and let V =Z×Sn. The set V is considered
as the vertex-set of the digraph in which two vertices a= (i,a1, . . . ,an) and
b=(i+1, b1, . . . , bn) are adjacent if aj =bj+1 for each j=1, . . . ,n−1; no other
edges are present.

Here, the digraph B is a disjoint union of complete bipartite digraphs
(more precisely, B consists of |S|n−1 copies of ~K|S|,|S|), thus R(D) is ~K|S|,|S|.
The fact that this is a highly arc-transitive digraph is easy to show directly,
but also follows from our next constructions.
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Construction 2. Let T be a “template” – an arc-transitive digraph that
is bipartite with parts A1, A2, all arcs directed from A1 to A2. Let D be
the digraph with vertex-set V =Z×A1×A2, in which two vertices (i,a1,a2),
(i+1, b1, b2) are connected if (a1, b2)∈E(T ). We define Vi={i}×A1×A2⊂V .

It is clear from the definition that the digraph joining Vi and Vi+1 is
isomorphic to the bipartite digraph B which is obtained from T by taking
|A2| copies of each vertex in A1 and |A1| copies of each vertex in A2, and

replacing each arc in T by the complete bipartite digraph ~K|A2|,|A1|. If T
is connected, then B is isomorphic to R(D). As shown by Theorem 3.2,

the resulting digraph is highly arc-transitive. Thus, by taking T to be ~K3,3

minus a matching (alternately oriented 6-cycle) we get a counterexample to
Conjecture 3.1.

Construction 3. The next construction is a common generalization of Con-
structions 1 and 2. Let T be a (t−1)-arc-transitive template digraph, with
vertices in t “levels”, A1, . . . , At and each arc leading from Aj to Aj+1 for
some j. We shall denote by Ti the subgraph of T induced by Ai ∪Ai+1.
Suppose that each vertex v ∈ V (T ) \A1 has in-degree at least 1, and each
vertex v ∈ V (T ) \ At has out-degree at least 1. Now, define a digraph
D=D(T ) with vertex-set V =Z×A1×A2×·· ·×At, in which two vertices
a=(i,a1,a2, . . . ,at) and b=(i+1, b1, b2, . . . , bt) are adjacent if (aj , bj+1)∈E(T )
for each j=1, . . . , t−1, and no other edges are present in D. Clearly, for t=2
we get Construction 2. Construction 1 of McKay and Praeger is a special
case of this one, with T consisting of |S| disjoint paths.

Theorem 3.2. If T is as in Construction 3, then the digraph D(T ) is con-
nected and highly arc-transitive. If all graphs Ti are connected then R(D(T ))
(equivalence class of the reachability relation) is isomorphic to the subgraph
of D(T ) induced by vertices {0,1}×A1×·· ·×At.

Proof. As before, let Vi={i}×A1×·· ·×At. For a vertex a∈Vi, we denote its
j-th component by aj , starting with a0= i and having aj∈Aj for j=1, . . . , t.
First we show that D=D(T ) is connected. It is easy to see that the following
statement suffices for this: for every a ∈ V0 and b ∈ Vt, there is a directed
(a,b)-path. In order to prove this, observe that every vertex of T is a part of
at least one directed path with t vertices. Let Pi (Qi, resp.) be such a path
containing ai (bi, resp.). We let Pi,j denote the j-th vertex on Pi, so that
Pi,i = ai (and, similarly, Qi,i = bi). Now we define vertices c0, c1, . . . , ct in D
forming a directed path. For i=0, . . . , t we set ci,0= i and

ci,j =

{
Qj−i+t,j if 1 ≤ j ≤ i,
Pj−i,j if i < j ≤ t.
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Clearly, c0,j =Pj,j for 1≤j≤ t, thus c0 =a. Similarly, ct,j =Qj,j for 1≤j≤ t,
thus ct = b. Comparing ci and ci+1 (0≤ i < t), we see that ci,j and ci+1,j+1

are consecutive vertices of T on the same path, Pj−i or Qj−i+t. This shows
that ci and ci+1 are adjacent in D, and shows that D is connected.

Next, we study the reachability relation. Let B= T [V0∪V1]. Obviously,
no alternating walk can leave B; we only need to show, that any two edges
in B are connected by an alternating walk. Let xy and uv be two such edges.
Each of the bipartite graphs Ti is connected (by assumption), thus every two
of its edges are connected by an alternating walk. We will use this for edges
xiyi+1 and uivi+1 and let ai(j)bi+1(j) be the j-th edge of this walk (with
j= 0 corresponding to the starting edge). We may assume that all of these
walks are of the same length and each of them starts by “fixing the head of
the edge”: that is, for every i= 1, . . . , t−1 we have bi+1(0) = bi+1(1) = yi+1.
Put b1(0)=b1(1)=y1, b1(j)=v1 for j>1. Put at(0)=xt, at(j)=ut for j>0.
Finally, put a0(j)=0 and b0(j)=1 for all j. By construction, edges a(j)b(j)
form an alternating walk in D connecting xy and uv. It follows that R(D) is
isomorphic to B.

To prove that D is highly arc-transitive, we describe some of its automor-
phisms. A trivial one is a shift in the first coordinate, τ : a 7→(a0+1,a1, . . . ,at).
More interesting automorphisms are those that preserve the levels Vi. They
come from the automorphisms of T . Let ϕ∈Aut(T ). Let ψ : V (D)→V (D)
be the mapping that applies ϕ on the j-th coordinate in Vj for j = 1, . . . , t
and is identity elsewhere. We shall show that ψ is an automorphism of
D(T ). Suppose ab∈E(D), but ψ(a)ψ(b) /∈E(D). Since ψ preserves the sets
Vi, from the construction of D(T ) (Construction 3) it follows, that there
exists j = 1, . . . , t− 1 such that ψ(a)jψ(b)j+1 /∈ E(T ). By the definition of
ψ, we conclude that a ∈ Vj and b ∈ Vj+1. Moreover, ψ(a)j = ϕ(aj) and
ψ(b)j+1=ϕ(bj+1). By assumption, ab∈E(D), so ajbj+1 is an edge of T , and
as ϕ is an automorphism of T , ϕ(aj)ϕ(bj+1) is an edge of T as well. This
contradicts our assumption and proves that ψ is a homomorphism D→D.
Since ψ is invertible (as ψ−1 comes from the inverse automorphism ϕ−1 of T
by the same construction as ψ from ϕ), we conclude that ψ is an automor-
phism of D.

Let Ψ be the set of all automorphisms ψ that are obtained from ϕ ∈
Aut(T ) in the way as described above. We claim that the group generated
by τ and Ψ acts transitively on the s-arcs in D (for every s). Let (vi)

s
i=0,

(v′i)
s
i=0 be two s-arcs in D(T ). By applying τ or τ−1, we may assume that

v0∈V0 and v′0∈V0, and thus also vi,v
′
i∈Vi for each i. We imagine coordinates

of the two arcs written in a grid: all coodinates of vi (v′i, resp.) in the i-th
row. We are going to find an automorphism ψk of D such that ψk(v) is closer
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to (v′) than (v). We shall do this by applying an automorphism ψ∈Ψ on an
appropriate diagonal (the first diagonal in which (v) and (v′) differ). Now,
we make this idea precise:

If vi=v′i for each i, then we are done; otherwise find i and j so that

(vi)j 6= (v′i)j and k = i− j is minimal. (∗)

We put a` = v`+k,` if 0≤ `+k≤ s and 1≤ `≤ t. After that, we pick a` ∈A`

(for ` such that 1≤ `≤ t but `+k<0 or `+k>s). The only condition now
is that a`a`+1 is an arc for all `= 1, . . . , t−1, so that (a`)

t
`=1 is a (t−1)-arc

in T . Similarly, we define a′` from v′. Now (a`), (a′`) are two (t−1)-arcs in
T , thus (by the symmetry assumptions on T ) there is an automorphism ϕ
of T such that ϕ(a`) = a′` for `= 1, . . . , t. Let ψ be the automorphism of D
corresponding to ϕ, and let ψk =τkψτ−k. The mapping ψk permutes the j-
th coordinate in Vk+j . Observe that s-arcs (ψk(vi))

s
i=0 and (v′i)

s
i=0 are closer

(so that we get larger value of k in (∗)) than for (vi) and (v′i). So, after
repeating this procedure at most s+t times we map one s-arc to the other.

As the requirements on the template T are rather strong, let us describe
a nice source of nontrivial templates. Consider a finite affine or projective
space, AG(n,q) or PG(n,q). Let Ai be the family of subspaces of dimension
i−1. We let the arcs denote incidence, i.e., (x,y) is an arc if and only if x
is a subspace of y of codimension 1. This gives a template with t= n− 1.
A (t− 1)-arc corresponds to a flag (that is, a sequence of a subspaces one
contained in another, one in each dimension). It is not hard to show that
the geometric space is flag-transitive, which implies the following.

Claim 3.3. The template just described satisfies the conditions of Con-
struction 3.

A natural question remains: does Construction 3 give some highly arc-
transitive digraphs that cannot be obtained by Construction 2? The answer
is positive. To prove it, let us first define the notion of clones. Given a di-
graph, we call vertices x, x′ right clones, if they have the same outneighbours
(xy is an edge if and only if x′y is an edge); we call them left clones if they
have the same inneighbours. It is not hard to show that in a highly arc-
transitive digraph, all vertices have the same number c+ of right clones and
the same number c− of left-clones. In Construction 2 we have c+≥|A2| and
c− ≥ |A1|, so c+c− ≥ |V0|. On the other hand, using Construction 3 with
a template T from finite geometries we have c+ = |At| and c− = |A1|. In
particular, when t > 2, we have c+c− < |V0|. This shows that these highly
arc-transitive digraphs cannot be obtained by Construction 2.
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4. Structure in the two-ended case

The goal of this section is to prove a structural result concerning two-ended
highly arc-transitive digraphs. Our structure theorem will show that every
two-ended highly arc-transitive digraph either admits a quotient by which
we can reduce it to a simpler structure, or up to vertex cloning, can be
represented using a generalized construction which we describe next.

Construction 4. We define a coloured template to be a digraphK equipped
with a possibly improper colouring of the edges ϕ : E(K)→{1, . . . , t} and also
equipped with a distinguished partition of the vertices into sets V0,V1, . . . ,Vm
so that every edge goes from a point in Vi to a point in Vi+1 for some 0≤
i<m. Given such a template K, we define the digraph K̂ to have vertex set
Z×V0×V1×·· ·×Vm and an edge from (i,x0,x1, . . . ,xm) to (i+1,y0,y1, . . . ,ym)
whenever all of the arcs (x0,y1),(x1,y2), . . . ,(xm−1,ym) are present in K and
all have the same colour.

It is easy to see that Construction 4 generalizes Construction 3. However,
the digraphs K̂ are not always highly arc-transitive. In this section we shall
prove that all two-ended highly arc-transitive digraphs can be described by
using Construction 4 combined with vertex-cloning operation. The proof of
this will be built up slowly in a series of small lemmas.

Throughout this section, we shall always assume that G is a highly arc-
transitive digraph1 such that the underlying undirected graph is connected
and has two ends. For any partition P of the vertices, we let GP denote
the digraph obtained from G by identifying the vertices in each block of P
to a single new vertex and then deleting any parallel edges. We say that
a system of imprimitivity B is a Z-system if GB is isomorphic to two-way-
infinite directed path. In this case the blocks of B can be enumerated {Bi}i∈Z
so that every edge has its tail in Bi and its head in Bi+1 for some i ∈ Z.
Note that in this case, we have that for every ϕ∈Aut(G) there exists j∈Z
so that ϕ(Bi)=Bi+j for every i∈Z.

Some of the results that follow, or parts of their proofs, can be found in
[3] or in [8]. We include them for completeness.

Proposition 4.1. Every connected two-ended 2-arc transitive digraph has
a unique Z-system B. Furthermore, B has finite blocks of imprimitivity, and
every system of imprimitivity with finite blocks is a refinement of B.

Proof. Every connected vertex-transitive two-ended digraph has a system
of imprimitivity B with finite blocks and an (infinite) cyclic relation on B

1 Let us note that some of our lemmas hold more generally.
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which is preserved by the automorphism group; this follows, for instance
from Dunwoody’s theorem [5] on cutting up graphs. Enumerate the blocks
{Bi}i∈Z so that this cyclic relation associates Bi with Bi−1 and Bi+1 for
every i∈Z. Now, it follows from the assumption that the digraph G is arc-
transitive that there exists a fixed integer k so that every edge with one
end in Bi and one end in Bj satisfies |i− j| = k. It then follows from the
connectivity of the underlying graph that k=1. So, every edge has its ends
in two consecutive blocks of {Bi}i∈Z.

Note that every vertex x∈Bi must be adjacent in the underlying undi-
rected graph to both a vertex in Bi−1 and in Bi+1 (otherwise every vertex
would behave similarly, and the graph would be disconnected). Suppose (for
a contradiction) that there exists a directed path P of length two with vertex
sequence x0,x1,x2 so that both x0 and x2 are contained in the same block
Bi. Choose a vertex y which is adjacent to x1 in the underlying undirected
graph but is not in Bi. Now either x0,x1,y or y,x1,x2 is the vertex sequence
of a directed path of length two; we let P ′ denote this path. It follows im-
mediately that no automorphism can map P to P ′, and this contradicts the
assumption of 2-arc transitivity. Therefore, by possibly reversing our order-
ing, we may assume that every edge has its tail in some block Bi and its
head in Bi+1. Thus B is a Z-system.

For the last part of the theorem, we let C be a system of imprimitivity
with finite blocks, and suppose (for a contradiction) that C is not a refine-
ment of B. Choose a block C of C and let i∈Z be the smallest integer with
Bi ∩C 6= ∅ and let j ∈ Z be the largest integer with Bj ∩C 6= ∅ (and note
that i < j). Now choose a vertex u ∈Bi∩C and v ∈Bj ∩C and choose an
automorphism ϕ so that ϕ(u) = v. It now follows that ϕ(C) =C and that
ϕ(Bk)=Bk+j−i for every k∈Z, but this implies that C is infinite, and thus
we obtain a contradiction. Thus, C must be a refinement of B. It follows
immediately from this that the Z-system B is unique.

In the sequel, we shall work extensively with group actions; our groups
shall act on the left. For clarity, we shall always use upper case Greek letters
for groups and lower case Greek letters for elements of groups. If Ψ is a
group and Λ≤ Ψ we let Ψ/Λ denote the set of left Λ-cosets in Ψ . Further,
we let G be a connected two-ended highly arc-transitive digraph and we let
B={Bi}i∈Z be its Z-system.

Lemma 4.2. There exists a nontrivial automorphism of G with only
finitely many non-fixed points.

Proof. Let B={Bi}i∈Z be the Z-system, and suppose that every vertex has
outdegree d and that each block of B has size k. Next, choose an integer n
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large enough so that dn> (k!)2 and consider a directed path P of length n
with vertex sequence x0,x1, . . . ,xn with xi∈Bi. Now, there are dn directed
paths of length n which start at the vertex x0, and for each of them, we
may choose an automorphism which maps P to this path. Since dn> (k!)2

it follows that there must be two such automorphisms, say ϕ1 and ϕ2 which
give exactly the same permutation of both B0 and Bn. It follows that the
automorphism ψ=ϕ1ϕ

−1
2 is nontrivial, but gives the identity permutation

on both B0 and Bn. Now, we define a mapping ψ′ : V (G)→ V (G) by the
following rule

ψ′(x) =

{
ψ(x) if x ∈ B1 ∪B2 ∪ · · · ∪Bn−1
x otherwise.

It is immediate that ψ′ is a nontrivial automorphism which has only finitely
many non-fixed points, as desired.

Based on the above lemma, there exists a smallest integer ` so that G
has a nontrivial automorphism which fixes all but `+1 blocks from the Z-
system pointwise. It is immediate that every such automorphism must give
a non-identity permutation on `+1 consecutive blocks and the identity on
all others. For every integer i, let Γi denote the subgroup of automorphisms
which pointwise fix all blocks of the Z-system with the (possible) exception
of Bi−`,Bi−`+1, . . . ,Bi. We let Γ denote the subgroup of Aut(G) generated
by ∪i∈ZΓi.
Lemma 4.3. The following statements hold:

(i) If α∈Γi and β∈Γj with i 6=j, then α and β commute.
(ii) If ϕ∈Aut(G) satisfies ϕ(B0)=Bk then ϕΓjϕ

−1=Γj+k for every j∈Z.
(iii) Γ /Aut(G).

Proof. To prove claim (i), we consider the mapping γ =αβα−1β−1. Since
α pointwise fixes all blocks but Bi−`,Bi−`+1, . . . ,Bi and β pointwise fixes all
blocks but Bj−`,Bj−`+1, . . . ,Bj the map γ fixes pointwise any block, which
is not in both of these lists. However, then γ must pointwise fix all but fewer
than `+1 blocks, so γ is the identity.

For the second claim, we first note that ϕ(Bi) = Bi+k for every i ∈ Z.
Now, for every α∈ Γj we see that ϕαϕ−1 pointwise fixes all blocks except
possibly Bj+k−`,Bj+k−`+1, . . . ,Bj+k and it follows that ϕαϕ−1∈Γj+k which
proves the claim.

To prove claim (iii), let α∈Γ and express this element as α=α1α2 . . .αm

where each αi is in a subgroup of the form Γj . Now we have

ϕαϕ−1 = (ϕα1ϕ
−1)(ϕα2ϕ

−1) . . . (ϕαmϕ
−1)
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so ϕαϕ−1 is also contained in Γ .

We call a two-way-infinite directed path a line. The following lemma
may be proved with a straightforward compactness argument, and appears
in Möller [8].

Lemma 4.4. Let x,y be lines in G with x a vertex in x and y a vertex in
y. Then there exists an automorphism ϕ of G which maps x to y and maps
x to y.

Lemma 4.5. Let Λ/Aut(G) and let C be the partition of V (G) given by
the orbits under the action of Λ.

(i) C is a system of imprimitivity.
(ii) If C,C ′∈C and there is an edge from C to C ′, then every vertex in C

has an outneighbour in C ′ and every vertex in C ′ has an inneighbour
in C.

(iii) GC is highly arc-transitive.
(iv) If x is a line in G, then the digraph Gx induced by the union of those

blocks of C which contain a vertex in x is highly arc-transitive.
(v) If x and y are lines in G, then the digraphs Gx and Gy are isomorphic.

Proof. Part (i) is a standard fact about group actions. For the proof, let
u,v ∈ V (G) be in the same orbit of Λ, say u = α(v) for α ∈ Λ, and let ϕ
be any automorphism. Now, ϕ(u) =ϕα(v) =ϕαϕ−1ϕ(v). Since ϕαϕ−1 ∈Λ,
ϕ(u) and ϕ(v) are also in the same orbit of Λ.

For part (ii), choose an edge (u,u′)∈E(G) with u∈C and u′∈C ′. Now,
for every v∈C there is an element in Λ that maps u to v. Since this element
must fix C ′ setwise, it follows that v has an outneighbour in C ′. A similar
argument shows that every point in C ′ has an inneighbour in C.

To prove (iii), we let C1,C2, . . . ,Ck and C ′1,C
′
2, . . . ,C

′
k be two sequences of

blocks of C so that both form the vertex set of a directed path in the digraph
GC . Using part 2 we may choose vertex sequences x1, . . . ,xk and x′1, . . . ,x

′
k in

G so that xi∈Ci and x′i∈C ′i for 1≤ i≤k and so that (xi,xi+1),(x
′
i,x
′
i+1)∈

E(G) for 1≤ i≤k−1. It follows from the high arc transitivity of G that there
is an automorphism ϕ of G so that ϕ(xi)=x′i for 1≤ i≤k. Then ϕ(Ci)=C ′i
for 1≤ i≤ k so ϕ induces an automorphism of GC that maps C1, . . . ,Ck to
C ′1, . . . ,C

′
k. It follows that GC is highly arc-transitive.

For the proof of (iv), set X to be the union of those blocks of C which
contain a point of x, and set G′ to be the digraph induced by X. Now we
let y1y2 . . .yk and y′1y

′
2 . . .y

′
k be two paths of length k− 1 in G′. It follows

from part 2 that we may extend y1 . . .yk and y′1 . . .y
′
k, respectively, to lines

y and y′ in G′. It now follows from the previous lemma that there is an
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automorphism ϕ of G which maps y to y′ and further has ϕ(yi) = y′i for
1 ≤ i ≤ k. It then follows that ϕ(X) = X so ϕ yields an automorphism of
G′ which sends y1, . . . ,yk to y′1, . . . ,y

′
k. We conclude that G′ is highly arc-

transitive.
Part (v) follows easily from Lemma 4.4.

We define G to be essentially primitive if there does not exist Λ/Aut(G)
so that the orbits of Λ on V (G) generate a proper nontrivial system of im-
primitivity with finite blocks which is not equal to the Z-system. Parts 3–5
from the previous lemma show that any two-ended highly arc-transitive di-
graph which is not essentially primitive has a type of decomposition into
a highly arc-transitive subgraph and a highly arc-transitive quotient. Al-
though this decomposition does not seem to give us a construction, we will
focus in the remainder of this section on understanding the structure of the
essentially primitive digraphs. Note, however, that we do not know whether
this is truly needed. The only examples of highly arc-transitive digraphs
that are not essentially primitive that we are aware of are a disjoint union
of two highly arc-transitive digraphs (rather trivial example) and digraphs
obtained by a horocyclic product (see [1]): we have vertices (i,x,y) for each
pair of vertices (i,x), (i,y) of the two factors, and vertex (i,x,y) is connected
to (i+1,x′,y′) iff both (i,x)(i+1,x′) and (i,y)(i+1,y′) are arcs in the fac-
tors. However, such product of two highly arc-transitive digraphs obtained
by our template construction can also be obtained by our construction using
a more complicated template.

Continuing with our attempt for a structural characterization we describe
orbits of the group Γ (see the definition before Lemma 4.3).

Lemma 4.6. If G is essentially primitive, then the orbits under the action
of Γ are the blocks {Bi : i∈Z} of the Z-system of G.

Proof. This follows immediately from Lemma 4.3.

Next we shall introduce another useful subgroup of Aut(G). Let Γk (k∈Z)
and Γ be the subgroups of Aut(G) introduced before Lemma 4.3. As before,
let τ be an automorphism of G so that τ(B0) = B1 (so, more generally,
τ(Bi) =Bi+1), and let Φ be the subgroup of Aut(G) which is generated by
τ and Γ . We will use Φ to describe our digraph, so let us record some key
features of it. The listed properties follow easily from Lemma 4.3, and the
details of the proof are left to the reader.

Lemma 4.7.

(i) τ−1Γkτ=Γk−1 for every k∈Z.
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(ii) Γ /Φ.
(iii) 〈τ〉∼=Z.
(iv) Γ ∩〈τ〉={1}.
(v) Φ is a semidirect product of 〈τ〉 and Γ .

Next we introduce another family of subgroups of Φ. For every j≤k we

define Γ j..k to be the subgroup of Γ generated by
(⋃

i<j Γi

)
∪
(⋃

i>kΓi
)
. Note

that Γ 0..` is precisely the subgroup of Γ consisting of those automorphisms
which act trivially on B0.

Lemma 4.8.

(i) Every coset of Γ j..k in Φ has a unique representation as

τm




k∏

i=j

αi


Γ j..k

where αi∈Γi for every j≤ i≤k (henceforth we call this the standard
form).

(ii) τ−1Γ j..kτ=Γ j−1..k−1
(iii) If A⊆τΓ then Γ j..kA=AΓ j−1..k−1.
(iv) A set A⊆τΓ satisfies Γ j..kAΓ j..k =A if and only if AΓ j..k−1=A.

Proof. The first and the second property follow immediately from the pre-
vious lemma. For the third, choose A′ ⊆ Γ so that A = τA′ and observe
that

Γ j..kA = Γ j..k τA
′ = τ Γ j−1..k−1A

′ = τA′Γ j−1..k−1 = AΓ j−1..k−1.

To prove the last property it is enough to observe that for A⊆τΓ
Γ j..kAΓ j..k = AΓ j−1..k−1Γ j..k = AΓ j..k−1.

The only additional ingredients required for our structure theorem are
some standard properties of vertex-transitive digraphs. Let Ψ be a group,
Λ a subgroup of Ψ , and suppose set A ⊆ Ψ satisfies ΛAΛ = A. Then we
define the Cayley coset digraph Cay(Ψ/Λ,A) to be the digraph whose vertex-
set are the left cosets Ψ/Λ, where there is an edge from gΛ to hΛ if and
only if Λg−1hΛ⊆A. The group Ψ has a natural action on the vertices by
left multiplication, and this action preserves the edges, and is transitive.
The following well-known result of Sabidussi [12] shows that every vertex-
transitive digraph is isomorphic to a Cayley coset digraph. Here, if Ψ acts on
a set X and u∈X we let Ψu ={γ∈Ψ : γ(u)=u} denote the point stabilizer
of u.



81

HIGHLY ARC-TRANSITIVE DIGRAPHS 17

Proposition 4.9. Let H be a digraph, let u∈V (H) and let Φ≤Aut(H) act
transitively on V (H). Then there exists A⊆ Φ so that H ∼= Cay(Φ/Φu,A),
and this isomorphism may be chosen so that the vertex u corresponds to
the trivial coset Φu.

Let us recall that cloning a vertex in a digraph G means the operation of
adding a new vertex v′ whose inneighbours (and outneighbours) are precisely
the inneighbours (and the outneighbours) of v. Also, let us note that the
digraph obtained from G by cloning each vertex k − 1 times is just the
lexicographic product G[Kk] of G with the empty graph on k vertices.

Proposition 4.10. Let G=Cayley(Φ/Λ,A) and let Λ′≤Λ with [Λ : Λ′]=k.
Then G′=Cayley(Φ/Λ′,A) is a Cayley coset digraph which is isomorphic to
the digraph obtained from G by cloning each vertex k−1 times.

Proof. (sketch) By definition, in the digraph G′ there will be an edge from
Q∈Φ/Λ′ to R∈Φ/Λ′ if Q−1R⊆A. If R and R′ lie in the same Λ-coset then
Q−1RΛ=Q−1R′Λ. Since AΛ=A, it follows that there is an edge from Q
to R if and only if there is an edge from Q to R′. So, two vertices which lie
in the same Λ-coset will have the same inneighbours. A similar argument
shows that they have the same outneighbours. Thus, G′ is isomorphic to the
digraph obtained from G by cloning each vertex exactly k−1 times.

Theorem 4.11. If a two-ended highly arc-transitive digraphG is essentially
primitive, then there exists a digraph G+ obtained from G by cloning each
vertex the same (finite) number of times and a coloured template K so that

G+∼=K̂.

Proof. It follows immediately from Lemma 4.6 that the group Φ generated
by τ and Γ acts transitively on V (G). As before, let Bi (i∈Z) be the blocks
of the Z-system on G. Choose a vertex u∈B0 and apply Proposition 4.9 to
obtain A⊆Φ so that G∼= Cay(Φ/Φu,A). Since Φu is the stabilizer of u and
Γ 0..` is the subgroup of Φ which fixes every point in B0 we have Γ 0..`≤Φu≤Φ
(and note that this also implies that [Φu : Γ 0..`] is finite). It now follows from
Proposition 4.10 that G+ = Cay(Φ/Γ 0..`,A) is obtained from G by cloning
each vertex the same number of times, so it shall suffice to prove that G+

can be obtained from our construction.
By assumption, A must satisfy Γ 0..`AΓ 0..` =A and then it follows from

Lemma 4.8 that AΓ 0..`−1 =A, so we may partition A into cosets of Γ 0..`−1
as {A1,A2, . . . ,At}. Now, each Aq also satisfies Γ 0..`AqΓ 0..`=Aq, so we may
define a Cayley coset digraph G+

q =Cay(Φ/Γ 0..`,Aq) and now G+ is the edge-

disjoint union of the digraphs G+
1 , . . . ,G

+
t . We may now view each q=1, . . . , t

as a colour and view G+ as having its edges coloured accordingly.
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Fix 1≤q≤ t and consider the digraph G+
q and let Aq =τ

(∏`−1
i=0 γi

)
Γ 0..`−1

be represented in standard form. Let v = τk
(∏`

i=0αi

)
Γ 0..` be a vertex

of G+
q in standard form. Within the digraph G+

q , the vertex v will have

outneighbours consisting of exactly those cosets of Γ 0..` that are contained
in the set

vAq = τk

(∏̀

i=0

αi

)
Γ 0..` τ

(
`−1∏

i=0

γi

)
Γ 0..`−1

= τk+1

(∏̀

i=0

τ−1αiτ

)
τ−1 Γ 0..` τ

(
`−1∏

i=0

γi

)
Γ 0..`−1

= τk+1

(∏̀

i=1

τ−1αiτ

)(
`−1∏

i=0

γi

)
Γ 0..`−1

= τk+1

(∏̀

i=1

τ−1αiτ γi−1

)
Γ 0..`−1.

In other words, a vertex w is an outneighbour of v if and only if in standard

form w = τk+1
(∏`

i=0βi

)
Γ 0..` where βi−1 = τ−1αiτγi−1 for every 1≤ i≤ `

(and there is no restriction on β`). Next we shall define a template Kq with
ordered vertex partition (Γ`,Γ`−1, . . . ,Γ0) and an edge from δ∈Γi to ε∈Γi−1
if and only if ε=τ−1δτγi−1. It now follows that (v,w) is an edge of G+

q if and

only if (using standard form) v=τ iα0α1 . . .α`Γ 0..` and w=τ jβ0β1 . . .β`Γ 0..`

satisfy j= i+1 and (αi,βi−1) is an edge of Kq for every 1≤ i≤ `. It follows

from this that G+
q
∼= K̂q by way of the isomorphism which maps a vertex

v=τ iα0α1 . . .α`Γ 0..` of G+
q to the vertex (i,α`,α`−1, . . . ,α0) of K̂q.

We now define K to be a coloured template with vertex set Γ1∪Γ2∪·· ·∪Γ`,
vertex partition {Γ1,Γ2, . . . ,Γ`}, and an edge from δ∈Γi to ε∈Γi+1 of colour
q if and only if this edge exists in the template Kq. It now follows that

G+∼=K̂ which completes the proof.
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We investigate vector chromatic number (χvec), Lovász ϑ-function of the complement (ϑ̄),
and quantum chromatic number (χq) from the perspective of graph homomorphisms. We
prove an analog of Sabidussi’s theorem for each of these parameters, i.e., that for each of
the parameters, the value on the Cartesian product of graphs is equal to the maximum
of the values on the factors. Interestingly, as a consequence of this result for ϑ̄, we obtain
analog of Hedetniemi’s conjecture, i.e., that the value of ϑ̄ on the categorical product
of graphs is equal to the minimum of its values on the factors. We conjecture that the
analogous results hold for vector and quantum chromatic number, and we prove that this
is the case for some special classes of graphs.

1. Introduction

The chromatic number is a well known graph parameter which can be defined
in terms of homomorphisms. A graph homomorphism from G to H is a
function ϕ : V (G)→ V (H) such that ϕ(u) is adjacent to ϕ(v) whenever u
is adjacent to v. In this terminology, a graph G is n-colorable if and only
if there exists a homomorphism from G to Kn. There are many interesting
variants of chromatic number which can also be defined via homomorphisms.
We are concerned with the following:
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• Vector chromatic number (χvec)
• Strict vector chromatic number (ϑ̄)
• Quantum chromatic number (χq)

As the notation suggests, the strict vector chromatic number is equal to the
Lovász ϑ-function of the complement, i.e., ϑ̄(G)=ϑ(G) where G denotes the
complement of graph G. We, however, do not define it in this way, rather we
approach both ϑ̄ and χvec in terms of homomorphisms. From this viewpoint
they can both be seen as relaxations of chromatic number defined in terms
of assigning unit vectors to vertices such that vectors assigned to adjacent
vertices have some specified inner product. Quantum chromatic number can
also be viewed in terms of homomorphisms, however, for this parameter we
assign to vertices tuples of orthogonal projectors which must satisfy certain
constraints.

In this paper we are concerned with how these parameters behave on
certain graph products. We are in particular focused on the Cartesian and
categorical products, denoted by G�H and G×H respectively. A well known
theorem of Sabidussi [23] states that the chromatic number of the Cartesian
product of two graphs is equal to the maximum of the chromatic numbers
of its factors. An equally, if not more, well known conjecture of Hedetniemi
proposes that the chromatic number of the categorical product of two graphs
is equal to the minimum of the chromatic numbers of the factors. Our aim is
to prove or make steps towards proving analogs of these two statements for
the three parameters above. Interestingly, for ϑ̄ the analog of Hedetniemi’s
conjecture follows as a consequence of the analog of Sabidussi’s theorem.
The rest of the paper is outlined as follows.

In Section 2 we define the basic concepts and notation used throughout
the paper. We give the background needed for our results on vector and
strict vector colorings in Section 3. This is followed by Section 4, in which
we show that analogs of Sabidussi’s theorem hold for ϑ̄ and χvec, and that
the ϑ̄ version of Hedetniemi’s conjecture is true. In Section 5, we investigate
a class of graphs called 1-homogeneous graphs, which include edge transi-
tive graphs. We give an explicit formula for ϑ̄ and χvec for these graphs in
terms of their largest and smallest eigenvalues. As a consequence, we see
that these two parameters coincide for this class of graphs, and thus the
χvec version of Hedetniemi’s conjecture holds for 1-homogeneous graphs. In
Section 6, we introduce quantum homomorphisms and give the background
needed for our results on quantum chromatic number. Then in Section 7,
we prove the quantum analog of Sabidussi’s theorem, and show that quan-
tum Hedetniemi’s conjecture holds for a family of graphs which initiated the
study of quantum chromatic number.
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2. Preliminaries

Here we give the background on the basic tools such as homomorphisms
and graph products that we use throughout the paper. For a more detailed
introduction we refer the reader to [13,15] for homomorphisms, and [14] for
graph products.

Let G and H be graphs (by which we mean undirected simple finite
graphs). We denote the existence of a homomorphism fromG toH by writing
G→ H. It is easy to see that homomorphisms compose, so G→ H → K
implies G→K. In fact, graphs with homomorphisms form a category. More
relevant for graph theory is that many graph theoretic notions can be simply
expressed in terms of homomorphisms. In particular, a graphG is n-colorable
if and only if G→Kn.

A graph parameter f is called homomorphism-monotone if we have
f(G)≤ f(H) whenever G→H. Examples of homomorphism-monotone pa-
rameters include χ,χf ,ω, etc. We will see that the three parameters, χvec,
ϑ̄, and χq are homomorphism-monotone as well, and they are even quan-
tum homomorphism-monotone. (Quantum homomorphisms will be defined
in Section 6).

Given graphs G and H, we define four graphs with vertex set V (G)×
V (H). In the categorical product G×H (also called direct, or tensor product),
tuples (u1,v1) and (u2,v2) are adjacent if and only if

u1 ∼ u2 and v1 ∼ v2.

In the Cartesian product G�H, tuples (u1,v1) and (u2,v2) are adjacent if
and only if

(u1 ∼ u2 and v1 = v2) or (u1 = u2 and v1 ∼ v2).

The strong product G�H is defined as the edge union of G×H and G�H.
In the disjunctive product G∗H (also referred to as the conormal product)
the tuples (u1,v1) and (u2,v2) are adjacent if u1∼u2 or v1∼v2. It is trivial
to see that G�H is a subgraph of G∗H, and a little thought reveals that
G∗H=G�H, where G denotes the complement of G.

It is easy to see that G→G�H (and also H→G�H), indeed, G�H
contains copies of both G and H. By projecting onto each coordinate, we
see that G×H→G and G×H→H. (This is indeed true in any category and
G×H is called the categorical product because it is, in fact, a product in
the sense of category theory.) Consequently, we have the following lemma:



90 APPENDIX E. HEDETNIEMI FOR VECTOR CHROMATIC NUMBER

4 C. GODSIL, D. ROBERSON, R. ŠÁMAL, S. SEVERINI

Lemma 2.1. If f is a homomorphism-monotone graph parameter and G
and H are graphs, then

f(G×H) ≤ min{f(G), f(H)} and f(G�H) ≥ max{f(G), f(H)}.

Proof. This follows immediately from the fact that G×H → G,H and
G,H→G�H.

This lemma allows us to easily establish that χvec, ϑ̄, and χq must all sat-
isfy the above inequalities. We can then ask if/when equality holds. Indeed,
that is the main focus of this paper.

Much attention has specifically been given to the value of the chromatic
number on the Cartesian and categorical products, and this is of course part
of the motivation for our work. Applying the above lemma to the chromatic
number, which is homomorphism-monotone, we obtain the following:

(1) χ(G×H) ≤ min{χ(G), χ(H)}

and

(2) χ(G�H) ≥ max{χ(G), χ(H)}.

As mentioned above, a well known theorem of Sabidussi [23] states that (2)
holds with equality, and we provide a proof here for the reader’s convenience
and comparison with Theorems 4.2 and 7.2.

Theorem 2.2 (Sabidussi 1957). For graphs G and H,

χ(G�H) = max{χ(G), χ(H)}.

Proof. Let m = max{χ(G),χ(H)}. Clearly, we need at least m colors to
color G�H. So it suffices to show that G�H can be m-colored. There are
colorings g of G and h of H using m colors, which we may assume are the
integers modulo m. It is easy to check that assigning (g(u)+f(v)) mod m
to vertex (u,v) gives an m-coloring of G�H.

Determining whether (1) holds with equality turns out to be much more
difficult, and the following conjecture remains open to this day:

Conjecture 2.3 (Hedetniemi 1966). For all graphs G and H,

χ(G×H) = min{χ(G), χ(H)}.
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It is worth noting that many different versions of this statement have been
either conjectured or proven since its inception. Perhaps most significantly,
Zhu has recently proved in [26] that

χf (G×H) = min{χf (G), χf (H)}

where χf denotes fractional chromatic number.
Zhu’s proof makes use of the fact that fractional chromatic number can

be written as a linear program and thus suffers from strong duality. As we
will see below, the strong duality property of the semidefinite programs for
ϑ̄ and χvec are crucial for our proofs as well. This suggests that the lack
of strong duality for chromatic number is one reason for the difficulty in
attempting to prove Hedetniemi’s conjecture.

3. Vector and Strict Vector Colorings

Vector and strict vector colorings were first introduced in [16], in which
Karger, Motwani, and Sudan also defined the vector chromatic number.
However, a parameter equal to χvec of the complement was actually intro-
duced a few decades earlier in [20] and [25], but this seems to have gone
unnoticed by many. We will first define strict vector colorings:

Definition 3.1. Let Sd denote the unit sphere in Rd+1. For a graph G, a
map ϕ : V (G)→Sd is called a strict vector k-coloring if whenever u∼v,

ϕ(u)Tϕ(v) = − 1

k − 1
.

So a strict vector k-coloring can be viewed as a homomorphism to the infinite
graph whose vertices are unit vectors in Rd such that vectors u and v are
adjacent whenever uT v=−1/(k−1). The strict vector chromatic number of
G is the infimum of real numbers k such that k > 1 and G admits a strict
vector k-coloring (for all nonempty graphs this infimum can be obtained
and thus is just the minimum). It has been shown [16] that the strict vector
chromatic number of G is equal to ϑ(G), and thus we use ϑ̄ to denote this
parameter. The Lovász ϑ-function has been well studied and it possesses
many interesting properties, some of which we will present below. For a more
detailed look at this graph parameter we refer the reader to [18] and [17].

If we relax the definition above to only require that adjacent vertices be
assigned unit vectors which have inner product at most −1/(k− 1), then
we obtain what is known as a vector k-coloring [16]. The smallest k for
which G admits a vector k-coloring is the vector chromatic number of G,
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and we denote this by χvec(G). Since any strict vector k-coloring is clearly a
vector k-coloring as well, we have that χvec(G)≤ ϑ̄(G) for any graph G. The
basic motivation behind these definitions is that mapping the vertices of the
complete graph Kn to the vertices of the (n−1)-dimensional simplex gives a
(strict) vector n-coloring, and therefore, any n-colorable graph is also (strict)
vector n-colorable. This of course implies that χvec(G) ≤ ϑ̄(G) ≤ χ(G) for
all graphs G. On the other hand, [20] and [25] established (though in other
terms) that ω(G)≤χvec(G)≤ ϑ̄(G).

Defining these parameters in terms of homomorphisms as above allows us
to easily see that both χvec and ϑ̄ are homomorphism-monotone. Therefore,
by Lemma 2.1, we have that

χvec(G×H) ≤ min{χvec(G), χvec(H)}
ϑ̄(G×H) ≤ min{ϑ̄(G), ϑ̄(H)}

and

χvec(G�H) ≥ max{χvec(G), χvec(H)}
ϑ̄(G�H) ≥ max{ϑ̄(G), ϑ̄(H)}.

It turns out that both ϑ̄ and χvec can be written as semidefinite programs
(SDPs). The practical advantage of this is that one can compute them to
arbitrary precision in polynomial time. The other advantage is that we can
use duality to assist in proving theorems. In general, strong duality does not
hold for all SDPs, however, one can show that it holds for the SDPs defining
ϑ̄ and χvec using Slater’s condition. Below we give both the primal and
dual SDPs for ϑ̄ and χvec. Here, P �0 means that the matrix P is positive
semidefinite, while P ≥ 0 means that the entries of P are nonnegative. We
use J to denote the all ones matrix, and ◦ to denote Schur product. The
matrix A in the SDP constraints refers to the adjacency matrix of G, and
A :=J−I−A is the adjacency matrix of G.

PRIMAL DUAL
ϑ̄(G) min λ

s.t. M ◦ I = (λ− 1)I
M ◦A = −A
M � 0

max Tr(JP )
s.t. P ◦A = 0

Tr(P ) = 1
P � 0

χvec(G) min λ
s.t. M ◦ I = (λ− 1)I

M ◦A ≤ −A
M � 0

max Tr(JP )
s.t. P ◦A = 0

Tr(P ) = 1
P ≥ 0
P � 0
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To see that the SDPs for χvec are equivalent to the vector coloring definition
of this parameter, one can use the fact that the positive semidefinite matrix
M in the primal SDP is a Gram matrix of a set of vectors. Assigning these
(normalized) vectors to the vertices of the graph gives a valid vector coloring
of the appropriate value. The reverse procedure converts a vector coloring
to a feasible solution to the primal. The same technique works for ϑ̄ as
well [18,17,25].

4. Strict Vector Chromatic Number

To prove the strict vector chromatic number version of Sabidussi’s theorem,
we need the following lemma which shows that any graph G which can be
strict vector k-colored, can also be strict vector k′-colored for any k′≥k. For
chromatic number, as well as vector chromatic number, this is trivial, since
any k-coloring can be viewed as a k′-coloring for any k′≥k.

Lemma 4.1. Suppose G is a graph such that ϑ̄(G)=k. Then for every real
k′≥k, there is a strict vector k′-coloring of G.

Proof. Let ϕ : V (G) → Rd be a strict vector k-coloring of G. Let
t=−1/(k−1), and t′ =−1/(k′− 1). As k′ ≥ k > 1, we have that t≤ t′ < 0.
Consequently, there exists an α∈ [0,1] such that α2t+ (1−α2) = t′. Define
the mapping ϕ′=(αϕ,

√
1−α2). It is easy to check that ϕ′ is a strict vector

k′-coloring of G.

We are now able to prove that Sabidussi’s theorem holds for ϑ̄.

Theorem 4.2. For graphs G and H,

ϑ̄(G�H) = max{ϑ̄(G), ϑ̄(H)}.

Proof. As we have already seen in Section 3,

ϑ̄(G�H) ≥ max{ϑ̄(G), ϑ̄(H)}.

Thus, we only need to show the reverse inequality. Let k=max{ϑ̄(G), ϑ̄(H)}.
By Lemma 4.1, there exist strict vector k-colorings g : V (G) → Rd1 and
h : V (H)→Rd2 . We will consider the tensor product g⊗h : V (G�H)→Rd1d2 .
Explicitly, we put (g⊗h)(u,v)=g(u)⊗h(v), where u∈V (G) and v∈V (H).

Now consider an edge of the form (u,v)(u′,v) in G�H. Let t=−1/(k−1)
as in Definition 3.1. Using standard properties of the tensor product we get

(g(u)⊗ h(v))T
(
g(u′)⊗ h(v)

)
=
(
g(u)T g(u′)

) (
h(v)Th(v)

)
= t · 1 = t.
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By symmetry, we get the same condition for edges of the form (u,v)(u,v′).
Consequently, g⊗h is a strict vector k-coloring of G�H, as required.

We also have the following:

Lemma 4.3. For graphs G and H,

χvec(G�H) = max{χvec(G), χvec(H)}.

Proof. Same as in Theorem 4.2, without the need for Lemma 4.1 since
vector k-colorings only require that adjacent vertices have inner product at
most −1/(k−1).

We will use Lemma 4.2 to prove the ϑ̄ version of Hedetniemi’s conjecture,
but we will also need some basic facts about how ϑ̄ behaves on the strong
and disjunctive products, as well as the edge union of two graphs.

In [18] it was shown that ϑ(G�H)=ϑ(G)ϑ(H). A slight modification of
the same proof shows that ϑ(G∗H)=ϑ(G)ϑ(H), and in fact this is proven
in [17]. Translating these two facts into terms of ϑ̄, we obtain the following
lemma.

Lemma 4.4. For graphs G and H,

ϑ̄(G�H) = ϑ̄(G)ϑ̄(H) = ϑ̄(G ∗H).

Proof. Since G∗H=G�H (and equivalently G�H=G∗H), we have that

ϑ̄(G ∗H) = ϑ(G�H) = ϑ(G)ϑ(H) = ϑ̄(G)ϑ̄(H)

and
ϑ̄(G�H) = ϑ(G ∗H) = ϑ(G)ϑ(H) = ϑ̄(G)ϑ̄(H).

From this lemma we can easily obtain the following corollary which is
analogous to a well known upper bound on the chromatic number of the
union of two graphs. Given two graphs G and H on the same vertex set V ,
we use G∪H to denote the graph with vertex set V and edge set E(G)∪E(H).

Corollary 4.5. If G and H are graphs on the same vertex set V , then

ϑ̄(G ∪H) ≤ ϑ̄(G)ϑ̄(H).

Proof. The vertices of the form (v,v) for v∈V , induce a subgraph of G∗H
isomorphic to G∪H and thus

ϑ̄(G ∪H) ≤ ϑ̄(G ∗H) = ϑ̄(G)ϑ̄(H)

by Lemma 4.4.

With these tools in hand, we are able to give a simple and elegant proof
of Hedetniemi’s conjecture for ϑ̄.
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Theorem 4.6. For graphs G and H,

ϑ̄(G×H) = min{ϑ̄(G), ϑ̄(H)}.

Proof. We have already seen that

ϑ̄(G×H) ≤ min{ϑ̄(G), ϑ̄(H)}.

So we only need to show the reverse inequality. For this we observe that
G�H=(G�H)∪(G×H). Using Corollary 4.5 for G�H and G×H, as well
as Lemma 4.4, we obtain

ϑ̄(G)ϑ̄(H) = ϑ̄(G�H) ≤ ϑ̄(G�H)ϑ̄(G×H).

Combining this with Theorem 4.2 finishes the proof.

5. 1-Homogeneous Graphs

A graph G is said to be 1-homogeneous if it satisfies the following two
conditions:

1. The number of closed walks of length k in G that begin at a vertex u is
independent of u for all k∈Z.

2. The number of walks of length k in G that begin at vertex u and end at
adjacent vertex v is independent of the edge uv.

The first condition can be viewed as a type of combinatorial relaxation
of vertex transitivity. Indeed, it is easy to see that any vertex transitive
graph has this property. The second condition can similarly be viewed as a
combinatorial relaxation of edge transitivity, and again, any edge transitive
graph trivially has this property. So any graph which is both edge and vertex
transitive is 1-homogeneous. Note that letting k = 2 in the first condition
guarantees that any such graph is regular.

Although 1-homogeneous graphs are not a well known class of graphs,
they include several well known classes of graphs. In particular, distance reg-
ular (and thus strongly regular) graphs are 1-homogeneous. More generally,
any graph which is a single class in an association scheme is 1-homogeneous.
We will also see that any edge-transitive graph is either 1-homogeneous or
bipartite, thus the results of this section apply to all of these classes of
graphs.

If A is the adjacency matrix of a graph G, then the uv-entry of Ak is the
number of walks of length k in G starting at u and ending at v. From this
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it is easy to see that G being 1-homogeneous is equivalent to the existence
of constants bk and ck for all k∈N such that

(3) Ak ◦ I = bkI & Ak ◦A = ckA.

In this section, we will present an explicit formula for the vector chro-
matic number of a 1-homogeneous graph in terms of its largest and smallest
eigenvalues. Furthermore, we will show that ϑ̄ and χvec are equal in this
case. As a result, we will see that the vector chromatic number version of
Hedetniemi’s conjecture holds for all 1-homogeneous graphs. The results of
this section rely heavily on the SDP formulations of χvec and ϑ̄ given in
Section 3.

Before we give our results on 1-homogeneous graphs, we prove a general
lower bound on vector chromatic number. The following two lemmas are
from [11], which is unpublished, so we include their proofs here.

Lemma 5.1 ([11]). Let G be a graph with n vertices, e edges, and least
eigenvalue τ . Then

χvec(G) ≥ 1− 2e/n

τ
.

Proof. Let A be the adjacency matrix of G. Then A−τI�0 and

(A− τI) ◦A = 0.

Since τ <0, we have that

A− τI ≥ 0.

Furthermore, since

Tr(A− τI) = −nτ,

the matrix 1
−nτ (A−τI) is a feasible solution to the dual formulation of χvec

with objective value 1− 2e/n
τ . This gives the lower bound and proves the

lemma.

Note that 2e/n is the average degree of the graph, and is thus simply the
degree for regular graphs. The next lemma states that the above bound is
tight for 1-homogeneous graphs.

Lemma 5.2 ([11]). If G is 1-homogeneous with degree k and least eigen-
value τ , then

χvec(G) = ϑ̄(G) = 1− k

τ
.
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Proof. We make use of the identity Tr(ATB)=sum(A◦B) where sum(M)
denotes the sum of all the entries of the matrix M . From the previous lemma,

we have that χvec(G)≥1−2e/n
τ =1−kτ . As we saw in Section 3, χvec(G)≤ ϑ̄(G),

and thus we only need to show that ϑ̄(G)≤1− k
τ . To do this we will find a

suitable solution to the primal SDP formulation of ϑ̄. Let A be the adjacency
matrix of G and let Eτ denote the projection onto the τ -eigenspace of A.
Since G is 1-homogeneous and Eτ is a polynomial in A, by (3) we have that

Eτ ◦ I = bI and Eτ ◦A = cA,

for some constants b and c. Let r be the rank of Eτ . Since Eτ is a projection,
Tr(Eτ )=r, and so b=r/n. Now

sum(A ◦ Eτ ) = Tr(AEτ ) = Tr(τEτ ) = rτ

and also

sum(A ◦ Eτ ) = c · sum(A) = cnk,

whence c=rτ/nk. If we define

M := −nk
rτ
Eτ ,

then

M ◦ I = −nk
rτ
bI = −k

τ
I = ((1− k/τ)− 1) I

and

M ◦A = −nk
rτ
cA = −A.

Since Eτ is a projection, M is positive semidefinite, and is thus a feasible
solution to the primal SDP with objective value 1−kτ . Therefore, ϑ̄(X)≤1−kτ
and the lemma is proven.

Applying the above to edge transitive graphs, we obtain the following
corollary

Corollary 5.3. If G is edge transitive with greatest and least eigenvalues
λ and τ , respectively, then

χvec(G) = ϑ̄(G) = 1− λ

τ
.
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Proof. First note that we can assume that G has no isolated vertices since
removing them does not change any of λ, τ , χvec(G), or ϑ̄(G). If G is also
vertex transitive, then it is 1-homogeneous and λ is the degree, k, of G.
Thus the result holds by the above. If G is not vertex transitive, then by
Lemma 3.2.1 from [12], it is nonempty and bipartite and thus χvec(G) =
2= ϑ̄(G). However, the spectrum of any bipartite graph is symmetric about
zero, and so τ=−λ, and therefore, 1− λ

τ =2.

The following lemma shows that the class of 1-homogeneous graphs is
closed under categorical products.

Lemma 5.4 ([10]). If G and H are 1-homogeneous graphs, then the graph
G×H is 1-homogeneous.

As a consequence of the above lemmas, we obtain a proof of the χvec
version of Hedetniemi’s conjecture for 1-homogeneous graphs.

Theorem 5.5. If G and H are 1-homogeneous, then

χvec(G×H) = min{χvec(G), χvec(H)}.

Proof. Since G and H are 1-homogeneous, and by Lemma 5.4 the product
G×H is as well, we have that

χvec(G×H) = ϑ̄(G×H) = min{ϑ̄(G), ϑ̄(H)} = min{χvec(G), χvec(H)},

where the second equality follows from Theorem 4.6.

Note that one can also prove the above theorem without the aid of The-
orem 4.6 by writing the degree and smallest eigenvalue of G×H in terms of
the same parameters for G and H.

As a corollary, we get that Hedetniemi’s conjecture for χvec also holds
for all edge transitive graphs.

Corollary 5.6. If G and H are edge transitive, then

χvec(G×H) = min{χvec(G), χvec(H)}.

Proof. As in Corollary 5.3, we can assume that neither G nor H contains
any isolated vertices. If both graphs are vertex transitive, then they are 1-
homogeneous and the result holds by Theorem 5.5. Otherwise, at least one of
them is bipartite and therefore, their product is bipartite and the conjecture
holds trivially in this case.
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6. Quantum Colorings

As a result of the continuing attempt to isolate the differences between
quantum and classical mechanics, a large literature has developed which
is devoted to the study of communication protocols based on the use of
quantum resources, such as shared physical systems. In order to approach
this problem with quantitative techniques and from a combinatorial angle,
quantum colorings and the quantum chromatic number were introduced in
[9,6] and [2], respectively. These concepts were further investigated in [5,8,
24,19].

A seminal result in the study of quantum colorings was the discovery of
a family of graphs {Ω4n : n ∈ N} which exhibit an exponential separation
between χ(Ω4n) and χq(Ω4n) [4,3,9]. Here, Ωn is the graph with vertex set
{±1}n such that orthogonal vectors are adjacent. In [7] it was shown that
when n is a multiple of four, the graph Ωn has chromatic number exponential
in n. In contrast, it was shown in [4,3,9] that when n is a power of two,
χq(Ωn)≤n. This result was extended to all n divisible by four in [2].

In [22], Mančinska and Roberson introduce the notion of quantum ho-
momorphisms, which generalize quantum colorings in the same way that
homomorphisms generalize colorings. It is this framework we will use to
study quantum colorings and quantum chromatic number.

For a more detailed look at quantum colorings and quantum homomor-
phisms we refer the reader to [5] and [22].

Though quantum homomorphisms were originally defined via a game
played between two players and a referee, by the results of [5,22], one can
equivalently define them using homomorphisms. To do this, we require the
following definition which comes from [22]:

Definition 6.1. For a graph G and integer d, let M(G,d) be the following
graph. The vertices of M(G,d) are the tuples E = (Ev)v∈V (G) such that

Ev∈Cd×d is an orthogonal projector for all v∈V (G) and

(4)
∑

v∈V (G)

Ev = I.

Two vertices E = (Ev)v∈V (G) and E′= (E′v)v∈V (G) are adjacent if whenever
v 6∼v′,

EvE
′
v′ = 0.

We refer to the graph M(G,d) as the measurement graph of G in dimen-
sion d.
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Note that in the above we do not consider a vertex to be adjacent to
itself and thus v 6∼ v for all v∈V (G). Furthermore, note that condition (4)
implies that for distinct vertices v,v′∈V (G), we have that EvEv′ =0.

The reasoning behind the name of the measurement graph is that its
vertices are what are known as “projective quantum measurements”. In
general, a quantum measurement can consist of any positive semidefinite
operators which sum to identity, but if each of the operators is a projection,
then it is referred to as a projective measurement.

We say that G has a quantum homomorphism to H, and write G
q−→H,

if G→M(H,d) for some d∈N. We will also refer to a homomorphism from
G to M(H,d) as a quantum homomorphism from G to H. Note that if ϕ
is a homomorphism from G to H, then the map which takes u ∈ V (G) to
the tuple whose ϕ(u) coordinate is I and all other coordinates are 0 is a

quantum homomorphism from G to H. Therefore, G→H⇒G
q−→H.

Now that we have defined quantum homomorphisms, we can define quan-
tum colorings and quantum chromatic number in the obvious way: a quan-
tum n-coloring of a graph G is simply a quantum homomorphism from G to
Kn, and the quantum chromatic number of G, denoted χq(G), is the mini-

mum n such that G
q−→Kn. Note that since G→H⇒G

q−→H, for all G and
H, we have that χq(G)≤χ(G) for all graphs G.

The definition of quantum homomorphism may seem a bit arbitrary, but
it arises from the following physical considerations.

For graphs G and H, the (G,H)-homomorphism game consists of two
players, Alice and Bob, trying to convince a referee that they have a ho-
momorphism from G to H. More precisely, the referee sends Alice and
Bob vertices uA,uB ∈ V (G), respectively, and they respond with vertices
vA,vB ∈ V (H) accordingly. To win, the following conditions must be satis-
fied:

if uA = uB, then vA = vB;

if uA ∼ uB, then vA ∼ vB.

Players can decide upon a strategy beforehand, but cannot communicate
once play has commenced. The game is played for only one round, but
we require a “winning” strategy to win with probability 1. It is not too
difficult to see that classical players (who can use probabilistic strategies
and have access to shared randomness) can win the (G,H)-homomorphism
game with certainty if and only if there exists a homomorphism from G
to H. However, if players are allowed to perform quantum measurements
on a shared entangled state, then it is sometimes possible for them to win
the (G,H)-homomorphism game even when G 6→H. A general introduction
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to the theory of quantum entanglement can be found in [21]. In Chapter 10
of [1] the interested reader may find a short elementary analysis of a different
communication game, which exhibits an analogous difference between the
classical and the quantum version.

In [5] it was proven that for H =Kn, the (G,H)-homomorphism game
can be won by quantum players if and only if G→M(H,d) for some d∈N
(though it was not phrased in this way). In [22] they note that the same
proof works for any graph H and they introduce the measurement graph.

The general idea behind the correspondence between winning quantum
strategies for the (G,H)-homomorphism game and homomorphisms from G
to M(H,d) is as follows: Let ϕ be a homomorphism from G to M(H,d). If
Alice and Bob receive uA,uB ∈V (G), respectively, then Alice and Bob can
perform measurements ϕ(uA) and ϕ(uB)T on what is known as a “maximally
entangled state” to win the game. Here, ϕ(uB)T corresponds to taking the
transpose of each coordinate of ϕ(uB). The adjacency condition for M(H,d)
will correspond to the probability of outputting an incorrect response being
zero.

In many ways quantum homomorphisms behave similarly to homomor-

phisms. In [22] it was shown that they are transitive, i.e., if G
q−→H

q−→K, then

G
q−→K. This means that χq is quantum homomorphism-monotone, i.e., that

G
q−→H⇒χq(G)≤χq(H). Note that in general G

q−→H does not imply that
χ(G) ≤ χ(H). Similarly, many other graph parameters defined via homo-
morphisms are not quantum homomorphism-monotone. However, in [22] it
was shown that both χvec and ϑ̄ are quantum homomorphism-monotone,

i.e., G
q−→H implies that

χvec(G) ≤ χvec(H) and ϑ̄(G) ≤ ϑ̄(H).

Since ϑ̄(Kn)=n, it follows that strict vector chromatic number lower bounds
quantum chromatic number. From this we obtain the following lemma:

Lemma 6.1. For any graph G, we have

χvec(G) ≤ ϑ̄(G) ≤ χq(G).

We mentioned above that χq is quantum homomorphism-monotone. This
is in fact a stronger condition than being homomorphism-monotone. In-

deed, G→H ⇒G
q−→H ⇒ f(G)≤ f(H) for any quantum homomorphism-

monotone parameter f . Therefore, χq is homomorphism-monotone, and thus
by Lemma 2.1 we have

χq(G�H) ≥ max{χq(G), χq(H)},
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and

χq(G×H) ≤ min{χq(G), χq(H)}.

So we have seen that the easy directions of Sabidussi’s theorem and Hedet-
niemi’s conjecture hold for all three of the parameters we are investigating.

7. Quantum Chromatic Number

Here we will prove the quantum analog of Sabidussi’s theorem, and use
Theorem 4.6 to show that the quantum analog of Hedetniemi’s conjecture
holds in certain cases. First, we need the following lemma. We denote by
G[H] the lexicographic product of G with H, for a definition see [14].

Lemma 7.1. Suppose that G,H,F,K are graphs such that G
q−→ F and

H
q−→K. Then the following hold

1. G�H
q−→F �K;

2. G×H q−→F ×K;

3. G�H
q−→F �K;

4. G∗H q−→F ∗K;

5. G[H]
q−→F [K].

Proof. We only give the proof for item (1), but it is obvious that a similar
proof works for the others. For a function f from vertices to tuples, we will
use fu(v) to denote the u coordinate of f(v). Suppose that ϕ1 and ϕ2 are
homomorphisms from G to M(F,d1) and from H to M(K,d2) respectively.
Define ϕ : V (G�H)→V (M(F �K,d1d2)) as follows:

ϕ(w,z)(u, v) = ϕ1
w(u)⊗ ϕ2

z(v)

for all (u,v)∈V (G�H) and (w,z)∈V (F �K). First, we must show that ϕ
is indeed a map to the vertices of M(F �K,d1d2). Since ϕ1

w(u) and ϕ2
z(v)

are orthogonal projectors in dimensions d1 and d2 respectively, their tensor
product is an orthogonal projector in dimension d1d2. Furthermore, since∑

w∈V (F )

ϕ1
w(u) = I for all u ∈ V (G)

and ∑
z∈V (K)

ϕ2
z(v) = I for all v ∈ V (H)
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we have that∑
(w,z)∈V (F�K)

ϕ(w,z)(u, v) =
∑

w∈V (F ),z∈V (K)

ϕ1
w(u)⊗ ϕ2

z(v)

=

 ∑
w∈V (F )

ϕ1
w(u)

⊗
 ∑
z∈V (K)

ϕ2
z(v)


= I ⊗ I = I.

Now recall from the definition of M(F,d1) that for u∼ u′ ∈V (G), we have
that ϕ1

w(u)ϕ1
w′(u′)=0 whenever w 6∼w′. We also have that ϕ1

w(u)ϕ1
w′(u)=0

for distinct w,w′∈V (F ), and the analogous conditions for ϕ2.
To show that ϕ is a homomorphism, we must show that for (u,v)∼(u′,v′),

we have ϕ(w,z)(u,v)ϕ(w′,z′)(u
′,v′)=0 whenever (w,z) 6∼(w′z′). Since

ϕ(w,z)(u, v)ϕ(w′,z′)(u
′, v′) = ϕ1

w(u)ϕ1
w′(u′)⊗ ϕ2

z(v)ϕ2
z′(v

′),

it suffices to show that either ϕ1
w(u)ϕ1

w′(u′)=0 or ϕ2
z(v)ϕ2

z′(v
′)=0.

Since (u,v)∼ (u′,v′), without loss of generality we have that u∼u′ and
v = v′. The latter implies that ϕ2

z(v)ϕ2
z′(v

′) = 0 unless z = z′. However,
if z = z′ and (w,z) 6∼ (w′,z′), then we must have that w 6∼ w′ and thus
ϕ1
w(u)ϕ1

w′(u′) = 0. Therefore, we have shown that ϕ is a homomorphism

from G�H to M(F �K,d1d2), and thus G�H
q−→F �K.

We will in fact only need item (1) from the above lemma. We state
the others simply because they follow from an essentially identical proof.
Recall from Section 6 that quantum homomorphisms are transitive, and that

G→H⇒G
q−→H for any graphs G and H. With these facts and the above

lemma, we can easily prove the quantum version of Sabidussi’s theorem.

Theorem 7.2. For graphs G and H,

χq(G�H) = max{χq(G), χq(H)}.

Proof. We saw in Section 6 that χq(G�H)≥max{χq(G),χq(H)}, so we
only need to show the other inequality. Let n=max{χq(G),χq(H)}. Then we

have that G
q−→Kn and H

q−→Kn. Therefore, by Lemma 7.1 and the original
Sabidussi’s theorem, we have

G�H
q−→ Kn �Kn → Kn

and thus
G�H

q−→ Kn.

Therefore, χq(G�H)≤n, and we are done.



104 APPENDIX E. HEDETNIEMI FOR VECTOR CHROMATIC NUMBER

18 C. GODSIL, D. ROBERSON, R. ŠÁMAL, S. SEVERINI

Although we are not able to prove the general quantum version of Hedet-
niemi’s conjecture, we can use the ϑ̄ version of Hedetniemi’s conjecture to
prove a special case.

Theorem 7.3. Suppose that graphs G and H are such that χq(G) = ϑ̄(G)
and χq(H)= ϑ̄(H). Then

χq(G×H) = min{χq(G), χq(H)}.

Proof. In Section 6 we saw that

χq(G×H) ≤ min{χq(G), χq(H)}.

Therefore, we only need to show the reverse inequality. Suppose that G and
H satisfy the conditions above. Recall from Lemma 6.1 that ϑ̄(K)≤χq(K)
for any graph K. Thus

χq(G×H) ≥ ϑ̄(G×H) = min{ϑ̄(G), ϑ̄(H)} = min{χq(G), χq(H)},

by Theorem 4.6.

Recall that Ωn is the graph with vertex set {±1}n such that orthogonal
vectors are adjacent. In Section 6, we saw that these graphs exhibit expo-
nential separation between χq and χ for n a multiple of 4, and they have
been central to the investigation of quantum chromatic number since its
beginnings.

For n odd, Ωn is empty and thus χq(Ωn) = 1 = ϑ̄(Ωn). For n≡2 mod 4,
Ωn is nonempty and bipartite, and thus χq(Ωn)=2= ϑ̄(Ωn). For n a multiple
of 4, combining results from [2] and [22] shows that χq(Ωn) = n = ϑ̄(Ωn).
Therefore, χq(Ωn)= ϑ̄(Ωn) for all n and thus we have the following corollary.

Corollary 7.4. For any m,n∈N,

χq(Ωm ×Ωn) = min{χq(Ωm), χq(Ωn)}.

8. Concluding Remarks

We have shown that the χvec, ϑ̄, and χq versions of Sabidussi’s theorem
hold. We have also shown that the ϑ̄ version of Hedetniemi’s conjecture
holds, the χvec version holds for 1-homogeneous graphs, and the χq version
holds for graphs with strict vector chromatic number equal to quantum
chromatic number. It is not surprising that we were more succesful with the
analogs of Sabidussi’s theorem, as this seems to be the easier of the two
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problems in general. However, we conjecture that the χvec and χq versions
of Hedetniemi’s conjecture hold in general.

With the similarity between χvec and ϑ̄, it is worthwhile considering why
the proof of Theorem 4.6 cannot be used to prove a version of Hedetniemi’s
conjecture for χvec. The proof of Theorem 4.6 relies on the following three
properties of ϑ̄:

1. ϑ̄(G�H)=max{ϑ̄(G), ϑ̄(H)}
2. ϑ̄(G�H)≥ ϑ̄(G)ϑ̄(H)
3. ϑ̄(G∪H)≤ ϑ̄(G)ϑ̄(H)

Combining the last two gives that

ϑ̄(G)ϑ̄(H) ≤ ϑ̄(G�H) ≤ ϑ̄(G�H)ϑ̄(G×H),

which along with the first proves the theorem. We noted after Theorem 4.2
that (1) also holds for χvec, and it can be shown (using essentially the same
proof as for ϑ̄) that (2) holds for χvec as well. However, (3) is false for χvec, as
already shown by Schrijver in [25] (his θ′ is equal to χvec of the complement).
Of course this does not mean that a version of Hedetniemi’s conjecture for
χvec cannot be proved, but a different approach is needed.

We can consider the same analysis for χq. Theorem 7.2 shows that (1)
holds for χq. Item (4) of Lemma 7.1 concerning the disjunctive product
shows that χq(G∗H)≤χq(G)χq(H), and then the same trick used to prove
Corollary 4.5 shows that (3) holds for χq. This leaves (2), but it is not hard
to see χ(C5�C5)=5 and thus

χq(C5 � C5) ≤ χ(C5 � C5) = 5 < 9 = χq(C5)
2.

Note that χq(C5) = 3 follows from the fact that χq(G) = 2 if and only if
χ(G)=2, which was proven in [5].

Of χvec and χq, it seems that proving the analog of Hedetniemi’s conjec-
ture for the former should be more tractable. This is because one can use
strong duality when working with χvec, whereas χq is not known to have this
property. On the other hand, finding a counterexample to the conjecture (if
one exists) is also likely easier for χvec since it can be computed efficiently,
and χq is not even known to be computable.

Acknowledgements. The authors would like to thank the anonymous ref-
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[19] L. Mančinska, G. Scarpa and S. Severini: New separations in zero-error channel
capacity through projective Kochen-Specker sets and quantum coloring, Advanced
online publication, 2013.

[20] R. J. McEliece, E. R. Rodemich and H. C. Rumsey, Jr: The Lovász bound and
some generalizations, J. Combin. Inform. System Sci. 3 (1978), 134–152.

[21] M. A. Nielsen and I. L. Chuang: Quantum Computation and Quantum Informa-
tion, Cambridge University Press, 2000.



107

SABIDUSSI VS. HEDETNIEMI 21
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Cubical coloring — fractional covering by cuts
and semidefinite programming∗
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Computer Science Institute

Charles University

Prague

Abstract
We introduce a new graph invariant that measures fractional covering of a

graph by cuts. Besides being interesting in its own right, it is useful for study
of homomorphisms and tension-continuous mappings. We study the relations with
chromatic number, bipartite density, and other graph parameters.

We find the value of our parameter for a family of graphs based on hypercubes.
These graphs play for our parameter the role that circular cliques play for the circu-
lar chromatic number. The fact that the defined parameter attains on these graphs
the ‘correct’ value suggests that the definition is a natural one. In the proof we use
the eigenvalue bound for maximum cut and a recent result of Engström, Färnqvist,
Jonsson, and Thapper.

We also provide a polynomial time approximation algorithm based on semidef-
inite programming and in particular on vector chromatic number (defined by Karger,
Motwani and Sudan [Approximate graph coloring by semidefinite programming,
J. ACM 45 (1998), no. 2, 246–265]).

1 Introduction
All graphs we consider are undirected and loopless; to avoid trivialities we do not
consider edgeless graphs. For a set W ⊆ V (G) we let δ(W ) denote the set of edges
leaving W and we call any set of form δ(W ) a cut. Other terminology we shall be
using is standard, and can be found in, e.g., [6].

Let us call a (cut) n/k-cover of G an n-tuple (X1, . . . , Xn) of cuts in G such
that every edge of G is covered by at least k of them. We define two closely related
parameters of G. We let

x(G) = inf
{n
k
| exists n/k-cover of G

}
and call x(G) the fractional cut-covering number of G. Its ‘rescaling’

χq(G) =
2

2− x(G)

∗Preliminary (and shorter) version of this research appeared as extended abstract [21].
†Email: samal@iuuk.mff.cuni.cz. Partially supported by grant GA ČR P201/10/P337. Partially

supported by Karel Janeček Science & Research Endowment (NFKJ) grant 201201.
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will be called the cubical chromatic number of G. This terminology is motivated by
analogy with the circular chromatic number, see the discussion following Equation (1).
The rescaling function 2/(2 − x) serves the purpose of aligning the value with other
variants of chromatic number, namely of attaining the right value for complete graphs.
However, the rescaling function is far from arbitrary, as the values for other graphs are
also modified in a proper way, see Theorem 5.2.

If k = 1, i.e., if we want to cover every edge at least once, then we need at least
dlog2 χ(G)e of them (see, e.g., [5]). Here we consider a fractional version. In this
context we may find it surprising that x(G) < 2 for every G (Corollary 2.3).

From another perspective, x(G) is the fractional chromatic number of a certain
hypergraph: it has E(G) as points and odd cycles of G as hyperedges. This suggests
that x(G) is a solution of a linear program, see Equations (2) and (3).

The parameter x(G) has found surprising use in computer science. Färnqvist, Jon-
sson, and Thapper [10] study the approximability of MAXCUT and its generalizations
(so-called H-COLORING) using a suitably defined metric space. The function used to
define the metric is in [7] recognized as a natural generalization of fractional covering
by cuts. See the concluding remarks for further discussion.

As another point of view we note that x(G) is a certain type of chromatic number,
but instead of complete graphs (or Kneser graphs or circulants) which are used to define
chromatic number (or fractional or circular chromatic number) it uses another graph
scale. Let Qn/k denote a graph with {0, 1}n as the set of vertices, where xy forms an
edge iff d(x, y) ≥ k (here d(x, y) is the Hamming distance of x and y).

Observation 1.1 A graph has n/k-cover if and only if it is homomorphic to Qn/k.

Proof: If (X1, . . . , Xn) is a cut n/k-cover of a graph G then we can define homo-
morphism f : V (G)→ V (Qn/k) as follows: for each i we write Xi as δ(Wi); we put
f(v) = 1 if v ∈ Wi and f(v) = 0 otherwise. Now f = (f1, . . . , fn) is a homomor-
phism. If, on the other hand, we are given a homomorphism f : V (G) → V (Qn/k)
then we can put Wi = {v ∈ V (G) : fi(v) = 1} and observe that (δ(W1), . . . , δ(Wn))
is a cut n/k-cover. 2

The above observation implies that an alternative definition of x(G) is

x(G) = inf
{n
k
| G hom−−−→ Qn/k

}
. (1)

An immediate corollary is that x(G) is a homomorphism invariant, that is ifG hom−−−→ H
then x(G) ≤ x(H). This will be strengthened in Lemma 1.2.

For a graph H let H
≥k denote the graph with vertices V (H) and edges uv for any

u, v ∈ V (H) with distance in H at least k. Further let Qn denote the n-dimensional
cube. Then Qn/k = Q

≥k
n . This corresponds to the definition of circular chromatic

number, where the target graph is C
≥k
n . This observation inspires the term cubical

chromatic number. However, as we will see later (in Corollary 2.3), a rescaling of x(G)
is in order to make it behave like a version of chromatic number, thus the definition
of χq .

The original motivation for defining x(G) was the study [22, 19] of cut-continuous
mappings (defined in [5]). Given graphs G, H we call a mapping f : E(G) → E(H)
cut-continuous, if for every cut U ⊆ E(H), the preimage f−1(U) is a cut in G. The
following lemma is straightforward, but useful.

2
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Lemma 1.2 Let G, H be graphs. Then if there is a cut-continuous mapping from G

to H (in particular, if there is a homomorphism G
hom−−−→ H), then x(G) ≤ x(H) and

(equivalently) χq(G) ≤ χq(H).

Proof: It suffices to show that whenever H has an n/k-cover, G has it as well. So let
f be some cut-continuous mapping from G to H , let X1, . . . , Xn be an n/k-cover and
consider X ′i—a preimage of the cut Xi under f . By definition, X ′i is also a cut. If e is
an edge of G, f(e) is an edge of H , hence it is covered by at least k of the cuts Xi.
Thus e is covered by at least k of the cuts X ′i . For the homomorphism part, one may
observe that the mapping induced on edges by a homomorphism is cut-continuous [5],
or just use the alternative definition in Equation (1). 2

As each graph Qn/k is a Cayley graph on Zn2 , it follows (see [22]) that for every
graph G the existence of a homomorphism from G to Qn/k is equivalent to the exis-
tence of a cut-continuous mapping from G to Qn/k. Consequently, we may as well use
cut-continuous mapping to Qn/k in Equation (1). This also provides an indirect proof
of Lemma 1.2.

It is a standard exercise to show that x(G) is the solution of the following linear
program (C denotes the family of all cuts in G)

minimize
∑
X∈C

w(X) subject to: for every edge e,
∑

X,e∈X∈C
w(X) ≥ 1. (2)

We conclude that we can replace inf by min in the definition of x(G)—the infimum
is always attained. We can also consider the dual program

maximize
∑

e∈E(G)

y(e) subject to: for every cut X ,
∑
e,e∈X

y(e) ≤ 1. (3)

This program is useful for computation of x(G) for some G. (Färnqvist, Jonsson, and
Thapper [10] used a modification of this program. There is an optimal solution y∗

of the above program, that respects symmetries of G: if there is an automorphism of
G that maps edge e to edge f , then y∗(e) = y∗(f). This decreases the size of the
linear program for graphs with nontrivial automorphism group.) Moreover, in the final
section we use this dual program to discuss yet another definition of x(G) in terms of
the bipartite subgraph polytope.

There is another possibility to dualize the notion of fractional cut covering, namely
fractional cycle covering. Bermond, Jackson and Jaeger [1] proved that every bridge-
less graph has a cycle 7/4-cover (i.e., a collection of 7 cycles, that cover every edge
at least 4 times), and Fan [8] proved that it has a 10/6-cover. An equivalent formu-
lation of the Berge-Fulkerson conjecture claims that every cubic bridgeless graph has
a 6/4-cover. On the other hand, Edmonds characterization of the matching polytope
implies that every cubic bridgeless graph has a cycle 3k/2k-cover (for some k). It is
open, whether for some fixed k every cubic bridgeless graph has a cycle 3k/2k-cover.

2 Basic properties
We let MAXCUT(G) denote the number of edges in the largest cut in G and write
b(G) = MAXCUT(G)/|E(G)| for the bipartite density of G.

3
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Lemma 2.1 For any graph G it holds x(G) ≥ 1/b(G). If G is edge-transitive, then
equality holds.

Proof: Suppose x(G) = n/k and letX1, . . . ,Xn be an n/k-cover. Then
∑n
i=1 |Xi| ≤

n·b(G)|E(G)|, on the other hand this sum is at least k·|E(G)|, as every edge is counted
at least k times. This proves the first part of the lemma. To prove the second part, let
X = {X1, . . . , Xn} be all cuts of the maximal size (i.e., |Xi| = b(G)|E(G)|). From
the edge-transitivity follows that every edge is covered by the same number (say k) of
elements of X . Now k · |E(G)| =

∑n
i=1 |Xi| = n · b(G)|E(G)|, which finishes the

proof. 2

Corollary 2.2 Let Pt denote the Petersen graph.

x(K2n) = x(K2n−1) = 2− 1/n χq(K2n) = χq(K2n−1) = 2n

x(C2k+1) = 1 + 1/(2k) χq(C2k+1) = 2 + 2/(2k − 1)

x(Pt) = 5/4 χq(Pt) = 8/3

In the following result, go(G) denotes the length of a shortest odd cycle in G.

Corollary 2.3 For any graph G,

2 +
2

go(G)− 2
≤ χq(G) ≤ 2

⌈
χ(G)

2

⌉
.

Equivalently, 1 + 1
go(G)−1 ≤ x(G) ≤ 2− 1

dχ(G)/2e .
In particular, x(G) ∈ [1, 2) and χq(G) ≥ 2.

Proof: Let l = go(G), i.e., Cl is the shortest odd cycle that is a subgraph of G. Put
n = χ(G). Then there are homomorphisms Cl → G → Kn, so it remains to use
Lemma 1.2 and Corollary 2.2. 2

By combining Lemma 1.2 and Corollary 2.2 we get that there is no cut-continuous
mapping from Kn+2 to Kn. As there is obviously a cut-continuous mapping (indeed,
even a homomorphism) in the other direction, we conclude that the even cliques K2n

form a strictly ascending chain in the poset defined by cut-continuous mappings. This
application was the original point in defining x(G), the result is not as straightforward
as it appears (for example, there is a cut-continuous mapping K4 → K3).

Next, we will study how good are the bounds of Corollary 2.3. While they obvi-
ously are tight for G equal to a complete graph, resp. odd cycle, they can be arbitrarily
far off, as documented by Corollary 2.5 and Theorem 2.6. Before we get to that we
need to look at χf (G)—the fractional chromatic number of G. This may be defined by

χf (G) = inf{n/k | G hom−−−→ K(n, k)} , where K(n, k) is the Kneser graph.

Lemma 2.4 Let k, n be integers such that 0 < 2k ≤ n. Then

1. b(K(n, k)) ≥ 2k/n.

2. x(K(n, k)) ≤ n/(2k).

Consequently, for any graph G we have x(G) ≤ 1
2χf (G).

4
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(Note that the bound is only useful if k > n/4.)

Proof: For the first part we let U = {S ⊆ [n] | 1 ∈ S} and observe that δ(U) contains(
n−1
k−1
)(
n−k
k

)
edges. As Kneser graphs are edge-transitive, the second part follows by

Lemma 2.1. The rest follows by Lemma 1.2 and the definition of fractional chromatic
number. 2

Corollary 2.5 For every ε > 0 and every integer b there is a graph G such that

χq(G) < 2 + ε and χ(G) > b .

Proof: Let G = K(n, k), for n = 2k + t, k = t2 and t large enough. Then
by Corollary 2.4 we have x(G) ≤ n/2k = 1 + t/(2t2), thus (for t large enough)
χq(G) ≤ 2+ε. On the other hand, it is known [17] that χ(G) = n−2k+2 = t+2. Cf.
also Corollary 5.4, where a stronger result is proved using semidefinite approximation.

2

By Corollary 2.3, we can view Corollary 2.5 as a strengthening of the well-known
fact that there are graphs with no short odd cycle and with a large chromatic number. It
also shows that the converse of Lemma 1.2 is far from being true: just take G from the
Corollary 2.5 and let H = Kb/2 (for b large). Then χq(G) is close to 2 and χq(H) is
at least b/2, still by an application of Proposition 6.7 of [5] there is no cut-continuous
mapping from G to H .

It is interesting to find how various graph properties affect χq(G). From the val-
ues in Corollary 2.2 we might think that χq(G) is always larger than the fractional
chromatic number χf (G). However, this is very far from the truth, as shown in Corol-
lary 5.4. We saw already that small χ(G) makes χq(G) small (Corollary 2.3), while
large χ(G) does not force χq to be large (Corollary 2.5). Also small go(G) makes
χq(G) large (Corollary 2.3 again). Complementing Corollary 2.5 we show that large
go(G) does not make χq(G) small (but cf. Question 2.7).

Theorem 2.6 For any integers k, l there is a graph G such that χq(G) > k and
G contains no circuit of length at most l.

Proof: We modify the famous Erdős’ proof of existence of high-girth graphs of high
chromatic number.

Let p = nα−1 (where α ∈ (0, 1/l)) and consider the random graph G(n, p). The
expected number of circuits of length at most l is O((pn)l) = o(n), therefore by
Markov inequality with probability 1 − o(1) the graph G(n, p) contains at most n
circuits of length at most l.

Using Lemma 3.1, and in particular its Claim 1, where we put δ = n−α/3 we get
that a.a.s. b(G(n, p)) ≤ 1

2 (1 +O(n−α/3)) and |E(G(n, p))| > n1+α/3.
We take a graph G′ satisfying all these three requirements. Then we delete one

edge from each of the at most n short circuits and let G be the resulting graph.
Clearly G contains no short cycles. To show χq(G) is large it is enough to show

that x(G) can be arbitrary close to 2, or (using Lemma 2.1) to show that b(G) can be
arbitrary close to 1/2.

As |E(G′)| = Ω(n1+α), and as we delete at most n edges of G′ to get G, we have
|E(G)| ≥ |E(G′)|(1− o(1)). Obviously, MAXCUT in G cannot be larger than in G′,
thus b(G) ≤ b(G′)(1 + o(1)) = 1

2 (1 + o(1)), which finishes the proof. 2

5
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In the previous result it was crucial that the graphs had large degrees. For graphs
of small degree the situation differs:

Question 2.7 Let G be a cubic graph with no cycle of length ≤ c. How large can
χq(G) (resp. x(G)) be?

For c = 3, it follows from Brooks’ theorem that x(G) ≤ x(K3) = 3/2 (χq(G) ≤
4). For c = 17, it is known [4] that G has a cut-continuous mapping to C5, hence
x(G) ≤ x(C5) = 5/4 (χq(G) ≤ 8/3). On the other hand, there is ε > 0 such that
cubic graphs G of arbitrary high girth exist with b(G) < 1 − ε (an unpublished result
of McKay, see also [22]), hence with x(G) > 1 + ε and so χq(G) > 2 + 2ε.

We conclude this section by a simple lemma that shows that χq and x enjoy some
of the properties of other chromatic numbers. (Here G1 2G2 denotes the Cartesian
product of graphs, G1 ×G2 the categorical one (also called tensor product), see [14].)

Lemma 2.8 1. x(G) = max{x(G′) | G′ is a component of G}

2. x(G) = max{x(G′) | G′ is a 2-connected block of G} for a connected graphG.

3. x(G1 2G2) = max{x(G1), x(G2)}

4. x(G1 ×G2) ≤ min{x(G1), x(G2)}
The same formulas are true for χq in place of x.

Proof: We will prove that if G′, G′′ are graphs that share at most one vertex, then
x(G′ ∪ G′′) = max{x(G′), x(G′′)}. Clearly, this proves 1 and 2. Let x(G′) =
n/k, and x(G′′) = m/l (by discussion after Equation (2) the infimum is attained) and
supposeX ′1, . . . , X ′n is an n/k-cover ofG′, whileX ′′1 , . . . , X ′′m is anm/l-cover ofG′′.
Consider the collection of mn cuts {X ′i ∪X ′′j } (these are cuts, indeed, as G′ and G′′

share at most one vertex). An edge of G′ is covered at least mk times, an edge of G′′

at least nl times. Hence x(G) ≤ mn
min{mk,nl} = max{nk ,

m
l } = max{x(G′), x(G′′)}.

On the other hand, both G′ and G′′ are subgraphs of G, hence by Lemma 1.2 the other
inequality follows.

Part 3 follows from Lemma 1.2, as between G1 2G2 and G1 ∪ G2 exists a cut-
continuous mapping in both directions.

Part 4 follows from Lemma 1.2 as there are homomorphisms (and therefore TT map-
pings) G1 ×G2 → Gi (for i = 1, 2).

As χq = 2/(2−x) (which is an increasing function for the values that x can attain),
the results for χq follow immediately. 2

3 Cubical chromatic number of random graphs
In this section we consider the value of cubical chromatic number of random graphs.
After a short technical lemma (that is also used in the proof of Theorem 2.6) we bound
χq of a random graph G(n, 1/2) using a simple self-contained proof. We comple-
ment this by a result that provides the correct order of magnitude using results from
Section 5.

6
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Lemma 3.1 Let p, δ be functions of n such that p, δ ∈ [0, 1] and δ2p ≥ 7 log n/n.
Then b(G(n, p)) ≤ 1

2 (1 +O(1/n) +O(δ)) a.a.s. In particular, we have

b(G(n, p)) ≤ 1

2
+O

(√
log n

pn

)
a.a.s.

Proof: We will prove that almost all graphs have “many edges but no huge cut”.

Claim 1. |E(G(n, p))| > (1− δ)p
(
n
2

)
a.a.s.

To prove this we use Chernoff inequality (as stated in Corollary 2.3 of [15]) for
random variable X = |E(G(n, p))|. It claims Pr[|X − Ex| ≥ δEX] ≤ 2e−

δ2

3 EX for
δ ≤ 3/2 and as EX = p

(
n
2

)
, Claim 1 follows.

Claim 2. MAXCUT(G(n, p)) < (1 + δ)pn
2

4 a.a.s.
For a set A ⊆ V (G(n, p)) we let XA be the random variable that counts the edges

leaving A, and put a = |A| ≤ n/2. By Chernoff inequality for XA we easily get

Pr[XA ≥ (1 + δ)pn2/4] ≤ 2e−
δ2

3 pa(n−a) ≤ 2e−
δ2pan

6 .

It remains to estimate the total probability of a large cut:

Pr[(∃A)XA ≥ (1 + δ)pn2/4] ≤
n/2∑
a=1

(
n

a

)
2e−

δ2pan
6 ≤ 2

(
(1 + e−

δ2pn
6 )n − 1

)
.

For δ2p ≥ 7 log n/n the last expression tends to zero, which finishes the proof of
Claim 2. The rest of the proof of the lemma is a simple calculation. 2

Theorem 3.2

Ω
(√

n/ log n
)
≤ χq(G(n, 1/2)) ≤ O (n/log n) a.a.s.

Proof: The lower bound follows by Lemma 3.1, the upper one by an application of
Corollary 2.3 and the well-known fact that χ(G(n, 1/2)) = O(n/ log n). 2

Theorem 3.3 χq(G(n, p)) = Θ(
√
pn) a.a.s.

Proof: The result follows directly using Theorem 5.1 and Theorem 5.2. 2

4 Measuring the scale
In this section we will discuss the ‘invariance property’ of cubical chromatic number.
In analogy with χ(Kn) = n, χc(C

≥k
n ) = n/k, χf (K(n, k)) = n/k, and ‘dimension

of product of n complete graphs is n’ we would like to prove that x(Qn/k) = n/k.
The following lemma shows, that the situation is not that simple for x.

7
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Lemma 4.1 Let 1 ≤ k ≤ n be integers. Then we have x(Qn/k) ≤ n
k . If k is odd, then

x(Qn/k) ≤ n+1
k+1 .

Proof: For the first part, it suffices to consider the identical homomorphismQn/k
hom−−−→

Qn/k. For the second part, mapping V (Qn/k)→ V (Qn+1
k+1

) given by (x1, . . . , xn) 7→
(x1, . . . , xn, x1 + · · ·+ xn mod 2) is a homomorphism whenever k is odd. 2

Another complication is that by Corollary 2.3 we have x(G) < 2 for any graph G.
However, with this exception, the bounds in Lemma 4.1 are optimal:

Theorem 4.2 Let k, n be integers such that k ≤ n ≤ 2k. Then

1. if k is even and n < 2k then x(Qn/k) = n
k ; and

2. if k is odd then x(Qn/k) = n+1
k+1 .

This theorem was announced as a conjecture in the author’s thesis [22], together
with a part of a possible proof. The proof was finished by Engström, Färnqvist, Jons-
son, and Thapper [7, Lemma 4.4], who did prove the inequality in Lemma 4.4.

We’ll use the following result (see Lemma 13.7.4 and 13.1.2 of [11]).

Lemma 4.3 Let G be an r-regular graph with n vertices, let λmin be the smallest
eigenvalue of G. Then b(G) ≤ 1

2 (1− λmin

r ).

The following lemma was proved (using a clever induction) by Engström, Färnqvist,
Jonsson, and Thapper [7, Lemma 4.4], resolving thus a question from the author’s the-
sis [22].

Lemma 4.4 Let k, n be integers such that k ≤ n < 2k and k is even, let x be an
integer such that 1 ≤ x ≤ n. Then∑

odd t

(
x

t

)(
n− x
k − t

)
≤
(
n− 1

k − 1

)
.

Proof: (of Theorem 4.2) Lemma 4.1 provides the upper bound, we will establish the
lower bound now. Suppose first that k is even. We shall use a spanning subgraph of
Qn/k = Q≥kn , that contains only edges of length precisely k; we shall use Q=k

n to
denote this subgraph.

By Lemma 1.2 and 2.1 we have that x(Qn/k) ≥ x(Q=k
n ) = 1/b(Q=k

n ). By
Lemma 4.3 it is enough to determine the smallest eigenvalue λmin of Q=k

n . As Q=k
n is(

n
k

)
-regular, we have

1

b(Q=k
n )
≥ 2

1− λmin/
(
n
k

) .
It is standard (see, e.g., Problem 11.8 in [18] or the theory of Association Schemes

in Chapter 30 of [23]) that the eigenvalues of Q=k
n are

k∑
t=0

(−1)t
(
x

t

)(
n− x
k − t

)
,

8



119

By using Vandermonde’s identity and Lemma 4.4, we get that the above sum is at least(
n
k

)
(1−2k/n), which is equal to the sum for x = 1. Thus the smallest eigenvalue λmin

equals
(
n
k

)
(1− 2k/n), and we obtain x(Qn/k) ≥ n/k as desired.

For odd values of k we cannot use the same method, as thenQ=k
n is bipartite, hence

b(Q=k
n ) = 1. However, observe that Qn+1

k+1

hom−−−→ Qn/k, hence by Lemma 1.2 and the
result for (even) k + 1 we have

x(Qn/k) ≥ x(Qn+1
k+1

) ≥ n+ 1

k + 1
.

2

Corollary 4.5 The set {x(G) : G is a graph} equals Q ∩ [1, 2]. Consequently, the set
{χq(G) : G is a graph} equals Q ∩ [2,∞).

5 Semidefinite approximation
In this section we show how to approximate χq in polynomial time up to a factor
of π/2. Key to this approximation is the vector coloring, introduced by [16] based
on the Lovász’ ϑ function. The concept of vertex coloring is extended by using high-
dimensional unit vectors as colors, and requiring adjacent vertices to be assigned dis-
tant vectors. Precisely: given a graphG and real t < 0 consider a mapping f : V (G)→
Rn (where n = |V (G)|), so that

• ‖f(v)‖2 = 1 for every vertex v and

• 〈f(u), f(v)〉 ≤ t for every edge uv.

We let t(G) denote the minimum t such that function f with the above properties exists.
The vector chromatic number of G is defined as χv(G) = 1− 1

t(G) .
As these conditions for t(G) can be formulated as a semidefinite program, the min-

imum indeed exists; more importantly, t(G) can be approximated with an absolute
error ε in time polynomial in n and log 1

ε . Indeed, Karger, Motwani and Sudan [16,
Lemma 3.2] prove that if a graph G has χv(G) = k then it is possible to find a vec-
tor (k + ε)-coloring in time polynomial in n and log 1/ε — in particular, one finds
approximation to χv up to an absolute error ε.

It is easy to see that χv(G) ≤ χ(G) – given a proper k-coloring, we may map
all vertices of one color to one vertex of a simplex with k vertices. This will lead
to t = − 1

k−1 , and so indeed χv(G) ≤ k. However, the fraction χ(G)/χv(G) can
be arbitrarily large [9], in fact as large as n/polylog(n) (where n = |V (G)|); this
contrasts sharply with Theorem 5.2.

For further properties of χv see [16] and [3]. In the latter the following is shown.

Theorem 5.1 ([3]) c1
√
np ≤ χv(Gn,p) ≤ c2

√
np with probability 1− o(1).

Now we proceed to show to connection between χq and χv .

Theorem 5.2 For every graph G we have

χv(G) ≤ χq(G) ≤ π

2
χv(G) .

9
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Proof: We prove the lower bound first. Recall that χq(G) = 2
2−x(G) and x(G) = n/k,

for some n, k where there is a k-cover of G by n cuts. (The fact that the infimum in
the definition of x(G) is attained follows from the linear-programming reformulation,
see Equation (2).) Equivalently, there is a mapping g : V (G) → {±1}n (the i-th
coordinate encodes the i-th cut so that for every edge uv the vectors g(u) and g(v)
differ in ≥ k coordinates. Put f(v) = g(v)/

√
n. Obviously, each f(v) is a unit vector,

while for every edge uv we have

〈f(u), f(v)〉 = 1− 2dH(g(u), g(v))

n
≤ 1− 2k

n
= 1− 2

x(G)
.

Therefore, for this f we get t ≤ 1− 2/x(G). Consequently,

χv(G) ≤ 1− 1

t
≤ 1− x(G)

x(G)− 2
=

2

2− x(G)
= χq(G) .

For the upper bound we use probabilistic approach, motivated by the algorithm for
approximating MAXCUT by Goemans and Williamson [12]. Consider a mapping f
as above, the scalar products are at most t with χv(G) = 1 − 1/t. For a large N , we
choose N uniformly random hyperplanes in Rn through the origin. With probability 1
none of them contains any of the points f(v) for v ∈ V (G), therefore each hyperplane
defines a cut. We shell prove that with probability 1 − o(1) this cut covering gives us
the desired bound.

To this end, consider an edge uv ∈ E(G), let α be the angle between the unit
vectors f(u) and f(v). The following elementary observation (used also in [12]) is
crucial for the calculation:

A random hyperplane through origin separates f(u) and f(v) with probability α
π .

For an edge e = uv let Xe be the random variable that counts how many of the N hy-
perplanes separate the end-vertices of e. Obviously, Xe follows a binomial distribution
Bin(N, p) with p = α

π . We have cosα = 〈f(u), f(v)〉 ≤ t, so p ≥ arccos t
π . By the

Chernoff inequality we have Pr[Xe < pN − s] < e−
s2

2Np . Putting s = dN2/3e we
obtain

Pr[Xe < pN − dN2/3e] < e−
N1/3

2p = o(1)

(the o(1) is with respect toN growing to infinity). Thus, with probability 1−
(
n
2

)
o(1) =

1− o(1) we have Xe ≥ pN − dN2/3e for every edge e. So for every large enough N
there is a cut covering achieving this and from the definition of x(G), we get that

x(G) ≤ N

pN − dN2/3e
=

1

p
(1 + o(1)) .

As we may choose arbitrarily large N , we get from here that x(G) ≤ 1
p = π

arccos t .
Now from the definition we obtain

χq(G)

χv(G)
=

2
2−x(G)

1− 1
t

≤
2

2− π
arccos t

1− 1
t

=
t arccos t

(arccos t− π/2)(t− 1)

Putting t = cosα and β = α− π/2 (so that t = − sinβ), the last expression equals

sinβ

β

β + π
2

sinβ + 1
≤ 1 · π

2

10
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(we used the elementary estimate 2
πβ ≤ sinβ ≤ β valid for β ∈ [0, π/2]). 2

We note that the above proof also yields bound χq(G) ≤ 1/
(
1− π

2 arccos 1
1−χv(G)

)
,

which is, for small values of χv(G), slightly better than the above theorem.

Corollary 5.3 There is a polynomial-time algorithm that approximates χq(G) with
approximation factor almost π

2 . More precisely: to get an approximation factor at
most π2 (1 + ε) we need an algorithm polynomial in |V (G)| and log 1/ε.

Corollary 5.4 For every graph G we have

χq(G) ≤ π

2
χf (G) .

Moreover, there is a sequence of graphs for which χq(G) is bounded, while χf (G) is
unbounded.

Proof: For the first part it is enough to use Theorem 5.2, the bound χv(G) ≤ ϑ(G)
(Theorem 8.2 of [16]) and the well-known bound ϑ(G) ≤ χf (G). We use Theo-
rem 1.2 of [9]: There are infinitely many graphs G that are vector 3-colorable and
satisfy α(G) ≤ n0.843 (where n is the number of vertices of G). Each such graph G
satisfies χq(G) ≤ 3π/2 < 5, and χf (G) ≥ n/n0.843 = n0.157. 2

6 Concluding Remarks
Bipartite subgraph polytope For a bipartite subgraph B ⊆ G, let cB be the charac-
teristic vector ofE(B). Bipartite subgraph polytope PB(G) is the convex hull of points
cB , for all bipartite graphs B ⊆ G. The study of this polytope was motivated by the
MAXCUT problem: to look for a weighted maximum cut of G simply means to solve
a linear program over PB(G). Thus, for graphs where PB(G) has simple description,
we can have polynomial-time algorithm for MAXCUT; this in particular happens for
weakly bipartite graphs (which include planar graphs), see [13]. We apply PB to yield
yet another definition of x.

Theorem 6.1 x(G) = max{
∑
e∈E(G) ye | y · c ≤ 1 defines a facet of PB(G)}

Proof: By LP duality x(G) is a solution to the program (3). This means, that we are
maximizing over such y, that for each cut X satisfy y · cX ≤ 1. As the convex hull of
vectors cX is PB , we are maximizing the sum of coordinates of an element of the dual
polytope P ∗B . This maximum is attained for some vertex of P ∗B , that is for y such that
y · c ≤ 1 defines a facet of PB . 2

‘Natural’ facets of PB(G) are defined by
∑
e∈E(H) ye ≤ MAXCUT(H) for some

H ⊆ G. (This inequality is satisfied for every graph H , but it doesn’t always define
a face of maximal dimension.) This proves the following observation (we add a direct
proof, too).

Lemma 6.2 x(G) ≥ 1/(minH⊆G b(H))

11
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Proof: LetH ⊆ G. ThenH TT2−−→ G, which by Lemma 1.2 and 2.1 implies 1/b(H) ≤
x(G). 2

Let us return to Lemma 2.1 for a while. In general x(G) and 1/b(G) can be as
distant as possible: Let G be a disjoint union of a Kn and KN,N . Now x(G) is close
to 2 (because G is homomorphically equivalent to Kn, hence x(G) = x(Kn)) and
b(G) is close to 1 (provided N is sufficiently large). This motivates Lemma 6.2, which
improves the original bound. A natural question is whether this improvement gives the
correct size of x. It turns out it does not (contrary to a conjecture in the author’s thesis).
In [7] it is shown, that the circular clique K11/4 is a counterexample.

A failed attempt The proof of Theorem 4.2 could be attempted by another way:
First, observe that the Kneser graph K(n, r) is a subgraph of Qn/2r. By Lemma 1.2
and 2.1 we have x(Qn/2r) ≥ x(K(n, r)) ≥ 1

b(K(n,r)) . Thus, if we knew the value of
b(K(n, r)) (and it turned out to be 2r/n for the range of r we are interested in), we
would be done.

In [20] it is claimed that if 2r ≤ n ≤ 3r then, indeed, b(K(n, r)) = 2r/n. This
would imply the conjecture for even k less than 3/2 ·n; unfortunately the proof in [20]
is incomplete (as already observed by [2]). Thus, the true value of MAXCUT for
Kneser graphs remains open.

Generalizations and future work As already mentioned in the introduction, the
metric that is used in [10, 7] to study approximability of MAX-H-COLORING can
be computed from a generalization of fractional covering by cuts. One only needs
to consider more general edge sets in place of cuts, namely edge sets of graphs that
are homomorphic to H . Then the cube Qn/k in Equation (1) is replaced by appropri-
ately defined power of H . One may also use this motivation to define H-continuous
mappings as follows. We call a subset X ⊆ E(G) an H-cut in G whenever there
is a mapping g : V (G) → V (H) for which g−1(E(H)) = X . We say a mapping
f : E(G1) → E(G2) is H-continuous whenever a preimage of each H-cut is an
H-cut. This notion deserves further attention.

Number of cuts required By definition, if x(G) = t then there is a cut n/k-cover
for some n, k satisfying t = n

k . It would be nice to know how large n is required. To
be precise, define n(G) to be the smallest n as above. Then we let

f(v) = max{n(G) : G is a graph with v vertices} .

This maximum clearly exists (as there are only finitely many graphs on v vertices).

Question 6.3 How fast doest f(v) grow? Is f(v) ≤ 2v?

The estimate by 2v seems natural, as there is only 2v−1 different cuts in a graph on
v vertices. However, one may be forced to take some cuts repeatedly.

Complexity In view of the complexity of computing other variants of chromatic
number, the following conjecture is natural. Note, however, that in contrast with chro-
matic or fractional chromatic number, cubical chromatic number can be approximated
up to a constant factor.

Conjecture 6.4 For any s > 2 determining if an input graph G satisfies χq(G) ≤ s is
NP-complete.

12
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Cubic graphs For the reader’s convenience we restate here Question 2.7. For known
partial results we refer the reader to Section 2.

Question 6.5 LetG be a cubic graph with no cycle of length≤ c. How large can x(G)
(resp. χq(G)) be?

Acknowledgement
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a b s t r a c t

Many conjectures at the core of graph theory can be formulated
as questions about certain group-valued flows: examples include
the cycle double-cover conjecture, the Berge–Fulkerson conjecture,
and Tutte’s 3-flow, 4-flow, and 5-flow conjectures. As an approach
to these problems, Jaeger, and DeVos, Nešetřil, and Raspaud define
a notion of graph morphisms continuous with respect to group-
valued flows. We discuss the influence of the group on these
maps. In particular, we prove that the number of flow-continuous
mappings between two graphs does not depend on the group, but
only on the largest order of an element of the group (i.e., on the
exponent of the group). Further, there is a nice algebraic structure
describing for which groups a mapping is flow-continuous.

On the combinatorial side, we show that for cubic graphs the
only relevant groups are Z2, Z3, and Z.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper G andH will be digraphs (finitemultidigraphs with loops and parallel edges
allowed), f : E(G) → E(H) a mapping, andM,N abelian groups.

Recall that a mapping ϕ : E(G) → M is a flow (an M-flow when we want to emphasize M) when
it satisfies Kirchhoff’s law at every vertex, that is, for every v ∈ V (G) we have

e∈E(G):e leaves v

ϕ(e) =


e∈E(G):e enters v

ϕ(e).
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The theory of flows on (di)graphs is a very rich one, but also full of longstanding conjectures (the
cycle double cover conjecture, the Berge–Fulkerson conjecture, Tutte’s 3-flow, 4-flow, and 5-flow
conjectures, etc.); see [7,2] or [9] for a detailed treatment of this area.

In this paper we are going to study a notion introduced by Jaeger [3] and by DeVos, Nešetřil, and
Raspaud [1] as an approach to these problems.

We say that a mapping f : E(G) → E(H) isM-flow-continuous if ‘‘the preimage of everyM-flow is
an M-flow’’. More precisely, for every M-flow ϕ on H , the composition ϕf (applying first f then ϕ) is
an M-flow on G. For short, we will call M-flow-continuous mappings just FFM ; in the important case

M = Zn we use the typographically nicer FFn instead of FFZn . We will write G
FFM
−−→ H to denote that

there exists some FFM mapping from G to H .
The main reason for introducing this notion is Jaeger’s conjecture [3] that every bridgeless cubic

graph G has a Z2-flow-continuous mapping to the Petersen graph. If true, this conjecture would
imply the cycle double cover conjecture, and many others. In this paper we will study the notion of
M-flow-continuous mappings per se, with the aim of making clear what the role of the group M is;
this question has not been addressed in previous treatments. ForM = Z2 we do not need to consider
the orientation of edges; thus this part of the theory is relevant for undirected graphs. As our emphasis
is on general abelian groups, we will mostly deal with digraphs.

In some of our proofs we will use an alternative characterization of FF-mappings; to state it we
need to briefly introduce two notions. Given τ : E(G) → M and f : E(G) → E(H), we denote by τf
the algebraic image of τ , i.e., the mapping τf : E(H) → M defined by

τf (e) =


e′∈E(G);f (e′)=e

τ(e′).

Amapping t : E(G) → M is called anM-tension if for every circuit C the sum of t over all clockwise
edges is the same as the sum over all counterclockwise edges. It is not hard to see thatM-tensions in a
plane digraphG correspond toM-flows in the dualG∗. More relevant for us is that for every digraph the
vector spaces of all M-flows and of all M-tensions are orthogonal complements. (For this we need M
to be a ring. As our consideration will be restricted to finitely generated abelian groups, i.e., to groups
in the form (1), this will not limit our use of the following lemma.) This allowed DeVos, Nešetřil, and
Raspaud [1, Theorem 3.1] to prove the following useful result.

Lemma 1.1. Let f : E(G) → E(H) be a mapping; let M be a ring. Mapping f is FFM if and only if for every
M-tension τ on G, its algebraic image τf is an M-tension on H.

Moreover, it is sufficient to verify the condition for all tensions that are nonzero only on a neighborhood
of a single vertex.

As an easy corollary of this lemma, we observe that FF2-mappings between cubic bridgeless graphs
map a 3-edge-cut to a 3-edge-cut. In particular, if the target graph is cyclically 4-edge-connected, then
the image of an elementary cut (all edges around a vertex) is an elementary cut.

2. The influence of the group

In this section we study how the notion of M-flow-continuous mapping depends on the group
M . Although the existence of M-flow-continuous mappings seems to be strongly dependent on the
choice of M we prove here (in Theorem 2.4) that this dependence relates only to the largest order of
an element ofM .

As we are interested only in finite digraphs, we can restrict our attention to finitely generated
groups—clearly f is M-flow-continuous if and only if it is N-flow-continuous for every finitely
generated subgroup N ofM . Hence, there are integers α, k, βi, ni (i = 1, . . . , k) such that

M ≃ Zα
×

k
i=1

Zβi
ni . (1)

Note that each such group has a canonical ring structure; thus we will be able to use Lemma 1.1.
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For a group M in the form (1), let n(M) = ∞ if α > 0; otherwise let n(M) be the least common
multiple of {n1, . . . , nk}. When n(M) is finite, it is called the exponent of the group M . An alternative
definition is that n(M) is the largest order of an element of M (here order of a ∈ M is the smallest
n > 0 such that n · a = a + a + · · · + a = 0).

As a first step towards a complete characterization we consider a specialized question: given an
FFM mapping, when can we conclude that it is FFN as well?

Lemma 2.1. 1. If f is FFZ then it is FFM for any abelian group M.
2. Let M be a subgroup of abelian group N. If f is FFN then it is FFM .

Proof. 1. This appears as Theorem 4.4 in [1].
2. Let ϕ be an M-flow on H . As M ≤ N , we may regard ϕ as an N-flow; hence ϕf is an N-flow on G.

As it attains only values in the range of ϕ, and hence inM , it is anM-flow, too. �

Lemma 2.2. Let M1,M2 be two abelian groups. Mapping f is FFM1 and FFM2 if and only if it is FFM1×M2 .

Proof. As M1,M2 are isomorphic to subgroups of M1 × M2, one implication follows from the second
part of Lemma 2.1. For the other implication let ϕ be an (M1 × M2)-flow on H . Write ϕ = (ϕ1, ϕ2),
where ϕi is an Mi-flow on H . By assumption, ϕif is an Mi flow on G; consequently ϕf = (ϕ1f , ϕ2f ) is
a flow too. �

The following (somewhat surprising) lemma shows that we can restrict our attention to cyclic
groups only.

Lemma 2.3. 1. If n(M) = ∞ then f is FFM if and only if it is FFZ.
2. Otherwise f is FFM if and only if it is FFn(M).

Proof. In the first part, each implication follows from one part of Lemma 2.1. In the second part: If f
is FFM , we use the fact that Zn(M) is isomorphic to a subgroup ofM; thus the second part of Lemma 2.1
implies f is FFn(M). For the other implication, suppose that f is FFn(M). Note that whenever Zni occurs
in the expression (1) for M , then Zni is a subgroup of Zn(M). Consequently (Lemma 2.1, second part) f
is FFni . Repeated application of Lemma 2.2 implies that f is FFM as well. �

By a theorem of Tutte [8], for a finite abelian group M , the number of nowhere-zero M-flows on
a given (di)graph only depends on the order of M (see also [2, Chapter 6]). Before proceeding in the
main direction of this section, let us note a consequence of Lemma 2.3, which is an analogue of Tutte’s
result.

Theorem 2.4. Given digraphs G,H, the number of FFM mappings from G to H depends only on n(M).

Lemma 2.3 suggests defining for two digraphs the set

FF(G,H) = {n ≥ 1 | there is f : E(G) → E(H) such that f is FFn}

and for a particular f : E(G) → E(H)

FF(f ,G,H) = {n ≥ 1 | f is FFn}.

We remark that most of these sets contain 1: Z1 is a trivial group, hence any mapping is FF1.
Therefore 1 ∈ FF(f ,G,H) for every f : E(G) → E(H), while 1 ∈ FF(G,H) if and only if there exists a
mapping E(G) → E(H). This happens always, unless E(H) is empty and E(G) nonempty.

Although we are working with finite digraphs throughout the paper, in the following results we
stress this—contrary to most of the other results, these are not true for infinite digraphs.

Lemma 2.5. Let G be a finite digraph. Either FF(f ,G,H) is finite or FF(f ,G,H) = N. In the latter case f
is FFZ.
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Proof. It is enough to prove that f is FFZ if it is FFn for infinitely many integers n. To this end, take a
Z-flow ϕ on H . As ϕn : e → ϕ(e) mod n is a Zn-flow, ϕnf = ϕf mod n is a Zn-flow whenever f is FFn.
To show that ϕf is a Z-flow consider a vertex v of G and let s be the ‘‘±-sum’’ (in Z) around v:

s =


e leaves v

(ϕf )(e) −


e enters v

(ϕf )(e).

As s mod n = 0 for infinitely many values of n, we have s = 0. �

Any f induced by a local isomorphism is FFZ, thus providing an example where FF(f ,G,H) is the
whole of N. For finite sets the situation is more interesting. By the next theorem, the sets FF(f ,G,H)
are precisely the ideals in the divisibility lattice.

Theorem 2.6. Let S be a finite subset of N. Then the following are equivalent.

1. There are G,H, f such that S = FF(f ,G,H).
2. There is n ∈ N such that S is the set of all divisors of n.

Proof. First we show that 1 implies 2. The set S = FF(f ,G,H) has the following properties:

(i) If a ∈ S and b|a then b ∈ S. (We use the second part of Lemma 2.1: if b divides a, then Zb ≤ Za.)
(ii) If a, b ∈ S then the least common multiple of a, b is in S. (We use Lemmas 2.1 and 2.2: if

l = lcm(a, b) then Zl ≤ Za × Zb.)

Let n be the maximum of S. By (i), all divisors of n are in S. If there is a k ∈ S that does not divide n
then lcm(k, n) is an element of S larger than n, a contradiction.

For the other implication, let
−→
D n be a graph with two vertices and n parallel edges in the same

direction, and let L be a loop (a digraph with a single vertex and one edge). Let f be the only mapping
from

−→
D n to L. Then FF(f ,

−→
D n, L) = S: mapping f is FFk if and only if for any a ∈ Zk the constant

mapping E(
−→
D n) → a is a Zk-flow; this occurs precisely when k divides n. �

Let us turn to describing the sets FF(G,H).

Lemma 2.7. Let G,H be finite digraphs. Either FF(G,H) is finite or FF(G,H) = N. In the latter case

G
FFZ
−→ H.

Proof. As in the proof of Lemma 2.5, the only difficult step is to show that if G
FFn
−→ H for infinitely

many values of n, then G
FFZ
−→ H . As G and H are finite, there are only a finite number of possible

mappings between their edge sets. Hence, there is one of them, say f : E(G) → E(H), that is FFn for

infinitely many values of n. By Lemma 2.5 we have f : G
FFZ
−→ H . �

When characterizing the sets FF(G,H) we first remark that an analogue of Lemma 2.2 does not
hold: there is an FFM mapping from

−→
D 9 to

−→
D 7 forM = Z2 (a mapping that identifies three edges and

is 1–1 on the other ones) and for M = Z3 (e.g., a constant mapping), but not the same mapping for
both; hence there is no FFZ2×Z3 mapping.Wewill see that the sets FF(G,H) are precisely the down-sets
in the divisibility poset. First, we prove a lemma that will help us to construct pairs of digraphs G,H
with a given FF(G,H). The integer cone of a set {s1, . . . , st} ⊆ N is the set {

t
i=1 aisi | ai ∈ Z, ai ≥ 0}.

Lemma 2.8. Let A, B be nonempty subsets of N, n ∈ N; define G =


a∈A
−→
D a, and H =


b∈B

−→
D b. Then

there is an FFn mapping from G to H if and only if

A is a subset of the integer cone of B ∪ {n}.

Proof. We use Lemma 1.1. Consider a tension τa taking the value 1 on
−→
D a and 0 elsewhere. The

algebraic image of this tension is a tension; hence it is (modulo n) a sum of several tensions on the
digons

−→
D b, implying that a is in integer cone of B ∪ {n}. On the other hand if a =


i bi + cn(with
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bi ∈ B) thenwe canmap any cn edges of
−→
D a to one (arbitrary) edge ofH , and for each i any (‘‘unused’’)

bi edges bijectively to
−→
D bi . After we have done this for each a ∈ Awewill have constructed aZn-flow-

continuous mapping from G to H . �

Theorem 2.9. Let S be a finite subset of N. Then the following are equivalent.

1. There are G,H such that S = FF(G,H).
2. There is a finite set T ⊂ N such that

S = {s ∈ N; (∃t ∈ T ) s|t}.

Proof. If S is empty, we take T empty in part 2. In part 1, we just consider digraphs such that E(H) is
empty and E(G) is not. Next, we suppose that S is nonempty.

By the same reasoning as in the proof of Theorem 2.6 we see that if a ∈ FF(G,H) and b|a then
b ∈ FF(G,H). Hence, 1 implies 2, as we can take T = S (or, to make T smaller, let T consist of the
maximal elements of S in the divisibility relation).

For the other implication let p > 4max T be a prime, and let p′
∈ (1.25p, 1.5p) be an integer. Let

A = {p, p′
} and

B = {p − t; t ∈ T } ∪ {p′
− t; t ∈ T };

note that every element of B is larger than 3
4p. As in Lemma 2.8 we define G =


a∈A

−→
D a,H =

b∈B
−→
D b. We claim that FF(G,H) = S. By Lemma 2.8 it is immediate that FF(G,H) ⊇ S. For the

other direction take n ∈ FF(G,H). By Lemma 2.8 again, we can express p and p′ in the form

k
i=1

bi + cn (2)

for integers c, k ≥ 0, and bi ∈ B.

• If k ≥ 2 then the sum in (2) is at least 1.5p; hence neither p nor p′ can be expressed with k ≥ 2.
• If k = 1 then we distinguish two cases.

• p = (p − t) + cn; hence n divides t and thus n ∈ S.
• p = (p′

− t) + cn; hence p′
− p ≤ t . But p′

− p > 0.25p > t , a contradiction.
Considering p′ we find that either n ∈ S or p′

= (p − t) + cn.
• Finally, consider k = 0. If p = cn then either n = 1 (so n ∈ S) or n = p. (We do not claim anything

about p′.)

To summarize, if n ∈ FF(G,H)\S then necessarily n = p. For p′ wehave only twopossible expressions:
p′

= cn (for k = 0) and p′
= (p − t) + cn (for k = 1). We easily check that both of them lead to a

contradiction. The first one contradicts 1.25p < p′ < 1.5p. In the second expression c = 0 implies
p′ < pwhile c ≥ 1 implies p′

≥ 2p − t ≥ 1.75p, again a contradiction. �

Remark 2.10. This paper concentrates on FF mappings. We remark, however, that analogous proofs
describe the role of the group for mappings where preimages of tensions are tensions, or preimages
of tensions are flows (or preimages of flows are tensions). For a discussion of the relevance of these
types ofmappings the readermay consult the series [5,4] by the authors and the second author’s Ph.D.
Thesis [6].

3. Cubic graphs

In the previous section we studied how the group M influences the notion of FFM-mappings;
it turned out that there is an algebraic structure behind this. In this section we look at the
combinatorially more relevant case of cubic graphs. (The degree of each vertex is 3; the orientation is
arbitrary.) Indeed, many longstanding conjectures in the area have been reduced to the case of cubic
graphs. There it turns out that we only need to consider three groups: Z2,Z3, and Z.
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Theorem 3.1. Let n > 3 be an integer; suppose that G,H are digraphs with maximum degree less than

n. Then G
FFn
−→ H is equivalent to G

FFZ
−→ H.

Proof. Onedirection follows fromLemma2.1. For the other one, consider amapping f : E(G) → E(H).
We will show that if it is FFn, it is FFZ as well. Taking a Z-flow ϕ on H , we will show that ϕf is a Z-flow
on G. We only need to test this on elementary flows (those taking only values ±1 around a circuit),
as these form a basis for Z-flows. So suppose that ϕ is one of these; notice that it is both a Z-flow
and a Zn-flow. Thus, ϕf is a Zn-flow on G. Consider a vertex v ∈ V (G) of degree d < n and let
e1, e2, . . . , ed be the edges incident with it; further, let ai = ϕ(f (ei)). As ϕf is a Zn-flow, we have
that s = ±a1 ±a2 ±· · ·±ad ≡ 0(mod n) (the signs are chosen based on the orientation of the edges).
Now |s| ≤ d < n; thus s = 0. It follows that ϕf also satisfies Kirchhoff’s law at v in Z; thus ϕf is also
a flow over Z. �

Corollary 3.2. Let G,H be digraphs of maximum degree 3; let n > 3 be an integer. Then G
FFn
−→ H is

equivalent to G
FFZ
−→ H.

Together with Lemma 2.3, the above corollary implies that for subcubic digraphs we only need to
consider Z2-, Z3-, and Z-flow-continuous mappings.

By Lemma 2.1 a Z-flow-continuous mapping is also Z2- and Z3-flow-continuous. In the following
examples we show that the existence of FF2 mappings and the existence of FF3 mappings are
independent, even for subcubic digraphs. Let f be any bijection from E(

−→
D3) to E(

−→
C 3). Mapping f is

FFn only if n is a multiple of 3; thus it is FF3 but not FF2 or FFZ. On the other hand, consider an edge
3-coloring for

−→
K4 (a K4 with an arbitrary orientation of edges) as a mapping g :

−→
K4 →

−→
D3. This

mapping is FF2 (as a 4-cycle in K4 is also a cut). However, g is not FF3: consider a Z3-flow ϕ in
−→
D3 that

equals 1 on all three edges of
−→
D3. Clearly the composition ϕf is not a Z3-flow on

−→
K4.
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Abstract

Given two graphs, a mapping between their edge-sets is cycle-continuous, if
the preimage of every cycle is a cycle. The motivation for this definition is Jaeger’s
conjecture that for every bridgeless graph there is a cycle-continuous mapping to
the Petersen graph, which, if solved positively, would imply several other impor-
tant conjectures (e.g., the Cycle double cover conjecture). Answering a question of
DeVos, Nešetřil, and Raspaud, we prove that there exists an infinite set of graphs
with no cycle-continuous mapping between them. Further extending this result,
we show that every countable poset can be represented by graphs and the existence
of cycle-continuous mappings between them.

1 Introduction
Many questions at the core of graph theory can be formulated as questions about cy-
cles or more generally about flows on graphs. Examples are the Cycle double cover
conjecture, the Berge-Fulkerson conjecture, and Tutte’s 3-Flow, 4-Flow, and 5-Flow
conjectures. For a detailed treatment of this area the reader may refer to [16], [11],
[18] or [19].

As an approach to these problems Jaeger [10] and DeVos, Nešetřil, and Raspaud
[6] defined a notion of graph morphism continuous with respect to group-valued flows.
In this paper we restrict ourselves to the case of Z2-flows, that is to cycles. Thus, the
following is the principal notion we study in this paper:

Given graphs (parallel edges or loops allowed) G and H , a mapping f : E(G) →
E(H) is called cycle-continuous, if for every cycle C ⊆ E(H), the preimage f−1(C)
is a cycle in G. We emphasize, that by a cycle we understand (as is common in this
area) a set of edges such that every vertex is adjacent with an even number of them.
(So a cycle is an edge-disjoint union of circuits – connected 2-regular graphs.) For
shortness we sometimes call cycle-continuous mappings just cc mappings.

The fact that f is a cc mapping from G to H is denoted by f : G
cc−→ H . If we just

need to say that there exists a cc mapping from G to H , we write G cc−→ H; inspired by
the notation common for graph homomorphisms. Note, that the identity is cc and that
cc mappings compose, so they are truly morphisms in the sense of category theory.

With the definition covered, we mention the main conjecture describing the prop-
erties of cc mappings.

∗Partially supported by grant GA ČR P201/10/P337. Partially supported by Neuron Fund for Support of
Science, grant 201201. Partially supported by grant LL1201 ERC CZ of the Czech Ministry of Education,
Youth and Sports.
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Conjecture 1.1 (Jaeger [10]) For every bridgeless graph G we have G cc−→ Pt, where
Pt denotes the Petersen graph.

If true, this would imply many conjectures in the area. To illustrate this, suppose
we want to find a 5-tuple of cycles in a graphG covering each of its edges twice (this is
conjectured to exist by the 5-Cycle double cover conjecture [15, 17, 3]). Further, sup-
pose f : G

cc−→ Pt. We can use C1, . . . , C5 – a 5-tuple of cycles in the Petersen graph
double-covering its edges – and then it is easy to check that f−1(C1), . . . , f−1(C5)
has the same property in G.

DeVos et al. [6] study cc mappings further and ask the following question about
their structure. We say that graphs G, G′ are cc-incomparable if there is no cc mapping
between them, that is G 6cc−→ G′ and G′ 6cc−→ G.

Question 1.2 ([6], Problem 5.8) Is there an infinite set G of bridgeless graphs such
that every two of them are cc-incomparable?

A negative answer to this would suggest a way to attack Conjecture 1.1. DeVos et
al. [6] prove in their Theorem 2.9 that if there is no infinite set as in the above question,
and no infinite chain G1

cc−→ G2
cc−→ G3

cc−→ · · · (such that Gn+1 6cc−→ Gn for all n),
then there is a single graph H such that for every other bridgeless graph G we have
G

cc−→ H .
DeVos et al. [6] also show that arbitrarily large sets of cc-incomparable graphs exist.

Their proof is based on the notion of critical snarks and on Lemma 3.1; these will be
crucial also for our proof.

We will show that the answer to Question 1.2 is positive. Thus, the following is the
first main result of this paper. (A graph is said to be cubic if it is 3-regular.)

Theorem 1.3 There is an infinite set G of cubic bridgeless graphs such that every two
of them are cc-incomparable.

While this definitely shouldn’t be interpreted as an indication that Conjecture 1.1
is false, it eliminates some easy paths towards the possible proof of it. As a further
indication of the complexity of the structure of cc mappings, we study the order that cc
mappings induce on graphs.

When given a set of objects and morphisms between them, it is standard to consider
a poset in which x ≤ y iff there is a mapping from x to y. (Note that [6] puts x ≥ y in
this situation, i.e., their poset is the opposite of ours.) In this sense, we can speak about
the poset of cc mappings and ask what subposets it contains. The above theorem can
be restated: this poset contains infinite antichains (posets with no relation). We prove
that this poset contains every countable poset, a surprising outcome of Question 1.2.

Theorem 1.4 Every countable (finite or infinite) poset can be represented by a set of
cubic graphs and the existence of cycle-continuous mappings between them.

By a cut we mean a set of edges of the form δ(U) – all edges leaving some set U of
vertices. Such a set may be empty (if U is empty, or a union of connected components),
but if it is not, removing it increases the number of components. Note, however, that not
all edge-sets whose removal increases the number of components are cuts in our sense!
The set δ({v}) will be called the elementary edge-cut determined by the vertex v. For
a plane graph G, a cycle in G corresponds to a cut in G∗, while a cut in G corresponds
to a cycle inG∗ (Theorem 10.16 of [1].) We recall the cut-cycle duality: When we look

2
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at subsets ofE(G) as a vector space overGF (2) (with symmetric difference as a sum),
then the set of cycles and the set of cuts are orthogonal complements (Theorem 1.9.4
of [7]).

To further illustrate the topic, we briefly mention the related concept of cut-contin-
uous mappings. A mapping f : E(G) → E(H) is cut-continuous if the preimage
of every cut is a cut. Cut-continuous mappings behave in many contexts similarly
to homomorphisms (see [13, 12]), in particular Question 1.2 would be trivial for cut-
continuous mappings. The cycle-continuous mappings, on the other hand, have been
hard to tame so far, perhaps because of their connection with so many longstanding
conjectures. The main contribution of this paper is an approach to study the behaviour
of cc mappings – although only for graphs with a special structure.

2 Properties of cycle-continuous mappings

2.1 Basics
Before we describe our construction, we introduce basic properties of cycle-continuous
mappings. Many of them are folklore, we still provide some proofs as a warm-up for
the proofs in the rest of the paper.

By a graph we mean a multigraph with loops and parallel edges allowed. We start
with a dual definition of cycle-continuity in terms of cuts. To prepare for it, we define
for a setX ⊆ E(G) and a mapping f : E(G)→ E(H) a “parity image” ofX under f ,
where two edges with the same image cancel out: we put

fodd(X) := {e ∈ E(H) : |f−1(e) ∩X| is odd} .

The following alternative characterization of cc mappings basically appears as Theo-
rem 3.1 of [6], the proof is a simple use of the cut-cycle duality.

Lemma 2.1 ([6]) Let f : E(G)→ E(H) be a mapping. The following are equivalent:
(1) f is cycle-continuous;
(2) the set fodd(X) is a cut in H for every cut X in G;
(3) the set fodd(X) is a cut in H for every elementary cut X in G, that is for every X

of the form δ({v}).

Proof: The equivalence of (1) and (2) is proved in [6] in greater generality: instead
of speaking of cycles and cuts, they discuss K-flows and K-tensions; for K = Z2

the support of a K-flow is a cycle, the support of a K-tension a cut. Thus, their Z2-
flow-continuous mappings are exactly our cc mappings. Obviously (2) implies (3), it
remains to show the converse. To this end consider the vector space (over GF (2)) of
subsets of E(G) with symmetric difference as a sum. The set of all cuts is a vector
space generated by the elementary cuts (Proposition 1.9.2 of [7]). It is easy to verify
that fodd(X ∆ Y ) = fodd(X) ∆ fodd(Y ), which finishes the proof. 2

Corollary 2.2 Suppose f : G
cc−→ H and H is bridgeless. Then for every 3-edge-cut

{e1, e2, e3} the set {f(e1), f(e2), f(e3)} is a 3-edge-cut.

Proof: Note that |fodd(X)| has the same parity as |X| (for any f and X). It follows
that for X = {e1, e2, e3}, the set fodd(X) is either a single edge, or it is the set

3
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{f(e1), f(e2), f(e3)} of size 3. Moreover, fodd(X) is a cut (Lemma 2.1), and H is
bridgeless thus the former case is impossible. 2

We let K3
2 denote the graph with two vertices connected by three parallel edges. It

will play a major role in our paper, because of the following observation.

Lemma 2.3 The following are equivalent properties of a cubic graph G:
• G cc−→ K3

2

• G admits a proper 3-edge-coloring

Proof: While it is easy to give a direct elementary proof, we will use Lemma 2.1 to
illustrate this useful technique. Let f : E(G) → E(K3

2 ) be any mapping. For any
v ∈ V (G) the set fodd(δ({v})) contains an odd number of edges (as deg v = 3).
There is only one cut in K3

2 with an odd number of edges, namely the whole edge-set.
It follows that fodd(δ({v})) is a cut iff f is a bijection between δ({v}) and E(K3

2 ).
To sum it up, f is a cc mapping if and only if it is a proper 3-edge-coloring (using

edges of K3
2 as colors), which finishes the proof. 2

We remark that for any graph G (not necessarily cubic) the statement G cc−→ K3
2 is

equivalent with G having a nowhere-zero 4-flow.

Snarks. A graph is called a snark if it is
• connected,
• cubic,
• bridgeless, and
• not 3-edge-colorable.

In view of Lemma 2.3, we may replace the last condition by G 6cc−→ K3
2 . The notion

of snark is crucial to this area of graph theory (say, for discussing the Cycle double
cover conjecture, the Berge-Fulkerson conjecture, or Tutte’s Flow conjectures). The
main theme is that if a graph is not a snark, then solving these conjectures is easy.
As a consequence, some authors restrict the notion of snark to add further conditions
of being “nontrivial”. For instance, in [6] a snark is required to be cyclically 4-edge-
connected: for any set X of < 4 edges, at most one component of G − X contains a
cycle. (For cubic graphs it is equivalent to say, that no set of < 4 edges disconnects
the graph, except for sets of the form δ({v}).) Following [18], we do not include such
extra conditions; instead we add the condition to those theorems about snarks, where it
is needed.

The following result, while easy to prove, provides a way to construct cc mappings
in a homomorphism-like fashion.

Corollary 2.4 Let f : E(G) → E(H) be a mapping such that for each v ∈ V (G)
there is w ∈ V (H) such that a restriction of f to δ({v}) is a bijection to δ({w}). Then
f is cycle-continuous.

Proof: This is a direct consequence of Lemma 2.1: if f has the described properties,
then for every v ∈ V (G), the set fodd(δ({v})) is δ({w}) for some w ∈ V (H). 2

A simple corollary of this is that every isomorphism induces a cc mapping: if
h : V (G)→ V (H) is an isomorphism then the mapping h] : E(G)→ E(H) defined
by h](uv) = h(u)h(v) is cycle-continuous.
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We note that if G, H are cubic graphs and H is cyclically 4-edge-connected, then
every cc mapping from G to H is of the type described in Corollary 2.4. This explains
a frequently mentioned version of Conjecture 1.1: every cubic bridgeless graph G has
a mapping f : E(G)→ E(Pt) such that adjacent edges are mapped to adjacent edges.

TODO: put to the end Corollary 2.4 shows an interesting relation with homomor-
phisms of line graphs. If f : L(G) → L(H) is a homomorphism and G, H are cubic
triangle-free graphs, then f is also a cc mapping from G to H . As for some instances
of G, H this describes all cc mappings between G and H , we can use our results to
prove facts about homomorphisms of line graphs: In [8] universality of homomorphism
order of line-graphs is proved. A special case of their result (for line-graphs of cubic
graphs) follows from our Theorem 4.2.

G|x=y is the graph obtained by identifying vertices x and y of G, keeping possible
loops and multiple edges. The following easy observation will be used a lot.

Lemma 2.5 G|x=y
cc−→ G for every graph G and its vertices x, y.

Proof: We map every edge of G|x=y to the corresponding edge of G. To verify
that this is a cc mapping, we consider a cycle C in G. We need to observe that after
identifying x with y we get a cycle C ′ in G|x=y . 2

Lemma 2.6 Let G′ be obtained from G by removing a loop. Then G′ cc−→ G.

Proof: The identity mapping is cc, as preimage of any cycle C is either C itself or C
with a loop removed, thus still a cycle. 2

We shall call a natural inclusion the above cc mapping from G|x=y (or any graph
obtained from it by removing loops) to G. Obviously, a composition of cc mappings
is a cc mapping. Thus, in particular, for any F ⊆ E(G) we have a natural inclusion
G/F

cc−→ G.

Lemma 2.7 Suppose f : G
cc−→ H is a cc mapping, let H ′ be the subgraph of H

consisting of the edges in the range of f . Then f : G→ H ′ is also cycle-continuous.

Proof: Every cycle in H ′ is also a cycle in H , thus its preimage is a cycle in G. 2

2.2 Properties of a 2-join
In this and the next section we will describe two common constructions of snarks.
While the constructions are known (see, e.g., [18]), the relation to cycle-continuous
mappings has not been investigated elsewhere, and is crucial to our result. Before we
start, we must mention that the constructed graphs have 2- or 3-edge cuts that are not
elementary, so they are not snarks according to some authors’ definition. It will be
convenient for our purpose though, to consider them snarks, following the definition
in [18].

The first construction can be informally described as adding a “gadget” on an edge
of a graph. Formally, let G1, G2 be graphs, and let ei = xiyi be an edge of Gi. We
delete edge ei from Gi (for i = 1, 2), and connect the two graphs by adding two new
edges x1x2 and y1y2. The resulting cubic graph will be called the 2-join of the graphs
G1, G2 (some authors call this a 2-cut construction); it will be denoted by G1�G2.

5
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We note that the resulting graph depends on our choice of the edges xiyi, but for our
purposes this coarse description will suffice. By connecting edges of G1�G2 we mean
the edges x1x2 and y1y2. Its vertices and edges arising from edges of G1 − e1 will be
called the left vertices/edges, those coming from G2 − e2 the right vertices/edges.

� ∼=

Figure 1: Illustration of the 2-join contstruction.

Lemma 2.8 For every G1, G2 we have Gi
cc−→ G1�G2 for i ∈ {1, 2}.

Proof: Assume i = 1. We can get G1 from G1�G2 by identifying all right vertices,
removing all resulting loops, and finally contracting y1y2. Thus using Lemma 2.5
and 2.6 finishes the proof. 2

As in Section 2.1, we call the mapping Gi → G1�G2 a natural inclusion.

Lemma 2.9 Let G1, G2 be any graphs. Let K be an edge-transitive graph. Then
G1�G2

cc−→ K if and only if G1
cc−→ K and G2

cc−→ K.

Proof: For the forward implication it is enough to use Lemma 2.8 and the fact that
cc mappings compose. For the other direction, consider cycle-continuous mappings
fi : E(Gi) → E(K), let ei = xiyi be the edges on which the 2-join operation is
performed. As K is edge-transitive, we may assume that f1(e1) = f2(e2). Thus,
we may define f : E(G1�G2) → E(K) in a natural way: f(x1x2) = f(y1y2) =
f1(e1) (which equals f2(e2)), and f(e) = fi(e) whenever e 6= ei is an edge of Gi.
Corollary 2.4 implies easily that f is cycle-continuous. 2

As an immediate corollary we get the following classical result about snarks and
2-joins.

Corollary 2.10 ([18]) LetG1,G2 be connected bridgeless cubic graphs. ThenG1�G2

is a snark if and only if at least one of G1, G2 is a snark.

Proof: As G1, G2, and thus also G1�G2 are connected, cubic, and bridgeless, we
only need to verify the nonexistence of 3-edge-coloring, or, equivalently, of ccmapping
to K3

2 . This is easy by Lemma 2.9, as K3
2 is edge-transitive. 2

Another easy corollary of Lemma 2.9 is that a minimal counterexample (if it exists)
to Conjecture 1.1 does not contain a nontrivial 2-edge-cut.

Corollary 2.11 LetG1, G2 be cubic bridgeless graphs. IfG1�G2 6cc−→ Pt thenGi 6cc−→
Pt for some i ∈ {1, 2}.
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2.3 Properties of a 3-join
A 3-join (also called a 3-cut construction) is another method to create new snarks –
ones that contain nontrivial 3-edge cuts. One way to view this is that we replace a
vertex in a graph by a “gadget” created from another graph.

To be more precise, we consider graphs G1 and G2, delete a vertex vi of each Gi,
and add a matching between the neighbors of former vertices v1 and v2.

The resulting cubic graph in general depends on our choice of vi’s, and of the
matching, but in our applications it either will not matter, or will be discussed in ad-
vance, so we do not introduce any special notation for this. We use G1≡G2 to denote
(any of) the resulting graph(s); we call it the 3-join of G1 and G2. Connecting edges
of the 3-join are the three edges we added to connect G1 and G2. The vertices/edges
of G1≡G2 arising from edges of G1 − v1 will be called the left vertices/edges, those
coming from G2 − v2 the right vertices/edges.

≡ ∼=

Figure 2: Illustration of the 3-join contstruction.

We collect several easy properties of the 3-join operation.

Lemma 2.12 For any graphs G1, G2 we have Gi
cc−→ G1≡G2 for i = 1, 2.

Proof: Assume i = 1. We can get G1 by identifying all right vertices of G1≡G2 and
removing the resulting loops. Thus using Lemma 2.5 and 2.6 suffices again. 2

Again, we shall call the cycle-continuous mapping from Gi to G1≡G2 that is used
in the above lemma a natural inclusion.

We remind the reader of the definition of 2-transitivity. A triple (s0, s1, s2) of
vertices of G is called a 2-arc, if s0s1 and s1s2 are edges and s0 6= s2. A graph G
is called 2-transitive if it contains some 2-arc and for every two 2-arcs (s0, s1, s2),
(t0, t1, t2) there is an automorphism ϕ of G such that ϕ(si) = ti. Note that for cubic
graph G 2-transitivity is equivalent with the following symmetry condition:

Whenever ui (i = 1, 2) is a vertex and xi,1, xi,2, xi,3 is an ordering
of N(ui), there is an automorphism ϕ of G such that ϕ(u1) = u2 and
ϕ(x1,j) = x2,j for j = 1, 2, 3.

Lemma 2.13 LetG1,G2 be any graphs. LetK be a cyclically 4-edge-connected cubic
graph that is 2-transitive.

Then G1≡G2
cc−→ K if and only if G1

cc−→ K and G2
cc−→ K.

Proof: The ‘only if’ part follows from Lemma 2.12. For the other direction, consider
any fi : Gi

cc−→ K (i = 1, 2). Also let vi be the vertex of Gi deleted in the 3-join
operation, and let ai, bi, ci be the edges incident to vi, labeled in an order compatible
with the matching chosen in the 3-join operation.

As δ({vi}) = {ai, bi, ci}, Corollary 2.2 implies that Si = {fi(ai), fi(bi), fi(ci)}
is a 3-edge-cut in K.

7
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Graph K is cyclically 4-edge-connected and cubic, so its only 3-edge-cuts are the
elementary cuts. Thus Si is a cut of the form δ({ui}) for some ui ∈ V (K). As K is 2-
transitive and as each isomorphism induces a ccmapping, we can assume that S1 = S2,
and even f1(a1) = f2(a2), f1(b1) = f2(b2), and f1(c1) = f2(c2). Consequently, we
may define a mapping f : G1≡G2

cc−→ K in a straightforward way: if e is an edge
of Gi, we let f(e) = fi(e). Because of the above assumption, the connecting edges
are mapped consistently. To verify that f is cycle-continuous, we use Corollary 2.4. 2

As an immediate corollary, we get the following classical result about snarks and 3-
joins. (Recall that, unlike some other authors, we do not require snarks to be cyclically
4-edge-connected, otherwise G1≡G2 would not be a snark.)

Corollary 2.14 ([18]) Let G1, G2 be cubic bridgeless graphs. Then G1≡G2 is a
snark, iff at least one of G1, G2 is a snark.

Proof: Apply Lemma 2.13 for K = K3
2 . 2

As another easy application, we observe that minimal counterexample (if it exists)
to Conjecture 1.1 does not contain a nontrivial 3-edge-cut.

Corollary 2.15 LetG1, G2 be cubic bridgeless graphs. IfG1≡G2 6cc−→ Pt thenGi 6cc−→
Pt for some i ∈ {1, 2}.

The above notwithstanding, we proceed to study the structure of cycle-continuous
mappings in graphs with 3-edge-cuts, for two reasons: first we believe, it provides in-
sights that might be useful in further progress towards solving Conjecture 1.1; second,
we find it has an independent interest.

We close this section with two lemmas that will be the key to the construction in
the next section.

Lemma 2.16 Let G1, G2 be cc-incomparable snarks. Then
G1≡G2 6cc−→ Gi for each i ∈ {1, 2}.

Proof: Immediate from Lemma 2.12. 2

In contrast with Lemma 2.16, G≡G cc−→ G holds for every graph G, taking the
identity mapping on both copies of G. For this mapping to be cc it suffices if we
choose the connecting vertex and the order of their neighbors in the same way in both
copies of G. We will use this in the proof of Theorem 4.2.

The following lemma provides a partial converse to Lemma 2.12.

Lemma 2.17 LetG1,G2 be connected cubic graphs, consider a cc mapping f : F
cc−→

G1≡G2. Suppose for every edge e ∈ E(F ) the image f(e) is a left or a connecting
edge of G1≡G2. We let f ′ be the same mapping as f but considered as a mapping
E(F )→ E(G1). Then f ′ is also cycle-continuous.

Proof: Let C be a cycle in G1, we need to check that f ′−1(C) is a cycle in F . If C
does not contain v1 (the vertex used in the construction of G1≡G2), then C is also a
cycle in G1≡G2. In this case f ′−1(C) = f−1(C), which is a cycle in F .

Suppose next, that C contains v1 and two of its neighbors. As G2 is connected, we
can find a cycle C ′ in G1≡G2 such that C ′ ⊇ C and C ′ \ C only contains right edges
of G1≡G2. Consequently, f ′−1(C) = f−1(C ′), which is a cycle by our assumptions.
2
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3 The proof

3.1 Critical snarks
For our construction we will need the following notion of criticality of snarks. It ap-
pears in DeVos et al. [6], and also in [4], where these graphs are called flow-critical
snarks.

Recall that we call a graph G a snark if G is cubic, connected, bridgeless and
G 6cc−→ K3

2 (where K3
2 is a graph formed by two vertices and three parallel edges).

We say that G is a critical snark if it is a snark and for every edge e of G we have
G− e cc−→ K3

2 . (Equivalently [4], G/e cc−→ K3
2 .)

The following lemma (appearing as Proposition 5.9 in [6]) is the basis of our control
over cycle-continuous mappings between graphs in our construction. (We recall that a
snark, or 3-snark in [6] is, according to our definitions, a cyclically 4-edge-connected
snark.) As the ‘Moreover’ part is not formulated in [6], we present the short proof for
the reader’s convenience.

Lemma 3.1 ([6]) LetG,H be cyclically 4-edge-connected cubic graphs, both of which
are critical snarks, suppose that |E(G)| = |E(H)|. Then G cc−→ H iff G ∼= H .

Moreover, every cycle-continuous mapping G cc−→ H is a bijection of the edge-sets
that is induced by an isomorphism of G and H .

Proof: As G, H are snarks, neither of them contains K3
2 . If G and H are isomorphic,

Corollary 2.4 implies that G cc−→ H . For the other implication it is enough to prove
the ‘Moreover’ part. Consider a mapping g : E(G) → E(H). We prove that if g is
cycle-continuous, then g is induced by an isomorphism f : V (G)→ V (H): for every
edge uv of G we have g(uv) = f(u)f(v).

Consider v ∈ V (G). Corollary 2.2 implies that g(δ({v})) is a 3-edge-cut; as H is
cyclically 4-edge-connected, there is a vertex w ∈ V (H) such that g(δG({v})) =
δH({w}). We put f(v) = w (clearly, w is uniquely determined) and show, that this
defines an isomorphism.

First we show that g is a mapping onto E(H): if there is an edge e ∈ E(H) that is
not in the range of g, then g as a mapping G→ H − e is also cc (Lemma 2.7). As H is
a critical snark, we have G cc−→ H − e cc−→ K3

2 , thus G is not a snark, a contradiction.
Consequently, g is onto, and thus injective. It follows that f is injective. Further,

for uv ∈ E(G) we observe that δG({u}) a δG({v}) share exactly one edge, namely
uv. As g is injective, there images, sets δH({f(u)}) a δH({f(v)}) also share exactly
one edge. It follows that f(u)f(v) is an edge of H , thus f is a homomorphism. As G
and H are cubic and of the same size, the rest follows. 2

DeVos et al. [6] claim that ifG is critical then the dot product ofG and the Petersen
graph is critical as well (see [18] for the definition of dot product). This allows (by dif-
ferent ways of taking the dot product) to create arbitrarily large sets of nonisomorphic
critical snarks with the same number of vertices. However, these claims are not proved
there (the first one is proved in the preprint version [5]), thus we will only use the
following two graphs that will suffice for our purposes. It is well-known (Proposition
B.1.13 of [19]) that there are two nonisomorphic snarks on 18 vertices, called Blanuša
snarks, let us use Bi (i = 1, 2) to denote them.

Lemma 3.2 The Blanuša snarks B1, B2 are critical and nonisomorphic. Moreover,
with the notation of Figure 3, there is no isomorphism of B2 mapping s to b. Further-
more, the only automorphism of B2 that fixes s is the identity.
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B1

a b

x

y

u v

s

B2

Figure 3: Blanuša snarks (see Lemma 3.2).

Proof: Both of the Blanuša snarks can be obtained from two copies of Petersen graph
by dot product. This is the easiest way to prove that they are not 3-edge-colorable, for
details see [18], Section 3.7.3 or [19], Section B.1.3.

We will prove criticality using the well-known fact ([2] or [19], Section B.1.5), that
there is no cyclically 4-edge connected snark on 16 vertices, and the only such graph
on ≤ 10 vertices is the Petersen graph. (*)

Suppose Bi (i = 1 or 2) is not critical, let e be an edge for which Bi − e 6cc−→ K3
2 .

The graphBi−e is a subdivision of a cubic graphG on 16 vertices. Lemma 2.5 and 2.6
imply that G 6cc−→ K3

2 .
Thus, from (*) we see that G is not cyclically 4-edge connected. Since Bi is,

e is an edge of some 4-edge cut in Bi, that separates cycles. This gives us (up to
symmetry) four possibilities for the choice of i and e, which would be easy to go over
and provide 3-edge coloring of each of them. An easier way though is to observe,
that for each such choice, G can be written as G1≡G2 with G1, G2 cubic graphs,
|V (G1)| = 8, |V (G2)| = 10. Therefore, G1 is 3-edge-colorable (*) and so G2 is a
snark (Corollary 2.14).

In Figure 4 we depict all eight possibilities for G2: among the dashed lines one is
deleted and the vertex of degree 2 supressed.

Figure 4: Graph G2 from the proof that Blanuša snarks are critical. On the left is the
case i = 1, on the right the case i = 2.

If G2 is a snark, it must be the Petersen graph (*). It isn’t, however, as the Petersen
graph has girth 5, which is not the case for G2: All of the graphs depicted on the left
contain a 4-cycle with one black and one white vertex. The graphs displayed on the
right either contain the 3-cycle through the white vertices or the 4-cycle through the
black vertices.

To show that B1 and B2 are not isomorphic, we observe that B1 has has exactly
one 4-edge cut separating two cycles, while B2 has two such cuts.

It is easy to check (and we will do it shortly) that Aut(B2) ∼= Z2
2, with the obvi-

ous four automorphisms being generated by the horizontal and vertical symmetry of
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the drawing, ϕh, ϕv . This implies (by checking these four automorphisms) that no
automorphism of B2 maps s to b and that the only automorphism that fixes s is the
identity.

Finally, we verify the automorphism group of B2. Call an edge special if it is
a part of a 4-edge cut separating two cycles (there are six of them in B2). Every
automorphism of B2 either fixes or switches x and y – they are the only two vertices
incident with two special edges. Consider f ∈ Aut(B2) and suppose without loss
of generality that f(x) = x and f(y) = y (otherwise we consider ϕv ◦ f instead
of f ). With this assumption, the vertices u and v are either switched or both fixed
by f , suppose the latter (otherwise we consider ϕh ◦ f ). We will show that with these
assumptions, f is the identity; this will finish the proof. The unique path of length three
from u to y is fixed, as well as the unique path of length three from v to y. Now we
repeatedly use the observation, that if a vertex t and two of its neighbors are fixed by f ,
the remaining neighbor of t is fixed by f , too. 2

3.2 Tree of snarks
Let G = {G1, . . . , G`} be a family of graphs such that
• each Gi is a cyclically 4-edge-connected graph
• each Gi is a critical snark
• all graphs in G are of the same size
• for i 6= j, the graphs Gi and Gj are not isomorphic
Observe, that Lemma 3.1 implies, that we may replace the last condition with
• Gi

cc−→ Gj implies i = j
Let T be a tree with a vertex coloring (not necessarily proper) c : V (T )→ [`]. We

denote by T (G) a family of graphs that can be obtained by replacing each v ∈ V (T ) by
a copy of Gc(v) and performing a 3-join for each edge; see Figure 5 for an illustration.
There are in general many graphs that can be constructed in this way, depending on our
choices.

Figure 5: An illustration of the “tree-snark” construction.

More precisely, for each v ∈ V (T ) we fix a bijection rv fromNT (v) to an indepen-
dent set Av in Gc(v), we also specify an ordering of edges going out of vertices of Av .
(If Gc(v) does not have large enough independent set, then T (G) is empty.) Next, we
split each vertex w in Av into three degree 1 vertices; these will be denoted by w1, w2,
w3. (This graph will be denoted by G′c(v).) For each edge uv of T we identify vertices
ru(v)i with rv(u)i for i = 1, 2, 3. Finally, we suppress all vertices of degree 2. Note,
that the construction can be also described as a repeated application of 3-join.

If H is a graph in T (G) and v a vertex of T , we let Hv denote the part of H
constructed from v: the isomorphic copy of G′c(v). Further, we let ιv denote the nat-
ural inclusion (see Section 2.3) of Gc(v) into H , which is a bijection from E(Gc(v))

11
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toE(Hv). (Note that ιv is a ccmapping, not a homomorphism.) Finally, for an edge uv
of T , we will let Hu,v denote the three edges in the intersection of Hu and Hv .

The following lemma and theorem are crucial for getting control over cc mappings
on our graphs. We note here, that while the T (G) construction could be easily gener-
alized for the case when T is not a tree, Lemma 3.3 would be false in T were not a
tree. Recall that cc mappings act on edges and that f ] denotes the mapping induced on
edges by a homomorphism f .

Lemma 3.3 Let G be as above. Take H ∈ T (G) and K ∈ G. Then K cc−→ H iff
K ∼= Gi for some Gi ∈ G such that color i is used on T . Moreover, all mappings
K

cc−→ H can be written as ιv ◦ f ] where v is a vertex of T with c(v) = i and f an
automorphism of K.

Proof: If K ∼= Gi and c(v) = i for some v ∈ V (T ) then K cc−→ Gi (repeated appli-
cation of Lemma 2.12). For the other implication it is enough to show the ‘Moreover’
part.

Consider a cycle-continuous mapping f : E(K) → E(H), let R be the set of
edges in the range of f . Suppose first, that R is exactly the edge set of one of the
graphs Hv . As f only uses edges of Hv , Lemma 2.17 (applied repeatedly) implies that
K

cc−→ Gc(v). The rest follows by assumptions on G and Lemma 3.1.
Suppose next, that for every v, some edge ofHv is not inR; letH ′v be the subgraph

of Gc(v) with edges E(Hv) ∩ R (we are identifying here edges of Hv and Gc(v)). As
each graph of G is critical, each graph H ′v has a cc mapping to K3

2 . The graph H ′ –
subgraph of H induced by R – is produced from graphs H ′v (for v ∈ V (T )) by 2-join
and 3-join operations, which implies (Lemma 2.9 and 2.13) that H ′ cc−→ K3

2 . On the
other hand, g is a cc mapping K cc−→ H ′ (Lemma 2.7). By composition, K cc−→ K3

2 ,
but this is a contradiction as K is a snark. 2

The next theorem shows that every cc mapping between a graph in T1(G) and
a graph in T2(G) (for trees T1, T2 and G as above) is guided by a homomorphism
g : T1 → T2 of reflexive colored graphs.

Theorem 3.4 Let T1, T2 be trees and let ci : V (Ti) → [`] (i = 1, 2) be arbitrary
colorings. Let G be as above.

Consider Hi ∈ Ti(G) for i = 1, 2. For every cc mapping h : H1 cc−→ H2 there is a
mapping g : V (T1)→ V (T2) such that
• c2(g(v)) = c1(v) (g preserves colors), and
• if uv is an edge of T1, then g(u) = g(v) or g(u)g(v) is an edge of T2. In the

latter case, h maps H1
u,v to H2

g(u),g(v).
Moreover, for every v ∈ V (T1) the mapping hv : E(Gc1(v))→ E(Gc2(g(v))) given

by hv = ι−1g(v) ◦ h ◦ ιv is cycle-continuous.

Proof: For a vertex v of T1, consider the composition of h with ιv . It is a cycle-
continuous mapping fromGc1(v) toH2. By Lemma 3.3 this mapping is onto someH2

v′

for which c2(v′) = c1(v). We put g(v) = v′ (obviously, v′ is unique). Next, for an
edge uv of T1 we observe that H1

u,v is a part of both H1
u and H1

v , thus H2
g(u) and H2

g(v)

must have common edges. If follows that either g(u) = g(v) or g(u)g(v) is an edge
of T2. The rest follows easily.

The ’Moreover’ part follows from Lemma 2.17 as h ◦ ιv maps Gc1(v) to H2
g(v). 2
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4 Applications
In this section we provide two applications of the construction from the previous sec-
tion. The second theorem is a strengthening of the first one. We include both, however,
as the first one, that already answers Question 1.2, is easier to prove and self-contained.

B1 B2 B2 B2 B1

Figure 6: Construction of an infinite set of cc-incomparable graphs.

Theorem 4.1 There is an infinite set of cc-incomparable graphs.

Proof: Let Tn be a path with vertices {0, 1, . . . , n} colored as 1(2)n−11. We let
G = {G1, G2}, where Gi

∼= Bi are the Blanuša snarks from Lemma 3.2. For every
vertex v ∈ V (Tn) of degree 2 we define rv so, that rv(v − 1) = s and rv(v + 1) = b.
We specify neither A0 nor An, nor the order of the edges adjacent to s or b. We pick
Hn arbitrarily from Tn(G) for every integer n ≥ 2.

We will show that {Hn, n ≥ 2} has the required properties. To this end, consider
Hm and Hn and suppose that h : Hm cc−→ Hn is a cc mapping. We will show that
necessarily m = n.

Let g : V (Tm) → V (Tn) be the mapping guaranteed by Theorem 3.4. As g pre-
serves colors, we have {g(0), g(m)} ⊆ {0, n}, also 0 < i < m implies 0 < g(i) < n.
Suppose first that g(0) = n. Then g(1) = n−1 and h(Hm

0,1) = Hn
n,n−1. It follows that

h1 = ι−1n−1 ◦h◦ ι1 is a mapping B2
cc−→ B2 that maps δ({s}) to δ({b}), a contradiction

(Lemma 3.1 and 3.2). Thus g(0) = 0, consequently g(1) = 1 and h(Hm
0,1) = Hn

0,1.
We will prove by induction that g(i) = i and h(Hm

i−1,i) = Hn
i−1,i. For i = 1 we

already know this, we will prove the induction step. From the assumption we know that
the mapping hi : B2

cc−→ B2 maps δ({s}) to δ({s}). It follows (Lemma 3.1 and 3.2)
that hi maps δ({b}) to δ({b}), thus h(Hm

i,i+1) = Hn
i,i+1. If g(i + 1) = i + 1, we are

done, so assume not. Then g(i + 1) = i (as Hn
g(i) contains Hn

i,i+1). In this case the

mapping hi+1 : B2
cc−→ B2 maps δ({s}) to δ({b}), a contradiction. It follows that

g(i) = i for every i, thus m = n. 2

Question 1.2 should be understood as a question about how complicated is the
structure of cc mappings. Next, we provide even further indication, that the structure
is complicated indeed.

Theorem 4.2 Every countable (finite or infinite) poset can be represented by a set of
cubic graphs and the existence of cc mappings between them.

Proof: We use the result of Hubička and Nešetřil [9], claiming that arbitrary countable
posets can be represented by finite directed paths and the existence of homomorphisms
between them. We may assume that only paths with at least one edge are used, as we
may first modify our poset by adding a new element as a least element, if path of a
single vertex is used, it may be only for this new element.
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B1 B1B1

B2 B2B2

e1 e2 e3

Figure 7: Construction used for representation of arbitrary posets by cc mappings.

Thus, we only need to find an injective mapping m that assigns cubic bridgeless
graphs to directed paths, so that P hom−−−→ P ′ iff m(P )

cc−→ m(P ′). To do this, we use
the construction depicted in Fig. 7.

Informally, we replace each directed edge by a copy of B2 “from a to b” and per-
form a 3-join operation in-between each pair of adjacent edges. Further, we join a copy
of B1 to each copy of B2 by a 3-join operation. We make the 3-joins carefully, so
that any homomorphism P → P ′ will correspond to a ‘folding’ of m(P ) to m(P ′) –
this mapping will be locally an isomorphism, thus also a cc mapping (Corollary 2.4).
Basically, we are using the fact that G≡G cc−→ G that was mentioned earlier, in the
discussion following Lemma 2.16. Next, we use the properties of our tree-of-snarks
construction to find that m(P )

cc−→ m(P ′) implies P → P ′.
Formally, let P be a path with vertices v0, . . . , vk. The edge ei is either (vi−1, vi)

(a forward edge) or (vi, vi−1) (a backward edge). We will use the construction from
Section 3.2. To construct our tree T we start with a path with vertices e1, . . . , ek
(an undirected line-graph of P ), then we join a new vertex fi by an edge to ei (for
i = 1, . . . , k). All vertices ei are colored by 2, all fi’s by 1. As before, our set of
snarks will consist of the two Blanuša snarks, i.e., G = {G1, G2}, where G1

∼= B1 and
G2
∼= B2.
We remind the reader of the notation in Figure 3, we let z be any vertex in B1. We

define rei(fi) = s, we let rfi(ei) = z. If ei is a forward edge, we put rei(ei−1) = a,
and rei(ei+1) = b ; if it is a backward edge, we put rei(ei−1) = b, and rei(ei+1) = a
(in case i ∈ {0, k} we use only one of the two formulas, as e0, ek+1 are not defined).
We choose an ordering of the edges going out of a, b, x and z ; we keep this fixed for
all vertices of all paths. Then we let m(P ) be the graph in T (G) determined by the
above described choices.

We further remind the reader of the notation m(P )v from the construction of the
tree of snarks (v is a vertex of the tree, i.e. v = ei or v = fi). We define Vi to
be the connecting edges between m(P )ei and m(P )ei+1

. We extend this definition
for i ∈ {0, k} in the natural way: V0 are the three edges of m(P )e1 corresponding
to δ({a}) (if e1 is a forward edge) or to δ({b}) (if e1 is a backward edge), similarly
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for Vk. Finally, we put Ei = m(P )ei ∪m(P )fi .
With the construction in place, we need to show that for any directed paths P

and P ′, we have P hom−−−→ P ′ if and only if m(P )
cc−→ m(P ′). Shortly, the proof of the

‘only if’ part is a direct consequence of the construction, the ‘if’ part uses Theorem 3.4
and Lemma 3.2.

In detail, for the forward implication consider a homomorphism f : P
hom−−−→ P ′.

As above, the vertices and edges of P are vi, ei (i ≤ k); the vertices and edges of P ′

will be denoted v′j , e′j (j ≤ l).
Homomorphism f induces a mapping g : E(P ) → E(P ′): we put g((u, v)) =

(f(u), f(v)). We define h : m(P )→ m(P ′) separately on eachEi: whenever g(ei) =
e′j , we let (the restriction of) h be an identity between isomorphic graphs Ei and E′j .
Corollary 2.4 implies that h is cc, but we need to verify that h is well-defined, as we are
defining the value of h on the connecting edges twice. It is enough to verify that when
f(vi) = v′j then we have defined h to map Vi to V ′j bijectively in the predetermined
order both on Ei and Ei−1 (except when i ∈ {0, k}, when we only defined h on Vi
once). To do this we only observe that if e has its tail (head, resp.) at vi then (by
definition) g(e) has its tail (head, resp.) at f(vi).

For the backward implication: suppose we have h : m(P )
cc−→ m(P ′), we want to

prove that there is a homomorphism f : P → P ′. There is a natural way to define f :
if h maps Vi to V ′j than we define f(vi) = v′j . We need to show that f is well-defined
and that it is, indeed, a homomorphism.

We use Theorem 3.4 to find a mapping g : V (T )→ V (T ′). As E(P ) ⊆ V (T ) and
as g respects colors, a restriction of g is a mapping g′ : E(P )→ E(P ′). We will show
that g′ is induced by the above-defined homomorphism f .

Using Theorem 3.4, for every i there is a j such that g(ei) = e′j and g(fi) = f ′j .
This implies that h maps the three edges shared by m(P )ei and m(P )fi to those of
m(P ′)e′j ∩m(P ′)f ′

j
. Thus, a mapping hei = ι−1e′j

◦ h ◦ ιei : B2
cc−→ B2 fixes the three

edges in δ({s}). Using Lemma 3.2, this mapping is the identity, therefore it also fixes
the three edges in δ({a}) and those in δ({b}). Consequently, if ei = (u, v) then f(u)
and f(v) are well-defined and g(ei) = (f(u), f(v)). Repeating this for all edges ei we
find that f is, indeed, a homomorphism (and that g is induced by f ). 2

We remark that the construction would also work without the vertices fi, but the
proof is easier with them.

To close this section, we describe an interesting application of Theorem 4.2 to a
problem solved in [8]. They study the homomorphism order defined on undirected
graphs by G ≤ H iff G → H (i.e., iff there is a homomorphism from G to H). They
prove that this order is universal (it contains every countable poset as a subposet), even
if restricted to graphs that are line-graphs of graphs of given maximal degree. Note that
the graphs we utilize in Theorem 4.2 are all 3-regular and triangle-free. So if G, H are
two of our graphs (graphs of form m(P ) for some directed path P ), then G cc−→ H is
equivalent with L(G) → L(H). It follows that a special case of their result (namely
for line-graphs of 3-regular graphs) follows from our result.

5 Concluding remarks
While being a resolution to Question 1.2, none of the family of examples we gave does
violate Conjecture 1.1:
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Theorem 5.1 If H ∈ T (G) and if every G ∈ G satisfies G cc−→ Pt then H cc−→ Pt.

Proof: It suffices to repeatedly use Corollary 2.15. 2

Still, the presented results illustrate the complexity of cc mappings. To better un-
derstand the structure of these mappings, we suggest the following questions:

Question 5.2 Does the poset of cubic cyclically 4-edge-connected graphs and cc map-
pings between them have infinite antichains? Does it contain every countable poset as
a subposet? How about cyclically 5-edge-connected graphs?

For the next question, recall that in a poset (X,≤) an interval (a, b) is the set
{x ∈ X : a < x < b} (we must have a < b for this definition to make sense, otherwise
we call (a, b) degenerate interval).

Question 5.3 In the poset of graphs and cc mappings between them, is every non-
degenerate interval nonempty? Does every non-degenerate interval contain an infinite
antichain? Does every non-degenerate interval contain every countable poset?

Note, that if Conjecture 1.1 is true, then (Pt,K2) is an empty but non-degenerate
interval. Is there some other?

We also briefly note the more general definition of flow-continuous mappings, that
extends the notion of cycle-continuous mappings: a mapping f : E(G) → E(H) is
called M -flow-continuous (for an abelian group M ) if for every M -flow ϕ on H , the
composition ϕ◦f is anM -flow onG. For detailed discussion, see [6] or [14]. We only
mention here, that cycle-continuous mappings are exactly Z2-flow-continuous ones,
and that our main results, Theorem 4.1 and 4.2 extend trivially to Z-flow-continuous
mappings.
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